From-SVN: r9492
50 KiB
;;- Machine description for the Hitachi SH. ;; Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. ;; Contributed by Steve Chamberlain (sac@cygnus.com). ;; Improved by Jim Wilson (wilson@cygnus.com).
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version.
;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
;; ??? The MAC.W and MAC.L instructions are not supported. There is no ;; way to generate them.
;; ??? The BSR instruction is not supported. It might be possible to ;; generate it by keeping track of function sizes (and hence relative ;; addresses), and then using it only if the target is earlier in the same ;; file, and is within range. Better would be assembler/linker relaxing, ;; but that is much harder.
;; Special constraints for SH machine description: ;; ;; t -- T ;; x -- mac ;; l -- pr ;; z -- r0 ;; ;; Special formats used for outputting SH instructions: ;; ;; %. -- print a .s if insn needs delay slot ;; %@ -- print rte/rts if is/isn't an interrupt function ;; %# -- output a nop if there is nothing to put in the delay slot ;; %O -- print a constant without the # ;; %R -- print the lsw reg of a double ;; %S -- print the msw reg of a double ;; %T -- print next word of a double REG or MEM ;; ;; Special predicates: ;; ;; arith_operand -- operand is valid source for arithmetic op ;; arith_reg_operand -- operand is valid register for arithmetic op ;; general_movdst_operand -- operand is valid move destination ;; general_movsrc_operand -- operand is valid move source ;; logical_operand -- operand is valid source for logical op ;; ------------------------------------------------------------------------- ;; Attributes ;; -------------------------------------------------------------------------
; Target CPU.
(define_attr "cpu" "sh0,sh1,sh2,sh3" (const (symbol_ref "sh_cpu_attr")))
;; ;; cbranch conditional branch instructions ;; jump unconditional jumps ;; arith ordinary arithmetic ;; load from memory ;; store to memory ;; move register to register ;; smpy word precision integer multiply ;; dmpy longword or doublelongword precision integer multiply ;; return rts ;; pload load of pr reg (can't be put into delay slot of rts) ;; pcload pc relative load of constant value ;; rte return from exception ;; sfunc special function call with known used registers
(define_attr "type" "cbranch,jump,arith,other,load,store,move,smpy,dmpy,return,pload,pcload,rte,sfunc" (const_string "other"))
; If a conditional branch destination is within -252..258 bytes away ; from the instruction it can be 2 bytes long. Something in the ; range -4090..4100 bytes can be 6 bytes long. All other conditional ; branches are 16 bytes long.
; An unconditional jump in the range -4092..4098 can be 2 bytes long. ; Otherwise, it must be 14 bytes long.
; All other instructions are two bytes long by default.
; All positive offsets have an adjustment added, which is the number of bytes ; difference between this instruction length and the next larger instruction ; length. This is because shorten_branches starts with the largest ; instruction size and then tries to reduce them.
(define_attr "length" "" (cond [(eq_attr "type" "cbranch") (if_then_else (and (ge (minus (match_dup 0) (pc)) (const_int -252)) (le (minus (match_dup 0) (pc)) (const_int 262))) (const_int 2) (if_then_else (and (ge (minus (match_dup 0) (pc)) (const_int -4090)) (le (minus (match_dup 0) (pc)) (const_int 4110))) (const_int 6) (const_int 16)))
(eq_attr "type" "jump")
(if_then_else (and (ge (minus (match_dup 0) (pc))
(const_int -4092))
(le (minus (match_dup 0) (pc))
(const_int 4110)))
(const_int 2)
(const_int 14))
] (const_int 2)))
;; (define_function_unit {name} {num-units} {n-users} {test} ;; {ready-delay} {issue-delay} [{conflict-list}])
(define_function_unit "memory" 1 0 (eq_attr "type" "load,pcload,pload") 2 2) (define_function_unit "mpy" 1 0 (eq_attr "type" "smpy") 2 2) (define_function_unit "mpy" 1 0 (eq_attr "type" "dmpy") 3 3)
; Definitions for filling branch delay slots.
(define_attr "needs_delay_slot" "yes,no" (const_string "no"))
(define_attr "hit_stack" "yes,no" (const_string "no"))
(define_attr "interrupt_function" "no,yes" (const (symbol_ref "pragma_interrupt")))
(define_attr "in_delay_slot" "yes,no" (cond [(eq_attr "type" "cbranch") (const_string "no") (eq_attr "type" "pcload") (const_string "no") (eq_attr "needs_delay_slot" "yes") (const_string "no") (eq_attr "length" "2") (const_string "yes") ] (const_string "no")))
(define_delay (eq_attr "needs_delay_slot" "yes") [(eq_attr "in_delay_slot" "yes") (nil) (nil)])
;; On the SH and SH2, the rte instruction reads the return pc from the stack, ;; and thus we can't put a pop instruction in its delay slot.
(define_delay (eq_attr "type" "return") [(and (eq_attr "in_delay_slot" "yes") (and (ior (eq_attr "interrupt_function" "no") (eq_attr "hit_stack" "no")) (ior (eq_attr "interrupt_function" "yes") (eq_attr "type" "!pload")))) (nil) (nil)])
(define_delay (and (eq_attr "type" "cbranch") (eq_attr "cpu" "sh2,sh3")) [(eq_attr "in_delay_slot" "yes") (nil) (nil)]) ;; ------------------------------------------------------------------------- ;; SImode signed integer comparisons ;; -------------------------------------------------------------------------
(define_insn "" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (eq:SI (reg:SI 18) (const_int 1)))] "" "movt %0")
;; ??? This combiner pattern does not work, because combine does not combine ;; instructions that set a hard register when SMALL_REGISTER_CLASSES is ;; defined. Perhaps use a pseudo-reg for the T bit?
(define_insn "" [(set (reg:SI 18) (eq:SI (and:SI (match_operand:SI 0 "arith_reg_operand" "z,r") (match_operand:SI 1 "arith_operand" "L,r")) (const_int 0)))] "" "tst %1,%0")
;; ??? Perhaps should only accept reg/constant if the register is reg 0. ;; That would still allow reload to create cmpi instructions, but would ;; perhaps allow forcing the constant into a register when that is better.
(define_insn "cmpeqsi_t" [(set (reg:SI 18) (eq:SI (match_operand:SI 0 "arith_reg_operand" "r,z,r") (match_operand:SI 1 "arith_operand" "N,rI,r")))] "" "@ tst %0,%0 cmp/eq %1,%0 cmp/eq %1,%0")
(define_insn "cmpgtsi_t" [(set (reg:SI 18) (gt:SI (match_operand:SI 0 "arith_reg_operand" "r,r") (match_operand:SI 1 "arith_reg_or_0_operand" "r,N")))] "" "@ cmp/gt %1,%0 cmp/pl %0")
(define_insn "cmpgesi_t" [(set (reg:SI 18) (ge:SI (match_operand:SI 0 "arith_reg_operand" "r,r") (match_operand:SI 1 "arith_reg_or_0_operand" "r,N")))] "" "@ cmp/ge %1,%0 cmp/pz %0") ;; ------------------------------------------------------------------------- ;; SImode unsigned integer comparisons ;; -------------------------------------------------------------------------
(define_insn "cmpgeusi_t" [(set (reg:SI 18) (geu:SI (match_operand:SI 0 "arith_reg_operand" "r") (match_operand:SI 1 "arith_reg_operand" "r")))] "" "cmp/hs %1,%0")
(define_insn "cmpgtusi_t" [(set (reg:SI 18) (gtu:SI (match_operand:SI 0 "arith_reg_operand" "r") (match_operand:SI 1 "arith_reg_operand" "r")))] "" "cmp/hi %1,%0")
;; We save the compare operands in the cmpxx patterns and use them when ;; we generate the branch.
(define_expand "cmpsi" [(set (reg:SI 18) (compare (match_operand:SI 0 "arith_operand" "") (match_operand:SI 1 "arith_operand" "")))] "" " { sh_compare_op0 = operands[0]; sh_compare_op1 = operands[1]; DONE; }") ;; ------------------------------------------------------------------------- ;; Addition instructions ;; -------------------------------------------------------------------------
;; this should be a define split.
(define_insn "adddi3" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (plus:DI (match_operand:DI 1 "arith_reg_operand" "%0") (match_operand:DI 2 "arith_reg_operand" "r"))) (clobber (reg:SI 18))] "" "clrt;addc %R2,%R0;addc %S2,%S0" [(set_attr "length" "6")])
(define_insn "addsi3" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (plus:SI (match_operand:SI 1 "arith_operand" "%0") (match_operand:SI 2 "arith_operand" "rI")))] "" "add %2,%0" [(set_attr "type" "arith")]) ;; ------------------------------------------------------------------------- ;; Subtraction instructions ;; -------------------------------------------------------------------------
(define_insn "subdi3" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (minus:DI (match_operand:DI 1 "arith_reg_operand" "0") (match_operand:DI 2 "arith_reg_operand" "r"))) (clobber (reg:SI 18))] "" "clrt;subc %R2,%R0;subc %S2,%S0" [(set_attr "length" "6")])
(define_insn "subsi3" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (minus:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "arith_operand" "r")))] "" "sub %2,%0" [(set_attr "type" "arith")]) ;; ------------------------------------------------------------------------- ;; Division instructions ;; -------------------------------------------------------------------------
;; we take advantage of the library routines which don't clobber as many ;; registers as a normal function call would.
;; We must use a psuedo-reg forced to reg 0 in the SET_DEST rather than ;; hard register 0. If we used hard register 0, then the next instruction ;; would be a move from hard register 0 to a pseudo-reg. If the pseudo-reg ;; gets allocated to a stack slot that needs its address reloaded, then ;; there is nothing to prevent reload from using r0 to reload the address. ;; This reload would clobber the value in r0 we are trying to store. ;; If we let reload allocate r0, then this problem can never happen.
(define_insn "" [(set (match_operand:SI 1 "register_operand" "=z") (udiv:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 4)) (use (match_operand:SI 0 "arith_reg_operand" "r"))] "" "jsr @%0%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
(define_expand "udivsi3" [(set (reg:SI 4) (match_operand:SI 1 "general_operand" "")) (set (reg:SI 5) (match_operand:SI 2 "general_operand" "")) (set (match_dup 3) (symbol_ref:SI "__udivsi3")) (parallel[(set (match_operand:SI 0 "register_operand" "") (udiv:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 4)) (use (match_dup 3))])] "" "operands[3] = gen_reg_rtx(SImode);")
(define_insn "" [(set (match_operand:SI 1 "register_operand" "=z") (div:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 1)) (clobber (reg:SI 2)) (clobber (reg:SI 3)) (use (match_operand:SI 0 "arith_reg_operand" "r"))] "" "jsr @%0%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
(define_expand "divsi3" [(set (reg:SI 4) (match_operand:SI 1 "general_operand" "")) (set (reg:SI 5) (match_operand:SI 2 "general_operand" "")) (set (match_dup 3) (symbol_ref:SI "__sdivsi3")) (parallel[(set (match_operand:SI 0 "register_operand" "") (div:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 1)) (clobber (reg:SI 2)) (clobber (reg:SI 3)) (use (match_dup 3))])] "" "operands[3] = gen_reg_rtx(SImode);") ;; ------------------------------------------------------------------------- ;; Multiplication instructions ;; -------------------------------------------------------------------------
(define_insn "" [(set (reg:SI 21) (mult:SI (zero_extend:SI (match_operand:HI 1 "arith_reg_operand" "r")) (zero_extend:SI (match_operand:HI 2 "arith_reg_operand" "r"))))] "" "mulu %2,%1" [(set_attr "type" "smpy")])
(define_insn "" [(set (reg:SI 21) (mult:SI (sign_extend:SI (match_operand:HI 1 "arith_reg_operand" "r")) (sign_extend:SI (match_operand:HI 2 "arith_reg_operand" "r"))))] "" "muls %2,%1" [(set_attr "type" "smpy")])
(define_expand "mulhisi3" [(set (reg:SI 21) (mult:SI (sign_extend:SI (match_operand:HI 1 "arith_reg_operand" "")) (sign_extend:SI (match_operand:HI 2 "arith_reg_operand" "")))) (set (match_operand:SI 0 "arith_reg_operand" "") (reg:SI 21))] "" "")
(define_expand "umulhisi3" [(set (reg:SI 21) (mult:SI (zero_extend:SI (match_operand:HI 1 "arith_reg_operand" "")) (zero_extend:SI (match_operand:HI 2 "arith_reg_operand" "")))) (set (match_operand:SI 0 "arith_reg_operand" "") (reg:SI 21))] "" "")
;; mulsi3 on the SH2 can be done in one instruction, on the SH1 we generate ;; a call to a routine which clobbers known registers.
(define_insn "" [(set (match_operand:SI 1 "register_operand" "=z") (mult:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 21)) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 3)) (clobber (reg:SI 2)) (clobber (reg:SI 1)) (use (match_operand:SI 0 "arith_reg_operand" "r"))] "" "jsr @%0%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
(define_expand "mulsi3_call" [(set (reg:SI 4) (match_operand:SI 1 "general_operand" "")) (set (reg:SI 5) (match_operand:SI 2 "general_operand" "")) (set (match_dup 3) (symbol_ref:SI "__mulsi3")) (parallel[(set (match_operand:SI 0 "register_operand" "") (mult:SI (reg:SI 4) (reg:SI 5))) (clobber (reg:SI 21)) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (clobber (reg:SI 3)) (clobber (reg:SI 2)) (clobber (reg:SI 1)) (use (match_dup 3))])] "" "operands[3] = gen_reg_rtx(SImode);")
(define_insn "mul_l" [(set (reg:SI 21) (mult:SI (match_operand:SI 0 "arith_reg_operand" "r") (match_operand:SI 1 "arith_reg_operand" "r")))] "TARGET_SH2" "mul.l %1,%0" [(set_attr "type" "dmpy")])
(define_expand "mulsi3" [(set (reg:SI 21) (mult:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "arith_reg_operand" ""))) (set (match_operand:SI 0 "arith_reg_operand" "") (reg:SI 21))] "" " { if (!TARGET_SH2) { FAIL; /* ??? Does this give worse or better code? */ emit_insn (gen_mulsi3_call (operands[0], operands[1], operands[2])); DONE; } }")
(define_insn "" [(set (reg:DI 20) (mult:DI (sign_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")) (sign_extend:DI (match_operand:SI 2 "arith_reg_operand" "r"))))] "(TARGET_SH2) && 0" "dmuls.l %2,%1" [(set_attr "type" "dmpy")])
(define_expand "mulsidi3" [(set (reg:DI 20) (mult:DI (sign_extend:DI (match_operand:SI 1 "arith_reg_operand" "")) (sign_extend:DI (match_operand:SI 2 "arith_reg_operand" "")))) (set (match_operand:DI 0 "arith_reg_operand" "") (reg:DI 20))] "(TARGET_SH2) && 0" "")
(define_insn "" [(set (reg:DI 20) (mult:DI (zero_extend:DI (match_operand:SI 1 "arith_reg_operand" "r")) (zero_extend:DI (match_operand:SI 2 "arith_reg_operand" "r"))))] "(TARGET_SH2) && 0" "dmulu.l %2,%1" [(set_attr "type" "dmpy")])
(define_expand "umulsidi3" [(set (reg:DI 20) (mult:DI (zero_extend:DI (match_operand:SI 1 "arith_reg_operand" "")) (zero_extend:DI (match_operand:SI 2 "arith_reg_operand" "")))) (set (match_operand:DI 0 "arith_reg_operand" "") (reg:DI 20))] "(TARGET_SH2) && 0" "") ;; ------------------------------------------------------------------------- ;; Logical operations ;; -------------------------------------------------------------------------
(define_insn "" [(set (match_operand:SI 0 "arith_reg_operand" "=r,z") (and:SI (match_operand:SI 1 "arith_reg_operand" "%0,0") (match_operand:SI 2 "logical_operand" "r,L")))] "" "and %2,%0" [(set_attr "type" "arith")])
;; If the constant is 255, then emit a extu.b instruction instead of an ;; and, since that will give better code.
(define_expand "andsi3" [(set (match_operand:SI 0 "arith_reg_operand" "") (and:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "logical_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == 255) { emit_insn (gen_zero_extendqisi2 (operands[0], gen_lowpart (QImode, operands[1]))); DONE; } }")
(define_insn "iorsi3" [(set (match_operand:SI 0 "arith_reg_operand" "=r,z") (ior:SI (match_operand:SI 1 "arith_reg_operand" "%0,0") (match_operand:SI 2 "logical_operand" "r,L")))] "" "or %2,%0")
(define_insn "xorsi3" [(set (match_operand:SI 0 "arith_reg_operand" "=z,r") (xor:SI (match_operand:SI 1 "arith_reg_operand" "%0,0") (match_operand:SI 2 "logical_operand" "L,r")))] "" "xor %2,%0" [(set_attr "type" "arith")]) ;; ------------------------------------------------------------------------- ;; Shifts and rotates ;; -------------------------------------------------------------------------
(define_insn "rotlsi3_1" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (rotate:SI (match_operand:SI 1 "arith_reg_operand" "0") (const_int 1))) (set (reg:SI 18) (lshiftrt:SI (match_dup 1) (const_int 31)))] "" "rotl %0")
(define_insn "rotlsi3_31" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (rotate:SI (match_operand:SI 1 "arith_reg_operand" "0") (const_int 31))) (clobber (reg:SI 18))] "" "rotr %0")
(define_insn "" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (rotate:SI (match_operand:SI 1 "arith_reg_operand" "r") (const_int 16)))] "" "swap.w %1,%0")
(define_expand "rotlsi3" [(set (match_operand:SI 0 "arith_reg_operand" "") (rotate:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "immediate_operand" "")))] "" " { if (GET_CODE (operands[2]) != CONST_INT) FAIL;
if (INTVAL (operands[2]) == 1) { emit_insn (gen_rotlsi3_1 (operands[0], operands[1])); DONE; } else if (INTVAL (operands[2]) == 31) { emit_insn (gen_rotlsi3_31 (operands[0], operands[1])); DONE; } else if (INTVAL (operands[2]) != 16) FAIL; }")
(define_insn "" [(set (match_operand:HI 0 "arith_reg_operand" "=r") (rotate:HI (match_operand:HI 1 "arith_reg_operand" "r") (const_int 8)))] "" "swap.b %1,%0")
(define_expand "rotlhi3" [(set (match_operand:HI 0 "arith_reg_operand" "") (rotate:HI (match_operand:HI 1 "arith_reg_operand" "") (match_operand:HI 2 "immediate_operand" "")))] "" " { if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 8) FAIL; }")
;; ;; shift left
(define_insn "ashlsi3_k" [(set (match_operand:SI 0 "arith_reg_operand" "=r,r") (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0,0") (match_operand:SI 2 "immediate_operand" "M,K")))] "CONST_OK_FOR_K (INTVAL (operands[2]))" "@ add %0,%0 shll%O2 %0")
(define_insn "ashlsi3_n" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (ashift:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "immediate_operand" "n"))) (clobber (reg:SI 18))] "" "#" [(set (attr "length") (cond [(eq (symbol_ref "shift_insns_rtx (insn)") (const_int 1)) (const_string "2") (eq (symbol_ref "shift_insns_rtx (insn)") (const_int 2)) (const_string "4") (eq (symbol_ref "shift_insns_rtx (insn)") (const_int 3)) (const_string "6")] (const_string "8"))) (set_attr "type" "arith")])
(define_split [(set (match_operand:SI 0 "arith_reg_operand" "") (ashift:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "immediate_operand" "n"))) (clobber (reg:SI 18))] "" [(use (reg:SI 0))] " { gen_shifty_op (ASHIFT, operands); DONE; }")
(define_expand "ashlsi3" [(parallel[(set (match_operand:SI 0 "arith_reg_operand" "") (ashift:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "nonmemory_operand" ""))) (clobber (reg:SI 18))])] "" " { if (! immediate_operand (operands[2], GET_MODE (operands[2]))) FAIL; }")
; ; arithmetic shift right ;
(define_insn "ashrsi3_k" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "immediate_operand" "M"))) (clobber (reg:SI 18))] "INTVAL(operands[2]) == 1" "shar %0" [(set_attr "type" "arith")])
(define_insn "ashrsi2_16" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "r") (const_int 16)))] "" "swap.w %1,%0;exts.w %0,%0" [(set_attr "length" "4")])
(define_insn "ashrsi2_31" [(set (match_operand:SI 0 "arith_reg_operand" "=r,r") (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0,!r") (const_int 31))) (clobber (reg:SI 18))] "" "@ shll %0;subc %0,%0 mov %1,%0;shll %0;subc %0,%0" [(set_attr "length" "4,6")])
(define_insn "ashrsi3_n" [(set (reg:SI 4) (ashiftrt:SI (reg:SI 4) (match_operand:SI 0 "immediate_operand" "i"))) (clobber (reg:SI 18)) (clobber (reg:SI 17)) (use (match_operand:SI 1 "arith_reg_operand" "r"))] "" "jsr @%1%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
(define_expand "ashrsi3" [(parallel[(set (match_operand:SI 0 "arith_reg_operand" "") (ashiftrt:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "nonmemory_operand" ""))) (clobber (reg:SI 18))])] "" "if (expand_ashiftrt (operands)) DONE; else FAIL;")
;; logical shift right
;; ??? Only the single bit shift clobbers the T bit.
(define_insn "lshrsi3_m" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "immediate_operand" "M"))) (clobber (reg:SI 18))] "CONST_OK_FOR_M (INTVAL (operands[2]))" "shlr %0")
(define_insn "lshrsi3_k" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "immediate_operand" "K")))] "CONST_OK_FOR_K (INTVAL (operands[2])) && ! CONST_OK_FOR_M (INTVAL (operands[2]))" "shlr%O2 %0")
(define_insn "lshrsi3_n" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "0") (match_operand:SI 2 "immediate_operand" "n"))) (clobber (reg:SI 18))] "" "#" [(set (attr "length") (cond [(eq (symbol_ref "shift_insns_rtx (insn)") (const_int 1)) (const_string "2") (eq (symbol_ref "shift_insns_rtx (insn)") (const_int 2)) (const_string "4") (eq (symbol_ref "shift_insns_rtx (insn)") (const_int 3)) (const_string "6")] (const_string "8"))) (set_attr "type" "arith")])
(define_split [(set (match_operand:SI 0 "arith_reg_operand" "") (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "immediate_operand" "n"))) (clobber (reg:SI 18))] "" [(use (reg:SI 0))] " { gen_shifty_op (LSHIFTRT, operands); DONE; }")
(define_expand "lshrsi3" [(parallel[(set (match_operand:SI 0 "arith_reg_operand" "") (lshiftrt:SI (match_operand:SI 1 "arith_reg_operand" "") (match_operand:SI 2 "nonmemory_operand" ""))) (clobber (reg:SI 18))])] "" " { if (! immediate_operand (operands[2], GET_MODE (operands[2]))) FAIL; }")
(define_insn "ashldi3_k" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (ashift:DI (match_operand:DI 1 "arith_reg_operand" "0") (const_int 1))) (clobber (reg:SI 18))] "" "shll %R0;rotcl %S0" [(set_attr "length" "4")])
(define_expand "ashldi3" [(parallel[(set (match_operand:DI 0 "arith_reg_operand" "") (ashift:DI (match_operand:DI 1 "arith_reg_operand" "") (match_operand:DI 2 "immediate_operand" ""))) (clobber (reg:SI 18))])]
"" "{ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 1) FAIL;} ")
(define_insn "lshrdi3_k" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (lshiftrt:DI (match_operand:DI 1 "arith_reg_operand" "0") (const_int 1))) (clobber (reg:SI 18))] "" "shlr %S0;rotcr %R0" [(set_attr "length" "4")])
(define_expand "lshrdi3" [(parallel[(set (match_operand:DI 0 "arith_reg_operand" "") (lshiftrt:DI (match_operand:DI 1 "arith_reg_operand" "") (match_operand:DI 2 "immediate_operand" ""))) (clobber (reg:SI 18))])] "" "{ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 1) FAIL;} ")
(define_insn "ashrdi3_k" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (ashiftrt:DI (match_operand:DI 1 "arith_reg_operand" "0") (const_int 1))) (clobber (reg:SI 18))] "" "shar %S0;rotcr %R0" [(set_attr "length" "4")])
(define_expand "ashrdi3" [(parallel[(set (match_operand:DI 0 "arith_reg_operand" "") (ashiftrt:DI (match_operand:DI 1 "arith_reg_operand" "") (match_operand:DI 2 "immediate_operand" ""))) (clobber (reg:SI 18))])] "" "{ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 1) FAIL; } ") ;; ------------------------------------------------------------------------- ;; Unary arithmetic ;; -------------------------------------------------------------------------
(define_insn "negc" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (neg:SI (plus:SI (reg:SI 18) (match_operand:SI 1 "arith_reg_operand" "r")))) (set (reg:SI 18) (ne:SI (ior:SI (reg:SI 18) (match_dup 1)) (const_int 0)))] "" "negc %1,%0" [(set_attr "type" "arith")])
(define_expand "negdi2" [(set (match_operand:DI 0 "arith_reg_operand" "") (neg:DI (match_operand:DI 1 "arith_reg_operand" ""))) (clobber (reg:SI 18))] "" "{ rtx low_src = operand_subword (operands[1], 1, 0, DImode); rtx high_src = operand_subword (operands[1], 0, 0, DImode);
rtx low_dst = operand_subword (operands[0], 1, 1, DImode); rtx high_dst = operand_subword (operands[0], 0, 1, DImode);
emit_insn (gen_clrt ()); emit_insn (gen_negc (low_dst, low_src)); emit_insn (gen_negc (high_dst, high_src)); DONE; } ")
(define_insn "negsi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (neg:SI (match_operand:SI 1 "arith_reg_operand" "r")))] "" "neg %1,%0" [(set_attr "type" "arith")])
(define_insn "one_cmplsi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (not:SI (match_operand:SI 1 "arith_reg_operand" "r")))] "" "not %1,%0" [(set_attr "type" "arith")]) ;; ------------------------------------------------------------------------- ;; Zero extension instructions ;; -------------------------------------------------------------------------
(define_insn "zero_extendhisi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (zero_extend:SI (match_operand:HI 1 "arith_reg_operand" "r")))] "" "extu.w %1,%0" [(set_attr "type" "arith")])
(define_insn "zero_extendqisi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (zero_extend:SI (match_operand:QI 1 "arith_reg_operand" "r")))] "" "extu.b %1,%0" [(set_attr "type" "arith")])
(define_insn "zero_extendqihi2" [(set (match_operand:HI 0 "arith_reg_operand" "=r") (zero_extend:HI (match_operand:QI 1 "arith_reg_operand" "r")))] "" "extu.b %1,%0" [(set_attr "type" "arith")]) ;; ------------------------------------------------------------------------- ;; Sign extension instructions ;; -------------------------------------------------------------------------
(define_insn "extendsidi2" [(set (match_operand:DI 0 "arith_reg_operand" "=r") (sign_extend:DI (match_operand:SI 1 "arith_reg_operand" "r"))) (clobber (reg:SI 18))] "" "mov %1,%S0;mov %1,%R0;shll %S0;subc %S0,%S0" [(set_attr "length" "8")])
(define_insn "extendhisi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r,r") (sign_extend:SI (match_operand:HI 1 "general_movsrc_operand" "r,m")))] "" "@ exts.w %1,%0 mov.w %1,%0" [(set_attr "type" "arith,load")])
(define_insn "extendqisi2" [(set (match_operand:SI 0 "arith_reg_operand" "=r,r") (sign_extend:SI (match_operand:QI 1 "general_movsrc_operand" "r,m")))] "" "@ exts.b %1,%0 mov.b %1,%0" [(set_attr "type" "arith,load")])
(define_insn "extendqihi2" [(set (match_operand:HI 0 "arith_reg_operand" "=r,r") (sign_extend:HI (match_operand:QI 1 "general_movsrc_operand" "r,m")))] "" "@ exts.b %1,%0 mov.b %1,%0" [(set_attr "type" "arith,load")]) ;; ------------------------------------------------------------------------- ;; Move instructions ;; -------------------------------------------------------------------------
;; define push and pop so it is easy for sh.c
(define_insn "push" [(set (mem:SI (pre_dec:SI (reg:SI 15))) (match_operand:SI 0 "register_operand" "r,lx"))] "" "@ mov.l %0,@-r15 sts.l %0,@-r15" [(set_attr "type" "store") (set_attr "hit_stack" "yes")])
(define_insn "pop" [(set (match_operand:SI 0 "register_operand" "=r,l,x") (mem:SI (post_inc:SI (reg:SI 15))))] "" "@ mov.l @r15+,%0 lds.l @r15+,%0 lds.l @r15+,%0" [(set_attr "type" "load,pload,load") (set_attr "hit_stack" "yes")])
(define_insn "clrt" [(set (reg:SI 18) (const_int 0))] "" "clrt")
(define_insn "movsi_i" [(set (match_operand:SI 0 "general_movdst_operand" "=r,r,r,r,r,m,<,xl,xl,t,r") (match_operand:SI 1 "general_movsrc_operand" "Q,rI,m,xl,t,r,xl,r,>,r,i"))] "register_operand (operands[0], SImode) || register_operand (operands[1], SImode)" "@ mov.l %1,%0 mov %1,%0 mov.l %1,%0 sts %1,%0 movt %0 mov.l %1,%0 sts.l %1,%0 lds %1,%0 lds.l %1,%0 tst %1,%1;rotcl %1;xor #1,%1;rotcr %1 fake %1,%0" [(set_attr "type" "pcload,move,load,move,store,store,move,load,move,move,move") (set_attr "length" ",,,,,,,,,8,")])
(define_expand "movsi" [(set (match_operand:SI 0 "general_movdst_operand" "") (match_operand:SI 1 "general_movsrc_operand" ""))] ""
"{ if (prepare_move_operands(operands, SImode)) DONE; } ")
(define_insn "movqi_i" [(set (match_operand:QI 0 "general_movdst_operand" "=r,r,m,r,r,l") (match_operand:QI 1 "general_movsrc_operand" "ri,m,r,t,l,r"))] "arith_reg_operand (operands[0], QImode) || arith_reg_operand (operands[1], QImode)" "@ mov %1,%0 mov.b %1,%0 mov.b %1,%0 movt %0 sts %1,%0 lds %1,%0" [(set_attr "type" "move,load,store,move,move,move")])
(define_expand "movqi" [(set (match_operand:QI 0 "general_operand" "") (match_operand:QI 1 "general_operand" ""))] "" "if (prepare_move_operands(operands, QImode)) DONE; ")
(define_insn "movhi_i" [(set (match_operand:HI 0 "general_movdst_operand" "=r,r,r,r,m,r,l,r") (match_operand:HI 1 "general_movsrc_operand" "Q,rI,m,t,r,l,r,i"))] "arith_reg_operand (operands[0], HImode) || arith_reg_operand (operands[1], HImode)" "@ mov.w %1,%0 mov %1,%0 mov.w %1,%0 movt %0 mov.w %1,%0 sts %1,%0 lds %1,%0 fake %1,%0" [(set_attr "type" "pcload,move,load,move,store,move,move,move")])
(define_expand "movhi" [(set (match_operand:HI 0 "general_movdst_operand" "") (match_operand:HI 1 "general_movsrc_operand" ""))] "" "if (prepare_move_operands (operands, HImode)) DONE;")
(define_insn "" [(set (match_operand:DI 0 "general_movdst_operand" "=r,r,r,m,r") (match_operand:DI 1 "general_movsrc_operand" "Q,r,m,r,i"))] "arith_reg_operand (operands[0], DImode) || arith_reg_operand (operands[1], DImode)" "* return output_movedouble (insn, operands, DImode);" [(set_attr "length" "4") (set_attr "type" "pcload,move,load,store,move")])
;; If the output is a register and the input is memory, we have to be careful ;; and see which word needs to be loaded first.
;; ??? Why are Q constraint addresses rejected here but not in the DFmode ;; split pattern?
(define_split [(set (match_operand:DI 0 "general_movdst_operand" "") (match_operand:DI 1 "general_movsrc_operand" ""))] "! (GET_CODE (operands[0]) == REG && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) && ! (GET_CODE (operands[1]) == REG && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG && ! reload_completed && reg_overlap_mentioned_p (operands[0], operands[1])) && ! (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) && ! (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) == POST_INC) && ! EXTRA_CONSTRAINT_Q (operands[1])" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { if (GET_CODE (operands[0]) != REG || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands[1], 0)) { operands[2] = operand_subword (operands[0], 0, 0, DImode); operands[3] = operand_subword (operands[1], 0, 0, DImode); operands[4] = operand_subword (operands[0], 1, 0, DImode); operands[5] = operand_subword (operands[1], 1, 0, DImode); } else { operands[2] = operand_subword (operands[0], 1, 0, DImode); operands[3] = operand_subword (operands[1], 1, 0, DImode); operands[4] = operand_subword (operands[0], 0, 0, DImode); operands[5] = operand_subword (operands[1], 0, 0, DImode); }
if (operands[2] == 0 || operands[3] == 0 || operands[4] == 0 || operands[5] == 0) FAIL; }")
(define_expand "movdi" [(set (match_operand:DI 0 "general_movdst_operand" "") (match_operand:DI 1 "general_movsrc_operand" ""))] "" "if ( prepare_move_operands(operands, DImode)) DONE; ")
(define_insn "movdf_k" [(set (match_operand:DF 0 "general_movdst_operand" "=r,r,m") (match_operand:DF 1 "general_movsrc_operand" "r,m,r"))] "arith_reg_operand (operands[0], DFmode) || arith_reg_operand (operands[1], DFmode)" "* return output_movedouble (insn, operands, DFmode);" [(set_attr "length" "4") (set_attr "type" "move,load,store")])
;; If the output is a register and the input is memory, we have to be careful ;; and see which word needs to be loaded first.
(define_split [(set (match_operand:DF 0 "general_movdst_operand" "") (match_operand:DF 1 "general_movsrc_operand" ""))] "! (GET_CODE (operands[0]) == REG && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER) && ! (GET_CODE (operands[1]) == REG && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) && ! (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG && ! reload_completed && reg_overlap_mentioned_p (operands[0], operands[1])) && ! (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) && ! (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) == POST_INC)" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { if (GET_CODE (operands[0]) != REG || ! refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands[1], 0)) { operands[2] = operand_subword (operands[0], 0, 0, DFmode); operands[3] = operand_subword (operands[1], 0, 0, DFmode); operands[4] = operand_subword (operands[0], 1, 0, DFmode); operands[5] = operand_subword (operands[1], 1, 0, DFmode); } else { operands[2] = operand_subword (operands[0], 1, 0, DFmode); operands[3] = operand_subword (operands[1], 1, 0, DFmode); operands[4] = operand_subword (operands[0], 0, 0, DFmode); operands[5] = operand_subword (operands[1], 0, 0, DFmode); }
if (operands[2] == 0 || operands[3] == 0 || operands[4] == 0 || operands[5] == 0) FAIL; }")
(define_expand "movdf" [(set (match_operand:DF 0 "general_movdst_operand" "") (match_operand:DF 1 "general_movsrc_operand" ""))] "" "{ if (prepare_move_operands(operands, DFmode)) DONE; } ")
(define_insn "movsf_i" [(set (match_operand:SF 0 "general_movdst_operand" "=r,r,r,m,l,r") (match_operand:SF 1 "general_movsrc_operand" "r,I,m,r,r,l"))] "arith_reg_operand (operands[0], SFmode) || arith_reg_operand (operands[1], SFmode)" "@ mov %1,%0 mov %1,%0 mov.l %1,%0 mov.l %1,%0 lds %1,%0 sts %1,%0" [(set_attr "type" "move,move,load,store,move,move")])
(define_expand "movsf" [(set (match_operand:SF 0 "general_movdst_operand" "") (match_operand:SF 1 "general_movsrc_operand" ""))] "" "if (prepare_move_operands (operands, SFmode)) DONE;") ;; ------------------------------------------------------------------------ ;; Define the real conditional branch instructions. ;; ------------------------------------------------------------------------
(define_insn "branch_true" [(set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return output_branch (1, insn, operands);" [(set_attr "type" "cbranch")])
(define_insn "branch_false" [(set (pc) (if_then_else (ne (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return output_branch (0, insn, operands);" [(set_attr "type" "cbranch")])
(define_insn "inverse_branch_true" [(set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return output_branch (0, insn, operands);" [(set_attr "type" "cbranch")])
(define_insn "inverse_branch_false" [(set (pc) (if_then_else (ne (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return output_branch (1, insn, operands);" [(set_attr "type" "cbranch")]) ;; Conditional branch insns
(define_expand "beq" [(set (reg:SI 18) (eq:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc)))] "" "from_compare (operands, EQ);")
; There is no bne compare, so we reverse the branch arms.
(define_expand "bne" [(set (reg:SI 18) (eq:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "from_compare (operands, NE);")
(define_expand "bgt" [(set (reg:SI 18) (gt:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ] "" "from_compare (operands, GT);")
(define_expand "blt" [(set (reg:SI 18) (ge:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18)(const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "from_compare (operands, LT);")
(define_expand "ble" [(set (reg:SI 18) (gt:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) ] "" "from_compare (operands, LE);")
(define_expand "bge" [(set (reg:SI 18) (ge:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ] "" "from_compare (operands, GE);")
(define_expand "bgtu" [(set (reg:SI 18) (gtu:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc)))] "" "from_compare (operands, GTU); ")
(define_expand "bltu" [(set (reg:SI 18) (geu:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "from_compare (operands, LTU);")
(define_expand "bgeu" [(set (reg:SI 18) (geu:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ] "" "from_compare (operands, GEU);")
(define_expand "bleu" [(set (reg:SI 18) (gtu:SI (match_dup 1) (match_dup 2))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (pc) (label_ref (match_operand 0 "" ""))))] "" "from_compare (operands, LEU);") ;; ------------------------------------------------------------------------ ;; Jump and linkage insns ;; ------------------------------------------------------------------------
(define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "* { /* The length is 16 if the delay slot is unfilled. */ if (get_attr_length(insn) >= 14) return output_far_jump(insn, operands[0]); else return "bra %l0%#"; }" [(set_attr "type" "jump") (set_attr "needs_delay_slot" "yes")])
(define_insn "calli" [(call (mem:SI (match_operand:SI 0 "arith_reg_operand" "r")) (match_operand 1 "" "")) (clobber (reg:SI 17))] "" "jsr @%0%#" [(set_attr "needs_delay_slot" "yes")])
(define_insn "call_valuei" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "arith_reg_operand" "r")) (match_operand 2 "" ""))) (clobber (reg:SI 17))] "" "jsr @%1%#" [(set_attr "needs_delay_slot" "yes")])
(define_expand "call" [(parallel [(call (mem:SI (match_operand 0 "arith_reg_operand" "")) (match_operand 1 "" "")) (clobber (reg:SI 17))])] "" "operands[0] = force_reg (SImode, XEXP (operands[0], 0));")
(define_expand "call_value" [(parallel [(set (match_operand 0 "arith_reg_operand" "") (call (mem:SI (match_operand 1 "arith_reg_operand" "")) (match_operand 2 "" ""))) (clobber (reg:SI 17))])] "" "operands[1] = force_reg (SImode, XEXP (operands[1], 0));")
(define_insn "indirect_jump" [(set (pc) (match_operand:SI 0 "arith_reg_operand" "r"))] "" "jmp @%0%#" [(set_attr "needs_delay_slot" "yes")]) ;; ------------------------------------------------------------------------ ;; Misc insns ;; ------------------------------------------------------------------------
;; ??? This combiner pattern does not work, because combine does not combine ;; instructions that set a hard register when SMALL_REGISTER_CLASSES is ;; defined. Perhaps use a pseudo-reg for the T bit?
(define_insn "dect" [(parallel[ (set (match_operand:SI 0 "arith_reg_operand" "=r") (plus:SI (match_dup 0) (const_int -1))) (set (reg:SI 18) (eq:SI (plus:SI (match_dup 0) (const_int -1)) (const_int 0)))])] "TARGET_SH2" "dt %0")
(define_insn "nop" [(const_int 0)] "" "nop")
;; Load address of a label. This is only generated by the casesi expand. ;; This must use unspec, because this only works immediately before a casesi.
(define_insn "mova" [(set (reg:SI 0) (unspec [(label_ref (match_operand 0 "" ""))] 1))] "" "mova %O0,r0" [(set_attr "in_delay_slot" "no")])
;; case instruction for switch statements.
;; Operand 0 is index ;; operand 1 is the minimum bound ;; operand 2 is the maximum bound - minimum bound + 1 ;; operand 3 is CODE_LABEL for the table; ;; operand 4 is the CODE_LABEL to go to if index out of range.
;; ??? There should be a barrier after the jump at the end.
(define_expand "casesi" [(set (match_dup 5) (match_operand:SI 0 "arith_reg_operand" "")) (set (match_dup 5) (minus:SI (match_dup 5) (match_operand:SI 1 "arith_operand" ""))) (set (reg:SI 18) (gtu:SI (match_dup 5) (match_operand:SI 2 "arith_reg_operand" ""))) (set (pc) (if_then_else (eq (reg:SI 18) (const_int 1)) (label_ref (match_operand 4 "" "")) (pc))) (set (match_dup 6) (match_dup 5)) (set (match_dup 6) (ashift:SI (match_dup 6) (match_dup 7))) (set (reg:SI 0) (unspec [(label_ref (match_operand 3 "" ""))] 1)) (parallel[(set (reg:SI 0) (plus:SI (reg:SI 0) (mem:HI (plus:SI (reg:SI 0) (match_dup 6))))) (set (match_dup 6) (mem:HI (plus:SI (reg:SI 0) (match_dup 6))))]) (set (pc) (reg:SI 0))] "" " { operands[1] = copy_to_mode_reg (SImode, operands[1]); operands[2] = copy_to_mode_reg (SImode, operands[2]); operands[5] = gen_reg_rtx (SImode); operands[6] = gen_reg_rtx (SImode); operands[7] = GEN_INT (TARGET_BIGTABLE ? 2 : 1); }")
(define_insn "casesi_worker" [(set (reg:SI 0) (plus:SI (reg:SI 0) (mem:HI (plus:SI (reg:SI 0) (match_operand:SI 0 "arith_reg_operand" "=r"))))) (set (match_dup 0) (mem:HI (plus:SI (reg:SI 0) (match_dup 0))))] "" "* if (TARGET_BIGTABLE) return "mov.l @(r0,%0),%0;add %0,r0"; else return "mov.w @(r0,%0),%0;add %0,r0";" [(set_attr "length" "4")])
(define_insn "return" [(return)] "reload_completed" "%@ %#" [(set_attr "type" "return") (set_attr "needs_delay_slot" "yes")])
(define_expand "prologue" [(const_int 0)] "" "sh_expand_prologue (); DONE;")
(define_expand "epilogue" [(return)] "" "sh_expand_epilogue ();")
(define_insn "blockage" [(unspec_volatile [(const_int 0)] 0)] "" "" [(set_attr "length" "0")]) ;; ------------------------------------------------------------------------ ;; Scc instructions ;; ------------------------------------------------------------------------
(define_insn "movt" [(set (match_operand:SI 0 "arith_reg_operand" "=r") (eq:SI (reg:SI 18) (const_int 1)))] "" "movt %0")
(define_expand "seq" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (EQ);")
(define_expand "slt" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (LT);")
(define_expand "sle" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (LE);")
(define_expand "sgt" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (GT);")
(define_expand "sge" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (GE);")
(define_expand "sgtu" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (GTU);")
(define_expand "sltu" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (LTU);")
(define_expand "sleu" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (LEU);")
(define_expand "sgeu" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1))] "" "operands[1] = prepare_scc_operands (GEU);")
(define_expand "sne" [(set (match_operand:SI 0 "arith_reg_operand" "") (match_dup 1)) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "" "operands[1] = prepare_scc_operands (EQ);")
;; ------------------------------------------------------------------------- ;; Instructions to cope with inline literal tables ;; -------------------------------------------------------------------------
; 2 byte integer in line
(define_insn "consttable_2" [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")] 2)] "" "* { assemble_integer (operands[0], 2, 1); return ""; }" [(set_attr "length" "2") (set_attr "in_delay_slot" "no")])
; 4 byte integer in line
(define_insn "consttable_4" [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")] 4)] "" "* { assemble_integer (operands[0], 4, 1); return ""; }" [(set_attr "length" "4") (set_attr "in_delay_slot" "no")])
; 8 byte integer in line
(define_insn "consttable_8" [(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")] 6)] "" "* { assemble_integer (operands[0], 8, 1); return ""; }" [(set_attr "length" "8") (set_attr "in_delay_slot" "no")])
; align to a two byte boundary
(define_insn "align_2" [(unspec_volatile [(const_int 0)] 10)] "" ".align 1" [(set_attr "length" "0") (set_attr "in_delay_slot" "no")])
; align to a four byte boundary
(define_insn "align_4" [(unspec_volatile [(const_int 0)] 5)] "" ".align 2" [(set_attr "in_delay_slot" "no")])
; emitted at the end of the literal table, used to emit the ; 32bit branch labels if needed.
(define_insn "consttable_end" [(unspec_volatile [(const_int 0)] 11)] "" "* return output_jump_label_table ();" [(set_attr "in_delay_slot" "no")])
;; ------------------------------------------------------------------------- ;; Misc ;; -------------------------------------------------------------------------
;; String/block move insn.
(define_expand "movstrsi" [(parallel [(set (mem:BLK (match_operand:BLK 0 "" "")) (mem:BLK (match_operand:BLK 1 "" ""))) (use (match_operand:SI 2 "nonmemory_operand" "")) (use (match_operand:SI 3 "immediate_operand" "")) (clobber (reg:SI 17)) (clobber (reg:SI 4)) (clobber (reg:SI 5)) (clobber (reg:SI 0))])] "" " { if(expand_block_move (operands)) DONE; else FAIL; }")
(define_insn "block_move_real" [(parallel [(set (mem:BLK (reg:SI 4)) (mem:BLK (reg:SI 5))) (use (match_operand:SI 0 "arith_reg_operand" "r")) (clobber (reg:SI 17)) (clobber (reg:SI 0))])] "" "jsr @%0%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
(define_insn "block_lump_real" [(parallel [(set (mem:BLK (reg:SI 4)) (mem:BLK (reg:SI 5))) (use (match_operand:SI 0 "arith_reg_operand" "r")) (use (reg:SI 6)) (clobber (reg:SI 17)) (clobber (reg:SI 4)) (clobber (reg:SI 5)) (clobber (reg:SI 6)) (clobber (reg:SI 0))])] "" "jsr @%0%#" [(set_attr "type" "sfunc") (set_attr "needs_delay_slot" "yes")])
;; ------------------------------------------------------------------------- ;; Peepholes ;; -------------------------------------------------------------------------
;; This matches cases where a stack pointer increment at the start of the ;; epilogue combines with a stack slot read loading the return value.
(define_peephole [(set (match_operand:SI 0 "arith_reg_operand" "") (mem:SI (match_operand:SI 1 "arith_reg_operand" ""))) (set (match_dup 1) (plus:SI (match_dup 1) (const_int 4)))] "REGNO (operands[1]) != REGNO (operands[0])" "mov.l @%1+,%0")
;; See the comment on the dt combiner pattern above.
(define_peephole [(set (match_operand:SI 0 "arith_reg_operand" "=r") (plus:SI (match_dup 0) (const_int -1))) (set (reg:SI 18) (eq:SI (match_dup 0) (const_int 0)))] "TARGET_SH2" "dt %0")