(movdi_internal2): Add x/J alternative. Change a/I to a/J. (movsi_internal1, movsi_internal2): Change x/I alternative to x/J. From-SVN: r14298
214 KiB
;; Mips.md Machine Description for MIPS based processors ;; Contributed by A. Lichnewsky, lich@inria.inria.fr ;; Changes by Michael Meissner, meissner@osf.org ;; 64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and ;; Brendan Eich, brendan@microunity.com. ;; Copyright (C) 1989, 90-96, 1997 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version.
;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA.
;; ??? Currently does not have define_function_unit support for the R8000. ;; Must include new entries for fmadd in addition to existing entries.
;; .................... ;; ;; Attributes ;; ;; ....................
;; Classification of each insn. ;; branch conditional branch ;; jump unconditional jump ;; call unconditional call ;; load load instruction(s) ;; store store instruction(s) ;; move data movement within same register set ;; xfer transfer to/from coprocessor ;; hilo transfer of hi/lo registers ;; arith integer arithmetic instruction ;; darith double precision integer arithmetic instructions ;; imul integer multiply ;; idiv integer divide ;; icmp integer compare ;; fadd floating point add/subtract ;; fmul floating point multiply ;; fmadd floating point multiply-add ;; fdiv floating point divide ;; fabs floating point absolute value ;; fneg floating point negation ;; fcmp floating point compare ;; fcvt floating point convert ;; fsqrt floating point square root ;; multi multiword sequence (or user asm statements) ;; nop no operation
(define_attr "type" "unknown,branch,jump,call,load,store,move,xfer,hilo,arith,darith,imul,idiv,icmp,fadd,fmul,fmadd,fdiv,fabs,fneg,fcmp,fcvt,fsqrt,multi,nop" (const_string "unknown"))
;; Main data type used by the insn (define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,FPSW" (const_string "unknown"))
;; # instructions (4 bytes each) (define_attr "length" "" (const_int 1))
;; whether or not an instruction has a mandatory delay slot (define_attr "dslot" "no,yes" (if_then_else (eq_attr "type" "branch,jump,call,load,xfer,hilo,fcmp") (const_string "yes") (const_string "no")))
;; Attribute describing the processor. This attribute must match exactly ;; with the processor_type enumeration in mips.h.
;; Attribute describing the processor ;; (define_attr "cpu" "default,r3000,r6000,r4000" ;; (const ;; (cond [(eq (symbol_ref "mips_cpu") (symbol_ref "PROCESSOR_R3000")) (const_string "r3000") ;; (eq (symbol_ref "mips_cpu") (symbol_ref "PROCESSOR_R4000")) (const_string "r4000") ;; (eq (symbol_ref "mips_cpu") (symbol_ref "PROCESSOR_R6000")) (const_string "r6000")] ;; (const_string "default"))))
;; ??? Fix everything that tests this attribute. (define_attr "cpu" "default,r3000,r6000,r4000,r4100,r4300,r4600,r4650,r5000,r8000" (const (symbol_ref "mips_cpu_attr")))
;; Attribute defining whether or not we can use the branch-likely instructions ;; (MIPS ISA level 2)
(define_attr "branch_likely" "no,yes" (const (if_then_else (ge (symbol_ref "mips_isa") (const_int 2)) (const_string "yes") (const_string "no"))))
;; Describe a user's asm statement. (define_asm_attributes [(set_attr "type" "multi")])
;; whether or not generating calls to position independent functions (define_attr "abicalls" "no,yes" (const (symbol_ref "mips_abicalls_attr")))
;; ......................... ;; ;; Delay slots, can't describe load/fcmp/xfer delay slots here ;; ;; .........................
(define_delay (eq_attr "type" "branch") [(and (eq_attr "dslot" "no") (eq_attr "length" "1")) (nil) (and (eq_attr "branch_likely" "yes") (and (eq_attr "dslot" "no") (eq_attr "length" "1")))])
(define_delay (eq_attr "type" "jump") [(and (eq_attr "dslot" "no") (eq_attr "length" "1")) (nil) (nil)])
(define_delay (and (eq_attr "type" "call") (eq_attr "abicalls" "no")) [(and (eq_attr "dslot" "no") (eq_attr "length" "1")) (nil) (nil)])
;; ......................... ;; ;; Functional units ;; ;; .........................
; (define_function_unit NAME MULTIPLICITY SIMULTANEITY ; TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])
;; Make the default case (PROCESSOR_DEFAULT) handle the worst case
(define_function_unit "memory" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "!r3000,r4600,r4650,r4100,r4300,r5000")) 3 0)
(define_function_unit "memory" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "r3000,r4600,r4650,r4100,r4300,r5000")) 2 0)
(define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0)
(define_function_unit "memory" 1 0 (eq_attr "type" "xfer") 2 0)
(define_function_unit "imuldiv" 1 0 (eq_attr "type" "hilo") 1 3)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "!r3000,r4000,r4600,r4650,r4100,r4300,r5000")) 17 17)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "r3000")) 12 12)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "r4000,r4600")) 10 10)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "r4650")) 4 4)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (and (eq_attr "mode" "SI") (eq_attr "cpu" "r4100"))) 1 1)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r4100"))) 4 4)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (and (eq_attr "mode" "SI") (eq_attr "cpu" "r4300,r5000"))) 5 5)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r4300"))) 8 8)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r5000"))) 9 9)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "!r3000,r4000,r4600,r4650,r4100,r4300,r5000")) 38 38)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "r3000")) 35 35)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "r4600")) 42 42)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "r4650")) 36 36)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "r4000")) 69 69)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "SI") (eq_attr "cpu" "r4100"))) 35 35)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r4100"))) 67 67)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "SI") (eq_attr "cpu" "r4300"))) 37 37)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r4300"))) 69 69)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "SI") (eq_attr "cpu" "r5000"))) 36 36)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (and (eq_attr "mode" "DI") (eq_attr "cpu" "r5000"))) 68 68)
;; The R4300 does NOT have a seperate Floating Point Unit, instead ;; the FP hardware is part of the normal ALU circuitry. This means FP ;; instructions affect the pipe-line, and no functional unit ;; parallelism can occur on R4300 processors. To force GCC into coding ;; for only a single functional unit, we force the R4300 FP ;; instructions to be processed in the "imuldiv" unit.
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fcmp") (eq_attr "cpu" "!r3000,r6000,r4300,r5000")) 3 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fcmp") (eq_attr "cpu" "r3000,r6000")) 2 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fcmp") (eq_attr "cpu" "r5000")) 1 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fadd") (eq_attr "cpu" "!r3000,r6000,r4300")) 4 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fadd") (eq_attr "cpu" "r3000")) 2 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fadd") (eq_attr "cpu" "r6000")) 3 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fabs,fneg") (eq_attr "cpu" "!r3000,r4600,r4650,r4300,r5000")) 2 0)
(define_function_unit "adder" 1 1 (and (eq_attr "type" "fabs,fneg") (eq_attr "cpu" "r3000,r4600,r4650,r5000")) 1 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "SF") (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300,r5000"))) 7 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000,r5000"))) 4 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r6000"))) 5 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r4600,r4650"))) 8 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "DF") (eq_attr "cpu" "!r3000,r6000,r4300,r5000"))) 8 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000,r5000"))) 5 0)
(define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r6000"))) 6 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "SF") (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300,r5000"))) 23 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000"))) 12 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r6000"))) 15 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r4600,r4650"))) 32 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r5000"))) 21 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "DF") (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300"))) 36 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000"))) 19 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r6000"))) 16 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r4600,r4650"))) 61 0)
;;; ??? Is this number right? (define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "SF") (eq_attr "cpu" "!r4600,r4650,r4300,r5000"))) 54 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r4600,r4650"))) 31 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r5000"))) 21 0)
;;; ??? Is this number right? (define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "DF") (eq_attr "cpu" "!r4600,r4650,r4300,r5000"))) 112 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r4600,r4650"))) 60 0)
(define_function_unit "divide" 1 1 (and (eq_attr "type" "fsqrt") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r5000"))) 36 0)
;; R4300 FP instruction classes treated as part of the "imuldiv" ;; functional unit:
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "fadd") (eq_attr "cpu" "r4300")) 3 3)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "fcmp,fabs,fneg") (eq_attr "cpu" "r4300")) 1 1)
(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "SF") (eq_attr "cpu" "r4300"))) 5 5) (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "fmul") (and (eq_attr "mode" "DF") (eq_attr "cpu" "r4300"))) 8 8)
(define_function_unit "imuldiv" 1 0 (and (and (eq_attr "type" "fdiv") (eq_attr "type" "fsqrt")) (and (eq_attr "mode" "SF") (eq_attr "cpu" "r4300"))) 29 29) (define_function_unit "imuldiv" 1 0 (and (and (eq_attr "type" "fdiv") (eq_attr "type" "fsqrt")) (and (eq_attr "mode" "DF") (eq_attr "cpu" "r4300"))) 58 58) ;; The following functional units do not use the cpu type, and use ;; much less memory in genattrtab.c.
;; (define_function_unit "memory" 1 0 (eq_attr "type" "load") 3 0)
;; (define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0)
;;
;; (define_function_unit "fp_comp" 1 0 (eq_attr "type" "fcmp") 2 0)
;;
;; (define_function_unit "transfer" 1 0 (eq_attr "type" "xfer") 2 0)
;; (define_function_unit "transfer" 1 0 (eq_attr "type" "hilo") 3 0)
;;
;; (define_function_unit "imuldiv" 1 1 (eq_attr "type" "imul") 17 0)
;; (define_function_unit "imuldiv" 1 1 (eq_attr "type" "idiv") 38 0)
;;
;; (define_function_unit "adder" 1 1 (eq_attr "type" "fadd") 4 0)
;; (define_function_unit "adder" 1 1 (eq_attr "type" "fabs,fneg") 2 0)
;;
;; (define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (eq_attr "mode" "SF")) 7 0)
;; (define_function_unit "mult" 1 1 (and (eq_attr "type" "fmul") (eq_attr "mode" "DF")) 8 0)
;;
;; (define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (eq_attr "mode" "SF")) 23 0)
;; (define_function_unit "divide" 1 1 (and (eq_attr "type" "fdiv") (eq_attr "mode" "DF")) 36 0)
;;
;; (define_function_unit "sqrt" 1 1 (and (eq_attr "type" "fsqrt") (eq_attr "mode" "SF")) 54 0)
;; (define_function_unit "sqrt" 1 1 (and (eq_attr "type" "fsqrt") (eq_attr "mode" "DF")) 112 0)
;; ;; .................... ;; ;; ADDITION ;; ;; .................... ;;
(define_insn "adddf3" [(set (match_operand:DF 0 "register_operand" "=f") (plus:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "add.d\t%0,%1,%2" [(set_attr "type" "fadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "add.s\t%0,%1,%2" [(set_attr "type" "fadd") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_expand "addsi3" [(set (match_operand:SI 0 "register_operand" "=d") (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI")))] "" " { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == -32768) operands[2] = force_reg (SImode, operands[2]); }")
(define_insn "addsi3_internal" [(set (match_operand:SI 0 "register_operand" "=d") (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI")))] "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768" "addu\t%0,%z1,%2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "adddi3" [(parallel [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_arith_operand" ""))) (clobber (match_dup 3))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == -32768) operands[2] = force_reg (DImode, operands[2]);
if (TARGET_64BIT) { emit_insn (gen_adddi3_internal_3 (operands[0], operands[1], operands[2])); DONE; }
operands[3] = gen_reg_rtx (SImode); }")
(define_insn "adddi3_internal_1" [(set (match_operand:DI 0 "register_operand" "=d,&d") (plus:DI (match_operand:DI 1 "register_operand" "0,d") (match_operand:DI 2 "register_operand" "d,d"))) (clobber (match_operand:SI 3 "register_operand" "=d,d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE" "* { return (REGNO (operands[0]) == REGNO (operands[1]) && REGNO (operands[0]) == REGNO (operands[2])) ? "srl\t%3,%L0,31;sll\t%M0,%M0,1;sll\t%L0,%L1,1;addu\t%M0,%M0,%3" : "addu\t%L0,%L1,%L2;sltu\t%3,%L0,%L2;addu\t%M0,%M1,%M2;addu\t%M0,%M0,%3"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2])) && (REGNO (operands[0]) != REGNO (operands[1]) || REGNO (operands[0]) != REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 0) (plus:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0)))
(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 0) 0) (subreg:SI (match_dup 2) 0)))
(set (subreg:SI (match_dup 0) 1) (plus:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))
(set (subreg:SI (match_dup 0) 1) (plus:SI (subreg:SI (match_dup 0) 1) (match_dup 3)))] "")
(define_split [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2])) && (REGNO (operands[0]) != REGNO (operands[1]) || REGNO (operands[0]) != REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 1) (plus:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))
(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 0) 1) (subreg:SI (match_dup 2) 1)))
(set (subreg:SI (match_dup 0) 0) (plus:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0)))
(set (subreg:SI (match_dup 0) 0) (plus:SI (subreg:SI (match_dup 0) 0) (match_dup 3)))] "")
(define_insn "adddi3_internal_2" [(set (match_operand:DI 0 "register_operand" "=d,d,d") (plus:DI (match_operand:DI 1 "register_operand" "%d,%d,%d") (match_operand:DI 2 "small_int" "P,J,N"))) (clobber (match_operand:SI 3 "register_operand" "=d,d,d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && INTVAL (operands[2]) != -32768" "@ addu\t%L0,%L1,%2;sltu\t%3,%L0,%2;addu\t%M0,%M1,%3 move\t%L0,%L1;move\t%M0,%M1 subu\t%L0,%L1,%n2;sltu\t%3,%L0,%2;subu\t%M0,%M1,1;addu\t%M0,%M0,%3" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "3,2,4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && INTVAL (operands[2]) > 0"
[(set (subreg:SI (match_dup 0) 0) (plus:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 0) 0) (match_dup 2)))
(set (subreg:SI (match_dup 0) 1) (plus:SI (subreg:SI (match_dup 1) 1) (match_dup 3)))] "")
(define_split [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && INTVAL (operands[2]) > 0"
[(set (subreg:SI (match_dup 0) 1) (plus:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 0) 1) (match_dup 2)))
(set (subreg:SI (match_dup 0) 0) (plus:SI (subreg:SI (match_dup 1) 0) (match_dup 3)))] "")
(define_insn "adddi3_internal_3" [(set (match_operand:DI 0 "register_operand" "=d") (plus:DI (match_operand:DI 1 "se_reg_or_0_operand" "dJ") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768)" "* { return (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) ? "dsubu\t%0,%z1,%n2" : "daddu\t%0,%z1,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "addsi3_internal_2" [(set (match_operand:DI 0 "register_operand" "=d") (sign_extend:DI (plus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI"))))] "TARGET_64BIT && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768)" "* { return (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) ? "subu\t%0,%z1,%n2" : "addu\t%0,%z1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
;; ;; .................... ;; ;; SUBTRACTION ;; ;; .................... ;;
(define_insn "subdf3" [(set (match_operand:DF 0 "register_operand" "=f") (minus:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "sub.d\t%0,%1,%2" [(set_attr "type" "fadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "sub.s\t%0,%1,%2" [(set_attr "type" "fadd") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_expand "subsi3" [(set (match_operand:SI 0 "register_operand" "=d") (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI")))] "" " { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) == -32768) operands[2] = force_reg (SImode, operands[2]); }")
(define_insn "subsi3_internal" [(set (match_operand:SI 0 "register_operand" "=d") (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI")))] "GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768" "subu\t%0,%z1,%2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "subdi3" [(parallel [(set (match_operand:DI 0 "register_operand" "=d") (minus:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))) (clobber (match_dup 3))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (TARGET_64BIT) { emit_insn (gen_subdi3_internal_3 (operands[0], operands[1], operands[2])); DONE; }
operands[3] = gen_reg_rtx (SImode); }")
(define_insn "subdi3_internal" [(set (match_operand:DI 0 "register_operand" "=d") (minus:DI (match_operand:DI 1 "register_operand" "d") (match_operand:DI 2 "register_operand" "d"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE" "sltu\t%3,%L1,%L2;subu\t%L0,%L1,%L2;subu\t%M0,%M1,%M2;subu\t%M0,%M0,%3" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0)))
(set (subreg:SI (match_dup 0) 0) (minus:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0)))
(set (subreg:SI (match_dup 0) 1) (minus:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))
(set (subreg:SI (match_dup 0) 1) (minus:SI (subreg:SI (match_dup 0) 1) (match_dup 3)))] "")
(define_split [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))
(set (subreg:SI (match_dup 0) 1) (minus:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))
(set (subreg:SI (match_dup 0) 0) (minus:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0)))
(set (subreg:SI (match_dup 0) 0) (minus:SI (subreg:SI (match_dup 0) 0) (match_dup 3)))] "")
(define_insn "subdi3_internal_2" [(set (match_operand:DI 0 "register_operand" "=d,d,d") (minus:DI (match_operand:DI 1 "register_operand" "d,d,d") (match_operand:DI 2 "small_int" "P,J,N"))) (clobber (match_operand:SI 3 "register_operand" "=d,d,d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && INTVAL (operands[2]) != -32768" "@ sltu\t%3,%L1,%2;subu\t%L0,%L1,%2;subu\t%M0,%M1,%3 move\t%L0,%L1;move\t%M0,%M1 sltu\t%3,%L1,%2;subu\t%L0,%L1,%2;subu\t%M0,%M1,1;subu\t%M0,%M0,%3" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "3,2,4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && INTVAL (operands[2]) > 0"
[(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (subreg:SI (match_dup 0) 0) (minus:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (subreg:SI (match_dup 0) 1) (minus:SI (subreg:SI (match_dup 1) 1) (match_dup 3)))] "")
(define_split [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && INTVAL (operands[2]) > 0"
[(set (match_dup 3) (ltu:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (subreg:SI (match_dup 0) 1) (minus:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (subreg:SI (match_dup 0) 0) (minus:SI (subreg:SI (match_dup 1) 0) (match_dup 3)))] "")
(define_insn "subdi3_internal_3" [(set (match_operand:DI 0 "register_operand" "=d") (minus:DI (match_operand:DI 1 "se_reg_or_0_operand" "dJ") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768)" "* { return (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) ? "daddu\t%0,%z1,%n2" : "dsubu\t%0,%z1,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "subsi3_internal_2" [(set (match_operand:DI 0 "register_operand" "=d") (sign_extend:DI (minus:SI (match_operand:SI 1 "reg_or_0_operand" "dJ") (match_operand:SI 2 "arith_operand" "dI"))))] "TARGET_64BIT && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != -32768)" "* { return (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) ? "addu\t%0,%z1,%n2" : "subu\t%0,%z1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
;; ;; .................... ;; ;; MULTIPLICATION ;; ;; .................... ;;
;; Early Vr4300 silicon has a CPU bug where multiplies with certain ;; operands may corrupt immediately following multiplies. This is a ;; simple fix to insert NOPs.
(define_expand "muldf3" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" " { if (mips_cpu != PROCESSOR_R4300) emit_insn (gen_muldf3_internal (operands[0], operands[1], operands[2])); else emit_insn (gen_muldf3_r4300 (operands[0], operands[1], operands[2])); DONE; }")
(define_insn "muldf3_internal" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && mips_cpu != PROCESSOR_R4300" "mul.d\t%0,%1,%2" [(set_attr "type" "fmul") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "muldf3_r4300" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && mips_cpu == PROCESSOR_R4300" "* { output_asm_insn ("mul.d\t%0,%1,%2", operands); if (TARGET_4300_MUL_FIX) output_asm_insn ("nop", operands); return ""; }" [(set_attr "type" "fmul") (set_attr "mode" "DF") (set_attr "length" "2")]) ;; mul.d + nop
(define_expand "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" " { if (mips_cpu != PROCESSOR_R4300) emit_insn( gen_mulsf3_internal (operands[0], operands[1], operands[2])); else emit_insn( gen_mulsf3_r4300 (operands[0], operands[1], operands[2])); DONE; }")
(define_insn "mulsf3_internal" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && mips_cpu != PROCESSOR_R4300" "mul.s\t%0,%1,%2" [(set_attr "type" "fmul") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "mulsf3_r4300" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && mips_cpu == PROCESSOR_R4300" "* { output_asm_insn ("mul.s\t%0,%1,%2", operands); if (TARGET_4300_MUL_FIX) output_asm_insn ("nop", operands); return ""; }" [(set_attr "type" "fmul") (set_attr "mode" "SF") (set_attr "length" "2")]) ;; mul.s + nop
;; ??? The R4000 (only) has a cpu bug. If a double-word shift executes while ;; a multiply is in progress, it may give an incorrect result. Avoid ;; this by keeping the mflo with the mult on the R4000.
(define_expand "mulsi3" [(set (match_operand:SI 0 "register_operand" "=l") (mult:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_scratch:SI 3 "=h")) (clobber (match_scratch:SI 4 "=a"))] "" " { if (TARGET_MAD) emit_insn (gen_mulsi3_r4650 (operands[0], operands[1], operands[2])); else if (mips_cpu != PROCESSOR_R4000) emit_insn (gen_mulsi3_internal (operands[0], operands[1], operands[2])); else emit_insn (gen_mulsi3_r4000 (operands[0], operands[1], operands[2])); DONE; }")
(define_insn "mulsi3_internal" [(set (match_operand:SI 0 "register_operand" "=l") (mult:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_scratch:SI 3 "=h")) (clobber (match_scratch:SI 4 "=a"))] "mips_cpu != PROCESSOR_R4000" "mult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "mulsi3_r4000" [(set (match_operand:SI 0 "register_operand" "=d") (mult:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_scratch:SI 3 "=h")) (clobber (match_scratch:SI 4 "=l")) (clobber (match_scratch:SI 5 "=a"))] "mips_cpu == PROCESSOR_R4000" "* { rtx xoperands[10];
xoperands[0] = operands[0]; xoperands[1] = gen_rtx (REG, SImode, LO_REGNUM);
output_asm_insn ("mult\t%1,%2", operands); output_asm_insn (mips_move_1word (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "3")]) ;; mult + mflo + delay
(define_insn "mulsi3_r4650" [(set (match_operand:SI 0 "register_operand" "=d") (mult:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_scratch:SI 3 "=h")) (clobber (match_scratch:SI 4 "=l")) (clobber (match_scratch:SI 5 "=a"))] "TARGET_MAD" "mul\t%0,%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "muldi3" [(set (match_operand:DI 0 "register_operand" "=l") (mult:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "register_operand" "d"))) (clobber (match_scratch:DI 3 "=h")) (clobber (match_scratch:DI 4 "=a"))] "TARGET_64BIT" " { if (mips_cpu != PROCESSOR_R4000) emit_insn (gen_muldi3_internal (operands[0], operands[1], operands[2])); else emit_insn (gen_muldi3_r4000 (operands[0], operands[1], operands[2])); DONE; }")
;; Don't accept both operands using se_register_operand, because if ;; both operands are sign extended we would prefer to use mult in the ;; mulsidi3 pattern. Commutativity should permit either operand to be ;; sign extended.
(define_insn "muldi3_internal" [(set (match_operand:DI 0 "register_operand" "=l") (mult:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "register_operand" "d"))) (clobber (match_scratch:DI 3 "=h")) (clobber (match_scratch:DI 4 "=a"))] "TARGET_64BIT && mips_cpu != PROCESSOR_R4000" "dmult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "muldi3_r4000" [(set (match_operand:DI 0 "register_operand" "=d") (mult:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "register_operand" "d"))) (clobber (match_scratch:DI 3 "=h")) (clobber (match_scratch:DI 4 "=l")) (clobber (match_scratch:DI 5 "=a"))] "TARGET_64BIT && mips_cpu == PROCESSOR_R4000" "* { rtx xoperands[10];
xoperands[0] = operands[0]; xoperands[1] = gen_rtx (REG, DImode, LO_REGNUM);
output_asm_insn ("dmult\t%1,%2", operands); output_asm_insn (mips_move_1word (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "imul") (set_attr "mode" "DI") (set_attr "length" "3")]) ;; mult + mflo + delay
;; ??? We could define a mulditi3 pattern when TARGET_64BIT.
(define_expand "mulsidi3" [(set (match_operand:DI 0 "register_operand" "=x") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))] "" " { if (TARGET_64BIT) emit_insn (gen_mulsidi3_64bit (operands[0], operands[1], operands[2])); else emit_insn (gen_mulsidi3_internal (operands[0], operands[1], operands[2])); DONE; }")
(define_insn "mulsidi3_internal" [(set (match_operand:DI 0 "register_operand" "=x") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d")))) (clobber (match_scratch:SI 3 "=a"))] "!TARGET_64BIT" "mult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "mulsidi3_64bit" [(set (match_operand:DI 0 "register_operand" "=a") (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d")))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h"))] "TARGET_64BIT" "mult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "smulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=h") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=a"))] "" "mult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "umulsidi3" [(set (match_operand:DI 0 "register_operand" "=x") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d"))))] "" " { if (TARGET_64BIT) emit_insn (gen_umulsidi3_64bit (operands[0], operands[1], operands[2])); else emit_insn (gen_umulsidi3_internal (operands[0], operands[1], operands[2])); DONE; }")
(define_insn "umulsidi3_internal" [(set (match_operand:DI 0 "register_operand" "=x") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d")))) (clobber (match_scratch:SI 3 "=a"))] "!TARGET_64BIT" "multu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "umulsidi3_64bit" [(set (match_operand:DI 0 "register_operand" "=a") (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d")))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h"))] "TARGET_64BIT" "multu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "umulsi3_highpart" [(set (match_operand:SI 0 "register_operand" "=h") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=a"))] "" "multu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "smuldi3_highpart" [(set (match_operand:DI 0 "register_operand" "=h") (truncate:DI (lshiftrt:TI (mult:TI (sign_extend:TI (match_operand:DI 1 "se_register_operand" "d")) (sign_extend:TI (match_operand:DI 2 "se_register_operand" "d"))) (const_int 64)))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=a"))] "TARGET_64BIT" "dmult\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "umuldi3_highpart" [(set (match_operand:DI 0 "register_operand" "=h") (truncate:DI (lshiftrt:TI (mult:TI (zero_extend:TI (match_operand:DI 1 "se_register_operand" "d")) (zero_extend:TI (match_operand:DI 2 "se_register_operand" "d"))) (const_int 64)))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=a"))] "TARGET_64BIT" "dmultu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "DI") (set_attr "length" "1")])
;; The R4650 supports a 32 bit multiply/ 64 bit accumulate ;; instruction. The HI/LO registers are used as a 64 bit accumulator.
(define_insn "madsi" [(set (match_operand:SI 0 "register_operand" "+l") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d")) (match_dup 0))) (clobber (match_scratch:SI 3 "=h")) (clobber (match_scratch:SI 4 "=a"))] "TARGET_MAD" "mad\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "maddi" [(set (match_operand:DI 0 "register_operand" "+x") (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))) (match_dup 0))) (clobber (match_scratch:SI 3 "=a"))] "TARGET_MAD && ! TARGET_64BIT" "mad\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "maddi_64bit" [(set (match_operand:DI 0 "register_operand" "+a") (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d")) (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))) (match_dup 0))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h"))] "TARGET_MAD && TARGET_64BIT" "mad\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "umaddi" [(set (match_operand:DI 0 "register_operand" "+x") (plus:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d"))) (match_dup 0))) (clobber (match_scratch:SI 3 "=a"))] "TARGET_MAD && ! TARGET_64BIT" "madu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "umaddi_64bit" [(set (match_operand:DI 0 "register_operand" "+a") (plus:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "d")) (zero_extend:DI (match_operand:SI 2 "register_operand" "d"))) (match_dup 0))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h"))] "TARGET_MAD && TARGET_64BIT" "madu\t%1,%2" [(set_attr "type" "imul") (set_attr "mode" "SI") (set_attr "length" "1")])
;; Floating point multiply accumulate instructions.
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (plus:DF (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")) (match_operand:DF 3 "register_operand" "f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "madd.d\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")) (match_operand:SF 3 "register_operand" "f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "madd.s\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (minus:DF (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")) (match_operand:DF 3 "register_operand" "f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "msub.d\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")) (match_operand:SF 3 "register_operand" "f")))]
"mips_isa >= 4 && TARGET_HARD_FLOAT" "msub.s\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (neg:DF (plus:DF (mult:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")) (match_operand:DF 3 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "nmadd.d\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")) (match_operand:SF 3 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "nmadd.s\t%0,%3,%1,%2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (minus:DF (match_operand:DF 1 "register_operand" "f") (mult:DF (match_operand:DF 2 "register_operand" "f") (match_operand:DF 3 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "nmsub.d\t%0,%1,%2,%3" [(set_attr "type" "fmadd") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (mult:SF (match_operand:SF 2 "register_operand" "f") (match_operand:SF 3 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "nmsub.s\t%0,%1,%2,%3" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "1")]) ;; ;; .................... ;; ;; DIVISION and REMAINDER ;; ;; .................... ;;
(define_insn "divdf3" [(set (match_operand:DF 0 "register_operand" "=f") (div:DF (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "div.d\t%0,%1,%2" [(set_attr "type" "fdiv") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "div.s\t%0,%1,%2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (div:DF (match_operand:DF 1 "const_float_1_operand" "") (match_operand:DF 2 "register_operand" "f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && flag_fast_math" "recip.d\t%0,%2" [(set_attr "type" "fdiv") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (match_operand:SF 2 "register_operand" "f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && flag_fast_math" "recip.s\t%0,%2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "1")])
;; If optimizing, prefer the divmod functions over separate div and ;; mod functions, since this will allow using one instruction for both ;; the quotient and remainder. At present, the divmod is not moved out ;; of loops if it is constant within the loop, so allow -mdebugc to ;; use the old method of doing things.
;; 64 is the multiply/divide hi register ;; 65 is the multiply/divide lo register
;; ??? We can't accept constants here, because the MIPS assembler will replace ;; a divide by power of 2 with a shift, and then the remainder is no longer ;; available.
(define_insn "divmodsi4" [(set (match_operand:SI 0 "register_operand" "=d") (div:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (set (match_operand:SI 3 "register_operand" "=d") (mod:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=l")) (clobber (match_scratch:SI 5 "=h")) (clobber (match_scratch:SI 6 "=a"))] "optimize" "* { if (find_reg_note (insn, REG_UNUSED, operands[3])) return "div\t%0,%1,%2";
if (find_reg_note (insn, REG_UNUSED, operands[0])) return "rem\t%3,%1,%2";
return "div\t%0,%1,%2;mfhi\t%3"; }" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "14")]) ;; various tests for dividing by 0 and such
(define_insn "divmoddi4" [(set (match_operand:DI 0 "register_operand" "=d") (div:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))) (set (match_operand:DI 3 "register_operand" "=d") (mod:DI (match_dup 1) (match_dup 2))) (clobber (match_scratch:DI 4 "=l")) (clobber (match_scratch:DI 5 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && optimize" "* { if (find_reg_note (insn, REG_UNUSED, operands[3])) return "ddiv\t%0,%1,%2";
if (find_reg_note (insn, REG_UNUSED, operands[0])) return "drem\t%3,%1,%2";
return "ddiv\t%0,%1,%2;mfhi\t%3"; }" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "15")]) ;; various tests for dividing by 0 and such
(define_insn "udivmodsi4" [(set (match_operand:SI 0 "register_operand" "=d") (udiv:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (set (match_operand:SI 3 "register_operand" "=d") (umod:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=l")) (clobber (match_scratch:SI 5 "=h")) (clobber (match_scratch:SI 6 "=a"))] "optimize" "* { if (find_reg_note (insn, REG_UNUSED, operands[3])) return "divu\t%0,%1,%2";
if (find_reg_note (insn, REG_UNUSED, operands[0])) return "remu\t%3,%1,%2";
return "divu\t%0,%1,%2;mfhi\t%3"; }" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "8")]) ;; various tests for dividing by 0 and such
(define_insn "udivmoddi4" [(set (match_operand:DI 0 "register_operand" "=d") (udiv:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))) (set (match_operand:DI 3 "register_operand" "=d") (umod:DI (match_dup 1) (match_dup 2))) (clobber (match_scratch:DI 4 "=l")) (clobber (match_scratch:DI 5 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && optimize" "* { if (find_reg_note (insn, REG_UNUSED, operands[3])) return "ddivu\t%0,%1,%2";
if (find_reg_note (insn, REG_UNUSED, operands[0])) return "dremu\t%3,%1,%2";
return "ddivu\t%0,%1,%2;mfhi\t%3"; }" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "8")]) ;; various tests for dividing by 0 and such
(define_insn "divsi3" [(set (match_operand:SI 0 "register_operand" "=d") (div:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "nonmemory_operand" "di"))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=h")) (clobber (match_scratch:SI 6 "=a"))] "!optimize" "div\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "13")]) ;; various tests for dividing by 0 and such
(define_insn "divdi3" [(set (match_operand:DI 0 "register_operand" "=d") (div:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_nonmemory_operand" "di"))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && !optimize" "ddiv\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "14")]) ;; various tests for dividing by 0 and such
(define_insn "modsi3" [(set (match_operand:SI 0 "register_operand" "=d") (mod:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "nonmemory_operand" "di"))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=h")) (clobber (match_scratch:SI 6 "=a"))] "!optimize" "rem\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "13")]) ;; various tests for dividing by 0 and such
(define_insn "moddi3" [(set (match_operand:DI 0 "register_operand" "=d") (mod:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_nonmemory_operand" "di"))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && !optimize" "drem\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "14")]) ;; various tests for dividing by 0 and such
(define_insn "udivsi3" [(set (match_operand:SI 0 "register_operand" "=d") (udiv:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "nonmemory_operand" "di"))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=h")) (clobber (match_scratch:SI 6 "=a"))] "!optimize" "divu\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "7")]) ;; various tests for dividing by 0 and such
(define_insn "udivdi3" [(set (match_operand:DI 0 "register_operand" "=d") (udiv:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_nonmemory_operand" "di"))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && !optimize" "ddivu\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "7")]) ;; various tests for dividing by 0 and such
(define_insn "umodsi3" [(set (match_operand:SI 0 "register_operand" "=d") (umod:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "nonmemory_operand" "di"))) (clobber (match_scratch:SI 3 "=l")) (clobber (match_scratch:SI 4 "=h")) (clobber (match_scratch:SI 6 "=a"))] "!optimize" "remu\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "SI") (set_attr "length" "7")]) ;; various tests for dividing by 0 and such
(define_insn "umoddi3" [(set (match_operand:DI 0 "register_operand" "=d") (umod:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_nonmemory_operand" "di"))) (clobber (match_scratch:DI 3 "=l")) (clobber (match_scratch:DI 4 "=h")) (clobber (match_scratch:DI 6 "=a"))] "TARGET_64BIT && !optimize" "dremu\t%0,%1,%2" [(set_attr "type" "idiv") (set_attr "mode" "DI") (set_attr "length" "7")]) ;; various tests for dividing by 0 and such
;; ;; .................... ;; ;; SQUARE ROOT ;; ;; ....................
(define_insn "sqrtdf2" [(set (match_operand:DF 0 "register_operand" "=f") (sqrt:DF (match_operand:DF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && HAVE_SQRT_P() && TARGET_DOUBLE_FLOAT" "sqrt.d\t%0,%1" [(set_attr "type" "fsqrt") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && HAVE_SQRT_P()" "sqrt.s\t%0,%1" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (div:DF (match_operand:DF 1 "const_float_1_operand" "") (sqrt:DF (match_operand:DF 2 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && flag_fast_math" "rsqrt.d\t%0,%2" [(set_attr "type" "fsqrt") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (sqrt:SF (match_operand:SF 2 "register_operand" "f"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && flag_fast_math" "rsqrt.s\t%0,%2" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "1")])
;; ;; .................... ;; ;; ABSOLUTE VALUE ;; ;; ....................
;; Do not use the integer abs macro instruction, since that signals an ;; exception on -2147483648 (sigh).
(define_insn "abssi2" [(set (match_operand:SI 0 "register_operand" "=d") (abs:SI (match_operand:SI 1 "register_operand" "d")))] "" "* { dslots_jump_total++; dslots_jump_filled++; operands[2] = const0_rtx;
if (REGNO (operands[0]) == REGNO (operands[1]))
{
if (mips_isa >= 2)
return "%(bltzl\t%1,1f\n\tsubu\t%0,%z2,%0\n1:%)";
else
return "bgez\t%1,1f%#\n\tsubu\t%0,%z2,%0\n1:";
}
else
return "%(bgez\t%1,1f\n\tmove\t%0,%1\n\tsubu\t%0,%z2,%0\n1:%)";
}"
[(set_attr "type" "multi")
(set_attr "mode" "SI")
(set_attr "length" "3")])
(define_insn "absdi2" [(set (match_operand:DI 0 "register_operand" "=d") (abs:DI (match_operand:DI 1 "se_register_operand" "d")))] "TARGET_64BIT" "* { dslots_jump_total++; dslots_jump_filled++; operands[2] = const0_rtx;
if (REGNO (operands[0]) == REGNO (operands[1])) return "%(bltzl\t%1,1f\n\tdsubu\t%0,%z2,%0\n1:%)"; else return "%(bgez\t%1,1f\n\tmove\t%0,%1\n\tdsubu\t%0,%z2,%0\n1:%)"; }" [(set_attr "type" "multi") (set_attr "mode" "DI") (set_attr "length" "3")])
(define_insn "absdf2" [(set (match_operand:DF 0 "register_operand" "=f") (abs:DF (match_operand:DF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "abs.d\t%0,%1" [(set_attr "type" "fabs") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "abs.s\t%0,%1" [(set_attr "type" "fabs") (set_attr "mode" "SF") (set_attr "length" "1")])
;; ;; .................... ;; ;; FIND FIRST BIT INSTRUCTION ;; ;; .................... ;;
(define_insn "ffssi2" [(set (match_operand:SI 0 "register_operand" "=&d") (ffs:SI (match_operand:SI 1 "register_operand" "d"))) (clobber (match_scratch:SI 2 "=&d")) (clobber (match_scratch:SI 3 "=&d"))] "" "* { dslots_jump_total += 2; dslots_jump_filled += 2; operands[4] = const0_rtx;
if (optimize && find_reg_note (insn, REG_DEAD, operands[1])) return "%(\ move\t%0,%z4\n\ \tbeq\t%1,%z4,2f\n\ 1:\tand\t%2,%1,0x0001\n\ \taddu\t%0,%0,1\n\ \tbeq\t%2,%z4,1b\n\ \tsrl\t%1,%1,1\n\ 2:%)";
return "%(\ move\t%0,%z4\n\ \tmove\t%3,%1\n\ \tbeq\t%3,%z4,2f\n\ 1:\tand\t%2,%3,0x0001\n\ \taddu\t%0,%0,1\n\ \tbeq\t%2,%z4,1b\n\ \tsrl\t%3,%3,1\n\ 2:%)"; }" [(set_attr "type" "multi") (set_attr "mode" "SI") (set_attr "length" "6")])
(define_insn "ffsdi2" [(set (match_operand:DI 0 "register_operand" "=&d") (ffs:DI (match_operand:DI 1 "se_register_operand" "d"))) (clobber (match_scratch:DI 2 "=&d")) (clobber (match_scratch:DI 3 "=&d"))] "TARGET_64BIT" "* { dslots_jump_total += 2; dslots_jump_filled += 2; operands[4] = const0_rtx;
if (optimize && find_reg_note (insn, REG_DEAD, operands[1])) return "%(\ move\t%0,%z4\n\ \tbeq\t%1,%z4,2f\n\ 1:\tand\t%2,%1,0x0001\n\ \tdaddu\t%0,%0,1\n\ \tbeq\t%2,%z4,1b\n\ \tdsrl\t%1,%1,1\n\ 2:%)";
return "%(\ move\t%0,%z4\n\ \tmove\t%3,%1\n\ \tbeq\t%3,%z4,2f\n\ 1:\tand\t%2,%3,0x0001\n\ \tdaddu\t%0,%0,1\n\ \tbeq\t%2,%z4,1b\n\ \tdsrl\t%3,%3,1\n\ 2:%)"; }" [(set_attr "type" "multi") (set_attr "mode" "DI") (set_attr "length" "6")])
;; ;; .................... ;; ;; NEGATION and ONE'S COMPLEMENT ;; ;; ....................
(define_insn "negsi2" [(set (match_operand:SI 0 "register_operand" "=d") (neg:SI (match_operand:SI 1 "register_operand" "d")))] "" "* { operands[2] = const0_rtx; return "subu\t%0,%z2,%1"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "negdi2" [(parallel [(set (match_operand:DI 0 "register_operand" "=d") (neg:DI (match_operand:DI 1 "se_register_operand" "d"))) (clobber (match_dup 2))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (TARGET_64BIT) { emit_insn (gen_negdi2_internal_2 (operands[0], operands[1])); DONE; }
operands[2] = gen_reg_rtx (SImode); }")
(define_insn "negdi2_internal" [(set (match_operand:DI 0 "register_operand" "=d") (neg:DI (match_operand:DI 1 "register_operand" "d"))) (clobber (match_operand:SI 2 "register_operand" "=d"))] "! TARGET_64BIT && !TARGET_DEBUG_G_MODE" "* { operands[3] = const0_rtx; return "subu\t%L0,%z3,%L1;subu\t%M0,%z3,%M1;sltu\t%2,%z3,%L0;subu\t%M0,%M0,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_insn "negdi2_internal_2" [(set (match_operand:DI 0 "register_operand" "=d") (neg:DI (match_operand:DI 1 "se_register_operand" "d")))] "TARGET_64BIT" "* { operands[2] = const0_rtx; return "dsubu\t%0,%z2,%1"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "negdf2" [(set (match_operand:DF 0 "register_operand" "=f") (neg:DF (match_operand:DF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "neg.d\t%0,%1" [(set_attr "type" "fneg") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "neg.s\t%0,%1" [(set_attr "type" "fneg") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "one_cmplsi2" [(set (match_operand:SI 0 "register_operand" "=d") (not:SI (match_operand:SI 1 "register_operand" "d")))] "" "* { operands[2] = const0_rtx; return "nor\t%0,%z2,%1"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "one_cmpldi2" [(set (match_operand:DI 0 "register_operand" "=d") (not:DI (match_operand:DI 1 "se_register_operand" "d")))] "" "* { operands[2] = const0_rtx; if (TARGET_64BIT) return "nor\t%0,%z2,%1"; return "nor\t%M0,%z2,%M1;nor\t%L0,%z2,%L1"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set (attr "length") (if_then_else (ge (symbol_ref "mips_isa") (const_int 3)) (const_int 1) (const_int 2)))])
(define_split [(set (match_operand:DI 0 "register_operand" "") (not:DI (match_operand:DI 1 "register_operand" "")))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1]))"
[(set (subreg:SI (match_dup 0) 0) (not:SI (subreg:SI (match_dup 1) 0))) (set (subreg:SI (match_dup 0) 1) (not:SI (subreg:SI (match_dup 1) 1)))] "")
;; ;; .................... ;; ;; LOGICAL ;; ;; .................... ;;
(define_insn "andsi3" [(set (match_operand:SI 0 "register_operand" "=d,d") (and:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") (match_operand:SI 2 "uns_arith_operand" "d,K")))] "" "@ and\t%0,%1,%2 andi\t%0,%1,%x2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "anddi3" [(set (match_operand:DI 0 "register_operand" "=d") (and:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")))] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" "* { if (TARGET_64BIT) return "and\t%0,%1,%2"; return "and\t%M0,%M1,%M2;and\t%L0,%L1,%L2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set (attr "length") (if_then_else (ne (symbol_ref "TARGET_64BIT") (const_int 0)) (const_int 1) (const_int 2)))])
(define_split [(set (match_operand:DI 0 "register_operand" "") (and:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" "")))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 0) (and:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0))) (set (subreg:SI (match_dup 0) 1) (and:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))] "")
(define_insn "anddi3_internal1" [(set (match_operand:DI 0 "register_operand" "=d,d") (and:DI (match_operand:DI 1 "se_register_operand" "%d,d") (match_operand:DI 2 "se_uns_arith_operand" "d,K")))] "TARGET_64BIT" "@ and\t%0,%1,%2 andi\t%0,%1,%x2" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "iorsi3" [(set (match_operand:SI 0 "register_operand" "=d,d") (ior:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") (match_operand:SI 2 "uns_arith_operand" "d,K")))] "" "@ or\t%0,%1,%2 ori\t%0,%1,%x2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
;;; ??? There is no iordi3 pattern which accepts 'K' constants when ;;; TARGET_64BIT
(define_insn "iordi3" [(set (match_operand:DI 0 "register_operand" "=d") (ior:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")))] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" "* { if (TARGET_64BIT) return "or\t%0,%1,%2"; return "or\t%M0,%M1,%M2;or\t%L0,%L1,%L2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set (attr "length") (if_then_else (ne (symbol_ref "TARGET_64BIT") (const_int 0)) (const_int 1) (const_int 2)))])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ior:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" "")))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 0) (ior:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0))) (set (subreg:SI (match_dup 0) 1) (ior:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))] "")
(define_insn "xorsi3" [(set (match_operand:SI 0 "register_operand" "=d,d") (xor:SI (match_operand:SI 1 "uns_arith_operand" "%d,d") (match_operand:SI 2 "uns_arith_operand" "d,K")))] "" "@ xor\t%0,%1,%2 xori\t%0,%1,%x2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
;; ??? If delete the 32-bit long long patterns, then could merge this with ;; the following xordi3_internal pattern. (define_insn "xordi3" [(set (match_operand:DI 0 "register_operand" "=d") (xor:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")))] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" "* { if (TARGET_64BIT) return "xor\t%0,%1,%2"; return "xor\t%M0,%M1,%M2;xor\t%L0,%L1,%L2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set (attr "length") (if_then_else (ne (symbol_ref "TARGET_64BIT") (const_int 0)) (const_int 1) (const_int 2)))])
(define_split [(set (match_operand:DI 0 "register_operand" "") (xor:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" "")))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 0) (xor:SI (subreg:SI (match_dup 1) 0) (subreg:SI (match_dup 2) 0))) (set (subreg:SI (match_dup 0) 1) (xor:SI (subreg:SI (match_dup 1) 1) (subreg:SI (match_dup 2) 1)))] "")
(define_insn "xordi3_immed" [(set (match_operand:DI 0 "register_operand" "d") (xor:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_uns_arith_operand" "K")))] "TARGET_64BIT" "xori\t%0,%1,%x2" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "*norsi3" [(set (match_operand:SI 0 "register_operand" "=d") (and:SI (not:SI (match_operand:SI 1 "register_operand" "d")) (not:SI (match_operand:SI 2 "register_operand" "d"))))] "" "nor\t%0,%z1,%z2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "nordi3" [(set (match_operand:DI 0 "register_operand" "=d") (and:DI (not:DI (match_operand:DI 1 "se_register_operand" "d")) (not:DI (match_operand:DI 2 "se_register_operand" "d"))))] "" " { if (TARGET_64BIT) return "nor\t%0,%z1,%z2"; return "nor\t%M0,%M1,%M2;nor\t%L0,%L1,%L2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set (attr "length") (if_then_else (ne (symbol_ref "TARGET_64BIT") (const_int 0)) (const_int 1) (const_int 2)))])
(define_split [(set (match_operand:DI 0 "register_operand" "") (and:DI (not:DI (match_operand:DI 1 "register_operand" "")) (not:DI (match_operand:DI 2 "register_operand" ""))))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1])) && GET_CODE (operands[2]) == REG && GP_REG_P (REGNO (operands[2]))"
[(set (subreg:SI (match_dup 0) 0) (and:SI (not:SI (subreg:SI (match_dup 1) 0)) (not:SI (subreg:SI (match_dup 2) 0)))) (set (subreg:SI (match_dup 0) 1) (and:SI (not:SI (subreg:SI (match_dup 1) 1)) (not:SI (subreg:SI (match_dup 2) 1))))] "") ;; ;; .................... ;; ;; TRUNCATION ;; ;; ....................
(define_insn "truncdfsf2" [(set (match_operand:SF 0 "register_operand" "=f") (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "cvt.s.d\t%0,%1" [(set_attr "type" "fcvt") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "truncdisi2" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (match_operand:DI 1 "se_register_operand" "d")))] "TARGET_64BIT" "dsll\t%0,%1,32;dsra\t%0,%0,32" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_insn "truncdihi2" [(set (match_operand:HI 0 "register_operand" "=d") (truncate:HI (match_operand:DI 1 "se_register_operand" "d")))] "TARGET_64BIT" "andi\t%0,%1,0xffff" [(set_attr "type" "darith") (set_attr "mode" "HI") (set_attr "length" "1")])
(define_insn "truncdiqi2" [(set (match_operand:QI 0 "register_operand" "=d") (truncate:QI (match_operand:DI 1 "se_register_operand" "d")))] "TARGET_64BIT" "andi\t%0,%1,0x00ff" [(set_attr "type" "darith") (set_attr "mode" "QI") (set_attr "length" "1")])
;; Combiner patterns to optimize shift/truncate combinations. (define_insn "" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (ashiftrt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "small_int" "I"))))] "TARGET_64BIT" "* { int shift_amt = INTVAL (operands[2]) & 0x3f;
if (shift_amt < 32) { operands[2] = GEN_INT (32 - shift_amt); return "dsll\t%0,%1,%2;dsra\t%0,%0,32"; } else { operands[2] = GEN_INT (shift_amt); return "dsra\t%0,%1,%2"; } }" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (lshiftrt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "small_int" "I"))))] "TARGET_64BIT" "* { int shift_amt = INTVAL (operands[2]) & 0x3f;
if (shift_amt < 32) { operands[2] = GEN_INT (32 - shift_amt); return "dsll\t%0,%1,%2;dsra\t%0,%0,32"; } else if (shift_amt == 32) return "dsra\t%0,%1,32"; else { operands[2] = GEN_INT (shift_amt); return "dsrl\t%0,%1,%2"; } }" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d") (truncate:SI (ashift:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "small_int" "I"))))] "TARGET_64BIT" "* { int shift_amt = INTVAL (operands[2]) & 0x3f;
if (shift_amt < 32) { operands[2] = GEN_INT (32 + shift_amt); return "dsll\t%0,%1,%2;dsra\t%0,%0,32"; } else return "move\t%0,%."; }" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "2")])
;; Combiner patterns to optimize truncate/zero_extend combinations.
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d") (zero_extend:SI (truncate:HI (match_operand:DI 1 "se_register_operand" "d"))))] "TARGET_64BIT" "andi\t%0,%1,0xffff" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d") (zero_extend:SI (truncate:QI (match_operand:DI 1 "se_register_operand" "d"))))] "TARGET_64BIT" "andi\t%0,%1,0xff" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:HI 0 "register_operand" "=d") (zero_extend:HI (truncate:QI (match_operand:DI 1 "se_register_operand" "d"))))] "TARGET_64BIT" "andi\t%0,%1,0xff" [(set_attr "type" "darith") (set_attr "mode" "HI") (set_attr "length" "1")]) ;; ;; .................... ;; ;; ZERO EXTENSION ;; ;; ....................
;; Extension insns. ;; Those for integer source operand are ordered widest source type first.
(define_expand "zero_extendsidi2" [(set (match_operand:DI 0 "register_operand" "") (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "")))] "TARGET_64BIT" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (DImode, operands[1]); rtx temp = gen_reg_rtx (DImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 32);
emit_insn (gen_ashldi3 (temp, op1, shift));
emit_insn (gen_lshrdi3 (operands[0], temp, shift));
DONE;
}
}")
(define_insn "zero_extendsidi2_internal" [(set (match_operand:DI 0 "register_operand" "=d,d") (zero_extend:DI (match_operand:SI 1 "memory_operand" "R,m")))] "TARGET_64BIT" "* return mips_move_1word (operands, insn, TRUE);" [(set_attr "type" "load") (set_attr "mode" "DI") (set_attr "length" "1,2")])
(define_insn "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "=d,d,d") (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "d,R,m")))] "" "* { if (which_alternative == 0) return "andi\t%0,%1,0xffff"; else return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "arith,load,load") (set_attr "mode" "SI") (set_attr "length" "1,1,2")])
(define_insn "zero_extendhidi2" [(set (match_operand:DI 0 "register_operand" "=d,d,d") (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "d,R,m")))] "TARGET_64BIT" "* { if (which_alternative == 0) return "andi\t%0,%1,0xffff"; else return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "arith,load,load") (set_attr "mode" "DI") (set_attr "length" "1,1,2")])
(define_insn "zero_extendqihi2" [(set (match_operand:HI 0 "register_operand" "=d,d,d") (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))] "" "* { if (which_alternative == 0) return "andi\t%0,%1,0x00ff"; else return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "arith,load,load") (set_attr "mode" "HI") (set_attr "length" "1,1,2")])
(define_insn "zero_extendqisi2" [(set (match_operand:SI 0 "register_operand" "=d,d,d") (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))] "" "* { if (which_alternative == 0) return "andi\t%0,%1,0x00ff"; else return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "arith,load,load") (set_attr "mode" "SI") (set_attr "length" "1,1,2")])
(define_insn "zero_extendqidi2" [(set (match_operand:DI 0 "register_operand" "=d,d,d") (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "d,R,m")))] "TARGET_64BIT" "* { if (which_alternative == 0) return "andi\t%0,%1,0x00ff"; else return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "arith,load,load") (set_attr "mode" "DI") (set_attr "length" "1,1,2")])
;; These can be created when a paradoxical subreg operand with an implicit ;; sign_extend operator is reloaded. Because of the subreg, this is really ;; a zero extend. ;; ??? It might be possible to eliminate the need for these patterns by adding ;; more support to reload for implicit sign_extend operators. (define_insn "paradoxical_extendhidi2" [(set (match_operand:DI 0 "register_operand" "=d,d") (sign_extend:DI (subreg:SI (match_operand:HI 1 "memory_operand" "R,m") 0)))] "TARGET_64BIT" " { return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "load,load") (set_attr "mode" "DI") (set_attr "length" "1,2")])
(define_insn "paradoxical_extendqidi2" [(set (match_operand:DI 0 "register_operand" "=d,d") (sign_extend:DI (subreg:SI (match_operand:QI 1 "memory_operand" "R,m") 0)))] "TARGET_64BIT" " { return mips_move_1word (operands, insn, TRUE); }" [(set_attr "type" "load,load") (set_attr "mode" "DI") (set_attr "length" "1,2")]) ;; ;; .................... ;; ;; SIGN EXTENSION ;; ;; ....................
;; Extension insns. ;; Those for integer source operand are ordered widest source type first.
;; In 64 bit mode, 32 bit values in general registers are always ;; correctly sign extended. That means that if the target is a ;; general register, we can sign extend from SImode to DImode just by ;; doing a move.
(define_insn "extendsidi2" [(set (match_operand:DI 0 "register_operand" "=d,*d,d,d") (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,x,R,m")))] "TARGET_64BIT" " return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,hilo,load,load") (set_attr "mode" "DI") (set_attr "length" "1,1,1,2")])
;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lh and lb insns.
(define_expand "extendhidi2" [(set (match_operand:DI 0 "register_operand" "") (sign_extend:DI (match_operand:HI 1 "nonimmediate_operand" "")))] "TARGET_64BIT" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (DImode, operands[1]); rtx temp = gen_reg_rtx (DImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 48);
emit_insn (gen_ashldi3 (temp, op1, shift));
emit_insn (gen_ashrdi3 (operands[0], temp, shift));
DONE;
}
}")
(define_insn "extendhidi2_internal" [(set (match_operand:DI 0 "register_operand" "=d,d") (sign_extend:DI (match_operand:HI 1 "memory_operand" "R,m")))] "TARGET_64BIT" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "load") (set_attr "mode" "DI") (set_attr "length" "1,2")])
(define_expand "extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 16);
emit_insn (gen_ashlsi3 (temp, op1, shift));
emit_insn (gen_ashrsi3 (operands[0], temp, shift));
DONE;
}
}")
(define_insn "extendhisi2_internal" [(set (match_operand:SI 0 "register_operand" "=d,d") (sign_extend:SI (match_operand:HI 1 "memory_operand" "R,m")))] "" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "load") (set_attr "mode" "SI") (set_attr "length" "1,2")])
(define_expand "extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op0 = gen_lowpart (SImode, operands[0]); rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 24);
emit_insn (gen_ashlsi3 (temp, op1, shift));
emit_insn (gen_ashrsi3 (op0, temp, shift));
DONE;
}
}")
(define_insn "extendqihi2_internal" [(set (match_operand:HI 0 "register_operand" "=d,d") (sign_extend:HI (match_operand:QI 1 "memory_operand" "R,m")))] "" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "load") (set_attr "mode" "SI") (set_attr "length" "1,2")])
(define_expand "extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "")))] "" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (SImode, operands[1]); rtx temp = gen_reg_rtx (SImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 24);
emit_insn (gen_ashlsi3 (temp, op1, shift));
emit_insn (gen_ashrsi3 (operands[0], temp, shift));
DONE;
}
}")
(define_insn "extendqisi2_insn" [(set (match_operand:SI 0 "register_operand" "=d,d") (sign_extend:SI (match_operand:QI 1 "memory_operand" "R,m")))] "" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "load") (set_attr "mode" "SI") (set_attr "length" "1,2")])
(define_expand "extendqidi2" [(set (match_operand:DI 0 "register_operand" "") (sign_extend:DI (match_operand:QI 1 "nonimmediate_operand" "")))] "TARGET_64BIT" " { if (optimize && GET_CODE (operands[1]) == MEM) operands[1] = force_not_mem (operands[1]);
if (GET_CODE (operands[1]) != MEM) { rtx op1 = gen_lowpart (DImode, operands[1]); rtx temp = gen_reg_rtx (DImode); rtx shift = gen_rtx (CONST_INT, VOIDmode, 56);
emit_insn (gen_ashldi3 (temp, op1, shift));
emit_insn (gen_ashrdi3 (operands[0], temp, shift));
DONE;
}
}")
(define_insn "extendqidi2_insn" [(set (match_operand:DI 0 "register_operand" "=d,d") (sign_extend:DI (match_operand:QI 1 "memory_operand" "R,m")))] "TARGET_64BIT" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "load") (set_attr "mode" "DI") (set_attr "length" "1,2")])
(define_insn "extendsfdf2" [(set (match_operand:DF 0 "register_operand" "=f") (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "cvt.d.s\t%0,%1" [(set_attr "type" "fcvt") (set_attr "mode" "DF") (set_attr "length" "1")])
;; ;; .................... ;; ;; CONVERSIONS ;; ;; ....................
;; The SImode scratch register can not be shared with address regs used for ;; operand zero, because then the address in the move instruction will be ;; clobbered. We mark the scratch register as early clobbered to prevent this.
(define_insn "fix_truncdfsi2" [(set (match_operand:SI 0 "general_operand" "=d,*f,R,o") (fix:SI (match_operand:DF 1 "register_operand" "f,*f,f,f"))) (clobber (match_scratch:SI 2 "=d,*d,&d,&d")) (clobber (match_scratch:DF 3 "=f,X,f,f"))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" " { rtx xoperands[10];
if (which_alternative == 1) return "trunc.w.d %0,%1,%2";
output_asm_insn ("trunc.w.d %3,%1,%2", operands);
xoperands[0] = operands[0]; xoperands[1] = operands[3]; output_asm_insn (mips_move_1word (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "fcvt") (set_attr "mode" "DF") (set_attr "length" "11,9,10,11")])
(define_insn "fix_truncsfsi2" [(set (match_operand:SI 0 "general_operand" "=d,*f,R,o") (fix:SI (match_operand:SF 1 "register_operand" "f,*f,f,f"))) (clobber (match_scratch:SI 2 "=d,*d,&d,&d")) (clobber (match_scratch:SF 3 "=f,X,f,f"))] "TARGET_HARD_FLOAT" " { rtx xoperands[10];
if (which_alternative == 1) return "trunc.w.s %0,%1,%2";
output_asm_insn ("trunc.w.s %3,%1,%2", operands);
xoperands[0] = operands[0]; xoperands[1] = operands[3]; output_asm_insn (mips_move_1word (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "fcvt") (set_attr "mode" "SF") (set_attr "length" "11,9,10,11")])
;;; ??? trunc.l.d is mentioned in the appendix of the 1993 r4000/r4600 manuals ;;; but not in the chapter that describes the FPU. It is not mentioned at all ;;; in the 1991 manuals. The r4000 at Cygnus does not have this instruction.
;;; Deleting this means that we now need two libgcc2.a libraries. One for ;;; the 32 bit calling convention and one for the 64 bit calling convention.
;;; If this is disabled, then fixuns_truncdfdi2 must be disabled also.
(define_insn "fix_truncdfdi2" [(set (match_operand:DI 0 "general_operand" "=d,*f,R,o") (fix:DI (match_operand:DF 1 "register_operand" "f,*f,f,f"))) (clobber (match_scratch:DF 2 "=f,X,f,f"))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" " { rtx xoperands[10];
if (which_alternative == 1) return "trunc.l.d %0,%1";
output_asm_insn ("trunc.l.d %2,%1", operands);
xoperands[0] = operands[0]; xoperands[1] = operands[2]; output_asm_insn (mips_move_2words (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "fcvt") (set_attr "mode" "DF") (set_attr "length" "2,1,2,3")])
;;; ??? trunc.l.s is mentioned in the appendix of the 1993 r4000/r4600 manuals ;;; but not in the chapter that describes the FPU. It is not mentioned at all ;;; in the 1991 manuals. The r4000 at Cygnus does not have this instruction. (define_insn "fix_truncsfdi2" [(set (match_operand:DI 0 "general_operand" "=d,*f,R,o") (fix:DI (match_operand:SF 1 "register_operand" "f,*f,f,f"))) (clobber (match_scratch:DF 2 "=f,X,f,f"))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" " { rtx xoperands[10];
if (which_alternative == 1) return "trunc.l.s %0,%1";
output_asm_insn ("trunc.l.s %2,%1", operands);
xoperands[0] = operands[0]; xoperands[1] = operands[2]; output_asm_insn (mips_move_2words (xoperands, insn, FALSE), xoperands); return ""; }" [(set_attr "type" "fcvt") (set_attr "mode" "SF") (set_attr "length" "2,1,2,3")])
(define_insn "floatsidf2" [(set (match_operand:DF 0 "register_operand" "=f,f,f") (float:DF (match_operand:SI 1 "nonimmediate_operand" "d,R,m")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { dslots_load_total++; if (GET_CODE (operands[1]) == MEM) return "l.s\t%0,%1%#;cvt.d.w\t%0,%0";
return "mtc1\t%1,%0%#;cvt.d.w\t%0,%0"; }" [(set_attr "type" "fcvt") (set_attr "mode" "DF") (set_attr "length" "3,4,3")])
(define_insn "floatdidf2" [(set (match_operand:DF 0 "register_operand" "=f,f,f") (float:DF (match_operand:DI 1 "se_nonimmediate_operand" "d,R,m")))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" "* { dslots_load_total++; if (GET_CODE (operands[1]) == MEM) return "l.d\t%0,%1%#;cvt.d.l\t%0,%0";
return "dmtc1\t%1,%0%#;cvt.d.l\t%0,%0"; }" [(set_attr "type" "fcvt") (set_attr "mode" "DF") (set_attr "length" "3,4,3")])
(define_insn "floatsisf2" [(set (match_operand:SF 0 "register_operand" "=f,f,f") (float:SF (match_operand:SI 1 "nonimmediate_operand" "d,R,m")))] "TARGET_HARD_FLOAT" "* { dslots_load_total++; if (GET_CODE (operands[1]) == MEM) return "l.s\t%0,%1%#;cvt.s.w\t%0,%0";
return "mtc1\t%1,%0%#;cvt.s.w\t%0,%0"; }" [(set_attr "type" "fcvt") (set_attr "mode" "SF") (set_attr "length" "3,4,3")])
(define_insn "floatdisf2" [(set (match_operand:SF 0 "register_operand" "=f,f,f") (float:SF (match_operand:DI 1 "se_nonimmediate_operand" "d,R,m")))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" "* { dslots_load_total++; if (GET_CODE (operands[1]) == MEM) return "l.d\t%0,%1%#;cvt.s.l\t%0,%0";
return "dmtc1\t%1,%0%#;cvt.s.l\t%0,%0"; }" [(set_attr "type" "fcvt") (set_attr "mode" "SF") (set_attr "length" "3,4,3")])
(define_expand "fixuns_truncdfsi2" [(set (match_operand:SI 0 "register_operand" "") (unsigned_fix:SI (match_operand:DF 1 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" " { rtx reg1 = gen_reg_rtx (DFmode); rtx reg2 = gen_reg_rtx (DFmode); rtx reg3 = gen_reg_rtx (SImode); rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (1.0, 31);
if (reg1) /* turn off complaints about unreached code */ { emit_move_insn (reg1, immed_real_const_1 (offset, DFmode)); do_pending_stack_adjust ();
emit_insn (gen_cmpdf (operands[1], reg1));
emit_jump_insn (gen_bge (label1));
emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx,
gen_rtx (LABEL_REF, VOIDmode, label2)));
emit_barrier ();
emit_label (label1);
emit_move_insn (reg2, gen_rtx (MINUS, DFmode, operands[1], reg1));
emit_move_insn (reg3, gen_rtx (CONST_INT, VOIDmode, 0x80000000));
emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
emit_label (label2);
/* allow REG_NOTES to be set on last insn (labels don't have enough
fields, and can't be used for REG_NOTES anyway). */
emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
DONE;
}
}")
(define_expand "fixuns_truncdfdi2" [(set (match_operand:DI 0 "register_operand" "") (unsigned_fix:DI (match_operand:DF 1 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" " { rtx reg1 = gen_reg_rtx (DFmode); rtx reg2 = gen_reg_rtx (DFmode); rtx reg3 = gen_reg_rtx (DImode); rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (1.0, 63);
if (reg1) /* turn off complaints about unreached code */ { emit_move_insn (reg1, immed_real_const_1 (offset, DFmode)); do_pending_stack_adjust ();
emit_insn (gen_cmpdf (operands[1], reg1));
emit_jump_insn (gen_bge (label1));
emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx,
gen_rtx (LABEL_REF, VOIDmode, label2)));
emit_barrier ();
emit_label (label1);
emit_move_insn (reg2, gen_rtx (MINUS, DFmode, operands[1], reg1));
emit_move_insn (reg3, gen_rtx (CONST_INT, VOIDmode, 0x80000000));
emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
emit_label (label2);
/* allow REG_NOTES to be set on last insn (labels don't have enough
fields, and can't be used for REG_NOTES anyway). */
emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
DONE;
}
}")
(define_expand "fixuns_truncsfsi2" [(set (match_operand:SI 0 "register_operand" "") (unsigned_fix:SI (match_operand:SF 1 "register_operand" "")))] "TARGET_HARD_FLOAT" " { rtx reg1 = gen_reg_rtx (SFmode); rtx reg2 = gen_reg_rtx (SFmode); rtx reg3 = gen_reg_rtx (SImode); rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (1.0, 31);
if (reg1) /* turn off complaints about unreached code */ { emit_move_insn (reg1, immed_real_const_1 (offset, SFmode)); do_pending_stack_adjust ();
emit_insn (gen_cmpsf (operands[1], reg1));
emit_jump_insn (gen_bge (label1));
emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx,
gen_rtx (LABEL_REF, VOIDmode, label2)));
emit_barrier ();
emit_label (label1);
emit_move_insn (reg2, gen_rtx (MINUS, SFmode, operands[1], reg1));
emit_move_insn (reg3, gen_rtx (CONST_INT, VOIDmode, 0x80000000));
emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
emit_label (label2);
/* allow REG_NOTES to be set on last insn (labels don't have enough
fields, and can't be used for REG_NOTES anyway). */
emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
DONE;
}
}")
(define_expand "fixuns_truncsfdi2" [(set (match_operand:DI 0 "register_operand" "") (unsigned_fix:DI (match_operand:SF 1 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT" " { rtx reg1 = gen_reg_rtx (SFmode); rtx reg2 = gen_reg_rtx (SFmode); rtx reg3 = gen_reg_rtx (DImode); rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (1.0, 63);
if (reg1) /* turn off complaints about unreached code */ { emit_move_insn (reg1, immed_real_const_1 (offset, SFmode)); do_pending_stack_adjust ();
emit_insn (gen_cmpsf (operands[1], reg1));
emit_jump_insn (gen_bge (label1));
emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx,
gen_rtx (LABEL_REF, VOIDmode, label2)));
emit_barrier ();
emit_label (label1);
emit_move_insn (reg2, gen_rtx (MINUS, SFmode, operands[1], reg1));
emit_move_insn (reg3, gen_rtx (CONST_INT, VOIDmode, 0x80000000));
emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
emit_label (label2);
/* allow REG_NOTES to be set on last insn (labels don't have enough
fields, and can't be used for REG_NOTES anyway). */
emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
DONE;
}
}")
;; ;; .................... ;; ;; DATA MOVEMENT ;; ;; ....................
;; Bit field extract patterns which use lwl/lwr.
;; ??? There should be DImode variants for 64 bit code, but the current ;; bitfield scheme can't handle that. We would need to add new optabs ;; in order to make that work.
;; ??? There could be HImode variants for the ulh/ulhu/ush macros. ;; It isn't clear whether this will give better code.
(define_expand "extv" [(set (match_operand:SI 0 "register_operand" "") (sign_extract:SI (match_operand:QI 1 "memory_operand" "") (match_operand:SI 2 "immediate_operand" "") (match_operand:SI 3 "immediate_operand" "")))] "" " { /* If this isn't a 32 bit field, and it doesn't start on a byte boundary then fail. */ if (INTVAL (operands[2]) != 32 || (INTVAL (operands[3]) % 8) != 0) FAIL;
/* This can happen for a 64 bit target, when extracting a value from a 64 bit union member. extract_bit_field doesn't verify that our source matches the predicate, so we force it to be a MEM here. */ if (GET_CODE (operands[1]) != MEM) FAIL;
/* Otherwise, emit a lwl/lwr pair to load the value. */ emit_insn (gen_movsi_ulw (operands[0], operands[1])); DONE; }")
(define_expand "extzv" [(set (match_operand:SI 0 "register_operand" "") (zero_extract:SI (match_operand:QI 1 "memory_operand" "") (match_operand:SI 2 "immediate_operand" "") (match_operand:SI 3 "immediate_operand" "")))] "" " { /* If this isn't a 32 bit field, and it doesn't start on a byte boundary then fail. */ if (INTVAL (operands[2]) != 32 || (INTVAL (operands[3]) % 8) != 0) FAIL;
/* This can happen for a 64 bit target, when extracting a value from a 64 bit union member. extract_bit_field doesn't verify that our source matches the predicate, so we force it to be a MEM here. */ if (GET_CODE (operands[1]) != MEM) FAIL;
/* Otherwise, emit a lwl/lwr pair to load the value. */ emit_insn (gen_movsi_ulw (operands[0], operands[1])); DONE; }")
(define_expand "insv" [(set (zero_extract:SI (match_operand:QI 0 "memory_operand" "") (match_operand:SI 1 "immediate_operand" "") (match_operand:SI 2 "immediate_operand" "")) (match_operand:SI 3 "register_operand" ""))] "" " { /* If this isn't a 32 bit field, and it doesn't start on a byte boundary then fail. */ if (INTVAL (operands[1]) != 32 || (INTVAL (operands[2]) % 8) != 0) FAIL;
/* This can happen for a 64 bit target, when storing into a 32 bit union member. store_bit_field doesn't verify that our target matches the predicate, so we force it to be a MEM here. */ if (GET_CODE (operands[0]) != MEM) FAIL;
/* Otherwise, emit a swl/swr pair to load the value. */ emit_insn (gen_movsi_usw (operands[0], operands[3])); DONE; }")
;; unaligned word moves generated by the bit field patterns
(define_insn "movsi_ulw" [(set (match_operand:SI 0 "register_operand" "=&d,&d") (unspec [(match_operand:QI 1 "general_operand" "R,o")] 0))] "" "* { rtx offset = const0_rtx; rtx addr = XEXP (operands[1], 0); rtx mem_addr = eliminate_constant_term (addr, &offset); char *ret;
if (TARGET_STATS) mips_count_memory_refs (operands[1], 2);
/* The stack/frame pointers are always aligned, so we can convert to the faster lw if we are referencing an aligned stack location. */
if ((INTVAL (offset) & 3) == 0 && (mem_addr == stack_pointer_rtx || mem_addr == frame_pointer_rtx)) ret = "lw\t%0,%1"; else ret = "ulw\t%0,%1";
return mips_fill_delay_slot (ret, DELAY_LOAD, operands, insn); }" [(set_attr "type" "load,load") (set_attr "mode" "SI") (set_attr "length" "2,4")])
(define_insn "movsi_usw" [(set (match_operand:QI 0 "memory_operand" "=R,o") (unspec [(match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")] 1))] "" "* { rtx offset = const0_rtx; rtx addr = XEXP (operands[0], 0); rtx mem_addr = eliminate_constant_term (addr, &offset);
if (TARGET_STATS) mips_count_memory_refs (operands[0], 2);
/* The stack/frame pointers are always aligned, so we can convert to the faster sw if we are referencing an aligned stack location. */
if ((INTVAL (offset) & 3) == 0 && (mem_addr == stack_pointer_rtx || mem_addr == frame_pointer_rtx)) return "sw\t%1,%0";
return "usw\t%z1,%0"; }" [(set_attr "type" "store") (set_attr "mode" "SI") (set_attr "length" "2,4")])
;; These two patterns support loading addresses with two instructions instead ;; of using the macro instruction la.
;; ??? mips_move_1word has support for HIGH, so this pattern may be ;; unnecessary.
(define_insn "high" [(set (match_operand:SI 0 "register_operand" "=r") (high:SI (match_operand:SI 1 "immediate_operand" "")))] "mips_split_addresses" "lui\t%0,%%hi(%1) # high" [(set_attr "type" "move") (set_attr "length" "1")])
(define_insn "low" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "immediate_operand" "")))] "mips_split_addresses" "addiu\t%0,%1,%%lo(%2) # low" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
;; 64-bit integer moves
;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already.
(define_expand "movdi" [(set (match_operand:DI 0 "nonimmediate_operand" "") (match_operand:DI 1 "general_operand" ""))] "" " { if (mips_split_addresses && mips_check_split (operands[1], DImode)) { enum machine_mode mode = GET_MODE (operands[0]); rtx tem = ((reload_in_progress | reload_completed) ? operands[0] : gen_reg_rtx (mode));
emit_insn (gen_rtx (SET, VOIDmode, tem,
gen_rtx (HIGH, mode, operands[1])));
operands[1] = gen_rtx (LO_SUM, mode, tem, operands[1]);
}
/* If we are generating embedded PIC code, and we are referring to a symbol in the .text section, we must use an offset from the start of the function. */ if (TARGET_EMBEDDED_PIC && (GET_CODE (operands[1]) == LABEL_REF || (GET_CODE (operands[1]) == SYMBOL_REF && ! SYMBOL_REF_FLAG (operands[1])))) { rtx temp;
temp = embedded_pic_offset (operands[1]);
temp = gen_rtx (PLUS, Pmode, embedded_pic_fnaddr_rtx,
force_reg (DImode, temp));
emit_move_insn (operands[0], force_reg (DImode, temp));
DONE;
}
/* If operands[1] is a constant address illegal for pic, then we need to handle it just like LEGITIMIZE_ADDRESS does. */ if (flag_pic && pic_address_needs_scratch (operands[1])) { rtx temp = force_reg (DImode, XEXP (XEXP (operands[1], 0), 0)); rtx temp2 = XEXP (XEXP (operands[1], 0), 1);
if (! SMALL_INT (temp2))
temp2 = force_reg (DImode, temp2);
emit_move_insn (operands[0], gen_rtx (PLUS, DImode, temp, temp2));
DONE;
}
if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], DImode) && !register_operand (operands[1], DImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0) && operands[1] != CONST0_RTX (DImode)) { rtx temp = force_reg (DImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
(define_insn "movdi_internal" [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,d,R,o,*x,*d,*x") (match_operand:DI 1 "general_operand" "d,iF,R,o,d,d,J,*x,d"))] "!TARGET_64BIT && (register_operand (operands[0], DImode) || register_operand (operands[1], DImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (DImode))" " return mips_move_2words (operands, insn); " [(set_attr "type" "move,arith,load,load,store,store,hilo,hilo,hilo") (set_attr "mode" "DI") (set_attr "length" "2,4,2,4,2,4,2,2,2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (match_operand:DI 1 "register_operand" ""))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1]))"
[(set (subreg:SI (match_dup 0) 0) (subreg:SI (match_dup 1) 0)) (set (subreg:SI (match_dup 0) 1) (subreg:SI (match_dup 1) 1))] "")
(define_insn "movdi_internal2" [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,d,d,d,R,m,*x,*d,*x,*a") (match_operand:DI 1 "movdi_operand" "d,S,IKL,Mnis,R,m,dJ,dJ,J,*x,*d,J"))] "TARGET_64BIT && (register_operand (operands[0], DImode) || se_register_operand (operands[1], DImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (DImode))" " return mips_move_2words (operands, insn); " [(set_attr "type" "move,load,arith,arith,load,load,store,store,hilo,hilo,hilo,hilo") (set_attr "mode" "DI") (set_attr "length" "1,2,1,2,1,2,1,2,1,1,1,2")])
;; Handle input reloads in DImode. ;; This is mainly to handle reloading HILO_REGNUM. Note that we may ;; see it as the source or the destination, depending upon which way ;; reload handles the instruction. ;; Making the second operand TImode is a trick. The compiler may ;; reuse the same register for operand 0 and operand 2. Using TImode ;; gives us two registers, so we can always use the one which is not ;; used.
(define_expand "reload_indi" [(set (match_operand:DI 0 "register_operand" "=b") (match_operand:DI 1 "movdi_operand" "b")) (clobber (match_operand:TI 2 "register_operand" "=&d"))] "TARGET_64BIT" " { rtx scratch = gen_rtx (REG, DImode, (REGNO (operands[0]) == REGNO (operands[2]) ? REGNO (operands[2]) + 1 : REGNO (operands[2])));
if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) == HILO_REGNUM) { if (GET_CODE (operands[1]) == MEM) { rtx memword, offword, hiword, loword;
scratch = gen_rtx (REG, SImode, REGNO (scratch));
memword = change_address (operands[1], SImode, NULL_RTX);
offword = change_address (adj_offsettable_operand (operands[1], 4),
SImode, NULL_RTX);
if (BYTES_BIG_ENDIAN)
{
hiword = memword;
loword = offword;
}
else
{
hiword = offword;
loword = memword;
}
emit_move_insn (scratch, hiword);
emit_move_insn (gen_rtx (REG, SImode, 64), scratch);
emit_move_insn (scratch, loword);
emit_move_insn (gen_rtx (REG, SImode, 65), scratch);
}
else
{
emit_insn (gen_ashrdi3 (scratch, operands[1], GEN_INT (32)));
emit_insn (gen_movdi (gen_rtx (REG, DImode, 64), scratch));
emit_insn (gen_ashldi3 (scratch, operands[1], GEN_INT (32)));
emit_insn (gen_ashrdi3 (scratch, scratch, GEN_INT (32)));
emit_insn (gen_movdi (gen_rtx (REG, DImode, 65), scratch));
}
DONE;
}
if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == HILO_REGNUM) { emit_insn (gen_movdi (scratch, gen_rtx (REG, DImode, 65))); emit_insn (gen_ashldi3 (scratch, scratch, GEN_INT (32))); emit_insn (gen_lshrdi3 (scratch, scratch, GEN_INT (32))); emit_insn (gen_movdi (operands[0], gen_rtx (REG, DImode, 64))); emit_insn (gen_ashldi3 (operands[0], operands[0], GEN_INT (32))); emit_insn (gen_iordi3 (operands[0], operands[0], scratch)); DONE; } /* This handles moves between a float register and HI/LO. */ emit_move_insn (scratch, operands[1]); emit_move_insn (operands[0], scratch); DONE; }")
;; Handle output reloads in DImode.
(define_expand "reload_outdi" [(set (match_operand:DI 0 "general_operand" "=b") (match_operand:DI 1 "se_register_operand" "b")) (clobber (match_operand:DI 2 "register_operand" "=&d"))] "TARGET_64BIT" " { if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) == HILO_REGNUM) { emit_insn (gen_ashrdi3 (operands[2], operands[1], GEN_INT (32))); emit_insn (gen_movdi (gen_rtx (REG, DImode, 64), operands[2])); emit_insn (gen_ashldi3 (operands[2], operands[1], GEN_INT (32))); emit_insn (gen_ashrdi3 (operands[2], operands[2], GEN_INT (32))); emit_insn (gen_movdi (gen_rtx (REG, DImode, 65), operands[2])); DONE; } if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == HILO_REGNUM) { if (GET_CODE (operands[0]) == MEM) { rtx scratch, memword, offword, hiword, loword;
scratch = gen_rtx (REG, SImode, REGNO (operands[2]));
memword = change_address (operands[0], SImode, NULL_RTX);
offword = change_address (adj_offsettable_operand (operands[0], 4),
SImode, NULL_RTX);
if (BYTES_BIG_ENDIAN)
{
hiword = memword;
loword = offword;
}
else
{
hiword = offword;
loword = memword;
}
emit_move_insn (scratch, gen_rtx (REG, SImode, 64));
emit_move_insn (hiword, scratch);
emit_move_insn (scratch, gen_rtx (REG, SImode, 65));
emit_move_insn (loword, scratch);
}
else
{
emit_insn (gen_movdi (operands[2], gen_rtx (REG, DImode, 65)));
emit_insn (gen_ashldi3 (operands[2], operands[2], GEN_INT (32)));
emit_insn (gen_lshrdi3 (operands[2], operands[2], GEN_INT (32)));
emit_insn (gen_movdi (operands[0], gen_rtx (REG, DImode, 64)));
emit_insn (gen_ashldi3 (operands[0], operands[0], GEN_INT (32)));
emit_insn (gen_iordi3 (operands[0], operands[0], operands[2]));
}
DONE;
}
/* This handles moves between a float register and HI/LO. */ emit_move_insn (operands[2], operands[1]); emit_move_insn (operands[0], operands[2]); DONE; }")
;; 32-bit Integer moves
(define_split [(set (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "large_int" ""))] "!TARGET_DEBUG_D_MODE" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff0000); operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0x0000ffff); }")
;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already.
(define_expand "movsi" [(set (match_operand:SI 0 "nonimmediate_operand" "") (match_operand:SI 1 "general_operand" ""))] "" " { if (mips_split_addresses && mips_check_split (operands[1], SImode)) { enum machine_mode mode = GET_MODE (operands[0]); rtx tem = ((reload_in_progress | reload_completed) ? operands[0] : gen_reg_rtx (mode));
emit_insn (gen_rtx (SET, VOIDmode, tem,
gen_rtx (HIGH, mode, operands[1])));
operands[1] = gen_rtx (LO_SUM, mode, tem, operands[1]);
}
/* If we are generating embedded PIC code, and we are referring to a symbol in the .text section, we must use an offset from the start of the function. */ if (TARGET_EMBEDDED_PIC && (GET_CODE (operands[1]) == LABEL_REF || (GET_CODE (operands[1]) == SYMBOL_REF && ! SYMBOL_REF_FLAG (operands[1])))) { rtx temp;
temp = embedded_pic_offset (operands[1]);
temp = gen_rtx (PLUS, Pmode, embedded_pic_fnaddr_rtx,
force_reg (SImode, temp));
emit_move_insn (operands[0], force_reg (SImode, temp));
DONE;
}
/* If operands[1] is a constant address invalid for pic, then we need to handle it just like LEGITIMIZE_ADDRESS does. */ if (flag_pic && pic_address_needs_scratch (operands[1])) { rtx temp = force_reg (SImode, XEXP (XEXP (operands[1], 0), 0)); rtx temp2 = XEXP (XEXP (operands[1], 0), 1);
if (! SMALL_INT (temp2))
temp2 = force_reg (SImode, temp2);
emit_move_insn (operands[0], gen_rtx (PLUS, SImode, temp, temp2));
DONE;
}
if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], SImode) && !register_operand (operands[1], SImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (SImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).
(define_insn "movsi_internal1" [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,d,d,d,d,R,m,*d,fz,*f,*f,*f,*R,*m,*x,*x,*d,*d") (match_operand:SI 1 "move_operand" "d,S,IKL,Mnis,R,m,dJ,dJ,fz,*d,*f,*R,*m,*f,*f,J,*d,*x,a"))] "TARGET_DEBUG_H_MODE && (register_operand (operands[0], SImode) || register_operand (operands[1], SImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,load,arith,arith,load,load,store,store,xfer,xfer,move,load,load,store,store,hilo,hilo,hilo,hilo") (set_attr "mode" "SI") (set_attr "length" "1,2,1,2,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1")])
(define_insn "movsi_internal2" [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,d,d,d,d,R,m,*d,*z,*x,*d,*x,*d") (match_operand:SI 1 "move_operand" "d,S,IKL,Mnis,R,m,dJ,dJ,*z,*d,J,*x,*d,a"))] "!TARGET_DEBUG_H_MODE && (register_operand (operands[0], SImode) || register_operand (operands[1], SImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,load,arith,arith,load,load,store,store,xfer,xfer,hilo,hilo,hilo,hilo") (set_attr "mode" "SI") (set_attr "length" "1,2,1,2,1,2,1,2,1,1,1,1,1,1")])
;; Reload HILO_REGNUM in SI mode. This needs a scratch register in ;; order to set the sign bit correctly in the HI register.
(define_expand "reload_outsi" [(set (match_operand:SI 0 "general_operand" "=b") (match_operand:SI 1 "register_operand" "d")) (clobber (match_operand:SI 2 "register_operand" "=&d"))] "TARGET_64BIT" " { if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) == HILO_REGNUM) { emit_insn (gen_movsi (gen_rtx (REG, SImode, 65), operands[1])); emit_insn (gen_ashrsi3 (operands[2], operands[1], GEN_INT (31))); emit_insn (gen_movsi (gen_rtx (REG, SImode, 64), operands[2])); DONE; } /* This handles moves between a float register and HI/LO. */ emit_move_insn (operands[2], operands[1]); emit_move_insn (operands[0], operands[2]); DONE; }")
;; This insn handles moving CCmode values. It's really just a ;; slightly simplified copy of movsi_internal2, with additional cases ;; to move a condition register to a general register and to move ;; between the general registers and the floating point registers.
(define_insn "movcc" [(set (match_operand:CC 0 "nonimmediate_operand" "=d,*d,*d,*d,*R,*m,*d,*f,*f,*f,*f,*R,*m") (match_operand:CC 1 "general_operand" "z,*d,*R,*m,*d,*d,*f,*d,*f,*R,*m,*f,f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT" " return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,move,load,load,store,store,xfer,xfer,move,load,load,store,store") (set_attr "mode" "SI") (set_attr "length" "2,1,1,2,1,2,1,1,1,1,2,1,2")])
;; Reload condition code registers. These need scratch registers.
(define_expand "reload_incc" [(set (match_operand:CC 0 "register_operand" "=z") (match_operand:CC 1 "general_operand" "z")) (clobber (match_operand:TF 2 "register_operand" "=&f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT" " { rtx source; rtx fp1, fp2;
/* This is called when are copying some value into a condition code register. Operand 0 is the condition code register. Operand 1 is the source. Operand 2 is a scratch register; we use TFmode because we actually need two floating point registers. */ if (! ST_REG_P (true_regnum (operands[0])) || ! FP_REG_P (true_regnum (operands[2]))) abort ();
/* We need to get the source in SFmode so that the insn is recognized. */ if (GET_CODE (operands[1]) == MEM) source = change_address (operands[1], SFmode, NULL_RTX); else if (GET_CODE (operands[1]) == REG || GET_CODE (operands[1]) == SUBREG) source = gen_rtx (REG, SFmode, true_regnum (operands[1])); else source = operands[1];
fp1 = gen_rtx (REG, SFmode, REGNO (operands[2])); fp2 = gen_rtx (REG, SFmode, REGNO (operands[2]) + 1);
emit_insn (gen_move_insn (fp1, source)); emit_insn (gen_move_insn (fp2, gen_rtx (REG, SFmode, 0))); emit_insn (gen_rtx (SET, VOIDmode, operands[0], gen_rtx (LT, CCmode, fp2, fp1)));
DONE; }")
(define_expand "reload_outcc" [(set (match_operand:CC 0 "general_operand" "=z") (match_operand:CC 1 "register_operand" "z")) (clobber (match_operand:CC 2 "register_operand" "=&d"))] "mips_isa >= 4 && TARGET_HARD_FLOAT" " { /* This is called when we are copying a condition code register out to save it somewhere. Operand 0 should be the location we are going to save it to. Operand 1 should be the condition code register. Operand 2 should be a scratch general purpose register created for us by reload. The mips_secondary_reload_class function should have told reload that we don't need a scratch register if the destination is a general purpose register anyhow. */ if (ST_REG_P (true_regnum (operands[0])) || GP_REG_P (true_regnum (operands[0])) || ! ST_REG_P (true_regnum (operands[1])) || ! GP_REG_P (true_regnum (operands[2]))) abort ();
/* All we have to do is copy the value from the condition code to the data register, which movcc can handle, and then store the value into the real final destination. */ emit_insn (gen_move_insn (operands[2], operands[1])); emit_insn (gen_move_insn (operands[0], operands[2]));
DONE; }")
;; MIPS4 supports loading and storing a floating point register from ;; the sum of two general registers. We use two versions for each of ;; these four instructions: one where the two general registers are ;; SImode, and one where they are DImode. This is because general ;; registers will be in SImode when they hold 32 bit values, but, ;; since the 32 bit values are always sign extended, the [ls][wd]xc1 ;; instructions will still work correctly.
;; ??? Perhaps it would be better to support these instructions by ;; modifying GO_IF_LEGITIMATE_ADDRESS and friends. However, since ;; these instructions can only be used to load and store floating ;; point registers, that would probably cause trouble in reload.
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (mem:SF (plus:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "lwxc1\t%0,%1(%2)" [(set_attr "type" "load") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f") (mem:SF (plus:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "lwxc1\t%0,%1(%2)" [(set_attr "type" "load") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (mem:DF (plus:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "ldxc1\t%0,%1(%2)" [(set_attr "type" "load") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f") (mem:DF (plus:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "ldxc1\t%0,%1(%2)" [(set_attr "type" "load") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (mem:SF (plus:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (match_operand:SF 0 "register_operand" "=f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "swxc1\t%0,%1(%2)" [(set_attr "type" "store") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (mem:SF (plus:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))) (match_operand:SF 0 "register_operand" "=f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "swxc1\t%0,%1(%2)" [(set_attr "type" "store") (set_attr "mode" "SF") (set_attr "length" "1")])
(define_insn "" [(set (mem:DF (plus:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (match_operand:DF 0 "register_operand" "=f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "sdxc1\t%0,%1(%2)" [(set_attr "type" "store") (set_attr "mode" "DF") (set_attr "length" "1")])
(define_insn "" [(set (mem:DF (plus:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d"))) (match_operand:DF 0 "register_operand" "=f"))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "sdxc1\t%0,%1(%2)" [(set_attr "type" "store") (set_attr "mode" "DF") (set_attr "length" "1")])
;; 16-bit Integer moves
;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already. ;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined
(define_expand "movhi" [(set (match_operand:HI 0 "nonimmediate_operand" "") (match_operand:HI 1 "general_operand" ""))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], HImode) && !register_operand (operands[1], HImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (HImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).
(define_insn "movhi_internal1" [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*f,fz,*x,*d") (match_operand:HI 1 "general_operand" "d,IK,R,m,dJ,dJ,fz,*d,*f,*d,x"))] "TARGET_DEBUG_H_MODE && (register_operand (operands[0], HImode) || register_operand (operands[1], HImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, TRUE);" [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,hilo,hilo") (set_attr "mode" "HI") (set_attr "length" "1,1,1,2,1,2,1,1,1,1,1")])
(define_insn "movhi_internal2" [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d") (match_operand:HI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,x"))] "!TARGET_DEBUG_H_MODE && (register_operand (operands[0], HImode) || register_operand (operands[1], HImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, TRUE);" [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,hilo,hilo") (set_attr "mode" "HI") (set_attr "length" "1,1,1,2,1,2,1,1,1,1")])
;; 8-bit Integer moves
;; Unlike most other insns, the move insns can't be split with ;; different predicates, because register spilling and other parts of ;; the compiler, have memoized the insn number already. ;; Unsigned loads are used because BYTE_LOADS_ZERO_EXTEND is defined
(define_expand "movqi" [(set (match_operand:QI 0 "nonimmediate_operand" "") (match_operand:QI 1 "general_operand" ""))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], QImode) && !register_operand (operands[1], QImode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0)) { rtx temp = force_reg (QImode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
;; The difference between these two is whether or not ints are allowed ;; in FP registers (off by default, use -mdebugh to enable).
(define_insn "movqi_internal1" [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,fz,*f,*x,*d") (match_operand:QI 1 "general_operand" "d,IK,R,m,dJ,dJ,fz,*d,*f,*d,x"))] "TARGET_DEBUG_H_MODE && (register_operand (operands[0], QImode) || register_operand (operands[1], QImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, TRUE);" [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,move,hilo,hilo") (set_attr "mode" "QI") (set_attr "length" "1,1,1,2,1,2,1,1,1,1,1")])
(define_insn "movqi_internal2" [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,d,R,m,*d,*z,*x,*d") (match_operand:QI 1 "general_operand" "d,IK,R,m,dJ,dJ,*z,*d,*d,x"))] "!TARGET_DEBUG_H_MODE && (register_operand (operands[0], QImode) || register_operand (operands[1], QImode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0))" " return mips_move_1word (operands, insn, TRUE);" [(set_attr "type" "move,arith,load,load,store,store,xfer,xfer,hilo,hilo") (set_attr "mode" "QI") (set_attr "length" "1,1,1,2,1,2,1,1,1,1")])
;; 32-bit floating point moves
(define_expand "movsf" [(set (match_operand:SF 0 "nonimmediate_operand" "") (match_operand:SF 1 "general_operand" ""))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], SFmode) && !register_operand (operands[1], SFmode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0) && operands[1] != CONST0_RTX (SFmode)) { rtx temp = force_reg (SFmode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
(define_insn "movsf_internal1" [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,f,R,m,*f,*d,*d,*d,*d,*R,*m") (match_operand:SF 1 "general_operand" "f,G,R,Fm,fG,fG,*d,*f,Gd,*R,Fm,*d,d"))] "TARGET_HARD_FLOAT && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (SFmode))" " return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,xfer,load,load,store,store,xfer,xfer,move,load,load,store,store") (set_attr "mode" "SF") (set_attr "length" "1,1,1,2,1,2,1,1,1,1,2,1,2")])
(define_insn "movsf_internal2" [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,d,R,m") (match_operand:SF 1 "general_operand" " Gd,R,Fm,d,d"))] "TARGET_SOFT_FLOAT && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (SFmode))" "* return mips_move_1word (operands, insn, FALSE);" [(set_attr "type" "move,load,load,store,store") (set_attr "mode" "SF") (set_attr "length" "1,1,2,1,2")])
;; 64-bit floating point moves
(define_expand "movdf" [(set (match_operand:DF 0 "nonimmediate_operand" "") (match_operand:DF 1 "general_operand" ""))] "" " { if ((reload_in_progress | reload_completed) == 0 && !register_operand (operands[0], DFmode) && !register_operand (operands[1], DFmode) && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 0) && operands[1] != CONST0_RTX (DFmode)) { rtx temp = force_reg (DFmode, operands[1]); emit_move_insn (operands[0], temp); DONE; } }")
(define_insn "movdf_internal1" [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,R,o,f,*f,*d,*d,*d,*d,*R,*o") (match_operand:DF 1 "general_operand" "f,R,o,fG,fG,F,*d,*f,dG,*R,oF,*d,d"))] "TARGET_HARD_FLOAT && !(TARGET_FLOAT64 && !TARGET_64BIT) && TARGET_DOUBLE_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (DFmode))" " return mips_move_2words (operands, insn); " [(set_attr "type" "move,load,load,store,store,load,xfer,xfer,move,load,load,store,store") (set_attr "mode" "DF") (set_attr "length" "1,2,4,2,4,4,2,2,2,2,4,2,4")])
(define_insn "movdf_internal1a" [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,R,R,o,o,f,*d,*d,*d,*o,*R") (match_operand:DF 1 "general_operand" " f,o,f,G,f,G,F,*F,*o,*R,*d,d"))] "TARGET_HARD_FLOAT && (TARGET_FLOAT64 && !TARGET_64BIT) && TARGET_DOUBLE_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode)) || (GET_CODE (operands [0]) == MEM && ((GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (DFmode)))" " return mips_move_2words (operands, insn); " [(set_attr "type" "move,load,store,store,store,store,load,load,load,load,store,store") (set_attr "mode" "DF") (set_attr "length" "1,2,1,1,2,2,2,2,2,1,2,1")])
(define_insn "movdf_internal2" [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,d,R,o") (match_operand:DF 1 "general_operand" "dG,R,oF,d,d"))] "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == 0) || operands[1] == CONST0_RTX (DFmode))" "* return mips_move_2words (operands, insn); " [(set_attr "type" "move,load,load,store,store") (set_attr "mode" "DF") (set_attr "length" "2,2,4,2,4")])
(define_split [(set (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" ""))] "reload_completed && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && GP_REG_P (REGNO (operands[0])) && GET_CODE (operands[1]) == REG && GP_REG_P (REGNO (operands[1]))" [(set (subreg:SI (match_dup 0) 0) (subreg:SI (match_dup 1) 0)) (set (subreg:SI (match_dup 0) 1) (subreg:SI (match_dup 1) 1))] "")
;; Instructions to load the global pointer register. ;; This is volatile to make sure that the scheduler won't move any symbol_ref ;; uses in front of it. All symbol_refs implicitly use the gp reg.
(define_insn "loadgp" [(set (reg:DI 28) (unspec_volatile [(match_operand:DI 0 "address_operand" "")] 2)) (clobber (reg:DI 1))] "" "%[lui\t$1,%%hi(%%neg(%%gp_rel(%a0)))\n\taddiu\t$1,$1,%%lo(%%neg(%%gp_rel(%a0)))\n\tdaddu\t$gp,$1,$25%]" [(set_attr "type" "move") (set_attr "mode" "DI") (set_attr "length" "3")]) ;; Block moves, see mips.c for more details. ;; Argument 0 is the destination ;; Argument 1 is the source ;; Argument 2 is the length ;; Argument 3 is the alignment
(define_expand "movstrsi" [(parallel [(set (mem:BLK (match_operand:BLK 0 "general_operand" "")) (mem:BLK (match_operand:BLK 1 "general_operand" ""))) (use (match_operand:SI 2 "arith32_operand" "")) (use (match_operand:SI 3 "immediate_operand" ""))])] "" " { if (operands[0]) /* avoid unused code messages */ { expand_block_move (operands); DONE; } }")
;; Insn generated by block moves
(define_insn "movstrsi_internal" [(set (match_operand:BLK 0 "memory_operand" "=o") ;; destination (match_operand:BLK 1 "memory_operand" "o")) ;; source (clobber (match_scratch:SI 4 "=&d")) ;; temp 1 (clobber (match_scratch:SI 5 "=&d")) ;; temp 2 (clobber (match_scratch:SI 6 "=&d")) ;; temp 3 (clobber (match_scratch:SI 7 "=&d")) ;; temp 4 (use (match_operand:SI 2 "small_int" "I")) ;; # bytes to move (use (match_operand:SI 3 "small_int" "I")) ;; alignment (use (const_int 0))] ;; normal block move "" "* return output_block_move (insn, operands, 4, BLOCK_MOVE_NORMAL);" [(set_attr "type" "multi") (set_attr "mode" "none") (set_attr "length" "20")])
;; Split a block move into 2 parts, the first part is everything ;; except for the last move, and the second part is just the last ;; store, which is exactly 1 instruction (ie, not a usw), so it can ;; fill a delay slot. This also prevents a bug in delayed branches ;; from showing up, which reuses one of the registers in our clobbers.
(define_split [(set (mem:BLK (match_operand:SI 0 "register_operand" "")) (mem:BLK (match_operand:SI 1 "register_operand" ""))) (clobber (match_operand:SI 4 "register_operand" "")) (clobber (match_operand:SI 5 "register_operand" "")) (clobber (match_operand:SI 6 "register_operand" "")) (clobber (match_operand:SI 7 "register_operand" "")) (use (match_operand:SI 2 "small_int" "")) (use (match_operand:SI 3 "small_int" "")) (use (const_int 0))]
"reload_completed && !TARGET_DEBUG_D_MODE && INTVAL (operands[2]) > 0"
;; All but the last move [(parallel [(set (mem:BLK (match_dup 0)) (mem:BLK (match_dup 1))) (clobber (match_dup 4)) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_dup 7)) (use (match_dup 2)) (use (match_dup 3)) (use (const_int 1))])
;; The last store, so it can fill a delay slot (parallel [(set (mem:BLK (match_dup 0)) (mem:BLK (match_dup 1))) (clobber (match_dup 4)) (clobber (match_dup 5)) (clobber (match_dup 6)) (clobber (match_dup 7)) (use (match_dup 2)) (use (match_dup 3)) (use (const_int 2))])]
"")
(define_insn "movstrsi_internal2" [(set (match_operand:BLK 0 "memory_operand" "=o") ;; destination (match_operand:BLK 1 "memory_operand" "o")) ;; source (clobber (match_scratch:SI 4 "=&d")) ;; temp 1 (clobber (match_scratch:SI 5 "=&d")) ;; temp 2 (clobber (match_scratch:SI 6 "=&d")) ;; temp 3 (clobber (match_scratch:SI 7 "=&d")) ;; temp 4 (use (match_operand:SI 2 "small_int" "I")) ;; # bytes to move (use (match_operand:SI 3 "small_int" "I")) ;; alignment (use (const_int 1))] ;; all but last store "" "* return output_block_move (insn, operands, 4, BLOCK_MOVE_NOT_LAST);" [(set_attr "type" "multi") (set_attr "mode" "none") (set_attr "length" "20")])
(define_insn "movstrsi_internal3" [(set (match_operand:BLK 0 "memory_operand" "=Ro") ;; destination (match_operand:BLK 1 "memory_operand" "Ro")) ;; source (clobber (match_scratch:SI 4 "=&d")) ;; temp 1 (clobber (match_scratch:SI 5 "=&d")) ;; temp 2 (clobber (match_scratch:SI 6 "=&d")) ;; temp 3 (clobber (match_scratch:SI 7 "=&d")) ;; temp 4 (use (match_operand:SI 2 "small_int" "I")) ;; # bytes to move (use (match_operand:SI 3 "small_int" "I")) ;; alignment (use (const_int 2))] ;; just last store of block move "" "* return output_block_move (insn, operands, 4, BLOCK_MOVE_LAST);" [(set_attr "type" "store") (set_attr "mode" "none") (set_attr "length" "1")])
;; ;; .................... ;; ;; SHIFTS ;; ;; ....................
(define_insn "ashlsi3" [(set (match_operand:SI 0 "register_operand" "=d") (ashift:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);
return "sll\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "ashldi3" [(parallel [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:SI 2 "arith_operand" ""))) (clobber (match_dup 3))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (TARGET_64BIT) { emit_insn (gen_ashldi3_internal4 (operands[0], operands[1], operands[2])); DONE; }
operands[3] = gen_reg_rtx (SImode); }")
(define_insn "ashldi3_internal" [(set (match_operand:DI 0 "register_operand" "=&d") (ashift:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE" "* { operands[4] = const0_rtx; dslots_jump_total += 3; dslots_jump_filled += 2;
return "sll\t%3,%2,26\n\ \tbgez\t%3,1f\n\ \tsll\t%M0,%L1,%2\n\ \t%(b\t3f\n\ \tmove\t%L0,%z4%)\n\ \n\ 1:\n\ \t%(beq\t%3,%z4,2f\n\ \tsll\t%M0,%M1,%2%)\n\ \n\ \tsubu\t%3,%z4,%2\n\ \tsrl\t%3,%L1,%3\n\ \tor\t%M0,%M0,%3\n\ 2:\n\ \tsll\t%L0,%L1,%2\n\ 3:"; }" [(set_attr "type" "darith") (set_attr "mode" "SI") (set_attr "length" "12")])
(define_insn "ashldi3_internal2" [(set (match_operand:DI 0 "register_operand" "=d") (ashift:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 32) != 0" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f); operands[4] = const0_rtx; return "sll\t%M0,%L1,%2;move\t%L0,%z4"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 1) (ashift:SI (subreg:SI (match_dup 1) 0) (match_dup 2))) (set (subreg:SI (match_dup 0) 0) (const_int 0))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 0) (ashift:SI (subreg:SI (match_dup 1) 1) (match_dup 2))) (set (subreg:SI (match_dup 0) 1) (const_int 0))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_insn "ashldi3_internal3" [(set (match_operand:DI 0 "register_operand" "=d") (ashift:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0" "* { int amount = INTVAL (operands[2]);
operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = const0_rtx; operands[5] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31));
return "sll\t%M0,%M1,%2;srl\t%3,%L1,%5;or\t%M0,%M0,%3;sll\t%L0,%L1,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 1) (ashift:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (match_dup 3) (lshiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 4)))
(set (subreg:SI (match_dup 0) 1) (ior:SI (subreg:SI (match_dup 0) 1) (match_dup 3)))
(set (subreg:SI (match_dup 0) 0) (ashift:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashift:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 0) (ashift:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (match_dup 3) (lshiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 4)))
(set (subreg:SI (match_dup 0) 0) (ior:SI (subreg:SI (match_dup 0) 0) (match_dup 3)))
(set (subreg:SI (match_dup 0) 1) (ashift:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_insn "ashldi3_internal4" [(set (match_operand:DI 0 "register_operand" "=d") (ashift:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "TARGET_64BIT" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "dsll\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "ashrsi3" [(set (match_operand:SI 0 "register_operand" "=d") (ashiftrt:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);
return "sra\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "ashrdi3" [(parallel [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:SI 2 "arith_operand" ""))) (clobber (match_dup 3))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (TARGET_64BIT) { emit_insn (gen_ashrdi3_internal4 (operands[0], operands[1], operands[2])); DONE; }
operands[3] = gen_reg_rtx (SImode); }")
(define_insn "ashrdi3_internal" [(set (match_operand:DI 0 "register_operand" "=&d") (ashiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE" "* { operands[4] = const0_rtx; dslots_jump_total += 3; dslots_jump_filled += 2;
return "sll\t%3,%2,26\n\ \tbgez\t%3,1f\n\ \tsra\t%L0,%M1,%2\n\ \t%(b\t3f\n\ \tsra\t%M0,%M1,31%)\n\ \n\ 1:\n\ \t%(beq\t%3,%z4,2f\n\ \tsrl\t%L0,%L1,%2%)\n\ \n\ \tsubu\t%3,%z4,%2\n\ \tsll\t%3,%M1,%3\n\ \tor\t%L0,%L0,%3\n\ 2:\n\ \tsra\t%M0,%M1,%2\n\ 3:"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "12")])
(define_insn "ashrdi3_internal2" [(set (match_operand:DI 0 "register_operand" "=d") (ashiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 32) != 0" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f); return "sra\t%L0,%M1,%2;sra\t%M0,%M1,31"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 0) (ashiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2))) (set (subreg:SI (match_dup 0) 1) (ashiftrt:SI (subreg:SI (match_dup 1) 1) (const_int 31)))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 1) (ashiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2))) (set (subreg:SI (match_dup 0) 0) (ashiftrt:SI (subreg:SI (match_dup 1) 0) (const_int 31)))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_insn "ashrdi3_internal3" [(set (match_operand:DI 0 "register_operand" "=d") (ashiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0" "* { int amount = INTVAL (operands[2]);
operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31));
return "srl\t%L0,%L1,%2;sll\t%3,%M1,%4;or\t%L0,%L0,%3;sra\t%M0,%M1,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 0) (lshiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (match_dup 3) (ashift:SI (subreg:SI (match_dup 1) 1) (match_dup 4)))
(set (subreg:SI (match_dup 0) 0) (ior:SI (subreg:SI (match_dup 0) 0) (match_dup 3)))
(set (subreg:SI (match_dup 0) 1) (ashiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_split [(set (match_operand:DI 0 "register_operand" "") (ashiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 1) (lshiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (match_dup 3) (ashift:SI (subreg:SI (match_dup 1) 0) (match_dup 4)))
(set (subreg:SI (match_dup 0) 1) (ior:SI (subreg:SI (match_dup 0) 1) (match_dup 3)))
(set (subreg:SI (match_dup 0) 0) (ashiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_insn "ashrdi3_internal4" [(set (match_operand:DI 0 "register_operand" "=d") (ashiftrt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "TARGET_64BIT" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "dsra\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "lshrsi3" [(set (match_operand:SI 0 "register_operand" "=d") (lshiftrt:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);
return "srl\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_expand "lshrdi3" [(parallel [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:SI 2 "arith_operand" ""))) (clobber (match_dup 3))])] "TARGET_64BIT || !TARGET_DEBUG_G_MODE" " { if (TARGET_64BIT) { emit_insn (gen_lshrdi3_internal4 (operands[0], operands[1], operands[2])); DONE; }
operands[3] = gen_reg_rtx (SImode); }")
(define_insn "lshrdi3_internal" [(set (match_operand:DI 0 "register_operand" "=&d") (lshiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE" "* { operands[4] = const0_rtx; dslots_jump_total += 3; dslots_jump_filled += 2;
return "sll\t%3,%2,26\n\ \tbgez\t%3,1f\n\ \tsrl\t%L0,%M1,%2\n\ \t%(b\t3f\n\ \tmove\t%M0,%z4%)\n\ \n\ 1:\n\ \t%(beq\t%3,%z4,2f\n\ \tsrl\t%L0,%L1,%2%)\n\ \n\ \tsubu\t%3,%z4,%2\n\ \tsll\t%3,%M1,%3\n\ \tor\t%L0,%L0,%3\n\ 2:\n\ \tsrl\t%M0,%M1,%2\n\ 3:"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "12")])
(define_insn "lshrdi3_internal2" [(set (match_operand:DI 0 "register_operand" "=d") (lshiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 32) != 0" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f); operands[4] = const0_rtx; return "srl\t%L0,%M1,%2;move\t%M0,%z4"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 0) (lshiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2))) (set (subreg:SI (match_dup 0) 1) (const_int 0))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_split [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 32) != 0"
[(set (subreg:SI (match_dup 0) 1) (lshiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2))) (set (subreg:SI (match_dup 0) 0) (const_int 0))]
"operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0x1f);")
(define_insn "lshrdi3_internal3" [(set (match_operand:DI 0 "register_operand" "=d") (lshiftrt:DI (match_operand:DI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "IJK"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_64BIT && !TARGET_DEBUG_G_MODE && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0" "* { int amount = INTVAL (operands[2]);
operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31));
return "srl\t%L0,%L1,%2;sll\t%3,%M1,%4;or\t%L0,%L0,%3;srl\t%M0,%M1,%2"; }" [(set_attr "type" "darith") (set_attr "mode" "DI") (set_attr "length" "4")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && !WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 0) (lshiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))
(set (match_dup 3) (ashift:SI (subreg:SI (match_dup 1) 1) (match_dup 4)))
(set (subreg:SI (match_dup 0) 0) (ior:SI (subreg:SI (match_dup 0) 0) (match_dup 3)))
(set (subreg:SI (match_dup 0) 1) (lshiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_split [(set (match_operand:DI 0 "register_operand" "") (lshiftrt:DI (match_operand:DI 1 "register_operand" "") (match_operand:SI 2 "small_int" ""))) (clobber (match_operand:SI 3 "register_operand" ""))] "reload_completed && WORDS_BIG_ENDIAN && !TARGET_64BIT && !TARGET_DEBUG_D_MODE && !TARGET_DEBUG_G_MODE && GET_CODE (operands[0]) == REG && REGNO (operands[0]) < FIRST_PSEUDO_REGISTER && GET_CODE (operands[1]) == REG && REGNO (operands[1]) < FIRST_PSEUDO_REGISTER && (INTVAL (operands[2]) & 63) < 32 && (INTVAL (operands[2]) & 63) != 0"
[(set (subreg:SI (match_dup 0) 1) (lshiftrt:SI (subreg:SI (match_dup 1) 1) (match_dup 2)))
(set (match_dup 3) (ashift:SI (subreg:SI (match_dup 1) 0) (match_dup 4)))
(set (subreg:SI (match_dup 0) 1) (ior:SI (subreg:SI (match_dup 0) 1) (match_dup 3)))
(set (subreg:SI (match_dup 0) 0) (lshiftrt:SI (subreg:SI (match_dup 1) 0) (match_dup 2)))] " { int amount = INTVAL (operands[2]); operands[2] = gen_rtx (CONST_INT, VOIDmode, (amount & 31)); operands[4] = gen_rtx (CONST_INT, VOIDmode, ((-amount) & 31)); }")
(define_insn "lshrdi3_internal4" [(set (match_operand:DI 0 "register_operand" "=d") (lshiftrt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "TARGET_64BIT" "* { if (GET_CODE (operands[2]) == CONST_INT) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
return "dsrl\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
;; ;; .................... ;; ;; COMPARISONS ;; ;; ....................
;; Flow here is rather complex: ;; ;; 1) The cmp{si,di,sf,df} routine is called. It deposits the ;; arguments into the branch_cmp array, and the type into ;; branch_type. No RTL is generated. ;; ;; 2) The appropriate branch define_expand is called, which then ;; creates the appropriate RTL for the comparison and branch. ;; Different CC modes are used, based on what type of branch is ;; done, so that we can constrain things appropriately. There ;; are assumptions in the rest of GCC that break if we fold the ;; operands into the branchs for integer operations, and use cc0 ;; for floating point, so we use the fp status register instead. ;; If needed, an appropriate temporary is created to hold the ;; of the integer compare.
(define_expand "cmpsi" [(set (cc0) (compare:CC (match_operand:SI 0 "register_operand" "") (match_operand:SI 1 "arith_operand" "")))] "" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = operands[1]; branch_type = CMP_SI; DONE; } }")
(define_expand "tstsi" [(set (cc0) (match_operand:SI 0 "register_operand" ""))] "" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = const0_rtx; branch_type = CMP_SI; DONE; } }")
(define_expand "cmpdi" [(set (cc0) (compare:CC (match_operand:DI 0 "se_register_operand" "") (match_operand:DI 1 "se_arith_operand" "")))] "TARGET_64BIT" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = operands[1]; branch_type = CMP_DI; DONE; } }")
(define_expand "tstdi" [(set (cc0) (match_operand:DI 0 "se_register_operand" ""))] "TARGET_64BIT" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = const0_rtx; branch_type = CMP_DI; DONE; } }")
(define_expand "cmpdf" [(set (cc0) (compare:CC (match_operand:DF 0 "register_operand" "") (match_operand:DF 1 "register_operand" "")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = operands[1]; branch_type = CMP_DF; DONE; } }")
(define_expand "cmpsf" [(set (cc0) (compare:CC (match_operand:SF 0 "register_operand" "") (match_operand:SF 1 "register_operand" "")))] "TARGET_HARD_FLOAT" " { if (operands[0]) /* avoid unused code message */ { branch_cmp[0] = operands[0]; branch_cmp[1] = operands[1]; branch_type = CMP_SF; DONE; } }")
;; ;; .................... ;; ;; CONDITIONAL BRANCHES ;; ;; ....................
(define_insn "branch_fp_ne" [(set (pc) (if_then_else (ne:CC (match_operand:CC 0 "register_operand" "z") (const_int 0)) (match_operand 1 "pc_or_label_operand" "") (match_operand 2 "pc_or_label_operand" "")))] "TARGET_HARD_FLOAT" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); return (operands[1] != pc_rtx) ? "%*bc1t%?\t%Z0%1" : "%*bc1f%?\t%Z0%2"; }" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "branch_fp_eq" [(set (pc) (if_then_else (eq:CC (match_operand:CC 0 "register_operand" "z") (const_int 0)) (match_operand 1 "pc_or_label_operand" "") (match_operand 2 "pc_or_label_operand" "")))] "TARGET_HARD_FLOAT" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); return (operands[1] != pc_rtx) ? "%*bc1f%?\t%Z0%1" : "%*bc1t%?\t%Z0%2"; }" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "branch_zero" [(set (pc) (if_then_else (match_operator:SI 0 "cmp_op" [(match_operand:SI 1 "register_operand" "d") (const_int 0)]) (match_operand 2 "pc_or_label_operand" "") (match_operand 3 "pc_or_label_operand" "")))] "" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); if (operands[2] != pc_rtx) { /* normal jump */ switch (GET_CODE (operands[0])) { case EQ: return "%*beq%?\t%z1,%.,%2"; case NE: return "%*bne%?\t%z1,%.,%2"; case GTU: return "%*bne%?\t%z1,%.,%2"; case LEU: return "%*beq%?\t%z1,%.,%2"; case GEU: return "%*j\t%2"; case LTU: return "%*bne%?\t%.,%.,%2"; }
return \"%*b%C0z%?\\t%z1,%2\";
}
else { /* inverted jump */ switch (GET_CODE (operands[0])) { case EQ: return "%*bne%?\t%z1,%.,%3"; case NE: return "%*beq%?\t%z1,%.,%3"; case GTU: return "%*beq%?\t%z1,%.,%3"; case LEU: return "%*bne%?\t%z1,%.,%3"; case GEU: return "%*beq%?\t%.,%.,%3"; case LTU: return "%*j\t%3"; }
return \"%*b%N0z%?\\t%z1,%3\";
}
}" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "branch_zero_di" [(set (pc) (if_then_else (match_operator:DI 0 "cmp_op" [(match_operand:DI 1 "se_register_operand" "d") (const_int 0)]) (match_operand 2 "pc_or_label_operand" "") (match_operand 3 "pc_or_label_operand" "")))] "" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); if (operands[2] != pc_rtx) { /* normal jump */ switch (GET_CODE (operands[0])) { case EQ: return "%*beq%?\t%z1,%.,%2"; case NE: return "%*bne%?\t%z1,%.,%2"; case GTU: return "%*bne%?\t%z1,%.,%2"; case LEU: return "%*beq%?\t%z1,%.,%2"; case GEU: return "%*j\t%2"; case LTU: return "%*bne%?\t%.,%.,%2"; }
return \"%*b%C0z%?\\t%z1,%2\";
}
else { /* inverted jump */ switch (GET_CODE (operands[0])) { case EQ: return "%*bne%?\t%z1,%.,%3"; case NE: return "%*beq%?\t%z1,%.,%3"; case GTU: return "%*beq%?\t%z1,%.,%3"; case LEU: return "%*bne%?\t%z1,%.,%3"; case GEU: return "%*beq%?\t%.,%.,%3"; case LTU: return "%*j\t%3"; }
return \"%*b%N0z%?\\t%z1,%3\";
}
}" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "branch_equality" [(set (pc) (if_then_else (match_operator:SI 0 "equality_op" [(match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d")]) (match_operand 3 "pc_or_label_operand" "") (match_operand 4 "pc_or_label_operand" "")))] "" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); return (operands[3] != pc_rtx) ? "%*b%C0%?\t%z1,%z2,%3" : "%*b%N0%?\t%z1,%z2,%4"; }" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "branch_equality_di" [(set (pc) (if_then_else (match_operator:DI 0 "equality_op" [(match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")]) (match_operand 3 "pc_or_label_operand" "") (match_operand 4 "pc_or_label_operand" "")))] "" "* { mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn)); return (operands[3] != pc_rtx) ? "%*b%C0%?\t%z1,%z2,%3" : "%*b%N0%?\t%z1,%z2,%4"; }" [(set_attr "type" "branch") (set_attr "mode" "none") (set_attr "length" "1")])
(define_expand "beq" [(set (pc) (if_then_else (eq:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, EQ); DONE; } }")
(define_expand "bne" [(set (pc) (if_then_else (ne:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, NE); DONE; } }")
(define_expand "bgt" [(set (pc) (if_then_else (gt:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, GT); DONE; } }")
(define_expand "bge" [(set (pc) (if_then_else (ge:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, GE); DONE; } }")
(define_expand "blt" [(set (pc) (if_then_else (lt:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, LT); DONE; } }")
(define_expand "ble" [(set (pc) (if_then_else (le:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, LE); DONE; } }")
(define_expand "bgtu" [(set (pc) (if_then_else (gtu:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, GTU); DONE; } }")
(define_expand "bgeu" [(set (pc) (if_then_else (geu:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, GEU); DONE; } }")
(define_expand "bltu" [(set (pc) (if_then_else (ltu:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, LTU); DONE; } }")
(define_expand "bleu" [(set (pc) (if_then_else (leu:CC (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { if (operands[0]) /* avoid unused code warning */ { gen_conditional_branch (operands, LEU); DONE; } }")
;; ;; .................... ;; ;; SETTING A REGISTER FROM A COMPARISON ;; ;; ....................
(define_expand "seq" [(set (match_operand:SI 0 "register_operand" "=d") (eq:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (EQ, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "seq_si_zero" [(set (match_operand:SI 0 "register_operand" "=d") (eq:SI (match_operand:SI 1 "register_operand" "d") (const_int 0)))] "" "sltu\t%0,%1,1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "seq_di_zero" [(set (match_operand:DI 0 "register_operand" "=d") (eq:DI (match_operand:DI 1 "se_register_operand" "d") (const_int 0)))] "TARGET_64BIT" "sltu\t%0,%1,1" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "seq_si" [(set (match_operand:SI 0 "register_operand" "=d,d") (eq:SI (match_operand:SI 1 "register_operand" "%d,d") (match_operand:SI 2 "uns_arith_operand" "d,K")))] "TARGET_DEBUG_C_MODE" "@ xor\t%0,%1,%2;sltu\t%0,%0,1 xori\t%0,%1,%2;sltu\t%0,%0,1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (eq:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "uns_arith_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 0)" [(set (match_dup 0) (xor:SI (match_dup 1) (match_dup 2))) (set (match_dup 0) (ltu:SI (match_dup 0) (const_int 1)))] "")
(define_insn "seq_di" [(set (match_operand:DI 0 "register_operand" "=d,d") (eq:DI (match_operand:DI 1 "se_register_operand" "%d,d") (match_operand:DI 2 "se_uns_arith_operand" "d,K")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "@ xor\t%0,%1,%2;sltu\t%0,%0,1 xori\t%0,%1,%2;sltu\t%0,%0,1" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (eq:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_uns_arith_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 0)" [(set (match_dup 0) (xor:DI (match_dup 1) (match_dup 2))) (set (match_dup 0) (ltu:DI (match_dup 0) (const_int 1)))] "")
(define_expand "sne" [(set (match_operand:SI 0 "register_operand" "=d") (ne:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (NE, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "sne_si_zero" [(set (match_operand:SI 0 "register_operand" "=d") (ne:SI (match_operand:SI 1 "register_operand" "d") (const_int 0)))] "" "sltu\t%0,%.,%1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sne_di_zero" [(set (match_operand:DI 0 "register_operand" "=d") (ne:DI (match_operand:DI 1 "se_register_operand" "d") (const_int 0)))] "TARGET_64BIT" "sltu\t%0,%.,%1" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "sne_si" [(set (match_operand:SI 0 "register_operand" "=d,d") (ne:SI (match_operand:SI 1 "register_operand" "%d,d") (match_operand:SI 2 "uns_arith_operand" "d,K")))] "TARGET_DEBUG_C_MODE" "@ xor\t%0,%1,%2;sltu\t%0,%.,%0 xori\t%0,%1,%x2;sltu\t%0,%.,%0" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (ne:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "uns_arith_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 0)" [(set (match_dup 0) (xor:SI (match_dup 1) (match_dup 2))) (set (match_dup 0) (gtu:SI (match_dup 0) (const_int 0)))] "")
(define_insn "sne_di" [(set (match_operand:DI 0 "register_operand" "=d,d") (ne:DI (match_operand:DI 1 "se_register_operand" "%d,d") (match_operand:DI 2 "se_uns_arith_operand" "d,K")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "@ xor\t%0,%1,%2;sltu\t%0,%.,%0 xori\t%0,%1,%x2;sltu\t%0,%.,%0" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ne:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_uns_arith_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE && (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) != 0)" [(set (match_dup 0) (xor:DI (match_dup 1) (match_dup 2))) (set (match_dup 0) (gtu:DI (match_dup 0) (const_int 0)))] "")
(define_expand "sgt" [(set (match_operand:SI 0 "register_operand" "=d") (gt:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (GT, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "sgt_si" [(set (match_operand:SI 0 "register_operand" "=d") (gt:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "reg_or_0_operand" "dJ")))] "" "slt\t%0,%z2,%1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sgt_di" [(set (match_operand:DI 0 "register_operand" "=d") (gt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_reg_or_0_operand" "dJ")))] "TARGET_64BIT" "slt\t%0,%z2,%1" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_expand "sge" [(set (match_operand:SI 0 "register_operand" "=d") (ge:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (GE, operands[0], operands[1], operands[2], (int *)0); DONE; }
/* fall through and generate default code */ }")
(define_insn "sge_si" [(set (match_operand:SI 0 "register_operand" "=d") (ge:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "TARGET_DEBUG_C_MODE" "slt\t%0,%1,%2;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (ge:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "arith_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (lt:SI (match_dup 1) (match_dup 2))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")
(define_insn "sge_di" [(set (match_operand:DI 0 "register_operand" "=d") (ge:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "slt\t%0,%1,%2;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (ge:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_arith_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (lt:DI (match_dup 1) (match_dup 2))) (set (match_dup 0) (xor:DI (match_dup 0) (const_int 1)))] "")
(define_expand "slt" [(set (match_operand:SI 0 "register_operand" "=d") (lt:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (LT, operands[0], operands[1], operands[2], (int *)0); DONE; }
/* fall through and generate default code */ }")
(define_insn "slt_si" [(set (match_operand:SI 0 "register_operand" "=d") (lt:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "" "slt\t%0,%1,%2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "slt_di" [(set (match_operand:DI 0 "register_operand" "=d") (lt:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT" "slt\t%0,%1,%2" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_expand "sle" [(set (match_operand:SI 0 "register_operand" "=d") (le:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (LE, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >= 32767) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "sle_si_const" [(set (match_operand:SI 0 "register_operand" "=d") (le:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "I")))] "INTVAL (operands[2]) < 32767" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2])+1); return "slt\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sle_di_const" [(set (match_operand:DI 0 "register_operand" "=d") (le:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "small_int" "I")))] "TARGET_64BIT && INTVAL (operands[2]) < 32767" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2])+1); return "slt\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "sle_si_reg" [(set (match_operand:SI 0 "register_operand" "=d") (le:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d")))] "TARGET_DEBUG_C_MODE" "slt\t%0,%z2,%1;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (le:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (lt:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")
(define_insn "sle_di_reg" [(set (match_operand:DI 0 "register_operand" "=d") (le:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "slt\t%0,%z2,%1;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (le:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_register_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (lt:DI (match_dup 2) (match_dup 1))) (set (match_dup 0) (xor:DI (match_dup 0) (const_int 1)))] "")
(define_expand "sgtu" [(set (match_operand:SI 0 "register_operand" "=d") (gtu:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (GTU, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "sgtu_si" [(set (match_operand:SI 0 "register_operand" "=d") (gtu:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "reg_or_0_operand" "dJ")))] "" "sltu\t%0,%z2,%1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sgtu_di" [(set (match_operand:DI 0 "register_operand" "=d") (gtu:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_reg_or_0_operand" "dJ")))] "TARGET_64BIT" "sltu\t%0,%z2,%1" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_expand "sgeu" [(set (match_operand:SI 0 "register_operand" "=d") (geu:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (GEU, operands[0], operands[1], operands[2], (int *)0); DONE; }
/* fall through and generate default code */ }")
(define_insn "sgeu_si" [(set (match_operand:SI 0 "register_operand" "=d") (geu:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "TARGET_DEBUG_C_MODE" "sltu\t%0,%1,%2;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (geu:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "arith_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (ltu:SI (match_dup 1) (match_dup 2))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")
(define_insn "sgeu_di" [(set (match_operand:DI 0 "register_operand" "=d") (geu:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "sltu\t%0,%1,%2;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (geu:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_arith_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (ltu:DI (match_dup 1) (match_dup 2))) (set (match_dup 0) (xor:DI (match_dup 0) (const_int 1)))] "")
(define_expand "sltu" [(set (match_operand:SI 0 "register_operand" "=d") (ltu:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (LTU, operands[0], operands[1], operands[2], (int *)0); DONE; }
/* fall through and generate default code */ }")
(define_insn "sltu_si" [(set (match_operand:SI 0 "register_operand" "=d") (ltu:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "arith_operand" "dI")))] "" "sltu\t%0,%1,%2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sltu_di" [(set (match_operand:DI 0 "register_operand" "=d") (ltu:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_arith_operand" "dI")))] "TARGET_64BIT" "sltu\t%0,%1,%2" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_expand "sleu" [(set (match_operand:SI 0 "register_operand" "=d") (leu:SI (match_dup 1) (match_dup 2)))] "" " { if (branch_type != CMP_SI && (!TARGET_64BIT || branch_type != CMP_DI)) FAIL;
/* set up operands from compare. */ operands[1] = branch_cmp[0]; operands[2] = branch_cmp[1];
if (TARGET_64BIT || !TARGET_DEBUG_C_MODE) { gen_int_relational (LEU, operands[0], operands[1], operands[2], (int *)0); DONE; }
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >= 32767) operands[2] = force_reg (SImode, operands[2]);
/* fall through and generate default code */ }")
(define_insn "sleu_si_const" [(set (match_operand:SI 0 "register_operand" "=d") (leu:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "small_int" "I")))] "INTVAL (operands[2]) < 32767" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2])+1); return "sltu\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "1")])
(define_insn "sleu_di_const" [(set (match_operand:DI 0 "register_operand" "=d") (leu:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "small_int" "I")))] "TARGET_64BIT && INTVAL (operands[2]) < 32767" "* { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2])+1); return "sltu\t%0,%1,%2"; }" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "1")])
(define_insn "sleu_si_reg" [(set (match_operand:SI 0 "register_operand" "=d") (leu:SI (match_operand:SI 1 "register_operand" "d") (match_operand:SI 2 "register_operand" "d")))] "TARGET_DEBUG_C_MODE" "sltu\t%0,%z2,%1;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "2")])
(define_split [(set (match_operand:SI 0 "register_operand" "") (leu:SI (match_operand:SI 1 "register_operand" "") (match_operand:SI 2 "register_operand" "")))] "TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (ltu:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] "")
(define_insn "sleu_di_reg" [(set (match_operand:DI 0 "register_operand" "=d") (leu:DI (match_operand:DI 1 "se_register_operand" "d") (match_operand:DI 2 "se_register_operand" "d")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE" "sltu\t%0,%z2,%1;xori\t%0,%0,0x0001" [(set_attr "type" "arith") (set_attr "mode" "DI") (set_attr "length" "2")])
(define_split [(set (match_operand:DI 0 "register_operand" "") (leu:DI (match_operand:DI 1 "se_register_operand" "") (match_operand:DI 2 "se_register_operand" "")))] "TARGET_64BIT && TARGET_DEBUG_C_MODE && !TARGET_DEBUG_D_MODE" [(set (match_dup 0) (ltu:DI (match_dup 2) (match_dup 1))) (set (match_dup 0) (xor:DI (match_dup 0) (const_int 1)))] "")
;; ;; .................... ;; ;; FLOATING POINT COMPARISONS ;; ;; ....................
(define_insn "seq_df" [(set (match_operand:CC 0 "register_operand" "=z") (eq:CC (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { return mips_fill_delay_slot ("c.eq.d\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "slt_df" [(set (match_operand:CC 0 "register_operand" "=z") (lt:CC (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { return mips_fill_delay_slot ("c.lt.d\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sle_df" [(set (match_operand:CC 0 "register_operand" "=z") (le:CC (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { return mips_fill_delay_slot ("c.le.d\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sgt_df" [(set (match_operand:CC 0 "register_operand" "=z") (gt:CC (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { return mips_fill_delay_slot ("c.lt.d\t%Z0%2,%1", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sge_df" [(set (match_operand:CC 0 "register_operand" "=z") (ge:CC (match_operand:DF 1 "register_operand" "f") (match_operand:DF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "* { return mips_fill_delay_slot ("c.le.d\t%Z0%2,%1", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "seq_sf" [(set (match_operand:CC 0 "register_operand" "=z") (eq:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "* { return mips_fill_delay_slot ("c.eq.s\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "slt_sf" [(set (match_operand:CC 0 "register_operand" "=z") (lt:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "* { return mips_fill_delay_slot ("c.lt.s\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sle_sf" [(set (match_operand:CC 0 "register_operand" "=z") (le:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "* { return mips_fill_delay_slot ("c.le.s\t%Z0%1,%2", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sgt_sf" [(set (match_operand:CC 0 "register_operand" "=z") (gt:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "* { return mips_fill_delay_slot ("c.lt.s\t%Z0%2,%1", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
(define_insn "sge_sf" [(set (match_operand:CC 0 "register_operand" "=z") (ge:CC (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "* { return mips_fill_delay_slot ("c.le.s\t%Z0%2,%1", DELAY_FCMP, operands, insn); }" [(set_attr "type" "fcmp") (set_attr "mode" "FPSW") (set_attr "length" "1")])
;; ;; .................... ;; ;; UNCONDITIONAL BRANCHES ;; ;; ....................
;; Unconditional branches.
(define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "* { if (GET_CODE (operands[0]) == REG) return "%j\t%0"; / ??? I don't know why this is necessary. This works around an assembler problem that appears when a label is defined, then referenced in a switch table, then used in a `j' instruction. */ else if (mips_abi != ABI_32) return "%*b\t%l0"; else return "%*j\t%l0"; }" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
(define_expand "indirect_jump" [(set (pc) (match_operand 0 "register_operand" "d"))] "" " { rtx dest;
if (operands[0]) /* eliminate unused code warnings */ { dest = operands[0]; if (GET_CODE (dest) != REG || GET_MODE (dest) != Pmode) operands[0] = copy_to_mode_reg (Pmode, dest);
if (!TARGET_LONG64)
emit_jump_insn (gen_indirect_jump_internal1 (operands[0]));
else
emit_jump_insn (gen_indirect_jump_internal2 (operands[0]));
DONE;
}
}")
(define_insn "indirect_jump_internal1" [(set (pc) (match_operand:SI 0 "register_operand" "d"))] "!TARGET_LONG64" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "indirect_jump_internal2" [(set (pc) (match_operand:DI 0 "se_register_operand" "d"))] "TARGET_LONG64" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
(define_expand "tablejump" [(set (pc) (match_operand 0 "register_operand" "d")) (use (label_ref (match_operand 1 "" "")))] "" " { rtx dest;
if (operands[0]) /* eliminate unused code warnings */ { if (GET_MODE (operands[0]) != Pmode) abort ();
if (! flag_pic)
{
if (!TARGET_LONG64)
emit_jump_insn (gen_tablejump_internal1 (operands[0], operands[1]));
else
emit_jump_insn (gen_tablejump_internal2 (operands[0], operands[1]));
}
else
{
if (!TARGET_LONG64)
emit_jump_insn (gen_tablejump_internal3 (operands[0], operands[1]));
else
emit_jump_insn (gen_tablejump_internal4 (operands[0], operands[1]));
}
DONE;
}
}")
(define_insn "tablejump_internal1" [(set (pc) (match_operand:SI 0 "register_operand" "d")) (use (label_ref (match_operand 1 "" "")))] "!TARGET_LONG64" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "tablejump_internal2" [(set (pc) (match_operand:DI 0 "se_register_operand" "d")) (use (label_ref (match_operand 1 "" "")))] "TARGET_LONG64" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
(define_expand "tablejump_internal3" [(set (pc) (plus:SI (match_operand:SI 0 "register_operand" "d") (label_ref:SI (match_operand:SI 1 "" ""))))] "" "")
;;; Make sure that this only matches the insn before ADDR_DIFF_VEC. Otherwise ;;; it is not valid.
;;; ??? The length depends on the ABI. It is two for o32, and one for n32. ;;; We just use the conservative number here.
(define_insn "" [(set (pc) (plus:SI (match_operand:SI 0 "register_operand" "d") (label_ref:SI (match_operand:SI 1 "" ""))))] "!TARGET_LONG64 && next_active_insn (insn) != 0 && GET_CODE (PATTERN (next_active_insn (insn))) == ADDR_DIFF_VEC && PREV_INSN (next_active_insn (insn)) == operands[1]" "* { /* .cpadd expands to add REG,REG,$gp when pic, and nothing when not pic. */ if (mips_abi == ABI_32) output_asm_insn (".cpadd\t%0", operands); return "%*j\t%0"; }" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "2")])
(define_expand "tablejump_internal4" [(set (pc) (plus:DI (match_operand:DI 0 "se_register_operand" "d") (label_ref:DI (match_operand:SI 1 "" ""))))] "" "")
;;; Make sure that this only matches the insn before ADDR_DIFF_VEC. Otherwise ;;; it is not valid.
(define_insn "" [(set (pc) (plus:DI (match_operand:DI 0 "se_register_operand" "d") (label_ref:DI (match_operand:SI 1 "" ""))))] "TARGET_LONG64 && next_active_insn (insn) != 0 && GET_CODE (PATTERN (next_active_insn (insn))) == ADDR_DIFF_VEC && PREV_INSN (next_active_insn (insn)) == operands[1]" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
;; Function return, only allow after optimization, so that we can ;; eliminate jumps to jumps if no stack space is used.
;; (define_expand "return" ;; [(set (pc) (reg:SI 31))] ;; "simple_epilogue_p ()" ;; "")
(define_expand "return" [(parallel [(return) (use (reg:SI 31))])] "simple_epilogue_p ()" "")
(define_insn "return_internal" [(parallel [(return) (use (match_operand:SI 0 "register_operand" "d"))])] "" "%*j\t%0" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "1")])
;; Implement a switch statement when generating embedded PIC code. ;; Switches are implemented by `tablejump' when not using -membedded-pic.
(define_expand "casesi" [(set (match_dup 5) (minus:SI (match_operand:SI 0 "register_operand" "d") (match_operand:SI 1 "arith_operand" "dI"))) (set (cc0) (compare:CC (match_dup 5) (match_operand:SI 2 "arith_operand" ""))) (set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 4 "" "")) (pc))) (parallel [(set (pc) (mem:SI (plus:SI (mult:SI (match_dup 5) (const_int 4)) (label_ref (match_operand 3 "" ""))))) (clobber (match_scratch:SI 6 "")) (clobber (reg:SI 31))])] "TARGET_EMBEDDED_PIC" " { /* We need slightly different code for eight byte table entries. */ if (TARGET_LONG64) abort ();
if (operands[0]) { rtx reg = gen_reg_rtx (SImode);
/* If the index is too large, go to the default label. */
emit_insn (gen_subsi3 (reg, operands[0], operands[1]));
emit_insn (gen_cmpsi (reg, operands[2]));
emit_insn (gen_bgtu (operands[4]));
/* Do the PIC jump. */
emit_insn (gen_casesi_internal (reg, operands[3], gen_reg_rtx (SImode)));
DONE;
}
}")
;; An embedded PIC switch statement looks like this: ;; bal $LS1 ;; sll $reg,$index,2 ;; $LS1: ;; addu $reg,$reg,$31 ;; lw $reg,$L1-$LS1($reg) ;; addu $reg,$reg,$31 ;; j $reg ;; $L1: ;; .word case1-$LS1 ;; .word case2-$LS1 ;; ...
(define_insn "casesi_internal" [(set (pc) (mem:SI (plus:SI (mult:SI (match_operand:SI 0 "register_operand" "d") (const_int 4)) (label_ref (match_operand 1 "" ""))))) (clobber (match_operand:SI 2 "register_operand" "d")) (clobber (reg:SI 31))] "TARGET_EMBEDDED_PIC" "* { output_asm_insn ("%(bal\t%S1;sll\t%0,2\n%S1:", operands); output_asm_insn ("addu\t%0,%0,$31%)", operands); output_asm_insn ("lw\t%0,%1-%S1(%0);addu\t%0,%0,$31", operands); return "j\t%0"; }" [(set_attr "type" "jump") (set_attr "mode" "none") (set_attr "length" "6")])
;; ;; .................... ;; ;; Function prologue/epilogue ;; ;; .................... ;;
(define_expand "prologue" [(const_int 1)] "" " { if (mips_isa >= 0) /* avoid unused code warnings */ { mips_expand_prologue (); DONE; } }")
;; Block any insns from being moved before this point, since the ;; profiling call to mcount can use various registers that aren't ;; saved or used to pass arguments.
(define_insn "blockage" [(unspec_volatile [(const_int 0)] 0)] "" "" [(set_attr "type" "unknown") (set_attr "mode" "none") (set_attr "length" "0")])
;; At present, don't expand the epilogue, reorg.c will clobber the ;; return register in compiling gen_lowpart (emit-rtl.c). ;; ;; (define_expand "epilogue" ;; [(const_int 2)] ;; "" ;; " ;; { ;; if (mips_isa >= 0) /* avoid unused code warnings */ ;; { ;; mips_expand_epilogue (); ;; DONE; ;; } ;; }")
;; When generating embedded PIC code we need to get the address of the ;; current function. This specialized instruction does just that.
(define_insn "get_fnaddr" [(set (match_operand 0 "register_operand" "=d") (unspec [(match_operand 1 "" "")] 1)) (clobber (reg:SI 31))] "TARGET_EMBEDDED_PIC && GET_CODE (operands[1]) == SYMBOL_REF" "%($LF%= = . + 8;bal\t$LF%=;la\t%0,%1-$LF%=%);addu\t%0,%0,$31" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "4")])
;; ;; .................... ;; ;; FUNCTION CALLS ;; ;; ....................
;; calls.c now passes a third argument, make saber happy
(define_expand "call" [(parallel [(call (match_operand 0 "memory_operand" "m") (match_operand 1 "" "i")) (clobber (reg:SI 31)) (use (match_operand 2 "" "")) ;; next_arg_reg (use (match_operand 3 "" ""))])] ;; struct_value_size_rtx "" " { rtx addr;
if (operands[0]) /* eliminate unused code warnings */ { addr = XEXP (operands[0], 0); if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr) || TARGET_LONG_CALLS)) || ! call_insn_operand (addr, VOIDmode)) XEXP (operands[0], 0) = copy_to_mode_reg (Pmode, addr);
/* In order to pass small structures by value in registers
compatibly with the MIPS compiler, we need to shift the value
into the high part of the register. Function_arg has encoded
a PARALLEL rtx, holding a vector of adjustments to be made
as the next_arg_reg variable, so we split up the insns,
and emit them separately. */
if (operands[2] != (rtx)0 && GET_CODE (operands[2]) == PARALLEL)
{
rtvec adjust = XVEC (operands[2], 0);
int num = GET_NUM_ELEM (adjust);
int i;
for (i = 0; i < num; i++)
emit_insn (RTVEC_ELT (adjust, i));
}
emit_call_insn (gen_call_internal0 (operands[0], operands[1],
gen_rtx (REG, SImode, GP_REG_FIRST + 31)));
DONE;
}
}")
(define_expand "call_internal0" [(parallel [(call (match_operand 0 "" "") (match_operand 1 "" "")) (clobber (match_operand:SI 2 "" ""))])] "" "")
(define_insn "call_internal1" [(call (mem (match_operand 0 "call_insn_operand" "ri")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "!TARGET_ABICALLS && !TARGET_LONG_CALLS" "* { register rtx target = operands[0];
if (GET_CODE (target) == SYMBOL_REF) return "%*jal\t%0"; else if (GET_CODE (target) == CONST_INT) return "%[li\t%@,%0\n\t%*jal\t%2,%@%]"; else return "%*jal\t%2,%0"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_internal2" [(call (mem (match_operand 0 "call_insn_operand" "ri")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "TARGET_ABICALLS && !TARGET_LONG_CALLS" "* { register rtx target = operands[0];
if (GET_CODE (target) == SYMBOL_REF) { if (GET_MODE (target) == SImode) return "la\t%^,%0\n\tjal\t%2,%^"; else return "dla\t%^,%0\n\tjal\t%2,%^"; } else if (GET_CODE (target) == CONST_INT) return "li\t%^,%0\n\tjal\t%2,%^"; else if (REGNO (target) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%0\n\tjal\t%2,%^"; else return "jal\t%2,%0"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
(define_insn "call_internal3a" [(call (mem:SI (match_operand:SI 0 "register_operand" "r")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "!TARGET_LONG64 && !TARGET_ABICALLS && TARGET_LONG_CALLS" "%*jal\t%2,%0" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_internal3b" [(call (mem:DI (match_operand:DI 0 "se_register_operand" "r")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "TARGET_LONG64 && !TARGET_ABICALLS && TARGET_LONG_CALLS" "%*jal\t%2,%0" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_internal4a" [(call (mem:SI (match_operand:SI 0 "register_operand" "r")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "!TARGET_LONG64 && TARGET_ABICALLS && TARGET_LONG_CALLS" "* { if (REGNO (operands[0]) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%0\n\tjal\t%2,%^"; else return "jal\t%2,%0"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
(define_insn "call_internal4b" [(call (mem:DI (match_operand:DI 0 "se_register_operand" "r")) (match_operand 1 "" "i")) (clobber (match_operand:SI 2 "register_operand" "=d"))] "TARGET_LONG64 && TARGET_ABICALLS && TARGET_LONG_CALLS" "* { if (REGNO (operands[0]) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%0\n\tjal\t%2,%^"; else return "jal\t%2,%0"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
;; calls.c now passes a fourth argument, make saber happy
(define_expand "call_value" [(parallel [(set (match_operand 0 "register_operand" "=df") (call (match_operand 1 "memory_operand" "m") (match_operand 2 "" "i"))) (clobber (reg:SI 31)) (use (match_operand 3 "" ""))])] ;; next_arg_reg "" " { rtx addr;
if (operands[0]) /* eliminate unused code warning */ { addr = XEXP (operands[1], 0); if ((GET_CODE (addr) != REG && (!CONSTANT_ADDRESS_P (addr) || TARGET_LONG_CALLS)) || ! call_insn_operand (addr, VOIDmode)) XEXP (operands[1], 0) = copy_to_mode_reg (Pmode, addr);
/* In order to pass small structures by value in registers
compatibly with the MIPS compiler, we need to shift the value
into the high part of the register. Function_arg has encoded
a PARALLEL rtx, holding a vector of adjustments to be made
as the next_arg_reg variable, so we split up the insns,
and emit them separately. */
if (operands[3] != (rtx)0 && GET_CODE (operands[3]) == PARALLEL)
{
rtvec adjust = XVEC (operands[3], 0);
int num = GET_NUM_ELEM (adjust);
int i;
for (i = 0; i < num; i++)
emit_insn (RTVEC_ELT (adjust, i));
}
/* Handle Irix6 function calls that have multiple non-contiguous
results. */
if (GET_CODE (operands[0]) == PARALLEL && XVECLEN (operands[0], 0) > 1)
{
emit_call_insn (gen_call_value_multiple_internal0
(XEXP (XVECEXP (operands[0], 0, 0), 0),
operands[1], operands[2],
XEXP (XVECEXP (operands[0], 0, 1), 0),
gen_rtx (REG, SImode, GP_REG_FIRST + 31)));
DONE;
}
/* We have a call returning a DImode structure in an FP reg.
Strip off the now unnecessary PARALLEL. */
if (GET_CODE (operands[0]) == PARALLEL)
operands[0] = XEXP (XVECEXP (operands[0], 0, 0), 0);
emit_call_insn (gen_call_value_internal0 (operands[0], operands[1], operands[2],
gen_rtx (REG, SImode, GP_REG_FIRST + 31)));
DONE;
}
}")
(define_expand "call_value_internal0" [(parallel [(set (match_operand 0 "" "") (call (match_operand 1 "" "") (match_operand 2 "" ""))) (clobber (match_operand:SI 3 "" ""))])] "" "")
(define_insn "call_value_internal1" [(set (match_operand 0 "register_operand" "=df") (call (mem (match_operand 1 "call_insn_operand" "ri")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_ABICALLS && !TARGET_LONG_CALLS" "* { register rtx target = operands[1];
if (GET_CODE (target) == SYMBOL_REF) return "%*jal\t%1"; else if (GET_CODE (target) == CONST_INT) return "%[li\t%@,%1\n\t%*jal\t%3,%@%]"; else return "%*jal\t%3,%1"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_value_internal2" [(set (match_operand 0 "register_operand" "=df") (call (mem (match_operand 1 "call_insn_operand" "ri")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "TARGET_ABICALLS && !TARGET_LONG_CALLS" "* { register rtx target = operands[1];
if (GET_CODE (target) == SYMBOL_REF) { if (GET_MODE (target) == SImode) return "la\t%^,%1\n\tjal\t%3,%^"; else return "dla\t%^,%1\n\tjal\t%3,%^"; } else if (GET_CODE (target) == CONST_INT) return "li\t%^,%1\n\tjal\t%3,%^"; else if (REGNO (target) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%1\n\tjal\t%3,%^"; else return "jal\t%3,%1"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
(define_insn "call_value_internal3a" [(set (match_operand 0 "register_operand" "=df") (call (mem:SI (match_operand:SI 1 "register_operand" "r")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_LONG64 && !TARGET_ABICALLS && TARGET_LONG_CALLS" "%*jal\t%3,%1" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_value_internal3b" [(set (match_operand 0 "register_operand" "=df") (call (mem:DI (match_operand:DI 1 "se_register_operand" "r")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "TARGET_LONG64 && !TARGET_ABICALLS && TARGET_LONG_CALLS" "%*jal\t%3,%1" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "1")])
(define_insn "call_value_internal4a" [(set (match_operand 0 "register_operand" "=df") (call (mem:SI (match_operand:SI 1 "register_operand" "r")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "!TARGET_LONG64 && TARGET_ABICALLS && TARGET_LONG_CALLS" "* { if (REGNO (operands[1]) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%1\n\tjal\t%3,%^"; else return "jal\t%3,%1"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
(define_insn "call_value_internal4b" [(set (match_operand 0 "register_operand" "=df") (call (mem:DI (match_operand:DI 1 "se_register_operand" "r")) (match_operand 2 "" "i"))) (clobber (match_operand:SI 3 "register_operand" "=d"))] "TARGET_LONG64 && TARGET_ABICALLS && TARGET_LONG_CALLS" "* { if (REGNO (operands[1]) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%1\n\tjal\t%3,%^"; else return "jal\t%3,%1"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
(define_expand "call_value_multiple_internal0" [(parallel [(set (match_operand 0 "" "") (call (match_operand 1 "" "") (match_operand 2 "" ""))) (set (match_operand 3 "" "") (call (match_dup 1) (match_dup 2))) (clobber (match_operand:SI 4 "" ""))])] "" "")
;; ??? May eventually need all 6 versions of the call patterns with multiple ;; return values.
(define_insn "call_value_multiple_internal2" [(set (match_operand 0 "register_operand" "=df") (call (mem (match_operand 1 "call_insn_operand" "ri")) (match_operand 2 "" "i"))) (set (match_operand 3 "register_operand" "=df") (call (mem (match_dup 1)) (match_dup 2))) (clobber (match_operand:SI 4 "register_operand" "=d"))] "TARGET_ABICALLS && !TARGET_LONG_CALLS" "* { register rtx target = operands[1];
if (GET_CODE (target) == SYMBOL_REF) { if (GET_MODE (target) == SImode) return "la\t%^,%1\n\tjal\t%4,%^"; else return "la\t%^,%1\n\tjal\t%4,%^"; } else if (GET_CODE (target) == CONST_INT) return "li\t%^,%1\n\tjal\t%4,%^"; else if (REGNO (target) != PIC_FUNCTION_ADDR_REGNUM) return "move\t%^,%1\n\tjal\t%4,%^"; else return "jal\t%4,%1"; }" [(set_attr "type" "call") (set_attr "mode" "none") (set_attr "length" "2")])
;; Call subroutine returning any type.
(define_expand "untyped_call" [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand 1 "" "") (match_operand 2 "" "")])] "" " { if (operands[0]) /* silence statement not reached warnings */ { int i;
emit_call_insn (gen_call (operands[0], const0_rtx, NULL, const0_rtx));
for (i = 0; i < XVECLEN (operands[2], 0); i++)
{
rtx set = XVECEXP (operands[2], 0, i);
emit_move_insn (SET_DEST (set), SET_SRC (set));
}
emit_insn (gen_blockage ());
DONE;
}
}") ;; ;; .................... ;; ;; MISC. ;; ;; .................... ;;
(define_insn "nop" [(const_int 0)] "" "%(nop%)" [(set_attr "type" "nop") (set_attr "mode" "none") (set_attr "length" "1")])
;; The MIPS chip does not seem to require stack probes. ;; ;; (define_expand "probe" ;; [(set (match_dup 0) ;; (match_dup 1))] ;; "" ;; " ;; { ;; operands[0] = gen_reg_rtx (SImode); ;; operands[1] = gen_rtx (MEM, SImode, stack_pointer_rtx); ;; MEM_VOLATILE_P (operands[1]) = TRUE; ;; ;; /* fall through and generate default code */ ;; }") ;; ;; ;; MIPS4 Conditional move instructions.
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d,d") (if_then_else:SI (match_operator 4 "equality_op" [(match_operand:SI 1 "register_operand" "d,d") (const_int 0)]) (match_operand:SI 2 "reg_or_0_operand" "dJ,0") (match_operand:SI 3 "reg_or_0_operand" "0,dJ")))] "mips_isa >= 4" "@ mov%B4\t%0,%z2,%1 mov%b4\t%0,%z3,%1" [(set_attr "type" "move") (set_attr "mode" "SI")])
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d,d") (if_then_else:SI (match_operator 4 "equality_op" [(match_operand:DI 1 "se_register_operand" "d,d") (const_int 0)]) (match_operand:SI 2 "reg_or_0_operand" "dJ,0") (match_operand:SI 3 "reg_or_0_operand" "0,dJ")))] "mips_isa >= 4" "@ mov%B4\t%0,%z2,%1 mov%b4\t%0,%z3,%1" [(set_attr "type" "move") (set_attr "mode" "SI")])
(define_insn "" [(set (match_operand:SI 0 "register_operand" "=d,d") (if_then_else:SI (match_operator 3 "equality_op" [(match_operand:CC 4 "register_operand" "z,z") (const_int 0)]) (match_operand:SI 1 "reg_or_0_operand" "dJ,0") (match_operand:SI 2 "reg_or_0_operand" "0,dJ")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "@ mov%T3\t%0,%z1,%4 mov%t3\t%0,%z2,%4" [(set_attr "type" "move") (set_attr "mode" "SI")])
(define_insn "" [(set (match_operand:DI 0 "register_operand" "=d,d") (if_then_else:DI (match_operator 4 "equality_op" [(match_operand:SI 1 "register_operand" "d,d") (const_int 0)]) (match_operand:DI 2 "se_reg_or_0_operand" "dJ,0") (match_operand:DI 3 "se_reg_or_0_operand" "0,dJ")))] "mips_isa >= 4" "@ mov%B4\t%0,%z2,%1 mov%b4\t%0,%z3,%1" [(set_attr "type" "move") (set_attr "mode" "DI")])
(define_insn "" [(set (match_operand:DI 0 "register_operand" "=d,d") (if_then_else:DI (match_operator 4 "equality_op" [(match_operand:DI 1 "se_register_operand" "d,d") (const_int 0)]) (match_operand:DI 2 "se_reg_or_0_operand" "dJ,0") (match_operand:DI 3 "se_reg_or_0_operand" "0,dJ")))] "mips_isa >= 4" "@ mov%B4\t%0,%z2,%1 mov%b4\t%0,%z3,%1" [(set_attr "type" "move") (set_attr "mode" "DI")])
(define_insn "" [(set (match_operand:DI 0 "register_operand" "=d,d") (if_then_else:DI (match_operator 3 "equality_op" [(match_operand:CC 4 "register_operand" "z,z") (const_int 0)]) (match_operand:DI 1 "se_reg_or_0_operand" "dJ,0") (match_operand:DI 2 "se_reg_or_0_operand" "0,dJ")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "@ mov%T3\t%0,%z1,%4 mov%t3\t%0,%z2,%4" [(set_attr "type" "move") (set_attr "mode" "DI")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f,f") (if_then_else:SF (match_operator 4 "equality_op" [(match_operand:SI 1 "register_operand" "d,d") (const_int 0)]) (match_operand:SF 2 "register_operand" "f,0") (match_operand:SF 3 "register_operand" "0,f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "@ mov%B4.s\t%0,%2,%1 mov%b4.s\t%0,%3,%1" [(set_attr "type" "move") (set_attr "mode" "SF")])
(define_insn "" [(set (match_operand:SF 0 "register_operand" "=f,f") (if_then_else:SF (match_operator 3 "equality_op" [(match_operand:CC 4 "register_operand" "z,z") (const_int 0)]) (match_operand:SF 1 "register_operand" "f,0") (match_operand:SF 2 "register_operand" "0,f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" "@ mov%T3.s\t%0,%1,%4 mov%t3.s\t%0,%2,%4" [(set_attr "type" "move") (set_attr "mode" "SF")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f,f") (if_then_else:DF (match_operator 4 "equality_op" [(match_operand:SI 1 "register_operand" "d,d") (const_int 0)]) (match_operand:DF 2 "register_operand" "f,0") (match_operand:DF 3 "register_operand" "0,f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "@ mov%B4.d\t%0,%2,%1 mov%b4.d\t%0,%3,%1" [(set_attr "type" "move") (set_attr "mode" "DF")])
(define_insn "" [(set (match_operand:DF 0 "register_operand" "=f,f") (if_then_else:DF (match_operator 3 "equality_op" [(match_operand:CC 4 "register_operand" "z,z") (const_int 0)]) (match_operand:DF 1 "register_operand" "f,0") (match_operand:DF 2 "register_operand" "0,f")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" "@ mov%T3.d\t%0,%1,%4 mov%t3.d\t%0,%2,%4" [(set_attr "type" "move") (set_attr "mode" "DF")])
;; These are the main define_expand's used to make conditional moves.
(define_expand "movsicc" [(set (match_dup 4) (match_operand 1 "comparison_operator" "")) (set (match_operand:SI 0 "register_operand" "") (if_then_else:SI (match_dup 5) (match_operand:SI 2 "reg_or_0_operand" "") (match_operand:SI 3 "reg_or_0_operand" "")))] "mips_isa >= 4" " { gen_conditional_move (operands); DONE; }")
(define_expand "movdicc" [(set (match_dup 4) (match_operand 1 "comparison_operator" "")) (set (match_operand:DI 0 "register_operand" "") (if_then_else:DI (match_dup 5) (match_operand:DI 2 "se_reg_or_0_operand" "") (match_operand:DI 3 "se_reg_or_0_operand" "")))] "mips_isa >= 4" " { gen_conditional_move (operands); DONE; }")
(define_expand "movsfcc" [(set (match_dup 4) (match_operand 1 "comparison_operator" "")) (set (match_operand:SF 0 "register_operand" "") (if_then_else:SF (match_dup 5) (match_operand:SF 2 "register_operand" "") (match_operand:SF 3 "register_operand" "")))] "mips_isa >= 4 && TARGET_HARD_FLOAT" " { gen_conditional_move (operands); DONE; }")
(define_expand "movdfcc" [(set (match_dup 4) (match_operand 1 "comparison_operator" "")) (set (match_operand:DF 0 "register_operand" "") (if_then_else:DF (match_dup 5) (match_operand:DF 2 "register_operand" "") (match_operand:DF 3 "register_operand" "")))] "mips_isa >= 4 && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT" " { gen_conditional_move (operands); DONE; }")