8sa1-gcc/gcc/config/rs6000/rs6000.md
Michael Meissner d944f453bb fix typo in nor.
From-SVN: r11303
1996-02-19 13:31:24 +00:00

278 KiB
Raw Blame History

;; Machine description for IBM RISC System 6000 (POWER) for GNU C compiler ;; Copyright (C) 1990, 91, 92, 93, 94, 95, 1996 Free Software Foundation, Inc. ;; Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

;; This file is part of GNU CC.

;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version.

;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA.

;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. ;; Define an insn type attribute. This is used in function unit delay ;; computations. (define_attr "type" "integer,load,fpload,imul,idiv,branch,compare,delayed_compare,fpcompare,mtjmpr,fp,dmul,sdiv,ddiv,ssqrt,dsqrt,jmpreg" (const_string "integer"))

;; Length (in bytes). (define_attr "length" "" (if_then_else (eq_attr "type" "branch") (if_then_else (and (ge (minus (pc) (match_dup 0)) (const_int -32768)) (lt (minus (pc) (match_dup 0)) (const_int 32767))) (const_int 8) (const_int 12)) (const_int 4)))

;; Processor type -- this attribute must exactly match the processor_type ;; enumeration in rs6000.h.

(define_attr "cpu" "rios1,rios2,mpccore,ppc403,ppc601,ppc602,ppc603,ppc604,ppc620" (const (symbol_ref "rs6000_cpu_attr")))

; (define_function_unit NAME MULTIPLICITY SIMULTANEITY ; TEST READY-DELAY ISSUE-DELAY [CONFLICT-LIST])

; Load/Store Unit -- POWER/2 and pure PowerPC only ; (POWER and 601 use Integer Unit) (define_function_unit "lsu" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "mpccore,ppc602,ppc603,ppc604,ppc620")) 2 1)

(define_function_unit "lsu" 1 0 (and (eq_attr "type" "fpload") (eq_attr "cpu" "ppc604,ppc620")) 3 1)

(define_function_unit "lsu" 1 0 (and (eq_attr "type" "fpload") (eq_attr "cpu" "mpccore,ppc602,ppc603")) 2 1)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "load") (eq_attr "cpu" "rios1,ppc601,ppc403")) 2 1)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "fpload") (eq_attr "cpu" "rios1,ppc601")) 2 0)

; Integer Unit (RIOS1, PPC601, PPC603) ; Trivial operations take one cycle which need not be listed here. (define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "rios1")) 3 3)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc403")) 4 4)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc601,ppc602,ppc603")) 5 5)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "rios1")) 19 19)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc601")) 36 36)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc403")) 33 33)

(define_function_unit "iu" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc602,ppc603")) 37 36)

; RIOS2 has two integer units: a primary one which can perform all ; operations and a secondary one which is fed in lock step with the first ; and can perform "simple" integer operations.
; To catch this we define a 'dummy' imuldiv-unit that is also needed ; for the complex insns. (define_function_unit "iu2" 2 0 (and (eq_attr "type" "integer") (eq_attr "cpu" "rios2")) 1 0)

(define_function_unit "iu2" 2 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "rios2")) 2 2)

(define_function_unit "iu2" 2 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "rios2")) 13 13)

(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "rios2")) 2 2)

(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "rios2")) 13 13)

; MPCCORE has separate IMUL/IDIV unit for multicycle instructions ; Divide latency varies greatly from 2-11, use 6 as average (define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "mpccore")) 2 1)

(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "mpccore")) 6 6)

; PPC604 has two units that perform integer operations ; and one unit for divide/multiply operations (and move ; from/to spr). (define_function_unit "iu2" 2 0 (and (eq_attr "type" "integer") (eq_attr "cpu" "ppc604,ppc620")) 1 1 [(eq_attr "type" "imul,idiv")])

(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "imul") (eq_attr "cpu" "ppc604,ppc620")) 4 2 [(eq_attr "type" "integer")])

(define_function_unit "imuldiv" 1 0 (and (eq_attr "type" "idiv") (eq_attr "cpu" "ppc604,ppc620")) 20 19 [(eq_attr "type" "integer")])

; compare is done on integer unit, but feeds insns which ; execute on the branch unit. Ready-delay of the compare ; on the branch unit is large (3-5 cycles). On the iu/fpu ; it is 1. One drawback is that the compare will also be ; assigned to the bpu, but this inaccuracy is worth for being ; able to fill the compare-branch delay, with insns on iu/fpu. (define_function_unit "iu" 1 0
(and (eq_attr "type" "compare") (eq_attr "cpu" "rios1,mpccore,ppc601")) 1 1)

(define_function_unit "iu2" 2 0
(and (eq_attr "type" "compare") (eq_attr "cpu" "rios2")) 1 1)

(define_function_unit "bpu" 1 0
(and (eq_attr "type" "compare") (eq_attr "cpu" "rios1,rios2,ppc403,mpccore,ppc601,ppc603,ppc604,ppc620")) 4 1)

; different machines have different compare timings ; in ppc604, compare is done on the one of the two ; main integer units. (define_function_unit "iu2" 2 0 (and (eq_attr "type" "compare") (eq_attr "cpu" "ppc604,ppc620")) 1 1)

(define_function_unit "bpu" 1 0 (eq_attr "type" "delayed_compare") 5 0)

; fp compare uses fp unit (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "rios1")) 8 1)

; rios1 and rios2 have different fpcompare delays (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "rios2")) 5 1)

; on ppc601 and ppc603, fpcompare takes also 2 cycles from ; the integer unit ; here we do not define delays, just occupy the unit. The dependencies ; will be signed by the fpcompare definition in the fpu. (define_function_unit "iu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "ppc601,ppc602,ppc603")) 0 2)

; fp compare uses fp unit (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "ppc601,ppc602,ppc603,ppc604,ppc620")) 5 1)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "fpcompare") (eq_attr "cpu" "mpccore")) 1 1)

(define_function_unit "bpu" 1 0 (and (eq_attr "type" "mtjmpr") (eq_attr "cpu" "rios1,rios2")) 5 0)

(define_function_unit "bpu" 1 0 (and (eq_attr "type" "mtjmpr") (eq_attr "cpu" "ppc403,mpccore,ppc601,ppc602,ppc603,ppc604,ppc620")) 4 0)

; all jumps/branches are executing on the bpu, in 1 cycle, for all machines. (define_function_unit "bpu" 1 0 (eq_attr "type" "jmpreg") 1 0)

(define_function_unit "bpu" 1 0 (eq_attr "type" "branch") 1 0)

; Floating Point Unit (define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp,dmul") (eq_attr "cpu" "rios1")) 2 0)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "mpccore")) 4 4)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "ppc601")) 4 0)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "ppc602,ppc603,ppc604,ppc620")) 3 1)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "mpccore")) 5 5)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc601")) 5 2)

; is this true? (define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc602,ppc603")) 4 2)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "ppc604,ppc620")) 3 1)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv,ddiv") (eq_attr "cpu" "rios1")) 19 19)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv") (eq_attr "cpu" "ppc601")) 17 17)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv") (eq_attr "cpu" "mpccore")) 10 10)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "sdiv") (eq_attr "cpu" "ppc602,ppc603,ppc604,ppc620")) 18 18)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "ddiv") (eq_attr "cpu" "mpccore")) 17 17)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "ddiv") (eq_attr "cpu" "ppc601,ppc604,ppc620")) 31 31)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "ddiv") (eq_attr "cpu" "ppc602,ppc603")) 33 33)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "ssqrt") (eq_attr "cpu" "ppc620")) 31 31)

(define_function_unit "fpu" 1 0 (and (eq_attr "type" "dsqrt") (eq_attr "cpu" "ppc620")) 31 31)

; RIOS2 has two symmetric FPUs. (define_function_unit "fpu2" 2 0 (and (eq_attr "type" "fp") (eq_attr "cpu" "rios2")) 2 0)

(define_function_unit "fpu2" 2 0 (and (eq_attr "type" "dmul") (eq_attr "cpu" "rios2")) 2 0)

(define_function_unit "fpu2" 2 0 (and (eq_attr "type" "sdiv,ddiv") (eq_attr "cpu" "rios2")) 17 17)

(define_function_unit "fpu2" 2 0 (and (eq_attr "type" "ssqrt,dsqrt") (eq_attr "cpu" "rios2")) 26 26)

;; Start with fixed-point load and store insns. Here we put only the more ;; complex forms. Basic data transfer is done later.

(define_expand "zero_extendqidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lbz%U1%X1 %0,%1 rldicl %0,%1,0,56" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,56" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,56" [(set_attr "type" "compare")])

(define_insn "extendqidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "extsb %0,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsb. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsb. %0,%1" [(set_attr "type" "compare")])

(define_expand "zero_extendhidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lhz%U1%X1 %0,%1 rldicl %0,%1,0,48" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,48" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,48" [(set_attr "type" "compare")])

(define_expand "extendhidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (sign_extend:DI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lha%U1%X1 %0,%1 extsh %0,%1" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsh. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsh. %0,%1" [(set_attr "type" "compare")])

(define_expand "zero_extendsidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (zero_extend:DI (match_operand:SI 1 "reg_or_mem_operand" "m,r")))] "TARGET_POWERPC64" "@ lwz%U1%X1 %0,%1 rldicl %0,%1,0,32" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "rldicl. %2,%1,0,32" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (zero_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "rldicl. %0,%1,0,32" [(set_attr "type" "compare")])

(define_expand "extendsidi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")))] "TARGET_POWERPC64" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (sign_extend:DI (match_operand:SI 1 "lwa_operand" "m,r")))] "TARGET_POWERPC64" "@ lwa%U1%X1 %0,%1 extsw %0,%1" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "extsw. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (sign_extend:DI (match_dup 1)))] "TARGET_POWERPC64" "extsw. %0,%1" [(set_attr "type" "compare")])

(define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "")))] "" "")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (zero_extend:SI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "" "@ lbz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xff" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xff" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xff" [(set_attr "type" "compare")])

(define_expand "extendqisi2" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:QI 1 "gpc_reg_operand" ""))] "" " { if (TARGET_POWERPC) emit_insn (gen_extendqisi2_ppc (operands[0], operands[1])); else if (TARGET_POWER) emit_insn (gen_extendqisi2_power (operands[0], operands[1])); else emit_insn (gen_extendqisi2_no_power (operands[0], operands[1])); DONE; }")

(define_insn "extendqisi2_ppc" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "extsb %0,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "TARGET_POWERPC" "extsb. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_dup 1)))] "TARGET_POWERPC" "extsb. %0,%1" [(set_attr "type" "compare")])

(define_expand "extendqisi2_power" [(parallel [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (clobber (scratch:SI))]) (parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24))) (clobber (scratch:SI))])] "TARGET_POWER" " { operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }")

(define_expand "extendqisi2_no_power" [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24)))] "! TARGET_POWER && ! TARGET_POWERPC" " { operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }")

(define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "gpc_reg_operand" "") (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "")))] "" "")

(define_insn "" [(set (match_operand:HI 0 "gpc_reg_operand" "=r,r") (zero_extend:HI (match_operand:QI 1 "reg_or_mem_operand" "m,r")))] "" "@ lbz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xff" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:HI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xff" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:HI 0 "gpc_reg_operand" "=r") (zero_extend:HI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xff" [(set_attr "type" "compare")])

(define_expand "extendqihi2" [(use (match_operand:HI 0 "gpc_reg_operand" "")) (use (match_operand:QI 1 "gpc_reg_operand" ""))] "" " { if (TARGET_POWERPC) emit_insn (gen_extendqihi2_ppc (operands[0], operands[1])); else if (TARGET_POWER) emit_insn (gen_extendqihi2_power (operands[0], operands[1])); else emit_insn (gen_extendqihi2_no_power (operands[0], operands[1])); DONE; }")

(define_insn "extendqihi2_ppc" [(set (match_operand:HI 0 "gpc_reg_operand" "=r") (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "extsb %0,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:HI 2 "=r"))] "TARGET_POWERPC" "extsb. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:HI (match_operand:QI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:HI 0 "gpc_reg_operand" "=r") (sign_extend:HI (match_dup 1)))] "TARGET_POWERPC" "extsb. %0,%1" [(set_attr "type" "compare")])

(define_expand "extendqihi2_power" [(parallel [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (clobber (scratch:SI))]) (parallel [(set (match_operand:HI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24))) (clobber (scratch:SI))])] "TARGET_POWER" " { operands[0] = gen_lowpart (SImode, operands[0]); operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }")

(define_expand "extendqihi2_no_power" [(set (match_dup 2) (ashift:SI (match_operand:QI 1 "gpc_reg_operand" "") (const_int 24))) (set (match_operand:HI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_dup 2) (const_int 24)))] "! TARGET_POWER && ! TARGET_POWERPC" " { operands[0] = gen_lowpart (SImode, operands[0]); operands[1] = gen_lowpart (SImode, operands[1]); operands[2] = gen_reg_rtx (SImode); }")

(define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))] "" "")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (zero_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "" "@ lhz%U1%X1 %0,%1 {rlinm|rlwinm} %0,%1,0,0xffff" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{andil.|andi.} %2,%1,0xffff" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (match_dup 1)))] "" "{andil.|andi.} %0,%1,0xffff" [(set_attr "type" "compare")])

(define_expand "extendhisi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "")))] "" "")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (sign_extend:SI (match_operand:HI 1 "reg_or_mem_operand" "m,r")))] "" "@ lha%U1%X1 %0,%1 {exts|extsh} %0,%1" [(set_attr "type" "load,*")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "{exts.|extsh.} %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (sign_extend:SI (match_operand:HI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (sign_extend:SI (match_dup 1)))] "" "{exts.|extsh.} %0,%1" [(set_attr "type" "compare")]) ;; Fixed-point arithmetic insns.

;; Discourage ai/addic because of carry but provide it in an alternative ;; allowing register zero as source. (define_insn "addsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,?r,r") (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,b,r,b") (match_operand:SI 2 "add_operand" "r,I,I,J")))] "" "@ {cax|add} %0,%1,%2 {cal %0,%2(%1)|addi %0,%1,%2} {ai|addic} %0,%1,%2 {cau|addis} %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r"))] "" "@ {cax.|add.} %3,%1,%2 {ai.|addic.} %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {cax.|add.} %0,%1,%2 {ai.|addic.} %0,%1,%2" [(set_attr "type" "compare")])

;; Split an add that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine. Note that the low-order ;; add should be last in case the result gets used in an address.

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_add_cint_operand" "")))] "" [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))] " { HOST_WIDE_INT low = INTVAL (operands[2]) & 0xffff; HOST_WIDE_INT high = INTVAL (operands[2]) & (~ (HOST_WIDE_INT) 0xffff);

if (low & 0x8000) high += 0x10000, low |= ((HOST_WIDE_INT) -1) << 16;

operands[3] = GEN_INT (high); operands[4] = GEN_INT (low); }")

(define_insn "one_cmplsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "nor %0,%1,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "nor. %2,%1,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (match_dup 1)))] "" "nor. %0,%1,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "rI") (match_operand:SI 2 "gpc_reg_operand" "r")))] "! TARGET_POWERPC" "{sf%I1|subf%I1c} %0,%2,%1")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "r,I") (match_operand:SI 2 "gpc_reg_operand" "r,r")))] "TARGET_POWERPC" "@ subf %0,%2,%1 subfic %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWERPC" "{sf.|subfc.} %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWERPC" "subf. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWERPC" "{sf.|subfc.} %0,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (minus:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (minus:SI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC" "subf. %0,%2,%1" [(set_attr "type" "compare")])

(define_expand "subsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_operand:SI 1 "reg_or_short_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT) { emit_insn (gen_addsi3 (operands[0], operands[1], negate_rtx (SImode, operands[2]))); DONE; } }")

;; For SMIN, SMAX, UMIN, and UMAX, we use DEFINE_EXPAND's that involve a doz[i] ;; instruction and some auxiliary computations. Then we just have a single ;; DEFINE_INSN for doz[i] and the define_splits to make them if made by ;; combine.

(define_expand "sminsi3" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" "")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_dup 2) (match_dup 3)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); }")

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (smin:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "TARGET_POWER" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_dup 0) (minus:SI (match_dup 2) (match_dup 3)))] "")

(define_expand "smaxsi3" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" "")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 3) (match_dup 1)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); }")

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (smax:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_short_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "TARGET_POWER" [(set (match_dup 3) (if_then_else:SI (gt:SI (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1)))) (set (match_dup 0) (plus:SI (match_dup 3) (match_dup 1)))] "")

(define_expand "uminsi3" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4)) (const_int 0) (minus:SI (match_dup 4) (match_dup 3)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (minus:SI (match_dup 2) (match_dup 3)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); operands[5] = GEN_INT (-2147483647 - 1); }")

(define_expand "umaxsi3" [(set (match_dup 3) (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 4) (xor:SI (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 5))) (set (match_dup 3) (if_then_else:SI (gt (match_dup 3) (match_dup 4)) (const_int 0) (minus:SI (match_dup 4) (match_dup 3)))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 3) (match_dup 1)))] "TARGET_POWER" " { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); operands[5] = GEN_INT (-2147483647 - 1); }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))))] "TARGET_POWER" "doz%I2 %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2. %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (if_then_else:SI (gt (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (if_then_else:SI (gt (match_dup 1) (match_dup 2)) (const_int 0) (minus:SI (match_dup 2) (match_dup 1))))] "TARGET_POWER" "doz%I2. %0,%1,%2" [(set_attr "type" "delayed_compare")])

;; We don't need abs with condition code because such comparisons should ;; never be done. (define_expand "abssi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "")))] "" " { if (!TARGET_POWER) { emit_insn (gen_abssi2_nopower (operands[0], operands[1])); DONE; } }")

(define_insn "abssi2_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "TARGET_POWER" "abs %0,%1")

(define_insn "abssi2_nopower" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER" "* { return (TARGET_POWERPC) ? "{srai|srawi} %2,%1,31;xor %0,%2,%1;subf %0,%2,%0" : "{srai|srawi} %2,%1,31;xor %0,%2,%1;{sf|subfc} %0,%2,%0"; }" [(set_attr "length" "12")])

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER && reload_completed" [(set (match_dup 2) (ashiftrt:SI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:SI (match_dup 2) (match_dup 0)))] "")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))))] "TARGET_POWER" "nabs %0,%1")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER" "* { return (TARGET_POWERPC) ? "{srai|srawi} %2,%1,31;xor %0,%2,%1;subf %0,%0,%2" : "{srai|srawi} %2,%1,31;xor %0,%2,%1;{sf|subfc} %0,%0,%2"; }" [(set_attr "length" "12")])

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "=&r,r") (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:SI 2 "=&r,&r"))] "!TARGET_POWER && reload_completed" [(set (match_dup 2) (ashiftrt:SI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:SI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:SI (match_dup 0) (match_dup 2)))] "")

(define_insn "negsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "neg %0,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 2 "=r"))] "" "neg. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (neg:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (match_dup 1)))] "" "neg. %0,%1" [(set_attr "type" "compare")])

(define_insn "ffssi2" [(set (match_operand:SI 0 "gpc_reg_operand" "=&r") (ffs:SI (match_operand:SI 1 "gpc_reg_operand" "r")))] "" "neg %0,%1;and %0,%0,%1;{cntlz|cntlzw} %0,%0;{sfi|subfic} %0,%0,32" [(set_attr "length" "16")])

(define_expand "mulsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_short_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_mulsi3_mq (operands[0], operands[1], operands[2])); else emit_insn (gen_mulsi3_no_mq (operands[0], operands[1], operands[2])); DONE; }")

(define_insn "mulsi3_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (clobber (match_scratch:SI 3 "=q,q"))] "TARGET_POWER" "@ {muls|mullw} %0,%1,%2 {muli|mulli} %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "mulsi3_no_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I")))] "! TARGET_POWER" "@ {muls|mullw} %0,%1,%2 {muli|mulli} %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r")) (clobber (match_scratch:SI 4 "=q"))] "TARGET_POWER" "{muls.|mullw.} %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{muls.|mullw.} %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (mult:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q"))] "TARGET_POWER" "{muls.|mullw.} %0,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (mult:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (mult:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{muls.|mullw.} %0,%1,%2" [(set_attr "type" "delayed_compare")])

;; Operand 1 is divided by operand 2; quotient goes to operand ;; 0 and remainder to operand 3. ;; ??? At some point, see what, if anything, we can do about if (x % y == 0).

(define_expand "divmodsi4" [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (div:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" ""))) (set (match_operand:SI 3 "gpc_reg_operand" "") (mod:SI (match_dup 1) (match_dup 2)))])] "TARGET_POWER || (! TARGET_POWER && ! TARGET_POWERPC)" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_divss_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); emit_move_insn (operands[3], gen_rtx (REG, SImode, 4)); DONE; } }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (set (match_operand:SI 3 "gpc_reg_operand" "=q") (mod:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "divs %0,%1,%2" [(set_attr "type" "idiv")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "divw %0,%1,%2" [(set_attr "type" "idiv")])

(define_expand "udivsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "")))] "TARGET_POWERPC || (! TARGET_POWER && ! TARGET_POWERPC)" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_quous_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC" "divwu %0,%1,%2" [(set_attr "type" "idiv")])

;; For powers of two we can do srai/aze for divide and then adjust for ;; modulus. If it isn't a power of two, FAIL on POWER so divmodsi4 will be ;; used; for PowerPC, force operands into register and do a normal divide; ;; for AIX common-mode, use quoss call on register operands. (define_expand "divsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (div:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT && exact_log2 (INTVAL (operands[2])) >= 0) ; else if (TARGET_POWERPC) operands[2] = force_reg (SImode, operands[2]); else if (TARGET_POWER) FAIL; else { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_quoss_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } }")

(define_expand "modsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { int i = exact_log2 (INTVAL (operands[2])); rtx temp1; rtx temp2;

if (GET_CODE (operands[2]) != CONST_INT || i < 0) FAIL;

temp1 = gen_reg_rtx (SImode); temp2 = gen_reg_rtx (SImode);

emit_insn (gen_divsi3 (temp1, operands[1], operands[2])); emit_insn (gen_ashlsi3 (temp2, temp1, GEN_INT (i))); emit_insn (gen_subsi3 (operands[0], operands[1], temp2)); DONE; }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %0,%1,%p2;{aze|addze} %0,%0" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %3,%1,%p2;{aze.|addze.} %3,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (div:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "N")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (div:SI (match_dup 1) (match_dup 2)))] "exact_log2 (INTVAL (operands[2])) >= 0" "{srai|srawi} %0,%1,%p2;{aze.|addze.} %0,%0" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (udiv:SI (plus:DI (ashift:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 32)) (zero_extend:DI (match_operand:SI 4 "register_operand" "2"))) (match_operand:SI 3 "gpc_reg_operand" "r"))) (set (match_operand:SI 2 "register_operand" "=*q") (umod:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 1)) (const_int 32)) (zero_extend:DI (match_dup 4))) (match_dup 3)))] "TARGET_POWER" "div %0,%1,%3" [(set_attr "type" "idiv")])

;; To do unsigned divide we handle the cases of the divisor looking like a ;; negative number. If it is a constant that is less than 2**31, we don't ;; have to worry about the branches. So make a few subroutines here. ;; ;; First comes the normal case. (define_expand "udivmodsi4_normal" [(set (match_dup 4) (const_int 0)) (parallel [(set (match_operand:SI 0 "" "") (udiv:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4)) (const_int 32)) (zero_extend:DI (match_operand:SI 1 "" ""))) (match_operand:SI 2 "" ""))) (set (match_operand:SI 3 "" "") (umod:SI (plus:DI (ashift:DI (zero_extend:DI (match_dup 4)) (const_int 32)) (zero_extend:DI (match_dup 1))) (match_dup 2)))])] "TARGET_POWER" " { operands[4] = gen_reg_rtx (SImode); }")

;; This handles the branches. (define_expand "udivmodsi4_tests" [(set (match_operand:SI 0 "" "") (const_int 0)) (set (match_operand:SI 3 "" "") (match_operand:SI 1 "" "")) (set (match_dup 5) (compare:CCUNS (match_dup 1) (match_operand:SI 2 "" ""))) (set (pc) (if_then_else (ltu (match_dup 5) (const_int 0)) (label_ref (match_operand:SI 4 "" "")) (pc))) (set (match_dup 0) (const_int 1)) (set (match_dup 3) (minus:SI (match_dup 1) (match_dup 2))) (set (match_dup 6) (compare:CC (match_dup 2) (const_int 0))) (set (pc) (if_then_else (lt (match_dup 6) (const_int 0)) (label_ref (match_dup 4)) (pc)))] "TARGET_POWER" " { operands[5] = gen_reg_rtx (CCUNSmode); operands[6] = gen_reg_rtx (CCmode); }")

(define_expand "udivmodsi4" [(parallel [(set (match_operand:SI 0 "gpc_reg_operand" "") (udiv:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" ""))) (set (match_operand:SI 3 "gpc_reg_operand" "") (umod:SI (match_dup 1) (match_dup 2)))])] "" " { rtx label = 0;

if (! TARGET_POWER) if (! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_divus_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); emit_move_insn (operands[3], gen_rtx (REG, SImode, 4)); DONE; } else FAIL;

if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) < 0) { operands[2] = force_reg (SImode, operands[2]); label = gen_label_rtx (); emit (gen_udivmodsi4_tests (operands[0], operands[1], operands[2], operands[3], label)); } else operands[2] = force_reg (SImode, operands[2]);

emit (gen_udivmodsi4_normal (operands[0], operands[1], operands[2], operands[3])); if (label) emit_label (label);

DONE; }")

;; AIX architecture-independent common-mode multiply (DImode), ;; divide/modulus, and quotient subroutine calls. Input operands in R3 and ;; R4; results in R3 and sometimes R4; link register always clobbered by bla ;; instruction; R0 sometimes clobbered; also, MQ sometimes clobbered but ;; assumed unused if generating common-mode, so ignore. (define_insn "mulh_call" [(set (reg:SI 3) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (reg:SI 3)) (sign_extend:DI (reg:SI 4))) (const_int 32)))) (clobber (match_scratch:SI 0 "=l"))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __mulh")

(define_insn "mull_call" [(set (reg:DI 3) (mult:DI (sign_extend:DI (reg:SI 3)) (sign_extend:DI (reg:SI 4)))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __mull")

(define_insn "divss_call" [(set (reg:SI 3) (div:SI (reg:SI 3) (reg:SI 4))) (set (reg:SI 4) (mod:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __divss")

(define_insn "divus_call" [(set (reg:SI 3) (udiv:SI (reg:SI 3) (reg:SI 4))) (set (reg:SI 4) (umod:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0)) (clobber (match_scratch:CC 1 "=x")) (clobber (reg:CC 69))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __divus")

(define_insn "quoss_call" [(set (reg:SI 3) (div:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l"))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __quoss")

(define_insn "quous_call" [(set (reg:SI 3) (udiv:SI (reg:SI 3) (reg:SI 4))) (clobber (match_scratch:SI 0 "=l")) (clobber (reg:SI 0)) (clobber (match_scratch:CC 1 "=x")) (clobber (reg:CC 69))] "! TARGET_POWER && ! TARGET_POWERPC" "bla __quous") (define_insn "andsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "?r,L,K,J"))) (clobber (match_scratch:CC 3 "=X,X,x,x"))] "" "@ and %0,%1,%2 {rlinm|rlwinm} %0,%1,0,%m2,%M2 {andil.|andi.} %0,%1,%b2 {andiu.|andis.} %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x") (compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "r,K,J,L")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r,r,r"))] "" "@ and. %3,%1,%2 {andil.|andi.} %3,%1,%b2 {andiu.|andis.} %3,%1,%u2 {rlinm.|rlwinm.} %3,%1,0,%m2,%M2" [(set_attr "type" "compare,compare,compare,delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x,x,x") (compare:CC (and:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r") (match_operand:SI 2 "and_operand" "r,K,J,L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (and:SI (match_dup 1) (match_dup 2)))] "" "@ and. %0,%1,%2 {andil.|andi.} %0,%1,%b2 {andiu.|andis.} %0,%1,%u2 {rlinm.|rlwinm.} %0,%1,0,%m2,%M2" [(set_attr "type" "compare,compare,compare,delayed_compare")])

;; Take a AND with a constant that cannot be done in a single insn and try to ;; split it into two insns. This does not verify that the insns are valid ;; since this need not be done as combine will do it.

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (and:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_and_cint_operand" "")))] "" [(set (match_dup 0) (and:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (and:SI (match_dup 0) (match_dup 4)))] " { int maskval = INTVAL (operands[2]); int i, transitions, last_bit_value; int orig = maskval, first_c = maskval, second_c;

/* We know that MASKVAL must have more than 2 bit-transitions. Start at the low-order bit and count for the third transition. When we get there, make a first mask that has everything to the left of that position a one. Then make the second mask to turn off whatever else is needed. */

for (i = 1, transitions = 0, last_bit_value = maskval & 1; i < 32; i++) { if (((maskval >>= 1) & 1) != last_bit_value) last_bit_value ^= 1, transitions++;

  if (transitions > 2)
{
  first_c |= (~0) << i;
  break;
}
}

second_c = orig | ~ first_c;

operands[3] = gen_rtx (CONST_INT, VOIDmode, first_c); operands[4] = gen_rtx (CONST_INT, VOIDmode, second_c); }")

(define_insn "iorsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r") (match_operand:SI 2 "logical_operand" "r,K,J")))] "" "@ or %0,%1,%2 {oril|ori} %0,%1,%b2 {oriu|oris} %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "or. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (match_dup 1) (match_dup 2)))] "" "or. %0,%1,%2" [(set_attr "type" "compare")])

;; Split an IOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine.

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (ior:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_logical_cint_operand" "")))] "" [(set (match_dup 0) (ior:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff0000); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }")

(define_insn "xorsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r") (match_operand:SI 2 "logical_operand" "r,K,J")))] "" "@ xor %0,%1,%2 {xoril|xori} %0,%1,%b2 {xoriu|xoris} %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "xor. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (xor:SI (match_dup 1) (match_dup 2)))] "" "xor. %0,%1,%2" [(set_attr "type" "compare")])

;; Split an XOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine.

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (xor:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_logical_cint_operand" "")))] "" [(set (match_dup 0) (xor:SI (match_dup 1) (match_dup 3))) (set (match_dup 0) (xor:SI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff0000); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "eqv %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "eqv. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (not:SI (xor:SI (match_operand:SI 1 "gpc_reg_operand" "%r") (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (not:SI (xor:SI (match_dup 1) (match_dup 2))))] "" "eqv. %0,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")))] "" "andc %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "andc. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_dup 1)) (match_dup 2)))] "" "andc. %0,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")))] "" "orc %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "orc. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_dup 1)) (match_dup 2)))] "" "orc. %0,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "nand %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "nand. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))] "" "nand. %0,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "" "nor %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "nor. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "%r")) (not:SI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (not:SI (match_dup 1)) (not:SI (match_dup 2))))] "" "nor. %0,%1,%2" [(set_attr "type" "compare")])

;; maskir insn. We need four forms because things might be in arbitrary ;; orders. Don't define forms that only set CR fields because these ;; would modify an input register.

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_dup 2) (match_operand:SI 3 "gpc_reg_operand" "r"))))] "TARGET_POWER" "maskir %0,%3,%2")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_dup 2))))] "TARGET_POWER" "maskir %0,%3,%2")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))))] "TARGET_POWER" "maskir %0,%3,%2")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))))] "TARGET_POWER" "maskir %0,%3,%2")

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_dup 2) (match_operand:SI 3 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1)) (and:SI (match_dup 2) (match_dup 3))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (not:SI (match_operand:SI 2 "gpc_reg_operand" "r")) (match_operand:SI 1 "gpc_reg_operand" "0")) (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_dup 2))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (not:SI (match_dup 2)) (match_dup 1)) (and:SI (match_dup 3) (match_dup 2))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_dup 2) (match_dup 3)) (and:SI (not:SI (match_dup 2)) (match_dup 1))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ior:SI (and:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r")) (and:SI (not:SI (match_dup 2)) (match_operand:SI 1 "gpc_reg_operand" "0"))) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ior:SI (and:SI (match_dup 3) (match_dup 2)) (and:SI (not:SI (match_dup 2)) (match_dup 1))))] "TARGET_POWER" "maskir. %0,%3,%2" [(set_attr "type" "compare")]) ;; Rotate and shift insns, in all their variants. These support shifts, ;; field inserts and extracts, and various combinations thereof. (define_expand "insv" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "gpc_reg_operand" "r"))] "" " { /* Do not handle 16/8 bit structures that fit in HI/QI modes directly, since the (SUBREG:SI (REG:HI xxx)) that is otherwise generated can confuse the compiler if the address of the structure is taken later. */ if (GET_CODE (operands[0]) == SUBREG && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (operands[0]))) < UNITS_PER_WORD)) FAIL; }")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "gpc_reg_operand" "r"))] "" "* { int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31;

operands[4] = gen_rtx (CONST_INT, VOIDmode, 32 - start - size); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return "{rlimi|rlwimi} %0,%3,%4,%h2,%h1"; }")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (ashift:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31;

operands[4] = gen_rtx (CONST_INT, VOIDmode, (shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return "{rlimi|rlwimi} %0,%3,%4,%h2,%h1"; }")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (ashiftrt:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31;

operands[4] = gen_rtx (CONST_INT, VOIDmode, (32 - shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return "{rlimi|rlwimi} %0,%3,%4,%h2,%h1"; }")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (lshiftrt:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i")))] "" "* { int shift = INTVAL (operands[4]) & 31; int start = INTVAL (operands[2]) & 31; int size = INTVAL (operands[1]) & 31;

operands[4] = gen_rtx (CONST_INT, VOIDmode, (32 - shift - start - size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, start + size - 1); return "{rlimi|rlwimi} %0,%3,%4,%h2,%h1"; }")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (zero_extract:SI (match_operand:SI 3 "gpc_reg_operand" "r") (match_operand:SI 4 "const_int_operand" "i") (match_operand:SI 5 "const_int_operand" "i")))] "INTVAL (operands[4]) >= INTVAL (operands[1])" "* { int extract_start = INTVAL (operands[5]) & 31; int extract_size = INTVAL (operands[4]) & 31; int insert_start = INTVAL (operands[2]) & 31; int insert_size = INTVAL (operands[1]) & 31;

/* Align extract field with insert field */ operands[5] = gen_rtx (CONST_INT, VOIDmode, (extract_start + extract_size - insert_start - insert_size) & 31); operands[1] = gen_rtx (CONST_INT, VOIDmode, insert_start + insert_size - 1); return "{rlimi|rlwimi} %0,%3,%5,%h2,%h1"; }")

(define_expand "extzv" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "" " { /* Do not handle 16/8 bit structures that fit in HI/QI modes directly, since the (SUBREG:SI (REG:HI xxx)) that is otherwise generated can confuse the compiler if the address of the structure is taken later. */ if (GET_CODE (operands[0]) == SUBREG && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (operands[0]))) < UNITS_PER_WORD)) FAIL; }")

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31;

if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return "{rlinm|rlwinm} %0,%1,%3,%s2,31"; }")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31;

/* If the bitfield being tested fits in the upper or lower half of a word, it is possible to use andiu. or andil. to test it. This is useful because the condition register set-use delay is smaller for andi[ul]. than for rlinm. This doesn't work when the starting bit position is 0 because the LT and GT bits may be set wrong. */

if ((start > 0 && start + size <= 16) || start >= 16) { operands[3] = gen_rtx (CONST_INT, VOIDmode, ((1 << (16 - (start & 15))) - (1 << (16 - (start & 15) - size)))); if (start < 16) return "{andiu.|andis.} %4,%1,%3"; else return "{andil.|andi.} %4,%1,%3"; }

if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return "{rlinm.|rlwinm.} %4,%1,%3,%s2,31"; }" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (zero_extract:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extract:SI (match_dup 1) (match_dup 2) (match_dup 3)))] "" "* { int start = INTVAL (operands[3]) & 31; int size = INTVAL (operands[2]) & 31;

if (start >= 16 && start + size == 32) { operands[3] = gen_rtx (CONST_INT, VOIDmode, (1 << (32 - start)) - 1); return "{andil.|andi.} %0,%1,%3"; }

if (start + size >= 32) operands[3] = const0_rtx; else operands[3] = gen_rtx (CONST_INT, VOIDmode, start + size); return "{rlinm.|rlwinm.} %0,%1,%3,%s2,31"; }" [(set_attr "type" "delayed_compare")])

(define_insn "rotlsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffffffff")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffffffff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (rotate:SI (match_dup 1) (match_dup 2)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffffffff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,%m3,%M3")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %4,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (rotate:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xff")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (rotate:SI (match_dup 1) (match_dup 2)) 0)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)))] "" "{rl%I2nm|rlw%I2nm} %0,%1,%h2,0xffff")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "" "{rl%I2nm.|rlw%I2nm.} %3,%1,%h2,0xffff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (rotate:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (rotate:SI (match_dup 1) (match_dup 2)) 0)))] "" "{rl%I2nm.|rlw%I2nm.} %0,%1,%h2,0xffff" [(set_attr "type" "delayed_compare")])

;; Note that we use "sle." instead of "sl." so that we can set ;; SHIFT_COUNT_TRUNCATED.

(define_expand "ashlsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_ashlsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_ashlsi3_no_power (operands[0], operands[1], operands[2])); DONE; }")

(define_insn "ashlsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ sle %0,%1,%2 {sli|slwi} %0,%1,%h2" [(set_attr "length" "8")])

(define_insn "ashlsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sl|slw}%I2 %0,%1,%h2" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sle. %3,%1,%2 {sli.|slwi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sl|slw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashift:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sle. %0,%1,%2 {sli.|slwi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sl|slw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")))] "includes_lshift_p (operands[2], operands[3])" "{rlinm|rlwinm} %0,%1,%h2,%m3,%M3")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "includes_lshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %4,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (ashift:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (ashift:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "includes_lshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %0,%1,%h2,%m3,%M3" [(set_attr "type" "delayed_compare")])

;; The AIX assembler mis-handles "sri x,x,0", so write that case as ;; "sli x,x,0". (define_expand "lshrsi3" [(use (match_operand:SI 0 "gpc_reg_operand" "")) (use (match_operand:SI 1 "gpc_reg_operand" "")) (use (match_operand:SI 2 "reg_or_cint_operand" ""))] "" " { if (TARGET_POWER) emit_insn (gen_lshrsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_lshrsi3_no_power (operands[0], operands[1], operands[2])); DONE; }")

(define_insn "lshrsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ sre %0,%1,%2 {s%A2i|s%A2wi} %0,%1,%h2")

(define_insn "lshrsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sr|srw}%I2 %0,%1,%h2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sre. %3,%1,%2 {s%A2i.|s%A2wi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sr|srw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (lshiftrt:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ sre. %0,%1,%2 {s%A2i.|s%A2wi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sr|srw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")))] "includes_rshift_p (operands[2], operands[3])" "{rlinm|rlwinm} %0,%1,%s2,%m3,%M3")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (clobber (match_scratch:SI 4 "=r"))] "includes_rshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %4,%1,%s2,%m3,%M3" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "mask_operand" "L")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (lshiftrt:SI (match_dup 1) (match_dup 2)) (match_dup 3)))] "includes_rshift_p (operands[2], operands[3])" "{rlinm.|rlwinm.} %0,%1,%s2,%m3,%M3" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm|rlwinm} %0,%1,%s2,0xff")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm.|rlwinm.} %3,%1,%s2,0xff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:QI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:QI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 255))" "{rlinm.|rlwinm.} %0,%1,%s2,0xff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm|rlwinm} %0,%1,%s2,0xffff")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm.|rlwinm.} %3,%1,%s2,0xffff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (zero_extend:SI (subreg:HI (lshiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "const_int_operand" "i")) 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (zero_extend:SI (subreg:HI (lshiftrt:SI (match_dup 1) (match_dup 2)) 0)))] "includes_rshift_p (operands[2], gen_rtx (CONST_INT, VOIDmode, 65535))" "{rlinm.|rlwinm.} %0,%1,%s2,0xffff" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (ashiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 31)))] "TARGET_POWER" "rrib %0,%1,%2")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (lshiftrt:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 31)))] "TARGET_POWER" "rrib %0,%1,%2")

(define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "gpc_reg_operand" "+r") (const_int 1) (match_operand:SI 1 "gpc_reg_operand" "r")) (zero_extract:SI (match_operand:SI 2 "gpc_reg_operand" "r") (const_int 1) (const_int 0)))] "TARGET_POWER" "rrib %0,%1,%2")

(define_expand "ashrsi3" [(set (match_operand:SI 0 "gpc_reg_operand" "") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "" " { if (TARGET_POWER) emit_insn (gen_ashrsi3_power (operands[0], operands[1], operands[2])); else emit_insn (gen_ashrsi3_no_power (operands[0], operands[1], operands[2])); DONE; }")

(define_insn "ashrsi3_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i"))) (clobber (match_scratch:SI 3 "=q,X"))] "TARGET_POWER" "@ srea %0,%1,%2 {srai|srawi} %0,%1,%h2")

(define_insn "ashrsi3_no_power" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "! TARGET_POWER" "{sra|sraw}%I2 %0,%1,%h2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (clobber (match_scratch:SI 3 "=r,r")) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ srea. %3,%1,%2 {srai.|srawi.} %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:SI 3 "=r"))] "! TARGET_POWER" "{sra|sraw}%I2. %3,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,i")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ashiftrt:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 4 "=q,X"))] "TARGET_POWER" "@ srea. %0,%1,%2 {srai.|srawi.} %0,%1,%h2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashiftrt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashiftrt:SI (match_dup 1) (match_dup 2)))] "! TARGET_POWER" "{sra|sraw}%I2. %0,%1,%h2" [(set_attr "type" "delayed_compare")]) ;; Floating-point insns, excluding normal data motion. ;; ;; PowerPC has a full set of single-precision floating point instructions. ;; ;; For the POWER architecture, we pretend that we have both SFmode and ;; DFmode insns, while, in fact, all fp insns are actually done in double. ;; The only conversions we will do will be when storing to memory. In that ;; case, we will use the "frsp" instruction before storing. ;; ;; Note that when we store into a single-precision memory location, we need to ;; use the frsp insn first. If the register being stored isn't dead, we ;; need a scratch register for the frsp. But this is difficult when the store ;; is done by reload. It is not incorrect to do the frsp on the register in ;; this case, we just lose precision that we would have otherwise gotten but ;; is not guaranteed. Perhaps this should be tightened up at some point.

(define_insn "extendsfdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (float_extend:DF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "* { if (REGNO (operands[0]) == REGNO (operands[1])) return ""; else return "fmr %0,%1"; }" [(set_attr "type" "fp")])

(define_insn "truncdfsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (float_truncate:SF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "frsp %0,%1" [(set_attr "type" "fp")])

(define_insn "aux_truncdfsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (unspec:SF [(match_operand:SF 1 "gpc_reg_operand" "f")] 0))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "frsp %0,%1" [(set_attr "type" "fp")])

(define_insn "negsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fneg %0,%1" [(set_attr "type" "fp")])

(define_insn "abssf2" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (abs:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fabs %0,%1" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (abs:SF (match_operand:SF 1 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "fnabs %0,%1" [(set_attr "type" "fp")])

(define_expand "addsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "")

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fadds %0,%1,%2" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fa|fadd} %0,%1,%2" [(set_attr "type" "fp")])

(define_expand "subsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "")

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fsubs %0,%1,%2" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fs|fsub} %0,%1,%2" [(set_attr "type" "fp")])

(define_expand "mulsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "")

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmuls %0,%1,%2" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fm|fmul} %0,%1,%2" [(set_attr "type" "dmul")])

(define_expand "divsf3" [(set (match_operand:SF 0 "gpc_reg_operand" "") (div:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" "")

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (div:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fdivs %0,%1,%2" [(set_attr "type" "sdiv")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (div:SF (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fd|fdiv} %0,%1,%2" [(set_attr "type" "ddiv")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmadds %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fma|fmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fmsubs %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f")))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fms|fmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fnmadds %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (plus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fnma|fnmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "TARGET_POWERPC && TARGET_HARD_FLOAT" "fnmsubs %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (neg:SF (minus:SF (mult:SF (match_operand:SF 1 "gpc_reg_operand" "%f") (match_operand:SF 2 "gpc_reg_operand" "f")) (match_operand:SF 3 "gpc_reg_operand" "f"))))] "! TARGET_POWERPC && TARGET_HARD_FLOAT" "{fnms|fnmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_expand "sqrtsf2" [(set (match_operand:SF 0 "gpc_reg_operand" "") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "")))] "(TARGET_PPC_GPOPT || TARGET_POWER2) && TARGET_HARD_FLOAT" "")

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_PPC_GPOPT && TARGET_HARD_FLOAT" "fsqrts %0,%1" [(set_attr "type" "ssqrt")])

(define_insn "" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (sqrt:SF (match_operand:SF 1 "gpc_reg_operand" "f")))] "TARGET_POWER2 && TARGET_HARD_FLOAT" "fsqrt %0,%1" [(set_attr "type" "dsqrt")])

;; For MIN, MAX, and conditional move, we use DEFINE_EXPAND's that involve a ;; fsel instruction and some auxiliary computations. Then we just have a ;; single DEFINE_INSN for fsel and the define_splits to make them if made by ;; combine. (define_expand "maxsf3" [(set (match_dup 3) (minus:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (set (match_operand:SF 0 "gpc_reg_operand" "") (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (SFmode); }")

(define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (smax:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (clobber (match_operand:SF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:SF (match_dup 1) (match_dup 2))) (set (match_dup 0) (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "")

(define_expand "minsf3" [(set (match_dup 3) (minus:SF (match_operand:SF 2 "gpc_reg_operand" "") (match_operand:SF 1 "gpc_reg_operand" ""))) (set (match_operand:SF 0 "gpc_reg_operand" "") (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (SFmode); }")

(define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (smin:SF (match_operand:SF 1 "gpc_reg_operand" "") (match_operand:SF 2 "gpc_reg_operand" ""))) (clobber (match_operand:SF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:SF (match_dup 2) (match_dup 1))) (set (match_dup 0) (if_then_else:SF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "")

(define_expand "movsfcc" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (match_operand 1 "comparison_operator" "") (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { rtx temp, op0, op1; enum rtx_code code = GET_CODE (operands[1]); if (! rs6000_compare_fp_p) FAIL; switch (code) { case GE: case EQ: case NE: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; break; case GT: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; case LE: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; break; case LT: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; default: FAIL; } if (GET_MODE (rs6000_compare_op0) == DFmode) { temp = gen_reg_rtx (DFmode); emit_insn (gen_subdf3 (temp, op0, op1)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfsf4 (operands[0], temp, operands[3], operands[0])); } } else { temp = gen_reg_rtx (SFmode); emit_insn (gen_subsf3 (temp, op0, op1)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfsf4 (operands[0], temp, operands[3], operands[0])); } } DONE; }")

(define_insn "fselsfsf4" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (ge (match_operand:SF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "fseldfsf4" [(set (match_operand:SF 0 "gpc_reg_operand" "=f") (if_then_else:SF (ge (match_operand:DF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:SF 2 "gpc_reg_operand" "f") (match_operand:SF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "negdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fneg %0,%1" [(set_attr "type" "fp")])

(define_insn "absdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (abs:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fabs %0,%1" [(set_attr "type" "fp")])

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (abs:DF (match_operand:DF 1 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "fnabs %0,%1" [(set_attr "type" "fp")])

(define_insn "adddf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (plus:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fa|fadd} %0,%1,%2" [(set_attr "type" "fp")])

(define_insn "subdf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (minus:DF (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fs|fsub} %0,%1,%2" [(set_attr "type" "fp")])

(define_insn "muldf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fm|fmul} %0,%1,%2" [(set_attr "type" "dmul")])

(define_insn "divdf3" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (div:DF (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fd|fdiv} %0,%1,%2" [(set_attr "type" "ddiv")])

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fma|fmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "{fms|fmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (plus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "{fnma|fnmadd} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (neg:DF (minus:DF (mult:DF (match_operand:DF 1 "gpc_reg_operand" "%f") (match_operand:DF 2 "gpc_reg_operand" "f")) (match_operand:DF 3 "gpc_reg_operand" "f"))))] "TARGET_HARD_FLOAT" "{fnms|fnmsub} %0,%1,%2,%3" [(set_attr "type" "dmul")])

(define_insn "sqrtdf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (sqrt:DF (match_operand:DF 1 "gpc_reg_operand" "f")))] "(TARGET_PPC_GPOPT || TARGET_POWER2) && TARGET_HARD_FLOAT" "fsqrt %0,%1" [(set_attr "type" "dsqrt")])

;; For MIN, MAX, and conditional move, we use DEFINE_EXPAND's that involve a ;; fsel instruction and some auxiliary computations. Then we just have a ;; single DEFINE_INSN for fsel and the define_splits to make them if made by ;; combine.

(define_expand "maxdf3" [(set (match_dup 3) (minus:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (set (match_operand:DF 0 "gpc_reg_operand" "") (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (DFmode); }")

(define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (smax:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (clobber (match_operand:DF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:DF (match_dup 1) (match_dup 2))) (set (match_dup 0) (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "")

(define_expand "mindf3" [(set (match_dup 3) (minus:DF (match_operand:DF 2 "gpc_reg_operand" "") (match_operand:DF 1 "gpc_reg_operand" ""))) (set (match_operand:DF 0 "gpc_reg_operand" "") (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { operands[3] = gen_reg_rtx (DFmode); }")

(define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (smin:DF (match_operand:DF 1 "gpc_reg_operand" "") (match_operand:DF 2 "gpc_reg_operand" ""))) (clobber (match_operand:DF 3 "gpc_reg_operand" ""))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" [(set (match_dup 3) (minus:DF (match_dup 2) (match_dup 1))) (set (match_dup 0) (if_then_else:DF (ge (match_dup 3) (const_int 0)) (match_dup 1) (match_dup 2)))] "")

(define_expand "movdfcc" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (match_operand 1 "comparison_operator" "") (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" " { rtx temp, op0, op1; enum rtx_code code = GET_CODE (operands[1]); if (! rs6000_compare_fp_p) FAIL; switch (code) { case GE: case EQ: case NE: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; break; case GT: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; case LE: op0 = rs6000_compare_op1; op1 = rs6000_compare_op0; break; case LT: op0 = rs6000_compare_op0; op1 = rs6000_compare_op1; temp = operands[2]; operands[2] = operands[3]; operands[3] = temp; break; default: FAIL; } if (GET_MODE (rs6000_compare_op0) == DFmode) { temp = gen_reg_rtx (DFmode); emit_insn (gen_subdf3 (temp, op0, op1)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negdf2 (temp, temp)); emit_insn (gen_fseldfdf4 (operands[0], temp, operands[3], operands[0])); } } else { temp = gen_reg_rtx (SFmode); emit_insn (gen_subsf3 (temp, op0, op1)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[2], operands[3])); if (code == EQ) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[0], operands[3])); } if (code == NE) { emit_insn (gen_negsf2 (temp, temp)); emit_insn (gen_fselsfdf4 (operands[0], temp, operands[3], operands[0])); } } DONE; }")

(define_insn "fseldfdf4" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (ge (match_operand:DF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")])

(define_insn "fselsfdf4" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (if_then_else:DF (ge (match_operand:SF 1 "gpc_reg_operand" "f") (const_int 0)) (match_operand:DF 2 "gpc_reg_operand" "f") (match_operand:DF 3 "gpc_reg_operand" "f")))] "TARGET_PPC_GFXOPT" "fsel %0,%1,%2,%3" [(set_attr "type" "fp")]) ;; Conversions to and from floating-point. (define_expand "floatsidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "") (float:DF (match_operand:SI 1 "gpc_reg_operand" "")))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { if (operands[0]) { /* prevent unused warning messages */ rtx high = force_reg (SImode, GEN_INT (0x43300000)); rtx low = gen_reg_rtx (SImode); rtx df = gen_reg_rtx (DFmode); rtx adjust = force_reg (DFmode, rs6000_float_const ("4503601774854144", DFmode));

  emit_insn (gen_xorsi3 (low, operands[1], GEN_INT (0x80000000)));
  emit_insn (gen_move_to_float (df, low, high));
  emit_insn (gen_subdf3 (operands[0], df, adjust));
  DONE;
}

}")

(define_expand "floatunssidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "") (unsigned_float:DF (match_operand:SI 1 "gpc_reg_operand" "")))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { if (operands[0]) { /* prevent unused warning messages */ rtx high = force_reg (SImode, GEN_INT (0x43300000)); rtx df = gen_reg_rtx (DFmode); rtx adjust = force_reg (DFmode, rs6000_float_const ("4503599627370496", DFmode));

  emit_insn (gen_move_to_float (df, operands[1], high));
  emit_insn (gen_subdf3 (operands[0], df, adjust));
  DONE;
}

}")

(define_expand "move_to_float" [(set (match_operand:DF 0 "gpc_reg_operand" "") (unspec [(match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "") (match_dup 3)] 2))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" " { operands[3] = XEXP (rs6000_stack_temp (DFmode, 8, 1), 0); }")

(define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (unspec [(match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "gpc_reg_operand" "") (match_operand:SI 3 "offsettable_addr_operand" "")] 2))] "reload_completed" [(set (match_dup 4) (match_dup 1)) (set (match_dup 5) (match_dup 2)) (set (match_dup 0) (mem:DF (match_dup 3)))] " { rtx word1 = gen_rtx (MEM, SImode, operands[3]); rtx word2 = gen_rtx (MEM, SImode, plus_constant (operands[3], 4));

MEM_IN_STRUCT_P (word1) = 1; MEM_IN_STRUCT_P (word2) = 1;

if (WORDS_BIG_ENDIAN) { operands[4] = word2; operands[5] = word1; } else { operands[4] = word1; operands[5] = word2; } }")

(define_insn "" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (unspec [(match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "gpc_reg_operand" "r") (match_operand:SI 3 "offsettable_addr_operand" "p")] 2))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT" "#" [(set_attr "length" "12")])

(define_expand "fix_truncdfsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { if (TARGET_POWER2 || TARGET_POWERPC) { rtx stack_slot = rs6000_stack_temp (DImode, 8, 1); rtx temp = gen_reg_rtx (DImode);

  emit_insn (gen_fpcvtsi (temp, operands[1]));
  emit_move_insn (stack_slot, temp);
  emit_move_insn (operands[0],
	      gen_rtx (SUBREG, SImode, stack_slot, WORDS_BIG_ENDIAN));
  DONE;
}

else { emit_insn (gen_trunc_call (operands[0], operands[1], gen_rtx (SYMBOL_REF, Pmode, RS6000_ITRUNC))); DONE; } }")

(define_insn "fpcvtsi" [(set (match_operand:DI 0 "gpc_reg_operand" "=f") (sign_extend:DI (fix:SI (match_operand:DF 1 "gpc_reg_operand" "f"))))] "(TARGET_POWER2 || TARGET_POWERPC) && TARGET_HARD_FLOAT" "{fcirz|fctiwz} %0,%1" [(set_attr "type" "fp")])

(define_expand "fixuns_truncdfsi2" [(set (match_operand:SI 0 "gpc_reg_operand" "") (unsigned_fix:SI (match_operand:DF 1 "gpc_reg_operand" "")))] "! TARGET_POWER2 && ! TARGET_POWERPC && TARGET_HARD_FLOAT" " { emit_insn (gen_trunc_call (operands[0], operands[1], gen_rtx (SYMBOL_REF, Pmode, RS6000_UITRUNC))); DONE; }")

(define_expand "trunc_call" [(parallel [(set (match_operand:SI 0 "" "") (fix:SI (match_operand:DF 1 "" ""))) (use (match_operand:SI 2 "" ""))])] "TARGET_HARD_FLOAT" " { rtx insns = gen_trunc_call_rtl (operands[0], operands[1], operands[2]); rtx first = XVECEXP (insns, 0, 0); rtx last = XVECEXP (insns, 0, XVECLEN (insns, 0) - 1);

REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, REG_NOTES (first)); REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));

emit_insn (insns); DONE; }")

(define_expand "trunc_call_rtl" [(set (reg:DF 33) (match_operand:DF 1 "gpc_reg_operand" "")) (use (reg:DF 33)) (parallel [(set (reg:SI 3) (call (mem:SI (match_operand 2 "" "")) (const_int 0))) (use (const_int 0)) (clobber (scratch:SI))]) (set (match_operand:SI 0 "gpc_reg_operand" "") (reg:SI 3))] "TARGET_HARD_FLOAT" " { rs6000_trunc_used = 1; }")

(define_insn "floatdidf2" [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (float:DF (match_operand:DI 1 "gpc_reg_operand" "f")))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT" "fcfid %0,%1" [(set_attr "type" "fp")])

(define_insn "fix_truncdfdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=f") (fix:DI (match_operand:DF 1 "gpc_reg_operand" "f")))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT" "fctidz %0,%1" [(set_attr "type" "fp")]) ;; Define the DImode operations that can be done in a small number ;; of instructions. The & constraints are to prevent the register ;; allocator from allocating registers that overlap with the inputs ;; (for example, having an input in 7,8 and an output in 6,7). We ;; also allow for the the output being the same as one of the inputs.

(define_insn "adddi3_noppc64" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r,r,r") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I,r,I")))] "! TARGET_POWERPC64" " { if (WORDS_BIG_ENDIAN) return (GET_CODE (operands[2])) != CONST_INT ? "{a|addc} %L0,%L1,%L2;{ae|adde} %0,%1,%2" : "{ai|addic} %L0,%L1,%2;{a%G2e|add%G2e} %0,%1"; else return (GET_CODE (operands[2])) != CONST_INT ? "{a|addc} %0,%1,%2;{ae|adde} %L0,%L1,%L2" : "{ai|addic} %0,%1,%2;{a%G2e|add%G2e} %L0,%L1"; }" [(set_attr "length" "8")])

(define_insn "subdi3_noppc64" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,&r,r,r,r") (minus:DI (match_operand:DI 1 "reg_or_short_operand" "r,I,0,r,I") (match_operand:DI 2 "gpc_reg_operand" "r,r,r,0,0")))] "! TARGET_POWERPC64" " { if (WORDS_BIG_ENDIAN) return (GET_CODE (operands[1]) != CONST_INT) ? "{sf|subfc} %L0,%L2,%L1;{sfe|subfe} %0,%2,%1" : "{sfi|subfic} %L0,%L2,%1;{sf%G1e|subf%G1e} %0,%2"; else return (GET_CODE (operands[1]) != CONST_INT) ? "{sf|subfc} %0,%2,%1;{sfe|subfe} %L0,%L2,%L1" : "{sfi|subfic} %0,%2,%1;{sf%G1e|subf%G1e} %L0,%L2"; }" [(set_attr "length" "8")])

(define_insn "negdi2_noppc64" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r,0")))] "! TARGET_POWERPC64" " { return (WORDS_BIG_ENDIAN) ? "{sfi|subfic} %L0,%L1,0;{sfze|subfze} %0,%1" : "{sfi|subfic} %0,%1,0;{sfze|subfze} %L0,%L1"; }" [(set_attr "length" "8")])

(define_expand "mulsidi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_mull_call ()); if (WORDS_BIG_ENDIAN) emit_move_insn (operands[0], gen_rtx (REG, DImode, 3)); else { emit_move_insn (operand_subword (operands[0], 0, 0, DImode), gen_rtx (REG, SImode, 3)); emit_move_insn (operand_subword (operands[0], 1, 0, DImode), gen_rtx (REG, SImode, 4)); } DONE; } else if (TARGET_POWER) { emit_insn (gen_mulsidi3_mq (operands[0], operands[1], operands[2])); DONE; } }")

(define_insn "mulsidi3_mq" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r")))) (clobber (match_scratch:SI 3 "=q"))] "TARGET_POWER" "mul %0,%1,%2;mfmq %L0" [(set_attr "type" "imul") (set_attr "length" "8")])

(define_insn "mulsidi3_powerpc" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC && ! TARGET_POWERPC64" " { return (WORDS_BIG_ENDIAN) ? "mulhw %0,%1,%2;mullw %L0,%1,%2" : "mulhw %L0,%1,%2;mullw %0,%1,%2"; }" [(set_attr "type" "imul") (set_attr "length" "8")])

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))] "TARGET_POWERPC && ! TARGET_POWERPC64 && reload_completed" [(set (match_dup 3) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_dup 1)) (sign_extend:DI (match_dup 2))) (const_int 32)))) (set (match_dup 4) (mult:SI (match_dup 1) (match_dup 2)))] " { int endian = (WORDS_BIG_ENDIAN == 0); operands[3] = operand_subword (operands[0], endian, 0, DImode); operands[4] = operand_subword (operands[0], 1 - endian, 0, DImode); }")

(define_insn "umulsidi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r") (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC && ! TARGET_POWERPC64" "* { return (WORDS_BIG_ENDIAN) ? "mulhwu %0,%1,%2;mullw %L0,%1,%2" : "mulhwu %L0,%1,%2;mullw %0,%1,%2"; }" [(set_attr "type" "imul") (set_attr "length" "8")])

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "")) (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" ""))))] "TARGET_POWERPC && ! TARGET_POWERPC64 && reload_completed" [(set (match_dup 3) (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_dup 1)) (zero_extend:DI (match_dup 2))) (const_int 32)))) (set (match_dup 4) (mult:SI (match_dup 1) (match_dup 2)))] " { int endian = (WORDS_BIG_ENDIAN == 0); operands[3] = operand_subword (operands[0], endian, 0, DImode); operands[4] = operand_subword (operands[0], 1 - endian, 0, DImode); }")

(define_expand "smulsi3_highpart" [(set (match_operand:SI 0 "gpc_reg_operand" "") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "" " { if (! TARGET_POWER && ! TARGET_POWERPC) { emit_move_insn (gen_rtx (REG, SImode, 3), operands[1]); emit_move_insn (gen_rtx (REG, SImode, 4), operands[2]); emit_insn (gen_mulh_call ()); emit_move_insn (operands[0], gen_rtx (REG, SImode, 3)); DONE; } else if (TARGET_POWER) { emit_insn (gen_smulsi3_highpart_mq (operands[0], operands[1], operands[2])); DONE; } }")

(define_insn "smulsi3_highpart_mq" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32)))) (clobber (match_scratch:SI 3 "=q"))] "TARGET_POWER" "mul %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (sign_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "TARGET_POWERPC" "mulhw %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "umulsi3_highpart" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 "gpc_reg_operand" "%r")) (zero_extend:DI (match_operand:SI 2 "gpc_reg_operand" "r"))) (const_int 32))))] "TARGET_POWERPC" "mulhwu %0,%1,%2" [(set_attr "type" "imul")])

;; If operands 0 and 2 are in the same register, we have a problem. But ;; operands 0 and 1 (the usual case) can be in the same register. That's ;; why we have the strange constraints below. (define_insn "ashldi3_power" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r,&r") (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r") (match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r"))) (clobber (match_scratch:SI 3 "=X,q,q,q"))] "TARGET_POWER" "@ {sli|slwi} %0,%L1,%h2;{cal %L0,0(0)|li %L0,0} sl%I2q %L0,%L1,%h2;sll%I2q %0,%1,%h2 sl%I2q %L0,%L1,%h2;sll%I2q %0,%1,%h2 sl%I2q %L0,%L1,%h2;sll%I2q %0,%1,%h2" [(set_attr "length" "8")])

(define_insn "lshrdi3_power" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r,r,&r") (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r,0,r") (match_operand:SI 2 "reg_or_cint_operand" "M,i,r,r"))) (clobber (match_scratch:SI 3 "=X,q,q,q"))] "TARGET_POWER" "@ {cal %0,0(0)|li %0,0};{s%A2i|s%A2wi} %L0,%1,%h2 sr%I2q %0,%1,%h2;srl%I2q %L0,%L1,%h2 sr%I2q %0,%1,%h2;srl%I2q %L0,%L1,%h2 sr%I2q %0,%1,%h2;srl%I2q %L0,%L1,%h2" [(set_attr "length" "8")])

;; Shift by a variable amount is too complex to be worth open-coding. We ;; just handle shifts by constants. (define_insn "ashrdi3_power" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "const_int_operand" "M,i"))) (clobber (match_scratch:SI 3 "=X,q"))] "TARGET_POWER" "@ {srai|srawi} %0,%1,31;{srai|srawi} %L0,%1,%h2 sraiq %0,%1,%h2;srliq %L0,%L1,%h2" [(set_attr "length" "8")]) ;; PowerPC64 DImode operations.

(define_expand "adddi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "add_operand" "")))] "" " { if (! TARGET_POWERPC64 && non_add_cint_operand (operands[2], DImode)) FAIL; }")

;; Discourage ai/addic because of carry but provide it in an alternative ;; allowing register zero as source.

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,?r,r") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,b,r,b") (match_operand:DI 2 "add_operand" "r,I,I,J")))] "TARGET_POWERPC64" "@ add %0,%1,%2 addi %0,%1,%2 addic %0,%1,%2 addis %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r") (match_operand:DI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (clobber (match_scratch:DI 3 "=r,r"))] "TARGET_POWERPC64" "@ add. %3,%1,%2 addic. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (plus:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r") (match_operand:DI 2 "reg_or_short_operand" "r,I")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ add. %0,%1,%2 addic. %0,%1,%2" [(set_attr "type" "compare")])

;; Split an add that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine. Note that the low-order ;; add should be last in case the result gets used in an address.

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (plus:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "non_add_cint_operand" "")))] "TARGET_POWERPC64" [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 3))) (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 4)))] " { HOST_WIDE_INT low = INTVAL (operands[2]) & 0xffff; HOST_WIDE_INT high = INTVAL (operands[2]) & (~ (HOST_WIDE_INT) 0xffff);

if (low & 0x8000) high+=0x10000, low |= ((HOST_WIDE_INT) -1) << 16;

operands[3] = GEN_INT (high); operands[4] = GEN_INT (low); }")

(define_insn "one_cmpldi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "nor %0,%1,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "nor. %2,%1,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (not:DI (match_dup 1)))] "TARGET_POWERPC64" "nor. %0,%1,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r") (minus:DI (match_operand:DI 1 "reg_or_short_operand" "r,I") (match_operand:DI 2 "gpc_reg_operand" "r,r")))] "TARGET_POWERPC64" "@ subf %0,%2,%1 subfic %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (minus:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "subf. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (minus:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (minus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "subf. %0,%2,%1" [(set_attr "type" "compare")])

(define_expand "subdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (minus:DI (match_operand:DI 1 "reg_or_short_operand" "") (match_operand:DI 2 "reg_or_cint_operand" "")))] "" " { if (GET_CODE (operands[2]) == CONST_INT) { emit_insn (gen_adddi3 (operands[0], operands[1], negate_rtx (DImode, operands[2]))); DONE; } }")

(define_insn "absdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (abs:DI (match_operand:DI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:DI 2 "=&r,&r"))] "TARGET_POWERPC64" "sradi %2,%1,31;xor %0,%2,%1;subf %0,%2,%0" [(set_attr "length" "12")])

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (abs:DI (match_operand:DI 1 "gpc_reg_operand" "r,0"))) (clobber (match_scratch:DI 2 "=&r,&r"))] "TARGET_POWERPC64 && reload_completed" [(set (match_dup 2) (ashiftrt:DI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:DI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:DI (match_dup 2) (match_dup 0)))] "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (neg:DI (abs:DI (match_operand:DI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:DI 2 "=&r,&r"))] "TARGET_POWERPC64" "sradi %2,%1,31;xor %0,%2,%1;subf %0,%0,%2" [(set_attr "length" "12")])

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "=&r,r") (neg:DI (abs:DI (match_operand:DI 1 "gpc_reg_operand" "r,0")))) (clobber (match_scratch:DI 2 "=&r,&r"))] "TARGET_POWERPC64 && reload_completed" [(set (match_dup 2) (ashiftrt:DI (match_dup 1) (const_int 31))) (set (match_dup 0) (xor:DI (match_dup 2) (match_dup 1))) (set (match_dup 0) (minus:DI (match_dup 0) (match_dup 2)))] "")

(define_expand "negdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "") (neg:DI (match_operand:DI 1 "gpc_reg_operand" "")))] "" "")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "neg %0,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 2 "=r"))] "TARGET_POWERPC64" "neg. %2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (neg:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (neg:DI (match_dup 1)))] "TARGET_POWERPC64" "neg. %0,%1" [(set_attr "type" "compare")])

(define_insn "ffsdi2" [(set (match_operand:DI 0 "gpc_reg_operand" "=&r") (ffs:DI (match_operand:DI 1 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "neg %0,%1;and %0,%0,%1;cntlzd %0,%0;subfic %0,%0,64" [(set_attr "length" "16")])

(define_insn "muldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (mult:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "mulld %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "smuldi3_highpart" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (truncate:DI (lshiftrt:TI (mult:TI (sign_extend:TI (match_operand:DI 1 "gpc_reg_operand" "%r")) (sign_extend:TI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 64))))] "TARGET_POWERPC64" "mulhd %0,%1,%2" [(set_attr "type" "imul")])

(define_insn "umuldi3_highpart" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (truncate:DI (lshiftrt:TI (mult:TI (zero_extend:TI (match_operand:DI 1 "gpc_reg_operand" "%r")) (zero_extend:TI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 64))))] "TARGET_POWERPC64" "mulhdu %0,%1,%2" [(set_attr "type" "imul")])

(define_expand "divdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (div:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "reg_or_cint_operand" "")))] "TARGET_POWERPC64" " { if (GET_CODE (operands[2]) == CONST_INT && exact_log2 (INTVAL (operands[2])) >= 0) ; else operands[2] = force_reg (DImode, operands[2]); }")

(define_expand "moddi3" [(use (match_operand:DI 0 "gpc_reg_operand" "")) (use (match_operand:DI 1 "gpc_reg_operand" "")) (use (match_operand:DI 2 "reg_or_cint_operand" ""))] "TARGET_POWERPC64" " { int i = exact_log2 (INTVAL (operands[2])); rtx temp1; rtx temp2;

if (GET_CODE (operands[2]) != CONST_INT || i < 0) FAIL;

temp1 = gen_reg_rtx (DImode); temp2 = gen_reg_rtx (DImode);

emit_insn (gen_divdi3 (temp1, operands[1], operands[2])); emit_insn (gen_ashldi3 (temp2, temp1, GEN_INT (i))); emit_insn (gen_subdi3 (operands[0], operands[1], temp2)); DONE; }")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (div:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "const_int_operand" "N")))] "TARGET_POWERPC64 && exact_log2 (INTVAL (operands[2])) >= 0" "sradi %0,%1,%p2;addze %0,%0" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (div:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "const_int_operand" "N")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64 && exact_log2 (INTVAL (operands[2])) >= 0" "sradi %3,%1,%p2;addze. %3,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (div:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "const_int_operand" "N")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (div:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64 && exact_log2 (INTVAL (operands[2])) >= 0" "sradi %0,%1,%p2;addze. %0,%0" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (div:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "divd %0,%1,%2" [(set_attr "type" "idiv")])

(define_insn "udivdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (udiv:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "divdu %0,%1,%2" [(set_attr "type" "idiv")])

(define_insn "rotldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")))] "TARGET_POWERPC64" "rld%I2cl %0,%1,%h2,0")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "rld%I2cl. %3,%1,%h2,0" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (rotate:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (rotate:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "rld%I2cl. %0,%1,%h2,0" [(set_attr "type" "delayed_compare")])

(define_expand "ashldi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "TARGET_POWERPC64 || TARGET_POWER" " { if (TARGET_POWERPC64) ; else if (TARGET_POWER) { emit_insn (gen_ashldi3_power (operands[0], operands[1], operands[2])); DONE; } else FAIL; }")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "TARGET_POWERPC64" "sld%I2 %0,%1,%2" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "sld%I2. %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashift:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (ashift:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "sld%I2. %0,%1,%2" [(set_attr "type" "delayed_compare")])

(define_expand "lshrdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "TARGET_POWERPC64 || TARGET_POWER" " { if (TARGET_POWERPC64) ; else if (TARGET_POWER) { emit_insn (gen_lshrdi3_power (operands[0], operands[1], operands[2])); DONE; } else FAIL; }")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "TARGET_POWERPC64" "srd%I2 %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "srd%I2. %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (lshiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (lshiftrt:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "srd%I2. %0,%1,%2" [(set_attr "type" "delayed_compare")])

(define_expand "ashrdi3" [(set (match_operand:DI 0 "gpc_reg_operand" "") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:SI 2 "reg_or_cint_operand" "")))] "TARGET_POWERPC64 || TARGET_POWER" " { if (TARGET_POWERPC64) ; else if (TARGET_POWER && GET_CODE (operands[2]) == CONST_INT) { emit_insn (gen_ashrdi3_power (operands[0], operands[1], operands[2])); DONE; } else FAIL; }")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")))] "TARGET_POWERPC64" "srad%I2 %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "srad%I2. %3,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ashiftrt:DI (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_cint_operand" "ri")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (ashiftrt:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "srad%I2. %0,%1,%2" [(set_attr "type" "delayed_compare")])

(define_insn "anddi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r") (and:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,r") (match_operand:DI 2 "and_operand" "?r,K,J"))) (clobber (match_scratch:CC 3 "=X,x,x"))] "TARGET_POWERPC64" "@ and %0,%1,%2 andi. %0,%1,%b2 andis. %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x") (compare:CC (and:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,r") (match_operand:DI 2 "and_operand" "r,K,J")) (const_int 0))) (clobber (match_scratch:DI 3 "=r,r,r"))] "TARGET_POWERPC64" "@ and. %3,%1,%2 andi. %3,%1,%b2 andis. %3,%1,%u2" [(set_attr "type" "compare,compare,compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x,x") (compare:CC (and:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,r") (match_operand:DI 2 "and_operand" "r,K,J")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r") (and:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ and. %0,%1,%2 andi. %0,%1,%b2 andis. %0,%1,%u2" [(set_attr "type" "compare,compare,compare")])

;; Take a AND with a constant that cannot be done in a single insn and try to ;; split it into two insns. This does not verify that the insns are valid ;; since this need not be done as combine will do it.

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (and:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "non_and_cint_operand" "")))] "TARGET_POWERPC64" [(set (match_dup 0) (and:DI (match_dup 1) (match_dup 3))) (set (match_dup 0) (and:DI (match_dup 0) (match_dup 4)))] " { int maskval = INTVAL (operands[2]); int i, transitions, last_bit_value; int orig = maskval, first_c = maskval, second_c;

/* We know that MASKVAL must have more than 2 bit-transitions. Start at the low-order bit and count for the third transition. When we get there, make a first mask that has everything to the left of that position a one. Then make the second mask to turn off whatever else is needed. */

for (i = 1, transitions = 0, last_bit_value = maskval & 1; i < 32; i++) { if (((maskval >>= 1) & 1) != last_bit_value) last_bit_value ^= 1, transitions++;

  if (transitions > 2)
{
  first_c |= (~0) << i;
  break;
}
}

second_c = orig | ~ first_c;

operands[3] = gen_rtx (CONST_INT, VOIDmode, first_c); operands[4] = gen_rtx (CONST_INT, VOIDmode, second_c); }")

(define_insn "iordi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r") (ior:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,r") (match_operand:DI 2 "logical_operand" "r,K,J")))] "TARGET_POWERPC64" "@ or %0,%1,%2 ori %0,%1,%b2 oris %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "or. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (ior:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "or. %0,%1,%2" [(set_attr "type" "compare")])

;; Split an IOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine.

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (ior:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "non_logical_cint_operand" "")))] "TARGET_POWERPC64" [(set (match_dup 0) (ior:DI (match_dup 1) (match_dup 3))) (set (match_dup 0) (ior:DI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & (~ (HOST_WIDE_INT) 0xffff)); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }")

(define_insn "xordi3" [(set (match_operand:DI 0 "gpc_reg_operand" "=r,r,r") (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r,r,r") (match_operand:DI 2 "logical_operand" "r,K,J")))] "TARGET_POWERPC64" "@ xor %0,%1,%2 xori %0,%1,%b2 xoris %0,%1,%u2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "xor. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (xor:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "xor. %0,%1,%2" [(set_attr "type" "compare")])

;; Split an XOR that we can't do in one insn into two insns, each of which ;; does one 16-bit part. This is used by combine.

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (xor:DI (match_operand:DI 1 "gpc_reg_operand" "") (match_operand:DI 2 "non_logical_cint_operand" "")))] "TARGET_POWERPC64" [(set (match_dup 0) (xor:DI (match_dup 1) (match_dup 3))) (set (match_dup 0) (xor:DI (match_dup 0) (match_dup 4)))] " { operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff0000); operands[4] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); }")

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (not:DI (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC64" "eqv %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (not:DI (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "eqv. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (not:DI (xor:DI (match_operand:DI 1 "gpc_reg_operand" "%r") (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (not:DI (xor:DI (match_dup 1) (match_dup 2))))] "TARGET_POWERPC64" "eqv. %0,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "andc %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "andc. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (and:DI (not:DI (match_dup 1)) (match_dup 2)))] "TARGET_POWERPC64" "andc. %0,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")))] "TARGET_POWERPC64" "orc %0,%2,%1")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "orc. %3,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "r")) (match_operand:DI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (ior:DI (not:DI (match_dup 1)) (match_dup 2)))] "TARGET_POWERPC64" "orc. %0,%2,%1" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC64" "nand %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "nand. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (ior:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (ior:DI (not:DI (match_dup 1)) (not:DI (match_dup 2))))] "TARGET_POWERPC64" "nand. %0,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:DI 0 "gpc_reg_operand" "=r") (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))))] "TARGET_POWERPC64" "nor %0,%1,%2")

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (clobber (match_scratch:DI 3 "=r"))] "TARGET_POWERPC64" "nor. %3,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (and:DI (not:DI (match_operand:DI 1 "gpc_reg_operand" "%r")) (not:DI (match_operand:DI 2 "gpc_reg_operand" "r"))) (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (and:DI (not:DI (match_dup 1)) (not:DI (match_dup 2))))] "TARGET_POWERPC64" "nor. %0,%1,%2" [(set_attr "type" "compare")]) ;; Now define ways of moving data around.

;; Elf specific ways of loading addresses for non-PIC code. ;; The output of this could be r0, but we limit it to base ;; registers, since almost all uses of this will need it ;; in a base register shortly. (define_insn "elf_high" [(set (match_operand:SI 0 "register_operand" "=b") (high:SI (match_operand 1 "" "")))] "TARGET_ELF && !TARGET_64BIT" "{cau|addis} %0,0,%1@ha")

(define_insn "elf_low" [(set (match_operand:SI 0 "register_operand" "=r") (lo_sum:SI (match_operand:SI 1 "register_operand" "b") (match_operand 2 "" "")))] "TARGET_ELF && !TARGET_64BIT" "{cal %0,%a2@l(%1)|addi %0,%1,%2@l}")

;; For SI, we special-case integers that can't be loaded in one insn. We ;; do the load 16-bits at a time. We could do this by loading from memory, ;; and this is even supposed to be faster, but it is simpler not to get ;; integers in the TOC. (define_expand "movsi" [(set (match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (SImode, operands[1]);

/* Convert a move of a CONST_DOUBLE into a CONST_INT */ if (GET_CODE (operands[1]) == CONST_DOUBLE) operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));

/* Use default pattern for address of ELF small data */ if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST) && small_data_operand (operands[1], SImode)) { emit_insn (gen_rtx (SET, VOIDmode, operands[0], operands[1])); DONE; }

if (TARGET_ELF && TARGET_NO_TOC && !TARGET_64BIT && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != CONST_INT) { rtx target = (reload_completed || reload_in_progress) ? operands[0] : gen_reg_rtx (SImode);

  /* If this is a function address on -mcall-aixdesc or -mcall-nt,
 convert it to the address of the descriptor.  */
  if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_NT)
  && GET_CODE (operands[1]) == SYMBOL_REF
  && XSTR (operands[1], 0)[0] == '.')
{
  char *name = XSTR (operands[1], 0);
  rtx new_ref;
  while (*name == '.')
    name++;
  new_ref = gen_rtx (SYMBOL_REF, Pmode, name);
  CONSTANT_POOL_ADDRESS_P (new_ref) = CONSTANT_POOL_ADDRESS_P (operands[1]);
  SYMBOL_REF_FLAG (new_ref) = SYMBOL_REF_FLAG (operands[1]);
  SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
  operands[1] = new_ref;
}

  emit_insn (gen_elf_high (target, operands[1]));
  emit_insn (gen_elf_low (operands[0], target, operands[1]));
  DONE;
}

if (GET_CODE (operands[1]) == CONST && DEFAULT_ABI == ABI_NT && !side_effects_p (operands[0])) { rtx const_term = const0_rtx; rtx sym = eliminate_constant_term (XEXP (operands[1], 0), &const_term); if (sym && GET_CODE (const_term) == CONST_INT && (GET_CODE (sym) == SYMBOL_REF || GET_CODE (sym) == LABEL_REF)) { unsigned HOST_WIDE_INT value = INTVAL (const_term); int new_reg_p = (flag_expensive_optimizations && !reload_completed && !reload_in_progress); rtx tmp1 = (new_reg_p && value != 0) ? gen_reg_rtx (SImode) : operands[0];

  emit_insn (gen_movsi (tmp1, sym));
  if (INTVAL (const_term) != 0)
    {
      if (value + 0x8000 < 0x10000)
	emit_insn (gen_addsi3 (operands[0], tmp1, GEN_INT (value)));

      else
	{
	  HOST_WIDE_INT high_int = value & (~ (HOST_WIDE_INT) 0xffff);
	  HOST_WIDE_INT low_int = value & 0xffff;
	  rtx tmp2 = (!new_reg_p || !low_int) ? operands[0] : gen_reg_rtx (Pmode);

	  if (low_int & 0x8000)
	    high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16;

	  emit_insn (gen_addsi3 (tmp2, tmp1, GEN_INT (high_int)));
	  if (low_int)
	    emit_insn (gen_addsi3 (operands[0], tmp2, GEN_INT (low_int)));
	}
    }
  DONE;
}
  else
fatal_insn (\"bad address\", operands[1]);
}

if ((!TARGET_WINDOWS_NT || DEFAULT_ABI != ABI_NT) && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT && GET_CODE (operands[1]) != HIGH && ! LEGITIMATE_CONSTANT_POOL_ADDRESS_P (operands[1])) { /* If we are to limit the number of things we put in the TOC and this is a symbol plus a constant we can add in one insn, just put the symbol in the TOC and add the constant. Don't do this if reload is in progress. */ if (GET_CODE (operands[1]) == CONST && TARGET_NO_SUM_IN_TOC && ! reload_in_progress && GET_CODE (XEXP (operands[1], 0)) == PLUS && add_operand (XEXP (XEXP (operands[1], 0), 1), SImode) && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF) && ! side_effects_p (operands[0])) { rtx sym = force_const_mem (SImode, XEXP (XEXP (operands[1], 0), 0)); rtx other = XEXP (XEXP (operands[1], 0), 1);

  emit_insn (gen_addsi3 (operands[0], force_reg (SImode, sym), other));
  DONE;
}

  operands[1] = force_const_mem (SImode, operands[1]);
  if (! memory_address_p (SImode, XEXP (operands[1], 0))
  && ! reload_in_progress)
operands[1] = change_address (operands[1], SImode,
			      XEXP (operands[1], 0));
}

}")

(define_insn "" [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,r,m,r,r,r,r,r,*q,cl,*h") (match_operand:SI 1 "input_operand" "r,S,T,U,m,r,I,J,n,R,*h,r,r,0"))] "gpc_reg_operand (operands[0], SImode) || gpc_reg_operand (operands[1], SImode)" "@ mr %0,%1 {l|lwz} %0,[toc]%1(2) {l|lwz} %0,[toc]%l1(2) {cal|la} %0,%a1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%X0|stw%U0%X0} %1,%0 {lil|li} %0,%1 {liu|lis} %0,%u1

{cal|la} %0,%1(%) mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" ",load,load,,load,,,,,,,,mtjmpr,*") (set_attr "length" "4,4,4,4,4,4,4,4,8,4,4,4,4,4")])

;; Split a load of a large constant into the appropriate two-insn ;; sequence.

(define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (match_operand:SI 1 "const_int_operand" ""))] "(unsigned) (INTVAL (operands[1]) + 0x8000) >= 0x10000 && (INTVAL (operands[1]) & 0xffff) != 0" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff0000); operands[3] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[1]) & 0xffff); }")

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_dup 1))] "" "mr. %0,%1" [(set_attr "type" "compare")]) (define_expand "movhi" [(set (match_operand:HI 0 "general_operand" "") (match_operand:HI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (HImode, operands[1]);

if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT) { operands[1] = force_const_mem (HImode, operands[1]); if (! memory_address_p (HImode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], HImode, XEXP (operands[1], 0)); } }")

(define_insn "" [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r,r,q,cl,h") (match_operand:HI 1 "input_operand" "r,m,r,i,h,r,r,0"))] "gpc_reg_operand (operands[0], HImode) || gpc_reg_operand (operands[1], HImode)" "@ mr %0,%1 lhz%U1%X1 %0,%1 sth%U0%X0 %1,%0 {lil|li} %0,%w1 mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" ",load,,,,,mtjmpr,*")])

(define_expand "movqi" [(set (match_operand:QI 0 "general_operand" "") (match_operand:QI 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (QImode, operands[1]);

if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != CONST_INT) { operands[1] = force_const_mem (QImode, operands[1]); if (! memory_address_p (QImode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], QImode, XEXP (operands[1], 0)); } }")

(define_insn "" [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r,r,q,cl,h") (match_operand:QI 1 "input_operand" "r,m,r,i,h,r,r,0"))] "gpc_reg_operand (operands[0], QImode) || gpc_reg_operand (operands[1], QImode)" "@ mr %0,%1 lbz%U1%X1 %0,%1 stb%U0%X0 %1,%0 {lil|li} %0,%1 mf%1 %0 mt%0 %1 mt%0 %1 cror 0,0,0" [(set_attr "type" ",load,,,,,mtjmpr,*")]) ;; Here is how to move condition codes around. When we store CC data in ;; an integer register or memory, we store just the high-order 4 bits. ;; This lets us not shift in the most common case of CR0. (define_expand "movcc" [(set (match_operand:CC 0 "nonimmediate_operand" "") (match_operand:CC 1 "nonimmediate_operand" ""))] "" "")

(define_insn "" [(set (match_operand:CC 0 "nonimmediate_operand" "=y,x,y,r,r,r,r,m") (match_operand:CC 1 "nonimmediate_operand" "y,r,r,x,y,r,m,r"))] "register_operand (operands[0], CCmode) || register_operand (operands[1], CCmode)" "@ mcrf %0,%1 mtcrf 128,%1 {rlinm|rlwinm} %1,%1,%F0,0xffffffff;mtcrf %R0,%1;{rlinm|rlwinm} %1,%1,%f0,0xffffffff mfcr %0 mfcr %0;{rlinm|rlwinm} %0,%0,%f1,0xf0000000 mr %0,%1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%U1|stw%U0%U1} %1,%0" [(set_attr "type" ",,,compare,,,load,") (set_attr "length" ",,12,,8,,,")]) ;; For floating-point, we normally deal with the floating-point registers ;; unless -msoft-float is used. The sole exception is that parameter passing ;; can produce floating-point values in fixed-point registers. Unless the ;; value is a simple constant or already in memory, we deal with this by ;; allocating memory and copying the value explicitly via that memory location. (define_expand "movsf" [(set (match_operand:SF 0 "nonimmediate_operand" "") (match_operand:SF 1 "any_operand" ""))] "" " { /* If we are called from reload, we might be getting a SUBREG of a hard reg. So expand it. */ if (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < FIRST_PSEUDO_REGISTER) operands[0] = alter_subreg (operands[0]); if (GET_CODE (operands[1]) == SUBREG && GET_CODE (SUBREG_REG (operands[1])) == REG && REGNO (SUBREG_REG (operands[1])) < FIRST_PSEUDO_REGISTER) operands[1] = alter_subreg (operands[1]);

if (TARGET_SOFT_FLOAT && GET_CODE (operands[0]) == MEM) operands[1] = force_reg (SFmode, operands[1]);

else if (TARGET_HARD_FLOAT) { if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) < 32) { /* If this is a store to memory or another integer register do the move directly. Otherwise store to a temporary stack slot and load from there into a floating point register. */

  if (GET_CODE (operands[0]) == MEM
      || (GET_CODE (operands[0]) == REG
	  && (REGNO (operands[0]) < 32
	      || (reload_in_progress
		  && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))))
    {
      emit_move_insn (operand_subword (operands[0], 0, 0, SFmode),
		      operand_subword (operands[1], 0, 0, SFmode));
      DONE;
    }
  else
    {
      rtx stack_slot = assign_stack_temp (SFmode, 4, 0);

      emit_move_insn (stack_slot, operands[1]);
      emit_move_insn (operands[0], stack_slot);
      DONE;
    }
}

  if (GET_CODE (operands[0]) == MEM)
{
  /* If operands[1] is a register, it may have double-precision data
     in it, so truncate it to single precision.  We need not do
     this for POWERPC.  */
  if (! TARGET_POWERPC && TARGET_HARD_FLOAT
      && GET_CODE (operands[1]) == REG)
    {
      rtx newreg
	= reload_in_progress ? operands[1] : gen_reg_rtx (SFmode);
      emit_insn (gen_aux_truncdfsf2 (newreg, operands[1]));
      operands[1] = newreg;
    }

  operands[1] = force_reg (SFmode, operands[1]);
}

  if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32)
{
  if (GET_CODE (operands[1]) == MEM

#if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT && ! defined(REAL_IS_NOT_DOUBLE) || GET_CODE (operands[1]) == CONST_DOUBLE #endif || (GET_CODE (operands[1]) == REG && (REGNO (operands[1]) < 32 || (reload_in_progress && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)))) { emit_move_insn (operand_subword (operands[0], 0, 0, SFmode), operand_subword (operands[1], 0, 0, SFmode)); DONE; } else { rtx stack_slot = assign_stack_temp (SFmode, 4, 0);

      emit_move_insn (stack_slot, operands[1]);
      emit_move_insn (operands[0], stack_slot);
      DONE;
    }
}
}

if (CONSTANT_P (operands[1])) { operands[1] = force_const_mem (SFmode, operands[1]); if (! memory_address_p (SFmode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], SFmode, XEXP (operands[1], 0)); } }")

(define_split [(set (match_operand:SF 0 "gpc_reg_operand" "") (match_operand:SF 1 "easy_fp_constant" ""))] "reload_completed && REGNO (operands[0]) <= 31" [(set (match_dup 2) (match_dup 3))] " { operands[2] = operand_subword (operands[0], 0, 0, SFmode); operands[3] = operand_subword (operands[1], 0, 0, SFmode); }")

(define_insn "" [(set (match_operand:SF 0 "fp_reg_or_mem_operand" "=f,f,m") (match_operand:SF 1 "input_operand" "f,m,f"))] "(gpc_reg_operand (operands[0], SFmode) || gpc_reg_operand (operands[1], SFmode)) && TARGET_HARD_FLOAT" "@ fmr %0,%1 lfs%U1%X1 %0,%1 stfs%U0%X0 %1,%0" [(set_attr "type" "fp,fpload,*")])

(define_insn "" [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,m,r,r,r") (match_operand:SF 1 "input_operand" "r,m,r,I,J,R"))] "(gpc_reg_operand (operands[0], SFmode) || gpc_reg_operand (operands[1], SFmode)) && TARGET_SOFT_FLOAT" "@ mr %0,%1 {l%U1%X1|lwz%U1%X1} %0,%1 {st%U0%X0|stw%U0%X0} %1,%0 {lil|li} %0,%1 {liu|lis} %0,%u1 {cal|la} %0,%1(%)" [(set_attr "type" ",load,,,,")])

(define_expand "movdf" [(set (match_operand:DF 0 "nonimmediate_operand" "") (match_operand:DF 1 "any_operand" ""))] "" " { if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (DFmode, operands[1]);

  /* Stores between FPR and any non-FPR registers must go through a
     temporary stack slot.  */

if (TARGET_POWERPC64 && GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG && ((FP_REGNO_P (REGNO (operands[0])) && ! FP_REGNO_P (REGNO (operands[1]))) || (FP_REGNO_P (REGNO (operands[1])) && ! FP_REGNO_P (REGNO (operands[0]))))) { rtx stack_slot = assign_stack_temp (DFmode, 8, 0);

  emit_move_insn (stack_slot, operands[1]);
  emit_move_insn (operands[0], stack_slot);
  DONE;
}

if (CONSTANT_P (operands[1]) && ! easy_fp_constant (operands[1], DFmode)) { operands[1] = force_const_mem (DFmode, operands[1]); if (! memory_address_p (DFmode, XEXP (operands[1], 0)) && ! reload_in_progress) operands[1] = change_address (operands[1], DFmode, XEXP (operands[1], 0)); } }")

(define_split [(set (match_operand:DF 0 "gpc_reg_operand" "") (match_operand:DF 1 "easy_fp_constant" ""))] "reload_completed && REGNO (operands[0]) <= 31" [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { operands[2] = operand_subword (operands[0], 0, 0, DFmode); operands[3] = operand_subword (operands[1], 0, 0, DFmode); operands[4] = operand_subword (operands[0], 1, 0, DFmode); operands[5] = operand_subword (operands[1], 1, 0, DFmode); }")

;; Don't have reload use general registers to load a constant. First, ;; it might not work if the output operand has is the equivalent of ;; a non-offsettable memref, but also it is less efficient than loading ;; the constant into an FP register, since it will probably be used there. ;; The "??" is a kludge until we can figure out a more reasonable way ;; of handling these non-offsettable values. (define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m") (match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))] "! TARGET_POWERPC64 && TARGET_HARD_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. / if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return "mr %L0,%L1;mr %0,%1"; else return "mr %0,%1;mr %L0,%L1"; case 1: / If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. / if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return "{l|lwz} %L0,%L1;{l|lwz} %0,%1"; else return "{l%U1|lwz%U1} %0,%1;{l|lwz} %L0,%L1"; case 2: return "{st%U0|stw%U0} %1,%0;{st|stw} %L1,%L0"; case 3: return "#"; case 4: return "fmr %0,%1"; case 5: return "lfd%U1%X1 %0,%1"; case 6: return "stfd%U0%X0 %1,%0"; } }" [(set_attr "type" ",load,,,fp,fpload,") (set_attr "length" "8,8,8,8,,,")])

(define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,o,r") (match_operand:DF 1 "input_operand" "r,o,r,G"))] "! TARGET_POWERPC64 && TARGET_SOFT_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. / if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return "mr %L0,%L1;mr %0,%1"; else return "mr %0,%1;mr %L0,%L1"; case 1: / If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. / if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return "{l|lwz} %L0,%L1;{l|lwz} %0,%1"; else return "{l%U1|lwz%U1} %0,%1;{l|lwz} %L0,%L1"; case 2: return "{st%U0|stw%U0} %1,%0;{st|stw} %L1,%L0"; case 3: return "#"; } }" [(set_attr "type" ",load,,") (set_attr "length" "8,8,8,8")])

(define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=!r,??r,o,!r,f,f,m") (match_operand:DF 1 "input_operand" "r,o,r,G,f,m,f"))] "TARGET_POWERPC64 && TARGET_HARD_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "@ mr %0,%1 ld%U1%X1 %0,%1 std%U0%X0 %1,%0

fmr %0,%1 lfd%U1%X1 %0,%1 stfd%U0%X0 %1,%0" [(set_attr "type" ",load,,,fp,fpload,")])

(define_insn "" [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,o,r") (match_operand:DF 1 "input_operand" "r,o,r,G"))] "TARGET_POWERPC64 && TARGET_SOFT_FLOAT && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))" "@ mr %0,%1 ld%U1%X1 %0,%1 std%U0%X0 %1,%0 #" [(set_attr "type" ",load,,*")]) ;; Next come the multi-word integer load and store and the load and store ;; multiple insns. (define_expand "movdi" [(set (match_operand:DI 0 "general_operand" "") (match_operand:DI 1 "any_operand" ""))] "" " { if (! TARGET_64BIT && ! general_operand (operands[1], DImode)) FAIL;

if (GET_CODE (operands[0]) != REG) operands[1] = force_reg (DImode, operands[1]);

if (GET_CODE (operands[1]) == CONST_DOUBLE || GET_CODE (operands[1]) == CONST_INT) { HOST_WIDE_INT low; HOST_WIDE_INT high;

  if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
  low = CONST_DOUBLE_LOW (operands[1]);
  high = CONST_DOUBLE_HIGH (operands[1]);
}
  else

#if HOST_BITS_PER_WIDE_INT == 32 { low = INTVAL (operands[1]); high = (low < 0) ? ~0 : 0; } #else { low = INTVAL (operands[1]) & 0xffffffff; high = (HOST_WIDE_INT) INTVAL (operands[1]) >> 32; } #endif

  if (! TARGET_POWERPC64)
{
  emit_move_insn (gen_rtx (SUBREG, SImode, operands[0],
		  WORDS_BIG_ENDIAN), GEN_INT (low));

  emit_move_insn (gen_rtx (SUBREG, SImode, operands[0],
		  ! WORDS_BIG_ENDIAN), GEN_INT (high));
  DONE;
}
  else
{
  if (high + 0x8000 >= 0x10000)
    {
      emit_move_insn (gen_rtx (SUBREG, SImode, operands[0], 1),
		      GEN_INT (high));
      emit_insn (gen_ashldi3 (operands[0], operands[0], GEN_INT(32)));
      if (low)
	{
	  HOST_WIDE_INT low_low = low & 0xffff;
	  HOST_WIDE_INT low_high = low & (~ (HOST_WIDE_INT) 0xffff);
	  if (low_high)
	    emit_insn (gen_iordi3 (operands[0], operands[0],
				   GEN_INT (low_high)));
	  if (low_low)
	    emit_insn (gen_iordi3 (operands[0], operands[0],
				   GEN_INT (low_low)));
        }
    }
  else if (low)
    emit_move_insn (gen_rtx (SUBREG, SImode, operands[0], 1),
		    GEN_INT (low));
  DONE;
    }
}

  /* Stores between FPR and any non-FPR registers must go through a
     temporary stack slot.  */

if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG && ((FP_REGNO_P (REGNO (operands[0])) && ! FP_REGNO_P (REGNO (operands[1]))) || (FP_REGNO_P (REGNO (operands[1])) && ! FP_REGNO_P (REGNO (operands[0]))))) { rtx stack_slot = assign_stack_temp (DImode, 8, 0);

  emit_move_insn (stack_slot, operands[1]);
  emit_move_insn (operands[0], stack_slot);
  DONE;
}

}")

(define_insn "" [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,f,f,m") (match_operand:DI 1 "input_operand" "r,m,r,f,m,f"))] "! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode) || gpc_reg_operand (operands[1], DImode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. / if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return "mr %L0,%L1;mr %0,%1"; else return "mr %0,%1;mr %L0,%L1"; case 1: / If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. / if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return "{l|lwz} %L0,%L1;{l|lwz} %0,%1"; else return "{l%U1|lwz%U1} %0,%1;{l|lwz} %L0,%L1"; case 2: return "{st%U0|stw%U0} %1,%0;{st|stw} %L1,%L0"; case 3: return "fmr %0,%1"; case 4: return "lfd%U1%X1 %0,%1"; case 5: return "stfd%U0%X0 %1,%0"; } }" [(set_attr "type" ",load,,fp,fpload,") (set_attr "length" "8,8,8,,,*")])

(define_insn "" [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,m,r,r,r,r,f,f,m,r,*h,*h") (match_operand:DI 1 "input_operand" "r,m,r,I,J,n,R,f,m,f,*h,r,0"))] "TARGET_POWERPC64 && (gpc_reg_operand (operands[0], DImode) || gpc_reg_operand (operands[1], DImode))" "@ mr %0,%1 ld%U1%X1 %0,%1 std%U0%X0 %1,%0 li %0,%1 lis %0,%u1

{cal|la} %0,%1(%) fmr %0,%1 lfd%U1%X1 %0,%1 stfd%U0%X0 %1,%0 mf%1 %0 mt%0 %1 cror 0,0,0" [(set_attr "type" ",load,,,,,,fp,fpload,,,mtjmpr,") (set_attr "length" "4,4,4,4,4,20,4,4,4,4,4,4,4")])

;; Split a load of a large constant into the appropriate five-instruction ;; sequence. The expansion in movdi tries to perform the minimum number of ;; steps, but here we have to handle anything in a constant number of insns.

(define_split [(set (match_operand:DI 0 "gpc_reg_operand" "") (match_operand:DI 1 "const_double_operand" ""))] "TARGET_POWERPC64" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:DI (match_dup 0) (match_dup 3))) (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32))) (set (match_dup 0) (ior:DI (match_dup 0) (match_dup 4))) (set (match_dup 0) (ior:DI (match_dup 0) (match_dup 5)))] " { HOST_WIDE_INT low; HOST_WIDE_INT high;

if (GET_CODE (operands[1]) == CONST_DOUBLE) { low = CONST_DOUBLE_LOW (operands[1]); high = CONST_DOUBLE_HIGH (operands[1]); } else #if HOST_BITS_PER_WIDE_INT == 32 { low = INTVAL (operands[1]); high = (low < 0) ? ~0 : 0; } #else { low = INTVAL (operands[1]) & 0xffffffff; high = (HOST_WIDE_INT) INTVAL (operands[1]) >> 32; } #endif

if ((high + 0x8000) < 0x10000 && ((low & 0xffff) == 0 || (low & (~ (HOST_WIDE_INT) 0xffff)) == 0)) FAIL;

operands[2] = GEN_INT (high & (~ (HOST_WIDE_INT) 0xffff)); operands[3] = GEN_INT (high & 0xffff); operands[4] = GEN_INT (low & (~ (HOST_WIDE_INT) 0xffff)); operands[5] = GEN_INT (low & 0xffff); }")

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (match_operand:DI 1 "gpc_reg_operand" "r") (const_int 0))) (set (match_operand:DI 0 "gpc_reg_operand" "=r") (match_dup 1))] "TARGET_POWERPC64" "mr. %0,%1" [(set_attr "type" "compare")]) ;; TImode is similar, except that we usually want to compute the address into ;; a register and use lsi/stsi (the exception is during reload). MQ is also ;; clobbered in stsi for POWER, so we need a SCRATCH for it. (define_expand "movti" [(parallel [(set (match_operand:TI 0 "general_operand" "") (match_operand:TI 1 "general_operand" "")) (clobber (scratch:SI))])] "TARGET_STRING || TARGET_POWERPC64" " { if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (TImode, operands[1]);

if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) != REG && ! reload_in_progress) operands[0] = change_address (operands[0], TImode, copy_addr_to_reg (XEXP (operands[0], 0)));

if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) != REG && ! reload_in_progress) operands[1] = change_address (operands[1], TImode, copy_addr_to_reg (XEXP (operands[1], 0))); }")

;; We say that MQ is clobbered in the last alternative because the first ;; alternative would never get used otherwise since it would need a reload ;; while the 2nd alternative would not. We put memory cases first so they ;; are preferred. Otherwise, we'd try to reload the output instead of ;; giving the SCRATCH mq. (define_insn "" [(set (match_operand:TI 0 "reg_or_mem_operand" "=Q,m,????r,????r,????r") (match_operand:TI 1 "reg_or_mem_operand" "r,r,r,Q,m")) (clobber (match_scratch:SI 2 "=q,q#X,X,X,X"))] "TARGET_STRING && TARGET_POWER && ! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { default: abort ();

case 0:
  return \"{stsi|stswi} %1,%P0,16\";

case 1:
  return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\;{st|stw} %Y1,%Y0\;{st|stw} %Z1,%Z0\";

case 2:
  /* Normally copy registers with lowest numbered register copied first.
 But copy in the other order if the first register of the output
 is the second, third, or fourth register in the input.  */
  if (REGNO (operands[0]) >= REGNO (operands[1]) + 1
  && REGNO (operands[0]) <= REGNO (operands[1]) + 3)
return \"mr %Z0,%Z1\;mr %Y0,%Y1\;mr %L0,%L1\;mr %0,%1\";
  else
return \"mr %0,%1\;mr %L0,%L1\;mr %Y0,%Y1\;mr %Z0,%Z1\";
case 3:
  /* If the address is not used in the output, we can use lsi.  Otherwise,
 fall through to generating four loads.  */
  if (! reg_overlap_mentioned_p (operands[0], operands[1]))
return \"{lsi|lswi} %0,%P1,16\";
  /* ... fall through ... */
case 4:
  /* If the address register is the same as the register for the lowest-
 addressed word, load it last.  Similarly for the next two words.
 Otherwise load lowest address to highest.  */
  if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
		     operands[1], 0))
return \"{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %0,%1\";
  else if (refers_to_regno_p (REGNO (operands[0]) + 1,
			  REGNO (operands[0]) + 2, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %L0,%L1\";
  else if (refers_to_regno_p (REGNO (operands[0]) + 2,
			  REGNO (operands[0]) + 3, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Z0,%Z1\;{l|lwz} %Y0,%Y1\";
  else
return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\";
}

}" [(set_attr "type" ",load,load,,") (set_attr "length" ",16,16,*,16")])

(define_insn "" [(set (match_operand:TI 0 "reg_or_mem_operand" "=m,????r,????r") (match_operand:TI 1 "reg_or_mem_operand" "r,r,m")) (clobber (match_scratch:SI 2 "=X,X,X"))] "TARGET_STRING && !TARGET_POWER && ! TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { default: abort ();

case 0:
  return \"{st%U0|stw%U0} %1,%0\;{st|stw} %L1,%L0\;{st|stw} %Y1,%Y0\;{st|stw} %Z1,%Z0\";

case 1:
  /* Normally copy registers with lowest numbered register copied first.
 But copy in the other order if the first register of the output
 is the second, third, or fourth register in the input.  */
  if (REGNO (operands[0]) >= REGNO (operands[1]) + 1
  && REGNO (operands[0]) <= REGNO (operands[1]) + 3)
return \"mr %Z0,%Z1\;mr %Y0,%Y1\;mr %L0,%L1\;mr %0,%1\";
  else
return \"mr %0,%1\;mr %L0,%L1\;mr %Y0,%Y1\;mr %Z0,%Z1\";
case 2:
  /* If the address register is the same as the register for the lowest-
 addressed word, load it last.  Similarly for the next two words.
 Otherwise load lowest address to highest.  */
  if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
		     operands[1], 0))
return \"{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %0,%1\";
  else if (refers_to_regno_p (REGNO (operands[0]) + 1,
			  REGNO (operands[0]) + 2, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\;{l|lwz} %L0,%L1\";
  else if (refers_to_regno_p (REGNO (operands[0]) + 2,
			  REGNO (operands[0]) + 3, operands[1], 0))
return \"{l|lwz} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Z0,%Z1\;{l|lwz} %Y0,%Y1\";
  else
return \"{l%U1|lwz%U1} %0,%1\;{l|lwz} %L0,%L1\;{l|lwz} %Y0,%Y1\;{l|lwz} %Z0,%Z1\";
}

}" [(set_attr "type" "load,,") (set_attr "length" "16,16,16")])

(define_insn "" [(set (match_operand:TI 0 "nonimmediate_operand" "=r,r,m") (match_operand:TI 1 "input_operand" "r,m,r"))] "TARGET_POWERPC64 && (gpc_reg_operand (operands[0], TImode) || gpc_reg_operand (operands[1], TImode))" "* { switch (which_alternative) { case 0: /* We normally copy the low-numbered register first. However, if the first register operand 0 is the same as the second register of operand 1, we must copy in the opposite order. / if (REGNO (operands[0]) == REGNO (operands[1]) + 1) return "mr %L0,%L1;mr %0,%1"; else return "mr %0,%1;mr %L0,%L1"; case 1: / If the low-address word is used in the address, we must load it last. Otherwise, load it first. Note that we cannot have auto-increment in that case since the address register is known to be dead. / if (refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1, operands [1], 0)) return "ld %L0,%L1;ld %0,%1"; else return "ld%U1 %0,%1;ld %L0,%L1"; case 2: return "std%U0 %1,%0;std %L1,%L0"; } }" [(set_attr "type" ",load,*") (set_attr "length" "8,8,8")]) (define_expand "load_multiple" [(match_par_dup 3 [(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" "")) (use (match_operand:SI 2 "" ""))])] "TARGET_STRING" " { int regno; int count; rtx from; int i;

/* Support only loading a constant number of fixed-point registers from memory and only bother with this if more than two; the machine doesn't support more than eight. */ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) <= 2 || INTVAL (operands[2]) > 8 || GET_CODE (operands[1]) != MEM || GET_CODE (operands[0]) != REG || REGNO (operands[0]) >= 32) FAIL;

count = INTVAL (operands[2]); regno = REGNO (operands[0]);

operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count)); from = force_reg (SImode, XEXP (operands[1], 0));

for (i = 0; i < count; i++) XVECEXP (operands[3], 0, i) = gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, regno + i), gen_rtx (MEM, SImode, plus_constant (from, i * 4))); }")

(define_insn "" [(match_parallel 0 "load_multiple_operation" [(set (match_operand:SI 1 "gpc_reg_operand" "=r") (mem:SI (match_operand:SI 2 "register_operand" "b")))])] "TARGET_STRING" "* { /* We have to handle the case where the pseudo used to contain the address is assigned to one of the output registers. */ int i, j; int words = XVECLEN (operands[0], 0); rtx xop[10];

if (XVECLEN (operands[0], 0) == 1) return "{l|lwz} %1,0(%2)";

for (i = 0; i < words; i++) if (refers_to_regno_p (REGNO (operands[1]) + i, REGNO (operands[1]) + i + 1, operands[2], 0)) { if (i == words-1) { xop[0] = operands[1]; xop[1] = operands[2]; xop[2] = GEN_INT (4 * (words-1)); output_asm_insn ("{lsi|lswi} %0,%1,%2;{l|lwz} %1,%2(%1)", xop); return ""; } else if (i == 0) { xop[0] = operands[1]; xop[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); xop[2] = GEN_INT (4 * (words-1)); output_asm_insn ("{cal %0,4(%0)|addi %0,%0,4};{lsi|lswi} %1,%0,%2;{l|lwz} %0,-4(%0)", xop); return ""; } else { for (j = 0; j < words; j++) if (j != i) { xop[0] = gen_rtx (REG, SImode, REGNO (operands[1]) + j); xop[1] = operands[2]; xop[2] = GEN_INT (j * 4); output_asm_insn ("{l|lwz} %0,%2(%1)", xop); } xop[0] = operands[2]; xop[1] = GEN_INT (i * 4); output_asm_insn ("{l|lwz} %0,%1(%0)", xop); return ""; } }

return "{lsi|lswi} %1,%2,%N0"; }" [(set_attr "type" "load") (set_attr "length" "32")])

(define_expand "store_multiple" [(match_par_dup 3 [(set (match_operand:SI 0 "" "") (match_operand:SI 1 "" "")) (clobber (scratch:SI)) (use (match_operand:SI 2 "" ""))])] "TARGET_STRING" " { int regno; int count; rtx to; int i;

/* Support only storing a constant number of fixed-point registers to memory and only bother with this if more than two; the machine doesn't support more than eight. */ if (GET_CODE (operands[2]) != CONST_INT || INTVAL (operands[2]) <= 2 || INTVAL (operands[2]) > 8 || GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != REG || REGNO (operands[1]) >= 32) FAIL;

count = INTVAL (operands[2]); regno = REGNO (operands[1]);

operands[3] = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (count + 1)); to = force_reg (SImode, XEXP (operands[0], 0));

XVECEXP (operands[3], 0, 0) = gen_rtx (SET, VOIDmode, gen_rtx (MEM, SImode, to), operands[1]); XVECEXP (operands[3], 0, 1) = gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, SImode));

for (i = 1; i < count; i++) XVECEXP (operands[3], 0, i + 1) = gen_rtx (SET, VOIDmode, gen_rtx (MEM, SImode, plus_constant (to, i * 4)), gen_rtx (REG, SImode, regno + i)); }")

(define_insn "" [(match_parallel 0 "store_multiple_operation" [(set (match_operand:SI 1 "indirect_operand" "=Q") (match_operand:SI 2 "gpc_reg_operand" "r")) (clobber (match_scratch:SI 3 "=q"))])] "TARGET_STRING && TARGET_POWER" "{stsi|stswi} %2,%P1,%O0")

(define_insn "" [(match_parallel 0 "store_multiple_operation" [(set (mem:SI (match_operand:SI 1 "register_operand" "b")) (match_operand:SI 2 "gpc_reg_operand" "r")) (clobber (match_scratch:SI 3 "X"))])] "TARGET_STRING && !TARGET_POWER" "{stsi|stswi} %2,%1,%O0")

;; String/block move insn. ;; Argument 0 is the destination ;; Argument 1 is the source ;; Argument 2 is the length ;; Argument 3 is the alignment

(define_expand "movstrsi" [(parallel [(set (match_operand:BLK 0 "" "") (match_operand:BLK 1 "" "")) (use (match_operand:SI 2 "" "")) (use (match_operand:SI 3 "" ""))])] "" " { if (expand_block_move (operands)) DONE; else FAIL; }")

;; Move up to 32 bytes at a time. The fixed registers are needed because the ;; register allocator doesn't have a clue about allocating 8 word registers (define_expand "movstrsi_8reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 5)) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "")

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && ((INTVAL (operands[2]) > 24 && INTVAL (operands[2]) < 32) || INTVAL (operands[2]) == 0) && (REGNO (operands[0]) < 5 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 5 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 5" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 6)) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && ((INTVAL (operands[2]) > 24 && INTVAL (operands[2]) < 32) || INTVAL (operands[2]) == 0) && (REGNO (operands[0]) < 5 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 5 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 5" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

;; Move up to 24 bytes at a time. The fixed registers are needed because the ;; register allocator doesn't have a clue about allocating 6 word registers (define_expand "movstrsi_6reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 7)) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "")

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 16 && INTVAL (operands[2]) <= 24 && (REGNO (operands[0]) < 7 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 7 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 7" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 8)) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 16 && INTVAL (operands[2]) <= 32 && (REGNO (operands[0]) < 7 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 7 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 7" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

;; Move up to 16 bytes at a time, using 4 fixed registers to avoid spill problems ;; with TImode (define_expand "movstrsi_4reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (reg:SI 9)) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 4 ""))])] "TARGET_STRING" "")

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 8 && INTVAL (operands[2]) <= 16 && (REGNO (operands[0]) < 9 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 9 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 9" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_operand:SI 4 "register_operand" "=r")) (clobber (reg:SI 10)) (clobber (reg:SI 11)) (clobber (reg:SI 12)) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 8 && INTVAL (operands[2]) <= 16 && (REGNO (operands[0]) < 9 || REGNO (operands[0]) > 12) && (REGNO (operands[1]) < 9 || REGNO (operands[1]) > 12) && REGNO (operands[4]) == 9" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

;; Move up to 8 bytes at a time. (define_expand "movstrsi_2reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (match_scratch:DI 4 "")) (clobber (match_scratch:SI 5 ""))])] "TARGET_STRING && !TARGET_64BIT" "")

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:DI 4 "=&r")) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && !TARGET_64BIT && INTVAL (operands[2]) > 4 && INTVAL (operands[2]) <= 8" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:DI 4 "=&r")) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && !TARGET_64BIT && INTVAL (operands[2]) > 4 && INTVAL (operands[2]) <= 8" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

;; Move up to 4 bytes at a time. (define_expand "movstrsi_1reg" [(parallel [(set (match_operand 0 "" "") (match_operand 1 "" "")) (use (match_operand 2 "" "")) (use (match_operand 3 "" "")) (clobber (match_scratch:SI 4 "")) (clobber (match_scratch:SI 5 ""))])] "TARGET_STRING" "")

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:SI 4 "=&r")) (clobber (match_scratch:SI 5 "=q"))] "TARGET_STRING && TARGET_POWER && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 4" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (mem:BLK (match_operand:SI 0 "register_operand" "b")) (mem:BLK (match_operand:SI 1 "register_operand" "b"))) (use (match_operand:SI 2 "immediate_operand" "i")) (use (match_operand:SI 3 "immediate_operand" "i")) (clobber (match_scratch:SI 4 "=&r")) (clobber (match_scratch:SI 5 "X"))] "TARGET_STRING && !TARGET_POWER && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 4" "{lsi|lswi} %4,%1,%2;{stsi|stswi} %4,%0,%2" [(set_attr "length" "8")])

;; Define insns that do load or store with update. Some of these we can ;; get by using pre-decrement or pre-increment, but the hardware can also ;; do cases where the increment is not the size of the object. ;; ;; In all these cases, we use operands 0 and 1 for the register being ;; incremented because those are the operands that local-alloc will ;; tie and these are the pair most likely to be tieable (and the ones ;; that will benefit the most).

(define_insn "" [(set (match_operand:DI 3 "gpc_reg_operand" "=r,r") (mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:DI 0 "gpc_reg_operand" "=b,b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ ldux %3,%0,%2 ldu %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (match_operand:DI 3 "gpc_reg_operand" "=r") (sign_extend:DI (mem:SI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0") (match_operand:DI 2 "gpc_reg_operand" "r"))))) (set (match_operand:DI 0 "gpc_reg_operand" "=b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "lwaux %3,%0,%2" [(set_attr "type" "load")])

(define_insn "movdi_update" [(set (mem:DI (plus:DI (match_operand:DI 1 "gpc_reg_operand" "0,0") (match_operand:DI 2 "reg_or_short_operand" "r,I"))) (match_operand:DI 3 "gpc_reg_operand" "r,r")) (set (match_operand:DI 0 "gpc_reg_operand" "=b,b") (plus:DI (match_dup 1) (match_dup 2)))] "TARGET_POWERPC64" "@ stdux %3,%0,%2 stdu %3,%2(%0)")

(define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {lux|lwzux} %3,%0,%2 {lu|lwzu} %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "movsi_update" [(set (mem:SI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ {stux|stwux} %3,%0,%2 {stu|stwu} %3,%2(%0)")

(define_insn "" [(set (match_operand:HI 3 "gpc_reg_operand" "=r,r") (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhzux %3,%0,%2 lhzu %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (zero_extend:SI (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhzux %3,%0,%2 lhzu %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (sign_extend:SI (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lhaux %3,%0,%2 lhau %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (mem:HI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:HI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ sthux %3,%0,%2 sthu %3,%2(%0)")

(define_insn "" [(set (match_operand:QI 3 "gpc_reg_operand" "=r,r") (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lbzux %3,%0,%2 lbzu %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (match_operand:SI 3 "gpc_reg_operand" "=r,r") (zero_extend:SI (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ lbzux %3,%0,%2 lbzu %3,%2(%0)" [(set_attr "type" "load")])

(define_insn "" [(set (mem:QI (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:QI 3 "gpc_reg_operand" "r,r")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "" "@ stbux %3,%0,%2 stbu %3,%2(%0)")

(define_insn "" [(set (match_operand:SF 3 "gpc_reg_operand" "=f,f") (mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ lfsux %3,%0,%2 lfsu %3,%2(%0)" [(set_attr "type" "fpload")])

(define_insn "" [(set (mem:SF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:SF 3 "gpc_reg_operand" "f,f")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ stfsux %3,%0,%2 stfsu %3,%2(%0)")

(define_insn "" [(set (match_operand:DF 3 "gpc_reg_operand" "=f,f") (mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I")))) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ lfdux %3,%0,%2 lfdu %3,%2(%0)" [(set_attr "type" "fpload")])

(define_insn "" [(set (mem:DF (plus:SI (match_operand:SI 1 "gpc_reg_operand" "0,0") (match_operand:SI 2 "reg_or_short_operand" "r,I"))) (match_operand:DF 3 "gpc_reg_operand" "f,f")) (set (match_operand:SI 0 "gpc_reg_operand" "=b,b") (plus:SI (match_dup 1) (match_dup 2)))] "TARGET_HARD_FLOAT" "@ stfdux %3,%0,%2 stfdu %3,%2(%0)")

;; Peephole to convert two consecutive FP loads or stores into lfq/stfq.

(define_peephole [(set (match_operand:DF 0 "gpc_reg_operand" "=f") (match_operand:DF 1 "memory_operand" "")) (set (match_operand:DF 2 "gpc_reg_operand" "=f") (match_operand:DF 3 "memory_operand" ""))] "TARGET_POWER2 && TARGET_HARD_FLOAT && registers_ok_for_quad_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && addrs_ok_for_quad_peep (XEXP (operands[1], 0), XEXP (operands[3], 0))" "lfq%U1%X1 %0,%1")

(define_peephole [(set (match_operand:DF 0 "memory_operand" "") (match_operand:DF 1 "gpc_reg_operand" "f")) (set (match_operand:DF 2 "memory_operand" "") (match_operand:DF 3 "gpc_reg_operand" "f"))] "TARGET_POWER2 && TARGET_HARD_FLOAT && registers_ok_for_quad_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && addrs_ok_for_quad_peep (XEXP (operands[0], 0), XEXP (operands[2], 0))" "stfq%U0%X0 %1,%0") ;; Next come insns related to the calling sequence. ;; ;; First, an insn to allocate new stack space for dynamic use (e.g., alloca). ;; We move the back-chain and decrement the stack pointer.

(define_expand "allocate_stack" [(set (reg:SI 1) (minus:SI (reg:SI 1) (match_operand:SI 0 "reg_or_short_operand" "")))] "" " { rtx chain = gen_reg_rtx (Pmode); rtx stack_bot = gen_rtx (MEM, Pmode, stack_pointer_rtx); rtx neg_op0;

emit_move_insn (chain, stack_bot);

/* Under Windows NT, we need to add stack probes for large/variable allocations, so do it via a call to the external function alloca, instead of doing it inline. */ if (DEFAULT_ABI == ABI_NT && (GET_CODE (operands[0]) != CONST_INT || INTVAL (operands[0]) > 4096)) { rtx tmp = gen_reg_rtx (SImode); emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, "__allocate_stack"), tmp, 0, SImode, 1, operands[0], Pmode); emit_insn (gen_set_sp (tmp)); DONE; }

if (GET_CODE (operands[0]) != CONST_INT || INTVAL (operands[0]) < -32767 || INTVAL (operands[0]) > 32768) { neg_op0 = gen_reg_rtx (Pmode); if (TARGET_32BIT) emit_insn (gen_negsi2 (neg_op0, operands[0])); else emit_insn (gen_negdi2 (neg_op0, operands[0])); } else neg_op0 = GEN_INT (- INTVAL (operands[0]));

if (TARGET_32BIT) emit_insn (gen_movsi_update (stack_pointer_rtx, stack_pointer_rtx, neg_op0, chain)); else emit_insn (gen_movdi_update (stack_pointer_rtx, stack_pointer_rtx, neg_op0, chain));

DONE; }")

;; Marker to indicate that the stack pointer was changed under NT in ;; ways not known to the compiler

(define_insn "set_sp" [(set (reg:SI 1) (unspec [(match_operand:SI 0 "register_operand" "r")] 7))] "" "" [(set_attr "length" "0")])

;; These patterns say how to save and restore the stack pointer. We need not ;; save the stack pointer at function level since we are careful to ;; preserve the backchain. At block level, we have to restore the backchain ;; when we restore the stack pointer. ;; ;; For nonlocal gotos, we must save both the stack pointer and its ;; backchain and restore both. Note that in the nonlocal case, the ;; save area is a memory location.

(define_expand "save_stack_function" [(use (const_int 0))] "" "")

(define_expand "restore_stack_function" [(use (const_int 0))] "" "")

(define_expand "restore_stack_block" [(set (match_dup 2) (mem:SI (match_operand:SI 0 "register_operand" ""))) (set (match_dup 0) (match_operand:SI 1 "register_operand" "")) (set (mem:SI (match_dup 0)) (match_dup 2))] "" " { operands[2] = gen_reg_rtx (SImode); }")

(define_expand "save_stack_nonlocal" [(match_operand:DI 0 "memory_operand" "") (match_operand:SI 1 "register_operand" "")] "" " { rtx temp = gen_reg_rtx (SImode);

/* Copy the backchain to the first word, sp to the second. */ emit_move_insn (temp, gen_rtx (MEM, SImode, operands[1])); emit_move_insn (operand_subword (operands[0], 0, 0, DImode), temp); emit_move_insn (operand_subword (operands[0], 1, 0, DImode), operands[1]); DONE; }")

(define_expand "restore_stack_nonlocal" [(match_operand:SI 0 "register_operand" "") (match_operand:DI 1 "memory_operand" "")] "" " { rtx temp = gen_reg_rtx (SImode);

/* Restore the backchain from the first word, sp from the second. */ emit_move_insn (temp, operand_subword (operands[1], 0, 0, DImode)); emit_move_insn (operands[0], operand_subword (operands[1], 1, 0, DImode)); emit_move_insn (gen_rtx (MEM, SImode, operands[0]), temp); DONE; }")

;; A function pointer under AIX is a pointer to a data area whose first word ;; contains the actual address of the function, whose second word contains a ;; pointer to its TOC, and whose third word contains a value to place in the ;; static chain register (r11). Note that if we load the static chain, our ;; "trampoline" need not have any executable code. ;; ;; operands[0] is a register pointing to the 3 word descriptor (aka, the function address) ;; operands[1] is the stack size to clean up ;; operands[2] is the value FUNCTION_ARG returns for the VOID argument (must be 0 for AIX) ;; operands[3] is location to store the TOC ;; operands[4] is the TOC register ;; operands[5] is the static chain register ;; ;; We do not break this into separate insns, so that the scheduler will not try ;; to move the load of the new TOC before any loads from the TOC.

(define_insn "call_indirect_aix" [(call (mem:SI (match_operand:SI 0 "register_operand" "b")) (match_operand 1 "const_int_operand" "n")) (use (match_operand 2 "const_int_operand" "O")) (use (match_operand 3 "offsettable_addr_operand" "p")) (use (match_operand 4 "register_operand" "r")) (clobber (match_operand 5 "register_operand" "=r")) (clobber (match_scratch:SI 6 "=&r")) (clobber (match_scratch:SI 7 "=l"))] "DEFAULT_ABI == ABI_AIX" "{st|stw} %4,%a3;{l|lwz} %6,0(%0);{l|lwz} %4,4(%0);;mt%7 %6;{l|lwz} %5,8(%0);{brl|blrl};{l|lwz} %4,%a3" [(set_attr "length" "28")])

(define_insn "call_value_indirect_aix" [(set (match_operand 0 "register_operand" "fg") (call (mem:SI (match_operand:SI 1 "register_operand" "b")) (match_operand 2 "const_int_operand" "n"))) (use (match_operand 3 "const_int_operand" "O")) (use (match_operand 4 "offsettable_addr_operand" "p")) (use (match_operand 5 "register_operand" "r")) (clobber (match_operand 6 "register_operand" "=r")) (clobber (match_scratch:SI 7 "=&r")) (clobber (match_scratch:SI 8 "=l"))] "DEFAULT_ABI == ABI_AIX" "{st|stw} %5,%a4;{l|lwz} %7,0(%1);{l|lwz} %5,4(%1);;mt%8 %7;{l|lwz} %6,8(%1);{brl|blrl};{l|lwz} %5,%a4" [(set_attr "length" "28")])

;; A function pointer undef NT is a pointer to a data area whose first word ;; contains the actual address of the function, whose second word contains a ;; pointer to its TOC. The static chain is not stored under NT, which means ;; that we need a trampoline. ;; ;; operands[0] is an SImode pseudo in which we place the address of the function. ;; operands[1] is the stack size to clean up ;; operands[2] is the value FUNCTION_ARG returns for the VOID argument (must be 0 for NT) ;; operands[3] is location to store the TOC ;; operands[4] is the TOC register ;; ;; We do not break this into separate insns, so that the scheduler will not try ;; to move the load of the new TOC before any loads from the TOC.

(define_insn "call_indirect_nt" [(call (mem:SI (match_operand:SI 0 "register_operand" "b")) (match_operand 1 "const_int_operand" "n")) (use (match_operand 2 "const_int_operand" "O")) (use (match_operand 3 "offsettable_addr_operand" "p")) (use (match_operand 4 "register_operand" "r")) (clobber (match_scratch:SI 5 "=&r")) (clobber (match_scratch:SI 6 "=l"))] "DEFAULT_ABI == ABI_NT" "{st|stw} %4,%a3;{l|lwz} %5,0(%0);{l|lwz} %4,4(%0);mt%6 %5;{brl|blrl};{l|lwz} %4,%a3" [(set_attr "length" "24")])

(define_insn "call_value_indirect_nt" [(set (match_operand 0 "register_operand" "fg") (call (mem:SI (match_operand:SI 1 "register_operand" "b")) (match_operand 2 "const_int_operand" "n"))) (use (match_operand 3 "const_int_operand" "O")) (use (match_operand 4 "offsettable_addr_operand" "p")) (use (match_operand 5 "register_operand" "r")) (clobber (match_scratch:SI 6 "=&r")) (clobber (match_scratch:SI 7 "=l"))] "DEFAULT_ABI == ABI_NT" "{st|stw} %5,%a4;{l|lwz} %6,0(%1);{l|lwz} %5,4(%1);mt%7 %6;{brl|blrl};{l|lwz} %5,%a4" [(set_attr "length" "24")])

;; A function pointer under System V is just a normal pointer ;; operands[0] is the function pointer ;; operands[1] is the stack size to clean up ;; operands[2] is the value FUNCTION_ARG returns for the VOID argument which indicates how to set cr1

(define_insn "call_indirect_sysv" [(call (mem:SI (match_operand:SI 0 "register_operand" "l,l")) (match_operand 1 "const_int_operand" "n,n")) (use (match_operand 2 "const_int_operand" "O,n")) (clobber (match_scratch:SI 3 "=l,l"))] "DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_AIX_NODESC" "* { if (INTVAL (operands[2]) > 0) return "creqv 6,6,6;{brl|blrl}";

else if (INTVAL (operands[2]) < 0) return "crxor 6,6,6;{brl|blrl}";

return "{brl|blrl}"; }" [(set_attr "length" "4,8")])

(define_insn "call_value_indirect_sysv" [(set (match_operand 0 "register_operand" "=fg,fg") (call (mem:SI (match_operand:SI 1 "register_operand" "l,l")) (match_operand 2 "const_int_operand" "n,n"))) (use (match_operand 3 "const_int_operand" "O,n")) (clobber (match_scratch:SI 4 "=l,l"))] "DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_AIX_NODESC" "* { if (INTVAL (operands[3]) > 0) return "creqv 6,6,6;{brl|blrl}";

else if (INTVAL (operands[3]) < 0) return "crxor 6,6,6;{brl|blrl}";

return "{brl|blrl}"; }" [(set_attr "length" "4,8")])

;; Now the definitions for the call and call_value insns (define_expand "call" [(parallel [(call (mem:SI (match_operand:SI 0 "address_operand" "")) (match_operand 1 "" "")) (use (match_operand 2 "" "")) (clobber (scratch:SI))])] "" " { if (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != CONST_INT) abort ();

operands[0] = XEXP (operands[0], 0);

/* Convert NT DLL imports into an indirect call. */ if (GET_CODE (operands[0]) == SYMBOL_REF && INTVAL (operands[2]) == (int)CALL_NT_DLLIMPORT) { operands[0] = rs6000_dll_import_ref (operands[0]); operands[2] = GEN_INT ((int)CALL_NORMAL); }

if (GET_CODE (operands[0]) != SYMBOL_REF) { if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_AIX_NODESC) emit_call_insn (gen_call_indirect_sysv (force_reg (Pmode, operands[0]), operands[1], operands[2])); else { rtx toc_reg = gen_rtx (REG, Pmode, 2); rtx toc_addr = RS6000_SAVE_TOC;

  if (DEFAULT_ABI == ABI_AIX)
    {
      /* AIX function pointers are really pointers to a three word area */
      rtx static_chain = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM);
      emit_call_insn (gen_call_indirect_aix (force_reg (Pmode, operands[0]),
					     operands[1], operands[2],
					     toc_addr, toc_reg, static_chain));
    }
  else if (DEFAULT_ABI == ABI_NT)
    {
      /* NT function pointers are really pointers to a two word area */
      rs6000_save_toc_p = 1;
      emit_call_insn (gen_call_indirect_nt (force_reg (Pmode, operands[0]),
					    operands[1], operands[2],
					    toc_addr, toc_reg));
    }
  else
    abort ();
}
  DONE;
}

}")

(define_expand "call_value" [(parallel [(set (match_operand 0 "" "") (call (mem:SI (match_operand:SI 1 "address_operand" "")) (match_operand 2 "" ""))) (use (match_operand 3 "" "")) (clobber (scratch:SI))])] "" " { if (GET_CODE (operands[1]) != MEM || GET_CODE (operands[2]) != CONST_INT) abort ();

operands[1] = XEXP (operands[1], 0);

/* Convert NT DLL imports into an indirect call. */ if (GET_CODE (operands[1]) == SYMBOL_REF && INTVAL (operands[3]) == (int)CALL_NT_DLLIMPORT) { operands[1] = rs6000_dll_import_ref (operands[1]); operands[3] = GEN_INT ((int)CALL_NORMAL); }

if (GET_CODE (operands[1]) != SYMBOL_REF) { if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_AIX_NODESC) emit_call_insn (gen_call_value_indirect_sysv (operands[0], operands[1], operands[2], operands[3])); else { rtx toc_reg = gen_rtx (REG, Pmode, 2); rtx toc_addr = RS6000_SAVE_TOC;

  if (DEFAULT_ABI == ABI_AIX)
    {
      /* AIX function pointers are really pointers to a three word area */
      rtx static_chain = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM);
      emit_call_insn (gen_call_value_indirect_aix (operands[0],
						   force_reg (Pmode, operands[1]),
						   operands[2], operands[3],
						   toc_addr, toc_reg, static_chain));
    }
  else if (DEFAULT_ABI == ABI_NT)
    {
      /* NT function pointers are really pointers to a two word area */
      rs6000_save_toc_p = 1;
      emit_call_insn (gen_call_value_indirect_nt (operands[0],
						  force_reg (Pmode, operands[1]),
						  operands[2], operands[3],
						  toc_addr, toc_reg));
    }
  else
    abort ();
}
  DONE;
}

}")

;; Call to function in current module. No TOC pointer reload needed. ;; Operand2 is non-zero if we are using the V.4 calling sequence and ;; either the function was not prototyped, or it was prototyped as a ;; variable argument function. It is > 0 if FP registers were passed ;; and < 0 if they were not.

(define_insn "" [(call (mem:SI (match_operand:SI 0 "current_file_function_operand" "s,s")) (match_operand 1 "" "g,g")) (use (match_operand:SI 2 "immediate_operand" "O,n")) (clobber (match_scratch:SI 3 "=l,l"))] "" "* { switch ((enum rs6000_call_cookie)INTVAL (operands[2])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return "bl %z0"; }" [(set_attr "length" "4,8")])

;; Call to function which may be in another module. Restore the TOC ;; pointer (r2) after the call unless this is System V. ;; Operand2 is non-zero if we are using the V.4 calling sequence and ;; either the function was not prototyped, or it was prototyped as a ;; variable argument function. It is > 0 if FP registers were passed ;; and < 0 if they were not.

(define_insn "" [(call (mem:SI (match_operand:SI 0 "call_operand" "s,s")) (match_operand 1 "" "fg,fg")) (use (match_operand:SI 2 "immediate_operand" "O,n")) (clobber (match_scratch:SI 3 "=l,l"))] "DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_NT" "* { /* Indirect calls should go through call_indirect */ if (GET_CODE (operands[0]) == REG) abort ();

switch ((enum rs6000_call_cookie)INTVAL (operands[2])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return (TARGET_WINDOWS_NT) ? "bl %z0;.znop %z0" : "bl %z0;%."; }" [(set_attr "length" "8,12")])

(define_insn "" [(call (mem:SI (match_operand:SI 0 "call_operand" "s,s")) (match_operand 1 "" "fg,fg")) (use (match_operand:SI 2 "immediate_operand" "O,n")) (clobber (match_scratch:SI 3 "=l,l"))] "DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_V4" "* { /* Indirect calls should go through call_indirect */ if (GET_CODE (operands[0]) == REG) abort ();

switch ((enum rs6000_call_cookie)INTVAL (operands[2])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return "bl %z0"; }" [(set_attr "length" "4,8")])

(define_insn "" [(set (match_operand 0 "" "=fg,fg") (call (mem:SI (match_operand:SI 1 "current_file_function_operand" "s,s")) (match_operand 2 "" "g,g"))) (use (match_operand:SI 3 "immediate_operand" "O,n")) (clobber (match_scratch:SI 4 "=l,l"))] "" "* { switch ((enum rs6000_call_cookie)INTVAL (operands[3])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return "bl %z1"; }" [(set_attr "length" "4,8")])

(define_insn "" [(set (match_operand 0 "" "=fg,fg") (call (mem:SI (match_operand:SI 1 "call_operand" "s,s")) (match_operand 2 "" "fg,fg"))) (use (match_operand:SI 3 "immediate_operand" "O,n")) (clobber (match_scratch:SI 4 "=l,l"))] "DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_NT" "* { /* This should be handled by call_value_indirect */ if (GET_CODE (operands[1]) == REG) abort ();

switch ((enum rs6000_call_cookie)INTVAL (operands[3])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return (TARGET_WINDOWS_NT) ? "bl %z1;.znop %z1" : "bl %z1;%."; }" [(set_attr "length" "8,12")])

(define_insn "" [(set (match_operand 0 "" "=fg,fg") (call (mem:SI (match_operand:SI 1 "call_operand" "s,s")) (match_operand 2 "" "fg,fg"))) (use (match_operand:SI 3 "immediate_operand" "O,n")) (clobber (match_scratch:SI 4 "=l,l"))] "DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_V4" "* { /* This should be handled by call_value_indirect */ if (GET_CODE (operands[1]) == REG) abort ();

switch ((enum rs6000_call_cookie)INTVAL (operands[3])) { case CALL_V4_SET_FP_ARGS: output_asm_insn ("crxor 6,6,6", operands); break; case CALL_V4_CLEAR_FP_ARGS: output_asm_insn ("creqv 6,6,6", operands); break; }

return "bl %z1"; }" [(set_attr "length" "4,8")])

;; Call subroutine returning any type.

(define_expand "untyped_call" [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand 1 "" "") (match_operand 2 "" "")])] "" " { int i;

emit_call_insn (gen_call (operands[0], const0_rtx, const0_rtx, const0_rtx));

for (i = 0; i < XVECLEN (operands[2], 0); i++) { rtx set = XVECEXP (operands[2], 0, i); emit_move_insn (SET_DEST (set), SET_SRC (set)); }

/* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by claiming that all hard registers are used and clobbered at this point. */ emit_insn (gen_blockage ());

DONE; }")

;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point.

(define_insn "blockage" [(unspec_volatile [(const_int 0)] 0)] "" "")

;; Synchronize instructions/data caches for V.4 trampolines ;; The extra memory_operand is to prevent the optimizer from ;; deleting insns with "no" effect. (define_insn "icbi" [(unspec [(match_operand 0 "memory_operand" "=m") (match_operand 1 "register_operand" "b") (match_operand 2 "register_operand" "r")] 3)] "TARGET_POWERPC" "icbi %1,%2")

(define_insn "dcbst" [(unspec [(match_operand 0 "memory_operand" "=m") (match_operand 1 "register_operand" "b") (match_operand 2 "register_operand" "r")] 4)] "TARGET_POWERPC" "dcbst %1,%2")

(define_insn "sync" [(unspec [(match_operand 0 "memory_operand" "=m")] 5)] "" "{dcs|sync}")

(define_insn "isync" [(unspec [(match_operand 0 "memory_operand" "=m")] 6)] "" "{ics|isync}")

;; Compare insns are next. Note that the RS/6000 has two types of compares, ;; signed & unsigned, and one type of branch. ;; ;; Start with the DEFINE_EXPANDs to generate the rtl for compares, scc ;; insns, and branches. We store the operands of compares until we see ;; how it is used. (define_expand "cmpsi" [(set (cc0) (compare (match_operand:SI 0 "gpc_reg_operand" "") (match_operand:SI 1 "reg_or_short_operand" "")))] "" " { /* Take care of the possibility that operands[1] might be negative but this might be a logical operation. That insn doesn't exist. */ if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0) operands[1] = force_reg (SImode, operands[1]);

rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 0; DONE; }")

(define_expand "cmpdi" [(set (cc0) (compare (match_operand:DI 0 "gpc_reg_operand" "") (match_operand:DI 1 "reg_or_short_operand" "")))] "TARGET_POWERPC64" " { /* Take care of the possibility that operands[1] might be negative but this might be a logical operation. That insn doesn't exist. */ if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0) operands[1] = force_reg (DImode, operands[1]);

rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 0; DONE; }")

(define_expand "cmpsf" [(set (cc0) (compare (match_operand:SF 0 "gpc_reg_operand" "") (match_operand:SF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 1; DONE; }")

(define_expand "cmpdf" [(set (cc0) (compare (match_operand:DF 0 "gpc_reg_operand" "") (match_operand:DF 1 "gpc_reg_operand" "")))] "TARGET_HARD_FLOAT" " { rs6000_compare_op0 = operands[0]; rs6000_compare_op1 = operands[1]; rs6000_compare_fp_p = 1; DONE; }")

(define_expand "beq" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (eq (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "bne" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ne (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "blt" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (lt (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "bgt" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (gt (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "ble" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (le (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "bge" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ge (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "bgtu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (gtu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "bltu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (ltu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "bgeu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (geu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "bleu" [(set (match_dup 2) (match_dup 1)) (set (pc) (if_then_else (leu (match_dup 2) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

;; For SNE, we would prefer that the xor/abs sequence be used for integers. ;; For SEQ, likewise, except that comparisons with zero should be done ;; with an scc insns. However, due to the order that combine see the ;; resulting insns, we must, in fact, allow SEQ for integers. Fail in ;; the cases we don't want to handle. (define_expand "seq" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (eq:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "sne" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ne:SI (match_dup 2) (const_int 0)))] "" " { if (! rs6000_compare_fp_p) FAIL;

operands[1] = gen_rtx (COMPARE, CCFPmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCFPmode); }")

;; A > 0 is best done using the portable sequence, so fail in that case. (define_expand "sgt" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (gt:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;

if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL;

operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

;; A < 0 is best done in the portable way for A an integer. (define_expand "slt" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (lt:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;

if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL;

operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "sge" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ge:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode; operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

;; A <= 0 is best done the portable way for A an integer. (define_expand "sle" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (le:SI (match_dup 2) (const_int 0)))] "" " { enum machine_mode mode = rs6000_compare_fp_p ? CCFPmode : CCmode;

if (! rs6000_compare_fp_p && rs6000_compare_op1 == const0_rtx) FAIL;

operands[1] = gen_rtx (COMPARE, mode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (mode); }")

(define_expand "sgtu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (gtu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "sltu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (ltu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "sgeu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (geu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }")

(define_expand "sleu" [(set (match_dup 2) (match_dup 1)) (set (match_operand:SI 0 "gpc_reg_operand" "") (leu:SI (match_dup 2) (const_int 0)))] "" " { operands[1] = gen_rtx (COMPARE, CCUNSmode, rs6000_compare_op0, rs6000_compare_op1); operands[2] = gen_reg_rtx (CCUNSmode); }") ;; Here are the actual compare insns. (define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=y") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{cmp%I2|cmpw%I2} %0,%1,%2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=y") (compare:CC (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_short_operand" "rI")))] "TARGET_POWERPC64" "cmpd%I2 %0,%1,%2" [(set_attr "type" "compare")])

;; If we are comparing a register for equality with a large constant, ;; we can do this with an XOR followed by a compare. But we need a scratch ;; register for the result of the XOR.

(define_split [(set (match_operand:CC 0 "cc_reg_operand" "") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "non_short_cint_operand" ""))) (clobber (match_operand:SI 3 "gpc_reg_operand" ""))] "find_single_use (operands[0], insn, 0) && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ || GET_CODE (find_single_use (operands[0], insn, 0)) == NE)" [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4))) (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))] " { / Get the constant we are comparing against, C, and see what it looks like sign-extended to 16 bits. Then see what constant could be XOR'ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]); int sextc = (c << 16) >> 16; int xorv = c ^ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv); operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc); }")

(define_insn "" [(set (match_operand:CCUNS 0 "cc_reg_operand" "=y") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_u_short_operand" "rI")))] "" "{cmpl%I2|cmplw%I2} %0,%1,%W2" [(set_attr "type" "compare")])

(define_insn "" [(set (match_operand:CCUNS 0 "cc_reg_operand" "=y") (compare:CCUNS (match_operand:DI 1 "gpc_reg_operand" "r") (match_operand:DI 2 "reg_or_u_short_operand" "rI")))] "" "cmpld%I2 %0,%1,%W2" [(set_attr "type" "compare")])

;; The following two insns don't exist as single insns, but if we provide ;; them, we can swap an add and compare, which will enable us to overlap more ;; of the required delay between a compare and branch. We generate code for ;; them by splitting.

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=y") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "short_cint_operand" "i"))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))] "" "#" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CCUNS 3 "cc_reg_operand" "=y") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "u_short_cint_operand" "i"))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "i")))] "" "#" [(set_attr "length" "8")])

(define_split [(set (match_operand:CC 3 "cc_reg_operand" "") (compare:CC (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "short_cint_operand" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))] "" [(set (match_dup 3) (compare:CC (match_dup 1) (match_dup 2))) (set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))])

(define_split [(set (match_operand:CCUNS 3 "cc_reg_operand" "") (compare:CCUNS (match_operand:SI 1 "gpc_reg_operand" "") (match_operand:SI 2 "u_short_cint_operand" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (match_operand:SI 4 "short_cint_operand" "")))] "" [(set (match_dup 3) (compare:CCUNS (match_dup 1) (match_dup 2))) (set (match_dup 0) (plus:SI (match_dup 1) (match_dup 4)))])

(define_insn "" [(set (match_operand:CCFP 0 "cc_reg_operand" "=y") (compare:CCFP (match_operand:SF 1 "gpc_reg_operand" "f") (match_operand:SF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fcmpu %0,%1,%2" [(set_attr "type" "fpcompare")])

(define_insn "" [(set (match_operand:CCFP 0 "cc_reg_operand" "=y") (compare:CCFP (match_operand:DF 1 "gpc_reg_operand" "f") (match_operand:DF 2 "gpc_reg_operand" "f")))] "TARGET_HARD_FLOAT" "fcmpu %0,%1,%2" [(set_attr "type" "fpcompare")]) ;; Now we have the scc insns. We can do some combinations because of the ;; way the machine works. ;; ;; Note that this is probably faster if we can put an insn between the ;; mfcr and rlinm, but this is tricky. Let's leave it for now. In most ;; cases the insns below which don't use an intermediate CR field will ;; be used instead. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]))] "" "%D1mfcr %0;{rlinm|rlwinm} %0,%0,%J1,1" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (const_int 0))) (set (match_operand:SI 3 "gpc_reg_operand" "=r") (match_op_dup 1 [(match_dup 2) (const_int 0)]))] "" "%D1mfcr %3;{rlinm.|rlwinm.} %3,%3,%J1,1" [(set_attr "type" "delayed_compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ashift:SI (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operand:SI 3 "const_int_operand" "n")))] "" "* { int is_bit = ccr_bit (operands[1], 1); int put_bit = 31 - (INTVAL (operands[3]) & 31); int count;

if (is_bit >= put_bit) count = is_bit - put_bit; else count = 32 - (put_bit - is_bit);

operands[4] = gen_rtx (CONST_INT, VOIDmode, count); operands[5] = gen_rtx (CONST_INT, VOIDmode, put_bit);

return "%D1mfcr %0;{rlinm|rlwinm} %0,%0,%4,%5,%5"; }" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (ashift:SI (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operand:SI 3 "const_int_operand" "n")) (const_int 0))) (set (match_operand:SI 4 "gpc_reg_operand" "=r") (ashift:SI (match_op_dup 1 [(match_dup 2) (const_int 0)]) (match_dup 3)))] "" "* { int is_bit = ccr_bit (operands[1], 1); int put_bit = 31 - (INTVAL (operands[3]) & 31); int count;

if (is_bit >= put_bit) count = is_bit - put_bit; else count = 32 - (put_bit - is_bit);

operands[5] = gen_rtx (CONST_INT, VOIDmode, count); operands[6] = gen_rtx (CONST_INT, VOIDmode, put_bit);

return "%D1mfcr %4;{rlinm.|rlwinm.} %4,%4,%5,%6,%6"; }" [(set_attr "type" "delayed_compare") (set_attr "length" "12")])

;; If we are comparing the result of two comparisons, this can be done ;; using creqv or crxor.

(define_insn "" [(set (match_operand:CCEQ 0 "cc_reg_operand" "=y") (compare:CCEQ (match_operator 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)]) (match_operator 3 "scc_comparison_operator" [(match_operand 4 "cc_reg_operand" "y") (const_int 0)])))] "REGNO (operands[2]) != REGNO (operands[4])" "* { enum rtx_code code1, code2;

code1 = GET_CODE (operands[1]); code2 = GET_CODE (operands[3]);

if ((code1 == EQ || code1 == LT || code1 == GT || code1 == LTU || code1 == GTU || (code1 != NE && GET_MODE (operands[2]) == CCFPmode)) != (code2 == EQ || code2 == LT || code2 == GT || code2 == LTU || code2 == GTU || (code2 != NE && GET_MODE (operands[4]) == CCFPmode))) return "%C1%C3crxor %E0,%j1,%j3"; else return "%C1%C3creqv %E0,%j1,%j3"; }" [(set_attr "length" "12")])

;; There is a 3 cycle delay between consecutive mfcr instructions ;; so it is useful to combine 2 scc instructions to use only one mfcr.

(define_peephole [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (match_operator:SI 1 "scc_comparison_operator" [(match_operand 2 "cc_reg_operand" "y") (const_int 0)])) (set (match_operand:SI 3 "gpc_reg_operand" "=r") (match_operator:SI 4 "scc_comparison_operator" [(match_operand 5 "cc_reg_operand" "y") (const_int 0)]))] "REGNO (operands[2]) != REGNO (operands[5])" "%D1%D4mfcr %3;{rlinm|rlwinm} %0,%3,%J1,1;{rlinm|rlwinm} %3,%3,%J4,1" [(set_attr "length" "20")])

;; There are some scc insns that can be done directly, without a compare. ;; These are faster because they don't involve the communications between ;; the FXU and branch units. In fact, we will be replacing all of the ;; integer scc insns here or in the portable methods in emit_store_flag. ;; ;; Also support (neg (scc ..)) since that construct is used to replace ;; branches, (plus (scc ..) ..) since that construct is common and ;; takes no more insns than scc, and (and (neg (scc ..)) ..) in the ;; cases where it is no more expensive than (neg (scc ..)).

;; Have reload force a constant into a register for the simple insns that ;; otherwise won't accept constants. We do this because it is faster than ;; the cmp/mfcr sequence we would otherwise generate.

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))) (clobber (match_scratch:SI 3 "=r,&r,r,r,r"))] "" "@ xor %0,%1,%2;{sfi|subfic} %3,%0,0;{ae|adde} %0,%3,%0 {sfi|subfic} %3,%1,0;{ae|adde} %0,%3,%1 {xoril|xori} %0,%1,%b2;{sfi|subfic} %3,%0,0;{ae|adde} %0,%3,%0 {xoriu|xoris} %0,%1,%u2;{sfi|subfic} %3,%0,0;{ae|adde} %0,%3,%0 {sfi|subfic} %0,%1,%2;{sfi|subfic} %3,%0,0;{ae|adde} %0,%3,%0" [(set_attr "length" "12,8,12,12,12")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (eq:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r,&r,r,r,r"))] "" "@ xor %0,%1,%2;{sfi|subfic} %3,%0,0;{ae.|adde.} %0,%3,%0 {sfi|subfic} %3,%1,0;{ae.|adde.} %0,%3,%1 {xoril|xori} %0,%1,%b2;{sfi|subfic} %3,%0,0;{ae.|adde.} %0,%3,%0 {xoriu|xoris} %0,%1,%u2;{sfi|subfic} %3,%0,0;{ae.|adde.} %0,%3,%0 {sfi|subfic} %0,%1,%2;{sfi|subfic} %3,%0,0;{ae.|adde.} %0,%3,%0" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")])

;; We have insns of the form shown by the first define_insn below. If ;; there is something inside the comparison operation, we must split it. (define_split [(set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_operator 1 "comparison_operator" [(match_operand:SI 2 "" "") (match_operand:SI 3 "reg_or_cint_operand" "")]) (match_operand:SI 4 "gpc_reg_operand" ""))) (clobber (match_operand:SI 5 "register_operand" ""))] "! gpc_reg_operand (operands[2], SImode)" [(set (match_dup 5) (match_dup 2)) (set (match_dup 2) (plus:SI (match_op_dup 1 [(match_dup 2) (match_dup 3)]) (match_dup 4)))])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r"))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3 {sfi|subfic} %4,%1,0;{aze|addze} %0,%3 {xoril|xori} %4,%1,%b2;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3 {xoriu|xoris} %4,%1,%u2;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3 {sfi|subfic} %4,%1,%2;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3" [(set_attr "length" "12,8,12,12,12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3 {sfi|subfic} %4,%1,0;{aze.|addze.} %0,%3 {xoril|xori} %4,%1,%b2;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3 {xoriu|xoris} %4,%1,%u2;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3 {sfi|subfic} %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x,x,x,x") (compare:CC (plus:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I")) (match_operand:SI 3 "gpc_reg_operand" "r,r,r,r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (plus:SI (eq:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r,&r,&r,&r"))] "" "@ xor %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3 {sfi|subfic} %4,%1,0;{aze.|addze.} %4,%3 {xoril|xori} %4,%1,%b2;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3 {xoriu|xoris} %4,%1,%u2;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3 {sfi|subfic} %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12,8,12,12,12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r,r") (neg:SI (eq:SI (match_operand:SI 1 "gpc_reg_operand" "%r,r,r,r,r") (match_operand:SI 2 "reg_or_cint_operand" "r,O,K,J,I"))))] "" "@ xor %0,%1,%2;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,-1;{sfe|subfe} %0,%0,%0 {xoril|xori} %0,%1,%b2;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0 {xoriu|xoris} %0,%1,%u2;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0 {sfi|subfic} %0,%1,%2;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12,8,12,12,12")])

;; Simplify (ne X (const_int 0)) on the PowerPC. No need to on the Power, ;; since it nabs/sr is just as fast. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31))) (clobber (match_scratch:SI 2 "=&r"))] "!TARGET_POWER" "{ai|addic} %2,%1,-1;{sfe|subfe} %0,%2,%1" [(set_attr "length" "8")])

;; This is what (plus (ne X (const_int 0)) Y) looks like. (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1;{aze|addze} %0,%2" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1;{aze.|addze.} %3,%2" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_operand:SI 1 "gpc_reg_operand" "r"))) (const_int 31)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lshiftrt:SI (neg:SI (abs:SI (match_dup 1))) (const_int 31)) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{ai|addic} %3,%1,-1;{aze.|addze.} %0,%2" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O"))) (clobber (match_scratch:SI 3 "=r,X"))] "TARGET_POWER" "@ doz %3,%2,%1;{sfi|subfic} %0,%3,0;{ae|adde} %0,%0,%3 {ai|addic} %0,%1,-1;{aze|addze} %0,%0;{sri|srwi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x,x") (compare:CC (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (le:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r,X"))] "TARGET_POWER" "@ doz %3,%2,%1;{sfi|subfic} %0,%3,0;{ae.|adde.} %0,%0,%3 {ai|addic} %0,%1,-1;{aze|addze} %0,%0;{sri.|srwi.} %0,%0,31" [(set_attr "type" "compare,delayed_compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3 {srai|srawi} %4,%1,31;{sf|subfc} %4,%1,%4;{aze|addze} %0,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3 {srai|srawi} %4,%1,31;{sf|subfc} %4,%1,%4;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (le:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "TARGET_POWER" "@ doz %4,%2,%1;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3 {srai|srawi} %4,%1,31;{sf|subfc} %4,%1,%4;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (le:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,O"))))] "TARGET_POWER" "@ doz %0,%2,%1;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,-1;{aze|addze} %0,%0;{srai|srawi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{sf%I2|subf%I2c} %0,%1,%2;{cal %0,0(0)|li %0,0};{ae|adde} %0,%0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (leu:SI (match_dup 1) (match_dup 2)))] "" "{sf%I2|subf%I2c} %0,%1,%2;{cal %0,0(0)|li %0,0};{ae.|adde.} %0,%0,%0" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{aze|addze} %0,%3" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (leu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "" "{sf%I2|subf%I2c} %0,%1,%2;{sfe|subfe} %0,%0,%0;nand %0,%0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;andc %0,%3,%4" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;andc. %4,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (leu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (leu:SI (match_dup 1) (match_dup 2))) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "" "{sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;andc. %0,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "TARGET_POWER" "doz%I2 %0,%1,%2;nabs %0,%0;{sri|srwi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (lt:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "doz%I2 %0,%1,%2;nabs %0,%0;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{ai|addic} %4,%4,-1;{aze|addze} %0,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{ai|addic} %4,%4,-1;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (lt:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{ai|addic} %4,%4,-1;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (lt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "TARGET_POWER" "doz%I2 %0,%1,%2;nabs %0,%0;{srai|srawi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))] "" "@ {sf|subfc} %0,%2,%1;{sfe|subfe} %0,%0,%0;neg %0,%0 {ai|addic} %0,%1,%n2;{sfe|subfe} %0,%0,%0;neg %0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (ltu:SI (match_dup 1) (match_dup 2)))] "" "@ {sf|subfc} %0,%2,%1;{sfe|subfe} %0,%0,%0;neg. %0,%0 {ai|addic} %0,%1,%n2;{sfe|subfe} %0,%0,%0;neg. %0,%0" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r,r") (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,r,P,P")) (match_operand:SI 3 "reg_or_short_operand" "r,I,r,I"))) (clobber (match_scratch:SI 4 "=&r,r,&r,r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3 {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %4,%4,%3 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %4,%4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (ltu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %0,%4,%3 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (ltu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))))] "" "@ {sf|subfc} %0,%2,%1;{sfe|subfe} %0,%0,%0 {ai|addic} %0,%1,%n2;{sfe|subfe} %0,%0,%0" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2 %3,%1,%2;{sfi|subfic} %0,%3,0;{ae|adde} %0,%0,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (ge:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 "=r"))] "TARGET_POWER" "doz%I2 %3,%1,%2;{sfi|subfic} %0,%3,0;{ae.|adde.} %0,%0,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{sfi|subfic} %4,%4,0;{aze|addze} %0,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (ge:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz%I2 %4,%1,%2;{sfi|subfic} %4,%4,0;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (ge:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "TARGET_POWER" "doz%I2 %0,%1,%2;{ai|addic} %0,%0,-1;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12")])

;; This is (and (neg (ge X (const_int 0))) Y). (define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31;andc %0,%2,%3" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31;andc. %3,%2,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (and:SI (neg:SI (lshiftrt:SI (not:SI (match_operand:SI 1 "gpc_reg_operand" "r")) (const_int 31))) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (and:SI (neg:SI (lshiftrt:SI (not:SI (match_dup 1)) (const_int 31))) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{srai|srawi} %3,%1,31;andc. %0,%2,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")))] "" "@ {sf|subfc} %0,%2,%1;{cal %0,0(0)|li %0,0};{ae|adde} %0,%0,%0 {ai|addic} %0,%1,%n2;{cal %0,0(0)|li %0,0};{ae|adde} %0,%0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x,x") (compare:CC (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (geu:SI (match_dup 1) (match_dup 2)))] "" "@ {sf|subfc} %0,%2,%1;{cal %0,0(0)|li %0,0};{ae.|adde.} %0,%0,%0 {ai|addic} %0,%1,%n2;{cal %0,0(0)|li %0,0};{ae.|adde.} %0,%0,%0" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{aze|addze} %0,%3 {ai|addic} %4,%1,%n2;{aze|addze} %0,%3" [(set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{aze.|addze.} %4,%3 {ai|addic} %4,%1,%n2;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (geu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{aze.|addze.} %0,%3 {ai|addic} %4,%1,%n2;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "8")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "r,I"))))] "" "@ {sf|subfc} %0,%2,%1;{sfe|subfe} %0,%0,%0;nand %0,%0,%0 {sfi|subfic} %0,%1,-1;{a%I2|add%I2c} %0,%0,%2;{sfe|subfe} %0,%0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r"))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;andc %0,%3,%4 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;andc %0,%3,%4" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;andc. %4,%3,%4 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;andc. %4,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (and:SI (neg:SI (geu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_neg_short_operand" "r,P"))) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (and:SI (neg:SI (geu:SI (match_dup 1) (match_dup 2))) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {sf|subfc} %4,%2,%1;{sfe|subfe} %4,%4,%4;andc. %0,%3,%4 {ai|addic} %4,%1,%n2;{sfe|subfe} %4,%4,%4;andc. %0,%3,%4" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)))] "" "{sfi|subfic} %0,%1,0;{ame|addme} %0,%0;{sri|srwi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 2 "cc_reg_operand" "=x") (compare:CC (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_dup 1) (const_int 0)))] "" "{sfi|subfic} %0,%1,0;{ame|addme} %0,%0;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")))] "TARGET_POWER" "doz %0,%2,%1;nabs %0,%0;{sri|srwi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gt:SI (match_dup 1) (match_dup 2)))] "TARGET_POWER" "doz %0,%2,%1;nabs %0,%0;{sri.|srwi.} %0,%0,31" [(set_attr "type" "delayed_compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1;{sfe|subfe} %3,%1,%3;{aze|addze} %0,%2" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1;{sfe|subfe} %3,%1,%3;{aze.|addze.} %0,%2" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 4 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0)) (match_operand:SI 2 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_dup 1) (const_int 0)) (match_dup 2))) (clobber (match_scratch:SI 3 "=&r"))] "" "{a|addc} %3,%1,%1;{sfe|subfe} %3,%1,%3;{aze.|addze.} %3,%2" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r"))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1;{ai|addic} %4,%4,-1;{aze|addze} %0,%3" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1;{ai|addic} %4,%4,-1;{aze.|addze.} %4,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x") (compare:CC (plus:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r")) (match_operand:SI 3 "gpc_reg_operand" "r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (plus:SI (gt:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r"))] "TARGET_POWER" "doz %4,%2,%1;{ai|addic} %4,%4,-1;{aze.|addze.} %0,%3" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (const_int 0))))] "" "{sfi|subfic} %0,%1,0;{ame|addme} %0,%0;{srai|srawi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gt:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "r"))))] "TARGET_POWER" "doz %0,%2,%1;nabs %0,%0;{srai|srawi} %0,%0,31" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")))] "" "{sf%I2|subf%I2c} %0,%1,%2;{sfe|subfe} %0,%0,%0;neg %0,%0" [(set_attr "length" "12")])

(define_insn "" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (compare:CC (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r") (gtu:SI (match_dup 1) (match_dup 2)))] "" "{sf%I2|subf%I2c} %0,%1,%2;{sfe|subfe} %0,%0,%0;neg. %0,%0" [(set_attr "type" "compare") (set_attr "length" "12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r,r,r") (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r,rI")) (match_operand:SI 3 "reg_or_short_operand" "r,r,I"))) (clobber (match_scratch:SI 4 "=&r,&r,&r"))] "" "@ {ai|addic} %4,%1,%k2;{aze|addze} %0,%3 {sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3 {sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;{sf%I3|subf%I3c} %0,%4,%3" [(set_attr "length" "8,12,12")])

(define_insn "" [(set (match_operand:CC 0 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {ai|addic} %4,%1,%k2;{aze.|addze.} %0,%3 {sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "8,12")])

(define_insn "" [(set (match_operand:CC 5 "cc_reg_operand" "=x,x") (compare:CC (plus:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r,r") (match_operand:SI 2 "reg_or_short_operand" "I,r")) (match_operand:SI 3 "gpc_reg_operand" "r,r")) (const_int 0))) (set (match_operand:SI 0 "gpc_reg_operand" "=r,r") (plus:SI (gtu:SI (match_dup 1) (match_dup 2)) (match_dup 3))) (clobber (match_scratch:SI 4 "=&r,&r"))] "" "@ {ai|addic} %4,%1,%k2;{aze.|addze.} %0,%3 {sf%I2|subf%I2c} %4,%1,%2;{sfe|subfe} %4,%4,%4;{sf.|subfc.} %0,%4,%3" [(set_attr "type" "compare") (set_attr "length" "8,12")])

(define_insn "" [(set (match_operand:SI 0 "gpc_reg_operand" "=r") (neg:SI (gtu:SI (match_operand:SI 1 "gpc_reg_operand" "r") (match_operand:SI 2 "reg_or_short_operand" "rI"))))] "" "{sf%I2|subf%I2c} %0,%1,%2;{sfe|subfe} %0,%0,%0" [(set_attr "length" "8")]) ;; Define both directions of branch and return. If we need a reload ;; register, we'd rather use CR0 since it is much easier to copy a ;; register CC value to there.

(define_insn "" [(set (pc) (if_then_else (match_operator 1 "branch_comparison_operator" [(match_operand 2 "cc_reg_operand" "x,?y") (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { if (get_attr_length (insn) == 8) return "%C1bc %t1,%j1,%l0"; else return "%C1bc %T1,%j1,$+8;b %l0"; }" [(set_attr "type" "branch")])

(define_insn "" [(set (pc) (if_then_else (match_operator 0 "branch_comparison_operator" [(match_operand 1 "cc_reg_operand" "x,?y") (const_int 0)]) (return) (pc)))] "direct_return ()" "{%C0bcr|%C0bclr} %t0,%j0" [(set_attr "length" "8")])

(define_insn "" [(set (pc) (if_then_else (match_operator 1 "branch_comparison_operator" [(match_operand 2 "cc_reg_operand" "x,?y") (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { if (get_attr_length (insn) == 8) return "%C1bc %T1,%j1,%l0"; else return "%C1bc %t1,%j1,$+8;b %l0"; }" [(set_attr "type" "branch")])

(define_insn "" [(set (pc) (if_then_else (match_operator 0 "branch_comparison_operator" [(match_operand 1 "cc_reg_operand" "x,?y") (const_int 0)]) (pc) (return)))] "direct_return ()" "{%C0bcr|%C0bclr} %T0,%j0" [(set_attr "length" "8")])

;; Unconditional branch and return.

(define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "b %l0")

(define_insn "return" [(return)] "direct_return ()" "{br|blr}" [(set_attr "type" "jmpreg")])

(define_insn "indirect_jump" [(set (pc) (match_operand:SI 0 "register_operand" "c,l"))] "" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")])

(define_insn "" [(set (pc) (match_operand:DI 0 "register_operand" "c,l"))] "TARGET_POWERPC64" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")])

;; Table jump for switch statements: (define_expand "tablejump" [(use (match_operand 0 "" "")) (use (label_ref (match_operand 1 "" "")))] "" " { if (TARGET_32BIT) emit_jump_insn (gen_tablejumpsi (operands[0], operands[1])); else emit_jump_insn (gen_tablejumpdi (operands[0], operands[1])); DONE; }")

(define_expand "tablejumpsi" [(set (match_dup 3) (plus:SI (match_operand:SI 0 "" "") (match_dup 2))) (parallel [(set (pc) (match_dup 3)) (use (label_ref (match_operand 1 "" "")))])] "" " { operands[0] = force_reg (SImode, operands[0]); operands[2] = force_reg (SImode, gen_rtx (LABEL_REF, VOIDmode, operands[1])); operands[3] = gen_reg_rtx (SImode); }")

(define_expand "tablejumpdi" [(set (match_dup 3) (plus:DI (match_operand:DI 0 "" "") (match_dup 2))) (parallel [(set (pc) (match_dup 3)) (use (label_ref (match_operand 1 "" "")))])] "" " { operands[0] = force_reg (DImode, operands[0]); operands[2] = force_reg (DImode, gen_rtx (LABEL_REF, VOIDmode, operands[1])); operands[3] = gen_reg_rtx (DImode); }")

(define_insn "" [(set (pc) (match_operand:SI 0 "register_operand" "c,l")) (use (label_ref (match_operand 1 "" "")))] "" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")])

(define_insn "" [(set (pc) (match_operand:DI 0 "register_operand" "c,l")) (use (label_ref (match_operand 1 "" "")))] "TARGET_POWERPC64" "@ bctr {br|blr}" [(set_attr "type" "jmpreg")])

(define_insn "nop" [(const_int 0)] "" "{cror 0,0,0|nop}") ;; Define the subtract-one-and-jump insns, starting with the template ;; so loop.c knows what to generate.

(define_expand "decrement_and_branch_on_count" [(parallel [(set (pc) (if_then_else (ne (match_operand:SI 0 "register_operand" "") (const_int 1)) (label_ref (match_operand 1 "" "")) (pc))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1))) (clobber (match_scratch:CC 2 "")) (clobber (match_scratch:SI 3 ""))])] "" "")

;; We need to be able to do this for any operand, including MEM, or we ;; will cause reload to blow up since we don't allow output reloads on ;; JUMP_INSNs. ;; In order that the length attribute is calculated correctly, the ;; label MUST be operand 0.

(define_insn "" [(set (pc) (if_then_else (ne (match_operand:SI 1 "register_operand" "c,r,r") (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "{bdn|bdnz} %l0"; else return "bdz $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

(define_insn "" [(set (pc) (if_then_else (ne (match_operand:SI 1 "register_operand" "c,r,r") (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "bdz %l0"; else return "{bdn|bdnz} $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

;; Similar, but we can use GE since we have a REG_NONNEG. (define_insn "" [(set (pc) (if_then_else (ge (match_operand:SI 1 "register_operand" "c,r,r") (const_int 0)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&X")) (clobber (match_scratch:SI 4 "=X,X,r"))] "find_reg_note (insn, REG_NONNEG, 0)" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "{bdn|bdnz} %l0"; else return "bdz $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

(define_insn "" [(set (pc) (if_then_else (ge (match_operand:SI 1 "register_operand" "c,r,r") (const_int 0)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&X")) (clobber (match_scratch:SI 4 "=X,X,r"))] "find_reg_note (insn, REG_NONNEG, 0)" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "bdz %l0"; else return "{bdn|bdnz} $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

(define_insn "" [(set (pc) (if_then_else (eq (match_operand:SI 1 "register_operand" "c,r,r") (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "bdz %l0"; else return "{bdn|bdnz} $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

(define_insn "" [(set (pc) (if_then_else (eq (match_operand:SI 1 "register_operand" "c,r,r") (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) (set (match_operand:SI 2 "register_operand" "=1,r,mqcl") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x")) (clobber (match_scratch:SI 4 "=X,X,r"))] "" "* { if (which_alternative != 0) return "#"; else if (get_attr_length (insn) == 8) return "{bdn|bdnz} %l0"; else return "bdz $+8;b %l0"; }" [(set_attr "type" "branch") (set_attr "length" "*,12,16")])

(define_split [(set (pc) (if_then_else (match_operator 2 "comparison_operator" [(match_operand:SI 1 "gpc_reg_operand" "") (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) (set (match_operand:SI 0 "gpc_reg_operand" "") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:SI 4 ""))] "reload_completed" [(parallel [(set (match_dup 3) (compare:CC (plus:SI (match_dup 1) (const_int -1)) (const_int 0))) (set (match_dup 0) (plus:SI (match_dup 1) (const_int -1)))]) (set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))] " { operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3], const0_rtx); }")

(define_split [(set (pc) (if_then_else (match_operator 2 "comparison_operator" [(match_operand:SI 1 "gpc_reg_operand" "") (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) (set (match_operand:SI 0 "general_operand" "") (plus:SI (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:SI 4 ""))] "reload_completed && ! gpc_reg_operand (operands[0], SImode)" [(parallel [(set (match_dup 3) (compare:CC (plus:SI (match_dup 1) (const_int -1)) (const_int 0))) (set (match_dup 4) (plus:SI (match_dup 1) (const_int -1)))]) (set (match_dup 0) (match_dup 4)) (set (pc) (if_then_else (match_dup 7) (match_dup 5) (match_dup 6)))] " { operands[7] = gen_rtx (GET_CODE (operands[2]), VOIDmode, operands[3], const0_rtx); }")