2011-10-24 Vasiliy Fofanov <fofanov@adacore.com> * gnat_ugn.texi: Document explicit use of XDECGNAT library. 2011-10-24 Hristian Kirtchev <kirtchev@adacore.com> * exp_ch3.adb (Build_Assignment): Add local constant N_Loc and update its uses. (Build_Discriminant_Assignments): Add local variable D_Loc and update its uses. (Build_Init_Statements): Add local variables Comp_Loc, Decl_Loc and Var_Loc and update their uses. (Build_Record_Init_Proc): Code reformatting. (Increment_Counter): Add formal parameter Loc. (Make_Counter): Add formal parameter Loc. 2011-10-24 Eric Botcazou <ebotcazou@adacore.com> * sem_disp.adb (Covers_Some_Interface): Fix typo. 2011-10-24 Matthew Heaney <heaney@adacore.com> * a-cuprqu.adb, a-cbprqu.adb (Dequeue_Only_High_Priority): Predicate had wrong sense. 2011-10-24 Yannick Moy <moy@adacore.com> * sem_ch13.adb (Analyze_Aspect_Specifications/Aspect_Test_Case): Translate arguments in positional notation into pragma argument association arguments for the generated pragma. 2011-10-24 Arnaud Charlet <charlet@adacore.com> * exp_ch5.adb: Fix minor typo. 2011-10-24 Ed Schonberg <schonberg@adacore.com> * sem_ch3.adb (Is_Visible_Component): Refine predicate for the case of a component reference in an instance body, when the enclosing type is private. From-SVN: r180369
8883 lines
312 KiB
Ada
8883 lines
312 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- S E M _ C H 1 3 --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Aspects; use Aspects;
|
|
with Atree; use Atree;
|
|
with Checks; use Checks;
|
|
with Einfo; use Einfo;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Exp_Disp; use Exp_Disp;
|
|
with Exp_Tss; use Exp_Tss;
|
|
with Exp_Util; use Exp_Util;
|
|
with Lib; use Lib;
|
|
with Lib.Xref; use Lib.Xref;
|
|
with Namet; use Namet;
|
|
with Nlists; use Nlists;
|
|
with Nmake; use Nmake;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Rident; use Rident;
|
|
with Rtsfind; use Rtsfind;
|
|
with Sem; use Sem;
|
|
with Sem_Aux; use Sem_Aux;
|
|
with Sem_Ch3; use Sem_Ch3;
|
|
with Sem_Ch6; use Sem_Ch6;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Type; use Sem_Type;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sem_Warn; use Sem_Warn;
|
|
with Sinput; use Sinput;
|
|
with Snames; use Snames;
|
|
with Stand; use Stand;
|
|
with Sinfo; use Sinfo;
|
|
with Stringt; use Stringt;
|
|
with Targparm; use Targparm;
|
|
with Ttypes; use Ttypes;
|
|
with Tbuild; use Tbuild;
|
|
with Urealp; use Urealp;
|
|
with Warnsw; use Warnsw;
|
|
|
|
with GNAT.Heap_Sort_G;
|
|
|
|
package body Sem_Ch13 is
|
|
|
|
SSU : constant Pos := System_Storage_Unit;
|
|
-- Convenient short hand for commonly used constant
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
|
|
-- This routine is called after setting one of the sizes of type entity
|
|
-- Typ to Size. The purpose is to deal with the situation of a derived
|
|
-- type whose inherited alignment is no longer appropriate for the new
|
|
-- size value. In this case, we reset the Alignment to unknown.
|
|
|
|
procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id);
|
|
-- If Typ has predicates (indicated by Has_Predicates being set for Typ,
|
|
-- then either there are pragma Invariant entries on the rep chain for the
|
|
-- type (note that Predicate aspects are converted to pragma Predicate), or
|
|
-- there are inherited aspects from a parent type, or ancestor subtypes.
|
|
-- This procedure builds the spec and body for the Predicate function that
|
|
-- tests these predicates. N is the freeze node for the type. The spec of
|
|
-- the function is inserted before the freeze node, and the body of the
|
|
-- function is inserted after the freeze node.
|
|
|
|
procedure Build_Static_Predicate
|
|
(Typ : Entity_Id;
|
|
Expr : Node_Id;
|
|
Nam : Name_Id);
|
|
-- Given a predicated type Typ, where Typ is a discrete static subtype,
|
|
-- whose predicate expression is Expr, tests if Expr is a static predicate,
|
|
-- and if so, builds the predicate range list. Nam is the name of the one
|
|
-- argument to the predicate function. Occurrences of the type name in the
|
|
-- predicate expression have been replaced by identifier references to this
|
|
-- name, which is unique, so any identifier with Chars matching Nam must be
|
|
-- a reference to the type. If the predicate is non-static, this procedure
|
|
-- returns doing nothing. If the predicate is static, then the predicate
|
|
-- list is stored in Static_Predicate (Typ), and the Expr is rewritten as
|
|
-- a canonicalized membership operation.
|
|
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint;
|
|
-- Given the expression for an alignment value, returns the corresponding
|
|
-- Uint value. If the value is inappropriate, then error messages are
|
|
-- posted as required, and a value of No_Uint is returned.
|
|
|
|
function Is_Operational_Item (N : Node_Id) return Boolean;
|
|
-- A specification for a stream attribute is allowed before the full type
|
|
-- is declared, as explained in AI-00137 and the corrigendum. Attributes
|
|
-- that do not specify a representation characteristic are operational
|
|
-- attributes.
|
|
|
|
procedure New_Stream_Subprogram
|
|
(N : Node_Id;
|
|
Ent : Entity_Id;
|
|
Subp : Entity_Id;
|
|
Nam : TSS_Name_Type);
|
|
-- Create a subprogram renaming of a given stream attribute to the
|
|
-- designated subprogram and then in the tagged case, provide this as a
|
|
-- primitive operation, or in the non-tagged case make an appropriate TSS
|
|
-- entry. This is more properly an expansion activity than just semantics,
|
|
-- but the presence of user-defined stream functions for limited types is a
|
|
-- legality check, which is why this takes place here rather than in
|
|
-- exp_ch13, where it was previously. Nam indicates the name of the TSS
|
|
-- function to be generated.
|
|
--
|
|
-- To avoid elaboration anomalies with freeze nodes, for untagged types
|
|
-- we generate both a subprogram declaration and a subprogram renaming
|
|
-- declaration, so that the attribute specification is handled as a
|
|
-- renaming_as_body. For tagged types, the specification is one of the
|
|
-- primitive specs.
|
|
|
|
generic
|
|
with procedure Replace_Type_Reference (N : Node_Id);
|
|
procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id);
|
|
-- This is used to scan an expression for a predicate or invariant aspect
|
|
-- replacing occurrences of the name TName (the name of the subtype to
|
|
-- which the aspect applies) with appropriate references to the parameter
|
|
-- of the predicate function or invariant procedure. The procedure passed
|
|
-- as a generic parameter does the actual replacement of node N, which is
|
|
-- either a simple direct reference to TName, or a selected component that
|
|
-- represents an appropriately qualified occurrence of TName.
|
|
|
|
procedure Set_Biased
|
|
(E : Entity_Id;
|
|
N : Node_Id;
|
|
Msg : String;
|
|
Biased : Boolean := True);
|
|
-- If Biased is True, sets Has_Biased_Representation flag for E, and
|
|
-- outputs a warning message at node N if Warn_On_Biased_Representation is
|
|
-- is True. This warning inserts the string Msg to describe the construct
|
|
-- causing biasing.
|
|
|
|
----------------------------------------------
|
|
-- Table for Validate_Unchecked_Conversions --
|
|
----------------------------------------------
|
|
|
|
-- The following table collects unchecked conversions for validation.
|
|
-- Entries are made by Validate_Unchecked_Conversion and then the
|
|
-- call to Validate_Unchecked_Conversions does the actual error
|
|
-- checking and posting of warnings. The reason for this delayed
|
|
-- processing is to take advantage of back-annotations of size and
|
|
-- alignment values performed by the back end.
|
|
|
|
-- Note: the reason we store a Source_Ptr value instead of a Node_Id
|
|
-- is that by the time Validate_Unchecked_Conversions is called, Sprint
|
|
-- will already have modified all Sloc values if the -gnatD option is set.
|
|
|
|
type UC_Entry is record
|
|
Eloc : Source_Ptr; -- node used for posting warnings
|
|
Source : Entity_Id; -- source type for unchecked conversion
|
|
Target : Entity_Id; -- target type for unchecked conversion
|
|
end record;
|
|
|
|
package Unchecked_Conversions is new Table.Table (
|
|
Table_Component_Type => UC_Entry,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 50,
|
|
Table_Increment => 200,
|
|
Table_Name => "Unchecked_Conversions");
|
|
|
|
----------------------------------------
|
|
-- Table for Validate_Address_Clauses --
|
|
----------------------------------------
|
|
|
|
-- If an address clause has the form
|
|
|
|
-- for X'Address use Expr
|
|
|
|
-- where Expr is of the form Y'Address or recursively is a reference
|
|
-- to a constant of either of these forms, and X and Y are entities of
|
|
-- objects, then if Y has a smaller alignment than X, that merits a
|
|
-- warning about possible bad alignment. The following table collects
|
|
-- address clauses of this kind. We put these in a table so that they
|
|
-- can be checked after the back end has completed annotation of the
|
|
-- alignments of objects, since we can catch more cases that way.
|
|
|
|
type Address_Clause_Check_Record is record
|
|
N : Node_Id;
|
|
-- The address clause
|
|
|
|
X : Entity_Id;
|
|
-- The entity of the object overlaying Y
|
|
|
|
Y : Entity_Id;
|
|
-- The entity of the object being overlaid
|
|
|
|
Off : Boolean;
|
|
-- Whether the address is offset within Y
|
|
end record;
|
|
|
|
package Address_Clause_Checks is new Table.Table (
|
|
Table_Component_Type => Address_Clause_Check_Record,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 20,
|
|
Table_Increment => 200,
|
|
Table_Name => "Address_Clause_Checks");
|
|
|
|
-----------------------------------------
|
|
-- Adjust_Record_For_Reverse_Bit_Order --
|
|
-----------------------------------------
|
|
|
|
procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
|
|
Comp : Node_Id;
|
|
CC : Node_Id;
|
|
|
|
begin
|
|
-- Processing depends on version of Ada
|
|
|
|
-- For Ada 95, we just renumber bits within a storage unit. We do the
|
|
-- same for Ada 83 mode, since we recognize the Bit_Order attribute in
|
|
-- Ada 83, and are free to add this extension.
|
|
|
|
if Ada_Version < Ada_2005 then
|
|
Comp := First_Component_Or_Discriminant (R);
|
|
while Present (Comp) loop
|
|
CC := Component_Clause (Comp);
|
|
|
|
-- If component clause is present, then deal with the non-default
|
|
-- bit order case for Ada 95 mode.
|
|
|
|
-- We only do this processing for the base type, and in fact that
|
|
-- is important, since otherwise if there are record subtypes, we
|
|
-- could reverse the bits once for each subtype, which is wrong.
|
|
|
|
if Present (CC)
|
|
and then Ekind (R) = E_Record_Type
|
|
then
|
|
declare
|
|
CFB : constant Uint := Component_Bit_Offset (Comp);
|
|
CSZ : constant Uint := Esize (Comp);
|
|
CLC : constant Node_Id := Component_Clause (Comp);
|
|
Pos : constant Node_Id := Position (CLC);
|
|
FB : constant Node_Id := First_Bit (CLC);
|
|
|
|
Storage_Unit_Offset : constant Uint :=
|
|
CFB / System_Storage_Unit;
|
|
|
|
Start_Bit : constant Uint :=
|
|
CFB mod System_Storage_Unit;
|
|
|
|
begin
|
|
-- Cases where field goes over storage unit boundary
|
|
|
|
if Start_Bit + CSZ > System_Storage_Unit then
|
|
|
|
-- Allow multi-byte field but generate warning
|
|
|
|
if Start_Bit mod System_Storage_Unit = 0
|
|
and then CSZ mod System_Storage_Unit = 0
|
|
then
|
|
Error_Msg_N
|
|
("multi-byte field specified with non-standard"
|
|
& " Bit_Order?", CLC);
|
|
|
|
if Bytes_Big_Endian then
|
|
Error_Msg_N
|
|
("bytes are not reversed "
|
|
& "(component is big-endian)?", CLC);
|
|
else
|
|
Error_Msg_N
|
|
("bytes are not reversed "
|
|
& "(component is little-endian)?", CLC);
|
|
end if;
|
|
|
|
-- Do not allow non-contiguous field
|
|
|
|
else
|
|
Error_Msg_N
|
|
("attempt to specify non-contiguous field "
|
|
& "not permitted", CLC);
|
|
Error_Msg_N
|
|
("\caused by non-standard Bit_Order "
|
|
& "specified", CLC);
|
|
Error_Msg_N
|
|
("\consider possibility of using "
|
|
& "Ada 2005 mode here", CLC);
|
|
end if;
|
|
|
|
-- Case where field fits in one storage unit
|
|
|
|
else
|
|
-- Give warning if suspicious component clause
|
|
|
|
if Intval (FB) >= System_Storage_Unit
|
|
and then Warn_On_Reverse_Bit_Order
|
|
then
|
|
Error_Msg_N
|
|
("?Bit_Order clause does not affect " &
|
|
"byte ordering", Pos);
|
|
Error_Msg_Uint_1 :=
|
|
Intval (Pos) + Intval (FB) /
|
|
System_Storage_Unit;
|
|
Error_Msg_N
|
|
("?position normalized to ^ before bit " &
|
|
"order interpreted", Pos);
|
|
end if;
|
|
|
|
-- Here is where we fix up the Component_Bit_Offset value
|
|
-- to account for the reverse bit order. Some examples of
|
|
-- what needs to be done are:
|
|
|
|
-- First_Bit .. Last_Bit Component_Bit_Offset
|
|
-- old new old new
|
|
|
|
-- 0 .. 0 7 .. 7 0 7
|
|
-- 0 .. 1 6 .. 7 0 6
|
|
-- 0 .. 2 5 .. 7 0 5
|
|
-- 0 .. 7 0 .. 7 0 4
|
|
|
|
-- 1 .. 1 6 .. 6 1 6
|
|
-- 1 .. 4 3 .. 6 1 3
|
|
-- 4 .. 7 0 .. 3 4 0
|
|
|
|
-- The rule is that the first bit is is obtained by
|
|
-- subtracting the old ending bit from storage_unit - 1.
|
|
|
|
Set_Component_Bit_Offset
|
|
(Comp,
|
|
(Storage_Unit_Offset * System_Storage_Unit) +
|
|
(System_Storage_Unit - 1) -
|
|
(Start_Bit + CSZ - 1));
|
|
|
|
Set_Normalized_First_Bit
|
|
(Comp,
|
|
Component_Bit_Offset (Comp) mod
|
|
System_Storage_Unit);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- For Ada 2005, we do machine scalar processing, as fully described In
|
|
-- AI-133. This involves gathering all components which start at the
|
|
-- same byte offset and processing them together. Same approach is still
|
|
-- valid in later versions including Ada 2012.
|
|
|
|
else
|
|
declare
|
|
Max_Machine_Scalar_Size : constant Uint :=
|
|
UI_From_Int
|
|
(Standard_Long_Long_Integer_Size);
|
|
-- We use this as the maximum machine scalar size
|
|
|
|
Num_CC : Natural;
|
|
SSU : constant Uint := UI_From_Int (System_Storage_Unit);
|
|
|
|
begin
|
|
-- This first loop through components does two things. First it
|
|
-- deals with the case of components with component clauses whose
|
|
-- length is greater than the maximum machine scalar size (either
|
|
-- accepting them or rejecting as needed). Second, it counts the
|
|
-- number of components with component clauses whose length does
|
|
-- not exceed this maximum for later processing.
|
|
|
|
Num_CC := 0;
|
|
Comp := First_Component_Or_Discriminant (R);
|
|
while Present (Comp) loop
|
|
CC := Component_Clause (Comp);
|
|
|
|
if Present (CC) then
|
|
declare
|
|
Fbit : constant Uint :=
|
|
Static_Integer (First_Bit (CC));
|
|
Lbit : constant Uint :=
|
|
Static_Integer (Last_Bit (CC));
|
|
|
|
begin
|
|
-- Case of component with last bit >= max machine scalar
|
|
|
|
if Lbit >= Max_Machine_Scalar_Size then
|
|
|
|
-- This is allowed only if first bit is zero, and
|
|
-- last bit + 1 is a multiple of storage unit size.
|
|
|
|
if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
|
|
|
|
-- This is the case to give a warning if enabled
|
|
|
|
if Warn_On_Reverse_Bit_Order then
|
|
Error_Msg_N
|
|
("multi-byte field specified with "
|
|
& " non-standard Bit_Order?", CC);
|
|
|
|
if Bytes_Big_Endian then
|
|
Error_Msg_N
|
|
("\bytes are not reversed "
|
|
& "(component is big-endian)?", CC);
|
|
else
|
|
Error_Msg_N
|
|
("\bytes are not reversed "
|
|
& "(component is little-endian)?", CC);
|
|
end if;
|
|
end if;
|
|
|
|
-- Give error message for RM 13.4.1(10) violation
|
|
|
|
else
|
|
Error_Msg_FE
|
|
("machine scalar rules not followed for&",
|
|
First_Bit (CC), Comp);
|
|
|
|
Error_Msg_Uint_1 := Lbit;
|
|
Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
|
|
Error_Msg_F
|
|
("\last bit (^) exceeds maximum machine "
|
|
& "scalar size (^)",
|
|
First_Bit (CC));
|
|
|
|
if (Lbit + 1) mod SSU /= 0 then
|
|
Error_Msg_Uint_1 := SSU;
|
|
Error_Msg_F
|
|
("\and is not a multiple of Storage_Unit (^) "
|
|
& "(RM 13.4.1(10))",
|
|
First_Bit (CC));
|
|
|
|
else
|
|
Error_Msg_Uint_1 := Fbit;
|
|
Error_Msg_F
|
|
("\and first bit (^) is non-zero "
|
|
& "(RM 13.4.1(10))",
|
|
First_Bit (CC));
|
|
end if;
|
|
end if;
|
|
|
|
-- OK case of machine scalar related component clause,
|
|
-- For now, just count them.
|
|
|
|
else
|
|
Num_CC := Num_CC + 1;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- We need to sort the component clauses on the basis of the
|
|
-- Position values in the clause, so we can group clauses with
|
|
-- the same Position. together to determine the relevant machine
|
|
-- scalar size.
|
|
|
|
Sort_CC : declare
|
|
Comps : array (0 .. Num_CC) of Entity_Id;
|
|
-- Array to collect component and discriminant entities. The
|
|
-- data starts at index 1, the 0'th entry is for the sort
|
|
-- routine.
|
|
|
|
function CP_Lt (Op1, Op2 : Natural) return Boolean;
|
|
-- Compare routine for Sort
|
|
|
|
procedure CP_Move (From : Natural; To : Natural);
|
|
-- Move routine for Sort
|
|
|
|
package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
|
|
|
|
Start : Natural;
|
|
Stop : Natural;
|
|
-- Start and stop positions in the component list of the set of
|
|
-- components with the same starting position (that constitute
|
|
-- components in a single machine scalar).
|
|
|
|
MaxL : Uint;
|
|
-- Maximum last bit value of any component in this set
|
|
|
|
MSS : Uint;
|
|
-- Corresponding machine scalar size
|
|
|
|
-----------
|
|
-- CP_Lt --
|
|
-----------
|
|
|
|
function CP_Lt (Op1, Op2 : Natural) return Boolean is
|
|
begin
|
|
return Position (Component_Clause (Comps (Op1))) <
|
|
Position (Component_Clause (Comps (Op2)));
|
|
end CP_Lt;
|
|
|
|
-------------
|
|
-- CP_Move --
|
|
-------------
|
|
|
|
procedure CP_Move (From : Natural; To : Natural) is
|
|
begin
|
|
Comps (To) := Comps (From);
|
|
end CP_Move;
|
|
|
|
-- Start of processing for Sort_CC
|
|
|
|
begin
|
|
-- Collect the machine scalar relevant component clauses
|
|
|
|
Num_CC := 0;
|
|
Comp := First_Component_Or_Discriminant (R);
|
|
while Present (Comp) loop
|
|
declare
|
|
CC : constant Node_Id := Component_Clause (Comp);
|
|
|
|
begin
|
|
-- Collect only component clauses whose last bit is less
|
|
-- than machine scalar size. Any component clause whose
|
|
-- last bit exceeds this value does not take part in
|
|
-- machine scalar layout considerations. The test for
|
|
-- Error_Posted makes sure we exclude component clauses
|
|
-- for which we already posted an error.
|
|
|
|
if Present (CC)
|
|
and then not Error_Posted (Last_Bit (CC))
|
|
and then Static_Integer (Last_Bit (CC)) <
|
|
Max_Machine_Scalar_Size
|
|
then
|
|
Num_CC := Num_CC + 1;
|
|
Comps (Num_CC) := Comp;
|
|
end if;
|
|
end;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- Sort by ascending position number
|
|
|
|
Sorting.Sort (Num_CC);
|
|
|
|
-- We now have all the components whose size does not exceed
|
|
-- the max machine scalar value, sorted by starting position.
|
|
-- In this loop we gather groups of clauses starting at the
|
|
-- same position, to process them in accordance with AI-133.
|
|
|
|
Stop := 0;
|
|
while Stop < Num_CC loop
|
|
Start := Stop + 1;
|
|
Stop := Start;
|
|
MaxL :=
|
|
Static_Integer
|
|
(Last_Bit (Component_Clause (Comps (Start))));
|
|
while Stop < Num_CC loop
|
|
if Static_Integer
|
|
(Position (Component_Clause (Comps (Stop + 1)))) =
|
|
Static_Integer
|
|
(Position (Component_Clause (Comps (Stop))))
|
|
then
|
|
Stop := Stop + 1;
|
|
MaxL :=
|
|
UI_Max
|
|
(MaxL,
|
|
Static_Integer
|
|
(Last_Bit
|
|
(Component_Clause (Comps (Stop)))));
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Now we have a group of component clauses from Start to
|
|
-- Stop whose positions are identical, and MaxL is the
|
|
-- maximum last bit value of any of these components.
|
|
|
|
-- We need to determine the corresponding machine scalar
|
|
-- size. This loop assumes that machine scalar sizes are
|
|
-- even, and that each possible machine scalar has twice
|
|
-- as many bits as the next smaller one.
|
|
|
|
MSS := Max_Machine_Scalar_Size;
|
|
while MSS mod 2 = 0
|
|
and then (MSS / 2) >= SSU
|
|
and then (MSS / 2) > MaxL
|
|
loop
|
|
MSS := MSS / 2;
|
|
end loop;
|
|
|
|
-- Here is where we fix up the Component_Bit_Offset value
|
|
-- to account for the reverse bit order. Some examples of
|
|
-- what needs to be done for the case of a machine scalar
|
|
-- size of 8 are:
|
|
|
|
-- First_Bit .. Last_Bit Component_Bit_Offset
|
|
-- old new old new
|
|
|
|
-- 0 .. 0 7 .. 7 0 7
|
|
-- 0 .. 1 6 .. 7 0 6
|
|
-- 0 .. 2 5 .. 7 0 5
|
|
-- 0 .. 7 0 .. 7 0 4
|
|
|
|
-- 1 .. 1 6 .. 6 1 6
|
|
-- 1 .. 4 3 .. 6 1 3
|
|
-- 4 .. 7 0 .. 3 4 0
|
|
|
|
-- The rule is that the first bit is obtained by subtracting
|
|
-- the old ending bit from machine scalar size - 1.
|
|
|
|
for C in Start .. Stop loop
|
|
declare
|
|
Comp : constant Entity_Id := Comps (C);
|
|
CC : constant Node_Id :=
|
|
Component_Clause (Comp);
|
|
LB : constant Uint :=
|
|
Static_Integer (Last_Bit (CC));
|
|
NFB : constant Uint := MSS - Uint_1 - LB;
|
|
NLB : constant Uint := NFB + Esize (Comp) - 1;
|
|
Pos : constant Uint :=
|
|
Static_Integer (Position (CC));
|
|
|
|
begin
|
|
if Warn_On_Reverse_Bit_Order then
|
|
Error_Msg_Uint_1 := MSS;
|
|
Error_Msg_N
|
|
("info: reverse bit order in machine " &
|
|
"scalar of length^?", First_Bit (CC));
|
|
Error_Msg_Uint_1 := NFB;
|
|
Error_Msg_Uint_2 := NLB;
|
|
|
|
if Bytes_Big_Endian then
|
|
Error_Msg_NE
|
|
("?\info: big-endian range for "
|
|
& "component & is ^ .. ^",
|
|
First_Bit (CC), Comp);
|
|
else
|
|
Error_Msg_NE
|
|
("?\info: little-endian range "
|
|
& "for component & is ^ .. ^",
|
|
First_Bit (CC), Comp);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
|
|
Set_Normalized_First_Bit (Comp, NFB mod SSU);
|
|
end;
|
|
end loop;
|
|
end loop;
|
|
end Sort_CC;
|
|
end;
|
|
end if;
|
|
end Adjust_Record_For_Reverse_Bit_Order;
|
|
|
|
-------------------------------------
|
|
-- Alignment_Check_For_Size_Change --
|
|
-------------------------------------
|
|
|
|
procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
|
|
begin
|
|
-- If the alignment is known, and not set by a rep clause, and is
|
|
-- inconsistent with the size being set, then reset it to unknown,
|
|
-- we assume in this case that the size overrides the inherited
|
|
-- alignment, and that the alignment must be recomputed.
|
|
|
|
if Known_Alignment (Typ)
|
|
and then not Has_Alignment_Clause (Typ)
|
|
and then Size mod (Alignment (Typ) * SSU) /= 0
|
|
then
|
|
Init_Alignment (Typ);
|
|
end if;
|
|
end Alignment_Check_For_Size_Change;
|
|
|
|
-----------------------------------
|
|
-- Analyze_Aspect_Specifications --
|
|
-----------------------------------
|
|
|
|
procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
|
|
Aspect : Node_Id;
|
|
Aitem : Node_Id;
|
|
Ent : Node_Id;
|
|
|
|
L : constant List_Id := Aspect_Specifications (N);
|
|
|
|
Ins_Node : Node_Id := N;
|
|
-- Insert pragmas (except Pre/Post/Invariant/Predicate) after this node
|
|
|
|
-- The general processing involves building an attribute definition
|
|
-- clause or a pragma node that corresponds to the aspect. Then one
|
|
-- of two things happens:
|
|
|
|
-- If we are required to delay the evaluation of this aspect to the
|
|
-- freeze point, we attach the corresponding pragma/attribute definition
|
|
-- clause to the aspect specification node, which is then placed in the
|
|
-- Rep Item chain. In this case we mark the entity by setting the flag
|
|
-- Has_Delayed_Aspects and we evaluate the rep item at the freeze point.
|
|
|
|
-- If no delay is required, we just insert the pragma or attribute
|
|
-- after the declaration, and it will get processed by the normal
|
|
-- circuit. The From_Aspect_Specification flag is set on the pragma
|
|
-- or attribute definition node in either case to activate special
|
|
-- processing (e.g. not traversing the list of homonyms for inline).
|
|
|
|
Delay_Required : Boolean := False;
|
|
-- Set True if delay is required
|
|
|
|
begin
|
|
pragma Assert (Present (L));
|
|
|
|
-- Loop through aspects
|
|
|
|
Aspect := First (L);
|
|
Aspect_Loop : while Present (Aspect) loop
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (Aspect);
|
|
Id : constant Node_Id := Identifier (Aspect);
|
|
Expr : constant Node_Id := Expression (Aspect);
|
|
Nam : constant Name_Id := Chars (Id);
|
|
A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
|
|
Anod : Node_Id;
|
|
|
|
Eloc : Source_Ptr := Sloc (Expr);
|
|
-- Source location of expression, modified when we split PPC's
|
|
|
|
procedure Check_False_Aspect_For_Derived_Type;
|
|
-- This procedure checks for the case of a false aspect for a
|
|
-- derived type, which improperly tries to cancel an aspect
|
|
-- inherited from the parent;
|
|
|
|
-----------------------------------------
|
|
-- Check_False_Aspect_For_Derived_Type --
|
|
-----------------------------------------
|
|
|
|
procedure Check_False_Aspect_For_Derived_Type is
|
|
begin
|
|
-- We are only checking derived types
|
|
|
|
if not Is_Derived_Type (E) then
|
|
return;
|
|
end if;
|
|
|
|
case A_Id is
|
|
when Aspect_Atomic | Aspect_Shared =>
|
|
if not Is_Atomic (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Atomic_Components =>
|
|
if not Has_Atomic_Components (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Discard_Names =>
|
|
if not Discard_Names (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Pack =>
|
|
if not Is_Packed (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Unchecked_Union =>
|
|
if not Is_Unchecked_Union (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Volatile =>
|
|
if not Is_Volatile (E) then
|
|
return;
|
|
end if;
|
|
|
|
when Aspect_Volatile_Components =>
|
|
if not Has_Volatile_Components (E) then
|
|
return;
|
|
end if;
|
|
|
|
when others =>
|
|
return;
|
|
end case;
|
|
|
|
-- Fall through means we are canceling an inherited aspect
|
|
|
|
Error_Msg_Name_1 := Nam;
|
|
Error_Msg_NE
|
|
("derived type& inherits aspect%, cannot cancel", Expr, E);
|
|
end Check_False_Aspect_For_Derived_Type;
|
|
|
|
-- Start of processing for Aspect_Loop
|
|
|
|
begin
|
|
-- Skip aspect if already analyzed (not clear if this is needed)
|
|
|
|
if Analyzed (Aspect) then
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- Check restriction No_Implementation_Aspect_Specifications
|
|
|
|
if Impl_Defined_Aspects (A_Id) then
|
|
Check_Restriction
|
|
(No_Implementation_Aspect_Specifications, Aspect);
|
|
end if;
|
|
|
|
-- Check restriction No_Specification_Of_Aspect
|
|
|
|
Check_Restriction_No_Specification_Of_Aspect (Aspect);
|
|
|
|
-- Analyze this aspect
|
|
|
|
Set_Analyzed (Aspect);
|
|
Set_Entity (Aspect, E);
|
|
Ent := New_Occurrence_Of (E, Sloc (Id));
|
|
|
|
-- Check for duplicate aspect. Note that the Comes_From_Source
|
|
-- test allows duplicate Pre/Post's that we generate internally
|
|
-- to escape being flagged here.
|
|
|
|
if No_Duplicates_Allowed (A_Id) then
|
|
Anod := First (L);
|
|
while Anod /= Aspect loop
|
|
if Same_Aspect
|
|
(A_Id, Get_Aspect_Id (Chars (Identifier (Anod))))
|
|
and then Comes_From_Source (Aspect)
|
|
then
|
|
Error_Msg_Name_1 := Nam;
|
|
Error_Msg_Sloc := Sloc (Anod);
|
|
|
|
-- Case of same aspect specified twice
|
|
|
|
if Class_Present (Anod) = Class_Present (Aspect) then
|
|
if not Class_Present (Anod) then
|
|
Error_Msg_NE
|
|
("aspect% for & previously given#",
|
|
Id, E);
|
|
else
|
|
Error_Msg_NE
|
|
("aspect `%''Class` for & previously given#",
|
|
Id, E);
|
|
end if;
|
|
|
|
-- Case of Pre and Pre'Class both specified
|
|
|
|
elsif Nam = Name_Pre then
|
|
if Class_Present (Aspect) then
|
|
Error_Msg_NE
|
|
("aspect `Pre''Class` for & is not allowed here",
|
|
Id, E);
|
|
Error_Msg_NE
|
|
("\since aspect `Pre` previously given#",
|
|
Id, E);
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("aspect `Pre` for & is not allowed here",
|
|
Id, E);
|
|
Error_Msg_NE
|
|
("\since aspect `Pre''Class` previously given#",
|
|
Id, E);
|
|
end if;
|
|
end if;
|
|
|
|
-- Allowed case of X and X'Class both specified
|
|
end if;
|
|
|
|
Next (Anod);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Copy expression for later processing by the procedures
|
|
-- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
|
|
|
|
Set_Entity (Id, New_Copy_Tree (Expr));
|
|
|
|
-- Processing based on specific aspect
|
|
|
|
case A_Id is
|
|
|
|
-- No_Aspect should be impossible
|
|
|
|
when No_Aspect =>
|
|
raise Program_Error;
|
|
|
|
-- Aspects taking an optional boolean argument. For all of
|
|
-- these we just create a matching pragma and insert it, if
|
|
-- the expression is missing or set to True. If the expression
|
|
-- is False, we can ignore the aspect with the exception that
|
|
-- in the case of a derived type, we must check for an illegal
|
|
-- attempt to cancel an inherited aspect.
|
|
|
|
when Boolean_Aspects =>
|
|
Set_Is_Boolean_Aspect (Aspect);
|
|
|
|
if Present (Expr)
|
|
and then Is_False (Static_Boolean (Expr))
|
|
then
|
|
Check_False_Aspect_For_Derived_Type;
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- If True, build corresponding pragma node
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations => New_List (Ent),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Chars (Id)));
|
|
|
|
-- Never need to delay for boolean aspects
|
|
|
|
pragma Assert (not Delay_Required);
|
|
|
|
-- Library unit aspects. These are boolean aspects, but we
|
|
-- have to do special things with the insertion, since the
|
|
-- pragma belongs inside the declarations of a package.
|
|
|
|
when Library_Unit_Aspects =>
|
|
if Present (Expr)
|
|
and then Is_False (Static_Boolean (Expr))
|
|
then
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- Build corresponding pragma node
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations => New_List (Ent),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Chars (Id)));
|
|
|
|
-- This requires special handling in the case of a package
|
|
-- declaration, the pragma needs to be inserted in the list
|
|
-- of declarations for the associated package. There is no
|
|
-- issue of visibility delay for these aspects.
|
|
|
|
if Nkind (N) = N_Package_Declaration then
|
|
if Nkind (Parent (N)) /= N_Compilation_Unit then
|
|
Error_Msg_N
|
|
("incorrect context for library unit aspect&", Id);
|
|
else
|
|
Prepend
|
|
(Aitem, Visible_Declarations (Specification (N)));
|
|
end if;
|
|
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- If not package declaration, no delay is required
|
|
|
|
pragma Assert (not Delay_Required);
|
|
|
|
-- Aspects related to container iterators. These aspects denote
|
|
-- subprograms, and thus must be delayed.
|
|
|
|
when Aspect_Constant_Indexing |
|
|
Aspect_Variable_Indexing =>
|
|
|
|
if not Is_Type (E) or else not Is_Tagged_Type (E) then
|
|
Error_Msg_N ("indexing applies to a tagged type", N);
|
|
end if;
|
|
|
|
Aitem :=
|
|
Make_Attribute_Definition_Clause (Loc,
|
|
Name => Ent,
|
|
Chars => Chars (Id),
|
|
Expression => Relocate_Node (Expr));
|
|
|
|
Delay_Required := True;
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
|
|
when Aspect_Default_Iterator |
|
|
Aspect_Iterator_Element =>
|
|
|
|
Aitem :=
|
|
Make_Attribute_Definition_Clause (Loc,
|
|
Name => Ent,
|
|
Chars => Chars (Id),
|
|
Expression => Relocate_Node (Expr));
|
|
|
|
Delay_Required := True;
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
|
|
when Aspect_Implicit_Dereference =>
|
|
if not Is_Type (E)
|
|
or else not Has_Discriminants (E)
|
|
then
|
|
Error_Msg_N
|
|
("Aspect must apply to a type with discriminants", N);
|
|
goto Continue;
|
|
|
|
else
|
|
declare
|
|
Disc : Entity_Id;
|
|
|
|
begin
|
|
Disc := First_Discriminant (E);
|
|
while Present (Disc) loop
|
|
if Chars (Expr) = Chars (Disc)
|
|
and then Ekind (Etype (Disc)) =
|
|
E_Anonymous_Access_Type
|
|
then
|
|
Set_Has_Implicit_Dereference (E);
|
|
Set_Has_Implicit_Dereference (Disc);
|
|
goto Continue;
|
|
end if;
|
|
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
|
|
-- Error if no proper access discriminant.
|
|
|
|
Error_Msg_NE
|
|
("not an access discriminant of&", Expr, E);
|
|
end;
|
|
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- Aspects corresponding to attribute definition clauses
|
|
|
|
when Aspect_Address |
|
|
Aspect_Alignment |
|
|
Aspect_Bit_Order |
|
|
Aspect_Component_Size |
|
|
Aspect_External_Tag |
|
|
Aspect_Input |
|
|
Aspect_Machine_Radix |
|
|
Aspect_Object_Size |
|
|
Aspect_Output |
|
|
Aspect_Read |
|
|
Aspect_Size |
|
|
Aspect_Small |
|
|
Aspect_Storage_Pool |
|
|
Aspect_Storage_Size |
|
|
Aspect_Stream_Size |
|
|
Aspect_Value_Size |
|
|
Aspect_Write =>
|
|
|
|
-- Construct the attribute definition clause
|
|
|
|
Aitem :=
|
|
Make_Attribute_Definition_Clause (Loc,
|
|
Name => Ent,
|
|
Chars => Chars (Id),
|
|
Expression => Relocate_Node (Expr));
|
|
|
|
-- A delay is required except in the common case where
|
|
-- the expression is a literal, in which case it is fine
|
|
-- to take care of it right away.
|
|
|
|
if Nkind_In (Expr, N_Integer_Literal, N_String_Literal) then
|
|
pragma Assert (not Delay_Required);
|
|
null;
|
|
else
|
|
Delay_Required := True;
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
end if;
|
|
|
|
-- Aspects corresponding to pragmas with two arguments, where
|
|
-- the first argument is a local name referring to the entity,
|
|
-- and the second argument is the aspect definition expression
|
|
-- which is an expression that does not get analyzed.
|
|
|
|
when Aspect_Suppress |
|
|
Aspect_Unsuppress =>
|
|
|
|
-- Construct the pragma
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations => New_List (
|
|
New_Occurrence_Of (E, Loc),
|
|
Relocate_Node (Expr)),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Chars (Id)));
|
|
|
|
-- We don't have to play the delay game here, since the only
|
|
-- values are check names which don't get analyzed anyway.
|
|
|
|
pragma Assert (not Delay_Required);
|
|
|
|
-- Aspects corresponding to pragmas with two arguments, where
|
|
-- the second argument is a local name referring to the entity,
|
|
-- and the first argument is the aspect definition expression.
|
|
|
|
when Aspect_Warnings =>
|
|
|
|
-- Construct the pragma
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations => New_List (
|
|
Relocate_Node (Expr),
|
|
New_Occurrence_Of (E, Loc)),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Chars (Id)),
|
|
Class_Present => Class_Present (Aspect));
|
|
|
|
-- We don't have to play the delay game here, since the only
|
|
-- values are ON/OFF which don't get analyzed anyway.
|
|
|
|
pragma Assert (not Delay_Required);
|
|
|
|
-- Default_Value and Default_Component_Value aspects. These
|
|
-- are specially handled because they have no corresponding
|
|
-- pragmas or attributes.
|
|
|
|
when Aspect_Default_Value | Aspect_Default_Component_Value =>
|
|
Error_Msg_Name_1 := Chars (Id);
|
|
|
|
if not Is_Type (E) then
|
|
Error_Msg_N ("aspect% can only apply to a type", Id);
|
|
goto Continue;
|
|
|
|
elsif not Is_First_Subtype (E) then
|
|
Error_Msg_N ("aspect% cannot apply to subtype", Id);
|
|
goto Continue;
|
|
|
|
elsif A_Id = Aspect_Default_Value
|
|
and then not Is_Scalar_Type (E)
|
|
then
|
|
Error_Msg_N
|
|
("aspect% can only be applied to scalar type", Id);
|
|
goto Continue;
|
|
|
|
elsif A_Id = Aspect_Default_Component_Value then
|
|
if not Is_Array_Type (E) then
|
|
Error_Msg_N
|
|
("aspect% can only be applied to array type", Id);
|
|
goto Continue;
|
|
elsif not Is_Scalar_Type (Component_Type (E)) then
|
|
Error_Msg_N
|
|
("aspect% requires scalar components", Id);
|
|
goto Continue;
|
|
end if;
|
|
end if;
|
|
|
|
Aitem := Empty;
|
|
Delay_Required := True;
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
Set_Has_Default_Aspect (Base_Type (Entity (Ent)));
|
|
|
|
when Aspect_Attach_Handler =>
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Name_Attach_Handler),
|
|
Pragma_Argument_Associations =>
|
|
New_List (Ent, Relocate_Node (Expr)));
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
|
|
pragma Assert (not Delay_Required);
|
|
|
|
when Aspect_Priority |
|
|
Aspect_Interrupt_Priority |
|
|
Aspect_Dispatching_Domain |
|
|
Aspect_CPU =>
|
|
declare
|
|
Pname : Name_Id;
|
|
|
|
begin
|
|
if A_Id = Aspect_Priority then
|
|
Pname := Name_Priority;
|
|
|
|
elsif A_Id = Aspect_Interrupt_Priority then
|
|
Pname := Name_Interrupt_Priority;
|
|
|
|
elsif A_Id = Aspect_CPU then
|
|
Pname := Name_CPU;
|
|
|
|
else
|
|
Pname := Name_Dispatching_Domain;
|
|
end if;
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Pname),
|
|
Pragma_Argument_Associations =>
|
|
New_List
|
|
(Make_Pragma_Argument_Association
|
|
(Sloc => Sloc (Id),
|
|
Expression => Relocate_Node (Expr))));
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
|
|
pragma Assert (not Delay_Required);
|
|
end;
|
|
|
|
-- Aspects Pre/Post generate Precondition/Postcondition pragmas
|
|
-- with a first argument that is the expression, and a second
|
|
-- argument that is an informative message if the test fails.
|
|
-- This is inserted right after the declaration, to get the
|
|
-- required pragma placement. The processing for the pragmas
|
|
-- takes care of the required delay.
|
|
|
|
when Pre_Post_Aspects => declare
|
|
Pname : Name_Id;
|
|
|
|
begin
|
|
if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
|
|
Pname := Name_Precondition;
|
|
else
|
|
Pname := Name_Postcondition;
|
|
end if;
|
|
|
|
-- If the expressions is of the form A and then B, then
|
|
-- we generate separate Pre/Post aspects for the separate
|
|
-- clauses. Since we allow multiple pragmas, there is no
|
|
-- problem in allowing multiple Pre/Post aspects internally.
|
|
-- These should be treated in reverse order (B first and
|
|
-- A second) since they are later inserted just after N in
|
|
-- the order they are treated. This way, the pragma for A
|
|
-- ends up preceding the pragma for B, which may have an
|
|
-- importance for the error raised (either constraint error
|
|
-- or precondition error).
|
|
|
|
-- We do not do this for Pre'Class, since we have to put
|
|
-- these conditions together in a complex OR expression
|
|
|
|
if Pname = Name_Postcondition
|
|
or else not Class_Present (Aspect)
|
|
then
|
|
while Nkind (Expr) = N_And_Then loop
|
|
Insert_After (Aspect,
|
|
Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
|
|
Identifier => Identifier (Aspect),
|
|
Expression => Relocate_Node (Left_Opnd (Expr)),
|
|
Class_Present => Class_Present (Aspect),
|
|
Split_PPC => True));
|
|
Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
|
|
Eloc := Sloc (Expr);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Build the precondition/postcondition pragma
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Pname),
|
|
Class_Present => Class_Present (Aspect),
|
|
Split_PPC => Split_PPC (Aspect),
|
|
Pragma_Argument_Associations => New_List (
|
|
Make_Pragma_Argument_Association (Eloc,
|
|
Chars => Name_Check,
|
|
Expression => Relocate_Node (Expr))));
|
|
|
|
-- Add message unless exception messages are suppressed
|
|
|
|
if not Opt.Exception_Locations_Suppressed then
|
|
Append_To (Pragma_Argument_Associations (Aitem),
|
|
Make_Pragma_Argument_Association (Eloc,
|
|
Chars => Name_Message,
|
|
Expression =>
|
|
Make_String_Literal (Eloc,
|
|
Strval => "failed "
|
|
& Get_Name_String (Pname)
|
|
& " from "
|
|
& Build_Location_String (Eloc))));
|
|
end if;
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
|
|
-- For Pre/Post cases, insert immediately after the entity
|
|
-- declaration, since that is the required pragma placement.
|
|
-- Note that for these aspects, we do not have to worry
|
|
-- about delay issues, since the pragmas themselves deal
|
|
-- with delay of visibility for the expression analysis.
|
|
|
|
-- If the entity is a library-level subprogram, the pre/
|
|
-- postconditions must be treated as late pragmas.
|
|
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
|
Add_Global_Declaration (Aitem);
|
|
else
|
|
Insert_After (N, Aitem);
|
|
end if;
|
|
|
|
goto Continue;
|
|
end;
|
|
|
|
-- Invariant aspects generate a corresponding pragma with a
|
|
-- first argument that is the entity, a second argument that is
|
|
-- the expression and a third argument that is an appropriate
|
|
-- message. This is inserted right after the declaration, to
|
|
-- get the required pragma placement. The pragma processing
|
|
-- takes care of the required delay.
|
|
|
|
when Aspect_Invariant |
|
|
Aspect_Type_Invariant =>
|
|
|
|
-- Analysis of the pragma will verify placement legality:
|
|
-- an invariant must apply to a private type, or appear in
|
|
-- the private part of a spec and apply to a completion.
|
|
|
|
-- Construct the pragma
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations =>
|
|
New_List (Ent, Relocate_Node (Expr)),
|
|
Class_Present => Class_Present (Aspect),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Name_Invariant));
|
|
|
|
-- Add message unless exception messages are suppressed
|
|
|
|
if not Opt.Exception_Locations_Suppressed then
|
|
Append_To (Pragma_Argument_Associations (Aitem),
|
|
Make_Pragma_Argument_Association (Eloc,
|
|
Chars => Name_Message,
|
|
Expression =>
|
|
Make_String_Literal (Eloc,
|
|
Strval => "failed invariant from "
|
|
& Build_Location_String (Eloc))));
|
|
end if;
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
|
|
-- For Invariant case, insert immediately after the entity
|
|
-- declaration. We do not have to worry about delay issues
|
|
-- since the pragma processing takes care of this.
|
|
|
|
Insert_After (N, Aitem);
|
|
goto Continue;
|
|
|
|
-- Predicate aspects generate a corresponding pragma with a
|
|
-- first argument that is the entity, and the second argument
|
|
-- is the expression.
|
|
|
|
when Aspect_Dynamic_Predicate |
|
|
Aspect_Predicate |
|
|
Aspect_Static_Predicate =>
|
|
|
|
-- Construct the pragma (always a pragma Predicate, with
|
|
-- flags recording whether it is static/dynamic).
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Argument_Associations =>
|
|
New_List (Ent, Relocate_Node (Expr)),
|
|
Class_Present => Class_Present (Aspect),
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Name_Predicate));
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
|
|
-- Make sure we have a freeze node (it might otherwise be
|
|
-- missing in cases like subtype X is Y, and we would not
|
|
-- have a place to build the predicate function).
|
|
|
|
Set_Has_Predicates (E);
|
|
|
|
if Is_Private_Type (E)
|
|
and then Present (Full_View (E))
|
|
then
|
|
Set_Has_Predicates (Full_View (E));
|
|
Set_Has_Delayed_Aspects (Full_View (E));
|
|
end if;
|
|
|
|
Ensure_Freeze_Node (E);
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
Delay_Required := True;
|
|
|
|
when Aspect_Test_Case => declare
|
|
Args : List_Id;
|
|
Comp_Expr : Node_Id;
|
|
Comp_Assn : Node_Id;
|
|
|
|
begin
|
|
Args := New_List;
|
|
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
|
Error_Msg_N
|
|
("incorrect placement of aspect `Test_Case`", E);
|
|
goto Continue;
|
|
end if;
|
|
|
|
if Nkind (Expr) /= N_Aggregate then
|
|
Error_Msg_NE
|
|
("wrong syntax for aspect `Test_Case` for &", Id, E);
|
|
goto Continue;
|
|
end if;
|
|
|
|
Comp_Expr := First (Expressions (Expr));
|
|
while Present (Comp_Expr) loop
|
|
Append
|
|
(Make_Pragma_Argument_Association (Sloc (Comp_Expr),
|
|
Expression => Relocate_Node (Comp_Expr)),
|
|
Args);
|
|
Next (Comp_Expr);
|
|
end loop;
|
|
|
|
Comp_Assn := First (Component_Associations (Expr));
|
|
while Present (Comp_Assn) loop
|
|
if List_Length (Choices (Comp_Assn)) /= 1
|
|
or else
|
|
Nkind (First (Choices (Comp_Assn))) /= N_Identifier
|
|
then
|
|
Error_Msg_NE
|
|
("wrong syntax for aspect `Test_Case` for &", Id, E);
|
|
goto Continue;
|
|
end if;
|
|
|
|
Append (Make_Pragma_Argument_Association (
|
|
Sloc => Sloc (Comp_Assn),
|
|
Chars => Chars (First (Choices (Comp_Assn))),
|
|
Expression => Relocate_Node (Expression (Comp_Assn))),
|
|
Args);
|
|
Next (Comp_Assn);
|
|
end loop;
|
|
|
|
-- Build the test-case pragma
|
|
|
|
Aitem :=
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Sloc (Id), Name_Test_Case),
|
|
Pragma_Argument_Associations =>
|
|
Args);
|
|
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
Set_Is_Delayed_Aspect (Aspect);
|
|
|
|
-- Insert immediately after the entity declaration
|
|
|
|
Insert_After (N, Aitem);
|
|
|
|
goto Continue;
|
|
end;
|
|
end case;
|
|
|
|
-- If a delay is required, we delay the freeze (not much point in
|
|
-- delaying the aspect if we don't delay the freeze!). The pragma
|
|
-- or attribute clause if there is one is then attached to the
|
|
-- aspect specification which is placed in the rep item list.
|
|
|
|
if Delay_Required then
|
|
if Present (Aitem) then
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
|
|
if Nkind (Aitem) = N_Pragma then
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
end if;
|
|
|
|
Set_Is_Delayed_Aspect (Aitem);
|
|
Set_Aspect_Rep_Item (Aspect, Aitem);
|
|
end if;
|
|
|
|
Ensure_Freeze_Node (E);
|
|
Set_Has_Delayed_Aspects (E);
|
|
Record_Rep_Item (E, Aspect);
|
|
|
|
-- If no delay required, insert the pragma/clause in the tree
|
|
|
|
else
|
|
Set_From_Aspect_Specification (Aitem, True);
|
|
|
|
if Nkind (Aitem) = N_Pragma then
|
|
Set_Corresponding_Aspect (Aitem, Aspect);
|
|
end if;
|
|
|
|
-- If this is a compilation unit, we will put the pragma in
|
|
-- the Pragmas_After list of the N_Compilation_Unit_Aux node.
|
|
|
|
if Nkind (Parent (Ins_Node)) = N_Compilation_Unit then
|
|
declare
|
|
Aux : constant Node_Id :=
|
|
Aux_Decls_Node (Parent (Ins_Node));
|
|
|
|
begin
|
|
pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
|
|
|
|
if No (Pragmas_After (Aux)) then
|
|
Set_Pragmas_After (Aux, Empty_List);
|
|
end if;
|
|
|
|
-- For Pre_Post put at start of list, otherwise at end
|
|
|
|
if A_Id in Pre_Post_Aspects then
|
|
Prepend (Aitem, Pragmas_After (Aux));
|
|
else
|
|
Append (Aitem, Pragmas_After (Aux));
|
|
end if;
|
|
end;
|
|
|
|
-- Here if not compilation unit case
|
|
|
|
else
|
|
case A_Id is
|
|
|
|
-- For Pre/Post cases, insert immediately after the
|
|
-- entity declaration, since that is the required pragma
|
|
-- placement.
|
|
|
|
when Pre_Post_Aspects =>
|
|
Insert_After (N, Aitem);
|
|
|
|
-- For Priority aspects, insert into the task or
|
|
-- protected definition, which we need to create if it's
|
|
-- not there. The same applies to CPU and
|
|
-- Dispatching_Domain but only to tasks.
|
|
|
|
when Aspect_Priority |
|
|
Aspect_Interrupt_Priority |
|
|
Aspect_Dispatching_Domain |
|
|
Aspect_CPU =>
|
|
declare
|
|
T : Node_Id; -- the type declaration
|
|
L : List_Id; -- list of decls of task/protected
|
|
|
|
begin
|
|
if Nkind (N) = N_Object_Declaration then
|
|
T := Parent (Etype (Defining_Identifier (N)));
|
|
else
|
|
T := N;
|
|
end if;
|
|
|
|
if Nkind (T) = N_Protected_Type_Declaration
|
|
and then A_Id /= Aspect_Dispatching_Domain
|
|
and then A_Id /= Aspect_CPU
|
|
then
|
|
pragma Assert
|
|
(Present (Protected_Definition (T)));
|
|
|
|
L := Visible_Declarations
|
|
(Protected_Definition (T));
|
|
|
|
elsif Nkind (T) = N_Task_Type_Declaration then
|
|
if No (Task_Definition (T)) then
|
|
Set_Task_Definition
|
|
(T,
|
|
Make_Task_Definition
|
|
(Sloc (T),
|
|
Visible_Declarations => New_List,
|
|
End_Label => Empty));
|
|
end if;
|
|
|
|
L := Visible_Declarations (Task_Definition (T));
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
Prepend (Aitem, To => L);
|
|
|
|
-- Analyze rewritten pragma. Otherwise, its
|
|
-- analysis is done too late, after the task or
|
|
-- protected object has been created.
|
|
|
|
Analyze (Aitem);
|
|
end;
|
|
|
|
-- For all other cases, insert in sequence
|
|
|
|
when others =>
|
|
Insert_After (Ins_Node, Aitem);
|
|
Ins_Node := Aitem;
|
|
end case;
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
<<Continue>>
|
|
Next (Aspect);
|
|
end loop Aspect_Loop;
|
|
end Analyze_Aspect_Specifications;
|
|
|
|
-----------------------
|
|
-- Analyze_At_Clause --
|
|
-----------------------
|
|
|
|
-- An at clause is replaced by the corresponding Address attribute
|
|
-- definition clause that is the preferred approach in Ada 95.
|
|
|
|
procedure Analyze_At_Clause (N : Node_Id) is
|
|
CS : constant Boolean := Comes_From_Source (N);
|
|
|
|
begin
|
|
-- This is an obsolescent feature
|
|
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("at clause is an obsolescent feature (RM J.7(2))?", N);
|
|
Error_Msg_N
|
|
("\use address attribute definition clause instead?", N);
|
|
end if;
|
|
|
|
-- Rewrite as address clause
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Definition_Clause (Sloc (N),
|
|
Name => Identifier (N),
|
|
Chars => Name_Address,
|
|
Expression => Expression (N)));
|
|
|
|
-- We preserve Comes_From_Source, since logically the clause still
|
|
-- comes from the source program even though it is changed in form.
|
|
|
|
Set_Comes_From_Source (N, CS);
|
|
|
|
-- Analyze rewritten clause
|
|
|
|
Analyze_Attribute_Definition_Clause (N);
|
|
end Analyze_At_Clause;
|
|
|
|
-----------------------------------------
|
|
-- Analyze_Attribute_Definition_Clause --
|
|
-----------------------------------------
|
|
|
|
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Nam : constant Node_Id := Name (N);
|
|
Attr : constant Name_Id := Chars (N);
|
|
Expr : constant Node_Id := Expression (N);
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
|
|
|
|
Ent : Entity_Id;
|
|
-- The entity of Nam after it is analyzed. In the case of an incomplete
|
|
-- type, this is the underlying type.
|
|
|
|
U_Ent : Entity_Id;
|
|
-- The underlying entity to which the attribute applies. Generally this
|
|
-- is the Underlying_Type of Ent, except in the case where the clause
|
|
-- applies to full view of incomplete type or private type in which case
|
|
-- U_Ent is just a copy of Ent.
|
|
|
|
FOnly : Boolean := False;
|
|
-- Reset to True for subtype specific attribute (Alignment, Size)
|
|
-- and for stream attributes, i.e. those cases where in the call
|
|
-- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
|
|
-- rules are checked. Note that the case of stream attributes is not
|
|
-- clear from the RM, but see AI95-00137. Also, the RM seems to
|
|
-- disallow Storage_Size for derived task types, but that is also
|
|
-- clearly unintentional.
|
|
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
|
|
-- Common processing for 'Read, 'Write, 'Input and 'Output attribute
|
|
-- definition clauses.
|
|
|
|
function Duplicate_Clause return Boolean;
|
|
-- This routine checks if the aspect for U_Ent being given by attribute
|
|
-- definition clause N is for an aspect that has already been specified,
|
|
-- and if so gives an error message. If there is a duplicate, True is
|
|
-- returned, otherwise if there is no error, False is returned.
|
|
|
|
procedure Check_Indexing_Functions;
|
|
-- Check that the function in Constant_Indexing or Variable_Indexing
|
|
-- attribute has the proper type structure. If the name is overloaded,
|
|
-- check that all interpretations are legal.
|
|
|
|
procedure Check_Iterator_Functions;
|
|
-- Check that there is a single function in Default_Iterator attribute
|
|
-- has the proper type structure.
|
|
|
|
function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
|
|
-- Common legality check for the previous two
|
|
|
|
-----------------------------------
|
|
-- Analyze_Stream_TSS_Definition --
|
|
-----------------------------------
|
|
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
|
|
Subp : Entity_Id := Empty;
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
Pnam : Entity_Id;
|
|
|
|
Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
|
|
-- True for Read attribute, false for other attributes
|
|
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
|
|
-- Return true if the entity is a subprogram with an appropriate
|
|
-- profile for the attribute being defined.
|
|
|
|
----------------------
|
|
-- Has_Good_Profile --
|
|
----------------------
|
|
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
|
|
F : Entity_Id;
|
|
Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
|
|
Expected_Ekind : constant array (Boolean) of Entity_Kind :=
|
|
(False => E_Procedure, True => E_Function);
|
|
Typ : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Subp) /= Expected_Ekind (Is_Function) then
|
|
return False;
|
|
end if;
|
|
|
|
F := First_Formal (Subp);
|
|
|
|
if No (F)
|
|
or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
|
|
or else Designated_Type (Etype (F)) /=
|
|
Class_Wide_Type (RTE (RE_Root_Stream_Type))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
if not Is_Function then
|
|
Next_Formal (F);
|
|
|
|
declare
|
|
Expected_Mode : constant array (Boolean) of Entity_Kind :=
|
|
(False => E_In_Parameter,
|
|
True => E_Out_Parameter);
|
|
begin
|
|
if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
|
|
return False;
|
|
end if;
|
|
end;
|
|
|
|
Typ := Etype (F);
|
|
|
|
else
|
|
Typ := Etype (Subp);
|
|
end if;
|
|
|
|
return Base_Type (Typ) = Base_Type (Ent)
|
|
and then No (Next_Formal (F));
|
|
end Has_Good_Profile;
|
|
|
|
-- Start of processing for Analyze_Stream_TSS_Definition
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("local name must be a subtype", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
|
|
|
|
-- If Pnam is present, it can be either inherited from an ancestor
|
|
-- type (in which case it is legal to redefine it for this type), or
|
|
-- be a previous definition of the attribute for the same type (in
|
|
-- which case it is illegal).
|
|
|
|
-- In the first case, it will have been analyzed already, and we
|
|
-- can check that its profile does not match the expected profile
|
|
-- for a stream attribute of U_Ent. In the second case, either Pnam
|
|
-- has been analyzed (and has the expected profile), or it has not
|
|
-- been analyzed yet (case of a type that has not been frozen yet
|
|
-- and for which the stream attribute has been set using Set_TSS).
|
|
|
|
if Present (Pnam)
|
|
and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
|
|
then
|
|
Error_Msg_Sloc := Sloc (Pnam);
|
|
Error_Msg_Name_1 := Attr;
|
|
Error_Msg_N ("% attribute already defined #", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Analyze (Expr);
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
if not Is_Overloaded (Expr) then
|
|
if Has_Good_Profile (Entity (Expr)) then
|
|
Subp := Entity (Expr);
|
|
end if;
|
|
|
|
else
|
|
Get_First_Interp (Expr, I, It);
|
|
while Present (It.Nam) loop
|
|
if Has_Good_Profile (It.Nam) then
|
|
Subp := It.Nam;
|
|
exit;
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
if Present (Subp) then
|
|
if Is_Abstract_Subprogram (Subp) then
|
|
Error_Msg_N ("stream subprogram must not be abstract", Expr);
|
|
return;
|
|
end if;
|
|
|
|
Set_Entity (Expr, Subp);
|
|
Set_Etype (Expr, Etype (Subp));
|
|
|
|
New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
|
|
|
|
else
|
|
Error_Msg_Name_1 := Attr;
|
|
Error_Msg_N ("incorrect expression for% attribute", Expr);
|
|
end if;
|
|
end Analyze_Stream_TSS_Definition;
|
|
|
|
------------------------------
|
|
-- Check_Indexing_Functions --
|
|
------------------------------
|
|
|
|
procedure Check_Indexing_Functions is
|
|
|
|
procedure Check_One_Function (Subp : Entity_Id);
|
|
-- Check one possible interpretation
|
|
|
|
------------------------
|
|
-- Check_One_Function --
|
|
------------------------
|
|
|
|
procedure Check_One_Function (Subp : Entity_Id) is
|
|
begin
|
|
if not Check_Primitive_Function (Subp) then
|
|
Error_Msg_NE
|
|
("aspect Indexing requires a function that applies to type&",
|
|
Subp, Ent);
|
|
end if;
|
|
|
|
if not Has_Implicit_Dereference (Etype (Subp)) then
|
|
Error_Msg_N
|
|
("function for indexing must return a reference type", Subp);
|
|
end if;
|
|
end Check_One_Function;
|
|
|
|
-- Start of processing for Check_Indexing_Functions
|
|
|
|
begin
|
|
if In_Instance then
|
|
return;
|
|
end if;
|
|
|
|
Analyze (Expr);
|
|
|
|
if not Is_Overloaded (Expr) then
|
|
Check_One_Function (Entity (Expr));
|
|
|
|
else
|
|
declare
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
Get_First_Interp (Expr, I, It);
|
|
while Present (It.Nam) loop
|
|
|
|
-- Note that analysis will have added the interpretation
|
|
-- that corresponds to the dereference. We only check the
|
|
-- subprogram itself.
|
|
|
|
if Is_Overloadable (It.Nam) then
|
|
Check_One_Function (It.Nam);
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end Check_Indexing_Functions;
|
|
|
|
------------------------------
|
|
-- Check_Iterator_Functions --
|
|
------------------------------
|
|
|
|
procedure Check_Iterator_Functions is
|
|
Default : Entity_Id;
|
|
|
|
function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
|
|
-- Check one possible interpretation for validity
|
|
|
|
----------------------------
|
|
-- Valid_Default_Iterator --
|
|
----------------------------
|
|
|
|
function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
if not Check_Primitive_Function (Subp) then
|
|
return False;
|
|
else
|
|
Formal := First_Formal (Subp);
|
|
end if;
|
|
|
|
-- False if any subsequent formal has no default expression
|
|
|
|
Formal := Next_Formal (Formal);
|
|
while Present (Formal) loop
|
|
if No (Expression (Parent (Formal))) then
|
|
return False;
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
-- True if all subsequent formals have default expressions
|
|
|
|
return True;
|
|
end Valid_Default_Iterator;
|
|
|
|
-- Start of processing for Check_Iterator_Functions
|
|
|
|
begin
|
|
Analyze (Expr);
|
|
|
|
if not Is_Entity_Name (Expr) then
|
|
Error_Msg_N ("aspect Iterator must be a function name", Expr);
|
|
end if;
|
|
|
|
if not Is_Overloaded (Expr) then
|
|
if not Check_Primitive_Function (Entity (Expr)) then
|
|
Error_Msg_NE
|
|
("aspect Indexing requires a function that applies to type&",
|
|
Entity (Expr), Ent);
|
|
end if;
|
|
|
|
if not Valid_Default_Iterator (Entity (Expr)) then
|
|
Error_Msg_N ("improper function for default iterator", Expr);
|
|
end if;
|
|
|
|
else
|
|
Default := Empty;
|
|
declare
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
Get_First_Interp (Expr, I, It);
|
|
while Present (It.Nam) loop
|
|
if not Check_Primitive_Function (It.Nam)
|
|
or else not Valid_Default_Iterator (It.Nam)
|
|
then
|
|
Remove_Interp (I);
|
|
|
|
elsif Present (Default) then
|
|
Error_Msg_N ("default iterator must be unique", Expr);
|
|
|
|
else
|
|
Default := It.Nam;
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
end;
|
|
|
|
if Present (Default) then
|
|
Set_Entity (Expr, Default);
|
|
Set_Is_Overloaded (Expr, False);
|
|
end if;
|
|
end if;
|
|
end Check_Iterator_Functions;
|
|
|
|
-------------------------------
|
|
-- Check_Primitive_Function --
|
|
-------------------------------
|
|
|
|
function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
|
|
Ctrl : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Subp) /= E_Function then
|
|
return False;
|
|
end if;
|
|
|
|
if No (First_Formal (Subp)) then
|
|
return False;
|
|
else
|
|
Ctrl := Etype (First_Formal (Subp));
|
|
end if;
|
|
|
|
if Ctrl = Ent
|
|
or else Ctrl = Class_Wide_Type (Ent)
|
|
or else
|
|
(Ekind (Ctrl) = E_Anonymous_Access_Type
|
|
and then
|
|
(Designated_Type (Ctrl) = Ent
|
|
or else Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
|
|
then
|
|
null;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
return True;
|
|
end Check_Primitive_Function;
|
|
|
|
----------------------
|
|
-- Duplicate_Clause --
|
|
----------------------
|
|
|
|
function Duplicate_Clause return Boolean is
|
|
A : Node_Id;
|
|
|
|
begin
|
|
-- Nothing to do if this attribute definition clause comes from
|
|
-- an aspect specification, since we could not be duplicating an
|
|
-- explicit clause, and we dealt with the case of duplicated aspects
|
|
-- in Analyze_Aspect_Specifications.
|
|
|
|
if From_Aspect_Specification (N) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Otherwise current clause may duplicate previous clause or a
|
|
-- previously given aspect specification for the same aspect.
|
|
|
|
A := Get_Rep_Item_For_Entity (U_Ent, Chars (N));
|
|
|
|
if Present (A) then
|
|
if Entity (A) = U_Ent then
|
|
Error_Msg_Name_1 := Chars (N);
|
|
Error_Msg_Sloc := Sloc (A);
|
|
Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
return False;
|
|
end Duplicate_Clause;
|
|
|
|
-- Start of processing for Analyze_Attribute_Definition_Clause
|
|
|
|
begin
|
|
-- The following code is a defense against recursion. Not clear that
|
|
-- this can happen legitimately, but perhaps some error situations
|
|
-- can cause it, and we did see this recursion during testing.
|
|
|
|
if Analyzed (N) then
|
|
return;
|
|
else
|
|
Set_Analyzed (N, True);
|
|
end if;
|
|
|
|
-- Process Ignore_Rep_Clauses option (we also ignore rep clauses in
|
|
-- CodePeer mode or Alfa mode, since they are not relevant in these
|
|
-- contexts).
|
|
|
|
if Ignore_Rep_Clauses or CodePeer_Mode or Alfa_Mode then
|
|
case Id is
|
|
|
|
-- The following should be ignored. They do not affect legality
|
|
-- and may be target dependent. The basic idea of -gnatI is to
|
|
-- ignore any rep clauses that may be target dependent but do not
|
|
-- affect legality (except possibly to be rejected because they
|
|
-- are incompatible with the compilation target).
|
|
|
|
when Attribute_Alignment |
|
|
Attribute_Bit_Order |
|
|
Attribute_Component_Size |
|
|
Attribute_Machine_Radix |
|
|
Attribute_Object_Size |
|
|
Attribute_Size |
|
|
Attribute_Stream_Size |
|
|
Attribute_Value_Size =>
|
|
Rewrite (N, Make_Null_Statement (Sloc (N)));
|
|
return;
|
|
|
|
-- We do not want too ignore 'Small in CodePeer_Mode or Alfa_Mode,
|
|
-- since it has an impact on the exact computations performed.
|
|
|
|
-- Perhaps 'Small should also not be ignored by
|
|
-- Ignore_Rep_Clauses ???
|
|
|
|
when Attribute_Small =>
|
|
if Ignore_Rep_Clauses then
|
|
Rewrite (N, Make_Null_Statement (Sloc (N)));
|
|
return;
|
|
end if;
|
|
|
|
-- The following should not be ignored, because in the first place
|
|
-- they are reasonably portable, and should not cause problems in
|
|
-- compiling code from another target, and also they do affect
|
|
-- legality, e.g. failing to provide a stream attribute for a
|
|
-- type may make a program illegal.
|
|
|
|
when Attribute_External_Tag |
|
|
Attribute_Input |
|
|
Attribute_Output |
|
|
Attribute_Read |
|
|
Attribute_Storage_Pool |
|
|
Attribute_Storage_Size |
|
|
Attribute_Write =>
|
|
null;
|
|
|
|
-- Other cases are errors ("attribute& cannot be set with
|
|
-- definition clause"), which will be caught below.
|
|
|
|
when others =>
|
|
null;
|
|
end case;
|
|
end if;
|
|
|
|
Analyze (Nam);
|
|
Ent := Entity (Nam);
|
|
|
|
if Rep_Item_Too_Early (Ent, N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Rep clause applies to full view of incomplete type or private type if
|
|
-- we have one (if not, this is a premature use of the type). However,
|
|
-- certain semantic checks need to be done on the specified entity (i.e.
|
|
-- the private view), so we save it in Ent.
|
|
|
|
if Is_Private_Type (Ent)
|
|
and then Is_Derived_Type (Ent)
|
|
and then not Is_Tagged_Type (Ent)
|
|
and then No (Full_View (Ent))
|
|
then
|
|
-- If this is a private type whose completion is a derivation from
|
|
-- another private type, there is no full view, and the attribute
|
|
-- belongs to the type itself, not its underlying parent.
|
|
|
|
U_Ent := Ent;
|
|
|
|
elsif Ekind (Ent) = E_Incomplete_Type then
|
|
|
|
-- The attribute applies to the full view, set the entity of the
|
|
-- attribute definition accordingly.
|
|
|
|
Ent := Underlying_Type (Ent);
|
|
U_Ent := Ent;
|
|
Set_Entity (Nam, Ent);
|
|
|
|
else
|
|
U_Ent := Underlying_Type (Ent);
|
|
end if;
|
|
|
|
-- Complete other routine error checks
|
|
|
|
if Etype (Nam) = Any_Type then
|
|
return;
|
|
|
|
elsif Scope (Ent) /= Current_Scope then
|
|
Error_Msg_N ("entity must be declared in this scope", Nam);
|
|
return;
|
|
|
|
elsif No (U_Ent) then
|
|
U_Ent := Ent;
|
|
|
|
elsif Is_Type (U_Ent)
|
|
and then not Is_First_Subtype (U_Ent)
|
|
and then Id /= Attribute_Object_Size
|
|
and then Id /= Attribute_Value_Size
|
|
and then not From_At_Mod (N)
|
|
then
|
|
Error_Msg_N ("cannot specify attribute for subtype", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Set_Entity (N, U_Ent);
|
|
|
|
-- Switch on particular attribute
|
|
|
|
case Id is
|
|
|
|
-------------
|
|
-- Address --
|
|
-------------
|
|
|
|
-- Address attribute definition clause
|
|
|
|
when Attribute_Address => Address : begin
|
|
|
|
-- A little error check, catch for X'Address use X'Address;
|
|
|
|
if Nkind (Nam) = N_Identifier
|
|
and then Nkind (Expr) = N_Attribute_Reference
|
|
and then Attribute_Name (Expr) = Name_Address
|
|
and then Nkind (Prefix (Expr)) = N_Identifier
|
|
and then Chars (Nam) = Chars (Prefix (Expr))
|
|
then
|
|
Error_Msg_NE
|
|
("address for & is self-referencing", Prefix (Expr), Ent);
|
|
return;
|
|
end if;
|
|
|
|
-- Not that special case, carry on with analysis of expression
|
|
|
|
Analyze_And_Resolve (Expr, RTE (RE_Address));
|
|
|
|
-- Even when ignoring rep clauses we need to indicate that the
|
|
-- entity has an address clause and thus it is legal to declare
|
|
-- it imported.
|
|
|
|
if Ignore_Rep_Clauses then
|
|
if Ekind_In (U_Ent, E_Variable, E_Constant) then
|
|
Record_Rep_Item (U_Ent, N);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
if Duplicate_Clause then
|
|
null;
|
|
|
|
-- Case of address clause for subprogram
|
|
|
|
elsif Is_Subprogram (U_Ent) then
|
|
if Has_Homonym (U_Ent) then
|
|
Error_Msg_N
|
|
("address clause cannot be given " &
|
|
"for overloaded subprogram",
|
|
Nam);
|
|
return;
|
|
end if;
|
|
|
|
-- For subprograms, all address clauses are permitted, and we
|
|
-- mark the subprogram as having a deferred freeze so that Gigi
|
|
-- will not elaborate it too soon.
|
|
|
|
-- Above needs more comments, what is too soon about???
|
|
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
|
|
|
-- Case of address clause for entry
|
|
|
|
elsif Ekind (U_Ent) = E_Entry then
|
|
if Nkind (Parent (N)) = N_Task_Body then
|
|
Error_Msg_N
|
|
("entry address must be specified in task spec", Nam);
|
|
return;
|
|
end if;
|
|
|
|
-- For entries, we require a constant address
|
|
|
|
Check_Constant_Address_Clause (Expr, U_Ent);
|
|
|
|
-- Special checks for task types
|
|
|
|
if Is_Task_Type (Scope (U_Ent))
|
|
and then Comes_From_Source (Scope (U_Ent))
|
|
then
|
|
Error_Msg_N
|
|
("?entry address declared for entry in task type", N);
|
|
Error_Msg_N
|
|
("\?only one task can be declared of this type", N);
|
|
end if;
|
|
|
|
-- Entry address clauses are obsolescent
|
|
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("attaching interrupt to task entry is an " &
|
|
"obsolescent feature (RM J.7.1)?", N);
|
|
Error_Msg_N
|
|
("\use interrupt procedure instead?", N);
|
|
end if;
|
|
|
|
-- Case of an address clause for a controlled object which we
|
|
-- consider to be erroneous.
|
|
|
|
elsif Is_Controlled (Etype (U_Ent))
|
|
or else Has_Controlled_Component (Etype (U_Ent))
|
|
then
|
|
Error_Msg_NE
|
|
("?controlled object& must not be overlaid", Nam, U_Ent);
|
|
Error_Msg_N
|
|
("\?Program_Error will be raised at run time", Nam);
|
|
Insert_Action (Declaration_Node (U_Ent),
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Overlaid_Controlled_Object));
|
|
return;
|
|
|
|
-- Case of address clause for a (non-controlled) object
|
|
|
|
elsif
|
|
Ekind (U_Ent) = E_Variable
|
|
or else
|
|
Ekind (U_Ent) = E_Constant
|
|
then
|
|
declare
|
|
Expr : constant Node_Id := Expression (N);
|
|
O_Ent : Entity_Id;
|
|
Off : Boolean;
|
|
|
|
begin
|
|
-- Exported variables cannot have an address clause, because
|
|
-- this cancels the effect of the pragma Export.
|
|
|
|
if Is_Exported (U_Ent) then
|
|
Error_Msg_N
|
|
("cannot export object with address clause", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Find_Overlaid_Entity (N, O_Ent, Off);
|
|
|
|
-- Overlaying controlled objects is erroneous
|
|
|
|
if Present (O_Ent)
|
|
and then (Has_Controlled_Component (Etype (O_Ent))
|
|
or else Is_Controlled (Etype (O_Ent)))
|
|
then
|
|
Error_Msg_N
|
|
("?cannot overlay with controlled object", Expr);
|
|
Error_Msg_N
|
|
("\?Program_Error will be raised at run time", Expr);
|
|
Insert_Action (Declaration_Node (U_Ent),
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Overlaid_Controlled_Object));
|
|
return;
|
|
|
|
elsif Present (O_Ent)
|
|
and then Ekind (U_Ent) = E_Constant
|
|
and then not Is_Constant_Object (O_Ent)
|
|
then
|
|
Error_Msg_N ("constant overlays a variable?", Expr);
|
|
|
|
elsif Present (Renamed_Object (U_Ent)) then
|
|
Error_Msg_N
|
|
("address clause not allowed"
|
|
& " for a renaming declaration (RM 13.1(6))", Nam);
|
|
return;
|
|
|
|
-- Imported variables can have an address clause, but then
|
|
-- the import is pretty meaningless except to suppress
|
|
-- initializations, so we do not need such variables to
|
|
-- be statically allocated (and in fact it causes trouble
|
|
-- if the address clause is a local value).
|
|
|
|
elsif Is_Imported (U_Ent) then
|
|
Set_Is_Statically_Allocated (U_Ent, False);
|
|
end if;
|
|
|
|
-- We mark a possible modification of a variable with an
|
|
-- address clause, since it is likely aliasing is occurring.
|
|
|
|
Note_Possible_Modification (Nam, Sure => False);
|
|
|
|
-- Here we are checking for explicit overlap of one variable
|
|
-- by another, and if we find this then mark the overlapped
|
|
-- variable as also being volatile to prevent unwanted
|
|
-- optimizations. This is a significant pessimization so
|
|
-- avoid it when there is an offset, i.e. when the object
|
|
-- is composite; they cannot be optimized easily anyway.
|
|
|
|
if Present (O_Ent)
|
|
and then Is_Object (O_Ent)
|
|
and then not Off
|
|
then
|
|
Set_Treat_As_Volatile (O_Ent);
|
|
end if;
|
|
|
|
-- Legality checks on the address clause for initialized
|
|
-- objects is deferred until the freeze point, because
|
|
-- a subsequent pragma might indicate that the object is
|
|
-- imported and thus not initialized.
|
|
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
|
|
|
-- If an initialization call has been generated for this
|
|
-- object, it needs to be deferred to after the freeze node
|
|
-- we have just now added, otherwise GIGI will see a
|
|
-- reference to the variable (as actual to the IP call)
|
|
-- before its definition.
|
|
|
|
declare
|
|
Init_Call : constant Node_Id := Find_Init_Call (U_Ent, N);
|
|
begin
|
|
if Present (Init_Call) then
|
|
Remove (Init_Call);
|
|
Append_Freeze_Action (U_Ent, Init_Call);
|
|
end if;
|
|
end;
|
|
|
|
if Is_Exported (U_Ent) then
|
|
Error_Msg_N
|
|
("& cannot be exported if an address clause is given",
|
|
Nam);
|
|
Error_Msg_N
|
|
("\define and export a variable " &
|
|
"that holds its address instead",
|
|
Nam);
|
|
end if;
|
|
|
|
-- Entity has delayed freeze, so we will generate an
|
|
-- alignment check at the freeze point unless suppressed.
|
|
|
|
if not Range_Checks_Suppressed (U_Ent)
|
|
and then not Alignment_Checks_Suppressed (U_Ent)
|
|
then
|
|
Set_Check_Address_Alignment (N);
|
|
end if;
|
|
|
|
-- Kill the size check code, since we are not allocating
|
|
-- the variable, it is somewhere else.
|
|
|
|
Kill_Size_Check_Code (U_Ent);
|
|
|
|
-- If the address clause is of the form:
|
|
|
|
-- for Y'Address use X'Address
|
|
|
|
-- or
|
|
|
|
-- Const : constant Address := X'Address;
|
|
-- ...
|
|
-- for Y'Address use Const;
|
|
|
|
-- then we make an entry in the table for checking the size
|
|
-- and alignment of the overlaying variable. We defer this
|
|
-- check till after code generation to take full advantage
|
|
-- of the annotation done by the back end. This entry is
|
|
-- only made if the address clause comes from source.
|
|
|
|
-- If the entity has a generic type, the check will be
|
|
-- performed in the instance if the actual type justifies
|
|
-- it, and we do not insert the clause in the table to
|
|
-- prevent spurious warnings.
|
|
|
|
if Address_Clause_Overlay_Warnings
|
|
and then Comes_From_Source (N)
|
|
and then Present (O_Ent)
|
|
and then Is_Object (O_Ent)
|
|
then
|
|
if not Is_Generic_Type (Etype (U_Ent)) then
|
|
Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
|
|
end if;
|
|
|
|
-- If variable overlays a constant view, and we are
|
|
-- warning on overlays, then mark the variable as
|
|
-- overlaying a constant (we will give warnings later
|
|
-- if this variable is assigned).
|
|
|
|
if Is_Constant_Object (O_Ent)
|
|
and then Ekind (U_Ent) = E_Variable
|
|
then
|
|
Set_Overlays_Constant (U_Ent);
|
|
end if;
|
|
end if;
|
|
end;
|
|
|
|
-- Not a valid entity for an address clause
|
|
|
|
else
|
|
Error_Msg_N ("address cannot be given for &", Nam);
|
|
end if;
|
|
end Address;
|
|
|
|
---------------
|
|
-- Alignment --
|
|
---------------
|
|
|
|
-- Alignment attribute definition clause
|
|
|
|
when Attribute_Alignment => Alignment : declare
|
|
Align : constant Uint := Get_Alignment_Value (Expr);
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if not Is_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Variable
|
|
and then Ekind (U_Ent) /= E_Constant
|
|
then
|
|
Error_Msg_N ("alignment cannot be given for &", Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
elsif Align /= No_Uint then
|
|
Set_Has_Alignment_Clause (U_Ent);
|
|
Set_Alignment (U_Ent, Align);
|
|
|
|
-- For an array type, U_Ent is the first subtype. In that case,
|
|
-- also set the alignment of the anonymous base type so that
|
|
-- other subtypes (such as the itypes for aggregates of the
|
|
-- type) also receive the expected alignment.
|
|
|
|
if Is_Array_Type (U_Ent) then
|
|
Set_Alignment (Base_Type (U_Ent), Align);
|
|
end if;
|
|
end if;
|
|
end Alignment;
|
|
|
|
---------------
|
|
-- Bit_Order --
|
|
---------------
|
|
|
|
-- Bit_Order attribute definition clause
|
|
|
|
when Attribute_Bit_Order => Bit_Order : declare
|
|
begin
|
|
if not Is_Record_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("Bit_Order can only be defined for record type", Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
else
|
|
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
|
|
|
|
if Etype (Expr) = Any_Type then
|
|
return;
|
|
|
|
elsif not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("Bit_Order requires static expression!", Expr);
|
|
|
|
else
|
|
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
|
|
Set_Reverse_Bit_Order (U_Ent, True);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Bit_Order;
|
|
|
|
--------------------
|
|
-- Component_Size --
|
|
--------------------
|
|
|
|
-- Component_Size attribute definition clause
|
|
|
|
when Attribute_Component_Size => Component_Size_Case : declare
|
|
Csize : constant Uint := Static_Integer (Expr);
|
|
Ctyp : Entity_Id;
|
|
Btype : Entity_Id;
|
|
Biased : Boolean;
|
|
New_Ctyp : Entity_Id;
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
if not Is_Array_Type (U_Ent) then
|
|
Error_Msg_N ("component size requires array type", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Btype := Base_Type (U_Ent);
|
|
Ctyp := Component_Type (Btype);
|
|
|
|
if Duplicate_Clause then
|
|
null;
|
|
|
|
elsif Rep_Item_Too_Early (Btype, N) then
|
|
null;
|
|
|
|
elsif Csize /= No_Uint then
|
|
Check_Size (Expr, Ctyp, Csize, Biased);
|
|
|
|
-- For the biased case, build a declaration for a subtype that
|
|
-- will be used to represent the biased subtype that reflects
|
|
-- the biased representation of components. We need the subtype
|
|
-- to get proper conversions on referencing elements of the
|
|
-- array. Note: component size clauses are ignored in VM mode.
|
|
|
|
if VM_Target = No_VM then
|
|
if Biased then
|
|
New_Ctyp :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars =>
|
|
New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => New_Ctyp,
|
|
Subtype_Indication =>
|
|
New_Occurrence_Of (Component_Type (Btype), Loc));
|
|
|
|
Set_Parent (Decl, N);
|
|
Analyze (Decl, Suppress => All_Checks);
|
|
|
|
Set_Has_Delayed_Freeze (New_Ctyp, False);
|
|
Set_Esize (New_Ctyp, Csize);
|
|
Set_RM_Size (New_Ctyp, Csize);
|
|
Init_Alignment (New_Ctyp);
|
|
Set_Is_Itype (New_Ctyp, True);
|
|
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
|
|
|
|
Set_Component_Type (Btype, New_Ctyp);
|
|
Set_Biased (New_Ctyp, N, "component size clause");
|
|
end if;
|
|
|
|
Set_Component_Size (Btype, Csize);
|
|
|
|
-- For VM case, we ignore component size clauses
|
|
|
|
else
|
|
-- Give a warning unless we are in GNAT mode, in which case
|
|
-- the warning is suppressed since it is not useful.
|
|
|
|
if not GNAT_Mode then
|
|
Error_Msg_N
|
|
("?component size ignored in this configuration", N);
|
|
end if;
|
|
end if;
|
|
|
|
-- Deal with warning on overridden size
|
|
|
|
if Warn_On_Overridden_Size
|
|
and then Has_Size_Clause (Ctyp)
|
|
and then RM_Size (Ctyp) /= Csize
|
|
then
|
|
Error_Msg_NE
|
|
("?component size overrides size clause for&",
|
|
N, Ctyp);
|
|
end if;
|
|
|
|
Set_Has_Component_Size_Clause (Btype, True);
|
|
Set_Has_Non_Standard_Rep (Btype, True);
|
|
end if;
|
|
end Component_Size_Case;
|
|
|
|
-----------------------
|
|
-- Constant_Indexing --
|
|
-----------------------
|
|
|
|
when Attribute_Constant_Indexing =>
|
|
Check_Indexing_Functions;
|
|
|
|
----------------------
|
|
-- Default_Iterator --
|
|
----------------------
|
|
|
|
when Attribute_Default_Iterator => Default_Iterator : declare
|
|
Func : Entity_Id;
|
|
|
|
begin
|
|
if not Is_Tagged_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("aspect Default_Iterator applies to tagged type", Nam);
|
|
end if;
|
|
|
|
Check_Iterator_Functions;
|
|
|
|
Analyze (Expr);
|
|
|
|
if not Is_Entity_Name (Expr)
|
|
or else Ekind (Entity (Expr)) /= E_Function
|
|
then
|
|
Error_Msg_N ("aspect Iterator must be a function", Expr);
|
|
else
|
|
Func := Entity (Expr);
|
|
end if;
|
|
|
|
if No (First_Formal (Func))
|
|
or else Etype (First_Formal (Func)) /= U_Ent
|
|
then
|
|
Error_Msg_NE
|
|
("Default Iterator must be a primitive of&", Func, U_Ent);
|
|
end if;
|
|
end Default_Iterator;
|
|
|
|
------------------
|
|
-- External_Tag --
|
|
------------------
|
|
|
|
when Attribute_External_Tag => External_Tag :
|
|
begin
|
|
if not Is_Tagged_Type (U_Ent) then
|
|
Error_Msg_N ("should be a tagged type", Nam);
|
|
end if;
|
|
|
|
if Duplicate_Clause then
|
|
null;
|
|
|
|
else
|
|
Analyze_And_Resolve (Expr, Standard_String);
|
|
|
|
if not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("static string required for tag name!", Nam);
|
|
end if;
|
|
|
|
if VM_Target = No_VM then
|
|
Set_Has_External_Tag_Rep_Clause (U_Ent);
|
|
else
|
|
Error_Msg_Name_1 := Attr;
|
|
Error_Msg_N
|
|
("% attribute unsupported in this configuration", Nam);
|
|
end if;
|
|
|
|
if not Is_Library_Level_Entity (U_Ent) then
|
|
Error_Msg_NE
|
|
("?non-unique external tag supplied for &", N, U_Ent);
|
|
Error_Msg_N
|
|
("?\same external tag applies to all subprogram calls", N);
|
|
Error_Msg_N
|
|
("?\corresponding internal tag cannot be obtained", N);
|
|
end if;
|
|
end if;
|
|
end External_Tag;
|
|
|
|
--------------------------
|
|
-- Implicit_Dereference --
|
|
--------------------------
|
|
|
|
when Attribute_Implicit_Dereference =>
|
|
|
|
-- Legality checks already performed at the point of
|
|
-- the type declaration, aspect is not delayed.
|
|
|
|
null;
|
|
|
|
-----------
|
|
-- Input --
|
|
-----------
|
|
|
|
when Attribute_Input =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Input);
|
|
Set_Has_Specified_Stream_Input (Ent);
|
|
|
|
----------------------
|
|
-- Iterator_Element --
|
|
----------------------
|
|
|
|
when Attribute_Iterator_Element =>
|
|
Analyze (Expr);
|
|
|
|
if not Is_Entity_Name (Expr)
|
|
or else not Is_Type (Entity (Expr))
|
|
then
|
|
Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
|
|
end if;
|
|
|
|
-------------------
|
|
-- Machine_Radix --
|
|
-------------------
|
|
|
|
-- Machine radix attribute definition clause
|
|
|
|
when Attribute_Machine_Radix => Machine_Radix : declare
|
|
Radix : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
|
|
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
elsif Radix /= No_Uint then
|
|
Set_Has_Machine_Radix_Clause (U_Ent);
|
|
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
|
|
|
|
if Radix = 2 then
|
|
null;
|
|
elsif Radix = 10 then
|
|
Set_Machine_Radix_10 (U_Ent);
|
|
else
|
|
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
|
|
end if;
|
|
end if;
|
|
end Machine_Radix;
|
|
|
|
-----------------
|
|
-- Object_Size --
|
|
-----------------
|
|
|
|
-- Object_Size attribute definition clause
|
|
|
|
when Attribute_Object_Size => Object_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
|
|
Biased : Boolean;
|
|
pragma Warnings (Off, Biased);
|
|
|
|
begin
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("Object_Size cannot be given for &", Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
else
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
|
|
|
if Size /= 8
|
|
and then
|
|
Size /= 16
|
|
and then
|
|
Size /= 32
|
|
and then
|
|
UI_Mod (Size, 64) /= 0
|
|
then
|
|
Error_Msg_N
|
|
("Object_Size must be 8, 16, 32, or multiple of 64",
|
|
Expr);
|
|
end if;
|
|
|
|
Set_Esize (U_Ent, Size);
|
|
Set_Has_Object_Size_Clause (U_Ent);
|
|
Alignment_Check_For_Size_Change (U_Ent, Size);
|
|
end if;
|
|
end Object_Size;
|
|
|
|
------------
|
|
-- Output --
|
|
------------
|
|
|
|
when Attribute_Output =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Output);
|
|
Set_Has_Specified_Stream_Output (Ent);
|
|
|
|
----------
|
|
-- Read --
|
|
----------
|
|
|
|
when Attribute_Read =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Read);
|
|
Set_Has_Specified_Stream_Read (Ent);
|
|
|
|
----------
|
|
-- Size --
|
|
----------
|
|
|
|
-- Size attribute definition clause
|
|
|
|
when Attribute_Size => Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
Etyp : Entity_Id;
|
|
Biased : Boolean;
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if Duplicate_Clause then
|
|
null;
|
|
|
|
elsif not Is_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Variable
|
|
and then Ekind (U_Ent) /= E_Constant
|
|
then
|
|
Error_Msg_N ("size cannot be given for &", Nam);
|
|
|
|
elsif Is_Array_Type (U_Ent)
|
|
and then not Is_Constrained (U_Ent)
|
|
then
|
|
Error_Msg_N
|
|
("size cannot be given for unconstrained array", Nam);
|
|
|
|
elsif Size /= No_Uint then
|
|
if VM_Target /= No_VM and then not GNAT_Mode then
|
|
|
|
-- Size clause is not handled properly on VM targets.
|
|
-- Display a warning unless we are in GNAT mode, in which
|
|
-- case this is useless.
|
|
|
|
Error_Msg_N
|
|
("?size clauses are ignored in this configuration", N);
|
|
end if;
|
|
|
|
if Is_Type (U_Ent) then
|
|
Etyp := U_Ent;
|
|
else
|
|
Etyp := Etype (U_Ent);
|
|
end if;
|
|
|
|
-- Check size, note that Gigi is in charge of checking that the
|
|
-- size of an array or record type is OK. Also we do not check
|
|
-- the size in the ordinary fixed-point case, since it is too
|
|
-- early to do so (there may be subsequent small clause that
|
|
-- affects the size). We can check the size if a small clause
|
|
-- has already been given.
|
|
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
|
|
or else Has_Small_Clause (U_Ent)
|
|
then
|
|
Check_Size (Expr, Etyp, Size, Biased);
|
|
Set_Biased (U_Ent, N, "size clause", Biased);
|
|
end if;
|
|
|
|
-- For types set RM_Size and Esize if possible
|
|
|
|
if Is_Type (U_Ent) then
|
|
Set_RM_Size (U_Ent, Size);
|
|
|
|
-- For elementary types, increase Object_Size to power of 2,
|
|
-- but not less than a storage unit in any case (normally
|
|
-- this means it will be byte addressable).
|
|
|
|
-- For all other types, nothing else to do, we leave Esize
|
|
-- (object size) unset, the back end will set it from the
|
|
-- size and alignment in an appropriate manner.
|
|
|
|
-- In both cases, we check whether the alignment must be
|
|
-- reset in the wake of the size change.
|
|
|
|
if Is_Elementary_Type (U_Ent) then
|
|
if Size <= System_Storage_Unit then
|
|
Init_Esize (U_Ent, System_Storage_Unit);
|
|
elsif Size <= 16 then
|
|
Init_Esize (U_Ent, 16);
|
|
elsif Size <= 32 then
|
|
Init_Esize (U_Ent, 32);
|
|
else
|
|
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
|
|
end if;
|
|
|
|
Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
|
|
else
|
|
Alignment_Check_For_Size_Change (U_Ent, Size);
|
|
end if;
|
|
|
|
-- For objects, set Esize only
|
|
|
|
else
|
|
if Is_Elementary_Type (Etyp) then
|
|
if Size /= System_Storage_Unit
|
|
and then
|
|
Size /= System_Storage_Unit * 2
|
|
and then
|
|
Size /= System_Storage_Unit * 4
|
|
and then
|
|
Size /= System_Storage_Unit * 8
|
|
then
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
|
Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
|
|
Error_Msg_N
|
|
("size for primitive object must be a power of 2"
|
|
& " in the range ^-^", N);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Esize (U_Ent, Size);
|
|
end if;
|
|
|
|
Set_Has_Size_Clause (U_Ent);
|
|
end if;
|
|
end Size;
|
|
|
|
-----------
|
|
-- Small --
|
|
-----------
|
|
|
|
-- Small attribute definition clause
|
|
|
|
when Attribute_Small => Small : declare
|
|
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
|
|
Small : Ureal;
|
|
|
|
begin
|
|
Analyze_And_Resolve (Expr, Any_Real);
|
|
|
|
if Etype (Expr) = Any_Type then
|
|
return;
|
|
|
|
elsif not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("small requires static expression!", Expr);
|
|
return;
|
|
|
|
else
|
|
Small := Expr_Value_R (Expr);
|
|
|
|
if Small <= Ureal_0 then
|
|
Error_Msg_N ("small value must be greater than zero", Expr);
|
|
return;
|
|
end if;
|
|
|
|
end if;
|
|
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("small requires an ordinary fixed point type", Nam);
|
|
|
|
elsif Has_Small_Clause (U_Ent) then
|
|
Error_Msg_N ("small already given for &", Nam);
|
|
|
|
elsif Small > Delta_Value (U_Ent) then
|
|
Error_Msg_N
|
|
("small value must not be greater then delta value", Nam);
|
|
|
|
else
|
|
Set_Small_Value (U_Ent, Small);
|
|
Set_Small_Value (Implicit_Base, Small);
|
|
Set_Has_Small_Clause (U_Ent);
|
|
Set_Has_Small_Clause (Implicit_Base);
|
|
Set_Has_Non_Standard_Rep (Implicit_Base);
|
|
end if;
|
|
end Small;
|
|
|
|
------------------
|
|
-- Storage_Pool --
|
|
------------------
|
|
|
|
-- Storage_Pool attribute definition clause
|
|
|
|
when Attribute_Storage_Pool => Storage_Pool : declare
|
|
Pool : Entity_Id;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (U_Ent) = E_Access_Subprogram_Type then
|
|
Error_Msg_N
|
|
("storage pool cannot be given for access-to-subprogram type",
|
|
Nam);
|
|
return;
|
|
|
|
elsif not
|
|
Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
|
|
then
|
|
Error_Msg_N
|
|
("storage pool can only be given for access types", Nam);
|
|
return;
|
|
|
|
elsif Is_Derived_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("storage pool cannot be given for a derived access type",
|
|
Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
return;
|
|
|
|
elsif Present (Associated_Storage_Pool (U_Ent)) then
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Analyze_And_Resolve
|
|
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
|
|
|
|
if not Denotes_Variable (Expr) then
|
|
Error_Msg_N ("storage pool must be a variable", Expr);
|
|
return;
|
|
end if;
|
|
|
|
if Nkind (Expr) = N_Type_Conversion then
|
|
T := Etype (Expression (Expr));
|
|
else
|
|
T := Etype (Expr);
|
|
end if;
|
|
|
|
-- The Stack_Bounded_Pool is used internally for implementing
|
|
-- access types with a Storage_Size. Since it only work properly
|
|
-- when used on one specific type, we need to check that it is not
|
|
-- hijacked improperly:
|
|
|
|
-- type T is access Integer;
|
|
-- for T'Storage_Size use n;
|
|
-- type Q is access Float;
|
|
-- for Q'Storage_Size use T'Storage_Size; -- incorrect
|
|
|
|
if RTE_Available (RE_Stack_Bounded_Pool)
|
|
and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
|
|
then
|
|
Error_Msg_N ("non-shareable internal Pool", Expr);
|
|
return;
|
|
end if;
|
|
|
|
-- If the argument is a name that is not an entity name, then
|
|
-- we construct a renaming operation to define an entity of
|
|
-- type storage pool.
|
|
|
|
if not Is_Entity_Name (Expr)
|
|
and then Is_Object_Reference (Expr)
|
|
then
|
|
Pool := Make_Temporary (Loc, 'P', Expr);
|
|
|
|
declare
|
|
Rnode : constant Node_Id :=
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Pool,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (Etype (Expr), Loc),
|
|
Name => Expr);
|
|
|
|
begin
|
|
Insert_Before (N, Rnode);
|
|
Analyze (Rnode);
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
end;
|
|
|
|
elsif Is_Entity_Name (Expr) then
|
|
Pool := Entity (Expr);
|
|
|
|
-- If pool is a renamed object, get original one. This can
|
|
-- happen with an explicit renaming, and within instances.
|
|
|
|
while Present (Renamed_Object (Pool))
|
|
and then Is_Entity_Name (Renamed_Object (Pool))
|
|
loop
|
|
Pool := Entity (Renamed_Object (Pool));
|
|
end loop;
|
|
|
|
if Present (Renamed_Object (Pool))
|
|
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
|
|
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
|
|
then
|
|
Pool := Entity (Expression (Renamed_Object (Pool)));
|
|
end if;
|
|
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
|
|
elsif Nkind (Expr) = N_Type_Conversion
|
|
and then Is_Entity_Name (Expression (Expr))
|
|
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
|
|
then
|
|
Pool := Entity (Expression (Expr));
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
|
|
else
|
|
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
|
|
return;
|
|
end if;
|
|
end Storage_Pool;
|
|
|
|
------------------
|
|
-- Storage_Size --
|
|
------------------
|
|
|
|
-- Storage_Size attribute definition clause
|
|
|
|
when Attribute_Storage_Size => Storage_Size : declare
|
|
Btype : constant Entity_Id := Base_Type (U_Ent);
|
|
Sprag : Node_Id;
|
|
|
|
begin
|
|
if Is_Task_Type (U_Ent) then
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("storage size clause for task is an " &
|
|
"obsolescent feature (RM J.9)?", N);
|
|
Error_Msg_N ("\use Storage_Size pragma instead?", N);
|
|
end if;
|
|
|
|
FOnly := True;
|
|
end if;
|
|
|
|
if not Is_Access_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Task_Type
|
|
then
|
|
Error_Msg_N ("storage size cannot be given for &", Nam);
|
|
|
|
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("storage size cannot be given for a derived access type",
|
|
Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
else
|
|
Analyze_And_Resolve (Expr, Any_Integer);
|
|
|
|
if Is_Access_Type (U_Ent) then
|
|
if Present (Associated_Storage_Pool (U_Ent)) then
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
|
return;
|
|
end if;
|
|
|
|
if Is_OK_Static_Expression (Expr)
|
|
and then Expr_Value (Expr) = 0
|
|
then
|
|
Set_No_Pool_Assigned (Btype);
|
|
end if;
|
|
|
|
else -- Is_Task_Type (U_Ent)
|
|
Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
|
|
|
|
if Present (Sprag) then
|
|
Error_Msg_Sloc := Sloc (Sprag);
|
|
Error_Msg_N
|
|
("Storage_Size already specified#", Nam);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
Set_Has_Storage_Size_Clause (Btype);
|
|
end if;
|
|
end Storage_Size;
|
|
|
|
-----------------
|
|
-- Stream_Size --
|
|
-----------------
|
|
|
|
when Attribute_Stream_Size => Stream_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if Ada_Version <= Ada_95 then
|
|
Check_Restriction (No_Implementation_Attributes, N);
|
|
end if;
|
|
|
|
if Duplicate_Clause then
|
|
null;
|
|
|
|
elsif Is_Elementary_Type (U_Ent) then
|
|
if Size /= System_Storage_Unit
|
|
and then
|
|
Size /= System_Storage_Unit * 2
|
|
and then
|
|
Size /= System_Storage_Unit * 4
|
|
and then
|
|
Size /= System_Storage_Unit * 8
|
|
then
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
|
Error_Msg_N
|
|
("stream size for elementary type must be a"
|
|
& " power of 2 and at least ^", N);
|
|
|
|
elsif RM_Size (U_Ent) > Size then
|
|
Error_Msg_Uint_1 := RM_Size (U_Ent);
|
|
Error_Msg_N
|
|
("stream size for elementary type must be a"
|
|
& " power of 2 and at least ^", N);
|
|
end if;
|
|
|
|
Set_Has_Stream_Size_Clause (U_Ent);
|
|
|
|
else
|
|
Error_Msg_N ("Stream_Size cannot be given for &", Nam);
|
|
end if;
|
|
end Stream_Size;
|
|
|
|
----------------
|
|
-- Value_Size --
|
|
----------------
|
|
|
|
-- Value_Size attribute definition clause
|
|
|
|
when Attribute_Value_Size => Value_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
Biased : Boolean;
|
|
|
|
begin
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("Value_Size cannot be given for &", Nam);
|
|
|
|
elsif Duplicate_Clause then
|
|
null;
|
|
|
|
elsif Is_Array_Type (U_Ent)
|
|
and then not Is_Constrained (U_Ent)
|
|
then
|
|
Error_Msg_N
|
|
("Value_Size cannot be given for unconstrained array", Nam);
|
|
|
|
else
|
|
if Is_Elementary_Type (U_Ent) then
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
|
Set_Biased (U_Ent, N, "value size clause", Biased);
|
|
end if;
|
|
|
|
Set_RM_Size (U_Ent, Size);
|
|
end if;
|
|
end Value_Size;
|
|
|
|
-----------------------
|
|
-- Variable_Indexing --
|
|
-----------------------
|
|
|
|
when Attribute_Variable_Indexing =>
|
|
Check_Indexing_Functions;
|
|
|
|
-----------
|
|
-- Write --
|
|
-----------
|
|
|
|
when Attribute_Write =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Write);
|
|
Set_Has_Specified_Stream_Write (Ent);
|
|
|
|
-- All other attributes cannot be set
|
|
|
|
when others =>
|
|
Error_Msg_N
|
|
("attribute& cannot be set with definition clause", N);
|
|
end case;
|
|
|
|
-- The test for the type being frozen must be performed after any
|
|
-- expression the clause has been analyzed since the expression itself
|
|
-- might cause freezing that makes the clause illegal.
|
|
|
|
if Rep_Item_Too_Late (U_Ent, N, FOnly) then
|
|
return;
|
|
end if;
|
|
end Analyze_Attribute_Definition_Clause;
|
|
|
|
----------------------------
|
|
-- Analyze_Code_Statement --
|
|
----------------------------
|
|
|
|
procedure Analyze_Code_Statement (N : Node_Id) is
|
|
HSS : constant Node_Id := Parent (N);
|
|
SBody : constant Node_Id := Parent (HSS);
|
|
Subp : constant Entity_Id := Current_Scope;
|
|
Stmt : Node_Id;
|
|
Decl : Node_Id;
|
|
StmtO : Node_Id;
|
|
DeclO : Node_Id;
|
|
|
|
begin
|
|
-- Analyze and check we get right type, note that this implements the
|
|
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
|
|
-- is the only way that Asm_Insn could possibly be visible.
|
|
|
|
Analyze_And_Resolve (Expression (N));
|
|
|
|
if Etype (Expression (N)) = Any_Type then
|
|
return;
|
|
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
|
|
Error_Msg_N ("incorrect type for code statement", N);
|
|
return;
|
|
end if;
|
|
|
|
Check_Code_Statement (N);
|
|
|
|
-- Make sure we appear in the handled statement sequence of a
|
|
-- subprogram (RM 13.8(3)).
|
|
|
|
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
|
|
or else Nkind (SBody) /= N_Subprogram_Body
|
|
then
|
|
Error_Msg_N
|
|
("code statement can only appear in body of subprogram", N);
|
|
return;
|
|
end if;
|
|
|
|
-- Do remaining checks (RM 13.8(3)) if not already done
|
|
|
|
if not Is_Machine_Code_Subprogram (Subp) then
|
|
Set_Is_Machine_Code_Subprogram (Subp);
|
|
|
|
-- No exception handlers allowed
|
|
|
|
if Present (Exception_Handlers (HSS)) then
|
|
Error_Msg_N
|
|
("exception handlers not permitted in machine code subprogram",
|
|
First (Exception_Handlers (HSS)));
|
|
end if;
|
|
|
|
-- No declarations other than use clauses and pragmas (we allow
|
|
-- certain internally generated declarations as well).
|
|
|
|
Decl := First (Declarations (SBody));
|
|
while Present (Decl) loop
|
|
DeclO := Original_Node (Decl);
|
|
if Comes_From_Source (DeclO)
|
|
and not Nkind_In (DeclO, N_Pragma,
|
|
N_Use_Package_Clause,
|
|
N_Use_Type_Clause,
|
|
N_Implicit_Label_Declaration)
|
|
then
|
|
Error_Msg_N
|
|
("this declaration not allowed in machine code subprogram",
|
|
DeclO);
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
|
|
-- No statements other than code statements, pragmas, and labels.
|
|
-- Again we allow certain internally generated statements.
|
|
|
|
-- In Ada 2012, qualified expressions are names, and the code
|
|
-- statement is initially parsed as a procedure call.
|
|
|
|
Stmt := First (Statements (HSS));
|
|
while Present (Stmt) loop
|
|
StmtO := Original_Node (Stmt);
|
|
|
|
-- A procedure call transformed into a code statement is OK.
|
|
|
|
if Ada_Version >= Ada_2012
|
|
and then Nkind (StmtO) = N_Procedure_Call_Statement
|
|
and then Nkind (Name (StmtO)) = N_Qualified_Expression
|
|
then
|
|
null;
|
|
|
|
elsif Comes_From_Source (StmtO)
|
|
and then not Nkind_In (StmtO, N_Pragma,
|
|
N_Label,
|
|
N_Code_Statement)
|
|
then
|
|
Error_Msg_N
|
|
("this statement is not allowed in machine code subprogram",
|
|
StmtO);
|
|
end if;
|
|
|
|
Next (Stmt);
|
|
end loop;
|
|
end if;
|
|
end Analyze_Code_Statement;
|
|
|
|
-----------------------------------------------
|
|
-- Analyze_Enumeration_Representation_Clause --
|
|
-----------------------------------------------
|
|
|
|
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
|
|
Ident : constant Node_Id := Identifier (N);
|
|
Aggr : constant Node_Id := Array_Aggregate (N);
|
|
Enumtype : Entity_Id;
|
|
Elit : Entity_Id;
|
|
Expr : Node_Id;
|
|
Assoc : Node_Id;
|
|
Choice : Node_Id;
|
|
Val : Uint;
|
|
|
|
Err : Boolean := False;
|
|
-- Set True to avoid cascade errors and crashes on incorrect source code
|
|
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
|
|
-- Allowed range of universal integer (= allowed range of enum lit vals)
|
|
|
|
Min : Uint;
|
|
Max : Uint;
|
|
-- Minimum and maximum values of entries
|
|
|
|
Max_Node : Node_Id;
|
|
-- Pointer to node for literal providing max value
|
|
|
|
begin
|
|
if Ignore_Rep_Clauses then
|
|
return;
|
|
end if;
|
|
|
|
-- First some basic error checks
|
|
|
|
Find_Type (Ident);
|
|
Enumtype := Entity (Ident);
|
|
|
|
if Enumtype = Any_Type
|
|
or else Rep_Item_Too_Early (Enumtype, N)
|
|
then
|
|
return;
|
|
else
|
|
Enumtype := Underlying_Type (Enumtype);
|
|
end if;
|
|
|
|
if not Is_Enumeration_Type (Enumtype) then
|
|
Error_Msg_NE
|
|
("enumeration type required, found}",
|
|
Ident, First_Subtype (Enumtype));
|
|
return;
|
|
end if;
|
|
|
|
-- Ignore rep clause on generic actual type. This will already have
|
|
-- been flagged on the template as an error, and this is the safest
|
|
-- way to ensure we don't get a junk cascaded message in the instance.
|
|
|
|
if Is_Generic_Actual_Type (Enumtype) then
|
|
return;
|
|
|
|
-- Type must be in current scope
|
|
|
|
elsif Scope (Enumtype) /= Current_Scope then
|
|
Error_Msg_N ("type must be declared in this scope", Ident);
|
|
return;
|
|
|
|
-- Type must be a first subtype
|
|
|
|
elsif not Is_First_Subtype (Enumtype) then
|
|
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
|
|
return;
|
|
|
|
-- Ignore duplicate rep clause
|
|
|
|
elsif Has_Enumeration_Rep_Clause (Enumtype) then
|
|
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
|
|
return;
|
|
|
|
-- Don't allow rep clause for standard [wide_[wide_]]character
|
|
|
|
elsif Is_Standard_Character_Type (Enumtype) then
|
|
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
|
|
return;
|
|
|
|
-- Check that the expression is a proper aggregate (no parentheses)
|
|
|
|
elsif Paren_Count (Aggr) /= 0 then
|
|
Error_Msg
|
|
("extra parentheses surrounding aggregate not allowed",
|
|
First_Sloc (Aggr));
|
|
return;
|
|
|
|
-- All tests passed, so set rep clause in place
|
|
|
|
else
|
|
Set_Has_Enumeration_Rep_Clause (Enumtype);
|
|
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
|
|
end if;
|
|
|
|
-- Now we process the aggregate. Note that we don't use the normal
|
|
-- aggregate code for this purpose, because we don't want any of the
|
|
-- normal expansion activities, and a number of special semantic
|
|
-- rules apply (including the component type being any integer type)
|
|
|
|
Elit := First_Literal (Enumtype);
|
|
|
|
-- First the positional entries if any
|
|
|
|
if Present (Expressions (Aggr)) then
|
|
Expr := First (Expressions (Aggr));
|
|
while Present (Expr) loop
|
|
if No (Elit) then
|
|
Error_Msg_N ("too many entries in aggregate", Expr);
|
|
return;
|
|
end if;
|
|
|
|
Val := Static_Integer (Expr);
|
|
|
|
-- Err signals that we found some incorrect entries processing
|
|
-- the list. The final checks for completeness and ordering are
|
|
-- skipped in this case.
|
|
|
|
if Val = No_Uint then
|
|
Err := True;
|
|
elsif Val < Lo or else Hi < Val then
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep (Elit, Val);
|
|
Set_Enumeration_Rep_Expr (Elit, Expr);
|
|
Next (Expr);
|
|
Next (Elit);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Now process the named entries if present
|
|
|
|
if Present (Component_Associations (Aggr)) then
|
|
Assoc := First (Component_Associations (Aggr));
|
|
while Present (Assoc) loop
|
|
Choice := First (Choices (Assoc));
|
|
|
|
if Present (Next (Choice)) then
|
|
Error_Msg_N
|
|
("multiple choice not allowed here", Next (Choice));
|
|
Err := True;
|
|
end if;
|
|
|
|
if Nkind (Choice) = N_Others_Choice then
|
|
Error_Msg_N ("others choice not allowed here", Choice);
|
|
Err := True;
|
|
|
|
elsif Nkind (Choice) = N_Range then
|
|
|
|
-- ??? should allow zero/one element range here
|
|
|
|
Error_Msg_N ("range not allowed here", Choice);
|
|
Err := True;
|
|
|
|
else
|
|
Analyze_And_Resolve (Choice, Enumtype);
|
|
|
|
if Error_Posted (Choice) then
|
|
Err := True;
|
|
end if;
|
|
|
|
if not Err then
|
|
if Is_Entity_Name (Choice)
|
|
and then Is_Type (Entity (Choice))
|
|
then
|
|
Error_Msg_N ("subtype name not allowed here", Choice);
|
|
Err := True;
|
|
|
|
-- ??? should allow static subtype with zero/one entry
|
|
|
|
elsif Etype (Choice) = Base_Type (Enumtype) then
|
|
if not Is_Static_Expression (Choice) then
|
|
Flag_Non_Static_Expr
|
|
("non-static expression used for choice!", Choice);
|
|
Err := True;
|
|
|
|
else
|
|
Elit := Expr_Value_E (Choice);
|
|
|
|
if Present (Enumeration_Rep_Expr (Elit)) then
|
|
Error_Msg_Sloc :=
|
|
Sloc (Enumeration_Rep_Expr (Elit));
|
|
Error_Msg_NE
|
|
("representation for& previously given#",
|
|
Choice, Elit);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
|
|
|
|
Expr := Expression (Assoc);
|
|
Val := Static_Integer (Expr);
|
|
|
|
if Val = No_Uint then
|
|
Err := True;
|
|
|
|
elsif Val < Lo or else Hi < Val then
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep (Elit, Val);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Aggregate is fully processed. Now we check that a full set of
|
|
-- representations was given, and that they are in range and in order.
|
|
-- These checks are only done if no other errors occurred.
|
|
|
|
if not Err then
|
|
Min := No_Uint;
|
|
Max := No_Uint;
|
|
|
|
Elit := First_Literal (Enumtype);
|
|
while Present (Elit) loop
|
|
if No (Enumeration_Rep_Expr (Elit)) then
|
|
Error_Msg_NE ("missing representation for&!", N, Elit);
|
|
|
|
else
|
|
Val := Enumeration_Rep (Elit);
|
|
|
|
if Min = No_Uint then
|
|
Min := Val;
|
|
end if;
|
|
|
|
if Val /= No_Uint then
|
|
if Max /= No_Uint and then Val <= Max then
|
|
Error_Msg_NE
|
|
("enumeration value for& not ordered!",
|
|
Enumeration_Rep_Expr (Elit), Elit);
|
|
end if;
|
|
|
|
Max_Node := Enumeration_Rep_Expr (Elit);
|
|
Max := Val;
|
|
end if;
|
|
|
|
-- If there is at least one literal whose representation is not
|
|
-- equal to the Pos value, then note that this enumeration type
|
|
-- has a non-standard representation.
|
|
|
|
if Val /= Enumeration_Pos (Elit) then
|
|
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
|
|
end if;
|
|
end if;
|
|
|
|
Next (Elit);
|
|
end loop;
|
|
|
|
-- Now set proper size information
|
|
|
|
declare
|
|
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
|
|
|
|
begin
|
|
if Has_Size_Clause (Enumtype) then
|
|
|
|
-- All OK, if size is OK now
|
|
|
|
if RM_Size (Enumtype) >= Minsize then
|
|
null;
|
|
|
|
else
|
|
-- Try if we can get by with biasing
|
|
|
|
Minsize :=
|
|
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
|
|
|
|
-- Error message if even biasing does not work
|
|
|
|
if RM_Size (Enumtype) < Minsize then
|
|
Error_Msg_Uint_1 := RM_Size (Enumtype);
|
|
Error_Msg_Uint_2 := Max;
|
|
Error_Msg_N
|
|
("previously given size (^) is too small "
|
|
& "for this value (^)", Max_Node);
|
|
|
|
-- If biasing worked, indicate that we now have biased rep
|
|
|
|
else
|
|
Set_Biased
|
|
(Enumtype, Size_Clause (Enumtype), "size clause");
|
|
end if;
|
|
end if;
|
|
|
|
else
|
|
Set_RM_Size (Enumtype, Minsize);
|
|
Set_Enum_Esize (Enumtype);
|
|
end if;
|
|
|
|
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
|
|
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
|
|
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
|
|
end;
|
|
end if;
|
|
|
|
-- We repeat the too late test in case it froze itself!
|
|
|
|
if Rep_Item_Too_Late (Enumtype, N) then
|
|
null;
|
|
end if;
|
|
end Analyze_Enumeration_Representation_Clause;
|
|
|
|
----------------------------
|
|
-- Analyze_Free_Statement --
|
|
----------------------------
|
|
|
|
procedure Analyze_Free_Statement (N : Node_Id) is
|
|
begin
|
|
Analyze (Expression (N));
|
|
end Analyze_Free_Statement;
|
|
|
|
---------------------------
|
|
-- Analyze_Freeze_Entity --
|
|
---------------------------
|
|
|
|
procedure Analyze_Freeze_Entity (N : Node_Id) is
|
|
E : constant Entity_Id := Entity (N);
|
|
|
|
begin
|
|
-- Remember that we are processing a freezing entity. Required to
|
|
-- ensure correct decoration of internal entities associated with
|
|
-- interfaces (see New_Overloaded_Entity).
|
|
|
|
Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
|
|
|
|
-- For tagged types covering interfaces add internal entities that link
|
|
-- the primitives of the interfaces with the primitives that cover them.
|
|
-- Note: These entities were originally generated only when generating
|
|
-- code because their main purpose was to provide support to initialize
|
|
-- the secondary dispatch tables. They are now generated also when
|
|
-- compiling with no code generation to provide ASIS the relationship
|
|
-- between interface primitives and tagged type primitives. They are
|
|
-- also used to locate primitives covering interfaces when processing
|
|
-- generics (see Derive_Subprograms).
|
|
|
|
if Ada_Version >= Ada_2005
|
|
and then Ekind (E) = E_Record_Type
|
|
and then Is_Tagged_Type (E)
|
|
and then not Is_Interface (E)
|
|
and then Has_Interfaces (E)
|
|
then
|
|
-- This would be a good common place to call the routine that checks
|
|
-- overriding of interface primitives (and thus factorize calls to
|
|
-- Check_Abstract_Overriding located at different contexts in the
|
|
-- compiler). However, this is not possible because it causes
|
|
-- spurious errors in case of late overriding.
|
|
|
|
Add_Internal_Interface_Entities (E);
|
|
end if;
|
|
|
|
-- Check CPP types
|
|
|
|
if Ekind (E) = E_Record_Type
|
|
and then Is_CPP_Class (E)
|
|
and then Is_Tagged_Type (E)
|
|
and then Tagged_Type_Expansion
|
|
and then Expander_Active
|
|
then
|
|
if CPP_Num_Prims (E) = 0 then
|
|
|
|
-- If the CPP type has user defined components then it must import
|
|
-- primitives from C++. This is required because if the C++ class
|
|
-- has no primitives then the C++ compiler does not added the _tag
|
|
-- component to the type.
|
|
|
|
pragma Assert (Chars (First_Entity (E)) = Name_uTag);
|
|
|
|
if First_Entity (E) /= Last_Entity (E) then
|
|
Error_Msg_N
|
|
("?'C'P'P type must import at least one primitive from C++",
|
|
E);
|
|
end if;
|
|
end if;
|
|
|
|
-- Check that all its primitives are abstract or imported from C++.
|
|
-- Check also availability of the C++ constructor.
|
|
|
|
declare
|
|
Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
|
|
Elmt : Elmt_Id;
|
|
Error_Reported : Boolean := False;
|
|
Prim : Node_Id;
|
|
|
|
begin
|
|
Elmt := First_Elmt (Primitive_Operations (E));
|
|
while Present (Elmt) loop
|
|
Prim := Node (Elmt);
|
|
|
|
if Comes_From_Source (Prim) then
|
|
if Is_Abstract_Subprogram (Prim) then
|
|
null;
|
|
|
|
elsif not Is_Imported (Prim)
|
|
or else Convention (Prim) /= Convention_CPP
|
|
then
|
|
Error_Msg_N
|
|
("?primitives of 'C'P'P types must be imported from C++"
|
|
& " or abstract", Prim);
|
|
|
|
elsif not Has_Constructors
|
|
and then not Error_Reported
|
|
then
|
|
Error_Msg_Name_1 := Chars (E);
|
|
Error_Msg_N
|
|
("?'C'P'P constructor required for type %", Prim);
|
|
Error_Reported := True;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
|
|
|
|
-- If we have a type with predicates, build predicate function
|
|
|
|
if Is_Type (E) and then Has_Predicates (E) then
|
|
Build_Predicate_Function (E, N);
|
|
end if;
|
|
|
|
-- If type has delayed aspects, this is where we do the preanalysis at
|
|
-- the freeze point, as part of the consistent visibility check. Note
|
|
-- that this must be done after calling Build_Predicate_Function or
|
|
-- Build_Invariant_Procedure since these subprograms fix occurrences of
|
|
-- the subtype name in the saved expression so that they will not cause
|
|
-- trouble in the preanalysis.
|
|
|
|
if Has_Delayed_Aspects (E) then
|
|
declare
|
|
Ritem : Node_Id;
|
|
|
|
begin
|
|
-- Look for aspect specification entries for this entity
|
|
|
|
Ritem := First_Rep_Item (E);
|
|
while Present (Ritem) loop
|
|
if Nkind (Ritem) = N_Aspect_Specification
|
|
and then Entity (Ritem) = E
|
|
and then Is_Delayed_Aspect (Ritem)
|
|
and then Scope (E) = Current_Scope
|
|
then
|
|
Check_Aspect_At_Freeze_Point (Ritem);
|
|
end if;
|
|
|
|
Next_Rep_Item (Ritem);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end Analyze_Freeze_Entity;
|
|
|
|
------------------------------------------
|
|
-- Analyze_Record_Representation_Clause --
|
|
------------------------------------------
|
|
|
|
-- Note: we check as much as we can here, but we can't do any checks
|
|
-- based on the position values (e.g. overlap checks) until freeze time
|
|
-- because especially in Ada 2005 (machine scalar mode), the processing
|
|
-- for non-standard bit order can substantially change the positions.
|
|
-- See procedure Check_Record_Representation_Clause (called from Freeze)
|
|
-- for the remainder of this processing.
|
|
|
|
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
|
|
Ident : constant Node_Id := Identifier (N);
|
|
Biased : Boolean;
|
|
CC : Node_Id;
|
|
Comp : Entity_Id;
|
|
Fbit : Uint;
|
|
Hbit : Uint := Uint_0;
|
|
Lbit : Uint;
|
|
Ocomp : Entity_Id;
|
|
Posit : Uint;
|
|
Rectype : Entity_Id;
|
|
|
|
CR_Pragma : Node_Id := Empty;
|
|
-- Points to N_Pragma node if Complete_Representation pragma present
|
|
|
|
begin
|
|
if Ignore_Rep_Clauses then
|
|
return;
|
|
end if;
|
|
|
|
Find_Type (Ident);
|
|
Rectype := Entity (Ident);
|
|
|
|
if Rectype = Any_Type
|
|
or else Rep_Item_Too_Early (Rectype, N)
|
|
then
|
|
return;
|
|
else
|
|
Rectype := Underlying_Type (Rectype);
|
|
end if;
|
|
|
|
-- First some basic error checks
|
|
|
|
if not Is_Record_Type (Rectype) then
|
|
Error_Msg_NE
|
|
("record type required, found}", Ident, First_Subtype (Rectype));
|
|
return;
|
|
|
|
elsif Scope (Rectype) /= Current_Scope then
|
|
Error_Msg_N ("type must be declared in this scope", N);
|
|
return;
|
|
|
|
elsif not Is_First_Subtype (Rectype) then
|
|
Error_Msg_N ("cannot give record rep clause for subtype", N);
|
|
return;
|
|
|
|
elsif Has_Record_Rep_Clause (Rectype) then
|
|
Error_Msg_N ("duplicate record rep clause ignored", N);
|
|
return;
|
|
|
|
elsif Rep_Item_Too_Late (Rectype, N) then
|
|
return;
|
|
end if;
|
|
|
|
if Present (Mod_Clause (N)) then
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
M : constant Node_Id := Mod_Clause (N);
|
|
P : constant List_Id := Pragmas_Before (M);
|
|
AtM_Nod : Node_Id;
|
|
|
|
Mod_Val : Uint;
|
|
pragma Warnings (Off, Mod_Val);
|
|
|
|
begin
|
|
Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("mod clause is an obsolescent feature (RM J.8)?", N);
|
|
Error_Msg_N
|
|
("\use alignment attribute definition clause instead?", N);
|
|
end if;
|
|
|
|
if Present (P) then
|
|
Analyze_List (P);
|
|
end if;
|
|
|
|
-- In ASIS_Mode mode, expansion is disabled, but we must convert
|
|
-- the Mod clause into an alignment clause anyway, so that the
|
|
-- back-end can compute and back-annotate properly the size and
|
|
-- alignment of types that may include this record.
|
|
|
|
-- This seems dubious, this destroys the source tree in a manner
|
|
-- not detectable by ASIS ???
|
|
|
|
if Operating_Mode = Check_Semantics and then ASIS_Mode then
|
|
AtM_Nod :=
|
|
Make_Attribute_Definition_Clause (Loc,
|
|
Name => New_Reference_To (Base_Type (Rectype), Loc),
|
|
Chars => Name_Alignment,
|
|
Expression => Relocate_Node (Expression (M)));
|
|
|
|
Set_From_At_Mod (AtM_Nod);
|
|
Insert_After (N, AtM_Nod);
|
|
Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
|
|
Set_Mod_Clause (N, Empty);
|
|
|
|
else
|
|
-- Get the alignment value to perform error checking
|
|
|
|
Mod_Val := Get_Alignment_Value (Expression (M));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- For untagged types, clear any existing component clauses for the
|
|
-- type. If the type is derived, this is what allows us to override
|
|
-- a rep clause for the parent. For type extensions, the representation
|
|
-- of the inherited components is inherited, so we want to keep previous
|
|
-- component clauses for completeness.
|
|
|
|
if not Is_Tagged_Type (Rectype) then
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
|
while Present (Comp) loop
|
|
Set_Component_Clause (Comp, Empty);
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
-- All done if no component clauses
|
|
|
|
CC := First (Component_Clauses (N));
|
|
|
|
if No (CC) then
|
|
return;
|
|
end if;
|
|
|
|
-- A representation like this applies to the base type
|
|
|
|
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
|
|
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
|
|
Set_Has_Specified_Layout (Base_Type (Rectype));
|
|
|
|
-- Process the component clauses
|
|
|
|
while Present (CC) loop
|
|
|
|
-- Pragma
|
|
|
|
if Nkind (CC) = N_Pragma then
|
|
Analyze (CC);
|
|
|
|
-- The only pragma of interest is Complete_Representation
|
|
|
|
if Pragma_Name (CC) = Name_Complete_Representation then
|
|
CR_Pragma := CC;
|
|
end if;
|
|
|
|
-- Processing for real component clause
|
|
|
|
else
|
|
Posit := Static_Integer (Position (CC));
|
|
Fbit := Static_Integer (First_Bit (CC));
|
|
Lbit := Static_Integer (Last_Bit (CC));
|
|
|
|
if Posit /= No_Uint
|
|
and then Fbit /= No_Uint
|
|
and then Lbit /= No_Uint
|
|
then
|
|
if Posit < 0 then
|
|
Error_Msg_N
|
|
("position cannot be negative", Position (CC));
|
|
|
|
elsif Fbit < 0 then
|
|
Error_Msg_N
|
|
("first bit cannot be negative", First_Bit (CC));
|
|
|
|
-- The Last_Bit specified in a component clause must not be
|
|
-- less than the First_Bit minus one (RM-13.5.1(10)).
|
|
|
|
elsif Lbit < Fbit - 1 then
|
|
Error_Msg_N
|
|
("last bit cannot be less than first bit minus one",
|
|
Last_Bit (CC));
|
|
|
|
-- Values look OK, so find the corresponding record component
|
|
-- Even though the syntax allows an attribute reference for
|
|
-- implementation-defined components, GNAT does not allow the
|
|
-- tag to get an explicit position.
|
|
|
|
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
|
|
if Attribute_Name (Component_Name (CC)) = Name_Tag then
|
|
Error_Msg_N ("position of tag cannot be specified", CC);
|
|
else
|
|
Error_Msg_N ("illegal component name", CC);
|
|
end if;
|
|
|
|
else
|
|
Comp := First_Entity (Rectype);
|
|
while Present (Comp) loop
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
if No (Comp) then
|
|
|
|
-- Maybe component of base type that is absent from
|
|
-- statically constrained first subtype.
|
|
|
|
Comp := First_Entity (Base_Type (Rectype));
|
|
while Present (Comp) loop
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
if No (Comp) then
|
|
Error_Msg_N
|
|
("component clause is for non-existent field", CC);
|
|
|
|
-- Ada 2012 (AI05-0026): Any name that denotes a
|
|
-- discriminant of an object of an unchecked union type
|
|
-- shall not occur within a record_representation_clause.
|
|
|
|
-- The general restriction of using record rep clauses on
|
|
-- Unchecked_Union types has now been lifted. Since it is
|
|
-- possible to introduce a record rep clause which mentions
|
|
-- the discriminant of an Unchecked_Union in non-Ada 2012
|
|
-- code, this check is applied to all versions of the
|
|
-- language.
|
|
|
|
elsif Ekind (Comp) = E_Discriminant
|
|
and then Is_Unchecked_Union (Rectype)
|
|
then
|
|
Error_Msg_N
|
|
("cannot reference discriminant of Unchecked_Union",
|
|
Component_Name (CC));
|
|
|
|
elsif Present (Component_Clause (Comp)) then
|
|
|
|
-- Diagnose duplicate rep clause, or check consistency
|
|
-- if this is an inherited component. In a double fault,
|
|
-- there may be a duplicate inconsistent clause for an
|
|
-- inherited component.
|
|
|
|
if Scope (Original_Record_Component (Comp)) = Rectype
|
|
or else Parent (Component_Clause (Comp)) = N
|
|
then
|
|
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
|
|
Error_Msg_N ("component clause previously given#", CC);
|
|
|
|
else
|
|
declare
|
|
Rep1 : constant Node_Id := Component_Clause (Comp);
|
|
begin
|
|
if Intval (Position (Rep1)) /=
|
|
Intval (Position (CC))
|
|
or else Intval (First_Bit (Rep1)) /=
|
|
Intval (First_Bit (CC))
|
|
or else Intval (Last_Bit (Rep1)) /=
|
|
Intval (Last_Bit (CC))
|
|
then
|
|
Error_Msg_N ("component clause inconsistent "
|
|
& "with representation of ancestor", CC);
|
|
elsif Warn_On_Redundant_Constructs then
|
|
Error_Msg_N ("?redundant component clause "
|
|
& "for inherited component!", CC);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Normal case where this is the first component clause we
|
|
-- have seen for this entity, so set it up properly.
|
|
|
|
else
|
|
-- Make reference for field in record rep clause and set
|
|
-- appropriate entity field in the field identifier.
|
|
|
|
Generate_Reference
|
|
(Comp, Component_Name (CC), Set_Ref => False);
|
|
Set_Entity (Component_Name (CC), Comp);
|
|
|
|
-- Update Fbit and Lbit to the actual bit number
|
|
|
|
Fbit := Fbit + UI_From_Int (SSU) * Posit;
|
|
Lbit := Lbit + UI_From_Int (SSU) * Posit;
|
|
|
|
if Has_Size_Clause (Rectype)
|
|
and then RM_Size (Rectype) <= Lbit
|
|
then
|
|
Error_Msg_N
|
|
("bit number out of range of specified size",
|
|
Last_Bit (CC));
|
|
else
|
|
Set_Component_Clause (Comp, CC);
|
|
Set_Component_Bit_Offset (Comp, Fbit);
|
|
Set_Esize (Comp, 1 + (Lbit - Fbit));
|
|
Set_Normalized_First_Bit (Comp, Fbit mod SSU);
|
|
Set_Normalized_Position (Comp, Fbit / SSU);
|
|
|
|
if Warn_On_Overridden_Size
|
|
and then Has_Size_Clause (Etype (Comp))
|
|
and then RM_Size (Etype (Comp)) /= Esize (Comp)
|
|
then
|
|
Error_Msg_NE
|
|
("?component size overrides size clause for&",
|
|
Component_Name (CC), Etype (Comp));
|
|
end if;
|
|
|
|
-- This information is also set in the corresponding
|
|
-- component of the base type, found by accessing the
|
|
-- Original_Record_Component link if it is present.
|
|
|
|
Ocomp := Original_Record_Component (Comp);
|
|
|
|
if Hbit < Lbit then
|
|
Hbit := Lbit;
|
|
end if;
|
|
|
|
Check_Size
|
|
(Component_Name (CC),
|
|
Etype (Comp),
|
|
Esize (Comp),
|
|
Biased);
|
|
|
|
Set_Biased
|
|
(Comp, First_Node (CC), "component clause", Biased);
|
|
|
|
if Present (Ocomp) then
|
|
Set_Component_Clause (Ocomp, CC);
|
|
Set_Component_Bit_Offset (Ocomp, Fbit);
|
|
Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
|
|
Set_Normalized_Position (Ocomp, Fbit / SSU);
|
|
Set_Esize (Ocomp, 1 + (Lbit - Fbit));
|
|
|
|
Set_Normalized_Position_Max
|
|
(Ocomp, Normalized_Position (Ocomp));
|
|
|
|
-- Note: we don't use Set_Biased here, because we
|
|
-- already gave a warning above if needed, and we
|
|
-- would get a duplicate for the same name here.
|
|
|
|
Set_Has_Biased_Representation
|
|
(Ocomp, Has_Biased_Representation (Comp));
|
|
end if;
|
|
|
|
if Esize (Comp) < 0 then
|
|
Error_Msg_N ("component size is negative", CC);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next (CC);
|
|
end loop;
|
|
|
|
-- Check missing components if Complete_Representation pragma appeared
|
|
|
|
if Present (CR_Pragma) then
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
|
while Present (Comp) loop
|
|
if No (Component_Clause (Comp)) then
|
|
Error_Msg_NE
|
|
("missing component clause for &", CR_Pragma, Comp);
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- If no Complete_Representation pragma, warn if missing components
|
|
|
|
elsif Warn_On_Unrepped_Components then
|
|
declare
|
|
Num_Repped_Components : Nat := 0;
|
|
Num_Unrepped_Components : Nat := 0;
|
|
|
|
begin
|
|
-- First count number of repped and unrepped components
|
|
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
|
while Present (Comp) loop
|
|
if Present (Component_Clause (Comp)) then
|
|
Num_Repped_Components := Num_Repped_Components + 1;
|
|
else
|
|
Num_Unrepped_Components := Num_Unrepped_Components + 1;
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- We are only interested in the case where there is at least one
|
|
-- unrepped component, and at least half the components have rep
|
|
-- clauses. We figure that if less than half have them, then the
|
|
-- partial rep clause is really intentional. If the component
|
|
-- type has no underlying type set at this point (as for a generic
|
|
-- formal type), we don't know enough to give a warning on the
|
|
-- component.
|
|
|
|
if Num_Unrepped_Components > 0
|
|
and then Num_Unrepped_Components < Num_Repped_Components
|
|
then
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
|
while Present (Comp) loop
|
|
if No (Component_Clause (Comp))
|
|
and then Comes_From_Source (Comp)
|
|
and then Present (Underlying_Type (Etype (Comp)))
|
|
and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
|
|
or else Size_Known_At_Compile_Time
|
|
(Underlying_Type (Etype (Comp))))
|
|
and then not Has_Warnings_Off (Rectype)
|
|
then
|
|
Error_Msg_Sloc := Sloc (Comp);
|
|
Error_Msg_NE
|
|
("?no component clause given for & declared #",
|
|
N, Comp);
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Analyze_Record_Representation_Clause;
|
|
|
|
-------------------------------
|
|
-- Build_Invariant_Procedure --
|
|
-------------------------------
|
|
|
|
-- The procedure that is constructed here has the form
|
|
|
|
-- procedure typInvariant (Ixxx : typ) is
|
|
-- begin
|
|
-- pragma Check (Invariant, exp, "failed invariant from xxx");
|
|
-- pragma Check (Invariant, exp, "failed invariant from xxx");
|
|
-- ...
|
|
-- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
|
|
-- ...
|
|
-- end typInvariant;
|
|
|
|
procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Stmts : List_Id;
|
|
Spec : Node_Id;
|
|
SId : Entity_Id;
|
|
PDecl : Node_Id;
|
|
PBody : Node_Id;
|
|
|
|
Visible_Decls : constant List_Id := Visible_Declarations (N);
|
|
Private_Decls : constant List_Id := Private_Declarations (N);
|
|
|
|
procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
|
|
-- Appends statements to Stmts for any invariants in the rep item chain
|
|
-- of the given type. If Inherit is False, then we only process entries
|
|
-- on the chain for the type Typ. If Inherit is True, then we ignore any
|
|
-- Invariant aspects, but we process all Invariant'Class aspects, adding
|
|
-- "inherited" to the exception message and generating an informational
|
|
-- message about the inheritance of an invariant.
|
|
|
|
Object_Name : constant Name_Id := New_Internal_Name ('I');
|
|
-- Name for argument of invariant procedure
|
|
|
|
Object_Entity : constant Node_Id :=
|
|
Make_Defining_Identifier (Loc, Object_Name);
|
|
-- The procedure declaration entity for the argument
|
|
|
|
--------------------
|
|
-- Add_Invariants --
|
|
--------------------
|
|
|
|
procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
|
|
Ritem : Node_Id;
|
|
Arg1 : Node_Id;
|
|
Arg2 : Node_Id;
|
|
Arg3 : Node_Id;
|
|
Exp : Node_Id;
|
|
Loc : Source_Ptr;
|
|
Assoc : List_Id;
|
|
Str : String_Id;
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id);
|
|
-- Replace a single occurrence N of the subtype name with a reference
|
|
-- to the formal of the predicate function. N can be an identifier
|
|
-- referencing the subtype, or a selected component, representing an
|
|
-- appropriately qualified occurrence of the subtype name.
|
|
|
|
procedure Replace_Type_References is
|
|
new Replace_Type_References_Generic (Replace_Type_Reference);
|
|
-- Traverse an expression replacing all occurrences of the subtype
|
|
-- name with appropriate references to the object that is the formal
|
|
-- parameter of the predicate function. Note that we must ensure
|
|
-- that the type and entity information is properly set in the
|
|
-- replacement node, since we will do a Preanalyze call of this
|
|
-- expression without proper visibility of the procedure argument.
|
|
|
|
----------------------------
|
|
-- Replace_Type_Reference --
|
|
----------------------------
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id) is
|
|
begin
|
|
-- Invariant'Class, replace with T'Class (obj)
|
|
|
|
if Class_Present (Ritem) then
|
|
Rewrite (N,
|
|
Make_Type_Conversion (Loc,
|
|
Subtype_Mark =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Occurrence_Of (T, Loc),
|
|
Attribute_Name => Name_Class),
|
|
Expression => Make_Identifier (Loc, Object_Name)));
|
|
|
|
Set_Entity (Expression (N), Object_Entity);
|
|
Set_Etype (Expression (N), Typ);
|
|
|
|
-- Invariant, replace with obj
|
|
|
|
else
|
|
Rewrite (N, Make_Identifier (Loc, Object_Name));
|
|
Set_Entity (N, Object_Entity);
|
|
Set_Etype (N, Typ);
|
|
end if;
|
|
end Replace_Type_Reference;
|
|
|
|
-- Start of processing for Add_Invariants
|
|
|
|
begin
|
|
Ritem := First_Rep_Item (T);
|
|
while Present (Ritem) loop
|
|
if Nkind (Ritem) = N_Pragma
|
|
and then Pragma_Name (Ritem) = Name_Invariant
|
|
then
|
|
Arg1 := First (Pragma_Argument_Associations (Ritem));
|
|
Arg2 := Next (Arg1);
|
|
Arg3 := Next (Arg2);
|
|
|
|
Arg1 := Get_Pragma_Arg (Arg1);
|
|
Arg2 := Get_Pragma_Arg (Arg2);
|
|
|
|
-- For Inherit case, ignore Invariant, process only Class case
|
|
|
|
if Inherit then
|
|
if not Class_Present (Ritem) then
|
|
goto Continue;
|
|
end if;
|
|
|
|
-- For Inherit false, process only item for right type
|
|
|
|
else
|
|
if Entity (Arg1) /= Typ then
|
|
goto Continue;
|
|
end if;
|
|
end if;
|
|
|
|
if No (Stmts) then
|
|
Stmts := Empty_List;
|
|
end if;
|
|
|
|
Exp := New_Copy_Tree (Arg2);
|
|
Loc := Sloc (Exp);
|
|
|
|
-- We need to replace any occurrences of the name of the type
|
|
-- with references to the object, converted to type'Class in
|
|
-- the case of Invariant'Class aspects.
|
|
|
|
Replace_Type_References (Exp, Chars (T));
|
|
|
|
-- If this invariant comes from an aspect, find the aspect
|
|
-- specification, and replace the saved expression because
|
|
-- we need the subtype references replaced for the calls to
|
|
-- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
|
|
-- and Check_Aspect_At_End_Of_Declarations.
|
|
|
|
if From_Aspect_Specification (Ritem) then
|
|
declare
|
|
Aitem : Node_Id;
|
|
|
|
begin
|
|
-- Loop to find corresponding aspect, note that this
|
|
-- must be present given the pragma is marked delayed.
|
|
|
|
Aitem := Next_Rep_Item (Ritem);
|
|
while Present (Aitem) loop
|
|
if Nkind (Aitem) = N_Aspect_Specification
|
|
and then Aspect_Rep_Item (Aitem) = Ritem
|
|
then
|
|
Set_Entity
|
|
(Identifier (Aitem), New_Copy_Tree (Exp));
|
|
exit;
|
|
end if;
|
|
|
|
Aitem := Next_Rep_Item (Aitem);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Now we need to preanalyze the expression to properly capture
|
|
-- the visibility in the visible part. The expression will not
|
|
-- be analyzed for real until the body is analyzed, but that is
|
|
-- at the end of the private part and has the wrong visibility.
|
|
|
|
Set_Parent (Exp, N);
|
|
Preanalyze_Spec_Expression (Exp, Standard_Boolean);
|
|
|
|
-- Build first two arguments for Check pragma
|
|
|
|
Assoc := New_List (
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression => Make_Identifier (Loc, Name_Invariant)),
|
|
Make_Pragma_Argument_Association (Loc, Expression => Exp));
|
|
|
|
-- Add message if present in Invariant pragma
|
|
|
|
if Present (Arg3) then
|
|
Str := Strval (Get_Pragma_Arg (Arg3));
|
|
|
|
-- If inherited case, and message starts "failed invariant",
|
|
-- change it to be "failed inherited invariant".
|
|
|
|
if Inherit then
|
|
String_To_Name_Buffer (Str);
|
|
|
|
if Name_Buffer (1 .. 16) = "failed invariant" then
|
|
Insert_Str_In_Name_Buffer ("inherited ", 8);
|
|
Str := String_From_Name_Buffer;
|
|
end if;
|
|
end if;
|
|
|
|
Append_To (Assoc,
|
|
Make_Pragma_Argument_Association (Loc,
|
|
Expression => Make_String_Literal (Loc, Str)));
|
|
end if;
|
|
|
|
-- Add Check pragma to list of statements
|
|
|
|
Append_To (Stmts,
|
|
Make_Pragma (Loc,
|
|
Pragma_Identifier =>
|
|
Make_Identifier (Loc, Name_Check),
|
|
Pragma_Argument_Associations => Assoc));
|
|
|
|
-- If Inherited case and option enabled, output info msg. Note
|
|
-- that we know this is a case of Invariant'Class.
|
|
|
|
if Inherit and Opt.List_Inherited_Aspects then
|
|
Error_Msg_Sloc := Sloc (Ritem);
|
|
Error_Msg_N
|
|
("?info: & inherits `Invariant''Class` aspect from #",
|
|
Typ);
|
|
end if;
|
|
end if;
|
|
|
|
<<Continue>>
|
|
Next_Rep_Item (Ritem);
|
|
end loop;
|
|
end Add_Invariants;
|
|
|
|
-- Start of processing for Build_Invariant_Procedure
|
|
|
|
begin
|
|
Stmts := No_List;
|
|
PDecl := Empty;
|
|
PBody := Empty;
|
|
Set_Etype (Object_Entity, Typ);
|
|
|
|
-- Add invariants for the current type
|
|
|
|
Add_Invariants (Typ, Inherit => False);
|
|
|
|
-- Add invariants for parent types
|
|
|
|
declare
|
|
Current_Typ : Entity_Id;
|
|
Parent_Typ : Entity_Id;
|
|
|
|
begin
|
|
Current_Typ := Typ;
|
|
loop
|
|
Parent_Typ := Etype (Current_Typ);
|
|
|
|
if Is_Private_Type (Parent_Typ)
|
|
and then Present (Full_View (Base_Type (Parent_Typ)))
|
|
then
|
|
Parent_Typ := Full_View (Base_Type (Parent_Typ));
|
|
end if;
|
|
|
|
exit when Parent_Typ = Current_Typ;
|
|
|
|
Current_Typ := Parent_Typ;
|
|
Add_Invariants (Current_Typ, Inherit => True);
|
|
end loop;
|
|
end;
|
|
|
|
-- Build the procedure if we generated at least one Check pragma
|
|
|
|
if Stmts /= No_List then
|
|
|
|
-- Build procedure declaration
|
|
|
|
SId :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (Typ), "Invariant"));
|
|
Set_Has_Invariants (SId);
|
|
Set_Invariant_Procedure (Typ, SId);
|
|
|
|
Spec :=
|
|
Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => SId,
|
|
Parameter_Specifications => New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Object_Entity,
|
|
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
|
|
|
|
PDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
|
|
|
|
-- Build procedure body
|
|
|
|
SId :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (Typ), "Invariant"));
|
|
|
|
Spec :=
|
|
Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => SId,
|
|
Parameter_Specifications => New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Object_Name),
|
|
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
|
|
|
|
PBody :=
|
|
Make_Subprogram_Body (Loc,
|
|
Specification => Spec,
|
|
Declarations => Empty_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => Stmts));
|
|
|
|
-- Insert procedure declaration and spec at the appropriate points.
|
|
-- Skip this if there are no private declarations (that's an error
|
|
-- that will be diagnosed elsewhere, and there is no point in having
|
|
-- an invariant procedure set if the full declaration is missing).
|
|
|
|
if Present (Private_Decls) then
|
|
|
|
-- The spec goes at the end of visible declarations, but they have
|
|
-- already been analyzed, so we need to explicitly do the analyze.
|
|
|
|
Append_To (Visible_Decls, PDecl);
|
|
Analyze (PDecl);
|
|
|
|
-- The body goes at the end of the private declarations, which we
|
|
-- have not analyzed yet, so we do not need to perform an explicit
|
|
-- analyze call. We skip this if there are no private declarations
|
|
-- (this is an error that will be caught elsewhere);
|
|
|
|
Append_To (Private_Decls, PBody);
|
|
end if;
|
|
end if;
|
|
end Build_Invariant_Procedure;
|
|
|
|
------------------------------
|
|
-- Build_Predicate_Function --
|
|
------------------------------
|
|
|
|
-- The procedure that is constructed here has the form
|
|
|
|
-- function typPredicate (Ixxx : typ) return Boolean is
|
|
-- begin
|
|
-- return
|
|
-- exp1 and then exp2 and then ...
|
|
-- and then typ1Predicate (typ1 (Ixxx))
|
|
-- and then typ2Predicate (typ2 (Ixxx))
|
|
-- and then ...;
|
|
-- end typPredicate;
|
|
|
|
-- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
|
|
-- this is the point at which these expressions get analyzed, providing the
|
|
-- required delay, and typ1, typ2, are entities from which predicates are
|
|
-- inherited. Note that we do NOT generate Check pragmas, that's because we
|
|
-- use this function even if checks are off, e.g. for membership tests.
|
|
|
|
procedure Build_Predicate_Function (Typ : Entity_Id; N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Spec : Node_Id;
|
|
SId : Entity_Id;
|
|
FDecl : Node_Id;
|
|
FBody : Node_Id;
|
|
|
|
Expr : Node_Id;
|
|
-- This is the expression for the return statement in the function. It
|
|
-- is build by connecting the component predicates with AND THEN.
|
|
|
|
procedure Add_Call (T : Entity_Id);
|
|
-- Includes a call to the predicate function for type T in Expr if T
|
|
-- has predicates and Predicate_Function (T) is non-empty.
|
|
|
|
procedure Add_Predicates;
|
|
-- Appends expressions for any Predicate pragmas in the rep item chain
|
|
-- Typ to Expr. Note that we look only at items for this exact entity.
|
|
-- Inheritance of predicates for the parent type is done by calling the
|
|
-- Predicate_Function of the parent type, using Add_Call above.
|
|
|
|
Object_Name : constant Name_Id := New_Internal_Name ('I');
|
|
-- Name for argument of Predicate procedure
|
|
|
|
Object_Entity : constant Entity_Id :=
|
|
Make_Defining_Identifier (Loc, Object_Name);
|
|
-- The entity for the spec entity for the argument
|
|
|
|
Dynamic_Predicate_Present : Boolean := False;
|
|
-- Set True if a dynamic predicate is present, results in the entire
|
|
-- predicate being considered dynamic even if it looks static
|
|
|
|
Static_Predicate_Present : Node_Id := Empty;
|
|
-- Set to N_Pragma node for a static predicate if one is encountered.
|
|
|
|
--------------
|
|
-- Add_Call --
|
|
--------------
|
|
|
|
procedure Add_Call (T : Entity_Id) is
|
|
Exp : Node_Id;
|
|
|
|
begin
|
|
if Present (T) and then Present (Predicate_Function (T)) then
|
|
Set_Has_Predicates (Typ);
|
|
|
|
-- Build the call to the predicate function of T
|
|
|
|
Exp :=
|
|
Make_Predicate_Call
|
|
(T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
|
|
|
|
-- Add call to evolving expression, using AND THEN if needed
|
|
|
|
if No (Expr) then
|
|
Expr := Exp;
|
|
else
|
|
Expr :=
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Relocate_Node (Expr),
|
|
Right_Opnd => Exp);
|
|
end if;
|
|
|
|
-- Output info message on inheritance if required. Note we do not
|
|
-- give this information for generic actual types, since it is
|
|
-- unwelcome noise in that case in instantiations. We also
|
|
-- generally suppress the message in instantiations, and also
|
|
-- if it involves internal names.
|
|
|
|
if Opt.List_Inherited_Aspects
|
|
and then not Is_Generic_Actual_Type (Typ)
|
|
and then Instantiation_Depth (Sloc (Typ)) = 0
|
|
and then not Is_Internal_Name (Chars (T))
|
|
and then not Is_Internal_Name (Chars (Typ))
|
|
then
|
|
Error_Msg_Sloc := Sloc (Predicate_Function (T));
|
|
Error_Msg_Node_2 := T;
|
|
Error_Msg_N ("?info: & inherits predicate from & #", Typ);
|
|
end if;
|
|
end if;
|
|
end Add_Call;
|
|
|
|
--------------------
|
|
-- Add_Predicates --
|
|
--------------------
|
|
|
|
procedure Add_Predicates is
|
|
Ritem : Node_Id;
|
|
Arg1 : Node_Id;
|
|
Arg2 : Node_Id;
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id);
|
|
-- Replace a single occurrence N of the subtype name with a reference
|
|
-- to the formal of the predicate function. N can be an identifier
|
|
-- referencing the subtype, or a selected component, representing an
|
|
-- appropriately qualified occurrence of the subtype name.
|
|
|
|
procedure Replace_Type_References is
|
|
new Replace_Type_References_Generic (Replace_Type_Reference);
|
|
-- Traverse an expression changing every occurrence of an identifier
|
|
-- whose name matches the name of the subtype with a reference to
|
|
-- the formal parameter of the predicate function.
|
|
|
|
----------------------------
|
|
-- Replace_Type_Reference --
|
|
----------------------------
|
|
|
|
procedure Replace_Type_Reference (N : Node_Id) is
|
|
begin
|
|
Rewrite (N, Make_Identifier (Loc, Object_Name));
|
|
Set_Entity (N, Object_Entity);
|
|
Set_Etype (N, Typ);
|
|
end Replace_Type_Reference;
|
|
|
|
-- Start of processing for Add_Predicates
|
|
|
|
begin
|
|
Ritem := First_Rep_Item (Typ);
|
|
while Present (Ritem) loop
|
|
if Nkind (Ritem) = N_Pragma
|
|
and then Pragma_Name (Ritem) = Name_Predicate
|
|
then
|
|
if Present (Corresponding_Aspect (Ritem)) then
|
|
case Chars (Identifier (Corresponding_Aspect (Ritem))) is
|
|
when Name_Dynamic_Predicate =>
|
|
Dynamic_Predicate_Present := True;
|
|
when Name_Static_Predicate =>
|
|
Static_Predicate_Present := Ritem;
|
|
when others =>
|
|
null;
|
|
end case;
|
|
end if;
|
|
|
|
-- Acquire arguments
|
|
|
|
Arg1 := First (Pragma_Argument_Associations (Ritem));
|
|
Arg2 := Next (Arg1);
|
|
|
|
Arg1 := Get_Pragma_Arg (Arg1);
|
|
Arg2 := Get_Pragma_Arg (Arg2);
|
|
|
|
-- See if this predicate pragma is for the current type or for
|
|
-- its full view. A predicate on a private completion is placed
|
|
-- on the partial view beause this is the visible entity that
|
|
-- is frozen.
|
|
|
|
if Entity (Arg1) = Typ
|
|
or else Full_View (Entity (Arg1)) = Typ
|
|
then
|
|
|
|
-- We have a match, this entry is for our subtype
|
|
|
|
-- We need to replace any occurrences of the name of the
|
|
-- type with references to the object.
|
|
|
|
Replace_Type_References (Arg2, Chars (Typ));
|
|
|
|
-- If this predicate comes from an aspect, find the aspect
|
|
-- specification, and replace the saved expression because
|
|
-- we need the subtype references replaced for the calls to
|
|
-- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
|
|
-- and Check_Aspect_At_End_Of_Declarations.
|
|
|
|
if From_Aspect_Specification (Ritem) then
|
|
declare
|
|
Aitem : Node_Id;
|
|
|
|
begin
|
|
-- Loop to find corresponding aspect, note that this
|
|
-- must be present given the pragma is marked delayed.
|
|
|
|
Aitem := Next_Rep_Item (Ritem);
|
|
loop
|
|
if Nkind (Aitem) = N_Aspect_Specification
|
|
and then Aspect_Rep_Item (Aitem) = Ritem
|
|
then
|
|
Set_Entity
|
|
(Identifier (Aitem), New_Copy_Tree (Arg2));
|
|
exit;
|
|
end if;
|
|
|
|
Aitem := Next_Rep_Item (Aitem);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
-- Now we can add the expression
|
|
|
|
if No (Expr) then
|
|
Expr := Relocate_Node (Arg2);
|
|
|
|
-- There already was a predicate, so add to it
|
|
|
|
else
|
|
Expr :=
|
|
Make_And_Then (Loc,
|
|
Left_Opnd => Relocate_Node (Expr),
|
|
Right_Opnd => Relocate_Node (Arg2));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next_Rep_Item (Ritem);
|
|
end loop;
|
|
end Add_Predicates;
|
|
|
|
-- Start of processing for Build_Predicate_Function
|
|
|
|
begin
|
|
-- Initialize for construction of statement list
|
|
|
|
Expr := Empty;
|
|
|
|
-- Return if already built or if type does not have predicates
|
|
|
|
if not Has_Predicates (Typ)
|
|
or else Present (Predicate_Function (Typ))
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Add Predicates for the current type
|
|
|
|
Add_Predicates;
|
|
|
|
-- Add predicates for ancestor if present
|
|
|
|
declare
|
|
Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
|
|
begin
|
|
if Present (Atyp) then
|
|
Add_Call (Atyp);
|
|
end if;
|
|
end;
|
|
|
|
-- If we have predicates, build the function
|
|
|
|
if Present (Expr) then
|
|
|
|
-- Build function declaration
|
|
|
|
pragma Assert (Has_Predicates (Typ));
|
|
SId :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (Typ), "Predicate"));
|
|
Set_Has_Predicates (SId);
|
|
Set_Predicate_Function (Typ, SId);
|
|
|
|
Spec :=
|
|
Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => SId,
|
|
Parameter_Specifications => New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Object_Entity,
|
|
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
|
|
Result_Definition =>
|
|
New_Occurrence_Of (Standard_Boolean, Loc));
|
|
|
|
FDecl := Make_Subprogram_Declaration (Loc, Specification => Spec);
|
|
|
|
-- Build function body
|
|
|
|
SId :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (Typ), "Predicate"));
|
|
|
|
Spec :=
|
|
Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => SId,
|
|
Parameter_Specifications => New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Object_Name),
|
|
Parameter_Type =>
|
|
New_Occurrence_Of (Typ, Loc))),
|
|
Result_Definition =>
|
|
New_Occurrence_Of (Standard_Boolean, Loc));
|
|
|
|
FBody :=
|
|
Make_Subprogram_Body (Loc,
|
|
Specification => Spec,
|
|
Declarations => Empty_List,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => New_List (
|
|
Make_Simple_Return_Statement (Loc,
|
|
Expression => Expr))));
|
|
|
|
-- Insert declaration before freeze node and body after
|
|
|
|
Insert_Before_And_Analyze (N, FDecl);
|
|
Insert_After_And_Analyze (N, FBody);
|
|
|
|
-- Deal with static predicate case
|
|
|
|
if Ekind_In (Typ, E_Enumeration_Subtype,
|
|
E_Modular_Integer_Subtype,
|
|
E_Signed_Integer_Subtype)
|
|
and then Is_Static_Subtype (Typ)
|
|
and then not Dynamic_Predicate_Present
|
|
then
|
|
Build_Static_Predicate (Typ, Expr, Object_Name);
|
|
|
|
if Present (Static_Predicate_Present)
|
|
and No (Static_Predicate (Typ))
|
|
then
|
|
Error_Msg_F
|
|
("expression does not have required form for "
|
|
& "static predicate",
|
|
Next (First (Pragma_Argument_Associations
|
|
(Static_Predicate_Present))));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Build_Predicate_Function;
|
|
|
|
----------------------------
|
|
-- Build_Static_Predicate --
|
|
----------------------------
|
|
|
|
procedure Build_Static_Predicate
|
|
(Typ : Entity_Id;
|
|
Expr : Node_Id;
|
|
Nam : Name_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Expr);
|
|
|
|
Non_Static : exception;
|
|
-- Raised if something non-static is found
|
|
|
|
Btyp : constant Entity_Id := Base_Type (Typ);
|
|
|
|
BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
|
|
BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
|
|
-- Low bound and high bound value of base type of Typ
|
|
|
|
TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
|
|
THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
|
|
-- Low bound and high bound values of static subtype Typ
|
|
|
|
type REnt is record
|
|
Lo, Hi : Uint;
|
|
end record;
|
|
-- One entry in a Rlist value, a single REnt (range entry) value
|
|
-- denotes one range from Lo to Hi. To represent a single value
|
|
-- range Lo = Hi = value.
|
|
|
|
type RList is array (Nat range <>) of REnt;
|
|
-- A list of ranges. The ranges are sorted in increasing order,
|
|
-- and are disjoint (there is a gap of at least one value between
|
|
-- each range in the table). A value is in the set of ranges in
|
|
-- Rlist if it lies within one of these ranges
|
|
|
|
False_Range : constant RList :=
|
|
RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
|
|
-- An empty set of ranges represents a range list that can never be
|
|
-- satisfied, since there are no ranges in which the value could lie,
|
|
-- so it does not lie in any of them. False_Range is a canonical value
|
|
-- for this empty set, but general processing should test for an Rlist
|
|
-- with length zero (see Is_False predicate), since other null ranges
|
|
-- may appear which must be treated as False.
|
|
|
|
True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
|
|
-- Range representing True, value must be in the base range
|
|
|
|
function "and" (Left, Right : RList) return RList;
|
|
-- And's together two range lists, returning a range list. This is
|
|
-- a set intersection operation.
|
|
|
|
function "or" (Left, Right : RList) return RList;
|
|
-- Or's together two range lists, returning a range list. This is a
|
|
-- set union operation.
|
|
|
|
function "not" (Right : RList) return RList;
|
|
-- Returns complement of a given range list, i.e. a range list
|
|
-- representing all the values in TLo .. THi that are not in the
|
|
-- input operand Right.
|
|
|
|
function Build_Val (V : Uint) return Node_Id;
|
|
-- Return an analyzed N_Identifier node referencing this value, suitable
|
|
-- for use as an entry in the Static_Predicate list. This node is typed
|
|
-- with the base type.
|
|
|
|
function Build_Range (Lo, Hi : Uint) return Node_Id;
|
|
-- Return an analyzed N_Range node referencing this range, suitable
|
|
-- for use as an entry in the Static_Predicate list. This node is typed
|
|
-- with the base type.
|
|
|
|
function Get_RList (Exp : Node_Id) return RList;
|
|
-- This is a recursive routine that converts the given expression into
|
|
-- a list of ranges, suitable for use in building the static predicate.
|
|
|
|
function Is_False (R : RList) return Boolean;
|
|
pragma Inline (Is_False);
|
|
-- Returns True if the given range list is empty, and thus represents
|
|
-- a False list of ranges that can never be satisfied.
|
|
|
|
function Is_True (R : RList) return Boolean;
|
|
-- Returns True if R trivially represents the True predicate by having
|
|
-- a single range from BLo to BHi.
|
|
|
|
function Is_Type_Ref (N : Node_Id) return Boolean;
|
|
pragma Inline (Is_Type_Ref);
|
|
-- Returns if True if N is a reference to the type for the predicate in
|
|
-- the expression (i.e. if it is an identifier whose Chars field matches
|
|
-- the Nam given in the call).
|
|
|
|
function Lo_Val (N : Node_Id) return Uint;
|
|
-- Given static expression or static range from a Static_Predicate list,
|
|
-- gets expression value or low bound of range.
|
|
|
|
function Hi_Val (N : Node_Id) return Uint;
|
|
-- Given static expression or static range from a Static_Predicate list,
|
|
-- gets expression value of high bound of range.
|
|
|
|
function Membership_Entry (N : Node_Id) return RList;
|
|
-- Given a single membership entry (range, value, or subtype), returns
|
|
-- the corresponding range list. Raises Static_Error if not static.
|
|
|
|
function Membership_Entries (N : Node_Id) return RList;
|
|
-- Given an element on an alternatives list of a membership operation,
|
|
-- returns the range list corresponding to this entry and all following
|
|
-- entries (i.e. returns the "or" of this list of values).
|
|
|
|
function Stat_Pred (Typ : Entity_Id) return RList;
|
|
-- Given a type, if it has a static predicate, then return the predicate
|
|
-- as a range list, otherwise raise Non_Static.
|
|
|
|
-----------
|
|
-- "and" --
|
|
-----------
|
|
|
|
function "and" (Left, Right : RList) return RList is
|
|
FEnt : REnt;
|
|
-- First range of result
|
|
|
|
SLeft : Nat := Left'First;
|
|
-- Start of rest of left entries
|
|
|
|
SRight : Nat := Right'First;
|
|
-- Start of rest of right entries
|
|
|
|
begin
|
|
-- If either range is True, return the other
|
|
|
|
if Is_True (Left) then
|
|
return Right;
|
|
elsif Is_True (Right) then
|
|
return Left;
|
|
end if;
|
|
|
|
-- If either range is False, return False
|
|
|
|
if Is_False (Left) or else Is_False (Right) then
|
|
return False_Range;
|
|
end if;
|
|
|
|
-- Loop to remove entries at start that are disjoint, and thus
|
|
-- just get discarded from the result entirely.
|
|
|
|
loop
|
|
-- If no operands left in either operand, result is false
|
|
|
|
if SLeft > Left'Last or else SRight > Right'Last then
|
|
return False_Range;
|
|
|
|
-- Discard first left operand entry if disjoint with right
|
|
|
|
elsif Left (SLeft).Hi < Right (SRight).Lo then
|
|
SLeft := SLeft + 1;
|
|
|
|
-- Discard first right operand entry if disjoint with left
|
|
|
|
elsif Right (SRight).Hi < Left (SLeft).Lo then
|
|
SRight := SRight + 1;
|
|
|
|
-- Otherwise we have an overlapping entry
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Now we have two non-null operands, and first entries overlap.
|
|
-- The first entry in the result will be the overlapping part of
|
|
-- these two entries.
|
|
|
|
FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
|
|
Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
|
|
|
|
-- Now we can remove the entry that ended at a lower value, since
|
|
-- its contribution is entirely contained in Fent.
|
|
|
|
if Left (SLeft).Hi <= Right (SRight).Hi then
|
|
SLeft := SLeft + 1;
|
|
else
|
|
SRight := SRight + 1;
|
|
end if;
|
|
|
|
-- Compute result by concatenating this first entry with the "and"
|
|
-- of the remaining parts of the left and right operands. Note that
|
|
-- if either of these is empty, "and" will yield empty, so that we
|
|
-- will end up with just Fent, which is what we want in that case.
|
|
|
|
return
|
|
FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
|
|
end "and";
|
|
|
|
-----------
|
|
-- "not" --
|
|
-----------
|
|
|
|
function "not" (Right : RList) return RList is
|
|
begin
|
|
-- Return True if False range
|
|
|
|
if Is_False (Right) then
|
|
return True_Range;
|
|
end if;
|
|
|
|
-- Return False if True range
|
|
|
|
if Is_True (Right) then
|
|
return False_Range;
|
|
end if;
|
|
|
|
-- Here if not trivial case
|
|
|
|
declare
|
|
Result : RList (1 .. Right'Length + 1);
|
|
-- May need one more entry for gap at beginning and end
|
|
|
|
Count : Nat := 0;
|
|
-- Number of entries stored in Result
|
|
|
|
begin
|
|
-- Gap at start
|
|
|
|
if Right (Right'First).Lo > TLo then
|
|
Count := Count + 1;
|
|
Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
|
|
end if;
|
|
|
|
-- Gaps between ranges
|
|
|
|
for J in Right'First .. Right'Last - 1 loop
|
|
Count := Count + 1;
|
|
Result (Count) :=
|
|
REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
|
|
end loop;
|
|
|
|
-- Gap at end
|
|
|
|
if Right (Right'Last).Hi < THi then
|
|
Count := Count + 1;
|
|
Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
|
|
end if;
|
|
|
|
return Result (1 .. Count);
|
|
end;
|
|
end "not";
|
|
|
|
----------
|
|
-- "or" --
|
|
----------
|
|
|
|
function "or" (Left, Right : RList) return RList is
|
|
FEnt : REnt;
|
|
-- First range of result
|
|
|
|
SLeft : Nat := Left'First;
|
|
-- Start of rest of left entries
|
|
|
|
SRight : Nat := Right'First;
|
|
-- Start of rest of right entries
|
|
|
|
begin
|
|
-- If either range is True, return True
|
|
|
|
if Is_True (Left) or else Is_True (Right) then
|
|
return True_Range;
|
|
end if;
|
|
|
|
-- If either range is False (empty), return the other
|
|
|
|
if Is_False (Left) then
|
|
return Right;
|
|
elsif Is_False (Right) then
|
|
return Left;
|
|
end if;
|
|
|
|
-- Initialize result first entry from left or right operand
|
|
-- depending on which starts with the lower range.
|
|
|
|
if Left (SLeft).Lo < Right (SRight).Lo then
|
|
FEnt := Left (SLeft);
|
|
SLeft := SLeft + 1;
|
|
else
|
|
FEnt := Right (SRight);
|
|
SRight := SRight + 1;
|
|
end if;
|
|
|
|
-- This loop eats ranges from left and right operands that
|
|
-- are contiguous with the first range we are gathering.
|
|
|
|
loop
|
|
-- Eat first entry in left operand if contiguous or
|
|
-- overlapped by gathered first operand of result.
|
|
|
|
if SLeft <= Left'Last
|
|
and then Left (SLeft).Lo <= FEnt.Hi + 1
|
|
then
|
|
FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
|
|
SLeft := SLeft + 1;
|
|
|
|
-- Eat first entry in right operand if contiguous or
|
|
-- overlapped by gathered right operand of result.
|
|
|
|
elsif SRight <= Right'Last
|
|
and then Right (SRight).Lo <= FEnt.Hi + 1
|
|
then
|
|
FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
|
|
SRight := SRight + 1;
|
|
|
|
-- All done if no more entries to eat!
|
|
|
|
else
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Obtain result as the first entry we just computed, concatenated
|
|
-- to the "or" of the remaining results (if one operand is empty,
|
|
-- this will just concatenate with the other
|
|
|
|
return
|
|
FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
|
|
end "or";
|
|
|
|
-----------------
|
|
-- Build_Range --
|
|
-----------------
|
|
|
|
function Build_Range (Lo, Hi : Uint) return Node_Id is
|
|
Result : Node_Id;
|
|
begin
|
|
if Lo = Hi then
|
|
return Build_Val (Hi);
|
|
else
|
|
Result :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Build_Val (Lo),
|
|
High_Bound => Build_Val (Hi));
|
|
Set_Etype (Result, Btyp);
|
|
Set_Analyzed (Result);
|
|
return Result;
|
|
end if;
|
|
end Build_Range;
|
|
|
|
---------------
|
|
-- Build_Val --
|
|
---------------
|
|
|
|
function Build_Val (V : Uint) return Node_Id is
|
|
Result : Node_Id;
|
|
|
|
begin
|
|
if Is_Enumeration_Type (Typ) then
|
|
Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
|
|
else
|
|
Result := Make_Integer_Literal (Loc, V);
|
|
end if;
|
|
|
|
Set_Etype (Result, Btyp);
|
|
Set_Is_Static_Expression (Result);
|
|
Set_Analyzed (Result);
|
|
return Result;
|
|
end Build_Val;
|
|
|
|
---------------
|
|
-- Get_RList --
|
|
---------------
|
|
|
|
function Get_RList (Exp : Node_Id) return RList is
|
|
Op : Node_Kind;
|
|
Val : Uint;
|
|
|
|
begin
|
|
-- Static expression can only be true or false
|
|
|
|
if Is_OK_Static_Expression (Exp) then
|
|
|
|
-- For False
|
|
|
|
if Expr_Value (Exp) = 0 then
|
|
return False_Range;
|
|
else
|
|
return True_Range;
|
|
end if;
|
|
end if;
|
|
|
|
-- Otherwise test node type
|
|
|
|
Op := Nkind (Exp);
|
|
|
|
case Op is
|
|
|
|
-- And
|
|
|
|
when N_Op_And | N_And_Then =>
|
|
return Get_RList (Left_Opnd (Exp))
|
|
and
|
|
Get_RList (Right_Opnd (Exp));
|
|
|
|
-- Or
|
|
|
|
when N_Op_Or | N_Or_Else =>
|
|
return Get_RList (Left_Opnd (Exp))
|
|
or
|
|
Get_RList (Right_Opnd (Exp));
|
|
|
|
-- Not
|
|
|
|
when N_Op_Not =>
|
|
return not Get_RList (Right_Opnd (Exp));
|
|
|
|
-- Comparisons of type with static value
|
|
|
|
when N_Op_Compare =>
|
|
-- Type is left operand
|
|
|
|
if Is_Type_Ref (Left_Opnd (Exp))
|
|
and then Is_OK_Static_Expression (Right_Opnd (Exp))
|
|
then
|
|
Val := Expr_Value (Right_Opnd (Exp));
|
|
|
|
-- Typ is right operand
|
|
|
|
elsif Is_Type_Ref (Right_Opnd (Exp))
|
|
and then Is_OK_Static_Expression (Left_Opnd (Exp))
|
|
then
|
|
Val := Expr_Value (Left_Opnd (Exp));
|
|
|
|
-- Invert sense of comparison
|
|
|
|
case Op is
|
|
when N_Op_Gt => Op := N_Op_Lt;
|
|
when N_Op_Lt => Op := N_Op_Gt;
|
|
when N_Op_Ge => Op := N_Op_Le;
|
|
when N_Op_Le => Op := N_Op_Ge;
|
|
when others => null;
|
|
end case;
|
|
|
|
-- Other cases are non-static
|
|
|
|
else
|
|
raise Non_Static;
|
|
end if;
|
|
|
|
-- Construct range according to comparison operation
|
|
|
|
case Op is
|
|
when N_Op_Eq =>
|
|
return RList'(1 => REnt'(Val, Val));
|
|
|
|
when N_Op_Ge =>
|
|
return RList'(1 => REnt'(Val, BHi));
|
|
|
|
when N_Op_Gt =>
|
|
return RList'(1 => REnt'(Val + 1, BHi));
|
|
|
|
when N_Op_Le =>
|
|
return RList'(1 => REnt'(BLo, Val));
|
|
|
|
when N_Op_Lt =>
|
|
return RList'(1 => REnt'(BLo, Val - 1));
|
|
|
|
when N_Op_Ne =>
|
|
return RList'(REnt'(BLo, Val - 1),
|
|
REnt'(Val + 1, BHi));
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
-- Membership (IN)
|
|
|
|
when N_In =>
|
|
if not Is_Type_Ref (Left_Opnd (Exp)) then
|
|
raise Non_Static;
|
|
end if;
|
|
|
|
if Present (Right_Opnd (Exp)) then
|
|
return Membership_Entry (Right_Opnd (Exp));
|
|
else
|
|
return Membership_Entries (First (Alternatives (Exp)));
|
|
end if;
|
|
|
|
-- Negative membership (NOT IN)
|
|
|
|
when N_Not_In =>
|
|
if not Is_Type_Ref (Left_Opnd (Exp)) then
|
|
raise Non_Static;
|
|
end if;
|
|
|
|
if Present (Right_Opnd (Exp)) then
|
|
return not Membership_Entry (Right_Opnd (Exp));
|
|
else
|
|
return not Membership_Entries (First (Alternatives (Exp)));
|
|
end if;
|
|
|
|
-- Function call, may be call to static predicate
|
|
|
|
when N_Function_Call =>
|
|
if Is_Entity_Name (Name (Exp)) then
|
|
declare
|
|
Ent : constant Entity_Id := Entity (Name (Exp));
|
|
begin
|
|
if Has_Predicates (Ent) then
|
|
return Stat_Pred (Etype (First_Formal (Ent)));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Other function call cases are non-static
|
|
|
|
raise Non_Static;
|
|
|
|
-- Qualified expression, dig out the expression
|
|
|
|
when N_Qualified_Expression =>
|
|
return Get_RList (Expression (Exp));
|
|
|
|
-- Xor operator
|
|
|
|
when N_Op_Xor =>
|
|
return (Get_RList (Left_Opnd (Exp))
|
|
and not Get_RList (Right_Opnd (Exp)))
|
|
or (Get_RList (Right_Opnd (Exp))
|
|
and not Get_RList (Left_Opnd (Exp)));
|
|
|
|
-- Any other node type is non-static
|
|
|
|
when others =>
|
|
raise Non_Static;
|
|
end case;
|
|
end Get_RList;
|
|
|
|
------------
|
|
-- Hi_Val --
|
|
------------
|
|
|
|
function Hi_Val (N : Node_Id) return Uint is
|
|
begin
|
|
if Is_Static_Expression (N) then
|
|
return Expr_Value (N);
|
|
else
|
|
pragma Assert (Nkind (N) = N_Range);
|
|
return Expr_Value (High_Bound (N));
|
|
end if;
|
|
end Hi_Val;
|
|
|
|
--------------
|
|
-- Is_False --
|
|
--------------
|
|
|
|
function Is_False (R : RList) return Boolean is
|
|
begin
|
|
return R'Length = 0;
|
|
end Is_False;
|
|
|
|
-------------
|
|
-- Is_True --
|
|
-------------
|
|
|
|
function Is_True (R : RList) return Boolean is
|
|
begin
|
|
return R'Length = 1
|
|
and then R (R'First).Lo = BLo
|
|
and then R (R'First).Hi = BHi;
|
|
end Is_True;
|
|
|
|
-----------------
|
|
-- Is_Type_Ref --
|
|
-----------------
|
|
|
|
function Is_Type_Ref (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Identifier and then Chars (N) = Nam;
|
|
end Is_Type_Ref;
|
|
|
|
------------
|
|
-- Lo_Val --
|
|
------------
|
|
|
|
function Lo_Val (N : Node_Id) return Uint is
|
|
begin
|
|
if Is_Static_Expression (N) then
|
|
return Expr_Value (N);
|
|
else
|
|
pragma Assert (Nkind (N) = N_Range);
|
|
return Expr_Value (Low_Bound (N));
|
|
end if;
|
|
end Lo_Val;
|
|
|
|
------------------------
|
|
-- Membership_Entries --
|
|
------------------------
|
|
|
|
function Membership_Entries (N : Node_Id) return RList is
|
|
begin
|
|
if No (Next (N)) then
|
|
return Membership_Entry (N);
|
|
else
|
|
return Membership_Entry (N) or Membership_Entries (Next (N));
|
|
end if;
|
|
end Membership_Entries;
|
|
|
|
----------------------
|
|
-- Membership_Entry --
|
|
----------------------
|
|
|
|
function Membership_Entry (N : Node_Id) return RList is
|
|
Val : Uint;
|
|
SLo : Uint;
|
|
SHi : Uint;
|
|
|
|
begin
|
|
-- Range case
|
|
|
|
if Nkind (N) = N_Range then
|
|
if not Is_Static_Expression (Low_Bound (N))
|
|
or else
|
|
not Is_Static_Expression (High_Bound (N))
|
|
then
|
|
raise Non_Static;
|
|
else
|
|
SLo := Expr_Value (Low_Bound (N));
|
|
SHi := Expr_Value (High_Bound (N));
|
|
return RList'(1 => REnt'(SLo, SHi));
|
|
end if;
|
|
|
|
-- Static expression case
|
|
|
|
elsif Is_Static_Expression (N) then
|
|
Val := Expr_Value (N);
|
|
return RList'(1 => REnt'(Val, Val));
|
|
|
|
-- Identifier (other than static expression) case
|
|
|
|
else pragma Assert (Nkind (N) = N_Identifier);
|
|
|
|
-- Type case
|
|
|
|
if Is_Type (Entity (N)) then
|
|
|
|
-- If type has predicates, process them
|
|
|
|
if Has_Predicates (Entity (N)) then
|
|
return Stat_Pred (Entity (N));
|
|
|
|
-- For static subtype without predicates, get range
|
|
|
|
elsif Is_Static_Subtype (Entity (N)) then
|
|
SLo := Expr_Value (Type_Low_Bound (Entity (N)));
|
|
SHi := Expr_Value (Type_High_Bound (Entity (N)));
|
|
return RList'(1 => REnt'(SLo, SHi));
|
|
|
|
-- Any other type makes us non-static
|
|
|
|
else
|
|
raise Non_Static;
|
|
end if;
|
|
|
|
-- Any other kind of identifier in predicate (e.g. a non-static
|
|
-- expression value) means this is not a static predicate.
|
|
|
|
else
|
|
raise Non_Static;
|
|
end if;
|
|
end if;
|
|
end Membership_Entry;
|
|
|
|
---------------
|
|
-- Stat_Pred --
|
|
---------------
|
|
|
|
function Stat_Pred (Typ : Entity_Id) return RList is
|
|
begin
|
|
-- Not static if type does not have static predicates
|
|
|
|
if not Has_Predicates (Typ)
|
|
or else No (Static_Predicate (Typ))
|
|
then
|
|
raise Non_Static;
|
|
end if;
|
|
|
|
-- Otherwise we convert the predicate list to a range list
|
|
|
|
declare
|
|
Result : RList (1 .. List_Length (Static_Predicate (Typ)));
|
|
P : Node_Id;
|
|
|
|
begin
|
|
P := First (Static_Predicate (Typ));
|
|
for J in Result'Range loop
|
|
Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
|
|
Next (P);
|
|
end loop;
|
|
|
|
return Result;
|
|
end;
|
|
end Stat_Pred;
|
|
|
|
-- Start of processing for Build_Static_Predicate
|
|
|
|
begin
|
|
-- Now analyze the expression to see if it is a static predicate
|
|
|
|
declare
|
|
Ranges : constant RList := Get_RList (Expr);
|
|
-- Range list from expression if it is static
|
|
|
|
Plist : List_Id;
|
|
|
|
begin
|
|
-- Convert range list into a form for the static predicate. In the
|
|
-- Ranges array, we just have raw ranges, these must be converted
|
|
-- to properly typed and analyzed static expressions or range nodes.
|
|
|
|
-- Note: here we limit ranges to the ranges of the subtype, so that
|
|
-- a predicate is always false for values outside the subtype. That
|
|
-- seems fine, such values are invalid anyway, and considering them
|
|
-- to fail the predicate seems allowed and friendly, and furthermore
|
|
-- simplifies processing for case statements and loops.
|
|
|
|
Plist := New_List;
|
|
|
|
for J in Ranges'Range loop
|
|
declare
|
|
Lo : Uint := Ranges (J).Lo;
|
|
Hi : Uint := Ranges (J).Hi;
|
|
|
|
begin
|
|
-- Ignore completely out of range entry
|
|
|
|
if Hi < TLo or else Lo > THi then
|
|
null;
|
|
|
|
-- Otherwise process entry
|
|
|
|
else
|
|
-- Adjust out of range value to subtype range
|
|
|
|
if Lo < TLo then
|
|
Lo := TLo;
|
|
end if;
|
|
|
|
if Hi > THi then
|
|
Hi := THi;
|
|
end if;
|
|
|
|
-- Convert range into required form
|
|
|
|
if Lo = Hi then
|
|
Append_To (Plist, Build_Val (Lo));
|
|
else
|
|
Append_To (Plist, Build_Range (Lo, Hi));
|
|
end if;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
-- Processing was successful and all entries were static, so now we
|
|
-- can store the result as the predicate list.
|
|
|
|
Set_Static_Predicate (Typ, Plist);
|
|
|
|
-- The processing for static predicates put the expression into
|
|
-- canonical form as a series of ranges. It also eliminated
|
|
-- duplicates and collapsed and combined ranges. We might as well
|
|
-- replace the alternatives list of the right operand of the
|
|
-- membership test with the static predicate list, which will
|
|
-- usually be more efficient.
|
|
|
|
declare
|
|
New_Alts : constant List_Id := New_List;
|
|
Old_Node : Node_Id;
|
|
New_Node : Node_Id;
|
|
|
|
begin
|
|
Old_Node := First (Plist);
|
|
while Present (Old_Node) loop
|
|
New_Node := New_Copy (Old_Node);
|
|
|
|
if Nkind (New_Node) = N_Range then
|
|
Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
|
|
Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
|
|
end if;
|
|
|
|
Append_To (New_Alts, New_Node);
|
|
Next (Old_Node);
|
|
end loop;
|
|
|
|
-- If empty list, replace by False
|
|
|
|
if Is_Empty_List (New_Alts) then
|
|
Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
|
|
|
|
-- Else replace by set membership test
|
|
|
|
else
|
|
Rewrite (Expr,
|
|
Make_In (Loc,
|
|
Left_Opnd => Make_Identifier (Loc, Nam),
|
|
Right_Opnd => Empty,
|
|
Alternatives => New_Alts));
|
|
|
|
-- Resolve new expression in function context
|
|
|
|
Install_Formals (Predicate_Function (Typ));
|
|
Push_Scope (Predicate_Function (Typ));
|
|
Analyze_And_Resolve (Expr, Standard_Boolean);
|
|
Pop_Scope;
|
|
end if;
|
|
end;
|
|
end;
|
|
|
|
-- If non-static, return doing nothing
|
|
|
|
exception
|
|
when Non_Static =>
|
|
return;
|
|
end Build_Static_Predicate;
|
|
|
|
-----------------------------------------
|
|
-- Check_Aspect_At_End_Of_Declarations --
|
|
-----------------------------------------
|
|
|
|
procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
|
|
Ent : constant Entity_Id := Entity (ASN);
|
|
Ident : constant Node_Id := Identifier (ASN);
|
|
|
|
Freeze_Expr : constant Node_Id := Expression (ASN);
|
|
-- Expression from call to Check_Aspect_At_Freeze_Point
|
|
|
|
End_Decl_Expr : constant Node_Id := Entity (Ident);
|
|
-- Expression to be analyzed at end of declarations
|
|
|
|
T : constant Entity_Id := Etype (Freeze_Expr);
|
|
-- Type required for preanalyze call
|
|
|
|
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
|
|
|
|
Err : Boolean;
|
|
-- Set False if error
|
|
|
|
-- On entry to this procedure, Entity (Ident) contains a copy of the
|
|
-- original expression from the aspect, saved for this purpose, and
|
|
-- but Expression (Ident) is a preanalyzed copy of the expression,
|
|
-- preanalyzed just after the freeze point.
|
|
|
|
begin
|
|
-- Case of stream attributes, just have to compare entities
|
|
|
|
if A_Id = Aspect_Input or else
|
|
A_Id = Aspect_Output or else
|
|
A_Id = Aspect_Read or else
|
|
A_Id = Aspect_Write
|
|
then
|
|
Analyze (End_Decl_Expr);
|
|
Err := Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
|
|
|
|
elsif A_Id = Aspect_Variable_Indexing or else
|
|
A_Id = Aspect_Constant_Indexing or else
|
|
A_Id = Aspect_Default_Iterator or else
|
|
A_Id = Aspect_Iterator_Element
|
|
then
|
|
-- Make type unfrozen before analysis, to prevent spurious errors
|
|
-- about late attributes.
|
|
|
|
Set_Is_Frozen (Ent, False);
|
|
Analyze (End_Decl_Expr);
|
|
Analyze (Aspect_Rep_Item (ASN));
|
|
Set_Is_Frozen (Ent, True);
|
|
|
|
-- If the end of declarations comes before any other freeze
|
|
-- point, the Freeze_Expr is not analyzed: no check needed.
|
|
|
|
Err :=
|
|
Analyzed (Freeze_Expr)
|
|
and then not In_Instance
|
|
and then Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
|
|
|
|
-- All other cases
|
|
|
|
else
|
|
Preanalyze_Spec_Expression (End_Decl_Expr, T);
|
|
Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
|
|
end if;
|
|
|
|
-- Output error message if error
|
|
|
|
if Err then
|
|
Error_Msg_NE
|
|
("visibility of aspect for& changes after freeze point",
|
|
ASN, Ent);
|
|
Error_Msg_NE
|
|
("?info: & is frozen here, aspects evaluated at this point",
|
|
Freeze_Node (Ent), Ent);
|
|
end if;
|
|
end Check_Aspect_At_End_Of_Declarations;
|
|
|
|
----------------------------------
|
|
-- Check_Aspect_At_Freeze_Point --
|
|
----------------------------------
|
|
|
|
procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
|
|
Ident : constant Node_Id := Identifier (ASN);
|
|
-- Identifier (use Entity field to save expression)
|
|
|
|
T : Entity_Id;
|
|
-- Type required for preanalyze call
|
|
|
|
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
|
|
|
|
begin
|
|
-- On entry to this procedure, Entity (Ident) contains a copy of the
|
|
-- original expression from the aspect, saved for this purpose.
|
|
|
|
-- On exit from this procedure Entity (Ident) is unchanged, still
|
|
-- containing that copy, but Expression (Ident) is a preanalyzed copy
|
|
-- of the expression, preanalyzed just after the freeze point.
|
|
|
|
-- Make a copy of the expression to be preanalyed
|
|
|
|
Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
|
|
|
|
-- Find type for preanalyze call
|
|
|
|
case A_Id is
|
|
|
|
-- No_Aspect should be impossible
|
|
|
|
when No_Aspect =>
|
|
raise Program_Error;
|
|
|
|
-- Library unit aspects should be impossible (never delayed)
|
|
|
|
when Library_Unit_Aspects =>
|
|
raise Program_Error;
|
|
|
|
-- Aspects taking an optional boolean argument. Should be impossible
|
|
-- since these are never delayed.
|
|
|
|
when Boolean_Aspects =>
|
|
raise Program_Error;
|
|
|
|
-- Test_Case aspect applies to entries and subprograms, hence should
|
|
-- never be delayed.
|
|
|
|
when Aspect_Test_Case =>
|
|
raise Program_Error;
|
|
|
|
when Aspect_Attach_Handler =>
|
|
T := RTE (RE_Interrupt_ID);
|
|
|
|
-- Default_Value is resolved with the type entity in question
|
|
|
|
when Aspect_Default_Value =>
|
|
T := Entity (ASN);
|
|
|
|
-- Default_Component_Value is resolved with the component type
|
|
|
|
when Aspect_Default_Component_Value =>
|
|
T := Component_Type (Entity (ASN));
|
|
|
|
-- Aspects corresponding to attribute definition clauses
|
|
|
|
when Aspect_Address =>
|
|
T := RTE (RE_Address);
|
|
|
|
when Aspect_Bit_Order =>
|
|
T := RTE (RE_Bit_Order);
|
|
|
|
when Aspect_CPU =>
|
|
T := RTE (RE_CPU_Range);
|
|
|
|
when Aspect_Dispatching_Domain =>
|
|
T := RTE (RE_Dispatching_Domain);
|
|
|
|
when Aspect_External_Tag =>
|
|
T := Standard_String;
|
|
|
|
when Aspect_Priority | Aspect_Interrupt_Priority =>
|
|
T := Standard_Integer;
|
|
|
|
when Aspect_Small =>
|
|
T := Universal_Real;
|
|
|
|
when Aspect_Storage_Pool =>
|
|
T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
|
|
|
|
when Aspect_Alignment |
|
|
Aspect_Component_Size |
|
|
Aspect_Machine_Radix |
|
|
Aspect_Object_Size |
|
|
Aspect_Size |
|
|
Aspect_Storage_Size |
|
|
Aspect_Stream_Size |
|
|
Aspect_Value_Size =>
|
|
T := Any_Integer;
|
|
|
|
-- Stream attribute. Special case, the expression is just an entity
|
|
-- that does not need any resolution, so just analyze.
|
|
|
|
when Aspect_Input |
|
|
Aspect_Output |
|
|
Aspect_Read |
|
|
Aspect_Write =>
|
|
Analyze (Expression (ASN));
|
|
return;
|
|
|
|
-- Same for Iterator aspects, where the expression is a function
|
|
-- name. Legality rules are checked separately.
|
|
|
|
when Aspect_Constant_Indexing |
|
|
Aspect_Default_Iterator |
|
|
Aspect_Iterator_Element |
|
|
Aspect_Implicit_Dereference |
|
|
Aspect_Variable_Indexing =>
|
|
Analyze (Expression (ASN));
|
|
return;
|
|
|
|
-- Suppress/Unsuppress/Warnings should never be delayed
|
|
|
|
when Aspect_Suppress |
|
|
Aspect_Unsuppress |
|
|
Aspect_Warnings =>
|
|
raise Program_Error;
|
|
|
|
-- Pre/Post/Invariant/Predicate take boolean expressions
|
|
|
|
when Aspect_Dynamic_Predicate |
|
|
Aspect_Invariant |
|
|
Aspect_Pre |
|
|
Aspect_Precondition |
|
|
Aspect_Post |
|
|
Aspect_Postcondition |
|
|
Aspect_Predicate |
|
|
Aspect_Static_Predicate |
|
|
Aspect_Type_Invariant =>
|
|
T := Standard_Boolean;
|
|
end case;
|
|
|
|
-- Do the preanalyze call
|
|
|
|
Preanalyze_Spec_Expression (Expression (ASN), T);
|
|
end Check_Aspect_At_Freeze_Point;
|
|
|
|
-----------------------------------
|
|
-- Check_Constant_Address_Clause --
|
|
-----------------------------------
|
|
|
|
procedure Check_Constant_Address_Clause
|
|
(Expr : Node_Id;
|
|
U_Ent : Entity_Id)
|
|
is
|
|
procedure Check_At_Constant_Address (Nod : Node_Id);
|
|
-- Checks that the given node N represents a name whose 'Address is
|
|
-- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
|
|
-- address value is the same at the point of declaration of U_Ent and at
|
|
-- the time of elaboration of the address clause.
|
|
|
|
procedure Check_Expr_Constants (Nod : Node_Id);
|
|
-- Checks that Nod meets the requirements for a constant address clause
|
|
-- in the sense of the enclosing procedure.
|
|
|
|
procedure Check_List_Constants (Lst : List_Id);
|
|
-- Check that all elements of list Lst meet the requirements for a
|
|
-- constant address clause in the sense of the enclosing procedure.
|
|
|
|
-------------------------------
|
|
-- Check_At_Constant_Address --
|
|
-------------------------------
|
|
|
|
procedure Check_At_Constant_Address (Nod : Node_Id) is
|
|
begin
|
|
if Is_Entity_Name (Nod) then
|
|
if Present (Address_Clause (Entity ((Nod)))) then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_NE
|
|
("address for& cannot" &
|
|
" depend on another address clause! (RM 13.1(22))!",
|
|
Nod, U_Ent);
|
|
|
|
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
|
|
and then Sloc (U_Ent) < Sloc (Entity (Nod))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_Node_2 := U_Ent;
|
|
Error_Msg_NE
|
|
("\& must be defined before & (RM 13.1(22))!",
|
|
Nod, Entity (Nod));
|
|
end if;
|
|
|
|
elsif Nkind (Nod) = N_Selected_Component then
|
|
declare
|
|
T : constant Entity_Id := Etype (Prefix (Nod));
|
|
|
|
begin
|
|
if (Is_Record_Type (T)
|
|
and then Has_Discriminants (T))
|
|
or else
|
|
(Is_Access_Type (T)
|
|
and then Is_Record_Type (Designated_Type (T))
|
|
and then Has_Discriminants (Designated_Type (T)))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_N
|
|
("\address cannot depend on component" &
|
|
" of discriminated record (RM 13.1(22))!",
|
|
Nod);
|
|
else
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
end if;
|
|
end;
|
|
|
|
elsif Nkind (Nod) = N_Indexed_Component then
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
else
|
|
Check_Expr_Constants (Nod);
|
|
end if;
|
|
end Check_At_Constant_Address;
|
|
|
|
--------------------------
|
|
-- Check_Expr_Constants --
|
|
--------------------------
|
|
|
|
procedure Check_Expr_Constants (Nod : Node_Id) is
|
|
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
|
|
Ent : Entity_Id := Empty;
|
|
|
|
begin
|
|
if Nkind (Nod) in N_Has_Etype
|
|
and then Etype (Nod) = Any_Type
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
case Nkind (Nod) is
|
|
when N_Empty | N_Error =>
|
|
return;
|
|
|
|
when N_Identifier | N_Expanded_Name =>
|
|
Ent := Entity (Nod);
|
|
|
|
-- We need to look at the original node if it is different
|
|
-- from the node, since we may have rewritten things and
|
|
-- substituted an identifier representing the rewrite.
|
|
|
|
if Original_Node (Nod) /= Nod then
|
|
Check_Expr_Constants (Original_Node (Nod));
|
|
|
|
-- If the node is an object declaration without initial
|
|
-- value, some code has been expanded, and the expression
|
|
-- is not constant, even if the constituents might be
|
|
-- acceptable, as in A'Address + offset.
|
|
|
|
if Ekind (Ent) = E_Variable
|
|
and then
|
|
Nkind (Declaration_Node (Ent)) = N_Object_Declaration
|
|
and then
|
|
No (Expression (Declaration_Node (Ent)))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
-- If entity is constant, it may be the result of expanding
|
|
-- a check. We must verify that its declaration appears
|
|
-- before the object in question, else we also reject the
|
|
-- address clause.
|
|
|
|
elsif Ekind (Ent) = E_Constant
|
|
and then In_Same_Source_Unit (Ent, U_Ent)
|
|
and then Sloc (Ent) > Loc_U_Ent
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise look at the identifier and see if it is OK
|
|
|
|
if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
|
|
or else Is_Type (Ent)
|
|
then
|
|
return;
|
|
|
|
elsif
|
|
Ekind (Ent) = E_Constant
|
|
or else
|
|
Ekind (Ent) = E_In_Parameter
|
|
then
|
|
-- This is the case where we must have Ent defined before
|
|
-- U_Ent. Clearly if they are in different units this
|
|
-- requirement is met since the unit containing Ent is
|
|
-- already processed.
|
|
|
|
if not In_Same_Source_Unit (Ent, U_Ent) then
|
|
return;
|
|
|
|
-- Otherwise location of Ent must be before the location
|
|
-- of U_Ent, that's what prior defined means.
|
|
|
|
elsif Sloc (Ent) < Loc_U_Ent then
|
|
return;
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_Node_2 := U_Ent;
|
|
Error_Msg_NE
|
|
("\& must be defined before & (RM 13.1(22))!",
|
|
Nod, Ent);
|
|
end if;
|
|
|
|
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Check_Expr_Constants (Original_Node (Nod));
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
if Comes_From_Source (Ent) then
|
|
Error_Msg_NE
|
|
("\reference to variable& not allowed"
|
|
& " (RM 13.1(22))!", Nod, Ent);
|
|
else
|
|
Error_Msg_N
|
|
("non-static expression not allowed"
|
|
& " (RM 13.1(22))!", Nod);
|
|
end if;
|
|
end if;
|
|
|
|
when N_Integer_Literal =>
|
|
|
|
-- If this is a rewritten unchecked conversion, in a system
|
|
-- where Address is an integer type, always use the base type
|
|
-- for a literal value. This is user-friendly and prevents
|
|
-- order-of-elaboration issues with instances of unchecked
|
|
-- conversion.
|
|
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
|
end if;
|
|
|
|
when N_Real_Literal |
|
|
N_String_Literal |
|
|
N_Character_Literal =>
|
|
return;
|
|
|
|
when N_Range =>
|
|
Check_Expr_Constants (Low_Bound (Nod));
|
|
Check_Expr_Constants (High_Bound (Nod));
|
|
|
|
when N_Explicit_Dereference =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
|
|
when N_Indexed_Component =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Slice =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_Expr_Constants (Discrete_Range (Nod));
|
|
|
|
when N_Selected_Component =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
|
|
when N_Attribute_Reference =>
|
|
if Attribute_Name (Nod) = Name_Address
|
|
or else
|
|
Attribute_Name (Nod) = Name_Access
|
|
or else
|
|
Attribute_Name (Nod) = Name_Unchecked_Access
|
|
or else
|
|
Attribute_Name (Nod) = Name_Unrestricted_Access
|
|
then
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
|
|
else
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
end if;
|
|
|
|
when N_Aggregate =>
|
|
Check_List_Constants (Component_Associations (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Component_Association =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
when N_Extension_Aggregate =>
|
|
Check_Expr_Constants (Ancestor_Part (Nod));
|
|
Check_List_Constants (Component_Associations (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Null =>
|
|
return;
|
|
|
|
when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
|
|
Check_Expr_Constants (Left_Opnd (Nod));
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
|
|
|
when N_Unary_Op =>
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
|
|
|
when N_Type_Conversion |
|
|
N_Qualified_Expression |
|
|
N_Allocator =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
when N_Unchecked_Type_Conversion =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
-- If this is a rewritten unchecked conversion, subtypes in
|
|
-- this node are those created within the instance. To avoid
|
|
-- order of elaboration issues, replace them with their base
|
|
-- types. Note that address clauses can cause order of
|
|
-- elaboration problems because they are elaborated by the
|
|
-- back-end at the point of definition, and may mention
|
|
-- entities declared in between (as long as everything is
|
|
-- static). It is user-friendly to allow unchecked conversions
|
|
-- in this context.
|
|
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Set_Etype (Expression (Nod),
|
|
Base_Type (Etype (Expression (Nod))));
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
|
end if;
|
|
|
|
when N_Function_Call =>
|
|
if not Is_Pure (Entity (Name (Nod))) then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
Error_Msg_NE
|
|
("\function & is not pure (RM 13.1(22))!",
|
|
Nod, Entity (Name (Nod)));
|
|
|
|
else
|
|
Check_List_Constants (Parameter_Associations (Nod));
|
|
end if;
|
|
|
|
when N_Parameter_Association =>
|
|
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
|
|
|
|
when others =>
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_NE
|
|
("\must be constant defined before& (RM 13.1(22))!",
|
|
Nod, U_Ent);
|
|
end case;
|
|
end Check_Expr_Constants;
|
|
|
|
--------------------------
|
|
-- Check_List_Constants --
|
|
--------------------------
|
|
|
|
procedure Check_List_Constants (Lst : List_Id) is
|
|
Nod1 : Node_Id;
|
|
|
|
begin
|
|
if Present (Lst) then
|
|
Nod1 := First (Lst);
|
|
while Present (Nod1) loop
|
|
Check_Expr_Constants (Nod1);
|
|
Next (Nod1);
|
|
end loop;
|
|
end if;
|
|
end Check_List_Constants;
|
|
|
|
-- Start of processing for Check_Constant_Address_Clause
|
|
|
|
begin
|
|
-- If rep_clauses are to be ignored, no need for legality checks. In
|
|
-- particular, no need to pester user about rep clauses that violate
|
|
-- the rule on constant addresses, given that these clauses will be
|
|
-- removed by Freeze before they reach the back end.
|
|
|
|
if not Ignore_Rep_Clauses then
|
|
Check_Expr_Constants (Expr);
|
|
end if;
|
|
end Check_Constant_Address_Clause;
|
|
|
|
----------------------------------------
|
|
-- Check_Record_Representation_Clause --
|
|
----------------------------------------
|
|
|
|
procedure Check_Record_Representation_Clause (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Ident : constant Node_Id := Identifier (N);
|
|
Rectype : Entity_Id;
|
|
Fent : Entity_Id;
|
|
CC : Node_Id;
|
|
Fbit : Uint;
|
|
Lbit : Uint;
|
|
Hbit : Uint := Uint_0;
|
|
Comp : Entity_Id;
|
|
Pcomp : Entity_Id;
|
|
|
|
Max_Bit_So_Far : Uint;
|
|
-- Records the maximum bit position so far. If all field positions
|
|
-- are monotonically increasing, then we can skip the circuit for
|
|
-- checking for overlap, since no overlap is possible.
|
|
|
|
Tagged_Parent : Entity_Id := Empty;
|
|
-- This is set in the case of a derived tagged type for which we have
|
|
-- Is_Fully_Repped_Tagged_Type True (indicating that all components are
|
|
-- positioned by record representation clauses). In this case we must
|
|
-- check for overlap between components of this tagged type, and the
|
|
-- components of its parent. Tagged_Parent will point to this parent
|
|
-- type. For all other cases Tagged_Parent is left set to Empty.
|
|
|
|
Parent_Last_Bit : Uint;
|
|
-- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
|
|
-- last bit position for any field in the parent type. We only need to
|
|
-- check overlap for fields starting below this point.
|
|
|
|
Overlap_Check_Required : Boolean;
|
|
-- Used to keep track of whether or not an overlap check is required
|
|
|
|
Overlap_Detected : Boolean := False;
|
|
-- Set True if an overlap is detected
|
|
|
|
Ccount : Natural := 0;
|
|
-- Number of component clauses in record rep clause
|
|
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
|
|
-- Given two entities for record components or discriminants, checks
|
|
-- if they have overlapping component clauses and issues errors if so.
|
|
|
|
procedure Find_Component;
|
|
-- Finds component entity corresponding to current component clause (in
|
|
-- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
|
|
-- start/stop bits for the field. If there is no matching component or
|
|
-- if the matching component does not have a component clause, then
|
|
-- that's an error and Comp is set to Empty, but no error message is
|
|
-- issued, since the message was already given. Comp is also set to
|
|
-- Empty if the current "component clause" is in fact a pragma.
|
|
|
|
-----------------------------
|
|
-- Check_Component_Overlap --
|
|
-----------------------------
|
|
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
|
|
CC1 : constant Node_Id := Component_Clause (C1_Ent);
|
|
CC2 : constant Node_Id := Component_Clause (C2_Ent);
|
|
|
|
begin
|
|
if Present (CC1) and then Present (CC2) then
|
|
|
|
-- Exclude odd case where we have two tag fields in the same
|
|
-- record, both at location zero. This seems a bit strange, but
|
|
-- it seems to happen in some circumstances, perhaps on an error.
|
|
|
|
if Chars (C1_Ent) = Name_uTag
|
|
and then
|
|
Chars (C2_Ent) = Name_uTag
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Here we check if the two fields overlap
|
|
|
|
declare
|
|
S1 : constant Uint := Component_Bit_Offset (C1_Ent);
|
|
S2 : constant Uint := Component_Bit_Offset (C2_Ent);
|
|
E1 : constant Uint := S1 + Esize (C1_Ent);
|
|
E2 : constant Uint := S2 + Esize (C2_Ent);
|
|
|
|
begin
|
|
if E2 <= S1 or else E1 <= S2 then
|
|
null;
|
|
else
|
|
Error_Msg_Node_2 := Component_Name (CC2);
|
|
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
|
|
Error_Msg_Node_1 := Component_Name (CC1);
|
|
Error_Msg_N
|
|
("component& overlaps & #", Component_Name (CC1));
|
|
Overlap_Detected := True;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Check_Component_Overlap;
|
|
|
|
--------------------
|
|
-- Find_Component --
|
|
--------------------
|
|
|
|
procedure Find_Component is
|
|
|
|
procedure Search_Component (R : Entity_Id);
|
|
-- Search components of R for a match. If found, Comp is set.
|
|
|
|
----------------------
|
|
-- Search_Component --
|
|
----------------------
|
|
|
|
procedure Search_Component (R : Entity_Id) is
|
|
begin
|
|
Comp := First_Component_Or_Discriminant (R);
|
|
while Present (Comp) loop
|
|
|
|
-- Ignore error of attribute name for component name (we
|
|
-- already gave an error message for this, so no need to
|
|
-- complain here)
|
|
|
|
if Nkind (Component_Name (CC)) = N_Attribute_Reference then
|
|
null;
|
|
else
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
end Search_Component;
|
|
|
|
-- Start of processing for Find_Component
|
|
|
|
begin
|
|
-- Return with Comp set to Empty if we have a pragma
|
|
|
|
if Nkind (CC) = N_Pragma then
|
|
Comp := Empty;
|
|
return;
|
|
end if;
|
|
|
|
-- Search current record for matching component
|
|
|
|
Search_Component (Rectype);
|
|
|
|
-- If not found, maybe component of base type that is absent from
|
|
-- statically constrained first subtype.
|
|
|
|
if No (Comp) then
|
|
Search_Component (Base_Type (Rectype));
|
|
end if;
|
|
|
|
-- If no component, or the component does not reference the component
|
|
-- clause in question, then there was some previous error for which
|
|
-- we already gave a message, so just return with Comp Empty.
|
|
|
|
if No (Comp)
|
|
or else Component_Clause (Comp) /= CC
|
|
then
|
|
Comp := Empty;
|
|
|
|
-- Normal case where we have a component clause
|
|
|
|
else
|
|
Fbit := Component_Bit_Offset (Comp);
|
|
Lbit := Fbit + Esize (Comp) - 1;
|
|
end if;
|
|
end Find_Component;
|
|
|
|
-- Start of processing for Check_Record_Representation_Clause
|
|
|
|
begin
|
|
Find_Type (Ident);
|
|
Rectype := Entity (Ident);
|
|
|
|
if Rectype = Any_Type then
|
|
return;
|
|
else
|
|
Rectype := Underlying_Type (Rectype);
|
|
end if;
|
|
|
|
-- See if we have a fully repped derived tagged type
|
|
|
|
declare
|
|
PS : constant Entity_Id := Parent_Subtype (Rectype);
|
|
|
|
begin
|
|
if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
|
|
Tagged_Parent := PS;
|
|
|
|
-- Find maximum bit of any component of the parent type
|
|
|
|
Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
|
|
Pcomp := First_Entity (Tagged_Parent);
|
|
while Present (Pcomp) loop
|
|
if Ekind_In (Pcomp, E_Discriminant, E_Component) then
|
|
if Component_Bit_Offset (Pcomp) /= No_Uint
|
|
and then Known_Static_Esize (Pcomp)
|
|
then
|
|
Parent_Last_Bit :=
|
|
UI_Max
|
|
(Parent_Last_Bit,
|
|
Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
|
|
end if;
|
|
|
|
Next_Entity (Pcomp);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
end;
|
|
|
|
-- All done if no component clauses
|
|
|
|
CC := First (Component_Clauses (N));
|
|
|
|
if No (CC) then
|
|
return;
|
|
end if;
|
|
|
|
-- If a tag is present, then create a component clause that places it
|
|
-- at the start of the record (otherwise gigi may place it after other
|
|
-- fields that have rep clauses).
|
|
|
|
Fent := First_Entity (Rectype);
|
|
|
|
if Nkind (Fent) = N_Defining_Identifier
|
|
and then Chars (Fent) = Name_uTag
|
|
then
|
|
Set_Component_Bit_Offset (Fent, Uint_0);
|
|
Set_Normalized_Position (Fent, Uint_0);
|
|
Set_Normalized_First_Bit (Fent, Uint_0);
|
|
Set_Normalized_Position_Max (Fent, Uint_0);
|
|
Init_Esize (Fent, System_Address_Size);
|
|
|
|
Set_Component_Clause (Fent,
|
|
Make_Component_Clause (Loc,
|
|
Component_Name => Make_Identifier (Loc, Name_uTag),
|
|
|
|
Position => Make_Integer_Literal (Loc, Uint_0),
|
|
First_Bit => Make_Integer_Literal (Loc, Uint_0),
|
|
Last_Bit =>
|
|
Make_Integer_Literal (Loc,
|
|
UI_From_Int (System_Address_Size))));
|
|
|
|
Ccount := Ccount + 1;
|
|
end if;
|
|
|
|
Max_Bit_So_Far := Uint_Minus_1;
|
|
Overlap_Check_Required := False;
|
|
|
|
-- Process the component clauses
|
|
|
|
while Present (CC) loop
|
|
Find_Component;
|
|
|
|
if Present (Comp) then
|
|
Ccount := Ccount + 1;
|
|
|
|
-- We need a full overlap check if record positions non-monotonic
|
|
|
|
if Fbit <= Max_Bit_So_Far then
|
|
Overlap_Check_Required := True;
|
|
end if;
|
|
|
|
Max_Bit_So_Far := Lbit;
|
|
|
|
-- Check bit position out of range of specified size
|
|
|
|
if Has_Size_Clause (Rectype)
|
|
and then RM_Size (Rectype) <= Lbit
|
|
then
|
|
Error_Msg_N
|
|
("bit number out of range of specified size",
|
|
Last_Bit (CC));
|
|
|
|
-- Check for overlap with tag field
|
|
|
|
else
|
|
if Is_Tagged_Type (Rectype)
|
|
and then Fbit < System_Address_Size
|
|
then
|
|
Error_Msg_NE
|
|
("component overlaps tag field of&",
|
|
Component_Name (CC), Rectype);
|
|
Overlap_Detected := True;
|
|
end if;
|
|
|
|
if Hbit < Lbit then
|
|
Hbit := Lbit;
|
|
end if;
|
|
end if;
|
|
|
|
-- Check parent overlap if component might overlap parent field
|
|
|
|
if Present (Tagged_Parent)
|
|
and then Fbit <= Parent_Last_Bit
|
|
then
|
|
Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
|
|
while Present (Pcomp) loop
|
|
if not Is_Tag (Pcomp)
|
|
and then Chars (Pcomp) /= Name_uParent
|
|
then
|
|
Check_Component_Overlap (Comp, Pcomp);
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Pcomp);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
Next (CC);
|
|
end loop;
|
|
|
|
-- Now that we have processed all the component clauses, check for
|
|
-- overlap. We have to leave this till last, since the components can
|
|
-- appear in any arbitrary order in the representation clause.
|
|
|
|
-- We do not need this check if all specified ranges were monotonic,
|
|
-- as recorded by Overlap_Check_Required being False at this stage.
|
|
|
|
-- This first section checks if there are any overlapping entries at
|
|
-- all. It does this by sorting all entries and then seeing if there are
|
|
-- any overlaps. If there are none, then that is decisive, but if there
|
|
-- are overlaps, they may still be OK (they may result from fields in
|
|
-- different variants).
|
|
|
|
if Overlap_Check_Required then
|
|
Overlap_Check1 : declare
|
|
|
|
OC_Fbit : array (0 .. Ccount) of Uint;
|
|
-- First-bit values for component clauses, the value is the offset
|
|
-- of the first bit of the field from start of record. The zero
|
|
-- entry is for use in sorting.
|
|
|
|
OC_Lbit : array (0 .. Ccount) of Uint;
|
|
-- Last-bit values for component clauses, the value is the offset
|
|
-- of the last bit of the field from start of record. The zero
|
|
-- entry is for use in sorting.
|
|
|
|
OC_Count : Natural := 0;
|
|
-- Count of entries in OC_Fbit and OC_Lbit
|
|
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean;
|
|
-- Compare routine for Sort
|
|
|
|
procedure OC_Move (From : Natural; To : Natural);
|
|
-- Move routine for Sort
|
|
|
|
package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
|
|
|
|
-----------
|
|
-- OC_Lt --
|
|
-----------
|
|
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean is
|
|
begin
|
|
return OC_Fbit (Op1) < OC_Fbit (Op2);
|
|
end OC_Lt;
|
|
|
|
-------------
|
|
-- OC_Move --
|
|
-------------
|
|
|
|
procedure OC_Move (From : Natural; To : Natural) is
|
|
begin
|
|
OC_Fbit (To) := OC_Fbit (From);
|
|
OC_Lbit (To) := OC_Lbit (From);
|
|
end OC_Move;
|
|
|
|
-- Start of processing for Overlap_Check
|
|
|
|
begin
|
|
CC := First (Component_Clauses (N));
|
|
while Present (CC) loop
|
|
|
|
-- Exclude component clause already marked in error
|
|
|
|
if not Error_Posted (CC) then
|
|
Find_Component;
|
|
|
|
if Present (Comp) then
|
|
OC_Count := OC_Count + 1;
|
|
OC_Fbit (OC_Count) := Fbit;
|
|
OC_Lbit (OC_Count) := Lbit;
|
|
end if;
|
|
end if;
|
|
|
|
Next (CC);
|
|
end loop;
|
|
|
|
Sorting.Sort (OC_Count);
|
|
|
|
Overlap_Check_Required := False;
|
|
for J in 1 .. OC_Count - 1 loop
|
|
if OC_Lbit (J) >= OC_Fbit (J + 1) then
|
|
Overlap_Check_Required := True;
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
end Overlap_Check1;
|
|
end if;
|
|
|
|
-- If Overlap_Check_Required is still True, then we have to do the full
|
|
-- scale overlap check, since we have at least two fields that do
|
|
-- overlap, and we need to know if that is OK since they are in
|
|
-- different variant, or whether we have a definite problem.
|
|
|
|
if Overlap_Check_Required then
|
|
Overlap_Check2 : declare
|
|
C1_Ent, C2_Ent : Entity_Id;
|
|
-- Entities of components being checked for overlap
|
|
|
|
Clist : Node_Id;
|
|
-- Component_List node whose Component_Items are being checked
|
|
|
|
Citem : Node_Id;
|
|
-- Component declaration for component being checked
|
|
|
|
begin
|
|
C1_Ent := First_Entity (Base_Type (Rectype));
|
|
|
|
-- Loop through all components in record. For each component check
|
|
-- for overlap with any of the preceding elements on the component
|
|
-- list containing the component and also, if the component is in
|
|
-- a variant, check against components outside the case structure.
|
|
-- This latter test is repeated recursively up the variant tree.
|
|
|
|
Main_Component_Loop : while Present (C1_Ent) loop
|
|
if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
|
|
goto Continue_Main_Component_Loop;
|
|
end if;
|
|
|
|
-- Skip overlap check if entity has no declaration node. This
|
|
-- happens with discriminants in constrained derived types.
|
|
-- Possibly we are missing some checks as a result, but that
|
|
-- does not seem terribly serious.
|
|
|
|
if No (Declaration_Node (C1_Ent)) then
|
|
goto Continue_Main_Component_Loop;
|
|
end if;
|
|
|
|
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
|
|
|
|
-- Loop through component lists that need checking. Check the
|
|
-- current component list and all lists in variants above us.
|
|
|
|
Component_List_Loop : loop
|
|
|
|
-- If derived type definition, go to full declaration
|
|
-- If at outer level, check discriminants if there are any.
|
|
|
|
if Nkind (Clist) = N_Derived_Type_Definition then
|
|
Clist := Parent (Clist);
|
|
end if;
|
|
|
|
-- Outer level of record definition, check discriminants
|
|
|
|
if Nkind_In (Clist, N_Full_Type_Declaration,
|
|
N_Private_Type_Declaration)
|
|
then
|
|
if Has_Discriminants (Defining_Identifier (Clist)) then
|
|
C2_Ent :=
|
|
First_Discriminant (Defining_Identifier (Clist));
|
|
while Present (C2_Ent) loop
|
|
exit when C1_Ent = C2_Ent;
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
|
Next_Discriminant (C2_Ent);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Record extension case
|
|
|
|
elsif Nkind (Clist) = N_Derived_Type_Definition then
|
|
Clist := Empty;
|
|
|
|
-- Otherwise check one component list
|
|
|
|
else
|
|
Citem := First (Component_Items (Clist));
|
|
while Present (Citem) loop
|
|
if Nkind (Citem) = N_Component_Declaration then
|
|
C2_Ent := Defining_Identifier (Citem);
|
|
exit when C1_Ent = C2_Ent;
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
|
end if;
|
|
|
|
Next (Citem);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Check for variants above us (the parent of the Clist can
|
|
-- be a variant, in which case its parent is a variant part,
|
|
-- and the parent of the variant part is a component list
|
|
-- whose components must all be checked against the current
|
|
-- component for overlap).
|
|
|
|
if Nkind (Parent (Clist)) = N_Variant then
|
|
Clist := Parent (Parent (Parent (Clist)));
|
|
|
|
-- Check for possible discriminant part in record, this
|
|
-- is treated essentially as another level in the
|
|
-- recursion. For this case the parent of the component
|
|
-- list is the record definition, and its parent is the
|
|
-- full type declaration containing the discriminant
|
|
-- specifications.
|
|
|
|
elsif Nkind (Parent (Clist)) = N_Record_Definition then
|
|
Clist := Parent (Parent ((Clist)));
|
|
|
|
-- If neither of these two cases, we are at the top of
|
|
-- the tree.
|
|
|
|
else
|
|
exit Component_List_Loop;
|
|
end if;
|
|
end loop Component_List_Loop;
|
|
|
|
<<Continue_Main_Component_Loop>>
|
|
Next_Entity (C1_Ent);
|
|
|
|
end loop Main_Component_Loop;
|
|
end Overlap_Check2;
|
|
end if;
|
|
|
|
-- The following circuit deals with warning on record holes (gaps). We
|
|
-- skip this check if overlap was detected, since it makes sense for the
|
|
-- programmer to fix this illegality before worrying about warnings.
|
|
|
|
if not Overlap_Detected and Warn_On_Record_Holes then
|
|
Record_Hole_Check : declare
|
|
Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
|
|
-- Full declaration of record type
|
|
|
|
procedure Check_Component_List
|
|
(CL : Node_Id;
|
|
Sbit : Uint;
|
|
DS : List_Id);
|
|
-- Check component list CL for holes. The starting bit should be
|
|
-- Sbit. which is zero for the main record component list and set
|
|
-- appropriately for recursive calls for variants. DS is set to
|
|
-- a list of discriminant specifications to be included in the
|
|
-- consideration of components. It is No_List if none to consider.
|
|
|
|
--------------------------
|
|
-- Check_Component_List --
|
|
--------------------------
|
|
|
|
procedure Check_Component_List
|
|
(CL : Node_Id;
|
|
Sbit : Uint;
|
|
DS : List_Id)
|
|
is
|
|
Compl : Integer;
|
|
|
|
begin
|
|
Compl := Integer (List_Length (Component_Items (CL)));
|
|
|
|
if DS /= No_List then
|
|
Compl := Compl + Integer (List_Length (DS));
|
|
end if;
|
|
|
|
declare
|
|
Comps : array (Natural range 0 .. Compl) of Entity_Id;
|
|
-- Gather components (zero entry is for sort routine)
|
|
|
|
Ncomps : Natural := 0;
|
|
-- Number of entries stored in Comps (starting at Comps (1))
|
|
|
|
Citem : Node_Id;
|
|
-- One component item or discriminant specification
|
|
|
|
Nbit : Uint;
|
|
-- Starting bit for next component
|
|
|
|
CEnt : Entity_Id;
|
|
-- Component entity
|
|
|
|
Variant : Node_Id;
|
|
-- One variant
|
|
|
|
function Lt (Op1, Op2 : Natural) return Boolean;
|
|
-- Compare routine for Sort
|
|
|
|
procedure Move (From : Natural; To : Natural);
|
|
-- Move routine for Sort
|
|
|
|
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
|
|
|
|
--------
|
|
-- Lt --
|
|
--------
|
|
|
|
function Lt (Op1, Op2 : Natural) return Boolean is
|
|
begin
|
|
return Component_Bit_Offset (Comps (Op1))
|
|
<
|
|
Component_Bit_Offset (Comps (Op2));
|
|
end Lt;
|
|
|
|
----------
|
|
-- Move --
|
|
----------
|
|
|
|
procedure Move (From : Natural; To : Natural) is
|
|
begin
|
|
Comps (To) := Comps (From);
|
|
end Move;
|
|
|
|
begin
|
|
-- Gather discriminants into Comp
|
|
|
|
if DS /= No_List then
|
|
Citem := First (DS);
|
|
while Present (Citem) loop
|
|
if Nkind (Citem) = N_Discriminant_Specification then
|
|
declare
|
|
Ent : constant Entity_Id :=
|
|
Defining_Identifier (Citem);
|
|
begin
|
|
if Ekind (Ent) = E_Discriminant then
|
|
Ncomps := Ncomps + 1;
|
|
Comps (Ncomps) := Ent;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Next (Citem);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Gather component entities into Comp
|
|
|
|
Citem := First (Component_Items (CL));
|
|
while Present (Citem) loop
|
|
if Nkind (Citem) = N_Component_Declaration then
|
|
Ncomps := Ncomps + 1;
|
|
Comps (Ncomps) := Defining_Identifier (Citem);
|
|
end if;
|
|
|
|
Next (Citem);
|
|
end loop;
|
|
|
|
-- Now sort the component entities based on the first bit.
|
|
-- Note we already know there are no overlapping components.
|
|
|
|
Sorting.Sort (Ncomps);
|
|
|
|
-- Loop through entries checking for holes
|
|
|
|
Nbit := Sbit;
|
|
for J in 1 .. Ncomps loop
|
|
CEnt := Comps (J);
|
|
Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
|
|
|
|
if Error_Msg_Uint_1 > 0 then
|
|
Error_Msg_NE
|
|
("?^-bit gap before component&",
|
|
Component_Name (Component_Clause (CEnt)), CEnt);
|
|
end if;
|
|
|
|
Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
|
|
end loop;
|
|
|
|
-- Process variant parts recursively if present
|
|
|
|
if Present (Variant_Part (CL)) then
|
|
Variant := First (Variants (Variant_Part (CL)));
|
|
while Present (Variant) loop
|
|
Check_Component_List
|
|
(Component_List (Variant), Nbit, No_List);
|
|
Next (Variant);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
end Check_Component_List;
|
|
|
|
-- Start of processing for Record_Hole_Check
|
|
|
|
begin
|
|
declare
|
|
Sbit : Uint;
|
|
|
|
begin
|
|
if Is_Tagged_Type (Rectype) then
|
|
Sbit := UI_From_Int (System_Address_Size);
|
|
else
|
|
Sbit := Uint_0;
|
|
end if;
|
|
|
|
if Nkind (Decl) = N_Full_Type_Declaration
|
|
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
|
|
then
|
|
Check_Component_List
|
|
(Component_List (Type_Definition (Decl)),
|
|
Sbit,
|
|
Discriminant_Specifications (Decl));
|
|
end if;
|
|
end;
|
|
end Record_Hole_Check;
|
|
end if;
|
|
|
|
-- For records that have component clauses for all components, and whose
|
|
-- size is less than or equal to 32, we need to know the size in the
|
|
-- front end to activate possible packed array processing where the
|
|
-- component type is a record.
|
|
|
|
-- At this stage Hbit + 1 represents the first unused bit from all the
|
|
-- component clauses processed, so if the component clauses are
|
|
-- complete, then this is the length of the record.
|
|
|
|
-- For records longer than System.Storage_Unit, and for those where not
|
|
-- all components have component clauses, the back end determines the
|
|
-- length (it may for example be appropriate to round up the size
|
|
-- to some convenient boundary, based on alignment considerations, etc).
|
|
|
|
if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
|
|
|
|
-- Nothing to do if at least one component has no component clause
|
|
|
|
Comp := First_Component_Or_Discriminant (Rectype);
|
|
while Present (Comp) loop
|
|
exit when No (Component_Clause (Comp));
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
|
|
-- If we fall out of loop, all components have component clauses
|
|
-- and so we can set the size to the maximum value.
|
|
|
|
if No (Comp) then
|
|
Set_RM_Size (Rectype, Hbit + 1);
|
|
end if;
|
|
end if;
|
|
end Check_Record_Representation_Clause;
|
|
|
|
----------------
|
|
-- Check_Size --
|
|
----------------
|
|
|
|
procedure Check_Size
|
|
(N : Node_Id;
|
|
T : Entity_Id;
|
|
Siz : Uint;
|
|
Biased : out Boolean)
|
|
is
|
|
UT : constant Entity_Id := Underlying_Type (T);
|
|
M : Uint;
|
|
|
|
begin
|
|
Biased := False;
|
|
|
|
-- Dismiss cases for generic types or types with previous errors
|
|
|
|
if No (UT)
|
|
or else UT = Any_Type
|
|
or else Is_Generic_Type (UT)
|
|
or else Is_Generic_Type (Root_Type (UT))
|
|
then
|
|
return;
|
|
|
|
-- Check case of bit packed array
|
|
|
|
elsif Is_Array_Type (UT)
|
|
and then Known_Static_Component_Size (UT)
|
|
and then Is_Bit_Packed_Array (UT)
|
|
then
|
|
declare
|
|
Asiz : Uint;
|
|
Indx : Node_Id;
|
|
Ityp : Entity_Id;
|
|
|
|
begin
|
|
Asiz := Component_Size (UT);
|
|
Indx := First_Index (UT);
|
|
loop
|
|
Ityp := Etype (Indx);
|
|
|
|
-- If non-static bound, then we are not in the business of
|
|
-- trying to check the length, and indeed an error will be
|
|
-- issued elsewhere, since sizes of non-static array types
|
|
-- cannot be set implicitly or explicitly.
|
|
|
|
if not Is_Static_Subtype (Ityp) then
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise accumulate next dimension
|
|
|
|
Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
|
|
Expr_Value (Type_Low_Bound (Ityp)) +
|
|
Uint_1);
|
|
|
|
Next_Index (Indx);
|
|
exit when No (Indx);
|
|
end loop;
|
|
|
|
if Asiz <= Siz then
|
|
return;
|
|
else
|
|
Error_Msg_Uint_1 := Asiz;
|
|
Error_Msg_NE
|
|
("size for& too small, minimum allowed is ^", N, T);
|
|
Set_Esize (T, Asiz);
|
|
Set_RM_Size (T, Asiz);
|
|
end if;
|
|
end;
|
|
|
|
-- All other composite types are ignored
|
|
|
|
elsif Is_Composite_Type (UT) then
|
|
return;
|
|
|
|
-- For fixed-point types, don't check minimum if type is not frozen,
|
|
-- since we don't know all the characteristics of the type that can
|
|
-- affect the size (e.g. a specified small) till freeze time.
|
|
|
|
elsif Is_Fixed_Point_Type (UT)
|
|
and then not Is_Frozen (UT)
|
|
then
|
|
null;
|
|
|
|
-- Cases for which a minimum check is required
|
|
|
|
else
|
|
-- Ignore if specified size is correct for the type
|
|
|
|
if Known_Esize (UT) and then Siz = Esize (UT) then
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise get minimum size
|
|
|
|
M := UI_From_Int (Minimum_Size (UT));
|
|
|
|
if Siz < M then
|
|
|
|
-- Size is less than minimum size, but one possibility remains
|
|
-- that we can manage with the new size if we bias the type.
|
|
|
|
M := UI_From_Int (Minimum_Size (UT, Biased => True));
|
|
|
|
if Siz < M then
|
|
Error_Msg_Uint_1 := M;
|
|
Error_Msg_NE
|
|
("size for& too small, minimum allowed is ^", N, T);
|
|
Set_Esize (T, M);
|
|
Set_RM_Size (T, M);
|
|
else
|
|
Biased := True;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Check_Size;
|
|
|
|
-------------------------
|
|
-- Get_Alignment_Value --
|
|
-------------------------
|
|
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint is
|
|
Align : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if Align = No_Uint then
|
|
return No_Uint;
|
|
|
|
elsif Align <= 0 then
|
|
Error_Msg_N ("alignment value must be positive", Expr);
|
|
return No_Uint;
|
|
|
|
else
|
|
for J in Int range 0 .. 64 loop
|
|
declare
|
|
M : constant Uint := Uint_2 ** J;
|
|
|
|
begin
|
|
exit when M = Align;
|
|
|
|
if M > Align then
|
|
Error_Msg_N
|
|
("alignment value must be power of 2", Expr);
|
|
return No_Uint;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
return Align;
|
|
end if;
|
|
end Get_Alignment_Value;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
Address_Clause_Checks.Init;
|
|
Independence_Checks.Init;
|
|
Unchecked_Conversions.Init;
|
|
end Initialize;
|
|
|
|
-------------------------
|
|
-- Is_Operational_Item --
|
|
-------------------------
|
|
|
|
function Is_Operational_Item (N : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (N) /= N_Attribute_Definition_Clause then
|
|
return False;
|
|
else
|
|
declare
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
|
|
begin
|
|
return Id = Attribute_Input
|
|
or else Id = Attribute_Output
|
|
or else Id = Attribute_Read
|
|
or else Id = Attribute_Write
|
|
or else Id = Attribute_External_Tag;
|
|
end;
|
|
end if;
|
|
end Is_Operational_Item;
|
|
|
|
------------------
|
|
-- Minimum_Size --
|
|
------------------
|
|
|
|
function Minimum_Size
|
|
(T : Entity_Id;
|
|
Biased : Boolean := False) return Nat
|
|
is
|
|
Lo : Uint := No_Uint;
|
|
Hi : Uint := No_Uint;
|
|
LoR : Ureal := No_Ureal;
|
|
HiR : Ureal := No_Ureal;
|
|
LoSet : Boolean := False;
|
|
HiSet : Boolean := False;
|
|
B : Uint;
|
|
S : Nat;
|
|
Ancest : Entity_Id;
|
|
R_Typ : constant Entity_Id := Root_Type (T);
|
|
|
|
begin
|
|
-- If bad type, return 0
|
|
|
|
if T = Any_Type then
|
|
return 0;
|
|
|
|
-- For generic types, just return zero. There cannot be any legitimate
|
|
-- need to know such a size, but this routine may be called with a
|
|
-- generic type as part of normal processing.
|
|
|
|
elsif Is_Generic_Type (R_Typ)
|
|
or else R_Typ = Any_Type
|
|
then
|
|
return 0;
|
|
|
|
-- Access types. Normally an access type cannot have a size smaller
|
|
-- than the size of System.Address. The exception is on VMS, where
|
|
-- we have short and long addresses, and it is possible for an access
|
|
-- type to have a short address size (and thus be less than the size
|
|
-- of System.Address itself). We simply skip the check for VMS, and
|
|
-- leave it to the back end to do the check.
|
|
|
|
elsif Is_Access_Type (T) then
|
|
if OpenVMS_On_Target then
|
|
return 0;
|
|
else
|
|
return System_Address_Size;
|
|
end if;
|
|
|
|
-- Floating-point types
|
|
|
|
elsif Is_Floating_Point_Type (T) then
|
|
return UI_To_Int (Esize (R_Typ));
|
|
|
|
-- Discrete types
|
|
|
|
elsif Is_Discrete_Type (T) then
|
|
|
|
-- The following loop is looking for the nearest compile time known
|
|
-- bounds following the ancestor subtype chain. The idea is to find
|
|
-- the most restrictive known bounds information.
|
|
|
|
Ancest := T;
|
|
loop
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
|
return 0;
|
|
end if;
|
|
|
|
if not LoSet then
|
|
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
|
|
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
|
|
LoSet := True;
|
|
exit when HiSet;
|
|
end if;
|
|
end if;
|
|
|
|
if not HiSet then
|
|
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
|
|
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
|
|
HiSet := True;
|
|
exit when LoSet;
|
|
end if;
|
|
end if;
|
|
|
|
Ancest := Ancestor_Subtype (Ancest);
|
|
|
|
if No (Ancest) then
|
|
Ancest := Base_Type (T);
|
|
|
|
if Is_Generic_Type (Ancest) then
|
|
return 0;
|
|
end if;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Fixed-point types. We can't simply use Expr_Value to get the
|
|
-- Corresponding_Integer_Value values of the bounds, since these do not
|
|
-- get set till the type is frozen, and this routine can be called
|
|
-- before the type is frozen. Similarly the test for bounds being static
|
|
-- needs to include the case where we have unanalyzed real literals for
|
|
-- the same reason.
|
|
|
|
elsif Is_Fixed_Point_Type (T) then
|
|
|
|
-- The following loop is looking for the nearest compile time known
|
|
-- bounds following the ancestor subtype chain. The idea is to find
|
|
-- the most restrictive known bounds information.
|
|
|
|
Ancest := T;
|
|
loop
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
|
return 0;
|
|
end if;
|
|
|
|
-- Note: In the following two tests for LoSet and HiSet, it may
|
|
-- seem redundant to test for N_Real_Literal here since normally
|
|
-- one would assume that the test for the value being known at
|
|
-- compile time includes this case. However, there is a glitch.
|
|
-- If the real literal comes from folding a non-static expression,
|
|
-- then we don't consider any non- static expression to be known
|
|
-- at compile time if we are in configurable run time mode (needed
|
|
-- in some cases to give a clearer definition of what is and what
|
|
-- is not accepted). So the test is indeed needed. Without it, we
|
|
-- would set neither Lo_Set nor Hi_Set and get an infinite loop.
|
|
|
|
if not LoSet then
|
|
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
|
|
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
|
|
then
|
|
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
|
|
LoSet := True;
|
|
exit when HiSet;
|
|
end if;
|
|
end if;
|
|
|
|
if not HiSet then
|
|
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
|
|
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
|
|
then
|
|
HiR := Expr_Value_R (Type_High_Bound (Ancest));
|
|
HiSet := True;
|
|
exit when LoSet;
|
|
end if;
|
|
end if;
|
|
|
|
Ancest := Ancestor_Subtype (Ancest);
|
|
|
|
if No (Ancest) then
|
|
Ancest := Base_Type (T);
|
|
|
|
if Is_Generic_Type (Ancest) then
|
|
return 0;
|
|
end if;
|
|
end if;
|
|
end loop;
|
|
|
|
Lo := UR_To_Uint (LoR / Small_Value (T));
|
|
Hi := UR_To_Uint (HiR / Small_Value (T));
|
|
|
|
-- No other types allowed
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Fall through with Hi and Lo set. Deal with biased case
|
|
|
|
if (Biased
|
|
and then not Is_Fixed_Point_Type (T)
|
|
and then not (Is_Enumeration_Type (T)
|
|
and then Has_Non_Standard_Rep (T)))
|
|
or else Has_Biased_Representation (T)
|
|
then
|
|
Hi := Hi - Lo;
|
|
Lo := Uint_0;
|
|
end if;
|
|
|
|
-- Signed case. Note that we consider types like range 1 .. -1 to be
|
|
-- signed for the purpose of computing the size, since the bounds have
|
|
-- to be accommodated in the base type.
|
|
|
|
if Lo < 0 or else Hi < 0 then
|
|
S := 1;
|
|
B := Uint_1;
|
|
|
|
-- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
|
|
-- Note that we accommodate the case where the bounds cross. This
|
|
-- can happen either because of the way the bounds are declared
|
|
-- or because of the algorithm in Freeze_Fixed_Point_Type.
|
|
|
|
while Lo < -B
|
|
or else Hi < -B
|
|
or else Lo >= B
|
|
or else Hi >= B
|
|
loop
|
|
B := Uint_2 ** S;
|
|
S := S + 1;
|
|
end loop;
|
|
|
|
-- Unsigned case
|
|
|
|
else
|
|
-- If both bounds are positive, make sure that both are represen-
|
|
-- table in the case where the bounds are crossed. This can happen
|
|
-- either because of the way the bounds are declared, or because of
|
|
-- the algorithm in Freeze_Fixed_Point_Type.
|
|
|
|
if Lo > Hi then
|
|
Hi := Lo;
|
|
end if;
|
|
|
|
-- S = size, (can accommodate 0 .. (2**size - 1))
|
|
|
|
S := 0;
|
|
while Hi >= Uint_2 ** S loop
|
|
S := S + 1;
|
|
end loop;
|
|
end if;
|
|
|
|
return S;
|
|
end Minimum_Size;
|
|
|
|
---------------------------
|
|
-- New_Stream_Subprogram --
|
|
---------------------------
|
|
|
|
procedure New_Stream_Subprogram
|
|
(N : Node_Id;
|
|
Ent : Entity_Id;
|
|
Subp : Entity_Id;
|
|
Nam : TSS_Name_Type)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
|
|
Subp_Id : Entity_Id;
|
|
Subp_Decl : Node_Id;
|
|
F : Entity_Id;
|
|
Etyp : Entity_Id;
|
|
|
|
Defer_Declaration : constant Boolean :=
|
|
Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
|
|
-- For a tagged type, there is a declaration for each stream attribute
|
|
-- at the freeze point, and we must generate only a completion of this
|
|
-- declaration. We do the same for private types, because the full view
|
|
-- might be tagged. Otherwise we generate a declaration at the point of
|
|
-- the attribute definition clause.
|
|
|
|
function Build_Spec return Node_Id;
|
|
-- Used for declaration and renaming declaration, so that this is
|
|
-- treated as a renaming_as_body.
|
|
|
|
----------------
|
|
-- Build_Spec --
|
|
----------------
|
|
|
|
function Build_Spec return Node_Id is
|
|
Out_P : constant Boolean := (Nam = TSS_Stream_Read);
|
|
Formals : List_Id;
|
|
Spec : Node_Id;
|
|
T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
|
|
|
|
begin
|
|
Subp_Id := Make_Defining_Identifier (Loc, Sname);
|
|
|
|
-- S : access Root_Stream_Type'Class
|
|
|
|
Formals := New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Name_S),
|
|
Parameter_Type =>
|
|
Make_Access_Definition (Loc,
|
|
Subtype_Mark =>
|
|
New_Reference_To (
|
|
Designated_Type (Etype (F)), Loc))));
|
|
|
|
if Nam = TSS_Stream_Input then
|
|
Spec := Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => Subp_Id,
|
|
Parameter_Specifications => Formals,
|
|
Result_Definition => T_Ref);
|
|
else
|
|
-- V : [out] T
|
|
|
|
Append_To (Formals,
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
|
|
Out_Present => Out_P,
|
|
Parameter_Type => T_Ref));
|
|
|
|
Spec :=
|
|
Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => Subp_Id,
|
|
Parameter_Specifications => Formals);
|
|
end if;
|
|
|
|
return Spec;
|
|
end Build_Spec;
|
|
|
|
-- Start of processing for New_Stream_Subprogram
|
|
|
|
begin
|
|
F := First_Formal (Subp);
|
|
|
|
if Ekind (Subp) = E_Procedure then
|
|
Etyp := Etype (Next_Formal (F));
|
|
else
|
|
Etyp := Etype (Subp);
|
|
end if;
|
|
|
|
-- Prepare subprogram declaration and insert it as an action on the
|
|
-- clause node. The visibility for this entity is used to test for
|
|
-- visibility of the attribute definition clause (in the sense of
|
|
-- 8.3(23) as amended by AI-195).
|
|
|
|
if not Defer_Declaration then
|
|
Subp_Decl :=
|
|
Make_Subprogram_Declaration (Loc,
|
|
Specification => Build_Spec);
|
|
|
|
-- For a tagged type, there is always a visible declaration for each
|
|
-- stream TSS (it is a predefined primitive operation), and the
|
|
-- completion of this declaration occurs at the freeze point, which is
|
|
-- not always visible at places where the attribute definition clause is
|
|
-- visible. So, we create a dummy entity here for the purpose of
|
|
-- tracking the visibility of the attribute definition clause itself.
|
|
|
|
else
|
|
Subp_Id :=
|
|
Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
|
|
Subp_Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Subp_Id,
|
|
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
|
|
end if;
|
|
|
|
Insert_Action (N, Subp_Decl);
|
|
Set_Entity (N, Subp_Id);
|
|
|
|
Subp_Decl :=
|
|
Make_Subprogram_Renaming_Declaration (Loc,
|
|
Specification => Build_Spec,
|
|
Name => New_Reference_To (Subp, Loc));
|
|
|
|
if Defer_Declaration then
|
|
Set_TSS (Base_Type (Ent), Subp_Id);
|
|
else
|
|
Insert_Action (N, Subp_Decl);
|
|
Copy_TSS (Subp_Id, Base_Type (Ent));
|
|
end if;
|
|
end New_Stream_Subprogram;
|
|
|
|
------------------------
|
|
-- Rep_Item_Too_Early --
|
|
------------------------
|
|
|
|
function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
|
|
begin
|
|
-- Cannot apply non-operational rep items to generic types
|
|
|
|
if Is_Operational_Item (N) then
|
|
return False;
|
|
|
|
elsif Is_Type (T)
|
|
and then Is_Generic_Type (Root_Type (T))
|
|
then
|
|
Error_Msg_N ("representation item not allowed for generic type", N);
|
|
return True;
|
|
end if;
|
|
|
|
-- Otherwise check for incomplete type
|
|
|
|
if Is_Incomplete_Or_Private_Type (T)
|
|
and then No (Underlying_Type (T))
|
|
and then
|
|
(Nkind (N) /= N_Pragma
|
|
or else Get_Pragma_Id (N) /= Pragma_Import)
|
|
then
|
|
Error_Msg_N
|
|
("representation item must be after full type declaration", N);
|
|
return True;
|
|
|
|
-- If the type has incomplete components, a representation clause is
|
|
-- illegal but stream attributes and Convention pragmas are correct.
|
|
|
|
elsif Has_Private_Component (T) then
|
|
if Nkind (N) = N_Pragma then
|
|
return False;
|
|
else
|
|
Error_Msg_N
|
|
("representation item must appear after type is fully defined",
|
|
N);
|
|
return True;
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Rep_Item_Too_Early;
|
|
|
|
-----------------------
|
|
-- Rep_Item_Too_Late --
|
|
-----------------------
|
|
|
|
function Rep_Item_Too_Late
|
|
(T : Entity_Id;
|
|
N : Node_Id;
|
|
FOnly : Boolean := False) return Boolean
|
|
is
|
|
S : Entity_Id;
|
|
Parent_Type : Entity_Id;
|
|
|
|
procedure Too_Late;
|
|
-- Output the too late message. Note that this is not considered a
|
|
-- serious error, since the effect is simply that we ignore the
|
|
-- representation clause in this case.
|
|
|
|
--------------
|
|
-- Too_Late --
|
|
--------------
|
|
|
|
procedure Too_Late is
|
|
begin
|
|
Error_Msg_N ("|representation item appears too late!", N);
|
|
end Too_Late;
|
|
|
|
-- Start of processing for Rep_Item_Too_Late
|
|
|
|
begin
|
|
-- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
|
|
-- types, which may be frozen if they appear in a representation clause
|
|
-- for a local type.
|
|
|
|
if Is_Frozen (T)
|
|
and then not From_With_Type (T)
|
|
then
|
|
Too_Late;
|
|
S := First_Subtype (T);
|
|
|
|
if Present (Freeze_Node (S)) then
|
|
Error_Msg_NE
|
|
("?no more representation items for }", Freeze_Node (S), S);
|
|
end if;
|
|
|
|
return True;
|
|
|
|
-- Check for case of non-tagged derived type whose parent either has
|
|
-- primitive operations, or is a by reference type (RM 13.1(10)).
|
|
|
|
elsif Is_Type (T)
|
|
and then not FOnly
|
|
and then Is_Derived_Type (T)
|
|
and then not Is_Tagged_Type (T)
|
|
then
|
|
Parent_Type := Etype (Base_Type (T));
|
|
|
|
if Has_Primitive_Operations (Parent_Type) then
|
|
Too_Late;
|
|
Error_Msg_NE
|
|
("primitive operations already defined for&!", N, Parent_Type);
|
|
return True;
|
|
|
|
elsif Is_By_Reference_Type (Parent_Type) then
|
|
Too_Late;
|
|
Error_Msg_NE
|
|
("parent type & is a by reference type!", N, Parent_Type);
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
-- No error, link item into head of chain of rep items for the entity,
|
|
-- but avoid chaining if we have an overloadable entity, and the pragma
|
|
-- is one that can apply to multiple overloaded entities.
|
|
|
|
if Is_Overloadable (T)
|
|
and then Nkind (N) = N_Pragma
|
|
then
|
|
declare
|
|
Pname : constant Name_Id := Pragma_Name (N);
|
|
begin
|
|
if Pname = Name_Convention or else
|
|
Pname = Name_Import or else
|
|
Pname = Name_Export or else
|
|
Pname = Name_External or else
|
|
Pname = Name_Interface
|
|
then
|
|
return False;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
Record_Rep_Item (T, N);
|
|
return False;
|
|
end Rep_Item_Too_Late;
|
|
|
|
-------------------------------------
|
|
-- Replace_Type_References_Generic --
|
|
-------------------------------------
|
|
|
|
procedure Replace_Type_References_Generic (N : Node_Id; TName : Name_Id) is
|
|
|
|
function Replace_Node (N : Node_Id) return Traverse_Result;
|
|
-- Processes a single node in the traversal procedure below, checking
|
|
-- if node N should be replaced, and if so, doing the replacement.
|
|
|
|
procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
|
|
-- This instantiation provides the body of Replace_Type_References
|
|
|
|
------------------
|
|
-- Replace_Node --
|
|
------------------
|
|
|
|
function Replace_Node (N : Node_Id) return Traverse_Result is
|
|
S : Entity_Id;
|
|
P : Node_Id;
|
|
|
|
begin
|
|
-- Case of identifier
|
|
|
|
if Nkind (N) = N_Identifier then
|
|
|
|
-- If not the type name, all done with this node
|
|
|
|
if Chars (N) /= TName then
|
|
return Skip;
|
|
|
|
-- Otherwise do the replacement and we are done with this node
|
|
|
|
else
|
|
Replace_Type_Reference (N);
|
|
return Skip;
|
|
end if;
|
|
|
|
-- Case of selected component (which is what a qualification
|
|
-- looks like in the unanalyzed tree, which is what we have.
|
|
|
|
elsif Nkind (N) = N_Selected_Component then
|
|
|
|
-- If selector name is not our type, keeping going (we might
|
|
-- still have an occurrence of the type in the prefix).
|
|
|
|
if Nkind (Selector_Name (N)) /= N_Identifier
|
|
or else Chars (Selector_Name (N)) /= TName
|
|
then
|
|
return OK;
|
|
|
|
-- Selector name is our type, check qualification
|
|
|
|
else
|
|
-- Loop through scopes and prefixes, doing comparison
|
|
|
|
S := Current_Scope;
|
|
P := Prefix (N);
|
|
loop
|
|
-- Continue if no more scopes or scope with no name
|
|
|
|
if No (S) or else Nkind (S) not in N_Has_Chars then
|
|
return OK;
|
|
end if;
|
|
|
|
-- Do replace if prefix is an identifier matching the
|
|
-- scope that we are currently looking at.
|
|
|
|
if Nkind (P) = N_Identifier
|
|
and then Chars (P) = Chars (S)
|
|
then
|
|
Replace_Type_Reference (N);
|
|
return Skip;
|
|
end if;
|
|
|
|
-- Go check scope above us if prefix is itself of the
|
|
-- form of a selected component, whose selector matches
|
|
-- the scope we are currently looking at.
|
|
|
|
if Nkind (P) = N_Selected_Component
|
|
and then Nkind (Selector_Name (P)) = N_Identifier
|
|
and then Chars (Selector_Name (P)) = Chars (S)
|
|
then
|
|
S := Scope (S);
|
|
P := Prefix (P);
|
|
|
|
-- For anything else, we don't have a match, so keep on
|
|
-- going, there are still some weird cases where we may
|
|
-- still have a replacement within the prefix.
|
|
|
|
else
|
|
return OK;
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
-- Continue for any other node kind
|
|
|
|
else
|
|
return OK;
|
|
end if;
|
|
end Replace_Node;
|
|
|
|
begin
|
|
Replace_Type_Refs (N);
|
|
end Replace_Type_References_Generic;
|
|
|
|
-------------------------
|
|
-- Same_Representation --
|
|
-------------------------
|
|
|
|
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
|
|
T1 : constant Entity_Id := Underlying_Type (Typ1);
|
|
T2 : constant Entity_Id := Underlying_Type (Typ2);
|
|
|
|
begin
|
|
-- A quick check, if base types are the same, then we definitely have
|
|
-- the same representation, because the subtype specific representation
|
|
-- attributes (Size and Alignment) do not affect representation from
|
|
-- the point of view of this test.
|
|
|
|
if Base_Type (T1) = Base_Type (T2) then
|
|
return True;
|
|
|
|
elsif Is_Private_Type (Base_Type (T2))
|
|
and then Base_Type (T1) = Full_View (Base_Type (T2))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- Tagged types never have differing representations
|
|
|
|
if Is_Tagged_Type (T1) then
|
|
return True;
|
|
end if;
|
|
|
|
-- Representations are definitely different if conventions differ
|
|
|
|
if Convention (T1) /= Convention (T2) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Representations are different if component alignments differ
|
|
|
|
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
|
|
and then
|
|
(Is_Record_Type (T2) or else Is_Array_Type (T2))
|
|
and then Component_Alignment (T1) /= Component_Alignment (T2)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- For arrays, the only real issue is component size. If we know the
|
|
-- component size for both arrays, and it is the same, then that's
|
|
-- good enough to know we don't have a change of representation.
|
|
|
|
if Is_Array_Type (T1) then
|
|
if Known_Component_Size (T1)
|
|
and then Known_Component_Size (T2)
|
|
and then Component_Size (T1) = Component_Size (T2)
|
|
then
|
|
if VM_Target = No_VM then
|
|
return True;
|
|
|
|
-- In VM targets the representation of arrays with aliased
|
|
-- components differs from arrays with non-aliased components
|
|
|
|
else
|
|
return Has_Aliased_Components (Base_Type (T1))
|
|
=
|
|
Has_Aliased_Components (Base_Type (T2));
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- Types definitely have same representation if neither has non-standard
|
|
-- representation since default representations are always consistent.
|
|
-- If only one has non-standard representation, and the other does not,
|
|
-- then we consider that they do not have the same representation. They
|
|
-- might, but there is no way of telling early enough.
|
|
|
|
if Has_Non_Standard_Rep (T1) then
|
|
if not Has_Non_Standard_Rep (T2) then
|
|
return False;
|
|
end if;
|
|
else
|
|
return not Has_Non_Standard_Rep (T2);
|
|
end if;
|
|
|
|
-- Here the two types both have non-standard representation, and we need
|
|
-- to determine if they have the same non-standard representation.
|
|
|
|
-- For arrays, we simply need to test if the component sizes are the
|
|
-- same. Pragma Pack is reflected in modified component sizes, so this
|
|
-- check also deals with pragma Pack.
|
|
|
|
if Is_Array_Type (T1) then
|
|
return Component_Size (T1) = Component_Size (T2);
|
|
|
|
-- Tagged types always have the same representation, because it is not
|
|
-- possible to specify different representations for common fields.
|
|
|
|
elsif Is_Tagged_Type (T1) then
|
|
return True;
|
|
|
|
-- Case of record types
|
|
|
|
elsif Is_Record_Type (T1) then
|
|
|
|
-- Packed status must conform
|
|
|
|
if Is_Packed (T1) /= Is_Packed (T2) then
|
|
return False;
|
|
|
|
-- Otherwise we must check components. Typ2 maybe a constrained
|
|
-- subtype with fewer components, so we compare the components
|
|
-- of the base types.
|
|
|
|
else
|
|
Record_Case : declare
|
|
CD1, CD2 : Entity_Id;
|
|
|
|
function Same_Rep return Boolean;
|
|
-- CD1 and CD2 are either components or discriminants. This
|
|
-- function tests whether the two have the same representation
|
|
|
|
--------------
|
|
-- Same_Rep --
|
|
--------------
|
|
|
|
function Same_Rep return Boolean is
|
|
begin
|
|
if No (Component_Clause (CD1)) then
|
|
return No (Component_Clause (CD2));
|
|
|
|
else
|
|
return
|
|
Present (Component_Clause (CD2))
|
|
and then
|
|
Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
|
|
and then
|
|
Esize (CD1) = Esize (CD2);
|
|
end if;
|
|
end Same_Rep;
|
|
|
|
-- Start of processing for Record_Case
|
|
|
|
begin
|
|
if Has_Discriminants (T1) then
|
|
CD1 := First_Discriminant (T1);
|
|
CD2 := First_Discriminant (T2);
|
|
|
|
-- The number of discriminants may be different if the
|
|
-- derived type has fewer (constrained by values). The
|
|
-- invisible discriminants retain the representation of
|
|
-- the original, so the discrepancy does not per se
|
|
-- indicate a different representation.
|
|
|
|
while Present (CD1)
|
|
and then Present (CD2)
|
|
loop
|
|
if not Same_Rep then
|
|
return False;
|
|
else
|
|
Next_Discriminant (CD1);
|
|
Next_Discriminant (CD2);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
|
|
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
|
|
|
|
while Present (CD1) loop
|
|
if not Same_Rep then
|
|
return False;
|
|
else
|
|
Next_Component (CD1);
|
|
Next_Component (CD2);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end Record_Case;
|
|
end if;
|
|
|
|
-- For enumeration types, we must check each literal to see if the
|
|
-- representation is the same. Note that we do not permit enumeration
|
|
-- representation clauses for Character and Wide_Character, so these
|
|
-- cases were already dealt with.
|
|
|
|
elsif Is_Enumeration_Type (T1) then
|
|
Enumeration_Case : declare
|
|
L1, L2 : Entity_Id;
|
|
|
|
begin
|
|
L1 := First_Literal (T1);
|
|
L2 := First_Literal (T2);
|
|
|
|
while Present (L1) loop
|
|
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
|
|
return False;
|
|
else
|
|
Next_Literal (L1);
|
|
Next_Literal (L2);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
end Enumeration_Case;
|
|
|
|
-- Any other types have the same representation for these purposes
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Same_Representation;
|
|
|
|
----------------
|
|
-- Set_Biased --
|
|
----------------
|
|
|
|
procedure Set_Biased
|
|
(E : Entity_Id;
|
|
N : Node_Id;
|
|
Msg : String;
|
|
Biased : Boolean := True)
|
|
is
|
|
begin
|
|
if Biased then
|
|
Set_Has_Biased_Representation (E);
|
|
|
|
if Warn_On_Biased_Representation then
|
|
Error_Msg_NE
|
|
("?" & Msg & " forces biased representation for&", N, E);
|
|
end if;
|
|
end if;
|
|
end Set_Biased;
|
|
|
|
--------------------
|
|
-- Set_Enum_Esize --
|
|
--------------------
|
|
|
|
procedure Set_Enum_Esize (T : Entity_Id) is
|
|
Lo : Uint;
|
|
Hi : Uint;
|
|
Sz : Nat;
|
|
|
|
begin
|
|
Init_Alignment (T);
|
|
|
|
-- Find the minimum standard size (8,16,32,64) that fits
|
|
|
|
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
|
|
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
|
|
|
|
if Lo < 0 then
|
|
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
|
|
|
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
|
|
Sz := 16;
|
|
|
|
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
|
|
Sz := 32;
|
|
|
|
else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
|
|
Sz := 64;
|
|
end if;
|
|
|
|
else
|
|
if Hi < Uint_2**08 then
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
|
|
|
elsif Hi < Uint_2**16 then
|
|
Sz := 16;
|
|
|
|
elsif Hi < Uint_2**32 then
|
|
Sz := 32;
|
|
|
|
else pragma Assert (Hi < Uint_2**63);
|
|
Sz := 64;
|
|
end if;
|
|
end if;
|
|
|
|
-- That minimum is the proper size unless we have a foreign convention
|
|
-- and the size required is 32 or less, in which case we bump the size
|
|
-- up to 32. This is required for C and C++ and seems reasonable for
|
|
-- all other foreign conventions.
|
|
|
|
if Has_Foreign_Convention (T)
|
|
and then Esize (T) < Standard_Integer_Size
|
|
then
|
|
Init_Esize (T, Standard_Integer_Size);
|
|
else
|
|
Init_Esize (T, Sz);
|
|
end if;
|
|
end Set_Enum_Esize;
|
|
|
|
------------------------------
|
|
-- Validate_Address_Clauses --
|
|
------------------------------
|
|
|
|
procedure Validate_Address_Clauses is
|
|
begin
|
|
for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
|
|
declare
|
|
ACCR : Address_Clause_Check_Record
|
|
renames Address_Clause_Checks.Table (J);
|
|
|
|
Expr : Node_Id;
|
|
|
|
X_Alignment : Uint;
|
|
Y_Alignment : Uint;
|
|
|
|
X_Size : Uint;
|
|
Y_Size : Uint;
|
|
|
|
begin
|
|
-- Skip processing of this entry if warning already posted
|
|
|
|
if not Address_Warning_Posted (ACCR.N) then
|
|
|
|
Expr := Original_Node (Expression (ACCR.N));
|
|
|
|
-- Get alignments
|
|
|
|
X_Alignment := Alignment (ACCR.X);
|
|
Y_Alignment := Alignment (ACCR.Y);
|
|
|
|
-- Similarly obtain sizes
|
|
|
|
X_Size := Esize (ACCR.X);
|
|
Y_Size := Esize (ACCR.Y);
|
|
|
|
-- Check for large object overlaying smaller one
|
|
|
|
if Y_Size > Uint_0
|
|
and then X_Size > Uint_0
|
|
and then X_Size > Y_Size
|
|
then
|
|
Error_Msg_NE
|
|
("?& overlays smaller object", ACCR.N, ACCR.X);
|
|
Error_Msg_N
|
|
("\?program execution may be erroneous", ACCR.N);
|
|
Error_Msg_Uint_1 := X_Size;
|
|
Error_Msg_NE
|
|
("\?size of & is ^", ACCR.N, ACCR.X);
|
|
Error_Msg_Uint_1 := Y_Size;
|
|
Error_Msg_NE
|
|
("\?size of & is ^", ACCR.N, ACCR.Y);
|
|
|
|
-- Check for inadequate alignment, both of the base object
|
|
-- and of the offset, if any.
|
|
|
|
-- Note: we do not check the alignment if we gave a size
|
|
-- warning, since it would likely be redundant.
|
|
|
|
elsif Y_Alignment /= Uint_0
|
|
and then (Y_Alignment < X_Alignment
|
|
or else (ACCR.Off
|
|
and then
|
|
Nkind (Expr) = N_Attribute_Reference
|
|
and then
|
|
Attribute_Name (Expr) = Name_Address
|
|
and then
|
|
Has_Compatible_Alignment
|
|
(ACCR.X, Prefix (Expr))
|
|
/= Known_Compatible))
|
|
then
|
|
Error_Msg_NE
|
|
("?specified address for& may be inconsistent "
|
|
& "with alignment",
|
|
ACCR.N, ACCR.X);
|
|
Error_Msg_N
|
|
("\?program execution may be erroneous (RM 13.3(27))",
|
|
ACCR.N);
|
|
Error_Msg_Uint_1 := X_Alignment;
|
|
Error_Msg_NE
|
|
("\?alignment of & is ^",
|
|
ACCR.N, ACCR.X);
|
|
Error_Msg_Uint_1 := Y_Alignment;
|
|
Error_Msg_NE
|
|
("\?alignment of & is ^",
|
|
ACCR.N, ACCR.Y);
|
|
if Y_Alignment >= X_Alignment then
|
|
Error_Msg_N
|
|
("\?but offset is not multiple of alignment",
|
|
ACCR.N);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
end Validate_Address_Clauses;
|
|
|
|
---------------------------
|
|
-- Validate_Independence --
|
|
---------------------------
|
|
|
|
procedure Validate_Independence is
|
|
SU : constant Uint := UI_From_Int (System_Storage_Unit);
|
|
N : Node_Id;
|
|
E : Entity_Id;
|
|
IC : Boolean;
|
|
Comp : Entity_Id;
|
|
Addr : Node_Id;
|
|
P : Node_Id;
|
|
|
|
procedure Check_Array_Type (Atyp : Entity_Id);
|
|
-- Checks if the array type Atyp has independent components, and
|
|
-- if not, outputs an appropriate set of error messages.
|
|
|
|
procedure No_Independence;
|
|
-- Output message that independence cannot be guaranteed
|
|
|
|
function OK_Component (C : Entity_Id) return Boolean;
|
|
-- Checks one component to see if it is independently accessible, and
|
|
-- if so yields True, otherwise yields False if independent access
|
|
-- cannot be guaranteed. This is a conservative routine, it only
|
|
-- returns True if it knows for sure, it returns False if it knows
|
|
-- there is a problem, or it cannot be sure there is no problem.
|
|
|
|
procedure Reason_Bad_Component (C : Entity_Id);
|
|
-- Outputs continuation message if a reason can be determined for
|
|
-- the component C being bad.
|
|
|
|
----------------------
|
|
-- Check_Array_Type --
|
|
----------------------
|
|
|
|
procedure Check_Array_Type (Atyp : Entity_Id) is
|
|
Ctyp : constant Entity_Id := Component_Type (Atyp);
|
|
|
|
begin
|
|
-- OK if no alignment clause, no pack, and no component size
|
|
|
|
if not Has_Component_Size_Clause (Atyp)
|
|
and then not Has_Alignment_Clause (Atyp)
|
|
and then not Is_Packed (Atyp)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Check actual component size
|
|
|
|
if not Known_Component_Size (Atyp)
|
|
or else not (Addressable (Component_Size (Atyp))
|
|
and then Component_Size (Atyp) < 64)
|
|
or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
|
|
then
|
|
No_Independence;
|
|
|
|
-- Bad component size, check reason
|
|
|
|
if Has_Component_Size_Clause (Atyp) then
|
|
P :=
|
|
Get_Attribute_Definition_Clause
|
|
(Atyp, Attribute_Component_Size);
|
|
|
|
if Present (P) then
|
|
Error_Msg_Sloc := Sloc (P);
|
|
Error_Msg_N ("\because of Component_Size clause#", N);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Packed (Atyp) then
|
|
P := Get_Rep_Pragma (Atyp, Name_Pack);
|
|
|
|
if Present (P) then
|
|
Error_Msg_Sloc := Sloc (P);
|
|
Error_Msg_N ("\because of pragma Pack#", N);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- No reason found, just return
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Array type is OK independence-wise
|
|
|
|
return;
|
|
end Check_Array_Type;
|
|
|
|
---------------------
|
|
-- No_Independence --
|
|
---------------------
|
|
|
|
procedure No_Independence is
|
|
begin
|
|
if Pragma_Name (N) = Name_Independent then
|
|
Error_Msg_NE
|
|
("independence cannot be guaranteed for&", N, E);
|
|
else
|
|
Error_Msg_NE
|
|
("independent components cannot be guaranteed for&", N, E);
|
|
end if;
|
|
end No_Independence;
|
|
|
|
------------------
|
|
-- OK_Component --
|
|
------------------
|
|
|
|
function OK_Component (C : Entity_Id) return Boolean is
|
|
Rec : constant Entity_Id := Scope (C);
|
|
Ctyp : constant Entity_Id := Etype (C);
|
|
|
|
begin
|
|
-- OK if no component clause, no Pack, and no alignment clause
|
|
|
|
if No (Component_Clause (C))
|
|
and then not Is_Packed (Rec)
|
|
and then not Has_Alignment_Clause (Rec)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- Here we look at the actual component layout. A component is
|
|
-- addressable if its size is a multiple of the Esize of the
|
|
-- component type, and its starting position in the record has
|
|
-- appropriate alignment, and the record itself has appropriate
|
|
-- alignment to guarantee the component alignment.
|
|
|
|
-- Make sure sizes are static, always assume the worst for any
|
|
-- cases where we cannot check static values.
|
|
|
|
if not (Known_Static_Esize (C)
|
|
and then Known_Static_Esize (Ctyp))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Size of component must be addressable or greater than 64 bits
|
|
-- and a multiple of bytes.
|
|
|
|
if not Addressable (Esize (C))
|
|
and then Esize (C) < Uint_64
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check size is proper multiple
|
|
|
|
if Esize (C) mod Esize (Ctyp) /= 0 then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check alignment of component is OK
|
|
|
|
if not Known_Component_Bit_Offset (C)
|
|
or else Component_Bit_Offset (C) < Uint_0
|
|
or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- Check alignment of record type is OK
|
|
|
|
if not Known_Alignment (Rec)
|
|
or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- All tests passed, component is addressable
|
|
|
|
return True;
|
|
end OK_Component;
|
|
|
|
--------------------------
|
|
-- Reason_Bad_Component --
|
|
--------------------------
|
|
|
|
procedure Reason_Bad_Component (C : Entity_Id) is
|
|
Rec : constant Entity_Id := Scope (C);
|
|
Ctyp : constant Entity_Id := Etype (C);
|
|
|
|
begin
|
|
-- If component clause present assume that's the problem
|
|
|
|
if Present (Component_Clause (C)) then
|
|
Error_Msg_Sloc := Sloc (Component_Clause (C));
|
|
Error_Msg_N ("\because of Component_Clause#", N);
|
|
return;
|
|
end if;
|
|
|
|
-- If pragma Pack clause present, assume that's the problem
|
|
|
|
if Is_Packed (Rec) then
|
|
P := Get_Rep_Pragma (Rec, Name_Pack);
|
|
|
|
if Present (P) then
|
|
Error_Msg_Sloc := Sloc (P);
|
|
Error_Msg_N ("\because of pragma Pack#", N);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
-- See if record has bad alignment clause
|
|
|
|
if Has_Alignment_Clause (Rec)
|
|
and then Known_Alignment (Rec)
|
|
and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
|
|
then
|
|
P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
|
|
|
|
if Present (P) then
|
|
Error_Msg_Sloc := Sloc (P);
|
|
Error_Msg_N ("\because of Alignment clause#", N);
|
|
end if;
|
|
end if;
|
|
|
|
-- Couldn't find a reason, so return without a message
|
|
|
|
return;
|
|
end Reason_Bad_Component;
|
|
|
|
-- Start of processing for Validate_Independence
|
|
|
|
begin
|
|
for J in Independence_Checks.First .. Independence_Checks.Last loop
|
|
N := Independence_Checks.Table (J).N;
|
|
E := Independence_Checks.Table (J).E;
|
|
IC := Pragma_Name (N) = Name_Independent_Components;
|
|
|
|
-- Deal with component case
|
|
|
|
if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
|
|
if not OK_Component (E) then
|
|
No_Independence;
|
|
Reason_Bad_Component (E);
|
|
goto Continue;
|
|
end if;
|
|
end if;
|
|
|
|
-- Deal with record with Independent_Components
|
|
|
|
if IC and then Is_Record_Type (E) then
|
|
Comp := First_Component_Or_Discriminant (E);
|
|
while Present (Comp) loop
|
|
if not OK_Component (Comp) then
|
|
No_Independence;
|
|
Reason_Bad_Component (Comp);
|
|
goto Continue;
|
|
end if;
|
|
|
|
Next_Component_Or_Discriminant (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Deal with address clause case
|
|
|
|
if Is_Object (E) then
|
|
Addr := Address_Clause (E);
|
|
|
|
if Present (Addr) then
|
|
No_Independence;
|
|
Error_Msg_Sloc := Sloc (Addr);
|
|
Error_Msg_N ("\because of Address clause#", N);
|
|
goto Continue;
|
|
end if;
|
|
end if;
|
|
|
|
-- Deal with independent components for array type
|
|
|
|
if IC and then Is_Array_Type (E) then
|
|
Check_Array_Type (E);
|
|
end if;
|
|
|
|
-- Deal with independent components for array object
|
|
|
|
if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
|
|
Check_Array_Type (Etype (E));
|
|
end if;
|
|
|
|
<<Continue>> null;
|
|
end loop;
|
|
end Validate_Independence;
|
|
|
|
-----------------------------------
|
|
-- Validate_Unchecked_Conversion --
|
|
-----------------------------------
|
|
|
|
procedure Validate_Unchecked_Conversion
|
|
(N : Node_Id;
|
|
Act_Unit : Entity_Id)
|
|
is
|
|
Source : Entity_Id;
|
|
Target : Entity_Id;
|
|
Vnode : Node_Id;
|
|
|
|
begin
|
|
-- Obtain source and target types. Note that we call Ancestor_Subtype
|
|
-- here because the processing for generic instantiation always makes
|
|
-- subtypes, and we want the original frozen actual types.
|
|
|
|
-- If we are dealing with private types, then do the check on their
|
|
-- fully declared counterparts if the full declarations have been
|
|
-- encountered (they don't have to be visible, but they must exist!)
|
|
|
|
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
|
|
|
|
if Is_Private_Type (Source)
|
|
and then Present (Underlying_Type (Source))
|
|
then
|
|
Source := Underlying_Type (Source);
|
|
end if;
|
|
|
|
Target := Ancestor_Subtype (Etype (Act_Unit));
|
|
|
|
-- If either type is generic, the instantiation happens within a generic
|
|
-- unit, and there is nothing to check. The proper check
|
|
-- will happen when the enclosing generic is instantiated.
|
|
|
|
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
|
|
return;
|
|
end if;
|
|
|
|
if Is_Private_Type (Target)
|
|
and then Present (Underlying_Type (Target))
|
|
then
|
|
Target := Underlying_Type (Target);
|
|
end if;
|
|
|
|
-- Source may be unconstrained array, but not target
|
|
|
|
if Is_Array_Type (Target)
|
|
and then not Is_Constrained (Target)
|
|
then
|
|
Error_Msg_N
|
|
("unchecked conversion to unconstrained array not allowed", N);
|
|
return;
|
|
end if;
|
|
|
|
-- Warn if conversion between two different convention pointers
|
|
|
|
if Is_Access_Type (Target)
|
|
and then Is_Access_Type (Source)
|
|
and then Convention (Target) /= Convention (Source)
|
|
and then Warn_On_Unchecked_Conversion
|
|
then
|
|
-- Give warnings for subprogram pointers only on most targets. The
|
|
-- exception is VMS, where data pointers can have different lengths
|
|
-- depending on the pointer convention.
|
|
|
|
if Is_Access_Subprogram_Type (Target)
|
|
or else Is_Access_Subprogram_Type (Source)
|
|
or else OpenVMS_On_Target
|
|
then
|
|
Error_Msg_N
|
|
("?conversion between pointers with different conventions!", N);
|
|
end if;
|
|
end if;
|
|
|
|
-- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
|
|
-- warning when compiling GNAT-related sources.
|
|
|
|
if Warn_On_Unchecked_Conversion
|
|
and then not In_Predefined_Unit (N)
|
|
and then RTU_Loaded (Ada_Calendar)
|
|
and then
|
|
(Chars (Source) = Name_Time
|
|
or else
|
|
Chars (Target) = Name_Time)
|
|
then
|
|
-- If Ada.Calendar is loaded and the name of one of the operands is
|
|
-- Time, there is a good chance that this is Ada.Calendar.Time.
|
|
|
|
declare
|
|
Calendar_Time : constant Entity_Id :=
|
|
Full_View (RTE (RO_CA_Time));
|
|
begin
|
|
pragma Assert (Present (Calendar_Time));
|
|
|
|
if Source = Calendar_Time
|
|
or else Target = Calendar_Time
|
|
then
|
|
Error_Msg_N
|
|
("?representation of 'Time values may change between " &
|
|
"'G'N'A'T versions", N);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Make entry in unchecked conversion table for later processing by
|
|
-- Validate_Unchecked_Conversions, which will check sizes and alignments
|
|
-- (using values set by the back-end where possible). This is only done
|
|
-- if the appropriate warning is active.
|
|
|
|
if Warn_On_Unchecked_Conversion then
|
|
Unchecked_Conversions.Append
|
|
(New_Val => UC_Entry'
|
|
(Eloc => Sloc (N),
|
|
Source => Source,
|
|
Target => Target));
|
|
|
|
-- If both sizes are known statically now, then back end annotation
|
|
-- is not required to do a proper check but if either size is not
|
|
-- known statically, then we need the annotation.
|
|
|
|
if Known_Static_RM_Size (Source)
|
|
and then Known_Static_RM_Size (Target)
|
|
then
|
|
null;
|
|
else
|
|
Back_Annotate_Rep_Info := True;
|
|
end if;
|
|
end if;
|
|
|
|
-- If unchecked conversion to access type, and access type is declared
|
|
-- in the same unit as the unchecked conversion, then set the
|
|
-- No_Strict_Aliasing flag (no strict aliasing is implicit in this
|
|
-- situation).
|
|
|
|
if Is_Access_Type (Target) and then
|
|
In_Same_Source_Unit (Target, N)
|
|
then
|
|
Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
|
|
end if;
|
|
|
|
-- Generate N_Validate_Unchecked_Conversion node for back end in
|
|
-- case the back end needs to perform special validation checks.
|
|
|
|
-- Shouldn't this be in Exp_Ch13, since the check only gets done
|
|
-- if we have full expansion and the back end is called ???
|
|
|
|
Vnode :=
|
|
Make_Validate_Unchecked_Conversion (Sloc (N));
|
|
Set_Source_Type (Vnode, Source);
|
|
Set_Target_Type (Vnode, Target);
|
|
|
|
-- If the unchecked conversion node is in a list, just insert before it.
|
|
-- If not we have some strange case, not worth bothering about.
|
|
|
|
if Is_List_Member (N) then
|
|
Insert_After (N, Vnode);
|
|
end if;
|
|
end Validate_Unchecked_Conversion;
|
|
|
|
------------------------------------
|
|
-- Validate_Unchecked_Conversions --
|
|
------------------------------------
|
|
|
|
procedure Validate_Unchecked_Conversions is
|
|
begin
|
|
for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
|
|
declare
|
|
T : UC_Entry renames Unchecked_Conversions.Table (N);
|
|
|
|
Eloc : constant Source_Ptr := T.Eloc;
|
|
Source : constant Entity_Id := T.Source;
|
|
Target : constant Entity_Id := T.Target;
|
|
|
|
Source_Siz : Uint;
|
|
Target_Siz : Uint;
|
|
|
|
begin
|
|
-- This validation check, which warns if we have unequal sizes for
|
|
-- unchecked conversion, and thus potentially implementation
|
|
-- dependent semantics, is one of the few occasions on which we
|
|
-- use the official RM size instead of Esize. See description in
|
|
-- Einfo "Handling of Type'Size Values" for details.
|
|
|
|
if Serious_Errors_Detected = 0
|
|
and then Known_Static_RM_Size (Source)
|
|
and then Known_Static_RM_Size (Target)
|
|
|
|
-- Don't do the check if warnings off for either type, note the
|
|
-- deliberate use of OR here instead of OR ELSE to get the flag
|
|
-- Warnings_Off_Used set for both types if appropriate.
|
|
|
|
and then not (Has_Warnings_Off (Source)
|
|
or
|
|
Has_Warnings_Off (Target))
|
|
then
|
|
Source_Siz := RM_Size (Source);
|
|
Target_Siz := RM_Size (Target);
|
|
|
|
if Source_Siz /= Target_Siz then
|
|
Error_Msg
|
|
("?types for unchecked conversion have different sizes!",
|
|
Eloc);
|
|
|
|
if All_Errors_Mode then
|
|
Error_Msg_Name_1 := Chars (Source);
|
|
Error_Msg_Uint_1 := Source_Siz;
|
|
Error_Msg_Name_2 := Chars (Target);
|
|
Error_Msg_Uint_2 := Target_Siz;
|
|
Error_Msg ("\size of % is ^, size of % is ^?", Eloc);
|
|
|
|
Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
|
|
|
|
if Is_Discrete_Type (Source)
|
|
and then Is_Discrete_Type (Target)
|
|
then
|
|
if Source_Siz > Target_Siz then
|
|
Error_Msg
|
|
("\?^ high order bits of source will be ignored!",
|
|
Eloc);
|
|
|
|
elsif Is_Unsigned_Type (Source) then
|
|
Error_Msg
|
|
("\?source will be extended with ^ high order " &
|
|
"zero bits?!", Eloc);
|
|
|
|
else
|
|
Error_Msg
|
|
("\?source will be extended with ^ high order " &
|
|
"sign bits!",
|
|
Eloc);
|
|
end if;
|
|
|
|
elsif Source_Siz < Target_Siz then
|
|
if Is_Discrete_Type (Target) then
|
|
if Bytes_Big_Endian then
|
|
Error_Msg
|
|
("\?target value will include ^ undefined " &
|
|
"low order bits!",
|
|
Eloc);
|
|
else
|
|
Error_Msg
|
|
("\?target value will include ^ undefined " &
|
|
"high order bits!",
|
|
Eloc);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg
|
|
("\?^ trailing bits of target value will be " &
|
|
"undefined!", Eloc);
|
|
end if;
|
|
|
|
else pragma Assert (Source_Siz > Target_Siz);
|
|
Error_Msg
|
|
("\?^ trailing bits of source will be ignored!",
|
|
Eloc);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- If both types are access types, we need to check the alignment.
|
|
-- If the alignment of both is specified, we can do it here.
|
|
|
|
if Serious_Errors_Detected = 0
|
|
and then Ekind (Source) in Access_Kind
|
|
and then Ekind (Target) in Access_Kind
|
|
and then Target_Strict_Alignment
|
|
and then Present (Designated_Type (Source))
|
|
and then Present (Designated_Type (Target))
|
|
then
|
|
declare
|
|
D_Source : constant Entity_Id := Designated_Type (Source);
|
|
D_Target : constant Entity_Id := Designated_Type (Target);
|
|
|
|
begin
|
|
if Known_Alignment (D_Source)
|
|
and then Known_Alignment (D_Target)
|
|
then
|
|
declare
|
|
Source_Align : constant Uint := Alignment (D_Source);
|
|
Target_Align : constant Uint := Alignment (D_Target);
|
|
|
|
begin
|
|
if Source_Align < Target_Align
|
|
and then not Is_Tagged_Type (D_Source)
|
|
|
|
-- Suppress warning if warnings suppressed on either
|
|
-- type or either designated type. Note the use of
|
|
-- OR here instead of OR ELSE. That is intentional,
|
|
-- we would like to set flag Warnings_Off_Used in
|
|
-- all types for which warnings are suppressed.
|
|
|
|
and then not (Has_Warnings_Off (D_Source)
|
|
or
|
|
Has_Warnings_Off (D_Target)
|
|
or
|
|
Has_Warnings_Off (Source)
|
|
or
|
|
Has_Warnings_Off (Target))
|
|
then
|
|
Error_Msg_Uint_1 := Target_Align;
|
|
Error_Msg_Uint_2 := Source_Align;
|
|
Error_Msg_Node_1 := D_Target;
|
|
Error_Msg_Node_2 := D_Source;
|
|
Error_Msg
|
|
("?alignment of & (^) is stricter than " &
|
|
"alignment of & (^)!", Eloc);
|
|
Error_Msg
|
|
("\?resulting access value may have invalid " &
|
|
"alignment!", Eloc);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
end Validate_Unchecked_Conversions;
|
|
|
|
end Sem_Ch13;
|