8sa1-gcc/gcc/config/i386/gmon-sol2.c
Jason Merrill a819692432 gmon.c, [...]: Remove advertising clause from BSD license
* gmon.c, i386/gmon-sol2.c, sparc/gmon-sol2.c: Remove advertising
        clause from BSD license

From-SVN: r30621
1999-11-22 13:40:20 -05:00

407 lines
10 KiB
C

/*-
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. [rescinded 22 July 1999]
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This is a modified gmon.c by J.W.Hawtin <oolon@ankh.org>,
* 14/8/96 based on the original gmon.c in GCC and the hacked version
* solaris 2 sparc version (config/sparc/gmon-sol.c) by Mark Eichin. To do
* process profiling on solaris 2.X X86
*
* It must be used in conjunction with sol2-gc1.asm, which is used to start
* and stop process monitoring.
*
* Differences.
*
* On Solaris 2 _mcount is called by library functions not mcount, so support
* has been added for both.
*
* Also the prototype for profil() is different
*
* Solaris 2 does not seem to have char *minbrk whcih allows the setting of
* the minimum SBRK region so this code has been removed and lets pray malloc
* does not mess it up.
*
* Notes
*
* This code could easily be integrated with the original gmon.c and perhaps
* should be.
*/
#ifndef lint
static char sccsid[] = "@(#)gmon.c 5.3 (Berkeley) 5/22/91";
#endif /* not lint */
#if 0
#include <unistd.h>
#endif
#ifdef DEBUG
#include <stdio.h>
#endif
#if 0
#include "i386/gmon.h"
#else
struct phdr {
char *lpc;
char *hpc;
int ncnt;
};
#define HISTFRACTION 2
#define HISTCOUNTER unsigned short
#define HASHFRACTION 1
#define ARCDENSITY 2
#define MINARCS 50
#define BASEADDRESS 0x8000000 /* On Solaris 2 X86 all executables start here
and not at 0 */
struct tostruct {
char *selfpc;
long count;
unsigned short link;
};
struct rawarc {
unsigned long raw_frompc;
unsigned long raw_selfpc;
long raw_count;
};
#define ROUNDDOWN(x,y) (((x)/(y))*(y))
#define ROUNDUP(x,y) ((((x)+(y)-1)/(y))*(y))
#endif
/* char *minbrk; */
#ifdef __alpha
extern char *sbrk ();
#endif
/*
* froms is actually a bunch of unsigned shorts indexing tos
*/
static int profiling = 3;
static unsigned short *froms;
static struct tostruct *tos = 0;
static long tolimit = 0;
static char *s_lowpc = 0;
static char *s_highpc = 0;
static unsigned long s_textsize = 0;
static int ssiz;
static char *sbuf;
static int s_scale;
/* see profil(2) where this is describe (incorrectly) */
#define SCALE_1_TO_1 0x10000L
#define MSG "No space for profiling buffer(s)\n"
extern int errno;
monstartup(lowpc, highpc)
char *lowpc;
char *highpc;
{
int monsize;
char *buffer;
register int o;
/*
* round lowpc and highpc to multiples of the density we're using
* so the rest of the scaling (here and in gprof) stays in ints.
*/
lowpc = (char *)
ROUNDDOWN((unsigned)lowpc, HISTFRACTION*sizeof(HISTCOUNTER));
s_lowpc = lowpc;
highpc = (char *)
ROUNDUP((unsigned)highpc, HISTFRACTION*sizeof(HISTCOUNTER));
s_highpc = highpc;
s_textsize = highpc - lowpc;
monsize = (s_textsize / HISTFRACTION) + sizeof(struct phdr);
buffer = (char *) sbrk( monsize );
if ( buffer == (char *) -1 ) {
write( 2 , MSG , sizeof(MSG) );
return;
}
froms = (unsigned short *) sbrk( s_textsize / HASHFRACTION );
if ( froms == (unsigned short *) -1 ) {
write( 2 , MSG , sizeof(MSG) );
froms = 0;
return;
}
tolimit = s_textsize * ARCDENSITY / 100;
if ( tolimit < MINARCS ) {
tolimit = MINARCS;
} else if ( tolimit > 65534 ) {
tolimit = 65534;
}
tos = (struct tostruct *) sbrk( tolimit * sizeof( struct tostruct ) );
if ( tos == (struct tostruct *) -1 ) {
write( 2 , MSG , sizeof(MSG) );
froms = 0;
tos = 0;
return;
}
/* minbrk = (char *) sbrk(0);*/
tos[0].link = 0;
sbuf = buffer;
ssiz = monsize;
( (struct phdr *) buffer ) -> lpc = lowpc;
( (struct phdr *) buffer ) -> hpc = highpc;
( (struct phdr *) buffer ) -> ncnt = ssiz;
monsize -= sizeof(struct phdr);
if ( monsize <= 0 )
return;
o = highpc - lowpc;
if( monsize < o )
#ifndef hp300
s_scale = ( (float) monsize / o ) * SCALE_1_TO_1;
#else /* avoid floating point */
{
int quot = o / monsize;
if (quot >= 0x10000)
s_scale = 1;
else if (quot >= 0x100)
s_scale = 0x10000 / quot;
else if (o >= 0x800000)
s_scale = 0x1000000 / (o / (monsize >> 8));
else
s_scale = 0x1000000 / ((o << 8) / monsize);
}
#endif
else
s_scale = SCALE_1_TO_1;
moncontrol(1);
}
_mcleanup()
{
int fd;
int fromindex;
int endfrom;
char *frompc;
int toindex;
struct rawarc rawarc;
moncontrol(0);
fd = creat( "gmon.out" , 0666 );
if ( fd < 0 ) {
perror( "mcount: gmon.out" );
return;
}
# ifdef DEBUG
fprintf( stderr , "[mcleanup] sbuf 0x%x ssiz %d\n" , sbuf , ssiz );
# endif DEBUG
write( fd , sbuf , ssiz );
endfrom = s_textsize / (HASHFRACTION * sizeof(*froms));
for ( fromindex = 0 ; fromindex < endfrom ; fromindex++ ) {
if ( froms[fromindex] == 0 ) {
continue;
}
frompc = s_lowpc + (fromindex * HASHFRACTION * sizeof(*froms));
for (toindex=froms[fromindex]; toindex!=0; toindex=tos[toindex].link) {
# ifdef DEBUG
fprintf( stderr ,
"[mcleanup] frompc 0x%x selfpc 0x%x count %d\n" ,
frompc , tos[toindex].selfpc , tos[toindex].count );
# endif DEBUG
rawarc.raw_frompc = (unsigned long) frompc;
rawarc.raw_selfpc = (unsigned long) tos[toindex].selfpc;
rawarc.raw_count = tos[toindex].count;
write( fd , &rawarc , sizeof rawarc );
}
}
close( fd );
}
/* Solaris 2 libraries use _mcount. */
asm(".globl _mcount; _mcount: jmp internal_mcount");
/* This is for compatibility with old versions of gcc which used mcount. */
asm(".globl mcount; mcount: jmp internal_mcount");
internal_mcount()
{
register char *selfpc;
register unsigned short *frompcindex;
register struct tostruct *top;
register struct tostruct *prevtop;
register long toindex;
static char already_setup;
/*
* find the return address for mcount,
* and the return address for mcount's caller.
*/
/* selfpc = pc pushed by mcount call.
This identifies the function that was just entered. */
selfpc = (void *) __builtin_return_address (0);
/* frompcindex = pc in preceding frame.
This identifies the caller of the function just entered. */
frompcindex = (void *) __builtin_return_address (1);
if(!already_setup) {
extern etext();
already_setup = 1;
/* monstartup(0, etext); */
monstartup(0x08040000, etext);
#ifdef USE_ONEXIT
on_exit(_mcleanup, 0);
#else
atexit(_mcleanup);
#endif
}
/*
* check that we are profiling
* and that we aren't recursively invoked.
*/
if (profiling) {
goto out;
}
profiling++;
/*
* check that frompcindex is a reasonable pc value.
* for example: signal catchers get called from the stack,
* not from text space. too bad.
*/
frompcindex = (unsigned short *)((long)frompcindex - (long)s_lowpc);
if ((unsigned long)frompcindex > s_textsize) {
goto done;
}
frompcindex =
&froms[((long)frompcindex) / (HASHFRACTION * sizeof(*froms))];
toindex = *frompcindex;
if (toindex == 0) {
/*
* first time traversing this arc
*/
toindex = ++tos[0].link;
if (toindex >= tolimit) {
goto overflow;
}
*frompcindex = toindex;
top = &tos[toindex];
top->selfpc = selfpc;
top->count = 1;
top->link = 0;
goto done;
}
top = &tos[toindex];
if (top->selfpc == selfpc) {
/*
* arc at front of chain; usual case.
*/
top->count++;
goto done;
}
/*
* have to go looking down chain for it.
* top points to what we are looking at,
* prevtop points to previous top.
* we know it is not at the head of the chain.
*/
for (; /* goto done */; ) {
if (top->link == 0) {
/*
* top is end of the chain and none of the chain
* had top->selfpc == selfpc.
* so we allocate a new tostruct
* and link it to the head of the chain.
*/
toindex = ++tos[0].link;
if (toindex >= tolimit) {
goto overflow;
}
top = &tos[toindex];
top->selfpc = selfpc;
top->count = 1;
top->link = *frompcindex;
*frompcindex = toindex;
goto done;
}
/*
* otherwise, check the next arc on the chain.
*/
prevtop = top;
top = &tos[top->link];
if (top->selfpc == selfpc) {
/*
* there it is.
* increment its count
* move it to the head of the chain.
*/
top->count++;
toindex = prevtop->link;
prevtop->link = top->link;
top->link = *frompcindex;
*frompcindex = toindex;
goto done;
}
}
done:
profiling--;
/* and fall through */
out:
return; /* normal return restores saved registers */
overflow:
profiling++; /* halt further profiling */
# define TOLIMIT "mcount: tos overflow\n"
write(2, TOLIMIT, sizeof(TOLIMIT));
goto out;
}
/*
* Control profiling
* profiling is what mcount checks to see if
* all the data structures are ready.
*/
moncontrol(mode)
int mode;
{
if (mode)
{
/* start */
profil((unsigned short *)(sbuf + sizeof(struct phdr)),
ssiz - sizeof(struct phdr),
(int)s_lowpc, s_scale);
profiling = 0;
} else {
/* stop */
profil((unsigned short *)0, 0, 0, 0);
profiling = 3;
}
}