4e61a9695a
* call.c (build_method_call): Remove bogus code for two-argument delete. * init.c (build_new_1): Expand on comment, and remove dead code. From-SVN: r27547
4389 lines
126 KiB
C
4389 lines
126 KiB
C
/* Functions related to invoking methods and overloaded functions.
|
|
Copyright (C) 1987, 92-97, 1998, 1999 Free Software Foundation, Inc.
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com) and
|
|
modified by Brendan Kehoe (brendan@cygnus.com).
|
|
|
|
This file is part of GNU CC.
|
|
|
|
GNU CC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU CC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU CC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
/* High-level class interface. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "tree.h"
|
|
#include "cp-tree.h"
|
|
#include "output.h"
|
|
#include "flags.h"
|
|
#include "rtl.h"
|
|
#include "toplev.h"
|
|
|
|
#include "obstack.h"
|
|
#define obstack_chunk_alloc xmalloc
|
|
#define obstack_chunk_free free
|
|
|
|
extern int inhibit_warnings;
|
|
extern tree ctor_label, dtor_label;
|
|
|
|
static tree build_new_method_call PROTO((tree, tree, tree, tree, int));
|
|
|
|
static tree build_field_call PROTO((tree, tree, tree, tree));
|
|
static struct z_candidate * tourney PROTO((struct z_candidate *));
|
|
static int joust PROTO((struct z_candidate *, struct z_candidate *, int));
|
|
static int compare_ics PROTO((tree, tree));
|
|
static tree build_over_call PROTO((struct z_candidate *, tree, int));
|
|
static tree convert_like PROTO((tree, tree));
|
|
static void op_error PROTO((enum tree_code, enum tree_code, tree, tree,
|
|
tree, const char *));
|
|
static tree build_object_call PROTO((tree, tree));
|
|
static tree resolve_args PROTO((tree));
|
|
static struct z_candidate * build_user_type_conversion_1
|
|
PROTO ((tree, tree, int));
|
|
static void print_z_candidates PROTO((struct z_candidate *));
|
|
static tree build_this PROTO((tree));
|
|
static struct z_candidate * splice_viable PROTO((struct z_candidate *));
|
|
static int any_viable PROTO((struct z_candidate *));
|
|
static struct z_candidate * add_template_candidate
|
|
PROTO((struct z_candidate *, tree, tree, tree, tree, int,
|
|
unification_kind_t));
|
|
static struct z_candidate * add_template_candidate_real
|
|
PROTO((struct z_candidate *, tree, tree, tree, tree, int,
|
|
tree, unification_kind_t));
|
|
static struct z_candidate * add_template_conv_candidate
|
|
PROTO((struct z_candidate *, tree, tree, tree, tree));
|
|
static struct z_candidate * add_builtin_candidates
|
|
PROTO((struct z_candidate *, enum tree_code, enum tree_code,
|
|
tree, tree *, int));
|
|
static struct z_candidate * add_builtin_candidate
|
|
PROTO((struct z_candidate *, enum tree_code, enum tree_code,
|
|
tree, tree, tree, tree *, tree *, int));
|
|
static int is_complete PROTO((tree));
|
|
static struct z_candidate * build_builtin_candidate
|
|
PROTO((struct z_candidate *, tree, tree, tree, tree *, tree *,
|
|
int));
|
|
static struct z_candidate * add_conv_candidate
|
|
PROTO((struct z_candidate *, tree, tree, tree));
|
|
static struct z_candidate * add_function_candidate
|
|
PROTO((struct z_candidate *, tree, tree, int));
|
|
static tree implicit_conversion PROTO((tree, tree, tree, int));
|
|
static tree standard_conversion PROTO((tree, tree, tree));
|
|
static tree reference_binding PROTO((tree, tree, tree, int));
|
|
static tree strip_top_quals PROTO((tree));
|
|
static tree non_reference PROTO((tree));
|
|
static tree build_conv PROTO((enum tree_code, tree, tree));
|
|
static int is_subseq PROTO((tree, tree));
|
|
static int maybe_handle_ref_bind PROTO((tree*, tree*));
|
|
static void maybe_handle_implicit_object PROTO((tree*));
|
|
static struct z_candidate * add_candidate PROTO((struct z_candidate *,
|
|
tree, tree, int));
|
|
static tree source_type PROTO((tree));
|
|
static void add_warning PROTO((struct z_candidate *, struct z_candidate *));
|
|
|
|
tree
|
|
build_vfield_ref (datum, type)
|
|
tree datum, type;
|
|
{
|
|
tree rval;
|
|
|
|
if (datum == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
if (TREE_CODE (TREE_TYPE (datum)) == REFERENCE_TYPE)
|
|
datum = convert_from_reference (datum);
|
|
|
|
if (! TYPE_USES_COMPLEX_INHERITANCE (type))
|
|
rval = build (COMPONENT_REF, TREE_TYPE (CLASSTYPE_VFIELD (type)),
|
|
datum, CLASSTYPE_VFIELD (type));
|
|
else
|
|
rval = build_component_ref (datum, DECL_NAME (CLASSTYPE_VFIELD (type)), NULL_TREE, 0);
|
|
|
|
return rval;
|
|
}
|
|
|
|
/* Build a call to a member of an object. I.e., one that overloads
|
|
operator ()(), or is a pointer-to-function or pointer-to-method. */
|
|
|
|
static tree
|
|
build_field_call (basetype_path, instance_ptr, name, parms)
|
|
tree basetype_path, instance_ptr, name, parms;
|
|
{
|
|
tree field, instance;
|
|
|
|
if (name == ctor_identifier || name == dtor_identifier)
|
|
return NULL_TREE;
|
|
|
|
/* Speed up the common case. */
|
|
if (instance_ptr == current_class_ptr
|
|
&& IDENTIFIER_CLASS_VALUE (name) == NULL_TREE)
|
|
return NULL_TREE;
|
|
|
|
field = lookup_field (basetype_path, name, 1, 0);
|
|
|
|
if (field == error_mark_node || field == NULL_TREE)
|
|
return field;
|
|
|
|
if (TREE_CODE (field) == FIELD_DECL || TREE_CODE (field) == VAR_DECL)
|
|
{
|
|
/* If it's a field, try overloading operator (),
|
|
or calling if the field is a pointer-to-function. */
|
|
instance = build_indirect_ref (instance_ptr, NULL_PTR);
|
|
instance = build_component_ref_1 (instance, field, 0);
|
|
|
|
if (instance == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
if (IS_AGGR_TYPE (TREE_TYPE (instance)))
|
|
return build_opfncall (CALL_EXPR, LOOKUP_NORMAL,
|
|
instance, parms, NULL_TREE);
|
|
else if (TREE_CODE (TREE_TYPE (instance)) == POINTER_TYPE)
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance))) == FUNCTION_TYPE)
|
|
return build_function_call (instance, parms);
|
|
else if (TREE_CODE (TREE_TYPE (TREE_TYPE (instance)))
|
|
== METHOD_TYPE)
|
|
return build_function_call
|
|
(instance, expr_tree_cons (NULL_TREE, instance_ptr, parms));
|
|
}
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Returns nonzero iff the destructor name specified in NAME
|
|
(a BIT_NOT_EXPR) matches BASETYPE. The operand of NAME can take many
|
|
forms... */
|
|
|
|
int
|
|
check_dtor_name (basetype, name)
|
|
tree basetype, name;
|
|
{
|
|
name = TREE_OPERAND (name, 0);
|
|
|
|
/* Just accept something we've already complained about. */
|
|
if (name == error_mark_node)
|
|
return 1;
|
|
|
|
if (TREE_CODE (name) == TYPE_DECL)
|
|
name = TREE_TYPE (name);
|
|
else if (TREE_CODE_CLASS (TREE_CODE (name)) == 't')
|
|
/* OK */;
|
|
else if (TREE_CODE (name) == IDENTIFIER_NODE)
|
|
{
|
|
if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
|
|
|| (TREE_CODE (basetype) == ENUMERAL_TYPE
|
|
&& name == TYPE_IDENTIFIER (basetype)))
|
|
name = basetype;
|
|
else
|
|
name = get_type_value (name);
|
|
}
|
|
else
|
|
my_friendly_abort (980605);
|
|
|
|
if (name && TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (name))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Build a method call of the form `EXP->SCOPES::NAME (PARMS)'.
|
|
This is how virtual function calls are avoided. */
|
|
|
|
tree
|
|
build_scoped_method_call (exp, basetype, name, parms)
|
|
tree exp, basetype, name, parms;
|
|
{
|
|
/* Because this syntactic form does not allow
|
|
a pointer to a base class to be `stolen',
|
|
we need not protect the derived->base conversion
|
|
that happens here.
|
|
|
|
@@ But we do have to check access privileges later. */
|
|
tree binfo, decl;
|
|
tree type = TREE_TYPE (exp);
|
|
|
|
if (type == error_mark_node
|
|
|| basetype == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
if (processing_template_decl)
|
|
{
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
|
|
{
|
|
tree type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
|
|
if (type)
|
|
name = build_min_nt (BIT_NOT_EXPR, type);
|
|
}
|
|
name = build_min_nt (SCOPE_REF, basetype, name);
|
|
return build_min_nt (METHOD_CALL_EXPR, name, exp, parms, NULL_TREE);
|
|
}
|
|
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
|
type = TREE_TYPE (type);
|
|
|
|
if (TREE_CODE (basetype) == TREE_VEC)
|
|
{
|
|
binfo = basetype;
|
|
basetype = BINFO_TYPE (binfo);
|
|
}
|
|
else
|
|
binfo = NULL_TREE;
|
|
|
|
/* Check the destructor call syntax. */
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
|
{
|
|
/* We can get here if someone writes their destructor call like
|
|
`obj.NS::~T()'; this isn't really a scoped method call, so hand
|
|
it off. */
|
|
if (TREE_CODE (basetype) == NAMESPACE_DECL)
|
|
return build_method_call (exp, name, parms, NULL_TREE, LOOKUP_NORMAL);
|
|
|
|
if (! check_dtor_name (basetype, name))
|
|
cp_error ("qualified type `%T' does not match destructor name `~%T'",
|
|
basetype, TREE_OPERAND (name, 0));
|
|
|
|
/* Destructors can be "called" for simple types; see 5.2.4 and 12.4 Note
|
|
that explicit ~int is caught in the parser; this deals with typedefs
|
|
and template parms. */
|
|
if (! IS_AGGR_TYPE (basetype))
|
|
{
|
|
if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (basetype))
|
|
cp_error ("type of `%E' does not match destructor type `%T' (type was `%T')",
|
|
exp, basetype, type);
|
|
|
|
return cp_convert (void_type_node, exp);
|
|
}
|
|
}
|
|
|
|
if (! is_aggr_type (basetype, 1))
|
|
return error_mark_node;
|
|
|
|
if (! IS_AGGR_TYPE (type))
|
|
{
|
|
cp_error ("base object `%E' of scoped method call is of non-aggregate type `%T'",
|
|
exp, type);
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (! binfo)
|
|
{
|
|
binfo = get_binfo (basetype, type, 1);
|
|
if (binfo == error_mark_node)
|
|
return error_mark_node;
|
|
if (! binfo)
|
|
error_not_base_type (basetype, type);
|
|
}
|
|
|
|
if (binfo)
|
|
{
|
|
if (TREE_CODE (exp) == INDIRECT_REF)
|
|
decl = build_indirect_ref
|
|
(convert_pointer_to_real
|
|
(binfo, build_unary_op (ADDR_EXPR, exp, 0)), NULL_PTR);
|
|
else
|
|
decl = build_scoped_ref (exp, basetype);
|
|
|
|
/* Call to a destructor. */
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
|
{
|
|
if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (decl)))
|
|
return cp_convert (void_type_node, exp);
|
|
|
|
return build_delete (TREE_TYPE (decl), decl, integer_two_node,
|
|
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR,
|
|
0);
|
|
}
|
|
|
|
/* Call to a method. */
|
|
return build_method_call (decl, name, parms, binfo,
|
|
LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
|
|
}
|
|
return error_mark_node;
|
|
}
|
|
|
|
/* We want the address of a function or method. We avoid creating a
|
|
pointer-to-member function. */
|
|
|
|
tree
|
|
build_addr_func (function)
|
|
tree function;
|
|
{
|
|
tree type = TREE_TYPE (function);
|
|
|
|
/* We have to do these by hand to avoid real pointer to member
|
|
functions. */
|
|
if (TREE_CODE (type) == METHOD_TYPE)
|
|
{
|
|
tree addr;
|
|
|
|
type = build_pointer_type (type);
|
|
|
|
if (mark_addressable (function) == 0)
|
|
return error_mark_node;
|
|
|
|
addr = build1 (ADDR_EXPR, type, function);
|
|
|
|
/* Address of a static or external variable or function counts
|
|
as a constant */
|
|
if (staticp (function))
|
|
TREE_CONSTANT (addr) = 1;
|
|
|
|
function = addr;
|
|
}
|
|
else
|
|
function = default_conversion (function);
|
|
|
|
return function;
|
|
}
|
|
|
|
/* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
|
|
POINTER_TYPE to those. Note, pointer to member function types
|
|
(TYPE_PTRMEMFUNC_P) must be handled by our callers. */
|
|
|
|
tree
|
|
build_call (function, result_type, parms)
|
|
tree function, result_type, parms;
|
|
{
|
|
int is_constructor = 0;
|
|
tree tmp;
|
|
tree decl;
|
|
|
|
function = build_addr_func (function);
|
|
|
|
if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
|
|
{
|
|
sorry ("unable to call pointer to member function here");
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (TREE_CODE (function) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
|
|
decl = TREE_OPERAND (function, 0);
|
|
else
|
|
decl = NULL_TREE;
|
|
|
|
if (decl && DECL_CONSTRUCTOR_P (decl))
|
|
is_constructor = 1;
|
|
|
|
if (decl)
|
|
my_friendly_assert (TREE_USED (decl), 990125);
|
|
|
|
/* Don't pass empty class objects by value. This is useful
|
|
for tags in STL, which are used to control overload resolution.
|
|
We don't need to handle other cases of copying empty classes. */
|
|
if (! decl || ! DECL_BUILT_IN (decl))
|
|
for (tmp = parms; tmp; tmp = TREE_CHAIN (tmp))
|
|
if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp)))
|
|
&& ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp))))
|
|
{
|
|
tree t = make_node (RTL_EXPR);
|
|
TREE_TYPE (t) = TREE_TYPE (TREE_VALUE (tmp));
|
|
RTL_EXPR_RTL (t) = const0_rtx;
|
|
RTL_EXPR_SEQUENCE (t) = NULL_RTX;
|
|
TREE_VALUE (tmp) = build (COMPOUND_EXPR, TREE_TYPE (t),
|
|
TREE_VALUE (tmp), t);
|
|
}
|
|
|
|
function = build_nt (CALL_EXPR, function, parms, NULL_TREE);
|
|
TREE_HAS_CONSTRUCTOR (function) = is_constructor;
|
|
TREE_TYPE (function) = result_type;
|
|
TREE_SIDE_EFFECTS (function) = 1;
|
|
|
|
return function;
|
|
}
|
|
|
|
/* Build something of the form ptr->method (args)
|
|
or object.method (args). This can also build
|
|
calls to constructors, and find friends.
|
|
|
|
Member functions always take their class variable
|
|
as a pointer.
|
|
|
|
INSTANCE is a class instance.
|
|
|
|
NAME is the name of the method desired, usually an IDENTIFIER_NODE.
|
|
|
|
PARMS help to figure out what that NAME really refers to.
|
|
|
|
BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
|
|
down to the real instance type to use for access checking. We need this
|
|
information to get protected accesses correct. This parameter is used
|
|
by build_member_call.
|
|
|
|
FLAGS is the logical disjunction of zero or more LOOKUP_
|
|
flags. See cp-tree.h for more info.
|
|
|
|
If this is all OK, calls build_function_call with the resolved
|
|
member function.
|
|
|
|
This function must also handle being called to perform
|
|
initialization, promotion/coercion of arguments, and
|
|
instantiation of default parameters.
|
|
|
|
Note that NAME may refer to an instance variable name. If
|
|
`operator()()' is defined for the type of that field, then we return
|
|
that result. */
|
|
|
|
tree
|
|
build_method_call (instance, name, parms, basetype_path, flags)
|
|
tree instance, name, parms, basetype_path;
|
|
int flags;
|
|
{
|
|
tree basetype, instance_ptr;
|
|
|
|
#ifdef GATHER_STATISTICS
|
|
n_build_method_call++;
|
|
#endif
|
|
|
|
if (instance == error_mark_node
|
|
|| name == error_mark_node
|
|
|| parms == error_mark_node
|
|
|| (instance != NULL_TREE && TREE_TYPE (instance) == error_mark_node))
|
|
return error_mark_node;
|
|
|
|
if (processing_template_decl)
|
|
{
|
|
/* We need to process template parm names here so that tsubst catches
|
|
them properly. Other type names can wait. */
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
|
{
|
|
tree type = NULL_TREE;
|
|
|
|
if (TREE_CODE (TREE_OPERAND (name, 0)) == IDENTIFIER_NODE)
|
|
type = get_aggr_from_typedef (TREE_OPERAND (name, 0), 0);
|
|
else if (TREE_CODE (TREE_OPERAND (name, 0)) == TYPE_DECL)
|
|
type = TREE_TYPE (TREE_OPERAND (name, 0));
|
|
|
|
if (type && TREE_CODE (type) == TEMPLATE_TYPE_PARM)
|
|
name = build_min_nt (BIT_NOT_EXPR, type);
|
|
}
|
|
|
|
return build_min_nt (METHOD_CALL_EXPR, name, instance, parms, NULL_TREE);
|
|
}
|
|
|
|
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
|
{
|
|
if (parms)
|
|
error ("destructors take no parameters");
|
|
basetype = TREE_TYPE (instance);
|
|
if (TREE_CODE (basetype) == REFERENCE_TYPE)
|
|
basetype = TREE_TYPE (basetype);
|
|
|
|
if (! check_dtor_name (basetype, name))
|
|
cp_error
|
|
("destructor name `~%T' does not match type `%T' of expression",
|
|
TREE_OPERAND (name, 0), basetype);
|
|
|
|
if (! TYPE_HAS_DESTRUCTOR (complete_type (basetype)))
|
|
return cp_convert (void_type_node, instance);
|
|
instance = default_conversion (instance);
|
|
instance_ptr = build_unary_op (ADDR_EXPR, instance, 0);
|
|
return build_delete (build_pointer_type (basetype),
|
|
instance_ptr, integer_two_node,
|
|
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
|
|
}
|
|
|
|
return build_new_method_call (instance, name, parms, basetype_path, flags);
|
|
}
|
|
|
|
/* New overloading code. */
|
|
|
|
struct z_candidate {
|
|
tree fn;
|
|
tree convs;
|
|
tree second_conv;
|
|
int viable;
|
|
tree basetype_path;
|
|
tree template;
|
|
tree warnings;
|
|
struct z_candidate *next;
|
|
};
|
|
|
|
#define IDENTITY_RANK 0
|
|
#define EXACT_RANK 1
|
|
#define PROMO_RANK 2
|
|
#define STD_RANK 3
|
|
#define PBOOL_RANK 4
|
|
#define USER_RANK 5
|
|
#define ELLIPSIS_RANK 6
|
|
#define BAD_RANK 7
|
|
|
|
#define ICS_RANK(NODE) \
|
|
(ICS_BAD_FLAG (NODE) ? BAD_RANK \
|
|
: ICS_ELLIPSIS_FLAG (NODE) ? ELLIPSIS_RANK \
|
|
: ICS_USER_FLAG (NODE) ? USER_RANK \
|
|
: ICS_STD_RANK (NODE))
|
|
|
|
#define ICS_STD_RANK(NODE) TREE_COMPLEXITY (NODE)
|
|
|
|
#define ICS_USER_FLAG(NODE) TREE_LANG_FLAG_0 (NODE)
|
|
#define ICS_ELLIPSIS_FLAG(NODE) TREE_LANG_FLAG_1 (NODE)
|
|
#define ICS_THIS_FLAG(NODE) TREE_LANG_FLAG_2 (NODE)
|
|
#define ICS_BAD_FLAG(NODE) TREE_LANG_FLAG_3 (NODE)
|
|
|
|
#define USER_CONV_CAND(NODE) \
|
|
((struct z_candidate *)WRAPPER_PTR (TREE_OPERAND (NODE, 1)))
|
|
#define USER_CONV_FN(NODE) (USER_CONV_CAND (NODE)->fn)
|
|
|
|
int
|
|
null_ptr_cst_p (t)
|
|
tree t;
|
|
{
|
|
if (t == null_node
|
|
|| (integer_zerop (t) && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static tree
|
|
build_conv (code, type, from)
|
|
enum tree_code code;
|
|
tree type, from;
|
|
{
|
|
tree t = build1 (code, type, from);
|
|
int rank = ICS_STD_RANK (from);
|
|
switch (code)
|
|
{
|
|
case PTR_CONV:
|
|
case PMEM_CONV:
|
|
case BASE_CONV:
|
|
case STD_CONV:
|
|
if (rank < STD_RANK)
|
|
rank = STD_RANK;
|
|
break;
|
|
|
|
case QUAL_CONV:
|
|
if (rank < EXACT_RANK)
|
|
rank = EXACT_RANK;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
ICS_STD_RANK (t) = rank;
|
|
ICS_USER_FLAG (t) = ICS_USER_FLAG (from);
|
|
ICS_BAD_FLAG (t) = ICS_BAD_FLAG (from);
|
|
return t;
|
|
}
|
|
|
|
static tree
|
|
non_reference (t)
|
|
tree t;
|
|
{
|
|
if (TREE_CODE (t) == REFERENCE_TYPE)
|
|
t = TREE_TYPE (t);
|
|
return t;
|
|
}
|
|
|
|
static tree
|
|
strip_top_quals (t)
|
|
tree t;
|
|
{
|
|
if (TREE_CODE (t) == ARRAY_TYPE)
|
|
return t;
|
|
return TYPE_MAIN_VARIANT (t);
|
|
}
|
|
|
|
/* Returns the standard conversion path (see [conv]) from type FROM to type
|
|
TO, if any. For proper handling of null pointer constants, you must
|
|
also pass the expression EXPR to convert from. */
|
|
|
|
static tree
|
|
standard_conversion (to, from, expr)
|
|
tree to, from, expr;
|
|
{
|
|
enum tree_code fcode, tcode;
|
|
tree conv;
|
|
int fromref = 0;
|
|
|
|
if (TREE_CODE (to) == REFERENCE_TYPE)
|
|
to = TREE_TYPE (to);
|
|
if (TREE_CODE (from) == REFERENCE_TYPE)
|
|
{
|
|
fromref = 1;
|
|
from = TREE_TYPE (from);
|
|
}
|
|
to = strip_top_quals (to);
|
|
from = strip_top_quals (from);
|
|
|
|
if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
|
|
&& expr && type_unknown_p (expr))
|
|
{
|
|
expr = instantiate_type (to, expr, 0);
|
|
if (expr == error_mark_node)
|
|
return NULL_TREE;
|
|
from = TREE_TYPE (expr);
|
|
}
|
|
|
|
fcode = TREE_CODE (from);
|
|
tcode = TREE_CODE (to);
|
|
|
|
conv = build1 (IDENTITY_CONV, from, expr);
|
|
|
|
if (fcode == FUNCTION_TYPE)
|
|
{
|
|
from = build_pointer_type (from);
|
|
fcode = TREE_CODE (from);
|
|
conv = build_conv (LVALUE_CONV, from, conv);
|
|
}
|
|
else if (fcode == ARRAY_TYPE)
|
|
{
|
|
from = build_pointer_type (TREE_TYPE (from));
|
|
fcode = TREE_CODE (from);
|
|
conv = build_conv (LVALUE_CONV, from, conv);
|
|
}
|
|
else if (fromref || (expr && real_lvalue_p (expr)))
|
|
conv = build_conv (RVALUE_CONV, from, conv);
|
|
|
|
if (from == to)
|
|
return conv;
|
|
|
|
if ((tcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (to))
|
|
&& expr && null_ptr_cst_p (expr))
|
|
{
|
|
conv = build_conv (STD_CONV, to, conv);
|
|
}
|
|
else if (tcode == POINTER_TYPE && fcode == POINTER_TYPE)
|
|
{
|
|
enum tree_code ufcode = TREE_CODE (TREE_TYPE (from));
|
|
enum tree_code utcode = TREE_CODE (TREE_TYPE (to));
|
|
|
|
if (same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (from)),
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (to))))
|
|
;
|
|
else if (utcode == VOID_TYPE && ufcode != OFFSET_TYPE
|
|
&& ufcode != FUNCTION_TYPE)
|
|
{
|
|
from = build_pointer_type
|
|
(cp_build_qualified_type (void_type_node,
|
|
CP_TYPE_QUALS (TREE_TYPE (from))));
|
|
conv = build_conv (PTR_CONV, from, conv);
|
|
}
|
|
else if (ufcode == OFFSET_TYPE && utcode == OFFSET_TYPE)
|
|
{
|
|
tree fbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (from));
|
|
tree tbase = TYPE_OFFSET_BASETYPE (TREE_TYPE (to));
|
|
|
|
if (DERIVED_FROM_P (fbase, tbase)
|
|
&& (same_type_p
|
|
(TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (from))),
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (to))))))
|
|
{
|
|
from = build_offset_type (tbase, TREE_TYPE (TREE_TYPE (from)));
|
|
from = build_pointer_type (from);
|
|
conv = build_conv (PMEM_CONV, from, conv);
|
|
}
|
|
}
|
|
else if (IS_AGGR_TYPE (TREE_TYPE (from))
|
|
&& IS_AGGR_TYPE (TREE_TYPE (to)))
|
|
{
|
|
if (DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from)))
|
|
{
|
|
from =
|
|
cp_build_qualified_type (TREE_TYPE (to),
|
|
CP_TYPE_QUALS (TREE_TYPE (from)));
|
|
from = build_pointer_type (from);
|
|
conv = build_conv (PTR_CONV, from, conv);
|
|
}
|
|
}
|
|
|
|
if (same_type_p (from, to))
|
|
/* OK */;
|
|
else if (comp_ptr_ttypes (TREE_TYPE (to), TREE_TYPE (from)))
|
|
conv = build_conv (QUAL_CONV, to, conv);
|
|
else if (expr && string_conv_p (to, expr, 0))
|
|
/* converting from string constant to char *. */
|
|
conv = build_conv (QUAL_CONV, to, conv);
|
|
else if (ptr_reasonably_similar (TREE_TYPE (to), TREE_TYPE (from)))
|
|
{
|
|
conv = build_conv (PTR_CONV, to, conv);
|
|
ICS_BAD_FLAG (conv) = 1;
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
from = to;
|
|
}
|
|
else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
|
|
{
|
|
tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
|
|
tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
|
|
tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
|
|
tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
|
|
|
|
if (! DERIVED_FROM_P (fbase, tbase)
|
|
|| ! same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
|
|
|| ! compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
|
|
TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
|
|
|| CP_TYPE_QUALS (fbase) != CP_TYPE_QUALS (tbase))
|
|
return 0;
|
|
|
|
from = cp_build_qualified_type (tbase, CP_TYPE_QUALS (fbase));
|
|
from = build_cplus_method_type (from, TREE_TYPE (fromfn),
|
|
TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
|
|
from = build_ptrmemfunc_type (build_pointer_type (from));
|
|
conv = build_conv (PMEM_CONV, from, conv);
|
|
}
|
|
else if (tcode == BOOLEAN_TYPE)
|
|
{
|
|
if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE
|
|
|| fcode == POINTER_TYPE || TYPE_PTRMEMFUNC_P (from)))
|
|
return 0;
|
|
|
|
conv = build_conv (STD_CONV, to, conv);
|
|
if (fcode == POINTER_TYPE
|
|
|| (TYPE_PTRMEMFUNC_P (from) && ICS_STD_RANK (conv) < PBOOL_RANK))
|
|
ICS_STD_RANK (conv) = PBOOL_RANK;
|
|
}
|
|
/* We don't check for ENUMERAL_TYPE here because there are no standard
|
|
conversions to enum type. */
|
|
else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
|
|
|| tcode == REAL_TYPE)
|
|
{
|
|
if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
|
|
return 0;
|
|
conv = build_conv (STD_CONV, to, conv);
|
|
|
|
/* Give this a better rank if it's a promotion. */
|
|
if (to == type_promotes_to (from)
|
|
&& ICS_STD_RANK (TREE_OPERAND (conv, 0)) <= PROMO_RANK)
|
|
ICS_STD_RANK (conv) = PROMO_RANK;
|
|
}
|
|
else if (IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
|
|
&& DERIVED_FROM_P (to, from))
|
|
{
|
|
if (TREE_CODE (conv) == RVALUE_CONV)
|
|
conv = TREE_OPERAND (conv, 0);
|
|
conv = build_conv (BASE_CONV, to, conv);
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
return conv;
|
|
}
|
|
|
|
/* Returns the conversion path from type FROM to reference type TO for
|
|
purposes of reference binding. For lvalue binding, either pass a
|
|
reference type to FROM or an lvalue expression to EXPR.
|
|
|
|
Currently does not distinguish in the generated trees between binding to
|
|
an lvalue and a temporary. Should it? */
|
|
|
|
static tree
|
|
reference_binding (rto, rfrom, expr, flags)
|
|
tree rto, rfrom, expr;
|
|
int flags;
|
|
{
|
|
tree conv;
|
|
int lvalue = 1;
|
|
tree to = TREE_TYPE (rto);
|
|
tree from = rfrom;
|
|
int related;
|
|
|
|
if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
|
|
{
|
|
expr = instantiate_type (to, expr, 0);
|
|
if (expr == error_mark_node)
|
|
return NULL_TREE;
|
|
from = TREE_TYPE (expr);
|
|
}
|
|
|
|
if (TREE_CODE (from) == REFERENCE_TYPE)
|
|
from = TREE_TYPE (from);
|
|
else if (! expr || ! real_lvalue_p (expr))
|
|
lvalue = 0;
|
|
|
|
related = (same_type_p (TYPE_MAIN_VARIANT (to),
|
|
TYPE_MAIN_VARIANT (from))
|
|
|| (IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
|
|
&& DERIVED_FROM_P (to, from)));
|
|
|
|
if (lvalue && related && at_least_as_qualified_p (to, from))
|
|
{
|
|
conv = build1 (IDENTITY_CONV, from, expr);
|
|
|
|
if (same_type_p (TYPE_MAIN_VARIANT (to),
|
|
TYPE_MAIN_VARIANT (from)))
|
|
conv = build_conv (REF_BIND, rto, conv);
|
|
else
|
|
{
|
|
conv = build_conv (REF_BIND, rto, conv);
|
|
ICS_STD_RANK (conv) = STD_RANK;
|
|
}
|
|
}
|
|
else
|
|
conv = NULL_TREE;
|
|
|
|
if (! conv)
|
|
{
|
|
conv = standard_conversion (to, rfrom, expr);
|
|
if (conv)
|
|
{
|
|
conv = build_conv (REF_BIND, rto, conv);
|
|
|
|
/* Bind directly to a base subobject of a class rvalue. Do it
|
|
after building the conversion for proper handling of ICS_RANK. */
|
|
if (TREE_CODE (TREE_OPERAND (conv, 0)) == BASE_CONV)
|
|
TREE_OPERAND (conv, 0) = TREE_OPERAND (TREE_OPERAND (conv, 0), 0);
|
|
}
|
|
if (conv
|
|
&& ((! (CP_TYPE_CONST_NON_VOLATILE_P (to)
|
|
&& (flags & LOOKUP_NO_TEMP_BIND) == 0))
|
|
/* If T1 is reference-related to T2, cv1 must be the same
|
|
cv-qualification as, or greater cv-qualification than,
|
|
cv2; otherwise, the program is ill-formed. */
|
|
|| (related && !at_least_as_qualified_p (to, from))))
|
|
ICS_BAD_FLAG (conv) = 1;
|
|
}
|
|
|
|
return conv;
|
|
}
|
|
|
|
/* Returns the implicit conversion sequence (see [over.ics]) from type FROM
|
|
to type TO. The optional expression EXPR may affect the conversion.
|
|
FLAGS are the usual overloading flags. Only LOOKUP_NO_CONVERSION is
|
|
significant. */
|
|
|
|
static tree
|
|
implicit_conversion (to, from, expr, flags)
|
|
tree to, from, expr;
|
|
int flags;
|
|
{
|
|
tree conv;
|
|
struct z_candidate *cand;
|
|
|
|
if (TREE_CODE (to) == REFERENCE_TYPE)
|
|
conv = reference_binding (to, from, expr, flags);
|
|
else
|
|
conv = standard_conversion (to, from, expr);
|
|
|
|
if (conv)
|
|
;
|
|
else if (expr != NULL_TREE
|
|
&& (IS_AGGR_TYPE (non_reference (from))
|
|
|| IS_AGGR_TYPE (non_reference (to)))
|
|
&& (flags & LOOKUP_NO_CONVERSION) == 0)
|
|
{
|
|
cand = build_user_type_conversion_1
|
|
(to, expr, LOOKUP_ONLYCONVERTING);
|
|
if (cand)
|
|
conv = cand->second_conv;
|
|
if ((! conv || ICS_BAD_FLAG (conv))
|
|
&& TREE_CODE (to) == REFERENCE_TYPE
|
|
&& (flags & LOOKUP_NO_TEMP_BIND) == 0)
|
|
{
|
|
cand = build_user_type_conversion_1
|
|
(TYPE_MAIN_VARIANT (TREE_TYPE (to)), expr, LOOKUP_ONLYCONVERTING);
|
|
if (cand)
|
|
{
|
|
if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (to)))
|
|
ICS_BAD_FLAG (cand->second_conv) = 1;
|
|
if (!conv || (ICS_BAD_FLAG (conv)
|
|
> ICS_BAD_FLAG (cand->second_conv)))
|
|
conv = build_conv (REF_BIND, to, cand->second_conv);
|
|
}
|
|
}
|
|
}
|
|
|
|
return conv;
|
|
}
|
|
|
|
/* Add a new entry to the list of candidates. Used by the add_*_candidate
|
|
functions. */
|
|
|
|
static struct z_candidate *
|
|
add_candidate (candidates, fn, convs, viable)
|
|
struct z_candidate *candidates;
|
|
tree fn, convs;
|
|
int viable;
|
|
{
|
|
struct z_candidate *cand
|
|
= (struct z_candidate *) scratchalloc (sizeof (struct z_candidate));
|
|
|
|
cand->fn = fn;
|
|
cand->convs = convs;
|
|
cand->second_conv = NULL_TREE;
|
|
cand->viable = viable;
|
|
cand->basetype_path = NULL_TREE;
|
|
cand->template = NULL_TREE;
|
|
cand->warnings = NULL_TREE;
|
|
cand->next = candidates;
|
|
|
|
return cand;
|
|
}
|
|
|
|
/* Create an overload candidate for the function or method FN called with
|
|
the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
|
|
to implicit_conversion. */
|
|
|
|
static struct z_candidate *
|
|
add_function_candidate (candidates, fn, arglist, flags)
|
|
struct z_candidate *candidates;
|
|
tree fn, arglist;
|
|
int flags;
|
|
{
|
|
tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
|
int i, len;
|
|
tree convs;
|
|
tree parmnode, argnode;
|
|
int viable = 1;
|
|
|
|
/* The `this' and `in_chrg' arguments to constructors are not considered
|
|
in overload resolution. */
|
|
if (DECL_CONSTRUCTOR_P (fn))
|
|
{
|
|
parmlist = TREE_CHAIN (parmlist);
|
|
arglist = TREE_CHAIN (arglist);
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
|
{
|
|
parmlist = TREE_CHAIN (parmlist);
|
|
arglist = TREE_CHAIN (arglist);
|
|
}
|
|
}
|
|
|
|
len = list_length (arglist);
|
|
convs = make_scratch_vec (len);
|
|
|
|
/* 13.3.2 - Viable functions [over.match.viable]
|
|
First, to be a viable function, a candidate function shall have enough
|
|
parameters to agree in number with the arguments in the list.
|
|
|
|
We need to check this first; otherwise, checking the ICSes might cause
|
|
us to produce an ill-formed template instantiation. */
|
|
|
|
parmnode = parmlist;
|
|
for (i = 0; i < len; ++i)
|
|
{
|
|
if (parmnode == NULL_TREE || parmnode == void_list_node)
|
|
break;
|
|
parmnode = TREE_CHAIN (parmnode);
|
|
}
|
|
|
|
if (i < len && parmnode)
|
|
viable = 0;
|
|
|
|
/* Make sure there are default args for the rest of the parms. */
|
|
else for (; parmnode && parmnode != void_list_node;
|
|
parmnode = TREE_CHAIN (parmnode))
|
|
if (! TREE_PURPOSE (parmnode))
|
|
{
|
|
viable = 0;
|
|
break;
|
|
}
|
|
|
|
if (! viable)
|
|
goto out;
|
|
|
|
/* Second, for F to be a viable function, there shall exist for each
|
|
argument an implicit conversion sequence that converts that argument
|
|
to the corresponding parameter of F. */
|
|
|
|
parmnode = parmlist;
|
|
argnode = arglist;
|
|
|
|
for (i = 0; i < len; ++i)
|
|
{
|
|
tree arg = TREE_VALUE (argnode);
|
|
tree argtype = lvalue_type (arg);
|
|
tree t;
|
|
|
|
if (parmnode == void_list_node)
|
|
break;
|
|
|
|
if (parmnode)
|
|
{
|
|
tree parmtype = TREE_VALUE (parmnode);
|
|
|
|
/* [over.match.funcs] For conversion functions, the function is
|
|
considered to be a member of the class of the implicit object
|
|
argument for the purpose of defining the type of the implicit
|
|
object parameter.
|
|
|
|
Since build_over_call ignores the ICS for the `this' parameter,
|
|
we can just change the parm type. */
|
|
if (DECL_CONV_FN_P (fn) && i == 0)
|
|
{
|
|
parmtype
|
|
= build_qualified_type (TREE_TYPE (argtype),
|
|
TYPE_QUALS (TREE_TYPE (parmtype)));
|
|
parmtype = build_pointer_type (parmtype);
|
|
}
|
|
|
|
t = implicit_conversion (parmtype, argtype, arg, flags);
|
|
}
|
|
else
|
|
{
|
|
t = build1 (IDENTITY_CONV, argtype, arg);
|
|
ICS_ELLIPSIS_FLAG (t) = 1;
|
|
}
|
|
|
|
if (i == 0 && t && TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE
|
|
&& ! DECL_CONSTRUCTOR_P (fn))
|
|
ICS_THIS_FLAG (t) = 1;
|
|
|
|
TREE_VEC_ELT (convs, i) = t;
|
|
if (! t)
|
|
{
|
|
viable = 0;
|
|
break;
|
|
}
|
|
|
|
if (ICS_BAD_FLAG (t))
|
|
viable = -1;
|
|
|
|
if (parmnode)
|
|
parmnode = TREE_CHAIN (parmnode);
|
|
argnode = TREE_CHAIN (argnode);
|
|
}
|
|
|
|
out:
|
|
return add_candidate (candidates, fn, convs, viable);
|
|
}
|
|
|
|
/* Create an overload candidate for the conversion function FN which will
|
|
be invoked for expression OBJ, producing a pointer-to-function which
|
|
will in turn be called with the argument list ARGLIST, and add it to
|
|
CANDIDATES. FLAGS is passed on to implicit_conversion.
|
|
|
|
Actually, we don't really care about FN; we care about the type it
|
|
converts to. There may be multiple conversion functions that will
|
|
convert to that type, and we rely on build_user_type_conversion_1 to
|
|
choose the best one; so when we create our candidate, we record the type
|
|
instead of the function. */
|
|
|
|
static struct z_candidate *
|
|
add_conv_candidate (candidates, fn, obj, arglist)
|
|
struct z_candidate *candidates;
|
|
tree fn, obj, arglist;
|
|
{
|
|
tree totype = TREE_TYPE (TREE_TYPE (fn));
|
|
tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (totype));
|
|
int i, len = list_length (arglist) + 1;
|
|
tree convs = make_scratch_vec (len);
|
|
tree parmnode = parmlist;
|
|
tree argnode = arglist;
|
|
int viable = 1;
|
|
int flags = LOOKUP_NORMAL;
|
|
|
|
/* Don't bother looking up the same type twice. */
|
|
if (candidates && candidates->fn == totype)
|
|
return candidates;
|
|
|
|
for (i = 0; i < len; ++i)
|
|
{
|
|
tree arg = i == 0 ? obj : TREE_VALUE (argnode);
|
|
tree argtype = lvalue_type (arg);
|
|
tree t;
|
|
|
|
if (i == 0)
|
|
t = implicit_conversion (totype, argtype, arg, flags);
|
|
else if (parmnode == void_list_node)
|
|
break;
|
|
else if (parmnode)
|
|
t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg, flags);
|
|
else
|
|
{
|
|
t = build1 (IDENTITY_CONV, argtype, arg);
|
|
ICS_ELLIPSIS_FLAG (t) = 1;
|
|
}
|
|
|
|
TREE_VEC_ELT (convs, i) = t;
|
|
if (! t)
|
|
break;
|
|
|
|
if (ICS_BAD_FLAG (t))
|
|
viable = -1;
|
|
|
|
if (i == 0)
|
|
continue;
|
|
|
|
if (parmnode)
|
|
parmnode = TREE_CHAIN (parmnode);
|
|
argnode = TREE_CHAIN (argnode);
|
|
}
|
|
|
|
if (i < len)
|
|
viable = 0;
|
|
|
|
for (; parmnode && parmnode != void_list_node;
|
|
parmnode = TREE_CHAIN (parmnode))
|
|
if (! TREE_PURPOSE (parmnode))
|
|
{
|
|
viable = 0;
|
|
break;
|
|
}
|
|
|
|
return add_candidate (candidates, totype, convs, viable);
|
|
}
|
|
|
|
static struct z_candidate *
|
|
build_builtin_candidate (candidates, fnname, type1, type2,
|
|
args, argtypes, flags)
|
|
struct z_candidate *candidates;
|
|
tree fnname, type1, type2, *args, *argtypes;
|
|
int flags;
|
|
|
|
{
|
|
tree t, convs;
|
|
int viable = 1, i;
|
|
tree types[2];
|
|
|
|
types[0] = type1;
|
|
types[1] = type2;
|
|
|
|
convs = make_scratch_vec (args[2] ? 3 : (args[1] ? 2 : 1));
|
|
|
|
for (i = 0; i < 2; ++i)
|
|
{
|
|
if (! args[i])
|
|
break;
|
|
|
|
t = implicit_conversion (types[i], argtypes[i], args[i], flags);
|
|
if (! t)
|
|
{
|
|
viable = 0;
|
|
/* We need something for printing the candidate. */
|
|
t = build1 (IDENTITY_CONV, types[i], NULL_TREE);
|
|
}
|
|
else if (ICS_BAD_FLAG (t))
|
|
viable = 0;
|
|
TREE_VEC_ELT (convs, i) = t;
|
|
}
|
|
|
|
/* For COND_EXPR we rearranged the arguments; undo that now. */
|
|
if (args[2])
|
|
{
|
|
TREE_VEC_ELT (convs, 2) = TREE_VEC_ELT (convs, 1);
|
|
TREE_VEC_ELT (convs, 1) = TREE_VEC_ELT (convs, 0);
|
|
t = implicit_conversion (boolean_type_node, argtypes[2], args[2], flags);
|
|
if (t)
|
|
TREE_VEC_ELT (convs, 0) = t;
|
|
else
|
|
viable = 0;
|
|
}
|
|
|
|
return add_candidate (candidates, fnname, convs, viable);
|
|
}
|
|
|
|
static int
|
|
is_complete (t)
|
|
tree t;
|
|
{
|
|
return TYPE_SIZE (complete_type (t)) != NULL_TREE;
|
|
}
|
|
|
|
/* Create any builtin operator overload candidates for the operator in
|
|
question given the converted operand types TYPE1 and TYPE2. The other
|
|
args are passed through from add_builtin_candidates to
|
|
build_builtin_candidate. */
|
|
|
|
static struct z_candidate *
|
|
add_builtin_candidate (candidates, code, code2, fnname, type1, type2,
|
|
args, argtypes, flags)
|
|
struct z_candidate *candidates;
|
|
enum tree_code code, code2;
|
|
tree fnname, type1, type2, *args, *argtypes;
|
|
int flags;
|
|
{
|
|
switch (code)
|
|
{
|
|
case POSTINCREMENT_EXPR:
|
|
case POSTDECREMENT_EXPR:
|
|
args[1] = integer_zero_node;
|
|
type2 = integer_type_node;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (code)
|
|
{
|
|
|
|
/* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
|
|
and VQ is either volatile or empty, there exist candidate operator
|
|
functions of the form
|
|
VQ T& operator++(VQ T&);
|
|
T operator++(VQ T&, int);
|
|
5 For every pair T, VQ), where T is an enumeration type or an arithmetic
|
|
type other than bool, and VQ is either volatile or empty, there exist
|
|
candidate operator functions of the form
|
|
VQ T& operator--(VQ T&);
|
|
T operator--(VQ T&, int);
|
|
6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
|
|
complete object type, and VQ is either volatile or empty, there exist
|
|
candidate operator functions of the form
|
|
T*VQ& operator++(T*VQ&);
|
|
T*VQ& operator--(T*VQ&);
|
|
T* operator++(T*VQ&, int);
|
|
T* operator--(T*VQ&, int); */
|
|
|
|
case POSTDECREMENT_EXPR:
|
|
case PREDECREMENT_EXPR:
|
|
if (TREE_CODE (type1) == BOOLEAN_TYPE)
|
|
return candidates;
|
|
case POSTINCREMENT_EXPR:
|
|
case PREINCREMENT_EXPR:
|
|
if ((ARITHMETIC_TYPE_P (type1) && TREE_CODE (type1) != ENUMERAL_TYPE)
|
|
|| TYPE_PTROB_P (type1))
|
|
{
|
|
type1 = build_reference_type (type1);
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
/* 7 For every cv-qualified or cv-unqualified complete object type T, there
|
|
exist candidate operator functions of the form
|
|
|
|
T& operator*(T*);
|
|
|
|
8 For every function type T, there exist candidate operator functions of
|
|
the form
|
|
T& operator*(T*); */
|
|
|
|
case INDIRECT_REF:
|
|
if (TREE_CODE (type1) == POINTER_TYPE
|
|
&& (TYPE_PTROB_P (type1)
|
|
|| TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
|
|
break;
|
|
return candidates;
|
|
|
|
/* 9 For every type T, there exist candidate operator functions of the form
|
|
T* operator+(T*);
|
|
|
|
10For every promoted arithmetic type T, there exist candidate operator
|
|
functions of the form
|
|
T operator+(T);
|
|
T operator-(T); */
|
|
|
|
case CONVERT_EXPR: /* unary + */
|
|
if (TREE_CODE (type1) == POINTER_TYPE
|
|
&& TREE_CODE (TREE_TYPE (type1)) != OFFSET_TYPE)
|
|
break;
|
|
case NEGATE_EXPR:
|
|
if (ARITHMETIC_TYPE_P (type1))
|
|
break;
|
|
return candidates;
|
|
|
|
/* 11For every promoted integral type T, there exist candidate operator
|
|
functions of the form
|
|
T operator~(T); */
|
|
|
|
case BIT_NOT_EXPR:
|
|
if (INTEGRAL_TYPE_P (type1))
|
|
break;
|
|
return candidates;
|
|
|
|
/* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
|
|
is the same type as C2 or is a derived class of C2, T is a complete
|
|
object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
|
|
there exist candidate operator functions of the form
|
|
CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
|
|
where CV12 is the union of CV1 and CV2. */
|
|
|
|
case MEMBER_REF:
|
|
if (TREE_CODE (type1) == POINTER_TYPE
|
|
&& (TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2)))
|
|
{
|
|
tree c1 = TREE_TYPE (type1);
|
|
tree c2 = (TYPE_PTRMEMFUNC_P (type2)
|
|
? TYPE_METHOD_BASETYPE (TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (type2)))
|
|
: TYPE_OFFSET_BASETYPE (TREE_TYPE (type2)));
|
|
|
|
if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
|
|
&& (TYPE_PTRMEMFUNC_P (type2)
|
|
|| is_complete (TREE_TYPE (TREE_TYPE (type2)))))
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
/* 13For every pair of promoted arithmetic types L and R, there exist can-
|
|
didate operator functions of the form
|
|
LR operator*(L, R);
|
|
LR operator/(L, R);
|
|
LR operator+(L, R);
|
|
LR operator-(L, R);
|
|
bool operator<(L, R);
|
|
bool operator>(L, R);
|
|
bool operator<=(L, R);
|
|
bool operator>=(L, R);
|
|
bool operator==(L, R);
|
|
bool operator!=(L, R);
|
|
where LR is the result of the usual arithmetic conversions between
|
|
types L and R.
|
|
|
|
14For every pair of types T and I, where T is a cv-qualified or cv-
|
|
unqualified complete object type and I is a promoted integral type,
|
|
there exist candidate operator functions of the form
|
|
T* operator+(T*, I);
|
|
T& operator[](T*, I);
|
|
T* operator-(T*, I);
|
|
T* operator+(I, T*);
|
|
T& operator[](I, T*);
|
|
|
|
15For every T, where T is a pointer to complete object type, there exist
|
|
candidate operator functions of the form112)
|
|
ptrdiff_t operator-(T, T);
|
|
|
|
16For every pointer type T, there exist candidate operator functions of
|
|
the form
|
|
bool operator<(T, T);
|
|
bool operator>(T, T);
|
|
bool operator<=(T, T);
|
|
bool operator>=(T, T);
|
|
bool operator==(T, T);
|
|
bool operator!=(T, T);
|
|
|
|
17For every pointer to member type T, there exist candidate operator
|
|
functions of the form
|
|
bool operator==(T, T);
|
|
bool operator!=(T, T); */
|
|
|
|
case MINUS_EXPR:
|
|
if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
|
|
break;
|
|
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
|
|
{
|
|
type2 = ptrdiff_type_node;
|
|
break;
|
|
}
|
|
case MULT_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
break;
|
|
return candidates;
|
|
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
|
|
|| (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
|
|
break;
|
|
if ((TYPE_PTRMEMFUNC_P (type1) || TYPE_PTRMEM_P (type1))
|
|
&& null_ptr_cst_p (args[1]))
|
|
{
|
|
type2 = type1;
|
|
break;
|
|
}
|
|
if ((TYPE_PTRMEMFUNC_P (type2) || TYPE_PTRMEM_P (type2))
|
|
&& null_ptr_cst_p (args[0]))
|
|
{
|
|
type1 = type2;
|
|
break;
|
|
}
|
|
case LT_EXPR:
|
|
case GT_EXPR:
|
|
case LE_EXPR:
|
|
case GE_EXPR:
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
if ((ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
|| (TYPE_PTR_P (type1) && TYPE_PTR_P (type2)))
|
|
break;
|
|
if (TYPE_PTR_P (type1) && null_ptr_cst_p (args[1]))
|
|
{
|
|
type2 = type1;
|
|
break;
|
|
}
|
|
if (null_ptr_cst_p (args[0]) && TYPE_PTR_P (type2))
|
|
{
|
|
type1 = type2;
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
case PLUS_EXPR:
|
|
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
break;
|
|
case ARRAY_REF:
|
|
if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
|
|
{
|
|
type1 = ptrdiff_type_node;
|
|
break;
|
|
}
|
|
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
|
|
{
|
|
type2 = ptrdiff_type_node;
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
/* 18For every pair of promoted integral types L and R, there exist candi-
|
|
date operator functions of the form
|
|
LR operator%(L, R);
|
|
LR operator&(L, R);
|
|
LR operator^(L, R);
|
|
LR operator|(L, R);
|
|
L operator<<(L, R);
|
|
L operator>>(L, R);
|
|
where LR is the result of the usual arithmetic conversions between
|
|
types L and R. */
|
|
|
|
case TRUNC_MOD_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
|
|
break;
|
|
return candidates;
|
|
|
|
/* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
|
|
type, VQ is either volatile or empty, and R is a promoted arithmetic
|
|
type, there exist candidate operator functions of the form
|
|
VQ L& operator=(VQ L&, R);
|
|
VQ L& operator*=(VQ L&, R);
|
|
VQ L& operator/=(VQ L&, R);
|
|
VQ L& operator+=(VQ L&, R);
|
|
VQ L& operator-=(VQ L&, R);
|
|
|
|
20For every pair T, VQ), where T is any type and VQ is either volatile
|
|
or empty, there exist candidate operator functions of the form
|
|
T*VQ& operator=(T*VQ&, T*);
|
|
|
|
21For every pair T, VQ), where T is a pointer to member type and VQ is
|
|
either volatile or empty, there exist candidate operator functions of
|
|
the form
|
|
VQ T& operator=(VQ T&, T);
|
|
|
|
22For every triple T, VQ, I), where T is a cv-qualified or cv-
|
|
unqualified complete object type, VQ is either volatile or empty, and
|
|
I is a promoted integral type, there exist candidate operator func-
|
|
tions of the form
|
|
T*VQ& operator+=(T*VQ&, I);
|
|
T*VQ& operator-=(T*VQ&, I);
|
|
|
|
23For every triple L, VQ, R), where L is an integral or enumeration
|
|
type, VQ is either volatile or empty, and R is a promoted integral
|
|
type, there exist candidate operator functions of the form
|
|
|
|
VQ L& operator%=(VQ L&, R);
|
|
VQ L& operator<<=(VQ L&, R);
|
|
VQ L& operator>>=(VQ L&, R);
|
|
VQ L& operator&=(VQ L&, R);
|
|
VQ L& operator^=(VQ L&, R);
|
|
VQ L& operator|=(VQ L&, R); */
|
|
|
|
case MODIFY_EXPR:
|
|
switch (code2)
|
|
{
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
|
|
{
|
|
type2 = ptrdiff_type_node;
|
|
break;
|
|
}
|
|
case MULT_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
break;
|
|
return candidates;
|
|
|
|
case TRUNC_MOD_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
|
|
break;
|
|
return candidates;
|
|
|
|
case NOP_EXPR:
|
|
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
break;
|
|
if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
|
|
|| (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
|
|
|| (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
|
|
|| ((TYPE_PTRMEMFUNC_P (type1)
|
|
|| TREE_CODE (type1) == POINTER_TYPE)
|
|
&& null_ptr_cst_p (args[1])))
|
|
{
|
|
type2 = type1;
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
default:
|
|
my_friendly_abort (367);
|
|
}
|
|
type1 = build_reference_type (type1);
|
|
break;
|
|
|
|
case COND_EXPR:
|
|
/* Kludge around broken overloading rules whereby
|
|
bool ? const char& : enum is ambiguous
|
|
(between int and const char&). */
|
|
flags |= LOOKUP_NO_TEMP_BIND;
|
|
|
|
/* Extension: Support ?: of enumeral type. Hopefully this will not
|
|
be an extension for long. */
|
|
if (TREE_CODE (type1) == ENUMERAL_TYPE && type1 == type2)
|
|
break;
|
|
else if (TREE_CODE (type1) == ENUMERAL_TYPE
|
|
|| TREE_CODE (type2) == ENUMERAL_TYPE)
|
|
return candidates;
|
|
if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
|
|
break;
|
|
if (TREE_CODE (type1) == TREE_CODE (type2)
|
|
&& (TREE_CODE (type1) == REFERENCE_TYPE
|
|
|| TREE_CODE (type1) == POINTER_TYPE
|
|
|| TYPE_PTRMEMFUNC_P (type1)
|
|
|| IS_AGGR_TYPE (type1)))
|
|
break;
|
|
if (TREE_CODE (type1) == REFERENCE_TYPE
|
|
|| TREE_CODE (type2) == REFERENCE_TYPE)
|
|
return candidates;
|
|
if (((TYPE_PTRMEMFUNC_P (type1) || TREE_CODE (type1) == POINTER_TYPE)
|
|
&& null_ptr_cst_p (args[1]))
|
|
|| IS_AGGR_TYPE (type1))
|
|
{
|
|
type2 = type1;
|
|
break;
|
|
}
|
|
if (((TYPE_PTRMEMFUNC_P (type2) || TREE_CODE (type2) == POINTER_TYPE)
|
|
&& null_ptr_cst_p (args[0]))
|
|
|| IS_AGGR_TYPE (type2))
|
|
{
|
|
type1 = type2;
|
|
break;
|
|
}
|
|
return candidates;
|
|
|
|
default:
|
|
my_friendly_abort (367);
|
|
}
|
|
|
|
/* If we're dealing with two pointer types, we need candidates
|
|
for both of them. */
|
|
if (type2 && type1 != type2
|
|
&& TREE_CODE (type1) == TREE_CODE (type2)
|
|
&& (TREE_CODE (type1) == REFERENCE_TYPE
|
|
|| (TREE_CODE (type1) == POINTER_TYPE
|
|
&& TYPE_PTRMEM_P (type1) == TYPE_PTRMEM_P (type2))
|
|
|| TYPE_PTRMEMFUNC_P (type1)
|
|
|| IS_AGGR_TYPE (type1)))
|
|
{
|
|
candidates = build_builtin_candidate
|
|
(candidates, fnname, type1, type1, args, argtypes, flags);
|
|
return build_builtin_candidate
|
|
(candidates, fnname, type2, type2, args, argtypes, flags);
|
|
}
|
|
|
|
return build_builtin_candidate
|
|
(candidates, fnname, type1, type2, args, argtypes, flags);
|
|
}
|
|
|
|
tree
|
|
type_decays_to (type)
|
|
tree type;
|
|
{
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
return build_pointer_type (TREE_TYPE (type));
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
|
return build_pointer_type (type);
|
|
return type;
|
|
}
|
|
|
|
/* There are three conditions of builtin candidates:
|
|
|
|
1) bool-taking candidates. These are the same regardless of the input.
|
|
2) pointer-pair taking candidates. These are generated for each type
|
|
one of the input types converts to.
|
|
3) arithmetic candidates. According to the WP, we should generate
|
|
all of these, but I'm trying not to... */
|
|
|
|
static struct z_candidate *
|
|
add_builtin_candidates (candidates, code, code2, fnname, args, flags)
|
|
struct z_candidate *candidates;
|
|
enum tree_code code, code2;
|
|
tree fnname, *args;
|
|
int flags;
|
|
{
|
|
int ref1, i;
|
|
tree type, argtypes[3], types[2];
|
|
|
|
for (i = 0; i < 3; ++i)
|
|
{
|
|
if (args[i])
|
|
argtypes[i] = lvalue_type (args[i]);
|
|
else
|
|
argtypes[i] = NULL_TREE;
|
|
}
|
|
|
|
switch (code)
|
|
{
|
|
/* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
|
|
and VQ is either volatile or empty, there exist candidate operator
|
|
functions of the form
|
|
VQ T& operator++(VQ T&); */
|
|
|
|
case POSTINCREMENT_EXPR:
|
|
case PREINCREMENT_EXPR:
|
|
case POSTDECREMENT_EXPR:
|
|
case PREDECREMENT_EXPR:
|
|
case MODIFY_EXPR:
|
|
ref1 = 1;
|
|
break;
|
|
|
|
/* 24There also exist candidate operator functions of the form
|
|
bool operator!(bool);
|
|
bool operator&&(bool, bool);
|
|
bool operator||(bool, bool); */
|
|
|
|
case TRUTH_NOT_EXPR:
|
|
return build_builtin_candidate
|
|
(candidates, fnname, boolean_type_node,
|
|
NULL_TREE, args, argtypes, flags);
|
|
|
|
case TRUTH_ORIF_EXPR:
|
|
case TRUTH_ANDIF_EXPR:
|
|
return build_builtin_candidate
|
|
(candidates, fnname, boolean_type_node,
|
|
boolean_type_node, args, argtypes, flags);
|
|
|
|
case ADDR_EXPR:
|
|
case COMPOUND_EXPR:
|
|
case COMPONENT_REF:
|
|
return candidates;
|
|
|
|
default:
|
|
ref1 = 0;
|
|
}
|
|
|
|
types[0] = types[1] = NULL_TREE;
|
|
|
|
for (i = 0; i < 2; ++i)
|
|
{
|
|
if (! args[i])
|
|
;
|
|
else if (IS_AGGR_TYPE (argtypes[i]))
|
|
{
|
|
tree convs;
|
|
|
|
if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
|
|
return candidates;
|
|
|
|
convs = lookup_conversions (argtypes[i]);
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
if (real_lvalue_p (args[i]))
|
|
types[i] = scratch_tree_cons
|
|
(NULL_TREE, build_reference_type (argtypes[i]), types[i]);
|
|
|
|
types[i] = scratch_tree_cons
|
|
(NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
|
|
}
|
|
|
|
else if (! convs)
|
|
return candidates;
|
|
|
|
for (; convs; convs = TREE_CHAIN (convs))
|
|
{
|
|
type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));
|
|
|
|
if (i == 0 && ref1
|
|
&& (TREE_CODE (type) != REFERENCE_TYPE
|
|
|| CP_TYPE_CONST_P (TREE_TYPE (type))))
|
|
continue;
|
|
|
|
if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
|
|
types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
|
|
|
|
type = non_reference (type);
|
|
if (i != 0 || ! ref1)
|
|
{
|
|
type = TYPE_MAIN_VARIANT (type_decays_to (type));
|
|
if (code == COND_EXPR && TREE_CODE (type) == ENUMERAL_TYPE)
|
|
types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
|
|
if (INTEGRAL_TYPE_P (type))
|
|
type = type_promotes_to (type);
|
|
}
|
|
|
|
if (! value_member (type, types[i]))
|
|
types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (code == COND_EXPR && real_lvalue_p (args[i]))
|
|
types[i] = scratch_tree_cons
|
|
(NULL_TREE, build_reference_type (argtypes[i]), types[i]);
|
|
type = non_reference (argtypes[i]);
|
|
if (i != 0 || ! ref1)
|
|
{
|
|
type = TYPE_MAIN_VARIANT (type_decays_to (type));
|
|
if (code == COND_EXPR && TREE_CODE (type) == ENUMERAL_TYPE)
|
|
types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
|
|
if (INTEGRAL_TYPE_P (type))
|
|
type = type_promotes_to (type);
|
|
}
|
|
types[i] = scratch_tree_cons (NULL_TREE, type, types[i]);
|
|
}
|
|
}
|
|
|
|
for (; types[0]; types[0] = TREE_CHAIN (types[0]))
|
|
{
|
|
if (types[1])
|
|
for (type = types[1]; type; type = TREE_CHAIN (type))
|
|
candidates = add_builtin_candidate
|
|
(candidates, code, code2, fnname, TREE_VALUE (types[0]),
|
|
TREE_VALUE (type), args, argtypes, flags);
|
|
else
|
|
candidates = add_builtin_candidate
|
|
(candidates, code, code2, fnname, TREE_VALUE (types[0]),
|
|
NULL_TREE, args, argtypes, flags);
|
|
}
|
|
|
|
return candidates;
|
|
}
|
|
|
|
|
|
/* If TMPL can be successfully instantiated as indicated by
|
|
EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
|
|
|
|
TMPL is the template. EXPLICIT_TARGS are any explicit template
|
|
arguments. ARGLIST is the arguments provided at the call-site.
|
|
The RETURN_TYPE is the desired type for conversion operators. If
|
|
OBJ is NULL_TREE, FLAGS are as for add_function_candidate. If an
|
|
OBJ is supplied, FLAGS are ignored, and OBJ is as for
|
|
add_conv_candidate. */
|
|
|
|
static struct z_candidate*
|
|
add_template_candidate_real (candidates, tmpl, explicit_targs,
|
|
arglist, return_type, flags,
|
|
obj, strict)
|
|
struct z_candidate *candidates;
|
|
tree tmpl, explicit_targs, arglist, return_type;
|
|
int flags;
|
|
tree obj;
|
|
unification_kind_t strict;
|
|
{
|
|
int ntparms = DECL_NTPARMS (tmpl);
|
|
tree targs = make_scratch_vec (ntparms);
|
|
struct z_candidate *cand;
|
|
int i;
|
|
tree fn;
|
|
|
|
i = fn_type_unification (tmpl, explicit_targs, targs, arglist,
|
|
return_type, strict);
|
|
|
|
if (i != 0)
|
|
return candidates;
|
|
|
|
fn = instantiate_template (tmpl, targs);
|
|
if (fn == error_mark_node)
|
|
return candidates;
|
|
|
|
if (obj != NULL_TREE)
|
|
/* Aha, this is a conversion function. */
|
|
cand = add_conv_candidate (candidates, fn, obj, arglist);
|
|
else
|
|
cand = add_function_candidate (candidates, fn, arglist, flags);
|
|
if (DECL_TI_TEMPLATE (fn) != tmpl)
|
|
/* This situation can occur if a member template of a template
|
|
class is specialized. Then, instantiate_template might return
|
|
an instantiation of the specialization, in which case the
|
|
DECL_TI_TEMPLATE field will point at the original
|
|
specialization. For example:
|
|
|
|
template <class T> struct S { template <class U> void f(U);
|
|
template <> void f(int) {}; };
|
|
S<double> sd;
|
|
sd.f(3);
|
|
|
|
Here, TMPL will be template <class U> S<double>::f(U).
|
|
And, instantiate template will give us the specialization
|
|
template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
|
|
for this will point at template <class T> template <> S<T>::f(int),
|
|
so that we can find the definition. For the purposes of
|
|
overload resolution, however, we want the original TMPL. */
|
|
cand->template = tree_cons (tmpl, targs, NULL_TREE);
|
|
else
|
|
cand->template = DECL_TEMPLATE_INFO (fn);
|
|
|
|
return cand;
|
|
}
|
|
|
|
|
|
static struct z_candidate *
|
|
add_template_candidate (candidates, tmpl, explicit_targs,
|
|
arglist, return_type, flags, strict)
|
|
struct z_candidate *candidates;
|
|
tree tmpl, explicit_targs, arglist, return_type;
|
|
int flags;
|
|
unification_kind_t strict;
|
|
{
|
|
return
|
|
add_template_candidate_real (candidates, tmpl, explicit_targs,
|
|
arglist, return_type, flags,
|
|
NULL_TREE, strict);
|
|
}
|
|
|
|
|
|
static struct z_candidate *
|
|
add_template_conv_candidate (candidates, tmpl, obj, arglist, return_type)
|
|
struct z_candidate *candidates;
|
|
tree tmpl, obj, arglist, return_type;
|
|
{
|
|
return
|
|
add_template_candidate_real (candidates, tmpl, NULL_TREE, arglist,
|
|
return_type, 0, obj, DEDUCE_CONV);
|
|
}
|
|
|
|
|
|
static int
|
|
any_viable (cands)
|
|
struct z_candidate *cands;
|
|
{
|
|
for (; cands; cands = cands->next)
|
|
if (pedantic ? cands->viable == 1 : cands->viable)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct z_candidate *
|
|
splice_viable (cands)
|
|
struct z_candidate *cands;
|
|
{
|
|
struct z_candidate **p = &cands;
|
|
|
|
for (; *p; )
|
|
{
|
|
if (pedantic ? (*p)->viable == 1 : (*p)->viable)
|
|
p = &((*p)->next);
|
|
else
|
|
*p = (*p)->next;
|
|
}
|
|
|
|
return cands;
|
|
}
|
|
|
|
static tree
|
|
build_this (obj)
|
|
tree obj;
|
|
{
|
|
/* Fix this to work on non-lvalues. */
|
|
if (IS_SIGNATURE_POINTER (TREE_TYPE (obj))
|
|
|| IS_SIGNATURE_REFERENCE (TREE_TYPE (obj)))
|
|
return obj;
|
|
else
|
|
return build_unary_op (ADDR_EXPR, obj, 0);
|
|
}
|
|
|
|
static void
|
|
print_z_candidates (candidates)
|
|
struct z_candidate *candidates;
|
|
{
|
|
const char *str = "candidates are:";
|
|
for (; candidates; candidates = candidates->next)
|
|
{
|
|
if (TREE_CODE (candidates->fn) == IDENTIFIER_NODE)
|
|
{
|
|
if (candidates->fn == ansi_opname [COND_EXPR])
|
|
cp_error ("%s %D(%T, %T, %T) <builtin>", str, candidates->fn,
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)),
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 2)));
|
|
else if (TREE_VEC_LENGTH (candidates->convs) == 2)
|
|
cp_error ("%s %D(%T, %T) <builtin>", str, candidates->fn,
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)),
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 1)));
|
|
else
|
|
cp_error ("%s %D(%T) <builtin>", str, candidates->fn,
|
|
TREE_TYPE (TREE_VEC_ELT (candidates->convs, 0)));
|
|
}
|
|
else if (TYPE_P (candidates->fn))
|
|
cp_error ("%s %T <conversion>", str, candidates->fn);
|
|
else
|
|
cp_error_at ("%s %+#D%s", str, candidates->fn,
|
|
candidates->viable == -1 ? " <near match>" : "");
|
|
str = " ";
|
|
}
|
|
}
|
|
|
|
/* Returns the best overload candidate to perform the requested
|
|
conversion. This function is used for three the overloading situations
|
|
described in [over.match.copy], [over.match.conv], and [over.match.ref].
|
|
If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
|
|
per [dcl.init.ref], so we ignore temporary bindings. */
|
|
|
|
static struct z_candidate *
|
|
build_user_type_conversion_1 (totype, expr, flags)
|
|
tree totype, expr;
|
|
int flags;
|
|
{
|
|
struct z_candidate *candidates, *cand;
|
|
tree fromtype = TREE_TYPE (expr);
|
|
tree ctors = NULL_TREE, convs = NULL_TREE, *p;
|
|
tree args = NULL_TREE;
|
|
tree templates = NULL_TREE;
|
|
|
|
if (IS_AGGR_TYPE (totype))
|
|
ctors = lookup_fnfields (TYPE_BINFO (totype), ctor_identifier, 0);
|
|
if (IS_AGGR_TYPE (fromtype)
|
|
&& (! IS_AGGR_TYPE (totype) || ! DERIVED_FROM_P (totype, fromtype)))
|
|
convs = lookup_conversions (fromtype);
|
|
|
|
candidates = 0;
|
|
flags |= LOOKUP_NO_CONVERSION;
|
|
|
|
if (ctors)
|
|
{
|
|
tree t = build_int_2 (0, 0);
|
|
TREE_TYPE (t) = build_pointer_type (totype);
|
|
args = build_scratch_list (NULL_TREE, expr);
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (totype))
|
|
args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
|
|
args = scratch_tree_cons (NULL_TREE, t, args);
|
|
|
|
ctors = TREE_VALUE (ctors);
|
|
}
|
|
for (; ctors; ctors = OVL_NEXT (ctors))
|
|
{
|
|
tree ctor = OVL_CURRENT (ctors);
|
|
if (DECL_NONCONVERTING_P (ctor))
|
|
continue;
|
|
|
|
if (TREE_CODE (ctor) == TEMPLATE_DECL)
|
|
{
|
|
templates = scratch_tree_cons (NULL_TREE, ctor, templates);
|
|
candidates =
|
|
add_template_candidate (candidates, ctor,
|
|
NULL_TREE, args, NULL_TREE, flags,
|
|
DEDUCE_CALL);
|
|
}
|
|
else
|
|
candidates = add_function_candidate (candidates, ctor,
|
|
args, flags);
|
|
|
|
if (candidates)
|
|
{
|
|
candidates->second_conv = build1 (IDENTITY_CONV, totype, NULL_TREE);
|
|
candidates->basetype_path = TYPE_BINFO (totype);
|
|
}
|
|
}
|
|
|
|
if (convs)
|
|
args = build_scratch_list (NULL_TREE, build_this (expr));
|
|
|
|
for (; convs; convs = TREE_CHAIN (convs))
|
|
{
|
|
tree fns = TREE_VALUE (convs);
|
|
int convflags = LOOKUP_NO_CONVERSION;
|
|
tree ics;
|
|
|
|
/* If we are called to convert to a reference type, we are trying to
|
|
find an lvalue binding, so don't even consider temporaries. If
|
|
we don't find an lvalue binding, the caller will try again to
|
|
look for a temporary binding. */
|
|
if (TREE_CODE (totype) == REFERENCE_TYPE)
|
|
convflags |= LOOKUP_NO_TEMP_BIND;
|
|
|
|
if (TREE_CODE (OVL_CURRENT (fns)) != TEMPLATE_DECL)
|
|
ics = implicit_conversion
|
|
(totype, TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns))), 0, convflags);
|
|
else
|
|
/* We can't compute this yet. */
|
|
ics = error_mark_node;
|
|
|
|
if (TREE_CODE (totype) == REFERENCE_TYPE && ics && ICS_BAD_FLAG (ics))
|
|
/* ignore the near match. */;
|
|
else if (ics)
|
|
for (; fns; fns = OVL_NEXT (fns))
|
|
{
|
|
tree fn = OVL_CURRENT (fns);
|
|
struct z_candidate *old_candidates = candidates;
|
|
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
{
|
|
templates = scratch_tree_cons (NULL_TREE, fn, templates);
|
|
candidates =
|
|
add_template_candidate (candidates, fn, NULL_TREE,
|
|
args, totype, flags,
|
|
DEDUCE_CONV);
|
|
}
|
|
else
|
|
candidates = add_function_candidate (candidates, fn,
|
|
args, flags);
|
|
|
|
if (candidates != old_candidates)
|
|
{
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
ics = implicit_conversion
|
|
(totype, TREE_TYPE (TREE_TYPE (candidates->fn)),
|
|
0, convflags);
|
|
|
|
candidates->second_conv = ics;
|
|
candidates->basetype_path = TREE_PURPOSE (convs);
|
|
|
|
if (ics == NULL_TREE)
|
|
candidates->viable = 0;
|
|
else if (candidates->viable == 1 && ICS_BAD_FLAG (ics))
|
|
candidates->viable = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (! any_viable (candidates))
|
|
{
|
|
#if 0
|
|
if (flags & LOOKUP_COMPLAIN)
|
|
{
|
|
if (candidates && ! candidates->next)
|
|
/* say why this one won't work or try to be loose */;
|
|
else
|
|
cp_error ("no viable candidates");
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
candidates = splice_viable (candidates);
|
|
cand = tourney (candidates);
|
|
|
|
if (cand == 0)
|
|
{
|
|
if (flags & LOOKUP_COMPLAIN)
|
|
{
|
|
cp_error ("conversion from `%T' to `%T' is ambiguous",
|
|
fromtype, totype);
|
|
print_z_candidates (candidates);
|
|
}
|
|
|
|
cand = candidates; /* any one will do */
|
|
cand->second_conv = build1 (AMBIG_CONV, totype, expr);
|
|
ICS_USER_FLAG (cand->second_conv) = 1;
|
|
ICS_BAD_FLAG (cand->second_conv) = 1;
|
|
|
|
return cand;
|
|
}
|
|
|
|
for (p = &(cand->second_conv); TREE_CODE (*p) != IDENTITY_CONV; )
|
|
p = &(TREE_OPERAND (*p, 0));
|
|
|
|
/* Pedantically, normal function declarations are never considered
|
|
to refer to template instantiations, so we only do this with
|
|
-fguiding-decls. */
|
|
if (flag_guiding_decls && templates && ! cand->template
|
|
&& !DECL_INITIAL (cand->fn)
|
|
&& TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE)
|
|
add_maybe_template (cand->fn, templates);
|
|
|
|
*p = build
|
|
(USER_CONV,
|
|
(DECL_CONSTRUCTOR_P (cand->fn)
|
|
? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
|
|
expr, build_expr_ptr_wrapper (cand));
|
|
ICS_USER_FLAG (cand->second_conv) = 1;
|
|
if (cand->viable == -1)
|
|
ICS_BAD_FLAG (cand->second_conv) = 1;
|
|
|
|
return cand;
|
|
}
|
|
|
|
tree
|
|
build_user_type_conversion (totype, expr, flags)
|
|
tree totype, expr;
|
|
int flags;
|
|
{
|
|
struct z_candidate *cand
|
|
= build_user_type_conversion_1 (totype, expr, flags);
|
|
|
|
if (cand)
|
|
{
|
|
if (TREE_CODE (cand->second_conv) == AMBIG_CONV)
|
|
return error_mark_node;
|
|
return convert_from_reference (convert_like (cand->second_conv, expr));
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Do any initial processing on the arguments to a function call. */
|
|
|
|
static tree
|
|
resolve_args (args)
|
|
tree args;
|
|
{
|
|
tree t;
|
|
for (t = args; t; t = TREE_CHAIN (t))
|
|
{
|
|
if (TREE_VALUE (t) == error_mark_node)
|
|
return error_mark_node;
|
|
else if (TREE_CODE (TREE_TYPE (TREE_VALUE (t))) == VOID_TYPE)
|
|
{
|
|
error ("invalid use of void expression");
|
|
return error_mark_node;
|
|
}
|
|
else if (TREE_CODE (TREE_VALUE (t)) == OFFSET_REF)
|
|
TREE_VALUE (t) = resolve_offset_ref (TREE_VALUE (t));
|
|
}
|
|
return args;
|
|
}
|
|
|
|
tree
|
|
build_new_function_call (fn, args)
|
|
tree fn, args;
|
|
{
|
|
struct z_candidate *candidates = 0, *cand;
|
|
tree explicit_targs = NULL_TREE;
|
|
int template_only = 0;
|
|
|
|
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
|
|
{
|
|
explicit_targs = TREE_OPERAND (fn, 1);
|
|
fn = TREE_OPERAND (fn, 0);
|
|
template_only = 1;
|
|
}
|
|
|
|
if (really_overloaded_fn (fn))
|
|
{
|
|
tree t1;
|
|
tree templates = NULL_TREE;
|
|
|
|
args = resolve_args (args);
|
|
|
|
if (args == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
for (t1 = fn; t1; t1 = OVL_CHAIN (t1))
|
|
{
|
|
tree t = OVL_FUNCTION (t1);
|
|
struct z_candidate *old_candidates = candidates;
|
|
|
|
if (TREE_CODE (t) == TEMPLATE_DECL)
|
|
{
|
|
templates = scratch_tree_cons (NULL_TREE, t, templates);
|
|
candidates = add_template_candidate
|
|
(candidates, t, explicit_targs, args, NULL_TREE,
|
|
LOOKUP_NORMAL, DEDUCE_CALL);
|
|
}
|
|
else if (! template_only)
|
|
candidates = add_function_candidate
|
|
(candidates, t, args, LOOKUP_NORMAL);
|
|
|
|
if (candidates != old_candidates)
|
|
candidates->basetype_path = DECL_REAL_CONTEXT (t);
|
|
}
|
|
|
|
if (! any_viable (candidates))
|
|
{
|
|
if (candidates && ! candidates->next)
|
|
return build_function_call (candidates->fn, args);
|
|
cp_error ("no matching function for call to `%D (%A)'",
|
|
DECL_NAME (OVL_FUNCTION (fn)), args);
|
|
if (candidates)
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
candidates = splice_viable (candidates);
|
|
cand = tourney (candidates);
|
|
|
|
if (cand == 0)
|
|
{
|
|
cp_error ("call of overloaded `%D (%A)' is ambiguous",
|
|
DECL_NAME (OVL_FUNCTION (fn)), args);
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
|
|
/* Pedantically, normal function declarations are never considered
|
|
to refer to template instantiations, so we only do this with
|
|
-fguiding-decls. */
|
|
if (flag_guiding_decls && templates && ! cand->template
|
|
&& ! DECL_INITIAL (cand->fn))
|
|
add_maybe_template (cand->fn, templates);
|
|
|
|
return build_over_call (cand, args, LOOKUP_NORMAL);
|
|
}
|
|
|
|
/* This is not really overloaded. */
|
|
fn = OVL_CURRENT (fn);
|
|
|
|
return build_function_call (fn, args);
|
|
}
|
|
|
|
static tree
|
|
build_object_call (obj, args)
|
|
tree obj, args;
|
|
{
|
|
struct z_candidate *candidates = 0, *cand;
|
|
tree fns, convs, mem_args = NULL_TREE;
|
|
tree type = TREE_TYPE (obj);
|
|
|
|
if (TYPE_PTRMEMFUNC_P (type))
|
|
{
|
|
/* It's no good looking for an overloaded operator() on a
|
|
pointer-to-member-function. */
|
|
cp_error ("pointer-to-member function %E cannot be called", obj);
|
|
cp_error ("without an object; consider using .* or ->*");
|
|
return error_mark_node;
|
|
}
|
|
|
|
fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname [CALL_EXPR], 1);
|
|
if (fns == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
args = resolve_args (args);
|
|
|
|
if (args == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
if (fns)
|
|
{
|
|
tree base = TREE_PURPOSE (fns);
|
|
mem_args = scratch_tree_cons (NULL_TREE, build_this (obj), args);
|
|
|
|
for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
|
|
{
|
|
tree fn = OVL_CURRENT (fns);
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
{
|
|
candidates
|
|
= add_template_candidate (candidates, fn, NULL_TREE,
|
|
mem_args, NULL_TREE,
|
|
LOOKUP_NORMAL, DEDUCE_CALL);
|
|
}
|
|
else
|
|
candidates = add_function_candidate
|
|
(candidates, fn, mem_args, LOOKUP_NORMAL);
|
|
|
|
if (candidates)
|
|
candidates->basetype_path = base;
|
|
}
|
|
}
|
|
|
|
convs = lookup_conversions (type);
|
|
|
|
for (; convs; convs = TREE_CHAIN (convs))
|
|
{
|
|
tree fns = TREE_VALUE (convs);
|
|
tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));
|
|
|
|
if ((TREE_CODE (totype) == POINTER_TYPE
|
|
|| TREE_CODE (totype) == REFERENCE_TYPE)
|
|
&& TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
|
|
for (; fns; fns = OVL_NEXT (fns))
|
|
{
|
|
tree fn = OVL_CURRENT (fns);
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
{
|
|
candidates = add_template_conv_candidate (candidates,
|
|
fn,
|
|
obj,
|
|
args,
|
|
totype);
|
|
}
|
|
else
|
|
candidates = add_conv_candidate (candidates, fn, obj, args);
|
|
|
|
if (candidates)
|
|
candidates->basetype_path = TREE_PURPOSE (convs);
|
|
}
|
|
}
|
|
|
|
if (! any_viable (candidates))
|
|
{
|
|
cp_error ("no match for call to `(%T) (%A)'", TREE_TYPE (obj), args);
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
|
|
candidates = splice_viable (candidates);
|
|
cand = tourney (candidates);
|
|
|
|
if (cand == 0)
|
|
{
|
|
cp_error ("call of `(%T) (%A)' is ambiguous", TREE_TYPE (obj), args);
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
|
|
/* Since cand->fn will be a type, not a function, for a conversion
|
|
function, we must be careful not to unconditionally look at
|
|
DECL_NAME here. */
|
|
if (TREE_CODE (cand->fn) == FUNCTION_DECL
|
|
&& DECL_NAME (cand->fn) == ansi_opname [CALL_EXPR])
|
|
return build_over_call (cand, mem_args, LOOKUP_NORMAL);
|
|
|
|
obj = convert_like (TREE_VEC_ELT (cand->convs, 0), obj);
|
|
|
|
/* FIXME */
|
|
return build_function_call (obj, args);
|
|
}
|
|
|
|
static void
|
|
op_error (code, code2, arg1, arg2, arg3, problem)
|
|
enum tree_code code, code2;
|
|
tree arg1, arg2, arg3;
|
|
const char *problem;
|
|
{
|
|
const char * opname
|
|
= (code == MODIFY_EXPR ? assignop_tab [code2] : opname_tab [code]);
|
|
|
|
switch (code)
|
|
{
|
|
case COND_EXPR:
|
|
cp_error ("%s for `%T ? %T : %T'", problem,
|
|
error_type (arg1), error_type (arg2), error_type (arg3));
|
|
break;
|
|
case POSTINCREMENT_EXPR:
|
|
case POSTDECREMENT_EXPR:
|
|
cp_error ("%s for `%T%s'", problem, error_type (arg1), opname);
|
|
break;
|
|
case ARRAY_REF:
|
|
cp_error ("%s for `%T[%T]'", problem,
|
|
error_type (arg1), error_type (arg2));
|
|
break;
|
|
default:
|
|
if (arg2)
|
|
cp_error ("%s for `%T %s %T'", problem,
|
|
error_type (arg1), opname, error_type (arg2));
|
|
else
|
|
cp_error ("%s for `%s%T'", problem, opname, error_type (arg1));
|
|
}
|
|
}
|
|
|
|
tree
|
|
build_new_op (code, flags, arg1, arg2, arg3)
|
|
enum tree_code code;
|
|
int flags;
|
|
tree arg1, arg2, arg3;
|
|
{
|
|
struct z_candidate *candidates = 0, *cand;
|
|
tree fns, mem_arglist = NULL_TREE, arglist, fnname;
|
|
enum tree_code code2 = NOP_EXPR;
|
|
tree templates = NULL_TREE;
|
|
tree conv;
|
|
|
|
if (arg1 == error_mark_node
|
|
|| arg2 == error_mark_node
|
|
|| arg3 == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
/* This can happen if a template takes all non-type parameters, e.g.
|
|
undeclared_template<1, 5, 72>a; */
|
|
if (code == LT_EXPR && TREE_CODE (arg1) == TEMPLATE_DECL)
|
|
{
|
|
cp_error ("`%D' must be declared before use", arg1);
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (code == MODIFY_EXPR)
|
|
{
|
|
code2 = TREE_CODE (arg3);
|
|
arg3 = NULL_TREE;
|
|
fnname = ansi_assopname[code2];
|
|
}
|
|
else
|
|
fnname = ansi_opname[code];
|
|
|
|
switch (code)
|
|
{
|
|
case NEW_EXPR:
|
|
case VEC_NEW_EXPR:
|
|
case VEC_DELETE_EXPR:
|
|
case DELETE_EXPR:
|
|
/* Use build_op_new_call and build_op_delete_call instead. */
|
|
my_friendly_abort (981018);
|
|
|
|
case CALL_EXPR:
|
|
return build_object_call (arg1, arg2);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* The comma operator can have void args. */
|
|
if (TREE_CODE (arg1) == OFFSET_REF)
|
|
arg1 = resolve_offset_ref (arg1);
|
|
if (arg2 && TREE_CODE (arg2) == OFFSET_REF)
|
|
arg2 = resolve_offset_ref (arg2);
|
|
if (arg3 && TREE_CODE (arg3) == OFFSET_REF)
|
|
arg3 = resolve_offset_ref (arg3);
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
if (arg2 == NULL_TREE
|
|
|| TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
|
|
|| TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
|
|
|| (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
|
|
&& ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
|
|
goto builtin;
|
|
}
|
|
else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
|
|
&& (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
|
|
goto builtin;
|
|
|
|
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
|
|
arg2 = integer_zero_node;
|
|
|
|
if (arg2 && arg3)
|
|
arglist = scratch_tree_cons (NULL_TREE, arg1, scratch_tree_cons
|
|
(NULL_TREE, arg2, build_scratch_list (NULL_TREE, arg3)));
|
|
else if (arg2)
|
|
arglist = scratch_tree_cons (NULL_TREE, arg1, build_scratch_list (NULL_TREE, arg2));
|
|
else
|
|
arglist = build_scratch_list (NULL_TREE, arg1);
|
|
|
|
fns = lookup_function_nonclass (fnname, arglist);
|
|
|
|
if (fns && TREE_CODE (fns) == TREE_LIST)
|
|
fns = TREE_VALUE (fns);
|
|
for (; fns; fns = OVL_NEXT (fns))
|
|
{
|
|
tree fn = OVL_CURRENT (fns);
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
{
|
|
templates = scratch_tree_cons (NULL_TREE, fn, templates);
|
|
candidates
|
|
= add_template_candidate (candidates, fn, NULL_TREE,
|
|
arglist, TREE_TYPE (fnname),
|
|
flags, DEDUCE_CALL);
|
|
}
|
|
else
|
|
candidates = add_function_candidate (candidates, fn, arglist, flags);
|
|
}
|
|
|
|
if (IS_AGGR_TYPE (TREE_TYPE (arg1)))
|
|
{
|
|
fns = lookup_fnfields (TYPE_BINFO (TREE_TYPE (arg1)), fnname, 1);
|
|
if (fns == error_mark_node)
|
|
return fns;
|
|
}
|
|
else
|
|
fns = NULL_TREE;
|
|
|
|
if (fns)
|
|
{
|
|
tree basetype = TREE_PURPOSE (fns);
|
|
mem_arglist = scratch_tree_cons (NULL_TREE, build_this (arg1), TREE_CHAIN (arglist));
|
|
for (fns = TREE_VALUE (fns); fns; fns = OVL_NEXT (fns))
|
|
{
|
|
tree fn = OVL_CURRENT (fns);
|
|
tree this_arglist;
|
|
|
|
if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
|
this_arglist = mem_arglist;
|
|
else
|
|
this_arglist = arglist;
|
|
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
|
{
|
|
/* A member template. */
|
|
templates = scratch_tree_cons (NULL_TREE, fn, templates);
|
|
candidates
|
|
= add_template_candidate (candidates, fn, NULL_TREE,
|
|
this_arglist, TREE_TYPE (fnname),
|
|
flags, DEDUCE_CALL);
|
|
}
|
|
else
|
|
candidates = add_function_candidate
|
|
(candidates, fn, this_arglist, flags);
|
|
|
|
if (candidates)
|
|
candidates->basetype_path = basetype;
|
|
}
|
|
}
|
|
|
|
{
|
|
tree args[3];
|
|
|
|
/* Rearrange the arguments for ?: so that add_builtin_candidate only has
|
|
to know about two args; a builtin candidate will always have a first
|
|
parameter of type bool. We'll handle that in
|
|
build_builtin_candidate. */
|
|
if (code == COND_EXPR)
|
|
{
|
|
args[0] = arg2;
|
|
args[1] = arg3;
|
|
args[2] = arg1;
|
|
}
|
|
else
|
|
{
|
|
args[0] = arg1;
|
|
args[1] = arg2;
|
|
args[2] = NULL_TREE;
|
|
}
|
|
|
|
candidates = add_builtin_candidates
|
|
(candidates, code, code2, fnname, args, flags);
|
|
}
|
|
|
|
if (! any_viable (candidates))
|
|
{
|
|
switch (code)
|
|
{
|
|
case POSTINCREMENT_EXPR:
|
|
case POSTDECREMENT_EXPR:
|
|
/* Look for an `operator++ (int)'. If they didn't have
|
|
one, then we fall back to the old way of doing things. */
|
|
if (flags & LOOKUP_COMPLAIN)
|
|
cp_pedwarn ("no `%D (int)' declared for postfix `%s', trying prefix operator instead",
|
|
fnname, opname_tab [code]);
|
|
if (code == POSTINCREMENT_EXPR)
|
|
code = PREINCREMENT_EXPR;
|
|
else
|
|
code = PREDECREMENT_EXPR;
|
|
return build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE);
|
|
|
|
/* The caller will deal with these. */
|
|
case ADDR_EXPR:
|
|
case COMPOUND_EXPR:
|
|
case COMPONENT_REF:
|
|
return NULL_TREE;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
if (flags & LOOKUP_COMPLAIN)
|
|
{
|
|
op_error (code, code2, arg1, arg2, arg3, "no match");
|
|
print_z_candidates (candidates);
|
|
}
|
|
return error_mark_node;
|
|
}
|
|
candidates = splice_viable (candidates);
|
|
cand = tourney (candidates);
|
|
|
|
if (cand == 0)
|
|
{
|
|
if (flags & LOOKUP_COMPLAIN)
|
|
{
|
|
op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
|
|
print_z_candidates (candidates);
|
|
}
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (TREE_CODE (cand->fn) == FUNCTION_DECL)
|
|
{
|
|
extern int warn_synth;
|
|
if (warn_synth
|
|
&& fnname == ansi_opname[MODIFY_EXPR]
|
|
&& DECL_ARTIFICIAL (cand->fn)
|
|
&& candidates->next
|
|
&& ! candidates->next->next)
|
|
{
|
|
cp_warning ("using synthesized `%#D' for copy assignment",
|
|
cand->fn);
|
|
cp_warning_at (" where cfront would use `%#D'",
|
|
cand == candidates
|
|
? candidates->next->fn
|
|
: candidates->fn);
|
|
}
|
|
|
|
/* Pedantically, normal function declarations are never considered
|
|
to refer to template instantiations, so we only do this with
|
|
-fguiding-decls. */
|
|
if (flag_guiding_decls && templates && ! cand->template
|
|
&& ! DECL_INITIAL (cand->fn)
|
|
&& TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE)
|
|
add_maybe_template (cand->fn, templates);
|
|
|
|
return build_over_call
|
|
(cand,
|
|
TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
|
|
? mem_arglist : arglist,
|
|
LOOKUP_NORMAL);
|
|
}
|
|
|
|
/* Check for comparison of different enum types. */
|
|
switch (code)
|
|
{
|
|
case GT_EXPR:
|
|
case LT_EXPR:
|
|
case GE_EXPR:
|
|
case LE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE
|
|
&& TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE
|
|
&& (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
|
|
!= TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
|
|
{
|
|
cp_warning ("comparison between `%#T' and `%#T'",
|
|
TREE_TYPE (arg1), TREE_TYPE (arg2));
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* We need to strip any leading REF_BIND so that bitfields don't cause
|
|
errors. This should not remove any important conversions, because
|
|
builtins don't apply to class objects directly. */
|
|
conv = TREE_VEC_ELT (cand->convs, 0);
|
|
if (TREE_CODE (conv) == REF_BIND)
|
|
conv = TREE_OPERAND (conv, 0);
|
|
arg1 = convert_like (conv, arg1);
|
|
if (arg2)
|
|
{
|
|
conv = TREE_VEC_ELT (cand->convs, 1);
|
|
if (TREE_CODE (conv) == REF_BIND)
|
|
conv = TREE_OPERAND (conv, 0);
|
|
arg2 = convert_like (conv, arg2);
|
|
}
|
|
if (arg3)
|
|
{
|
|
conv = TREE_VEC_ELT (cand->convs, 2);
|
|
if (TREE_CODE (conv) == REF_BIND)
|
|
conv = TREE_OPERAND (conv, 0);
|
|
arg3 = convert_like (conv, arg3);
|
|
}
|
|
|
|
builtin:
|
|
switch (code)
|
|
{
|
|
case MODIFY_EXPR:
|
|
return build_modify_expr (arg1, code2, arg2);
|
|
|
|
case INDIRECT_REF:
|
|
return build_indirect_ref (arg1, "unary *");
|
|
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case MULT_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
case GT_EXPR:
|
|
case LT_EXPR:
|
|
case GE_EXPR:
|
|
case LE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case TRUTH_ANDIF_EXPR:
|
|
case TRUTH_ORIF_EXPR:
|
|
return build_binary_op_nodefault (code, arg1, arg2, code);
|
|
|
|
case CONVERT_EXPR:
|
|
case NEGATE_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
case TRUTH_NOT_EXPR:
|
|
case PREINCREMENT_EXPR:
|
|
case POSTINCREMENT_EXPR:
|
|
case PREDECREMENT_EXPR:
|
|
case POSTDECREMENT_EXPR:
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
return build_unary_op (code, arg1, candidates != 0);
|
|
|
|
case ARRAY_REF:
|
|
return build_array_ref (arg1, arg2);
|
|
|
|
case COND_EXPR:
|
|
return build_conditional_expr (arg1, arg2, arg3);
|
|
|
|
case MEMBER_REF:
|
|
return build_m_component_ref
|
|
(build_indirect_ref (arg1, NULL_PTR), arg2);
|
|
|
|
/* The caller will deal with these. */
|
|
case ADDR_EXPR:
|
|
case COMPONENT_REF:
|
|
case COMPOUND_EXPR:
|
|
return NULL_TREE;
|
|
|
|
default:
|
|
my_friendly_abort (367);
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Build up a call to operator new. This has to be handled differently
|
|
from other operators in the way lookup is handled; first members are
|
|
considered, then globals. CODE is either NEW_EXPR or VEC_NEW_EXPR.
|
|
TYPE is the type to be created. ARGS are any new-placement args.
|
|
FLAGS are the usual overloading flags. */
|
|
|
|
tree
|
|
build_op_new_call (code, type, args, flags)
|
|
enum tree_code code;
|
|
tree type, args;
|
|
int flags;
|
|
{
|
|
tree fnname = ansi_opname[code];
|
|
|
|
if (IS_AGGR_TYPE (type) && ! (flags & LOOKUP_GLOBAL)
|
|
&& (TYPE_GETS_NEW (type) & (1 << (code == VEC_NEW_EXPR))))
|
|
{
|
|
return build_method_call (build_dummy_object (type),
|
|
fnname, args, NULL_TREE, flags);
|
|
}
|
|
else
|
|
return build_new_function_call
|
|
(lookup_function_nonclass (fnname, args), args);
|
|
}
|
|
|
|
/* Build a call to operator delete. This has to be handled very specially,
|
|
because the restrictions on what signatures match are different from all
|
|
other call instances. For a normal delete, only a delete taking (void *)
|
|
or (void *, size_t) is accepted. For a placement delete, only an exact
|
|
match with the placement new is accepted.
|
|
|
|
CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
|
|
ADDR is the pointer to be deleted. For placement delete, it is also
|
|
used to determine what the corresponding new looked like.
|
|
SIZE is the size of the memory block to be deleted.
|
|
FLAGS are the usual overloading flags.
|
|
PLACEMENT is the corresponding placement new call, or 0. */
|
|
|
|
tree
|
|
build_op_delete_call (code, addr, size, flags, placement)
|
|
enum tree_code code;
|
|
tree addr, size, placement;
|
|
int flags;
|
|
{
|
|
tree fn, fns, fnname, fntype, argtypes, args, type;
|
|
|
|
if (addr == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
type = TREE_TYPE (TREE_TYPE (addr));
|
|
fnname = ansi_opname[code];
|
|
|
|
if (IS_AGGR_TYPE (type) && ! (flags & LOOKUP_GLOBAL))
|
|
/* In [class.free]
|
|
|
|
If the result of the lookup is ambiguous or inaccessible, or if
|
|
the lookup selects a placement deallocation function, the
|
|
program is ill-formed.
|
|
|
|
Therefore, we ask lookup_fnfields to complain ambout ambiguity. */
|
|
{
|
|
fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
|
|
if (fns == error_mark_node)
|
|
return error_mark_node;
|
|
}
|
|
else
|
|
fns = NULL_TREE;
|
|
|
|
if (fns == NULL_TREE)
|
|
fns = lookup_name_nonclass (fnname);
|
|
|
|
if (placement)
|
|
{
|
|
/* placement is a CALL_EXPR around an ADDR_EXPR around a function. */
|
|
|
|
/* Extract the function. */
|
|
argtypes = TREE_OPERAND (TREE_OPERAND (placement, 0), 0);
|
|
/* Then the second parm type. */
|
|
argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (argtypes)));
|
|
|
|
/* Also the second argument. */
|
|
args = TREE_CHAIN (TREE_OPERAND (placement, 1));
|
|
}
|
|
else
|
|
{
|
|
/* First try it without the size argument. */
|
|
argtypes = void_list_node;
|
|
args = NULL_TREE;
|
|
}
|
|
|
|
argtypes = tree_cons (NULL_TREE, ptr_type_node, argtypes);
|
|
fntype = build_function_type (void_type_node, argtypes);
|
|
|
|
/* Strip const and volatile from addr. */
|
|
if (type != TYPE_MAIN_VARIANT (type))
|
|
addr = cp_convert (build_pointer_type (TYPE_MAIN_VARIANT (type)), addr);
|
|
|
|
fn = instantiate_type (fntype, fns, 2);
|
|
|
|
if (fn != error_mark_node)
|
|
{
|
|
if (TREE_CODE (fns) == TREE_LIST)
|
|
/* Member functions. */
|
|
enforce_access (TREE_PURPOSE (fns), fn);
|
|
return build_function_call (fn, expr_tree_cons (NULL_TREE, addr, args));
|
|
}
|
|
|
|
/* If we are doing placement delete we do nothing if we don't find a
|
|
matching op delete. */
|
|
if (placement)
|
|
return NULL_TREE;
|
|
|
|
/* Normal delete; now try to find a match including the size argument. */
|
|
argtypes = tree_cons (NULL_TREE, ptr_type_node,
|
|
tree_cons (NULL_TREE, sizetype, void_list_node));
|
|
fntype = build_function_type (void_type_node, argtypes);
|
|
|
|
fn = instantiate_type (fntype, fns, 2);
|
|
|
|
if (fn != error_mark_node)
|
|
{
|
|
if (BASELINK_P (fns))
|
|
/* Member functions. */
|
|
enforce_access (TREE_PURPOSE (fns), fn);
|
|
return build_function_call
|
|
(fn, expr_tree_cons (NULL_TREE, addr,
|
|
build_expr_list (NULL_TREE, size)));
|
|
}
|
|
|
|
/* finish_function passes LOOKUP_SPECULATIVELY if we're in a
|
|
destructor, in which case the error should be deferred
|
|
until someone actually tries to delete one of these. */
|
|
if (flags & LOOKUP_SPECULATIVELY)
|
|
return NULL_TREE;
|
|
|
|
cp_error ("no suitable operator delete for `%T'", type);
|
|
return error_mark_node;
|
|
}
|
|
|
|
/* If the current scope isn't allowed to access DECL along
|
|
BASETYPE_PATH, give an error. The most derived class in
|
|
BASETYPE_PATH is the one used to qualify DECL. */
|
|
|
|
int
|
|
enforce_access (basetype_path, decl)
|
|
tree basetype_path;
|
|
tree decl;
|
|
{
|
|
int accessible;
|
|
|
|
accessible = accessible_p (basetype_path, decl);
|
|
if (!accessible)
|
|
{
|
|
if (TREE_PRIVATE (decl))
|
|
cp_error_at ("`%+#D' is private", decl);
|
|
else if (TREE_PROTECTED (decl))
|
|
cp_error_at ("`%+#D' is protected", decl);
|
|
else
|
|
cp_error_at ("`%+#D' is inaccessible", decl);
|
|
cp_error ("within this context");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Perform the conversions in CONVS on the expression EXPR. */
|
|
|
|
static tree
|
|
convert_like (convs, expr)
|
|
tree convs, expr;
|
|
{
|
|
if (ICS_BAD_FLAG (convs)
|
|
&& TREE_CODE (convs) != USER_CONV
|
|
&& TREE_CODE (convs) != AMBIG_CONV)
|
|
{
|
|
tree t = convs;
|
|
for (; t; t = TREE_OPERAND (t, 0))
|
|
{
|
|
if (TREE_CODE (t) == USER_CONV)
|
|
{
|
|
expr = convert_like (t, expr);
|
|
break;
|
|
}
|
|
else if (TREE_CODE (t) == AMBIG_CONV)
|
|
return convert_like (t, expr);
|
|
else if (TREE_CODE (t) == IDENTITY_CONV)
|
|
break;
|
|
}
|
|
return convert_for_initialization
|
|
(NULL_TREE, TREE_TYPE (convs), expr, LOOKUP_NORMAL,
|
|
"conversion", NULL_TREE, 0);
|
|
}
|
|
|
|
switch (TREE_CODE (convs))
|
|
{
|
|
case USER_CONV:
|
|
{
|
|
struct z_candidate *cand
|
|
= WRAPPER_PTR (TREE_OPERAND (convs, 1));
|
|
tree fn = cand->fn;
|
|
tree args;
|
|
|
|
if (DECL_CONSTRUCTOR_P (fn))
|
|
{
|
|
tree t = build_int_2 (0, 0);
|
|
TREE_TYPE (t) = build_pointer_type (DECL_CONTEXT (fn));
|
|
|
|
args = build_scratch_list (NULL_TREE, expr);
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
|
args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
|
|
args = scratch_tree_cons (NULL_TREE, t, args);
|
|
}
|
|
else
|
|
args = build_this (expr);
|
|
expr = build_over_call (cand, args, LOOKUP_NORMAL);
|
|
|
|
/* If this is a constructor or a function returning an aggr type,
|
|
we need to build up a TARGET_EXPR. */
|
|
if (DECL_CONSTRUCTOR_P (fn))
|
|
expr = build_cplus_new (TREE_TYPE (convs), expr);
|
|
|
|
return expr;
|
|
}
|
|
case IDENTITY_CONV:
|
|
if (type_unknown_p (expr))
|
|
expr = instantiate_type (TREE_TYPE (convs), expr, 1);
|
|
if (TREE_READONLY_DECL_P (expr))
|
|
expr = decl_constant_value (expr);
|
|
return expr;
|
|
case AMBIG_CONV:
|
|
/* Call build_user_type_conversion again for the error. */
|
|
return build_user_type_conversion
|
|
(TREE_TYPE (convs), TREE_OPERAND (convs, 0), LOOKUP_NORMAL);
|
|
|
|
default:
|
|
break;
|
|
};
|
|
|
|
expr = convert_like (TREE_OPERAND (convs, 0), expr);
|
|
if (expr == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
switch (TREE_CODE (convs))
|
|
{
|
|
case RVALUE_CONV:
|
|
if (! IS_AGGR_TYPE (TREE_TYPE (convs)))
|
|
return expr;
|
|
/* else fall through */
|
|
case BASE_CONV:
|
|
{
|
|
tree cvt_expr = build_user_type_conversion
|
|
(TREE_TYPE (convs), expr, LOOKUP_NORMAL);
|
|
if (!cvt_expr)
|
|
{
|
|
/* This can occur if, for example, the EXPR has incomplete
|
|
type. We can't check for that before attempting the
|
|
conversion because the type might be an incomplete
|
|
array type, which is OK if some constructor for the
|
|
destination type takes a pointer argument. */
|
|
if (TYPE_SIZE (TREE_TYPE (expr)) == 0)
|
|
{
|
|
if (same_type_p (TREE_TYPE (expr), TREE_TYPE (convs)))
|
|
incomplete_type_error (expr, TREE_TYPE (expr));
|
|
else
|
|
cp_error ("could not convert `%E' (with incomplete type `%T') to `%T'",
|
|
expr, TREE_TYPE (expr), TREE_TYPE (convs));
|
|
}
|
|
else
|
|
cp_error ("could not convert `%E' to `%T'",
|
|
expr, TREE_TYPE (convs));
|
|
return error_mark_node;
|
|
}
|
|
return cvt_expr;
|
|
}
|
|
|
|
case REF_BIND:
|
|
return convert_to_reference
|
|
(TREE_TYPE (convs), expr,
|
|
CONV_IMPLICIT, LOOKUP_NORMAL|LOOKUP_NO_CONVERSION,
|
|
error_mark_node);
|
|
case LVALUE_CONV:
|
|
return decay_conversion (expr);
|
|
|
|
case QUAL_CONV:
|
|
/* Warn about deprecated conversion if appropriate. */
|
|
string_conv_p (TREE_TYPE (convs), expr, 1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return ocp_convert (TREE_TYPE (convs), expr, CONV_IMPLICIT,
|
|
LOOKUP_NORMAL|LOOKUP_NO_CONVERSION);
|
|
}
|
|
|
|
/* ARG is being passed to a varargs function. Perform any conversions
|
|
required. Return the converted value. */
|
|
|
|
tree
|
|
convert_arg_to_ellipsis (arg)
|
|
tree arg;
|
|
{
|
|
if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
|
|
&& (TYPE_PRECISION (TREE_TYPE (arg))
|
|
< TYPE_PRECISION (double_type_node)))
|
|
/* Convert `float' to `double'. */
|
|
arg = cp_convert (double_type_node, arg);
|
|
else if (IS_AGGR_TYPE (TREE_TYPE (arg))
|
|
&& ! TYPE_HAS_TRIVIAL_INIT_REF (TREE_TYPE (arg)))
|
|
cp_warning ("cannot pass objects of type `%T' through `...'",
|
|
TREE_TYPE (arg));
|
|
else
|
|
/* Convert `short' and `char' to full-size `int'. */
|
|
arg = default_conversion (arg);
|
|
|
|
arg = require_complete_type (arg);
|
|
|
|
return arg;
|
|
}
|
|
|
|
/* ARG is a default argument expression being passed to a parameter of
|
|
the indicated TYPE, which is a parameter to FN. Do any required
|
|
conversions. Return the converted value. */
|
|
|
|
tree
|
|
convert_default_arg (type, arg, fn)
|
|
tree type;
|
|
tree arg;
|
|
tree fn;
|
|
{
|
|
if (fn && DECL_TEMPLATE_INFO (fn))
|
|
{
|
|
/* This default argument came from a template. Instantiate the
|
|
default argument here, not in tsubst. In the case of
|
|
something like:
|
|
|
|
template <class T>
|
|
struct S {
|
|
static T t();
|
|
void f(T = t());
|
|
};
|
|
|
|
we must be careful to do name lookup in the scope of S<T>,
|
|
rather than in the current class. */
|
|
if (DECL_CLASS_SCOPE_P (fn))
|
|
pushclass (DECL_REAL_CONTEXT (fn), 2);
|
|
|
|
arg = tsubst_expr (arg, DECL_TI_ARGS (fn), /*complain=*/1, NULL_TREE);
|
|
|
|
if (DECL_CLASS_SCOPE_P (fn))
|
|
popclass ();
|
|
|
|
/* Make sure the default argument is reasonable. */
|
|
arg = check_default_argument (type, arg);
|
|
}
|
|
|
|
arg = break_out_target_exprs (arg);
|
|
|
|
if (TREE_CODE (arg) == CONSTRUCTOR)
|
|
{
|
|
arg = digest_init (type, arg, 0);
|
|
arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
|
|
"default argument", 0, 0);
|
|
}
|
|
else
|
|
{
|
|
/* This could get clobbered by the following call. */
|
|
if (TREE_HAS_CONSTRUCTOR (arg))
|
|
arg = copy_node (arg);
|
|
|
|
arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
|
|
"default argument", 0, 0);
|
|
#ifdef PROMOTE_PROTOTYPES
|
|
if ((TREE_CODE (type) == INTEGER_TYPE
|
|
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
|
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
|
|
arg = default_conversion (arg);
|
|
#endif
|
|
}
|
|
|
|
return arg;
|
|
}
|
|
|
|
static tree
|
|
build_over_call (cand, args, flags)
|
|
struct z_candidate *cand;
|
|
tree args;
|
|
int flags;
|
|
{
|
|
tree fn = cand->fn;
|
|
tree convs = cand->convs;
|
|
tree converted_args = NULL_TREE;
|
|
tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
|
tree conv, arg, val;
|
|
int i = 0;
|
|
int is_method = 0;
|
|
|
|
/* Give any warnings we noticed during overload resolution. */
|
|
if (cand->warnings)
|
|
for (val = cand->warnings; val; val = TREE_CHAIN (val))
|
|
joust (cand, WRAPPER_PTR (TREE_VALUE (val)), 1);
|
|
|
|
if (DECL_FUNCTION_MEMBER_P (fn))
|
|
enforce_access (cand->basetype_path, fn);
|
|
|
|
if (args && TREE_CODE (args) != TREE_LIST)
|
|
args = build_scratch_list (NULL_TREE, args);
|
|
arg = args;
|
|
|
|
/* The implicit parameters to a constructor are not considered by overload
|
|
resolution, and must be of the proper type. */
|
|
if (DECL_CONSTRUCTOR_P (fn))
|
|
{
|
|
converted_args = expr_tree_cons (NULL_TREE, TREE_VALUE (arg), converted_args);
|
|
arg = TREE_CHAIN (arg);
|
|
parm = TREE_CHAIN (parm);
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
|
{
|
|
converted_args = expr_tree_cons
|
|
(NULL_TREE, TREE_VALUE (arg), converted_args);
|
|
arg = TREE_CHAIN (arg);
|
|
parm = TREE_CHAIN (parm);
|
|
}
|
|
}
|
|
/* Bypass access control for 'this' parameter. */
|
|
else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
|
{
|
|
tree parmtype = TREE_VALUE (parm);
|
|
tree argtype = TREE_TYPE (TREE_VALUE (arg));
|
|
tree t;
|
|
if (ICS_BAD_FLAG (TREE_VEC_ELT (convs, i)))
|
|
cp_pedwarn ("passing `%T' as `this' argument of `%#D' discards qualifiers",
|
|
TREE_TYPE (argtype), fn);
|
|
|
|
/* [class.mfct.nonstatic]: If a nonstatic member function of a class
|
|
X is called for an object that is not of type X, or of a type
|
|
derived from X, the behavior is undefined.
|
|
|
|
So we can assume that anything passed as 'this' is non-null, and
|
|
optimize accordingly. */
|
|
if (TREE_CODE (parmtype) == POINTER_TYPE)
|
|
t = convert_pointer_to_real (TREE_TYPE (parmtype), TREE_VALUE (arg));
|
|
else
|
|
/* This happens with signatures. */
|
|
t = convert_force (parmtype, TREE_VALUE (arg), CONV_C_CAST);
|
|
converted_args = expr_tree_cons (NULL_TREE, t, converted_args);
|
|
parm = TREE_CHAIN (parm);
|
|
arg = TREE_CHAIN (arg);
|
|
++i;
|
|
is_method = 1;
|
|
}
|
|
|
|
for (; arg && parm;
|
|
parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
|
|
{
|
|
tree type = TREE_VALUE (parm);
|
|
|
|
conv = TREE_VEC_ELT (convs, i);
|
|
if (ICS_BAD_FLAG (conv))
|
|
{
|
|
tree t = conv;
|
|
val = TREE_VALUE (arg);
|
|
|
|
for (; t; t = TREE_OPERAND (t, 0))
|
|
{
|
|
if (TREE_CODE (t) == USER_CONV
|
|
|| TREE_CODE (t) == AMBIG_CONV)
|
|
{
|
|
val = convert_like (t, val);
|
|
break;
|
|
}
|
|
else if (TREE_CODE (t) == IDENTITY_CONV)
|
|
break;
|
|
}
|
|
val = convert_for_initialization
|
|
(NULL_TREE, type, val, LOOKUP_NORMAL,
|
|
"argument passing", fn, i - is_method);
|
|
}
|
|
else
|
|
{
|
|
/* Issue warnings about peculiar, but legal, uses of NULL. */
|
|
if (ARITHMETIC_TYPE_P (TREE_VALUE (parm))
|
|
&& TREE_VALUE (arg) == null_node)
|
|
cp_warning ("converting NULL to non-pointer type");
|
|
|
|
val = convert_like (conv, TREE_VALUE (arg));
|
|
}
|
|
|
|
#ifdef PROMOTE_PROTOTYPES
|
|
if ((TREE_CODE (type) == INTEGER_TYPE
|
|
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
|
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
|
|
val = default_conversion (val);
|
|
#endif
|
|
converted_args = expr_tree_cons (NULL_TREE, val, converted_args);
|
|
}
|
|
|
|
/* Default arguments */
|
|
for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm))
|
|
converted_args
|
|
= expr_tree_cons (NULL_TREE,
|
|
convert_default_arg (TREE_VALUE (parm),
|
|
TREE_PURPOSE (parm),
|
|
fn),
|
|
converted_args);
|
|
|
|
/* Ellipsis */
|
|
for (; arg; arg = TREE_CHAIN (arg))
|
|
converted_args
|
|
= expr_tree_cons (NULL_TREE,
|
|
convert_arg_to_ellipsis (TREE_VALUE (arg)),
|
|
converted_args);
|
|
|
|
converted_args = nreverse (converted_args);
|
|
|
|
if (warn_format && (DECL_NAME (fn) || DECL_ASSEMBLER_NAME (fn)))
|
|
check_function_format (DECL_NAME (fn), DECL_ASSEMBLER_NAME (fn),
|
|
converted_args);
|
|
|
|
/* Avoid actually calling copy constructors and copy assignment operators,
|
|
if possible. */
|
|
|
|
if (! flag_elide_constructors)
|
|
/* Do things the hard way. */;
|
|
else if (DECL_CONSTRUCTOR_P (fn)
|
|
&& TREE_VEC_LENGTH (convs) == 1
|
|
&& copy_args_p (fn))
|
|
{
|
|
tree targ;
|
|
arg = TREE_CHAIN (converted_args);
|
|
if (TYPE_USES_VIRTUAL_BASECLASSES (DECL_CONTEXT (fn)))
|
|
arg = TREE_CHAIN (arg);
|
|
arg = TREE_VALUE (arg);
|
|
|
|
/* Pull out the real argument, disregarding const-correctness. */
|
|
targ = arg;
|
|
while (TREE_CODE (targ) == NOP_EXPR
|
|
|| TREE_CODE (targ) == NON_LVALUE_EXPR
|
|
|| TREE_CODE (targ) == CONVERT_EXPR)
|
|
targ = TREE_OPERAND (targ, 0);
|
|
if (TREE_CODE (targ) == ADDR_EXPR)
|
|
{
|
|
targ = TREE_OPERAND (targ, 0);
|
|
if (!same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (arg))),
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (targ))))
|
|
targ = NULL_TREE;
|
|
}
|
|
else
|
|
targ = NULL_TREE;
|
|
|
|
if (targ)
|
|
arg = targ;
|
|
else
|
|
arg = build_indirect_ref (arg, 0);
|
|
|
|
/* [class.copy]: the copy constructor is implicitly defined even if
|
|
the implementation elided its use. */
|
|
if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
|
|
mark_used (fn);
|
|
|
|
/* If we're creating a temp and we already have one, don't create a
|
|
new one. If we're not creating a temp but we get one, use
|
|
INIT_EXPR to collapse the temp into our target. Otherwise, if the
|
|
ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
|
|
temp or an INIT_EXPR otherwise. */
|
|
if (integer_zerop (TREE_VALUE (args)))
|
|
{
|
|
if (! real_lvalue_p (arg))
|
|
return arg;
|
|
else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
|
|
{
|
|
val = build_decl (VAR_DECL, NULL_TREE, DECL_CONTEXT (fn));
|
|
val = build (TARGET_EXPR, DECL_CONTEXT (fn), val, arg, 0, 0);
|
|
TREE_SIDE_EFFECTS (val) = 1;
|
|
return val;
|
|
}
|
|
}
|
|
else if (! real_lvalue_p (arg)
|
|
|| TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
|
|
{
|
|
tree address;
|
|
tree to = stabilize_reference
|
|
(build_indirect_ref (TREE_VALUE (args), 0));
|
|
|
|
/* If we're initializing an empty class, then we actually
|
|
have to use a MODIFY_EXPR rather than an INIT_EXPR. The
|
|
reason is that the dummy padding member in the target may
|
|
not actually be allocated if TO is a base class
|
|
subobject. Since we've set TYPE_NONCOPIED_PARTS on the
|
|
padding, a MODIFY_EXPR will preserve its value, which is
|
|
the right thing to do if it's not really padding at all.
|
|
|
|
It's not safe to just throw away the ARG if we're looking
|
|
at an empty class because the ARG might contain a
|
|
TARGET_EXPR which wants to be bound to TO. If it is not,
|
|
expand_expr will assign a dummy slot for the TARGET_EXPR,
|
|
and we will call a destructor for it, which is wrong,
|
|
because we will also destroy TO, but will never have
|
|
constructed it. */
|
|
val = build (is_empty_class (DECL_CLASS_CONTEXT (fn))
|
|
? MODIFY_EXPR : INIT_EXPR,
|
|
DECL_CONTEXT (fn), to, arg);
|
|
TREE_SIDE_EFFECTS (val) = 1;
|
|
address = build_unary_op (ADDR_EXPR, val, 0);
|
|
/* Avoid a warning about this expression, if the address is
|
|
never used. */
|
|
TREE_USED (address) = 1;
|
|
return address;
|
|
}
|
|
}
|
|
else if (DECL_NAME (fn) == ansi_opname[MODIFY_EXPR]
|
|
&& copy_args_p (fn)
|
|
&& TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CLASS_CONTEXT (fn)))
|
|
{
|
|
tree to = stabilize_reference
|
|
(build_indirect_ref (TREE_VALUE (converted_args), 0));
|
|
|
|
arg = build_indirect_ref (TREE_VALUE (TREE_CHAIN (converted_args)), 0);
|
|
|
|
val = build (MODIFY_EXPR, TREE_TYPE (to), to, arg);
|
|
TREE_SIDE_EFFECTS (val) = 1;
|
|
return val;
|
|
}
|
|
|
|
mark_used (fn);
|
|
|
|
if (DECL_CLASS_SCOPE_P (fn) && IS_SIGNATURE (DECL_CONTEXT (fn)))
|
|
return build_signature_method_call (fn, converted_args);
|
|
else if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
|
|
{
|
|
tree t, *p = &TREE_VALUE (converted_args);
|
|
tree binfo = get_binfo
|
|
(DECL_CONTEXT (fn), TREE_TYPE (TREE_TYPE (*p)), 0);
|
|
*p = convert_pointer_to_real (binfo, *p);
|
|
if (TREE_SIDE_EFFECTS (*p))
|
|
*p = save_expr (*p);
|
|
t = build_pointer_type (TREE_TYPE (fn));
|
|
fn = build_vfn_ref (p, build_indirect_ref (*p, 0), DECL_VINDEX (fn));
|
|
TREE_TYPE (fn) = t;
|
|
}
|
|
else if (DECL_INLINE (fn))
|
|
fn = inline_conversion (fn);
|
|
else
|
|
fn = build_addr_func (fn);
|
|
|
|
/* Recognize certain built-in functions so we can make tree-codes
|
|
other than CALL_EXPR. We do this when it enables fold-const.c
|
|
to do something useful. */
|
|
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
|
&& DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
|
|
switch (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0)))
|
|
{
|
|
case BUILT_IN_ABS:
|
|
case BUILT_IN_LABS:
|
|
case BUILT_IN_FABS:
|
|
if (converted_args == 0)
|
|
return integer_zero_node;
|
|
return build_unary_op (ABS_EXPR, TREE_VALUE (converted_args), 0);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
fn = build_call (fn, TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))), converted_args);
|
|
if (TREE_CODE (TREE_TYPE (fn)) == VOID_TYPE)
|
|
return fn;
|
|
fn = require_complete_type (fn);
|
|
if (IS_AGGR_TYPE (TREE_TYPE (fn)))
|
|
fn = build_cplus_new (TREE_TYPE (fn), fn);
|
|
return convert_from_reference (fn);
|
|
}
|
|
|
|
static tree
|
|
build_new_method_call (instance, name, args, basetype_path, flags)
|
|
tree instance, name, args, basetype_path;
|
|
int flags;
|
|
{
|
|
struct z_candidate *candidates = 0, *cand;
|
|
tree explicit_targs = NULL_TREE;
|
|
tree basetype, mem_args = NULL_TREE, fns, instance_ptr;
|
|
tree pretty_name;
|
|
tree user_args = args;
|
|
tree templates = NULL_TREE;
|
|
int template_only = 0;
|
|
|
|
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
|
{
|
|
explicit_targs = TREE_OPERAND (name, 1);
|
|
name = TREE_OPERAND (name, 0);
|
|
if (TREE_CODE_CLASS (TREE_CODE (name)) == 'd')
|
|
name = DECL_NAME (name);
|
|
else
|
|
{
|
|
if (TREE_CODE (name) == COMPONENT_REF)
|
|
name = TREE_OPERAND (name, 1);
|
|
if (TREE_CODE (name) == OVERLOAD)
|
|
name = DECL_NAME (OVL_CURRENT (name));
|
|
}
|
|
|
|
template_only = 1;
|
|
}
|
|
|
|
/* If there is an extra argument for controlling virtual bases,
|
|
remove it for error reporting. */
|
|
if (flags & LOOKUP_HAS_IN_CHARGE)
|
|
user_args = TREE_CHAIN (args);
|
|
|
|
args = resolve_args (args);
|
|
|
|
if (args == error_mark_node)
|
|
return error_mark_node;
|
|
|
|
if (instance == NULL_TREE)
|
|
basetype = BINFO_TYPE (basetype_path);
|
|
else
|
|
{
|
|
if (TREE_CODE (instance) == OFFSET_REF)
|
|
instance = resolve_offset_ref (instance);
|
|
if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
|
|
instance = convert_from_reference (instance);
|
|
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));
|
|
|
|
/* XXX this should be handled before we get here. */
|
|
if (! IS_AGGR_TYPE (basetype)
|
|
&& ! (TYPE_LANG_SPECIFIC (basetype)
|
|
&& (IS_SIGNATURE_POINTER (basetype)
|
|
|| IS_SIGNATURE_REFERENCE (basetype))))
|
|
{
|
|
if ((flags & LOOKUP_COMPLAIN) && basetype != error_mark_node)
|
|
cp_error ("request for member `%D' in `%E', which is of non-aggregate type `%T'",
|
|
name, instance, basetype);
|
|
|
|
return error_mark_node;
|
|
}
|
|
|
|
/* If `instance' is a signature pointer/reference and `name' is
|
|
not a constructor, we are calling a signature member function.
|
|
In that case set the `basetype' to the signature type. */
|
|
if ((IS_SIGNATURE_POINTER (basetype)
|
|
|| IS_SIGNATURE_REFERENCE (basetype))
|
|
&& TYPE_IDENTIFIER (basetype) != name)
|
|
basetype = SIGNATURE_TYPE (basetype);
|
|
}
|
|
|
|
if (basetype_path == NULL_TREE)
|
|
basetype_path = TYPE_BINFO (basetype);
|
|
|
|
if (instance)
|
|
{
|
|
instance_ptr = build_this (instance);
|
|
|
|
if (! template_only)
|
|
{
|
|
/* XXX this should be handled before we get here. */
|
|
fns = build_field_call (basetype_path, instance_ptr, name, args);
|
|
if (fns)
|
|
return fns;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
instance_ptr = build_int_2 (0, 0);
|
|
TREE_TYPE (instance_ptr) = build_pointer_type (basetype);
|
|
}
|
|
|
|
pretty_name
|
|
= (name == ctor_identifier ? constructor_name (basetype) : name);
|
|
|
|
fns = lookup_fnfields (basetype_path, name, 1);
|
|
|
|
if (fns == error_mark_node)
|
|
return error_mark_node;
|
|
if (fns)
|
|
{
|
|
tree fn = TREE_VALUE (fns);
|
|
if (name == ctor_identifier && TYPE_USES_VIRTUAL_BASECLASSES (basetype)
|
|
&& ! (flags & LOOKUP_HAS_IN_CHARGE))
|
|
{
|
|
flags |= LOOKUP_HAS_IN_CHARGE;
|
|
args = scratch_tree_cons (NULL_TREE, integer_one_node, args);
|
|
}
|
|
mem_args = scratch_tree_cons (NULL_TREE, instance_ptr, args);
|
|
for (; fn; fn = OVL_NEXT (fn))
|
|
{
|
|
tree t = OVL_CURRENT (fn);
|
|
tree this_arglist;
|
|
|
|
/* We can end up here for copy-init of same or base class. */
|
|
if (name == ctor_identifier
|
|
&& (flags & LOOKUP_ONLYCONVERTING)
|
|
&& DECL_NONCONVERTING_P (t))
|
|
continue;
|
|
if (TREE_CODE (TREE_TYPE (t)) == METHOD_TYPE)
|
|
this_arglist = mem_args;
|
|
else
|
|
this_arglist = args;
|
|
|
|
if (TREE_CODE (t) == TEMPLATE_DECL)
|
|
{
|
|
/* A member template. */
|
|
templates = scratch_tree_cons (NULL_TREE, t, templates);
|
|
candidates =
|
|
add_template_candidate (candidates, t, explicit_targs,
|
|
this_arglist,
|
|
TREE_TYPE (name), flags, DEDUCE_CALL);
|
|
}
|
|
else if (! template_only)
|
|
candidates = add_function_candidate (candidates, t,
|
|
this_arglist, flags);
|
|
|
|
if (candidates)
|
|
candidates->basetype_path = TREE_PURPOSE (fns);
|
|
}
|
|
}
|
|
|
|
if (! any_viable (candidates))
|
|
{
|
|
/* XXX will LOOKUP_SPECULATIVELY be needed when this is done? */
|
|
if (flags & LOOKUP_SPECULATIVELY)
|
|
return NULL_TREE;
|
|
if (TYPE_SIZE (basetype) == 0)
|
|
incomplete_type_error (instance_ptr, basetype);
|
|
else
|
|
cp_error ("no matching function for call to `%T::%D (%A)%V'",
|
|
basetype, pretty_name, user_args,
|
|
TREE_TYPE (TREE_TYPE (instance_ptr)));
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
candidates = splice_viable (candidates);
|
|
cand = tourney (candidates);
|
|
|
|
if (cand == 0)
|
|
{
|
|
cp_error ("call of overloaded `%D(%A)' is ambiguous", pretty_name,
|
|
user_args);
|
|
print_z_candidates (candidates);
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (DECL_ABSTRACT_VIRTUAL_P (cand->fn)
|
|
&& instance == current_class_ref
|
|
&& DECL_CONSTRUCTOR_P (current_function_decl)
|
|
&& ! (flags & LOOKUP_NONVIRTUAL)
|
|
&& value_member (cand->fn, CLASSTYPE_ABSTRACT_VIRTUALS (basetype)))
|
|
cp_error ("abstract virtual `%#D' called from constructor", cand->fn);
|
|
if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
|
|
&& is_dummy_object (instance_ptr))
|
|
{
|
|
cp_error ("cannot call member function `%D' without object", cand->fn);
|
|
return error_mark_node;
|
|
}
|
|
|
|
if (DECL_VINDEX (cand->fn) && ! (flags & LOOKUP_NONVIRTUAL)
|
|
&& ((instance == current_class_ref && (dtor_label || ctor_label))
|
|
|| resolves_to_fixed_type_p (instance, 0)))
|
|
flags |= LOOKUP_NONVIRTUAL;
|
|
|
|
/* Pedantically, normal function declarations are never considered
|
|
to refer to template instantiations, so we only do this with
|
|
-fguiding-decls. */
|
|
if (flag_guiding_decls && templates && ! cand->template
|
|
&& ! DECL_INITIAL (cand->fn))
|
|
add_maybe_template (cand->fn, templates);
|
|
|
|
return build_over_call
|
|
(cand,
|
|
TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE ? mem_args : args,
|
|
flags);
|
|
}
|
|
|
|
/* Returns non-zero iff standard conversion sequence ICS1 is a proper
|
|
subsequence of ICS2. */
|
|
|
|
static int
|
|
is_subseq (ics1, ics2)
|
|
tree ics1, ics2;
|
|
{
|
|
/* We can assume that a conversion of the same code
|
|
between the same types indicates a subsequence since we only get
|
|
here if the types we are converting from are the same. */
|
|
|
|
while (TREE_CODE (ics1) == RVALUE_CONV
|
|
|| TREE_CODE (ics1) == LVALUE_CONV)
|
|
ics1 = TREE_OPERAND (ics1, 0);
|
|
|
|
while (1)
|
|
{
|
|
while (TREE_CODE (ics2) == RVALUE_CONV
|
|
|| TREE_CODE (ics2) == LVALUE_CONV)
|
|
ics2 = TREE_OPERAND (ics2, 0);
|
|
|
|
if (TREE_CODE (ics2) == USER_CONV
|
|
|| TREE_CODE (ics2) == AMBIG_CONV
|
|
|| TREE_CODE (ics2) == IDENTITY_CONV)
|
|
/* At this point, ICS1 cannot be a proper subsequence of
|
|
ICS2. We can get a USER_CONV when we are comparing the
|
|
second standard conversion sequence of two user conversion
|
|
sequences. */
|
|
return 0;
|
|
|
|
ics2 = TREE_OPERAND (ics2, 0);
|
|
|
|
if (TREE_CODE (ics2) == TREE_CODE (ics1)
|
|
&& same_type_p (TREE_TYPE (ics2), TREE_TYPE (ics1))
|
|
&& same_type_p (TREE_TYPE (TREE_OPERAND (ics2, 0)),
|
|
TREE_TYPE (TREE_OPERAND (ics1, 0))))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Returns non-zero iff DERIVED is derived from BASE. The inputs may
|
|
be any _TYPE nodes. */
|
|
|
|
int
|
|
is_properly_derived_from (derived, base)
|
|
tree derived;
|
|
tree base;
|
|
{
|
|
if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
|
|
|| !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
|
|
return 0;
|
|
|
|
/* We only allow proper derivation here. The DERIVED_FROM_P macro
|
|
considers every class derived from itself. */
|
|
return (!same_type_p (TYPE_MAIN_VARIANT (derived),
|
|
TYPE_MAIN_VARIANT (base))
|
|
&& DERIVED_FROM_P (base, derived));
|
|
}
|
|
|
|
/* We build the ICS for an implicit object parameter as a pointer
|
|
conversion sequence. However, such a sequence should be compared
|
|
as if it were a reference conversion sequence. If ICS is the
|
|
implicit conversion sequence for an implicit object parameter,
|
|
modify it accordingly. */
|
|
|
|
static void
|
|
maybe_handle_implicit_object (ics)
|
|
tree* ics;
|
|
{
|
|
if (ICS_THIS_FLAG (*ics))
|
|
{
|
|
/* [over.match.funcs]
|
|
|
|
For non-static member functions, the type of the
|
|
implicit object parameter is "reference to cv X"
|
|
where X is the class of which the function is a
|
|
member and cv is the cv-qualification on the member
|
|
function declaration. */
|
|
tree t = *ics;
|
|
if (TREE_CODE (t) == QUAL_CONV)
|
|
t = TREE_OPERAND (t, 0);
|
|
if (TREE_CODE (t) == PTR_CONV)
|
|
t = TREE_OPERAND (t, 0);
|
|
t = build1 (IDENTITY_CONV, TREE_TYPE (TREE_TYPE (t)), NULL_TREE);
|
|
t = build_conv (REF_BIND,
|
|
build_reference_type (TREE_TYPE (TREE_TYPE (*ics))),
|
|
t);
|
|
ICS_STD_RANK (t) = ICS_STD_RANK (*ics);
|
|
*ics = t;
|
|
}
|
|
}
|
|
|
|
/* If ICS is a REF_BIND, modify it appropriately, set TARGET_TYPE
|
|
to the type the reference originally referred to, and return 1.
|
|
Otherwise, return 0. */
|
|
|
|
static int
|
|
maybe_handle_ref_bind (ics, target_type)
|
|
tree* ics;
|
|
tree* target_type;
|
|
{
|
|
if (TREE_CODE (*ics) == REF_BIND)
|
|
{
|
|
/* [over.ics.rank]
|
|
|
|
When a parameter of reference type binds directly
|
|
(_dcl.init.ref_) to an argument expression, the implicit
|
|
conversion sequence is the identity conversion, unless the
|
|
argument expression has a type that is a derived class of the
|
|
parameter type, in which case the implicit conversion
|
|
sequence is a derived-to-base Conversion.
|
|
|
|
If the parameter binds directly to the result of applying a
|
|
conversion function to the argument expression, the implicit
|
|
conversion sequence is a user-defined conversion sequence
|
|
(_over.ics.user_), with the second standard conversion
|
|
sequence either an identity conversion or, if the conversion
|
|
function returns an entity of a type that is a derived class
|
|
of the parameter type, a derived-to-base Conversion.
|
|
|
|
When a parameter of reference type is not bound directly to
|
|
an argument expression, the conversion sequence is the one
|
|
required to convert the argument expression to the underlying
|
|
type of the reference according to _over.best.ics_.
|
|
Conceptually, this conversion sequence corresponds to
|
|
copy-initializing a temporary of the underlying type with the
|
|
argument expression. Any difference in top-level
|
|
cv-qualification is subsumed by the initialization itself and
|
|
does not constitute a conversion. */
|
|
|
|
tree old_ics = *ics;
|
|
|
|
*target_type = TREE_TYPE (TREE_TYPE (*ics));
|
|
*ics = TREE_OPERAND (*ics, 0);
|
|
if (TREE_CODE (*ics) == IDENTITY_CONV
|
|
&& is_properly_derived_from (TREE_TYPE (*ics), *target_type))
|
|
*ics = build_conv (BASE_CONV, *target_type, *ics);
|
|
ICS_USER_FLAG (*ics) = ICS_USER_FLAG (old_ics);
|
|
ICS_BAD_FLAG (*ics) = ICS_BAD_FLAG (old_ics);
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare two implicit conversion sequences according to the rules set out in
|
|
[over.ics.rank]. Return values:
|
|
|
|
1: ics1 is better than ics2
|
|
-1: ics2 is better than ics1
|
|
0: ics1 and ics2 are indistinguishable */
|
|
|
|
static int
|
|
compare_ics (ics1, ics2)
|
|
tree ics1, ics2;
|
|
{
|
|
tree from_type1;
|
|
tree from_type2;
|
|
tree to_type1;
|
|
tree to_type2;
|
|
tree deref_from_type1 = NULL_TREE;
|
|
tree deref_from_type2 = NULL_TREE;
|
|
tree deref_to_type1 = NULL_TREE;
|
|
tree deref_to_type2 = NULL_TREE;
|
|
|
|
/* REF_BINDING is non-zero if the result of the conversion sequence
|
|
is a reference type. In that case TARGET_TYPE is the
|
|
type referred to by the reference. */
|
|
int ref_binding1;
|
|
int ref_binding2;
|
|
tree target_type1;
|
|
tree target_type2;
|
|
|
|
/* Handle implicit object parameters. */
|
|
maybe_handle_implicit_object (&ics1);
|
|
maybe_handle_implicit_object (&ics2);
|
|
|
|
/* Handle reference parameters. */
|
|
ref_binding1 = maybe_handle_ref_bind (&ics1, &target_type1);
|
|
ref_binding2 = maybe_handle_ref_bind (&ics2, &target_type2);
|
|
|
|
/* [over.ics.rank]
|
|
|
|
When comparing the basic forms of implicit conversion sequences (as
|
|
defined in _over.best.ics_)
|
|
|
|
--a standard conversion sequence (_over.ics.scs_) is a better
|
|
conversion sequence than a user-defined conversion sequence
|
|
or an ellipsis conversion sequence, and
|
|
|
|
--a user-defined conversion sequence (_over.ics.user_) is a
|
|
better conversion sequence than an ellipsis conversion sequence
|
|
(_over.ics.ellipsis_). */
|
|
if (ICS_RANK (ics1) > ICS_RANK (ics2))
|
|
return -1;
|
|
else if (ICS_RANK (ics1) < ICS_RANK (ics2))
|
|
return 1;
|
|
|
|
if (ICS_RANK (ics1) == BAD_RANK)
|
|
{
|
|
/* Both ICS are bad. We try to make a decision based on what
|
|
would have happenned if they'd been good. */
|
|
if (ICS_USER_FLAG (ics1) > ICS_USER_FLAG (ics2)
|
|
|| ICS_STD_RANK (ics1) > ICS_STD_RANK (ics2))
|
|
return -1;
|
|
else if (ICS_USER_FLAG (ics1) < ICS_USER_FLAG (ics2)
|
|
|| ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
|
|
return 1;
|
|
|
|
/* We couldn't make up our minds; try to figure it out below. */
|
|
}
|
|
|
|
if (ICS_ELLIPSIS_FLAG (ics1))
|
|
/* Both conversions are ellipsis conversions. */
|
|
return 0;
|
|
|
|
/* User-defined conversion sequence U1 is a better conversion sequence
|
|
than another user-defined conversion sequence U2 if they contain the
|
|
same user-defined conversion operator or constructor and if the sec-
|
|
ond standard conversion sequence of U1 is better than the second
|
|
standard conversion sequence of U2. */
|
|
|
|
if (ICS_USER_FLAG (ics1))
|
|
{
|
|
tree t1, t2;
|
|
|
|
for (t1 = ics1; TREE_CODE (t1) != USER_CONV; t1 = TREE_OPERAND (t1, 0))
|
|
if (TREE_CODE (t1) == AMBIG_CONV)
|
|
return 0;
|
|
for (t2 = ics2; TREE_CODE (t2) != USER_CONV; t2 = TREE_OPERAND (t2, 0))
|
|
if (TREE_CODE (t2) == AMBIG_CONV)
|
|
return 0;
|
|
|
|
if (USER_CONV_FN (t1) != USER_CONV_FN (t2))
|
|
return 0;
|
|
|
|
/* We can just fall through here, after setting up
|
|
FROM_TYPE1 and FROM_TYPE2. */
|
|
from_type1 = TREE_TYPE (t1);
|
|
from_type2 = TREE_TYPE (t2);
|
|
}
|
|
else
|
|
{
|
|
/* We're dealing with two standard conversion sequences.
|
|
|
|
[over.ics.rank]
|
|
|
|
Standard conversion sequence S1 is a better conversion
|
|
sequence than standard conversion sequence S2 if
|
|
|
|
--S1 is a proper subsequence of S2 (comparing the conversion
|
|
sequences in the canonical form defined by _over.ics.scs_,
|
|
excluding any Lvalue Transformation; the identity
|
|
conversion sequence is considered to be a subsequence of
|
|
any non-identity conversion sequence */
|
|
|
|
from_type1 = ics1;
|
|
while (TREE_CODE (from_type1) != IDENTITY_CONV)
|
|
from_type1 = TREE_OPERAND (from_type1, 0);
|
|
from_type1 = TREE_TYPE (from_type1);
|
|
|
|
from_type2 = ics2;
|
|
while (TREE_CODE (from_type2) != IDENTITY_CONV)
|
|
from_type2 = TREE_OPERAND (from_type2, 0);
|
|
from_type2 = TREE_TYPE (from_type2);
|
|
}
|
|
|
|
if (same_type_p (from_type1, from_type2))
|
|
{
|
|
if (is_subseq (ics1, ics2))
|
|
return 1;
|
|
if (is_subseq (ics2, ics1))
|
|
return -1;
|
|
}
|
|
/* Otherwise, one sequence cannot be a subsequence of the other; they
|
|
don't start with the same type. This can happen when comparing the
|
|
second standard conversion sequence in two user-defined conversion
|
|
sequences. */
|
|
|
|
/* [over.ics.rank]
|
|
|
|
Or, if not that,
|
|
|
|
--the rank of S1 is better than the rank of S2 (by the rules
|
|
defined below):
|
|
|
|
Standard conversion sequences are ordered by their ranks: an Exact
|
|
Match is a better conversion than a Promotion, which is a better
|
|
conversion than a Conversion.
|
|
|
|
Two conversion sequences with the same rank are indistinguishable
|
|
unless one of the following rules applies:
|
|
|
|
--A conversion that is not a conversion of a pointer, or pointer
|
|
to member, to bool is better than another conversion that is such
|
|
a conversion.
|
|
|
|
The ICS_STD_RANK automatically handles the pointer-to-bool rule,
|
|
so that we do not have to check it explicitly. */
|
|
if (ICS_STD_RANK (ics1) < ICS_STD_RANK (ics2))
|
|
return 1;
|
|
else if (ICS_STD_RANK (ics2) < ICS_STD_RANK (ics1))
|
|
return -1;
|
|
|
|
to_type1 = TREE_TYPE (ics1);
|
|
to_type2 = TREE_TYPE (ics2);
|
|
|
|
if (TYPE_PTR_P (from_type1)
|
|
&& TYPE_PTR_P (from_type2)
|
|
&& TYPE_PTR_P (to_type1)
|
|
&& TYPE_PTR_P (to_type2))
|
|
{
|
|
deref_from_type1 = TREE_TYPE (from_type1);
|
|
deref_from_type2 = TREE_TYPE (from_type2);
|
|
deref_to_type1 = TREE_TYPE (to_type1);
|
|
deref_to_type2 = TREE_TYPE (to_type2);
|
|
}
|
|
/* The rules for pointers to members A::* are just like the rules
|
|
for pointers A*, except opposite: if B is derived from A then
|
|
A::* converts to B::*, not vice versa. For that reason, we
|
|
switch the from_ and to_ variables here. */
|
|
else if (TYPE_PTRMEM_P (from_type1)
|
|
&& TYPE_PTRMEM_P (from_type2)
|
|
&& TYPE_PTRMEM_P (to_type1)
|
|
&& TYPE_PTRMEM_P (to_type2))
|
|
{
|
|
deref_to_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type1));
|
|
deref_to_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (from_type2));
|
|
deref_from_type1 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type1));
|
|
deref_from_type2 = TYPE_OFFSET_BASETYPE (TREE_TYPE (to_type2));
|
|
}
|
|
else if (TYPE_PTRMEMFUNC_P (from_type1)
|
|
&& TYPE_PTRMEMFUNC_P (from_type2)
|
|
&& TYPE_PTRMEMFUNC_P (to_type1)
|
|
&& TYPE_PTRMEMFUNC_P (to_type2))
|
|
{
|
|
deref_to_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type1);
|
|
deref_to_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (from_type2);
|
|
deref_from_type1 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type1);
|
|
deref_from_type2 = TYPE_PTRMEMFUNC_OBJECT_TYPE (to_type2);
|
|
}
|
|
|
|
if (deref_from_type1 != NULL_TREE
|
|
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
|
|
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
|
|
{
|
|
/* This was one of the pointer or pointer-like conversions.
|
|
|
|
[over.ics.rank]
|
|
|
|
--If class B is derived directly or indirectly from class A,
|
|
conversion of B* to A* is better than conversion of B* to
|
|
void*, and conversion of A* to void* is better than
|
|
conversion of B* to void*. */
|
|
if (TREE_CODE (deref_to_type1) == VOID_TYPE
|
|
&& TREE_CODE (deref_to_type2) == VOID_TYPE)
|
|
{
|
|
if (is_properly_derived_from (deref_from_type1,
|
|
deref_from_type2))
|
|
return -1;
|
|
else if (is_properly_derived_from (deref_from_type2,
|
|
deref_from_type1))
|
|
return 1;
|
|
}
|
|
else if (TREE_CODE (deref_to_type1) == VOID_TYPE
|
|
|| TREE_CODE (deref_to_type2) == VOID_TYPE)
|
|
{
|
|
if (same_type_p (deref_from_type1, deref_from_type2))
|
|
{
|
|
if (TREE_CODE (deref_to_type2) == VOID_TYPE)
|
|
{
|
|
if (is_properly_derived_from (deref_from_type1,
|
|
deref_to_type1))
|
|
return 1;
|
|
}
|
|
/* We know that DEREF_TO_TYPE1 is `void' here. */
|
|
else if (is_properly_derived_from (deref_from_type1,
|
|
deref_to_type2))
|
|
return -1;
|
|
}
|
|
}
|
|
else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
|
|
&& IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
|
|
{
|
|
/* [over.ics.rank]
|
|
|
|
--If class B is derived directly or indirectly from class A
|
|
and class C is derived directly or indirectly from B,
|
|
|
|
--conversion of C* to B* is better than conversion of C* to
|
|
A*,
|
|
|
|
--conversion of B* to A* is better than conversion of C* to
|
|
A* */
|
|
if (same_type_p (deref_from_type1, deref_from_type2))
|
|
{
|
|
if (is_properly_derived_from (deref_to_type1,
|
|
deref_to_type2))
|
|
return 1;
|
|
else if (is_properly_derived_from (deref_to_type2,
|
|
deref_to_type1))
|
|
return -1;
|
|
}
|
|
else if (same_type_p (deref_to_type1, deref_to_type2))
|
|
{
|
|
if (is_properly_derived_from (deref_from_type2,
|
|
deref_from_type1))
|
|
return 1;
|
|
else if (is_properly_derived_from (deref_from_type1,
|
|
deref_from_type2))
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else if (IS_AGGR_TYPE_CODE (TREE_CODE (from_type1))
|
|
&& same_type_p (from_type1, from_type2))
|
|
{
|
|
/* [over.ics.rank]
|
|
|
|
--binding of an expression of type C to a reference of type
|
|
B& is better than binding an expression of type C to a
|
|
reference of type A&
|
|
|
|
--conversion of C to B is better than conversion of C to A, */
|
|
if (is_properly_derived_from (from_type1, to_type1)
|
|
&& is_properly_derived_from (from_type1, to_type2))
|
|
{
|
|
if (is_properly_derived_from (to_type1, to_type2))
|
|
return 1;
|
|
else if (is_properly_derived_from (to_type2, to_type1))
|
|
return -1;
|
|
}
|
|
}
|
|
else if (IS_AGGR_TYPE_CODE (TREE_CODE (to_type1))
|
|
&& same_type_p (to_type1, to_type2))
|
|
{
|
|
/* [over.ics.rank]
|
|
|
|
--binding of an expression of type B to a reference of type
|
|
A& is better than binding an expression of type C to a
|
|
reference of type A&,
|
|
|
|
--onversion of B to A is better than conversion of C to A */
|
|
if (is_properly_derived_from (from_type1, to_type1)
|
|
&& is_properly_derived_from (from_type2, to_type1))
|
|
{
|
|
if (is_properly_derived_from (from_type2, from_type1))
|
|
return 1;
|
|
else if (is_properly_derived_from (from_type1, from_type2))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* [over.ics.rank]
|
|
|
|
--S1 and S2 differ only in their qualification conversion and yield
|
|
similar types T1 and T2 (_conv.qual_), respectively, and the cv-
|
|
qualification signature of type T1 is a proper subset of the cv-
|
|
qualification signature of type T2 */
|
|
if (TREE_CODE (ics1) == QUAL_CONV
|
|
&& TREE_CODE (ics2) == QUAL_CONV
|
|
&& same_type_p (from_type1, from_type2))
|
|
return comp_cv_qual_signature (to_type1, to_type2);
|
|
|
|
/* [over.ics.rank]
|
|
|
|
--S1 and S2 are reference bindings (_dcl.init.ref_), and the
|
|
types to which the references refer are the same type except for
|
|
top-level cv-qualifiers, and the type to which the reference
|
|
initialized by S2 refers is more cv-qualified than the type to
|
|
which the reference initialized by S1 refers */
|
|
|
|
if (ref_binding1 && ref_binding2
|
|
&& same_type_p (TYPE_MAIN_VARIANT (to_type1),
|
|
TYPE_MAIN_VARIANT (to_type2)))
|
|
return comp_cv_qualification (target_type2, target_type1);
|
|
|
|
/* Neither conversion sequence is better than the other. */
|
|
return 0;
|
|
}
|
|
|
|
/* The source type for this standard conversion sequence. */
|
|
|
|
static tree
|
|
source_type (t)
|
|
tree t;
|
|
{
|
|
for (;; t = TREE_OPERAND (t, 0))
|
|
{
|
|
if (TREE_CODE (t) == USER_CONV
|
|
|| TREE_CODE (t) == AMBIG_CONV
|
|
|| TREE_CODE (t) == IDENTITY_CONV)
|
|
return TREE_TYPE (t);
|
|
}
|
|
my_friendly_abort (1823);
|
|
}
|
|
|
|
/* Note a warning about preferring WINNER to LOSER. We do this by storing
|
|
a pointer to LOSER and re-running joust to produce the warning if WINNER
|
|
is actually used. */
|
|
|
|
static void
|
|
add_warning (winner, loser)
|
|
struct z_candidate *winner, *loser;
|
|
{
|
|
winner->warnings = expr_tree_cons (NULL_PTR,
|
|
build_expr_ptr_wrapper (loser),
|
|
winner->warnings);
|
|
}
|
|
|
|
/* Compare two candidates for overloading as described in
|
|
[over.match.best]. Return values:
|
|
|
|
1: cand1 is better than cand2
|
|
-1: cand2 is better than cand1
|
|
0: cand1 and cand2 are indistinguishable */
|
|
|
|
static int
|
|
joust (cand1, cand2, warn)
|
|
struct z_candidate *cand1, *cand2;
|
|
int warn;
|
|
{
|
|
int winner = 0;
|
|
int i, off1 = 0, off2 = 0, len;
|
|
|
|
/* Candidates that involve bad conversions are always worse than those
|
|
that don't. */
|
|
if (cand1->viable > cand2->viable)
|
|
return 1;
|
|
if (cand1->viable < cand2->viable)
|
|
return -1;
|
|
|
|
/* If we have two pseudo-candidates for conversions to the same type,
|
|
arbitrarily pick one. */
|
|
if (TYPE_P (cand1->fn) && cand1->fn == cand2->fn)
|
|
return 1;
|
|
|
|
/* a viable function F1
|
|
is defined to be a better function than another viable function F2 if
|
|
for all arguments i, ICSi(F1) is not a worse conversion sequence than
|
|
ICSi(F2), and then */
|
|
|
|
/* for some argument j, ICSj(F1) is a better conversion sequence than
|
|
ICSj(F2) */
|
|
|
|
/* For comparing static and non-static member functions, we ignore the
|
|
implicit object parameter of the non-static function. The WP says to
|
|
pretend that the static function has an object parm, but that won't
|
|
work with operator overloading. */
|
|
len = TREE_VEC_LENGTH (cand1->convs);
|
|
if (len != TREE_VEC_LENGTH (cand2->convs))
|
|
{
|
|
if (DECL_STATIC_FUNCTION_P (cand1->fn)
|
|
&& ! DECL_STATIC_FUNCTION_P (cand2->fn))
|
|
off2 = 1;
|
|
else if (! DECL_STATIC_FUNCTION_P (cand1->fn)
|
|
&& DECL_STATIC_FUNCTION_P (cand2->fn))
|
|
{
|
|
off1 = 1;
|
|
--len;
|
|
}
|
|
else
|
|
my_friendly_abort (42);
|
|
}
|
|
|
|
for (i = 0; i < len; ++i)
|
|
{
|
|
tree t1 = TREE_VEC_ELT (cand1->convs, i+off1);
|
|
tree t2 = TREE_VEC_ELT (cand2->convs, i+off2);
|
|
int comp = compare_ics (t1, t2);
|
|
|
|
if (comp != 0)
|
|
{
|
|
if (warn_sign_promo
|
|
&& ICS_RANK (t1) + ICS_RANK (t2) == STD_RANK + PROMO_RANK
|
|
&& TREE_CODE (t1) == STD_CONV
|
|
&& TREE_CODE (t2) == STD_CONV
|
|
&& TREE_CODE (TREE_TYPE (t1)) == INTEGER_TYPE
|
|
&& TREE_CODE (TREE_TYPE (t2)) == INTEGER_TYPE
|
|
&& (TYPE_PRECISION (TREE_TYPE (t1))
|
|
== TYPE_PRECISION (TREE_TYPE (t2)))
|
|
&& (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (t1, 0)))
|
|
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (t1, 0)))
|
|
== ENUMERAL_TYPE)))
|
|
{
|
|
tree type = TREE_TYPE (TREE_OPERAND (t1, 0));
|
|
tree type1, type2;
|
|
struct z_candidate *w, *l;
|
|
if (comp > 0)
|
|
type1 = TREE_TYPE (t1), type2 = TREE_TYPE (t2),
|
|
w = cand1, l = cand2;
|
|
else
|
|
type1 = TREE_TYPE (t2), type2 = TREE_TYPE (t1),
|
|
w = cand2, l = cand1;
|
|
|
|
if (warn)
|
|
{
|
|
cp_warning ("passing `%T' chooses `%T' over `%T'",
|
|
type, type1, type2);
|
|
cp_warning (" in call to `%D'", w->fn);
|
|
}
|
|
else
|
|
add_warning (w, l);
|
|
}
|
|
|
|
if (winner && comp != winner)
|
|
{
|
|
winner = 0;
|
|
goto tweak;
|
|
}
|
|
winner = comp;
|
|
}
|
|
}
|
|
|
|
/* warn about confusing overload resolution for user-defined conversions,
|
|
either between a constructor and a conversion op, or between two
|
|
conversion ops. */
|
|
if (winner && cand1->second_conv
|
|
&& ((DECL_CONSTRUCTOR_P (cand1->fn)
|
|
!= DECL_CONSTRUCTOR_P (cand2->fn))
|
|
/* Don't warn if the two conv ops convert to the same type... */
|
|
|| (! DECL_CONSTRUCTOR_P (cand1->fn)
|
|
&& ! same_type_p (TREE_TYPE (TREE_TYPE (cand1->fn)),
|
|
TREE_TYPE (TREE_TYPE (cand2->fn))))))
|
|
{
|
|
int comp = compare_ics (cand1->second_conv, cand2->second_conv);
|
|
if (comp != winner)
|
|
{
|
|
struct z_candidate *w, *l;
|
|
if (winner == 1)
|
|
w = cand1, l = cand2;
|
|
else
|
|
w = cand2, l = cand1;
|
|
if (warn)
|
|
{
|
|
tree source = source_type (TREE_VEC_ELT (w->convs, 0));
|
|
if (! DECL_CONSTRUCTOR_P (w->fn))
|
|
source = TREE_TYPE (source);
|
|
cp_warning ("choosing `%D' over `%D'", w->fn, l->fn);
|
|
cp_warning (" for conversion from `%T' to `%T'",
|
|
source, TREE_TYPE (w->second_conv));
|
|
cp_warning (" because conversion sequence for the argument is better");
|
|
}
|
|
else
|
|
add_warning (w, l);
|
|
}
|
|
}
|
|
|
|
if (winner)
|
|
return winner;
|
|
|
|
/* or, if not that,
|
|
F1 is a non-template function and F2 is a template function */
|
|
|
|
if (! cand1->template && cand2->template)
|
|
return 1;
|
|
else if (cand1->template && ! cand2->template)
|
|
return -1;
|
|
else if (cand1->template && cand2->template)
|
|
winner = more_specialized
|
|
(TI_TEMPLATE (cand1->template), TI_TEMPLATE (cand2->template),
|
|
NULL_TREE);
|
|
|
|
/* or, if not that,
|
|
the context is an initialization by user-defined conversion (see
|
|
_dcl.init_ and _over.match.user_) and the standard conversion
|
|
sequence from the return type of F1 to the destination type (i.e.,
|
|
the type of the entity being initialized) is a better conversion
|
|
sequence than the standard conversion sequence from the return type
|
|
of F2 to the destination type. */
|
|
|
|
if (! winner && cand1->second_conv)
|
|
winner = compare_ics (cand1->second_conv, cand2->second_conv);
|
|
|
|
/* If the built-in candidates are the same, arbitrarily pick one. */
|
|
if (! winner && cand1->fn == cand2->fn
|
|
&& TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
|
|
{
|
|
for (i = 0; i < len; ++i)
|
|
if (!same_type_p (TREE_TYPE (TREE_VEC_ELT (cand1->convs, i)),
|
|
TREE_TYPE (TREE_VEC_ELT (cand2->convs, i))))
|
|
break;
|
|
if (i == TREE_VEC_LENGTH (cand1->convs))
|
|
return 1;
|
|
|
|
/* Kludge around broken overloading rules whereby
|
|
Integer a, b; test ? a : b; is ambiguous, since there's a builtin
|
|
that takes references and another that takes values. */
|
|
if (cand1->fn == ansi_opname[COND_EXPR])
|
|
{
|
|
tree c1 = TREE_VEC_ELT (cand1->convs, 1);
|
|
tree c2 = TREE_VEC_ELT (cand2->convs, 1);
|
|
tree t1 = strip_top_quals (non_reference (TREE_TYPE (c1)));
|
|
tree t2 = strip_top_quals (non_reference (TREE_TYPE (c2)));
|
|
|
|
if (same_type_p (t1, t2))
|
|
{
|
|
if (TREE_CODE (c1) == REF_BIND && TREE_CODE (c2) != REF_BIND)
|
|
return 1;
|
|
if (TREE_CODE (c1) != REF_BIND && TREE_CODE (c2) == REF_BIND)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
tweak:
|
|
|
|
/* Extension: If the worst conversion for one candidate is worse than the
|
|
worst conversion for the other, take the first. */
|
|
if (! winner && ! pedantic)
|
|
{
|
|
int rank1 = IDENTITY_RANK, rank2 = IDENTITY_RANK;
|
|
|
|
for (i = 0; i < len; ++i)
|
|
{
|
|
if (ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1)) > rank1)
|
|
rank1 = ICS_RANK (TREE_VEC_ELT (cand1->convs, i+off1));
|
|
if (ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2)) > rank2)
|
|
rank2 = ICS_RANK (TREE_VEC_ELT (cand2->convs, i+off2));
|
|
}
|
|
|
|
if (rank1 < rank2)
|
|
return 1;
|
|
if (rank1 > rank2)
|
|
return -1;
|
|
}
|
|
|
|
return winner;
|
|
}
|
|
|
|
/* Given a list of candidates for overloading, find the best one, if any.
|
|
This algorithm has a worst case of O(2n) (winner is last), and a best
|
|
case of O(n/2) (totally ambiguous); much better than a sorting
|
|
algorithm. */
|
|
|
|
static struct z_candidate *
|
|
tourney (candidates)
|
|
struct z_candidate *candidates;
|
|
{
|
|
struct z_candidate *champ = candidates, *challenger;
|
|
int fate;
|
|
int champ_compared_to_predecessor = 0;
|
|
|
|
/* Walk through the list once, comparing each current champ to the next
|
|
candidate, knocking out a candidate or two with each comparison. */
|
|
|
|
for (challenger = champ->next; challenger; )
|
|
{
|
|
fate = joust (champ, challenger, 0);
|
|
if (fate == 1)
|
|
challenger = challenger->next;
|
|
else
|
|
{
|
|
if (fate == 0)
|
|
{
|
|
champ = challenger->next;
|
|
if (champ == 0)
|
|
return 0;
|
|
champ_compared_to_predecessor = 0;
|
|
}
|
|
else
|
|
{
|
|
champ = challenger;
|
|
champ_compared_to_predecessor = 1;
|
|
}
|
|
|
|
challenger = champ->next;
|
|
}
|
|
}
|
|
|
|
/* Make sure the champ is better than all the candidates it hasn't yet
|
|
been compared to. */
|
|
|
|
for (challenger = candidates;
|
|
challenger != champ
|
|
&& !(champ_compared_to_predecessor && challenger->next == champ);
|
|
challenger = challenger->next)
|
|
{
|
|
fate = joust (champ, challenger, 0);
|
|
if (fate != 1)
|
|
return 0;
|
|
}
|
|
|
|
return champ;
|
|
}
|
|
|
|
int
|
|
can_convert (to, from)
|
|
tree to, from;
|
|
{
|
|
tree t = implicit_conversion (to, from, NULL_TREE, LOOKUP_NORMAL);
|
|
return (t && ! ICS_BAD_FLAG (t));
|
|
}
|
|
|
|
int
|
|
can_convert_arg (to, from, arg)
|
|
tree to, from, arg;
|
|
{
|
|
tree t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
|
|
return (t && ! ICS_BAD_FLAG (t));
|
|
}
|