44f0c3edad
From-SVN: r220
1602 lines
56 KiB
C++
1602 lines
56 KiB
C++
/* Definitions of target machine for GNU compiler. Gmicro (TRON) version.
|
||
Ported by Masanobu Yuhara, Fujitsu Laboratories LTD.
|
||
(yuhara@flab.fujitsu.co.jp)
|
||
|
||
Copyright (C) 1987, 1988, 1989 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
Among other things, the copyright
|
||
notice and this notice must be preserved on all copies.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
*/
|
||
|
||
|
||
/* Note that some other tm.h files include this one and then override
|
||
many of the definitions that relate to assembler syntax. */
|
||
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dgmicro"
|
||
|
||
/* #define CPP_SPEC ** currently not defined **/
|
||
|
||
/* #define CC1_SPEC ** currently not defined **/
|
||
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
/*
|
||
#define TARGET_VERSION fprintf (stderr, " (Gmicro syntax)");
|
||
*/
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Compile for a Gmicro/300. */
|
||
#define TARGET_G300 (target_flags & 1)
|
||
/* Compile for a Gmicro/200. */
|
||
#define TARGET_G200 (target_flags & 2)
|
||
/* Compile for a Gmicro/100. */
|
||
#define TARGET_G100 (target_flags & 4)
|
||
|
||
/* Compile FPU insns for floating point (not library calls). */
|
||
#define TARGET_FPU (target_flags & 8)
|
||
|
||
/* Pop up arguments by called function. */
|
||
#define TARGET_RTD (target_flags & 0x10)
|
||
|
||
/* Compile passing first args in regs 0 and 1.
|
||
This exists only to test compiler features that will be needed for
|
||
RISC chips. It is not usable and is not intended to be usable on
|
||
this cpu ;-< */
|
||
#define TARGET_REGPARM (target_flags & 0x20)
|
||
|
||
#define TARGET_BITFIELD (target_flags & 0x40)
|
||
|
||
#define TARGET_NEWRETURN (target_flags & 0x80)
|
||
|
||
/* Do not expand __builtin_smov (strcpy) to multiple movs.
|
||
Use the smov instruction. */
|
||
#define TARGET_FORCE_SMOV (target_flags & 0x100)
|
||
|
||
/* default options are -m300, -mFPU,
|
||
with bitfield instructions added because it won't always work otherwise.
|
||
If there are versions of the gmicro that don't support bitfield instructions
|
||
then it will take some thinking to figure out how to make them work. */
|
||
#define TARGET_DEFAULT 0x49
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "g300", 1}, \
|
||
{ "g200", 2}, \
|
||
{ "g100", 4}, \
|
||
{ "fpu", 8}, \
|
||
{ "soft-float", -8}, \
|
||
{ "rtd", 0x10}, \
|
||
{ "no-rtd", -0x10}, \
|
||
{ "regparm", 0x20}, \
|
||
{ "no-regparm", -0x20}, \
|
||
#if 0 /* Since we don't define PCC_BITFIELD_TYPE_MATTERS or use a large
|
||
STRUCTURE_SIZE_BOUNDARY, we must have bitfield instructions. */
|
||
{ "bitfield", 0x40}, \
|
||
{ "no-bitfield", -0x40}, \
|
||
#endif
|
||
{ "newreturn", 0x80}, \
|
||
{ "no-newreturn", -0x80}, \
|
||
{ "force-smov", 0x100}, \
|
||
{ "no-force-smov", -0x100}, \
|
||
{ "", TARGET_DEFAULT}}
|
||
|
||
|
||
/* Blow away G100 flag silently off TARGET_fpu (since we can't clear
|
||
any bits in TARGET_SWITCHES above) */
|
||
#define OVERRIDE_OPTIONS \
|
||
{ \
|
||
if (TARGET_G100) target_flags &= ~8; \
|
||
}
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
This is true for Gmicro insns.
|
||
We make it true always by avoiding using the single-bit insns
|
||
except in special cases with constant bit numbers. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the Gmicro. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* For Gmicro we can decide arbitrarily
|
||
since there are no machine instructions for them. ????? */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* number of bits in an addressible storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
/* Instructions of the Gmicro should be on half-word boundary */
|
||
/* But word boundary gets better performance */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
/* This is not necessarily 32 on the Gmicro */
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Define this if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
/* Unaligned data is allowed on Gmicro, though the access is slow. */
|
||
/* But now STRICT is defined */
|
||
#define STRICT_ALIGNMENT
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
(TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Make arrays of chars word-aligned for the same reasons. */
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Define number of bits in most basic integer type.
|
||
(If undefined, default is BITS_PER_WORD). */
|
||
#define INT_TYPE_SIZE 32
|
||
|
||
/* #define PCC_BITFIELD_TYPE_MATTERS 1 ????? */
|
||
|
||
/* #define CHECK_FLOAT_VALUE (MODE, VALUE) ????? */
|
||
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
For the Gmicro, we give the general registers numbers 0-15,
|
||
and the FPU floating point registers numbers 16-31. */
|
||
#define FIRST_PSEUDO_REGISTER 32
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the Gmicro, the stack pointer and the frame pointer are
|
||
such registers. */
|
||
/* frame pointer is not indicated as fixed, because fp may be used freely
|
||
when a frame is not built. */
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 1, \
|
||
/* FPU registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, }
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 1, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 1, \
|
||
/* FPU registers. */ \
|
||
1, 1, 1, 1, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, }
|
||
|
||
|
||
/* Make sure everything's fine if we *don't* have a given processor.
|
||
This assumes that putting a register in fixed_regs will keep the
|
||
compilers mitt's completely off it. We don't bother to zero it out
|
||
of register classes. If TARGET_FPU is not set,
|
||
the compiler won't touch since no instructions that use these
|
||
registers will be valid. */
|
||
/* This Macro is not defined now.
|
||
#define CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/* The Gmicro has no overlapping register */
|
||
/* #define OVERLAPPING_REGNO_P(REGNO) */
|
||
|
||
/* #define INSN_CLOBBERS_REGNO_P(INSN,REGNO) */
|
||
/* #define PRESERVE_DEATH_INFO_REGNO_P(REGNO) */
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the Gmicro, ordinary registers hold 32 bits worth;
|
||
for the Gmicro/FPU registers, a single register is always enough for
|
||
anything that can be stored in them at all. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((REGNO) >= 16 ? 1 \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On the Gmicro, the cpu registers can hold any mode but the FPU registers
|
||
can hold only SFmode or DFmode. And the FPU registers can't hold anything
|
||
if FPU use is disabled. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((REGNO) < 16 \
|
||
|| ((REGNO) < 32 \
|
||
? TARGET_FPU && (GET_MODE_CLASS (MODE) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
|
||
: 0 ))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(! TARGET_FPU \
|
||
|| ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
|
||
== ((MODE2) == SFmode || (MODE2) == DFmode)))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* Gmicro pc isn't overloaded on a register. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 15
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 14
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
/* The Gmicro does not have hardware ap. Fp is treated as ap */
|
||
#define ARG_POINTER_REGNUM 14
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM 0
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 1
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The Gmicro has two kinds of registers, so four classes would be
|
||
a complete set. */
|
||
|
||
enum reg_class { NO_REGS, FPU_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "FPU_REGS", "GENERAL_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
0, /* NO_REGS */ \
|
||
0xffff0000, /* FPU_REGS */ \
|
||
0x0000ffff, /* GENERAL_REGS */ \
|
||
0xffffffff /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
extern enum reg_class regno_reg_class[];
|
||
#define REGNO_REG_CLASS(REGNO) ( (REGNO < 16) ? GENERAL_REGS : FPU_REGS )
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
We do a trick here to modify the effective constraints on the
|
||
machine description; we zorch the constraint letters that aren't
|
||
appropriate for a specific target. This allows us to guarantee
|
||
that a specific kind of register will not be used for a given taget
|
||
without fiddling with the register classes above. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'r' ? GENERAL_REGS : \
|
||
((C) == 'f' ? (TARGET_FPU ? FPU_REGS : NO_REGS) : \
|
||
NO_REGS))
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
For the Gmicro, all immediate value optimizations are done
|
||
by assember, so no machine dependent definition is necessary ??? */
|
||
|
||
/* #define CONST_OK_FOR_LETTER_P(VALUE, C) ((C) == 'I') */
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
|
||
|
||
/*
|
||
* The letters G defines all of the floating constants tha are *NOT*
|
||
* Gmicro-FPU constant.
|
||
*/
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'F' || \
|
||
(C) == 'G' && !(TARGET_FPU && standard_fpu_constant_p (VALUE)))
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
/* On the Gmicro series, there is no restricton on GENERAL_REGS,
|
||
so CLASS is returned. I do not know whether I should treat FPU_REGS
|
||
specially or not (at least, m68k does not). */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the Gmicro, this is the size of MODE in words,
|
||
except in the FPU regs, where a single reg is always enough. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS) == FPU_REGS ? \
|
||
1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
/* On the Gmicro, FP points to the old FP and the first local variables are
|
||
at (FP - 4). */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
/* On the Gmicro, sp is decrimented by the exact size of the operand */
|
||
#define PUSH_ROUNDING(BYTES) (BYTES)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
/* On the Gmicro, the first argument is found at (ap + 8) where ap is fp. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 8
|
||
|
||
/* Value is the number of byte of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the Gmicro, the EXITD insn may be used to pop them if the number
|
||
of args is fixed, but if the number is variable then the caller must pop
|
||
them all. The adjsp operand of the EXITD insn can't be used for library
|
||
calls now because the library is compiled with the standard compiler.
|
||
Use of adjsp operand is a selectable option, since it is incompatible with
|
||
standard Unix calling sequences. If the option is not selected,
|
||
the caller must always pop the args.
|
||
On the m68k this is an RTD option, so I use the same name
|
||
for the Gmicro. The option name may be changed in the future. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
|
||
((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
|
||
&& (TYPE_ARG_TYPES (FUNTYPE) == 0 \
|
||
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
|
||
= void_type_node))) \
|
||
? (SIZE) : 0)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the Gmicro the floating return value is in fr0 not r0. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(gen_rtx (REG, (MODE), \
|
||
((TARGET_FPU && ((MODE) == SFmode || (MODE) == DFmode)) ? 16 : 0)))
|
||
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the Gmicro, r0 and fp0 are the possible registers. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 16)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
#define PCC_STATIC_STRUCT_RETURN
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the Gmicro, no registers are used in this way. */
|
||
/* Really? For the performance improvement, registers should be used !! */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the Gmicro, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the Gmicro, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the Gmicro all args are pushed, except if -mregparm is specified
|
||
then the first two words of arguments are passed in d0, d1.
|
||
*NOTE* -mregparm does not work.
|
||
It exists only to test register calling conventions. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
((TARGET_REGPARM && (CUM) < 8 \
|
||
&& 8 < ((CUM) + ((MODE) == BLKmode \
|
||
? int_size_in_bytes (TYPE) \
|
||
: GET_MODE_SIZE (MODE)))) \
|
||
? 2 - (CUM) / 4 : 0)
|
||
|
||
/* The following macro is defined to output register list.
|
||
The LSB of Mask is the lowest number register.
|
||
Regoff is MY_GREG_OFF or MY_FREG_OFF.
|
||
Do NOT use <i> in File, Mask, Regoff !!
|
||
Should be changed from macros to functions. M.Yuhara */
|
||
|
||
#define MY_GREG_OFF 0
|
||
#define MY_FREG_OFF 16
|
||
|
||
#define MY_PRINT_MASK(File, Mask, Regoff) \
|
||
{ \
|
||
int i, first = -1; \
|
||
if ((Mask) == 0) { \
|
||
fprintf(File, "#0"); \
|
||
} else { \
|
||
fprintf(File, "("); \
|
||
for (i = 0; i < 16; i++) { \
|
||
if ( (Mask) & (1 << i) ) { \
|
||
if (first < 0) { \
|
||
if (first == -2) { \
|
||
fprintf(File, ","); \
|
||
} \
|
||
first = i; \
|
||
fprintf(File, "%s", reg_names[Regoff + i]); \
|
||
} \
|
||
} else if (first >= 0) { \
|
||
if (i > first + 1) { \
|
||
fprintf(File, "-%s", reg_names[Regoff + i - 1]); \
|
||
} \
|
||
first = -2; \
|
||
} \
|
||
} \
|
||
if ( (first >= 0) && (first != 15) ) \
|
||
fprintf(File, "-%s", reg_names[Regoff + 15]);\
|
||
fprintf(File, ")"); \
|
||
} \
|
||
}
|
||
|
||
|
||
#define MY_PRINT_ONEREG_L(FILE,MASK) \
|
||
{ register int i; \
|
||
for (i = 0; i < 16; i++) \
|
||
if ( (1 << i) & (MASK)) { \
|
||
fprintf(FILE, "%s", reg_names[i]); \
|
||
(MASK) &= ~(1 << i); \
|
||
break; \
|
||
} \
|
||
}
|
||
|
||
|
||
#define MY_PRINT_ONEREG_H(FILE,MASK) \
|
||
{ register int i; \
|
||
for (i = 15; i >= 0; i--) \
|
||
if ( (1 << i) & (MASK)) { \
|
||
fprintf(FILE, "%s", reg_names[i]); \
|
||
(MASK) &= ~(1 << i); \
|
||
break; \
|
||
} \
|
||
}
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
/* The next macro needs much optimization !!
|
||
M.Yuhara */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ register int regno; \
|
||
register int mask = 0; \
|
||
register int nregs = 0; \
|
||
static char *reg_names[] = REGISTER_NAMES; \
|
||
extern char call_used_regs[]; \
|
||
int fsize = ((SIZE) + 3) & -4; \
|
||
for (regno = 0; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && !call_used_regs[regno]) { \
|
||
mask |= (1 << regno); \
|
||
nregs++; \
|
||
} \
|
||
if (frame_pointer_needed) { \
|
||
mask &= ~(1 << FRAME_POINTER_REGNUM); \
|
||
if (nregs > 4) { \
|
||
fprintf(FILE, "\tenter.w #%d,", fsize); \
|
||
MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
|
||
fprintf(FILE,"\n"); \
|
||
} else { \
|
||
fprintf(FILE, "\tmov.w fp,@-sp\n"); \
|
||
fprintf(FILE, "\tmov.w sp,fp\n"); \
|
||
if (fsize > 0) \
|
||
myoutput_sp_adjust(FILE, "sub", fsize); \
|
||
while (nregs--) { \
|
||
fprintf(FILE, "\tmov.w "); \
|
||
MY_PRINT_ONEREG_H(FILE, mask); \
|
||
fprintf(FILE, ",@-sp\n"); \
|
||
} \
|
||
} \
|
||
} else { \
|
||
if (fsize > 0) \
|
||
myoutput_sp_adjust(FILE, "sub", fsize); \
|
||
if (mask != 0) { \
|
||
if (nregs > 4) { \
|
||
fprintf(FILE, "\tstm.w "); \
|
||
MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
|
||
fprintf(FILE, ",@-sp\n"); \
|
||
} else { \
|
||
while (nregs--) { \
|
||
fprintf(FILE, "\tmov.w "); \
|
||
MY_PRINT_ONEREG_H(FILE, mask); \
|
||
fprintf(FILE, ",@-sp\n"); \
|
||
} \
|
||
} \
|
||
} \
|
||
} \
|
||
mask = 0; \
|
||
for (regno = 16; regno < 32; regno++) \
|
||
if (regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
mask |= 1 << (regno - 16); \
|
||
if (mask != 0) { \
|
||
fprintf(FILE, "\tfstm.w "); \
|
||
MY_PRINT_MASK(FILE, mask, MY_FREG_OFF); \
|
||
fprintf(FILE, ",@-sp\n", mask); \
|
||
} \
|
||
}
|
||
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
/* ??? M.Yuhara */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tmova @LP%d,r0\n\tjsr mcount\n", (LABELNO))
|
||
|
||
/* Output assembler code to FILE to initialize this source file's
|
||
basic block profiling info, if that has not already been done. */
|
||
|
||
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tcmp #0,@LPBX0\n\tbne LPI%d\n\tpusha @LPBX0\n\tjsr ___bb_init_func\n\tadd #4,sp\nLPI%d:\n", \
|
||
LABELNO, LABELNO);
|
||
|
||
/* Output assembler code to FILE to increment the entry-count for
|
||
the BLOCKNO'th basic block in this source file. */
|
||
|
||
#define BLOCK_PROFILER(FILE, BLOCKNO) \
|
||
fprintf (FILE, "\tadd #1,@(LPBX2+%d)\n", 4 * BLOCKNO)
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer (when
|
||
frame_pinter_needed) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
/* The Gmicro FPU seems to be unable to fldm/fstm double or single
|
||
floating. It only allows extended !! */
|
||
/* Optimization is not enough, especially FREGs load !! M.Yuhara */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
{ register int regno; \
|
||
register int mask, fmask; \
|
||
register int nregs, nfregs; \
|
||
int offset, foffset; \
|
||
extern char call_used_regs[]; \
|
||
static char *reg_names[] = REGISTER_NAMES; \
|
||
int fsize = ((SIZE) + 3) & -4; \
|
||
FUNCTION_EXTRA_EPILOGUE (FILE, SIZE); \
|
||
nfregs = 0; fmask = 0; \
|
||
for (regno = 16; regno < 31; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
{ nfregs++; fmask |= 1 << (regno - 16); } \
|
||
foffset = nfregs * 12; \
|
||
nregs = 0; mask = 0; \
|
||
if (frame_pointer_needed) regs_ever_live[FRAME_POINTER_REGNUM] = 0; \
|
||
for (regno = 0; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
{ nregs++; mask |= 1 << regno; } \
|
||
if (frame_pointer_needed) { \
|
||
offset = nregs * 4 + fsize; \
|
||
if (nfregs > 0) { \
|
||
fprintf(FILE, "\tfldm.x @(%d,fp),", -(foffset + offset));\
|
||
MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \
|
||
fprintf(FILE, "\n"); \
|
||
} \
|
||
if (nregs > 4 \
|
||
|| current_function_pops_args) { \
|
||
fprintf(FILE, "\tmova @(%d,fp),sp\n", -offset); \
|
||
fprintf(FILE, "\texitd "); \
|
||
MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
|
||
fprintf(FILE, ",#%d\n", current_function_pops_args); \
|
||
} else { \
|
||
while (nregs--) { \
|
||
fprintf(FILE, "\tmov:l.w @(%d,fp),", -offset); \
|
||
MY_PRINT_ONEREG_L(FILE, mask); \
|
||
fprintf(FILE, "\n"); \
|
||
offset -= 4; \
|
||
} \
|
||
if (TARGET_NEWRETURN) { \
|
||
fprintf(FILE, "\tmova.w @(4,fp),sp\n"); \
|
||
fprintf(FILE, "\tmov:l.w @fp,fp\n"); \
|
||
} else { \
|
||
fprintf(FILE, "\tmov.w fp,sp\n"); \
|
||
fprintf(FILE, "\tmov.w @sp+,fp\n"); \
|
||
} \
|
||
fprintf(FILE, "\trts\n"); \
|
||
} \
|
||
} else { \
|
||
if (nfregs > 0) { \
|
||
fprintf(FILE, "\tfldm.w @sp+,"); \
|
||
MY_PRINT_MASK(FILE, fmask, MY_FREG_OFF); \
|
||
fprintf(FILE, "\n"); \
|
||
} \
|
||
if (nregs > 4) { \
|
||
fprintf(FILE, "\tldm.w @sp+,"); \
|
||
MY_PRINT_MASK(FILE, mask, MY_GREG_OFF); \
|
||
fprintf(FILE, "\n"); \
|
||
} else { \
|
||
while (nregs--) { \
|
||
fprintf(FILE, "\tmov.w @sp+,"); \
|
||
MY_PRINT_ONEREG_L(FILE,mask); \
|
||
fprintf(FILE, "\n"); \
|
||
} \
|
||
} \
|
||
if (current_function_pops_args) { \
|
||
myoutput_sp_adjust(FILE, "add", \
|
||
(fsize + 4 + current_function_pops_args)); \
|
||
fprintf(FILE, "\tjmp @(%d,sp)\n", current_function_pops_args);\
|
||
} else { \
|
||
if (fsize > 0) \
|
||
myoutput_sp_adjust(FILE, "add", fsize); \
|
||
fprintf(FILE, "\trts\n"); \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
/* This is a hook for other tm files to change. */
|
||
#define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE)
|
||
|
||
/* If the memory address ADDR is relative to the frame pointer,
|
||
correct it to be relative to the stack pointer instead.
|
||
This is for when we don't use a frame pointer.
|
||
ADDR should be a variable name. */
|
||
|
||
/* You have to change the next macro if you want to use more complex
|
||
addressing modes (such as double indirection and more than one
|
||
chain-addressing stages). */
|
||
|
||
#define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
|
||
{ int offset = -1; \
|
||
rtx regs = stack_pointer_rtx; \
|
||
if (ADDR == frame_pointer_rtx) \
|
||
offset = 0; \
|
||
else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
|
||
&& GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (ADDR, 1)); \
|
||
else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
|
||
{ rtx other_reg = XEXP (ADDR, 1); \
|
||
offset = 0; \
|
||
regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
|
||
else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
|
||
{ rtx other_reg = XEXP (ADDR, 0); \
|
||
offset = 0; \
|
||
regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
|
||
else if (GET_CODE (ADDR) == PLUS \
|
||
&& GET_CODE (XEXP (ADDR, 0)) == PLUS \
|
||
&& XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \
|
||
&& GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
|
||
{ rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \
|
||
offset = INTVAL (XEXP (ADDR, 1)); \
|
||
regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
|
||
else if (GET_CODE (ADDR) == PLUS \
|
||
&& GET_CODE (XEXP (ADDR, 0)) == PLUS \
|
||
&& XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \
|
||
&& GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
|
||
{ rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \
|
||
offset = INTVAL (XEXP (ADDR, 1)); \
|
||
regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
|
||
if (offset >= 0) \
|
||
{ int regno; \
|
||
extern char call_used_regs[]; \
|
||
for (regno = 16; regno < 32; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 12; \
|
||
for (regno = 0; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 4; \
|
||
offset -= 4; \
|
||
ADDR = plus_constant (regs, offset + (DEPTH)); } }
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
/* Gmicro */
|
||
#define REGNO_OK_FOR_GREG_P(REGNO) \
|
||
((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
|
||
#define REGNO_OK_FOR_FPU_P(REGNO) \
|
||
(((REGNO) ^ 0x10) < 16 || (unsigned) (reg_renumber[REGNO] ^ 0x10) < 16)
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_GREG_P(REGNO)
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
|
||
These macros are specific to the Gmicro, and may be used only
|
||
in code for printing assembler insns and in conditions for
|
||
define_optimization. */
|
||
|
||
/* 1 if X is an fpu register. */
|
||
|
||
#define FPU_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPU_P (REGNO (X)))
|
||
|
||
/* I used GREG_P in the gmicro.md file. */
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define GREG_P(X) (REG_P (X) && REGNO_OK_FOR_GREG_P (REGNO(X)))
|
||
#else
|
||
#define GREG_P(X) (REG_P (X) && ((REGNO (X) & ~0xf) != 0x10))
|
||
#endif
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
/* The Gmicro allows more registers in the chained addressing mode.
|
||
But I do not know gcc supports such an architecture. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) 1
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) & ~0xf) != 0x10)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~0xf) != 0x10)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* The gcc uses the following effective address of the Gmicro.
|
||
(without using PC!!).
|
||
{@} ( {Rbase} + {Disp} + {Rindex * [1,2,4,8]} )
|
||
where
|
||
@: memory indirection.
|
||
Rbase: Base Register = General Register.
|
||
Disp: Displacement (up to 32bits)
|
||
Rindex: Index Register = General Register.
|
||
[1,2,4,8]: Scale of Index. 1 or 2 or 4 or 8.
|
||
The inside of { } can be omitted.
|
||
This restricts the chained addressing up to 1 stage. */
|
||
|
||
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
||
except for CONSTANT_ADDRESS_P which is actually machine-independent. */
|
||
|
||
#define REG_CODE_BASE_P(X) \
|
||
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
|
||
|
||
#define REG_CODE_INDEX_P(X) \
|
||
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* GET_CODE(X) must be PLUS. This macro does not check for PLUS! */
|
||
#define BASE_PLUS_DISP_P(X) \
|
||
( REG_CODE_BASE_P (XEXP (X, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 1)) \
|
||
|| \
|
||
REG_CODE_BASE_P (XEXP (X, 1)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 0)) )
|
||
|
||
/* 1 if X is {0,Rbase} + {0,disp}. */
|
||
#define BASED_ADDRESS_P(X) \
|
||
(CONSTANT_ADDRESS_P (X) \
|
||
|| REG_CODE_BASE_P (X) \
|
||
|| (GET_CODE (X) == PLUS) \
|
||
&& BASE_PLUS_DISP_P (X))
|
||
|
||
/* 1 if X is 1 or 2 or 4 or 8. GET_CODE(X) must be CONST_INT. */
|
||
#define SCALE_OF_INDEX_P(X) \
|
||
( INTVAL(X) == 4 \
|
||
|| INTVAL(X) == 2 \
|
||
|| INTVAL(X) == 8 \
|
||
|| INTVAL(X) == 1 )
|
||
|
||
/* #define INDEX_TERM_P(X,MODE) */
|
||
#define INDEX_TERM_P(X) \
|
||
( REG_CODE_INDEX_P(X) \
|
||
|| (GET_CODE (X) == MULT \
|
||
&& ( (xfoo0 = XEXP (X, 0)), (xfoo1 = XEXP(X, 1)), \
|
||
( ( (GET_CODE (xfoo0) == CONST_INT) \
|
||
&& SCALE_OF_INDEX_P (xfoo0) \
|
||
&& REG_CODE_INDEX_P (xfoo1) ) \
|
||
|| \
|
||
( (GET_CODE (xfoo1) == CONST_INT) \
|
||
&& SCALE_OF_INDEX_P (xfoo1) \
|
||
&& REG_CODE_INDEX_P (xfoo0) ) ))))
|
||
|
||
/* Assumes there are no cases such that X = (Ireg + Disp) + Disp */
|
||
#define BASE_DISP_INDEX_P(X) \
|
||
( BASED_ADDRESS_P (X) \
|
||
|| ( (GET_CODE (X) == PLUS) \
|
||
&& ( ( (xboo0 = XEXP (X, 0)), (xboo1 = XEXP (X, 1)), \
|
||
(REG_CODE_BASE_P (xboo0) \
|
||
&& (GET_CODE (xboo1) == PLUS) \
|
||
&& ( ( CONSTANT_ADDRESS_P (XEXP (xboo1, 0)) \
|
||
&& INDEX_TERM_P (XEXP (xboo1, 1)) ) \
|
||
|| ( CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) \
|
||
&& INDEX_TERM_P (XEXP (xboo1, 0))) ))) \
|
||
|| \
|
||
(CONSTANT_ADDRESS_P (xboo0) \
|
||
&& (GET_CODE (xboo1) == PLUS) \
|
||
&& ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \
|
||
&& INDEX_TERM_P (XEXP (xboo1, 1)) ) \
|
||
|| ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \
|
||
&& INDEX_TERM_P (XEXP (xboo1, 0))) )) \
|
||
|| \
|
||
(INDEX_TERM_P (xboo0) \
|
||
&& ( ( (GET_CODE (xboo1) == PLUS) \
|
||
&& ( ( REG_CODE_BASE_P (XEXP (xboo1, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (xboo1, 1)) ) \
|
||
|| ( REG_CODE_BASE_P (XEXP (xboo1, 1)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (xboo1, 0))) )) \
|
||
|| \
|
||
(CONSTANT_ADDRESS_P (xboo1)) \
|
||
|| \
|
||
(REG_CODE_BASE_P (xboo1)) )))))
|
||
|
||
/*
|
||
If you want to allow double-indirection,
|
||
you have to change the <fp-relative> => <sp-relative> conversion
|
||
routine. M.Yuhara
|
||
|
||
#ifdef REG_OK_STRICT
|
||
#define DOUBLE_INDIRECTION(X,ADDR) {\
|
||
if (BASE_DISP_INDEX_P (XEXP (XEXP (X, 0), 0) )) goto ADDR; \
|
||
}
|
||
#else
|
||
#define DOUBLE_INDIRECTION(X,ADDR) { }
|
||
#endif
|
||
*/
|
||
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) {\
|
||
register rtx xboo0, xboo1, xfoo0, xfoo1; \
|
||
if (GET_CODE (X) == MEM) { \
|
||
/* \
|
||
if (GET_CODE (XEXP (X,0)) == MEM) { \
|
||
DOUBLE_INDIRECTION(X,ADDR); \
|
||
} else { \
|
||
if (BASE_DISP_INDEX_P (XEXP (X, 0))) goto ADDR; \
|
||
} \
|
||
*/ \
|
||
} else { \
|
||
if (BASE_DISP_INDEX_P (X)) goto ADDR; \
|
||
if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
|
||
&& REG_P (XEXP (X, 0)) \
|
||
&& (REGNO (XEXP (X, 0)) == STACK_POINTER_REGNUM)) \
|
||
goto ADDR; \
|
||
} \
|
||
}
|
||
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the Gmicro, nothing is done now. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the VAX, the predecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand)
|
||
and all indexed address depend thus (because the index scale factor
|
||
is the length of the operand).
|
||
The Gmicro mimics the VAX now. Since ADDE is legitimate, it cannot
|
||
include auto-inc/dec. */
|
||
|
||
/* Unnecessary ??? */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL; }
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
/* #define CASE_VECTOR_MODE HImode */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
/* #define STORE_FLAG_VALUE -1 */
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE) \
|
||
case CONST_INT: \
|
||
if ((unsigned) INTVAL (RTX) < 8) return 0; \
|
||
if ((unsigned) (INTVAL (RTX) + 0x80) < 0x100) return 1; \
|
||
if ((unsigned) (INTVAL (RTX) + 0x8000) < 0x10000) return 2; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 3; \
|
||
case CONST_DOUBLE: \
|
||
return 5;
|
||
|
||
/* Define subroutines to call to handle multiply and divide.
|
||
The `*' prevents an underscore from being prepended by the compiler. */
|
||
/* Use libgcc on Gmicro */
|
||
/* #define UDIVSI3_LIBCALL "*udiv" */
|
||
/* #define UMODSI3_LIBCALL "*urem" */
|
||
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
/* Set if the cc value is actually in the FPU, so a floating point
|
||
conditional branch must be output. */
|
||
#define CC_IN_FPU 04000
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
/* Since Gmicro's compare instructions depend on the branch condition,
|
||
all branch should be kept.
|
||
More work must be done to optimize condition code !! M.Yuhara */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) {CC_STATUS_INIT;}
|
||
|
||
/* The skelton of the next macro is taken from "vax.h".
|
||
FPU-reg manipulation is added. M.Yuhara */
|
||
/* Now comment out.
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) { \
|
||
if (GET_CODE (EXP) == SET) { \
|
||
if ( !FPU_REG_P (XEXP (EXP, 0)) \
|
||
&& (XEXP (EXP, 0) != cc0_rtx) \
|
||
&& (FPU_REG_P (XEXP (EXP, 1)) \
|
||
|| GET_CODE (XEXP (EXP, 1)) == FIX \
|
||
|| GET_CODE (XEXP (EXP, 1)) == FLOAT_TRUNCATE \
|
||
|| GET_CODE (XEXP (EXP, 1)) == FLOAT_EXTEND)) { \
|
||
CC_STATUS_INIT; \
|
||
} else if (GET_CODE (SET_SRC (EXP)) == CALL) { \
|
||
CC_STATUS_INIT; \
|
||
} else if (GET_CODE (SET_DEST (EXP)) != PC) { \
|
||
cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (EXP); \
|
||
cc_status.value2 = SET_SRC (EXP); \
|
||
} \
|
||
} else if (GET_CODE (EXP) == PARALLEL \
|
||
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
|
||
&& GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) {\
|
||
cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
|
||
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
|
||
/* PARALLELs whose first element sets the PC are aob, sob VAX insns. \
|
||
They do change the cc's. So drop through and forget the cc's. * / \
|
||
} else CC_STATUS_INIT; \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
|
||
&& cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
|
||
cc_status.value2 = 0; \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
|
||
&& cc_status.value2 \
|
||
&& GET_CODE (cc_status.value2) == MEM) \
|
||
cc_status.value2 = 0; \
|
||
if ( (cc_status.value1 && FPU_REG_P (cc_status.value1)) \
|
||
|| (cc_status.value2 && FPU_REG_P (cc_status.value2))) \
|
||
cc_status.flags = CC_IN_FPU; \
|
||
}
|
||
*/
|
||
|
||
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
|
||
{ if (cc_prev_status.flags & CC_IN_FPU) \
|
||
return FLOAT; \
|
||
if (cc_prev_status.flags & CC_NO_OVERFLOW) \
|
||
return NO_OV; \
|
||
return NORMAL; }
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP "\t.section text,code,align=4"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP "\t.section data,data,align=4"
|
||
|
||
/* Output before uninitialized data. */
|
||
|
||
#define BSS_SECTION_ASM_OP "\t.section bss,data,align=4"
|
||
|
||
#define EXTRA_SECTIONS in_bss
|
||
|
||
#define EXTRA_SECTION_FUNCTIONS \
|
||
void \
|
||
bss_section () \
|
||
{ \
|
||
if (in_section != in_bss) { \
|
||
fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
|
||
in_section = in_bss; \
|
||
} \
|
||
}
|
||
|
||
/* Output at beginning of assembler file.
|
||
It is not appropriate for this to print a list of the options used,
|
||
since that's not the convention that we use. */
|
||
|
||
#define ASM_FILE_START(FILE)
|
||
|
||
/* Output at the end of assembler file. */
|
||
|
||
#define ASM_FILE_END(FILE) fprintf (FILE, "\t.end\n");
|
||
|
||
|
||
/* Don't try to define `gcc_compiled.' since the assembler do not
|
||
accept symbols with periods and GDB doesn't run on this machine anyway. */
|
||
#define ASM_IDENTIFY_GCC(FILE)
|
||
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
/* #define ASM_APP_ON "#APP\n" */
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
/* #define ASM_APP_OFF ";#NO_APP\n" */
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "fp", "sp", \
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15"}
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* Define this if gcc should produce debugging output for dbx in response
|
||
to the -g flag. This does not work for the Gmicro now */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) { \
|
||
assemble_name (FILE, NAME); \
|
||
fputs (":\n", FILE); \
|
||
}
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) {\
|
||
fputs ("\t.global ", FILE); \
|
||
assemble_name (FILE, NAME); \
|
||
fputs ("\n", FILE); \
|
||
}
|
||
|
||
/* This is how to output a command to make the external label named NAME
|
||
which are not defined in the file to be referable */
|
||
/* ".import" does not work ??? */
|
||
|
||
#define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) { \
|
||
fputs ("\t.global ", FILE); \
|
||
assemble_name (FILE, NAME); \
|
||
fputs ("\n", FILE); \
|
||
}
|
||
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
fprintf (FILE, "_%s", NAME)
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
/* do {...} while(0) is necessary, because these macros are used as
|
||
if (xxx) MACRO; else ....
|
||
^
|
||
*/
|
||
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
do { union { double d; long l[2];} tem; \
|
||
tem.d = (VALUE); \
|
||
fprintf (FILE, "\t.fdata.d h'%x%08x.d\n", tem.l[0], tem.l[1]); \
|
||
} while(0)
|
||
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
do { union { float f; long l;} tem; \
|
||
tem.f = (VALUE); \
|
||
fprintf (FILE, "\t.fdata.s h'%x.s\n", tem.l); \
|
||
} while(0)
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.data.w "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.data.h "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.data.b "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.data.b h'%x\n", (VALUE))
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE,P,SIZE) \
|
||
output_ascii ((FILE), (P), (SIZE))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tmov %s,@-sp\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tmov @sp+,%s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
(The Gmicro does not use such vectors,
|
||
but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t.data.w L%d\n", VALUE)
|
||
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\t.data.w L%d-L%d\n", VALUE, REL)
|
||
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
fprintf (FILE, "\t.align %d\n", (1 << (LOG)));
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.res.b %d\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( bss_section (), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)),\
|
||
fprintf ((FILE), "\t.export "), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), "\n") )
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( bss_section (), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ":\t.res.b %d\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
/* $__ is unique ????? M.Yuhara */
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
|
||
sprintf ((OUTPUT), "$__%s%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Output a float value (represented as a C double) as an immediate operand.
|
||
This macro is a Gmicro/68k-specific macro. */
|
||
|
||
#define ASM_OUTPUT_FLOAT_OPERAND(FILE,VALUE) \
|
||
do { union { float f; long l;} tem; \
|
||
tem.f = (VALUE); \
|
||
fprintf (FILE, "#h'%x.s", tem.l); \
|
||
} while(0)
|
||
|
||
|
||
/* Output a double value (represented as a C double) as an immediate operand.
|
||
This macro is a 68k-specific macro. */
|
||
#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
|
||
do { union { double d; long l[2];} tem; \
|
||
tem.d = (VALUE); \
|
||
fprintf (FILE, "#h'%x%08x.d", tem.l[0], tem.l[1]); \
|
||
} while(0)
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null.
|
||
|
||
On the Gmicro, we use several CODE characters:
|
||
'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
|
||
'b' for branch target label.
|
||
'-' for an operand pushing on the stack.
|
||
'+' for an operand pushing on the stack.
|
||
'#' for an immediate operand prefix
|
||
*/
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
( (CODE) == '#' || (CODE) == '-' \
|
||
|| (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
|
||
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ int i; \
|
||
static char *reg_name[] = REGISTER_NAMES; \
|
||
/* fprintf (stderr, "PRINT_OPERAND CODE=%c(0x%x), ", CODE, CODE);\
|
||
myprcode(GET_CODE(X)); */ \
|
||
if (CODE == '#') fprintf (FILE, "#"); \
|
||
else if (CODE == '-') fprintf (FILE, "@-sp"); \
|
||
else if (CODE == '+') fprintf (FILE, "@sp+"); \
|
||
else if (CODE == 's') fprintf (stderr, "err: PRINT_OPERAND <s>\n"); \
|
||
else if (CODE == '!') fprintf (stderr, "err: PRINT_OPERAND <!>\n"); \
|
||
else if (CODE == '.') fprintf (stderr, "err: PRINT_OPERAND <.>\n"); \
|
||
else if (CODE == 'b') { \
|
||
if (GET_CODE (X) == MEM) \
|
||
output_addr_const (FILE, XEXP (X, 0)); /* for bsr */ \
|
||
else \
|
||
output_addr_const (FILE, X); /* for bcc */ \
|
||
} \
|
||
else if (CODE == 'p') \
|
||
print_operand_address (FILE, X); \
|
||
else if (GET_CODE (X) == REG) \
|
||
fprintf (FILE, "%s", reg_name[REGNO (X)]); \
|
||
else if (GET_CODE (X) == MEM) \
|
||
output_address (XEXP (X, 0)); \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
|
||
{ union { double d; int i[2]; } u; \
|
||
union { float f; int i; } u1; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
u1.f = u.d; \
|
||
if (CODE == 'f') \
|
||
ASM_OUTPUT_FLOAT_OPERAND (FILE, u1.f); \
|
||
else \
|
||
fprintf (FILE, "#h'%x", u1.i); } \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \
|
||
{ union { double d; int i[2]; } u; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
ASM_OUTPUT_DOUBLE_OPERAND (FILE, u.d); } \
|
||
else { putc ('#', FILE); \
|
||
output_addr_const (FILE, X); }}
|
||
|
||
/* Note that this contains a kludge that knows that the only reason
|
||
we have an address (plus (label_ref...) (reg...))
|
||
is in the insn before a tablejump, and we know that m68k.md
|
||
generates a label LInnn: on such an insn. */
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ print_operand_address (FILE, ADDR); }
|
||
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|