77c9c6c203
From-SVN: r148
3991 lines
114 KiB
C
3991 lines
114 KiB
C
/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
|
||
Copyright (C) 1987-1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "expr.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
|
||
/* Each optab contains info on how this target machine
|
||
can perform a particular operation
|
||
for all sizes and kinds of operands.
|
||
|
||
The operation to be performed is often specified
|
||
by passing one of these optabs as an argument.
|
||
|
||
See expr.h for documentation of these optabs. */
|
||
|
||
optab add_optab;
|
||
optab sub_optab;
|
||
optab smul_optab;
|
||
optab smul_widen_optab;
|
||
optab umul_widen_optab;
|
||
optab sdiv_optab;
|
||
optab sdivmod_optab;
|
||
optab udiv_optab;
|
||
optab udivmod_optab;
|
||
optab smod_optab;
|
||
optab umod_optab;
|
||
optab flodiv_optab;
|
||
optab ftrunc_optab;
|
||
optab and_optab;
|
||
optab ior_optab;
|
||
optab xor_optab;
|
||
optab ashl_optab;
|
||
optab lshr_optab;
|
||
optab lshl_optab;
|
||
optab ashr_optab;
|
||
optab rotl_optab;
|
||
optab rotr_optab;
|
||
optab smin_optab;
|
||
optab smax_optab;
|
||
optab umin_optab;
|
||
optab umax_optab;
|
||
|
||
optab mov_optab;
|
||
optab movstrict_optab;
|
||
|
||
optab neg_optab;
|
||
optab abs_optab;
|
||
optab one_cmpl_optab;
|
||
optab ffs_optab;
|
||
|
||
optab cmp_optab;
|
||
optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
|
||
optab tst_optab;
|
||
|
||
/* SYMBOL_REF rtx's for the library functions that are called
|
||
implicitly and not via optabs. */
|
||
|
||
rtx extendsfdf2_libfunc;
|
||
rtx truncdfsf2_libfunc;
|
||
rtx memcpy_libfunc;
|
||
rtx bcopy_libfunc;
|
||
rtx memcmp_libfunc;
|
||
rtx bcmp_libfunc;
|
||
rtx memset_libfunc;
|
||
rtx bzero_libfunc;
|
||
rtx eqsf2_libfunc;
|
||
rtx nesf2_libfunc;
|
||
rtx gtsf2_libfunc;
|
||
rtx gesf2_libfunc;
|
||
rtx ltsf2_libfunc;
|
||
rtx lesf2_libfunc;
|
||
rtx eqdf2_libfunc;
|
||
rtx nedf2_libfunc;
|
||
rtx gtdf2_libfunc;
|
||
rtx gedf2_libfunc;
|
||
rtx ltdf2_libfunc;
|
||
rtx ledf2_libfunc;
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the gen_function to make a branch to test that condition. */
|
||
|
||
rtxfun bcc_gen_fctn[NUM_RTX_CODE];
|
||
|
||
/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
|
||
gives the insn code to make a store-condition insn
|
||
to test that condition. */
|
||
|
||
enum insn_code setcc_gen_code[NUM_RTX_CODE];
|
||
|
||
static void emit_float_lib_cmp ();
|
||
|
||
/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
|
||
the result of operation CODE applied to OP0 (and OP1 if it is a binary
|
||
operation).
|
||
|
||
If the last insn does not set TARGET, don't do anything, but return 1.
|
||
|
||
If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
|
||
don't add the REG_EQUAL note but return 0. Our caller can then try
|
||
again, ensuring that TARGET is not one of the operands. */
|
||
|
||
static int
|
||
add_equal_note (seq, target, code, op0, op1)
|
||
rtx seq;
|
||
rtx target;
|
||
enum rtx_code code;
|
||
rtx op0, op1;
|
||
{
|
||
rtx set;
|
||
int i;
|
||
rtx note;
|
||
|
||
if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
|
||
&& GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
|
||
|| GET_CODE (seq) != SEQUENCE
|
||
|| (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
|
||
|| GET_CODE (target) == ZERO_EXTRACT
|
||
|| (! rtx_equal_p (SET_DEST (set), target)
|
||
/* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
|
||
SUBREG. */
|
||
&& (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
|
||
|| ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
|
||
target))))
|
||
return 1;
|
||
|
||
/* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
|
||
besides the last insn. */
|
||
if (reg_overlap_mentioned_p (target, op0)
|
||
|| (op1 && reg_overlap_mentioned_p (target, op1)))
|
||
for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
|
||
if (reg_set_p (target, XVECEXP (seq, 0, i)))
|
||
return 0;
|
||
|
||
if (GET_RTX_CLASS (code) == '1')
|
||
note = gen_rtx (code, GET_MODE (target), op0);
|
||
else
|
||
note = gen_rtx (code, GET_MODE (target), op0, op1);
|
||
|
||
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL, note,
|
||
REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
|
||
enum machine_mode mode;
|
||
optab binoptab;
|
||
rtx op0, op1;
|
||
rtx target;
|
||
int unsignedp;
|
||
enum optab_methods methods;
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
enum machine_mode submode = mode_for_size (BITS_PER_WORD, MODE_INT, 0);
|
||
register rtx temp;
|
||
int commutative_op = 0;
|
||
int shift_op = (binoptab->code == ASHIFT
|
||
|| binoptab->code == ASHIFTRT
|
||
|| binoptab->code == LSHIFT
|
||
|| binoptab->code == LSHIFTRT
|
||
|| binoptab->code == ROTATE
|
||
|| binoptab->code == ROTATERT);
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
op1 = protect_from_queue (op1, 0);
|
||
if (target)
|
||
target = protect_from_queue (target, 1);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0) > 2)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1) > 2)
|
||
op1 = force_reg ((shift_op
|
||
? mode_for_size (BITS_PER_WORD, MODE_INT, 0)
|
||
: mode),
|
||
op1);
|
||
|
||
#if 0 /* Turned off because it seems to be a kludgy method. */
|
||
/* If subtracting integer from pointer, and the pointer has a special mode,
|
||
then change it to an add. We use the add insn of Pmode for combining
|
||
integers with pointers, and the sub insn to subtract two pointers. */
|
||
|
||
if (binoptab == sub_optab
|
||
&& GET_MODE (op0) == Pmode && GET_MODE (op1) != Pmode)
|
||
{
|
||
op1 = negate_rtx (GET_MODE(op1), op1);
|
||
binoptab = add_optab;
|
||
}
|
||
#endif /* 0 */
|
||
|
||
/* Record where to delete back to if we backtrack. */
|
||
last = get_last_insn ();
|
||
|
||
/* If operation is commutative,
|
||
try to make the first operand a register.
|
||
Even better, try to make it the same as the target.
|
||
Also try to make the last operand a constant. */
|
||
if (GET_RTX_CLASS (binoptab->code) == 'c'
|
||
|| binoptab == smul_widen_optab
|
||
|| binoptab == umul_widen_optab)
|
||
{
|
||
commutative_op = 1;
|
||
|
||
if (((target == 0 || GET_CODE (target) == REG)
|
||
? ((GET_CODE (op1) == REG
|
||
&& GET_CODE (op0) != REG)
|
||
|| target == op1)
|
||
: rtx_equal_p (op1, target))
|
||
|| GET_CODE (op0) == CONST_INT)
|
||
{
|
||
temp = op1;
|
||
op1 = op0;
|
||
op0 = temp;
|
||
}
|
||
}
|
||
|
||
/* If we can do it with a three-operand insn, do so. */
|
||
|
||
if (methods != OPTAB_MUST_WIDEN
|
||
&& binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
enum machine_mode mode1 = insn_operand_mode[icode][2];
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
/* If it is a commutative operator and the modes would match
|
||
if we would swap the operands, we can save the conversions. */
|
||
if (commutative_op)
|
||
{
|
||
if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
|
||
&& GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
|
||
{
|
||
register rtx tmp;
|
||
|
||
tmp = op0; op0 = op1; op1 = tmp;
|
||
tmp = xop0; xop0 = xop1; xop1 = tmp;
|
||
}
|
||
}
|
||
|
||
/* In case the insn wants input operands in modes different from
|
||
the result, convert the operands. */
|
||
|
||
if (GET_MODE (op0) != VOIDmode
|
||
&& GET_MODE (op0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
if (GET_MODE (xop1) != VOIDmode
|
||
&& GET_MODE (xop1) != mode1)
|
||
xop1 = convert_to_mode (mode1, xop1, unsignedp);
|
||
|
||
/* Now, if insn's predicates don't allow our operands, put them into
|
||
pseudo regs. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0, xop1);
|
||
if (pat)
|
||
{
|
||
/* If PAT is a multi-insn sequence, try to add an appropriate
|
||
REG_EQUAL note to it. If we can't because TEMP conflicts with an
|
||
operand, call ourselves again, this time without a target. */
|
||
if (GET_CODE (pat) == SEQUENCE
|
||
&& ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_binop (mode, binoptab, op0, op1, 0, unsignedp,
|
||
methods);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
rtx equiv_value;
|
||
|
||
/* If TARGET is the same as one of the operands, the REG_EQUAL note
|
||
won't be accurate, so use a new target. */
|
||
if (target == 0 || target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_binop (submode, binoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
operand_subword_force (op1, i, mode),
|
||
target_piece, unsignedp, methods);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (binoptab->code != UNKNOWN)
|
||
equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
|
||
else
|
||
equiv_value = 0;
|
||
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv_value);
|
||
return target;
|
||
}
|
||
|
||
/* These can be done a word at a time by propagating carries. */
|
||
if ((binoptab == add_optab || binoptab == sub_optab)
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
|
||
&& binoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx carry_tmp = gen_reg_rtx (submode);
|
||
optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
|
||
int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
|
||
rtx carry_in, carry_out;
|
||
|
||
/* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
|
||
value is one of those, use it. Otherwise, use 1 since it is the
|
||
one easiest to get. */
|
||
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
||
int normalizep = STORE_FLAG_VALUE;
|
||
#else
|
||
int normalizep = 1;
|
||
#endif
|
||
|
||
/* Prepare the operands. */
|
||
op0 = force_reg (mode, op0);
|
||
op1 = force_reg (mode, op1);
|
||
|
||
if (target == 0 || GET_CODE (target) != REG
|
||
|| target == op0 || target == op1)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
rtx target_piece = operand_subword (target, index, 1, mode);
|
||
rtx op0_piece = operand_subword_force (op0, index, mode);
|
||
rtx op1_piece = operand_subword_force (op1, index, mode);
|
||
rtx x;
|
||
|
||
/* Main add/subtract of the input operands. */
|
||
x = expand_binop (submode, binoptab,
|
||
op0_piece, op1_piece,
|
||
target_piece, unsignedp, methods);
|
||
if (x == 0)
|
||
break;
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* Store carry from main add/subtract. */
|
||
carry_out = gen_reg_rtx (submode);
|
||
carry_out = emit_store_flag (carry_out,
|
||
binoptab == add_optab ? LTU : GTU,
|
||
x, op0_piece,
|
||
submode, 1, normalizep);
|
||
if (!carry_out)
|
||
break;
|
||
}
|
||
|
||
if (i > 0)
|
||
{
|
||
/* Add/subtract previous carry to main result. */
|
||
x = expand_binop (submode,
|
||
normalizep == 1 ? binoptab : otheroptab,
|
||
x, carry_in,
|
||
target_piece, 1, methods);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
|
||
if (i + 1 < nwords)
|
||
{
|
||
/* THIS CODE HAS NOT BEEN TESTED. */
|
||
/* Get out carry from adding/subtracting carry in. */
|
||
carry_tmp = emit_store_flag (carry_tmp,
|
||
binoptab == add_optab
|
||
? LTU : GTU,
|
||
x, carry_in,
|
||
submode, 1, normalizep);
|
||
/* Logical-ior the two poss. carry together. */
|
||
carry_out = expand_binop (submode, ior_optab,
|
||
carry_out, carry_tmp,
|
||
carry_out, 0, methods);
|
||
if (!carry_out)
|
||
break;
|
||
}
|
||
}
|
||
|
||
carry_in = carry_out;
|
||
}
|
||
|
||
if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
|
||
{
|
||
rtx temp;
|
||
|
||
temp = emit_move_insn (target, target);
|
||
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (binoptab->code, mode, op0, op1),
|
||
REG_NOTES (temp));
|
||
return target;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* If we want to multiply two two-word values and have normal and widening
|
||
multiplies of single-word values, we can do this with three smaller
|
||
multiplications. Note that we do not make a REG_NO_CONFLICT block here
|
||
because we are not operating on one word at a time.
|
||
|
||
The multiplication proceeds as follows:
|
||
_______________________
|
||
[__op0_high_|__op0_low__]
|
||
_______________________
|
||
* [__op1_high_|__op1_low__]
|
||
_______________________________________________
|
||
_______________________
|
||
(1) [__op0_low__*__op1_low__]
|
||
_______________________
|
||
(2a) [__op0_low__*__op1_high_]
|
||
_______________________
|
||
(2b) [__op0_high_*__op1_low__]
|
||
_______________________
|
||
(3) [__op0_high_*__op1_high_]
|
||
|
||
|
||
This gives a 4-word result. Since we are only interested in the
|
||
lower 2 words, partial result (3) and the upper words of (2a) and
|
||
(2b) don't need to be calculated. Hence (2a) and (2b) can be
|
||
calculated using non-widening multiplication.
|
||
|
||
(1), however, needs to be calculated with an unsigned widening
|
||
multiplication. If this operation is not directly supported we
|
||
try using a signed widening multiplication and adjust the result.
|
||
This adjustment works as follows:
|
||
|
||
If both operands are positive then no adjustment is needed.
|
||
|
||
If the operands have different signs, for example op0_low < 0 and
|
||
op1_low >= 0, the instruction treats the most significant bit of
|
||
op0_low as a sign bit instead of a bit with significance
|
||
2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
|
||
with 2**BITS_PER_WORD - op0_low, and two's complements the
|
||
result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
|
||
the result.
|
||
|
||
Similarly, if both operands are negative, we need to add
|
||
(op0_low + op1_low) * 2**BITS_PER_WORD.
|
||
|
||
We use a trick to adjust quickly. We logically shift op0_low right
|
||
(op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
|
||
op0_high (op1_high) before it is used to calculate 2b (2a). If no
|
||
logical shift exists, we do an arithmetic right shift and subtract
|
||
the 0 or -1. */
|
||
|
||
if (binoptab == smul_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
|
||
&& smul_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
|
||
&& add_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
|
||
&& ((umul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (smul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
int low = (WORDS_BIG_ENDIAN ? 1 : 0);
|
||
int high = (WORDS_BIG_ENDIAN ? 0 : 1);
|
||
rtx op0_high = operand_subword_force (op0, high, mode);
|
||
rtx op0_low = operand_subword_force (op0, low, mode);
|
||
rtx op1_high = operand_subword_force (op1, high, mode);
|
||
rtx op1_low = operand_subword_force (op1, low, mode);
|
||
rtx product = 0;
|
||
rtx op0_xhigh;
|
||
rtx op1_xhigh;
|
||
|
||
/* If the target is the same as one of the inputs, don't use it. This
|
||
prevents problems with the REG_EQUAL note. */
|
||
if (target == op0 || target == op1)
|
||
target = 0;
|
||
|
||
/* Multiply the two lower words to get a double-word product.
|
||
If unsigned widening multiplication is available, use that;
|
||
otherwise use the signed form and compensate. */
|
||
|
||
if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
|
||
/* If we didn't succeed, delete everything we did so far. */
|
||
if (product == 0)
|
||
delete_insns_since (last);
|
||
else
|
||
op0_xhigh = op0_high, op1_xhigh = op1_high;
|
||
}
|
||
|
||
if (product == 0
|
||
&& smul_widen_optab->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
rtx wordm1 = gen_rtx (CONST_INT, VOIDmode, BITS_PER_WORD - 1);
|
||
product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
|
||
target, 1, OPTAB_DIRECT);
|
||
op0_xhigh = expand_binop (submode, lshr_optab, op0_low, wordm1,
|
||
0, 1, OPTAB_DIRECT);
|
||
if (op0_xhigh)
|
||
op0_xhigh = expand_binop (submode, add_optab, op0_high, op0_xhigh,
|
||
op0_xhigh, 0, OPTAB_DIRECT);
|
||
else
|
||
{
|
||
op0_xhigh = expand_binop (submode, ashr_optab, op0_low, wordm1,
|
||
0, 0, OPTAB_DIRECT);
|
||
if (op0_xhigh)
|
||
op0_xhigh = expand_binop (submode, sub_optab, op0_high,
|
||
op0_xhigh, op0_xhigh, 0,
|
||
OPTAB_DIRECT);
|
||
}
|
||
|
||
op1_xhigh = expand_binop (submode, lshr_optab, op1_low, wordm1,
|
||
0, 1, OPTAB_DIRECT);
|
||
if (op1_xhigh)
|
||
op1_xhigh = expand_binop (SImode, add_optab, op1_high, op1_xhigh,
|
||
op1_xhigh, 0, OPTAB_DIRECT);
|
||
else
|
||
{
|
||
op1_xhigh = expand_binop (submode, ashr_optab, op1_low, wordm1,
|
||
0, 0, OPTAB_DIRECT);
|
||
if (op1_xhigh)
|
||
op1_xhigh = expand_binop (SImode, sub_optab, op1_high,
|
||
op1_xhigh, op1_xhigh, 0,
|
||
OPTAB_DIRECT);
|
||
}
|
||
}
|
||
|
||
/* If we have been able to directly compute the product of the
|
||
low-order words of the operands and perform any required adjustments
|
||
of the operands, we proceed by trying two more multiplications
|
||
and then computing the appropriate sum.
|
||
|
||
We have checked above that the required addition is provided.
|
||
Full-word addition will normally always succeed, especially if
|
||
it is provided at all, so we don't worry about its failure. The
|
||
multiplication may well fail, however, so we do handle that. */
|
||
|
||
if (product && op0_xhigh && op1_xhigh)
|
||
{
|
||
rtx product_piece;
|
||
rtx product_high = operand_subword (product, high, 1, mode);
|
||
rtx temp = expand_binop (submode, binoptab, op0_low, op1_xhigh, 0,
|
||
0, OPTAB_DIRECT);
|
||
|
||
if (temp)
|
||
{
|
||
product_piece = expand_binop (submode, add_optab, temp,
|
||
product_high, product_high,
|
||
0, OPTAB_LIB_WIDEN);
|
||
if (product_piece != product_high)
|
||
emit_move_insn (product_high, product_piece);
|
||
|
||
temp = expand_binop (submode, binoptab, op1_low, op0_xhigh, 0,
|
||
0, OPTAB_DIRECT);
|
||
|
||
product_piece = expand_binop (submode, add_optab, temp,
|
||
product_high, product_high,
|
||
0, OPTAB_LIB_WIDEN);
|
||
if (product_piece != product_high)
|
||
emit_move_insn (product_high, product_piece);
|
||
|
||
temp = emit_move_insn (product, product);
|
||
REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (MULT, mode, op0, op1),
|
||
REG_NOTES (temp));
|
||
|
||
return product;
|
||
}
|
||
}
|
||
|
||
/* If we get here, we couldn't do it for some reason even though we
|
||
originally thought we could. Delete anything we've emitted in
|
||
trying to do it. */
|
||
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be open-coded in this mode.
|
||
Use a library call if one is available and caller says that's ok. */
|
||
|
||
if (binoptab->handlers[(int) mode].libfunc
|
||
&& (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
|
||
{
|
||
rtx insns;
|
||
rtx funexp = binoptab->handlers[(int) mode].libfunc;
|
||
|
||
start_sequence ();
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
emit_library_call (binoptab->handlers[(int) mode].libfunc,
|
||
1, mode, 2, op0, mode, op1,
|
||
(shift_op
|
||
? mode_for_size (BITS_PER_WORD, MODE_INT, 0)
|
||
: mode));
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (mode);
|
||
emit_libcall_block (insns, target, hard_libcall_value (mode),
|
||
gen_rtx (binoptab->code, mode, op0, op1));
|
||
|
||
return target;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
|
||
|| methods == OPTAB_MUST_WIDEN))
|
||
return 0; /* Caller says, don't even try. */
|
||
|
||
/* Compute the value of METHODS to pass to recursive calls.
|
||
Don't allow widening to be tried recursively. */
|
||
|
||
methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
|
||
|
||
/* Widening is now independent of specific machine modes.
|
||
It is assumed that widening may be performed to any
|
||
higher numbered mode in the same mode class. */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
((int) wider_mode < (int) MAX_MACHINE_MODE
|
||
&& GET_MODE_CLASS (wider_mode) == class);
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (methods == OPTAB_LIB
|
||
&& binoptab->handlers[(int) wider_mode].libfunc))
|
||
{
|
||
rtx xop0 = op0, xop1 = op1;
|
||
int no_extend = 0;
|
||
|
||
/* For certain operations, we need not actually extend
|
||
the narrow operands, as long as we will truncate
|
||
the results to the same narrowness. */
|
||
|
||
if (binoptab == ior_optab || binoptab == and_optab
|
||
|| binoptab == xor_optab
|
||
|| binoptab == add_optab || binoptab == sub_optab
|
||
|| binoptab == smul_optab
|
||
|| binoptab == ashl_optab || binoptab == lshl_optab)
|
||
no_extend = 1;
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
|
||
{
|
||
if (no_extend)
|
||
{
|
||
temp = force_reg (GET_MODE (xop0), xop0);
|
||
xop0 = gen_rtx (SUBREG, wider_mode, temp, 0);
|
||
}
|
||
else
|
||
{
|
||
temp = gen_reg_rtx (wider_mode);
|
||
convert_move (temp, xop0, unsignedp);
|
||
xop0 = temp;
|
||
}
|
||
}
|
||
if (GET_MODE (xop1) != VOIDmode
|
||
&& GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
|
||
{
|
||
if (no_extend)
|
||
{
|
||
temp = force_reg (GET_MODE (xop1), xop1);
|
||
xop1 = gen_rtx (SUBREG, wider_mode, temp, 0);
|
||
}
|
||
else
|
||
{
|
||
temp = gen_reg_rtx (wider_mode);
|
||
convert_move (temp, xop1, unsignedp);
|
||
xop1 = temp;
|
||
}
|
||
}
|
||
|
||
temp = expand_binop (wider_mode, binoptab, xop0, xop1, 0,
|
||
unsignedp, methods);
|
||
if (temp)
|
||
{
|
||
if (class == MODE_FLOAT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, temp);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Expand a binary operator which has both signed and unsigned forms.
|
||
UOPTAB is the optab for unsigned operations, and SOPTAB is for
|
||
signed operations.
|
||
|
||
If we widen unsigned operands, we may use a signed wider operation instead
|
||
of an unsigned wider operation, since the result would be the same. */
|
||
|
||
rtx
|
||
sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
|
||
enum machine_mode mode;
|
||
optab uoptab, soptab;
|
||
rtx op0, op1, target;
|
||
int unsignedp;
|
||
enum optab_methods methods;
|
||
{
|
||
register rtx temp;
|
||
optab direct_optab = unsignedp ? uoptab : soptab;
|
||
struct optab wide_soptab;
|
||
|
||
/* Do it without widening, if possible. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target,
|
||
unsignedp, OPTAB_DIRECT);
|
||
if (temp || methods == OPTAB_DIRECT)
|
||
return temp;
|
||
|
||
/* Try widening to a signed int. Make a fake signed optab that
|
||
hides any signed insn for direct use. */
|
||
wide_soptab = *soptab;
|
||
wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
|
||
wide_soptab.handlers[(int) mode].libfunc = 0;
|
||
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
|
||
/* For unsigned operands, try widening to an unsigned int. */
|
||
if (temp == 0 && unsignedp)
|
||
temp = expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (temp || methods == OPTAB_WIDEN)
|
||
return temp;
|
||
|
||
/* Use the right width lib call if that exists. */
|
||
temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
|
||
if (temp || methods == OPTAB_LIB)
|
||
return temp;
|
||
|
||
/* Must widen and use a lib call, use either signed or unsigned. */
|
||
temp = expand_binop (mode, &wide_soptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
if (temp != 0)
|
||
return temp;
|
||
if (unsignedp)
|
||
return expand_binop (mode, uoptab, op0, op1, target,
|
||
unsignedp, methods);
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by BINOPTAB
|
||
on operands OP0 and OP1, with two results to TARG1 and TARG2.
|
||
We assume that the order of the operands for the instruction
|
||
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
|
||
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
|
||
|
||
Either TARG0 or TARG1 may be zero, but what that means is that
|
||
that result is not actually wanted. We will generate it into
|
||
a dummy pseudo-reg and discard it. They may not both be zero.
|
||
|
||
Returns 1 if this operation can be performed; 0 if not. */
|
||
|
||
int
|
||
expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
|
||
optab binoptab;
|
||
rtx op0, op1;
|
||
rtx targ0, targ1;
|
||
int unsignedp;
|
||
{
|
||
enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
rtx last;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
op1 = protect_from_queue (op1, 0);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
op1 = force_not_mem (op1);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (op0) && preserve_subexpressions_p () && rtx_cost (op0) > 2)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
if (CONSTANT_P (op1) && preserve_subexpressions_p () && rtx_cost (op1) > 2)
|
||
op1 = force_reg (mode, op1);
|
||
|
||
if (targ0)
|
||
targ0 = protect_from_queue (targ0, 1);
|
||
else
|
||
targ0 = gen_reg_rtx (mode);
|
||
if (targ1)
|
||
targ1 = protect_from_queue (targ1, 1);
|
||
else
|
||
targ1 = gen_reg_rtx (mode);
|
||
|
||
/* Record where to go back to if we fail. */
|
||
last = get_last_insn ();
|
||
|
||
if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) binoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
enum machine_mode mode1 = insn_operand_mode[icode][2];
|
||
rtx pat;
|
||
rtx xop0 = op0, xop1 = op1;
|
||
|
||
/* In case this insn wants input operands in modes different from the
|
||
result, convert the operands. */
|
||
if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
|
||
xop1 = convert_to_mode (mode1, xop1, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
|
||
xop1 = copy_to_mode_reg (mode1, xop1);
|
||
|
||
/* We could handle this, but we should always be called with a pseudo
|
||
for our targets and all insns should take them as outputs. */
|
||
if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
|
||
|| ! (*insn_operand_predicate[icode][3]) (targ1, mode))
|
||
abort ();
|
||
|
||
pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
GET_MODE_CLASS (wider_mode) == class;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (binoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
register rtx t0 = gen_reg_rtx (wider_mode);
|
||
register rtx t1 = gen_reg_rtx (wider_mode);
|
||
|
||
if (expand_twoval_binop (binoptab,
|
||
convert_to_mode (wider_mode, op0,
|
||
unsignedp),
|
||
convert_to_mode (wider_mode, op1,
|
||
unsignedp),
|
||
t0, t1, unsignedp))
|
||
{
|
||
convert_move (targ0, t0, unsignedp);
|
||
convert_move (targ1, t1, unsignedp);
|
||
return 1;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Generate code to perform an operation specified by UNOPTAB
|
||
on operand OP0, with result having machine-mode MODE.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
If TARGET is nonzero, the value
|
||
is generated there, if it is convenient to do so.
|
||
In all cases an rtx is returned for the locus of the value;
|
||
this may or may not be TARGET. */
|
||
|
||
rtx
|
||
expand_unop (mode, unoptab, op0, target, unsignedp)
|
||
enum machine_mode mode;
|
||
optab unoptab;
|
||
rtx op0;
|
||
rtx target;
|
||
int unsignedp;
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
enum machine_mode submode = mode_for_size (BITS_PER_WORD, MODE_INT, 0);
|
||
register rtx temp;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
if (flag_force_mem)
|
||
{
|
||
op0 = force_not_mem (op0);
|
||
}
|
||
|
||
if (target)
|
||
target = protect_from_queue (target, 1);
|
||
|
||
if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) unoptab->handlers[(int) mode].insn_code;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
rtx xop0 = op0;
|
||
|
||
if (target)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
if (GET_MODE (xop0) != VOIDmode
|
||
&& GET_MODE (xop0) != mode0)
|
||
xop0 = convert_to_mode (mode0, xop0, unsignedp);
|
||
|
||
/* Now, if insn doesn't accept our operand, put it into a pseudo. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
|
||
xop0 = copy_to_mode_reg (mode0, xop0);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, mode))
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
pat = GEN_FCN (icode) (temp, xop0);
|
||
if (pat)
|
||
{
|
||
if (GET_CODE (pat) == SEQUENCE
|
||
&& ! add_equal_note (pat, temp, unoptab->code, xop0, 0))
|
||
{
|
||
delete_insns_since (last);
|
||
return expand_unop (mode, unoptab, op0, 0, unsignedp);
|
||
}
|
||
|
||
emit_insn (pat);
|
||
|
||
return temp;
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* These can be done a word at a time. */
|
||
if (unoptab == one_cmpl_optab
|
||
&& class == MODE_INT
|
||
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& unoptab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int i;
|
||
rtx insns;
|
||
|
||
if (target == 0 || target == op0)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
start_sequence ();
|
||
|
||
/* Do the actual arithmetic. */
|
||
for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
|
||
{
|
||
rtx target_piece = operand_subword (target, i, 1, mode);
|
||
rtx x = expand_unop (submode, unoptab,
|
||
operand_subword_force (op0, i, mode),
|
||
target_piece, unsignedp);
|
||
if (target_piece != x)
|
||
emit_move_insn (target_piece, x);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_no_conflict_block (insns, target, op0, 0,
|
||
gen_rtx (unoptab->code, mode, op0));
|
||
return target;
|
||
}
|
||
|
||
if (unoptab->handlers[(int) mode].libfunc)
|
||
{
|
||
rtx insns;
|
||
rtx funexp = unoptab->handlers[(int) mode].libfunc;
|
||
|
||
start_sequence ();
|
||
|
||
/* Pass 1 for NO_QUEUE so we don't lose any increments
|
||
if the libcall is cse'd or moved. */
|
||
emit_library_call (unoptab->handlers[(int) mode].libfunc,
|
||
1, mode, 1, op0, mode);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
target = gen_reg_rtx (mode);
|
||
emit_libcall_block (insns, target, hard_libcall_value (mode),
|
||
gen_rtx (unoptab->code, mode, op0));
|
||
|
||
return target;
|
||
}
|
||
|
||
/* It can't be done in this mode. Can we do it in a wider mode? */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
GET_MODE_CLASS (wider_mode) == class;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((unoptab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| unoptab->handlers[(int) wider_mode].libfunc)
|
||
{
|
||
if (GET_MODE (op0) != VOIDmode
|
||
&& GET_MODE_BITSIZE (wider_mode) <= HOST_BITS_PER_INT)
|
||
{
|
||
temp = gen_reg_rtx (wider_mode);
|
||
convert_move (temp, op0, unsignedp);
|
||
op0 = temp;
|
||
}
|
||
|
||
target = expand_unop (wider_mode, unoptab, op0, 0, unsignedp);
|
||
if (class == MODE_FLOAT)
|
||
{
|
||
if (target == 0)
|
||
target = gen_reg_rtx (mode);
|
||
convert_move (target, temp, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return gen_lowpart (mode, target);
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Generate an instruction whose insn-code is INSN_CODE,
|
||
with two operands: an output TARGET and an input OP0.
|
||
TARGET *must* be nonzero, and the output is always stored there.
|
||
CODE is an rtx code such that (CODE OP0) is an rtx that describes
|
||
the value that is stored into TARGET. */
|
||
|
||
void
|
||
emit_unop_insn (icode, target, op0, code)
|
||
int icode;
|
||
rtx target;
|
||
rtx op0;
|
||
enum rtx_code code;
|
||
{
|
||
register rtx temp;
|
||
enum machine_mode mode0 = insn_operand_mode[icode][1];
|
||
rtx pat;
|
||
|
||
temp = target = protect_from_queue (target, 1);
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
if (flag_force_mem)
|
||
op0 = force_not_mem (op0);
|
||
|
||
/* Now, if insn does not accept our operands, put them into pseudos. */
|
||
|
||
if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
|
||
op0 = copy_to_mode_reg (mode0, op0);
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
|
||
|| (flag_force_mem && GET_CODE (temp) == MEM))
|
||
temp = gen_reg_rtx (GET_MODE (temp));
|
||
|
||
pat = GEN_FCN (icode) (temp, op0);
|
||
|
||
if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
|
||
add_equal_note (pat, temp, code, op0, 0);
|
||
|
||
emit_insn (pat);
|
||
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
}
|
||
|
||
/* Emit code to perform a series of operations on a multi-word quantity, one
|
||
word at a time.
|
||
|
||
Such a block is preceeded by a CLOBBER of the output, consists of multiple
|
||
insns, each setting one word of the output, and followed by a SET copying
|
||
the output to itself.
|
||
|
||
Each of the insns setting words of the output receives a REG_NO_CONFLICT
|
||
note indicating that it doesn't conflict with the (also multi-word)
|
||
inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
|
||
notes.
|
||
|
||
INSNS is a block of code generated to perform the operation, not including
|
||
the CLOBBER and final copy. All insns that compute intermediate values
|
||
are first emitted, followed by the block as described above. Only
|
||
INSNs are allowed in the block; no library calls or jumps may be
|
||
present.
|
||
|
||
TARGET, OP0, and OP1 are the output and inputs of the operations,
|
||
respectively. OP1 may be zero for a unary operation.
|
||
|
||
EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
|
||
on the last insn.
|
||
|
||
If TARGET is not a register, INSNS is simply emitted with no special
|
||
processing.
|
||
|
||
The final insn emitted is returned. */
|
||
|
||
rtx
|
||
emit_no_conflict_block (insns, target, op0, op1, equiv)
|
||
rtx insns;
|
||
rtx target;
|
||
rtx op0, op1;
|
||
rtx equiv;
|
||
{
|
||
rtx prev, next, first, last, insn;
|
||
|
||
if (GET_CODE (target) != REG || reload_in_progress)
|
||
return emit_insns (insns);
|
||
|
||
/* First emit all insns that do not store into words of the output and remove
|
||
these from the list. */
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = 0;
|
||
int i;
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (GET_CODE (insn) != INSN)
|
||
abort ();
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
set = PATTERN (insn);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
|
||
{
|
||
set = XVECEXP (PATTERN (insn), 0, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (set == 0)
|
||
abort ();
|
||
|
||
if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Now write the CLOBBER of the output, followed by the setting of each
|
||
of the words, followed by the final copy. */
|
||
if (target != op0 && target != op1)
|
||
emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
add_insn (insn);
|
||
|
||
if (op1 && GET_CODE (op1) == REG)
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
|
||
REG_NOTES (insn));
|
||
|
||
if (op0 && GET_CODE (op0) == REG)
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
last = emit_move_insn (target, target);
|
||
if (equiv)
|
||
REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
|
||
|
||
return last;
|
||
}
|
||
|
||
/* Emit code to make a call to a constant function or a library call.
|
||
|
||
INSNS is a list containing all insns emitted in the call.
|
||
These insns leave the result in RESULT. Our block is to copy RESULT
|
||
to TARGET, which is logically equivalent to EQUIV.
|
||
|
||
We first emit any insns that set a pseudo on the assumption that these are
|
||
loading constants into registers; doing so allows them to be safely cse'ed
|
||
between blocks. Then we emit all the other insns in the block, followed by
|
||
an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
|
||
note with an operand of EQUIV.
|
||
|
||
Except for the first group of insns (the ones setting pseudos), the
|
||
block is delimited by REG_RETVAL and REG_LIBCALL notes. */
|
||
|
||
void
|
||
emit_libcall_block (insns, target, result, equiv)
|
||
rtx insns;
|
||
rtx target;
|
||
rtx result;
|
||
rtx equiv;
|
||
{
|
||
rtx prev, next, first, last, insn;
|
||
|
||
/* First emit all insns that set pseudos. Remove them from the list as
|
||
we go. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (set != 0 && GET_CODE (SET_DEST (set)) == REG
|
||
&& REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
if (PREV_INSN (insn))
|
||
NEXT_INSN (PREV_INSN (insn)) = next;
|
||
else
|
||
insns = next;
|
||
|
||
if (next)
|
||
PREV_INSN (next) = PREV_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
}
|
||
|
||
prev = get_last_insn ();
|
||
|
||
/* Write the remaining insns followed by the final copy. */
|
||
|
||
for (insn = insns; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
|
||
add_insn (insn);
|
||
}
|
||
|
||
last = emit_move_insn (target, result);
|
||
REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
|
||
|
||
if (prev == 0)
|
||
first = get_insns ();
|
||
else
|
||
first = NEXT_INSN (prev);
|
||
|
||
/* Encapsulate the block so it gets manipulated as a unit. */
|
||
REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
|
||
REG_NOTES (first));
|
||
REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
|
||
}
|
||
|
||
/* Generate code to store zero in X. */
|
||
|
||
void
|
||
emit_clr_insn (x)
|
||
rtx x;
|
||
{
|
||
emit_move_insn (x, const0_rtx);
|
||
}
|
||
|
||
/* Generate code to store 1 in X
|
||
assuming it contains zero beforehand. */
|
||
|
||
void
|
||
emit_0_to_1_insn (x)
|
||
rtx x;
|
||
{
|
||
emit_move_insn (x, const1_rtx);
|
||
}
|
||
|
||
/* Generate code to compare X with Y
|
||
so that the condition codes are set.
|
||
|
||
MODE is the mode of the inputs (in case they are const_int).
|
||
UNSIGNEDP nonzero says that X and Y are unsigned;
|
||
this matters if they need to be widened.
|
||
|
||
If they have mode BLKmode, then SIZE specifies the size of both X and Y,
|
||
and ALIGN specifies the known shared alignment of X and Y.
|
||
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
|
||
It is ignored for fixed-point and block comparisons;
|
||
it is used only for floating-point comparisons. */
|
||
|
||
void
|
||
emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
|
||
rtx x, y;
|
||
enum rtx_code comparison;
|
||
rtx size;
|
||
int unsignedp;
|
||
int align;
|
||
{
|
||
enum mode_class class;
|
||
enum machine_mode wider_mode;
|
||
|
||
class = GET_MODE_CLASS (mode);
|
||
|
||
/* They could both be VOIDmode if both args are immediate constants,
|
||
but we should fold that at an earlier stage.
|
||
With no special code here, this will call abort,
|
||
reminding the programmer to implement such folding. */
|
||
|
||
if (mode != BLKmode && flag_force_mem)
|
||
{
|
||
x = force_not_mem (x);
|
||
y = force_not_mem (y);
|
||
}
|
||
|
||
/* If we are inside an appropriately-short loop and one operand is an
|
||
expensive constant, force it into a register. */
|
||
if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x) > 2)
|
||
x = force_reg (mode, x);
|
||
|
||
if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y) > 2)
|
||
y = force_reg (mode, y);
|
||
|
||
/* Don't let both operands fail to indicate the mode. */
|
||
if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
|
||
x = force_reg (mode, x);
|
||
|
||
/* Handle all BLKmode compares. */
|
||
|
||
if (mode == BLKmode)
|
||
{
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
if (size == 0)
|
||
abort ();
|
||
#ifdef HAVE_cmpstrqi
|
||
if (HAVE_cmpstrqi
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
emit_insn (gen_cmpstrqi (result, x, y, size,
|
||
gen_rtx (CONST_INT, VOIDmode, align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
#ifdef HAVE_cmpstrhi
|
||
if (HAVE_cmpstrhi
|
||
&& GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
emit_insn (gen_cmpstrhi (result, x, y, size,
|
||
gen_rtx (CONST_INT, VOIDmode, align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
#ifdef HAVE_cmpstrsi
|
||
if (HAVE_cmpstrsi)
|
||
{
|
||
enum machine_mode result_mode
|
||
= insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
|
||
rtx result = gen_reg_rtx (result_mode);
|
||
emit_insn (gen_cmpstrsi (result, x, y,
|
||
convert_to_mode (SImode, size, 1),
|
||
gen_rtx (CONST_INT, VOIDmode, align)));
|
||
emit_cmp_insn (result, const0_rtx, comparison, 0, result_mode, 0, 0);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
#ifdef TARGET_MEM_FUNCTIONS
|
||
emit_library_call (memcmp_libfunc, 0,
|
||
TYPE_MODE (integer_type_node), 3,
|
||
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
|
||
size, Pmode);
|
||
#else
|
||
emit_library_call (bcmp_libfunc, 0,
|
||
TYPE_MODE (integer_type_node), 3,
|
||
XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
|
||
size, Pmode);
|
||
#endif
|
||
emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
|
||
const0_rtx, comparison, 0,
|
||
TYPE_MODE (integer_type_node), 0, 0);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Handle some compares against zero. */
|
||
|
||
if (y == CONST0_RTX (mode)
|
||
&& tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) tst_optab->handlers[(int) mode].insn_code;
|
||
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
/* Now, if insn does accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][0])
|
||
(x, insn_operand_mode[icode][0]))
|
||
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
|
||
|
||
emit_insn (GEN_FCN (icode) (x));
|
||
return;
|
||
}
|
||
|
||
/* Handle compares for which there is a directly suitable insn. */
|
||
|
||
if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
|
||
|
||
emit_queue ();
|
||
x = protect_from_queue (x, 0);
|
||
y = protect_from_queue (y, 0);
|
||
|
||
/* Now, if insn doesn't accept these operands, put them into pseudos. */
|
||
if (! (*insn_operand_predicate[icode][0])
|
||
(x, insn_operand_mode[icode][0]))
|
||
x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
|
||
|
||
if (! (*insn_operand_predicate[icode][1])
|
||
(y, insn_operand_mode[icode][1]))
|
||
y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
|
||
|
||
emit_insn (GEN_FCN (icode) (x, y));
|
||
return;
|
||
}
|
||
|
||
/* Try widening if we can find a direct insn that way. */
|
||
|
||
if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
|
||
{
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
GET_MODE_CLASS (wider_mode) == class;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if (cmp_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
{
|
||
x = convert_to_mode (wider_mode, x, unsignedp);
|
||
y = convert_to_mode (wider_mode, y, unsignedp);
|
||
emit_cmp_insn (x, y, comparison, 0,
|
||
wider_mode, unsignedp, align);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle a lib call just for the mode we are using. */
|
||
|
||
if (cmp_optab->handlers[(int) mode].libfunc
|
||
&& class != MODE_FLOAT)
|
||
{
|
||
rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
|
||
/* If we want unsigned, and this mode has a distinct unsigned
|
||
comparison routine, use that. */
|
||
if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
|
||
libfunc = ucmp_optab->handlers[(int) mode].libfunc;
|
||
|
||
emit_library_call (libfunc, 0,
|
||
SImode, 2, x, mode, y, mode);
|
||
|
||
/* Integer comparison returns a result that must be compared against 1,
|
||
so that even if we do an unsigned compare afterward,
|
||
there is still a value that can represent the result "less than". */
|
||
|
||
emit_cmp_insn (hard_libcall_value (SImode), const1_rtx,
|
||
comparison, 0, SImode, unsignedp, 0);
|
||
return;
|
||
}
|
||
|
||
if (class == MODE_FLOAT)
|
||
emit_float_lib_cmp (x, y, comparison);
|
||
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Nonzero if a compare of mode MODE can be done straightforwardly
|
||
(without splitting it into pieces). */
|
||
|
||
int
|
||
can_compare_p (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
do
|
||
{
|
||
if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
|
||
return 1;
|
||
mode = GET_MODE_WIDER_MODE (mode);
|
||
} while (mode != VOIDmode);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Emit a library call comparison between floating point X and Y.
|
||
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
|
||
|
||
static void
|
||
emit_float_lib_cmp (x, y, comparison)
|
||
rtx x, y;
|
||
enum rtx_code comparison;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx libfunc;
|
||
|
||
if (mode == SFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqsf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = nesf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gtsf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = gesf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = ltsf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = lesf2_libfunc;
|
||
break;
|
||
}
|
||
else if (mode == DFmode)
|
||
switch (comparison)
|
||
{
|
||
case EQ:
|
||
libfunc = eqdf2_libfunc;
|
||
break;
|
||
|
||
case NE:
|
||
libfunc = nedf2_libfunc;
|
||
break;
|
||
|
||
case GT:
|
||
libfunc = gtdf2_libfunc;
|
||
break;
|
||
|
||
case GE:
|
||
libfunc = gedf2_libfunc;
|
||
break;
|
||
|
||
case LT:
|
||
libfunc = ltdf2_libfunc;
|
||
break;
|
||
|
||
case LE:
|
||
libfunc = ledf2_libfunc;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
enum machine_mode wider_mode;
|
||
|
||
for (wider_mode = GET_MODE_WIDER_MODE (mode);
|
||
GET_MODE_CLASS (wider_mode) == MODE_FLOAT;
|
||
wider_mode = GET_MODE_WIDER_MODE (wider_mode))
|
||
{
|
||
if ((cmp_optab->handlers[(int) wider_mode].insn_code
|
||
!= CODE_FOR_nothing)
|
||
|| (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
|
||
{
|
||
x = convert_to_mode (wider_mode, x, 0);
|
||
y = convert_to_mode (wider_mode, y, 0);
|
||
emit_float_lib_cmp (x, y, comparison);
|
||
return;
|
||
}
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
emit_library_call (libfunc, 0,
|
||
SImode, 2, x, mode, y, mode);
|
||
|
||
emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison,
|
||
0, SImode, 0, 0);
|
||
}
|
||
|
||
/* Generate code to indirectly jump to a location given in the rtx LOC. */
|
||
|
||
void
|
||
emit_indirect_jump (loc)
|
||
rtx loc;
|
||
{
|
||
if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
|
||
(loc, VOIDmode)))
|
||
loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0],
|
||
loc);
|
||
|
||
emit_jump_insn (gen_indirect_jump (loc));
|
||
}
|
||
|
||
/* These three functions generate an insn body and return it
|
||
rather than emitting the insn.
|
||
|
||
They do not protect from queued increments,
|
||
because they may be used 1) in protect_from_queue itself
|
||
and 2) in other passes where there is no queue. */
|
||
|
||
/* Generate and return an insn body to add Y to X. */
|
||
|
||
rtx
|
||
gen_add2_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|
||
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|
||
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
int
|
||
have_add2_insn (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
|
||
}
|
||
|
||
/* Generate and return an insn body to subtract Y from X. */
|
||
|
||
rtx
|
||
gen_sub2_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
|
||
|
||
if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
|
||
|| ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
|
||
|| ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
|
||
abort ();
|
||
|
||
return (GEN_FCN (icode) (x, x, y));
|
||
}
|
||
|
||
int
|
||
have_sub2_insn (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
|
||
}
|
||
|
||
/* Generate the body of an instruction to copy Y into X. */
|
||
|
||
rtx
|
||
gen_move_insn (x, y)
|
||
rtx x, y;
|
||
{
|
||
register enum machine_mode mode = GET_MODE (x);
|
||
enum insn_code insn_code;
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (y);
|
||
|
||
insn_code = mov_optab->handlers[(int) mode].insn_code;
|
||
|
||
/* Handle MODE_CC modes: If we don't have a special move insn for this mode,
|
||
find a mode to do it in. If we have a movcc, use it. Otherwise,
|
||
find the MODE_INT mode of the same width. */
|
||
|
||
if (insn_code == CODE_FOR_nothing)
|
||
{
|
||
enum machine_mode tmode = VOIDmode;
|
||
rtx x1 = x, y1 = y;
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode
|
||
&& mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
|
||
tmode = CCmode;
|
||
else if (GET_MODE_CLASS (mode) == MODE_CC)
|
||
for (tmode = QImode; tmode != VOIDmode;
|
||
tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
|
||
break;
|
||
|
||
if (tmode == VOIDmode)
|
||
abort ();
|
||
|
||
/* Get X and Y in TMODE. We can't use gen_lowpart here because it
|
||
may call change_address which is not appropriate if we were
|
||
called when a reload was in progress. We don't have to worry
|
||
about changing the address since the size in bytes is supposed to
|
||
be the same. Copy the MEM to change the mode and move any
|
||
substitutions from the old MEM to the new one. */
|
||
|
||
if (reload_in_progress)
|
||
{
|
||
x = gen_lowpart_common (tmode, x1);
|
||
if (x == 0 && GET_CODE (x1) == MEM)
|
||
{
|
||
x = gen_rtx (MEM, tmode, XEXP (x1, 0));
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
|
||
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
|
||
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
|
||
copy_replacements (x1, x);
|
||
}
|
||
|
||
y = gen_lowpart_common (tmode, y1);
|
||
if (y == 0 && GET_CODE (y1) == MEM)
|
||
{
|
||
y = gen_rtx (MEM, tmode, XEXP (y1, 0));
|
||
RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
|
||
MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
|
||
MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
|
||
copy_replacements (y1, y);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
x = gen_lowpart (tmode, x);
|
||
y = gen_lowpart (tmode, y);
|
||
}
|
||
|
||
insn_code = mov_optab->handlers[(int) tmode].insn_code;
|
||
}
|
||
|
||
return (GEN_FCN (insn_code) (x, y));
|
||
}
|
||
|
||
/* Tables of patterns for extending one integer mode to another. */
|
||
static enum insn_code zero_extend_codes[MAX_MACHINE_MODE][MAX_MACHINE_MODE];
|
||
static enum insn_code sign_extend_codes[MAX_MACHINE_MODE][MAX_MACHINE_MODE];
|
||
|
||
/* Return nonzero if it's possible to extend FROM_MODE to TO_MODE.
|
||
UNSIGNEDP specifies zero-extension instead of sign-extension.
|
||
|
||
Actually, the value is the instruction code for the extension pattern. */
|
||
|
||
int
|
||
can_extend_p (to_mode, from_mode, unsignedp)
|
||
enum machine_mode to_mode, from_mode;
|
||
int unsignedp;
|
||
{
|
||
return ((unsignedp ? zero_extend_codes : sign_extend_codes)
|
||
[(int) to_mode][(int) from_mode]);
|
||
}
|
||
|
||
/* Generate the body of an insn to extend Y (with mode MFROM)
|
||
into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
|
||
|
||
rtx
|
||
gen_extend_insn (x, y, mto, mfrom, unsignedp)
|
||
rtx x, y;
|
||
enum machine_mode mto, mfrom;
|
||
int unsignedp;
|
||
{
|
||
return (GEN_FCN ((unsignedp ? zero_extend_codes : sign_extend_codes)
|
||
[(int)mto][(int)mfrom])
|
||
(x, y));
|
||
}
|
||
|
||
static void
|
||
init_extends ()
|
||
{
|
||
bzero (sign_extend_codes, sizeof sign_extend_codes);
|
||
bzero (zero_extend_codes, sizeof zero_extend_codes);
|
||
|
||
#ifdef HAVE_extendditi2
|
||
if (HAVE_extendditi2)
|
||
sign_extend_codes[(int) TImode][(int) DImode] = CODE_FOR_extendditi2;
|
||
#endif
|
||
#ifdef HAVE_extendsiti2
|
||
if (HAVE_extendsiti2)
|
||
sign_extend_codes[(int) TImode][(int) SImode] = CODE_FOR_extendsiti2;
|
||
#endif
|
||
#ifdef HAVE_extendhiti2
|
||
if (HAVE_extendhiti2)
|
||
sign_extend_codes[(int) TImode][(int) HImode] = CODE_FOR_extendhiti2;
|
||
#endif
|
||
#ifdef HAVE_extendqiti2
|
||
if (HAVE_extendqiti2)
|
||
sign_extend_codes[(int) TImode][(int) QImode] = CODE_FOR_extendqiti2;
|
||
#endif
|
||
#ifdef HAVE_extendsidi2
|
||
if (HAVE_extendsidi2)
|
||
sign_extend_codes[(int) DImode][(int) SImode] = CODE_FOR_extendsidi2;
|
||
#endif
|
||
#ifdef HAVE_extendhidi2
|
||
if (HAVE_extendhidi2)
|
||
sign_extend_codes[(int) DImode][(int) HImode] = CODE_FOR_extendhidi2;
|
||
#endif
|
||
#ifdef HAVE_extendqidi2
|
||
if (HAVE_extendqidi2)
|
||
sign_extend_codes[(int) DImode][(int) QImode] = CODE_FOR_extendqidi2;
|
||
#endif
|
||
#ifdef HAVE_extendhisi2
|
||
if (HAVE_extendhisi2)
|
||
sign_extend_codes[(int) SImode][(int) HImode] = CODE_FOR_extendhisi2;
|
||
#endif
|
||
#ifdef HAVE_extendqisi2
|
||
if (HAVE_extendqisi2)
|
||
sign_extend_codes[(int) SImode][(int) QImode] = CODE_FOR_extendqisi2;
|
||
#endif
|
||
#ifdef HAVE_extendqihi2
|
||
if (HAVE_extendqihi2)
|
||
sign_extend_codes[(int) HImode][(int) QImode] = CODE_FOR_extendqihi2;
|
||
#endif
|
||
|
||
#ifdef HAVE_zero_extendditi2
|
||
if (HAVE_zero_extendsiti2)
|
||
zero_extend_codes[(int) TImode][(int) DImode] = CODE_FOR_zero_extendditi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendsiti2
|
||
if (HAVE_zero_extendsiti2)
|
||
zero_extend_codes[(int) TImode][(int) SImode] = CODE_FOR_zero_extendsiti2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendhiti2
|
||
if (HAVE_zero_extendhiti2)
|
||
zero_extend_codes[(int) TImode][(int) HImode] = CODE_FOR_zero_extendhiti2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendqiti2
|
||
if (HAVE_zero_extendqiti2)
|
||
zero_extend_codes[(int) TImode][(int) QImode] = CODE_FOR_zero_extendqiti2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendsidi2
|
||
if (HAVE_zero_extendsidi2)
|
||
zero_extend_codes[(int) DImode][(int) SImode] = CODE_FOR_zero_extendsidi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendhidi2
|
||
if (HAVE_zero_extendhidi2)
|
||
zero_extend_codes[(int) DImode][(int) HImode] = CODE_FOR_zero_extendhidi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendqidi2
|
||
if (HAVE_zero_extendqidi2)
|
||
zero_extend_codes[(int) DImode][(int) QImode] = CODE_FOR_zero_extendqidi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendhisi2
|
||
if (HAVE_zero_extendhisi2)
|
||
zero_extend_codes[(int) SImode][(int) HImode] = CODE_FOR_zero_extendhisi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendqisi2
|
||
if (HAVE_zero_extendqisi2)
|
||
zero_extend_codes[(int) SImode][(int) QImode] = CODE_FOR_zero_extendqisi2;
|
||
#endif
|
||
#ifdef HAVE_zero_extendqihi2
|
||
if (HAVE_zero_extendqihi2)
|
||
zero_extend_codes[(int) HImode][(int) QImode] = CODE_FOR_zero_extendqihi2;
|
||
#endif
|
||
}
|
||
|
||
/* can_fix_p and can_float_p say whether the target machine
|
||
can directly convert a given fixed point type to
|
||
a given floating point type, or vice versa.
|
||
The returned value is the CODE_FOR_... value to use,
|
||
or CODE_FOR_nothing if these modes cannot be directly converted. */
|
||
|
||
static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
|
||
|
||
/* *TRUNCP_PTR is set to 1 if it is necessary to output
|
||
an explicit FTRUNC insn before the fix insn; otherwise 0. */
|
||
|
||
static enum insn_code
|
||
can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
|
||
enum machine_mode fltmode, fixmode;
|
||
int unsignedp;
|
||
int *truncp_ptr;
|
||
{
|
||
*truncp_ptr = 0;
|
||
if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
|
||
return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
|
||
|
||
if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
*truncp_ptr = 1;
|
||
return fixtab[(int) fltmode][(int) fixmode][unsignedp];
|
||
}
|
||
return CODE_FOR_nothing;
|
||
}
|
||
|
||
static enum insn_code
|
||
can_float_p (fltmode, fixmode, unsignedp)
|
||
enum machine_mode fixmode, fltmode;
|
||
int unsignedp;
|
||
{
|
||
return floattab[(int) fltmode][(int) fixmode][unsignedp];
|
||
}
|
||
|
||
void
|
||
init_fixtab ()
|
||
{
|
||
enum insn_code *p;
|
||
for (p = fixtab[0][0];
|
||
p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
for (p = fixtrunctab[0][0];
|
||
p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_fixsfqi2
|
||
if (HAVE_fixsfqi2)
|
||
fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixsfhi2
|
||
if (HAVE_fixsfhi2)
|
||
fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixsfsi2
|
||
if (HAVE_fixsfsi2)
|
||
fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixsfdi2
|
||
if (HAVE_fixsfdi2)
|
||
fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixdfqi2
|
||
if (HAVE_fixdfqi2)
|
||
fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixdfhi2
|
||
if (HAVE_fixdfhi2)
|
||
fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixdfsi2
|
||
if (HAVE_fixdfsi2)
|
||
fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixdfdi2
|
||
if (HAVE_fixdfdi2)
|
||
fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixdfti2
|
||
if (HAVE_fixdfti2)
|
||
fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixtfqi2
|
||
if (HAVE_fixtfqi2)
|
||
fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixtfhi2
|
||
if (HAVE_fixtfhi2)
|
||
fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixtfsi2
|
||
if (HAVE_fixtfsi2)
|
||
fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixtfdi2
|
||
if (HAVE_fixtfdi2)
|
||
fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixtfti2
|
||
if (HAVE_fixtfti2)
|
||
fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixunssfqi2
|
||
if (HAVE_fixunssfqi2)
|
||
fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixunssfhi2
|
||
if (HAVE_fixunssfhi2)
|
||
fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixunssfsi2
|
||
if (HAVE_fixunssfsi2)
|
||
fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixunssfdi2
|
||
if (HAVE_fixunssfdi2)
|
||
fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixunsdfqi2
|
||
if (HAVE_fixunsdfqi2)
|
||
fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixunsdfhi2
|
||
if (HAVE_fixunsdfhi2)
|
||
fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixunsdfsi2
|
||
if (HAVE_fixunsdfsi2)
|
||
fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixunsdfdi2
|
||
if (HAVE_fixunsdfdi2)
|
||
fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixunsdfti2
|
||
if (HAVE_fixunsdfti2)
|
||
fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixunstfqi2
|
||
if (HAVE_fixunstfqi2)
|
||
fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixunstfhi2
|
||
if (HAVE_fixunstfhi2)
|
||
fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixunstfsi2
|
||
if (HAVE_fixunstfsi2)
|
||
fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixunstfdi2
|
||
if (HAVE_fixunstfdi2)
|
||
fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixunstfti2
|
||
if (HAVE_fixunstfti2)
|
||
fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fix_truncsfqi2
|
||
if (HAVE_fix_truncsfqi2)
|
||
fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncsfhi2
|
||
if (HAVE_fix_truncsfhi2)
|
||
fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncsfsi2
|
||
if (HAVE_fix_truncsfsi2)
|
||
fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncsfdi2
|
||
if (HAVE_fix_truncsfdi2)
|
||
fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fix_truncdfqi2
|
||
if (HAVE_fix_truncdfsi2)
|
||
fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncdfhi2
|
||
if (HAVE_fix_truncdfhi2)
|
||
fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncdfsi2
|
||
if (HAVE_fix_truncdfsi2)
|
||
fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncdfdi2
|
||
if (HAVE_fix_truncdfdi2)
|
||
fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2;
|
||
#endif
|
||
#ifdef HAVE_fix_truncdfti2
|
||
if (HAVE_fix_truncdfti2)
|
||
fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fix_trunctfqi2
|
||
if (HAVE_fix_trunctfqi2)
|
||
fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2;
|
||
#endif
|
||
#ifdef HAVE_fix_trunctfhi2
|
||
if (HAVE_fix_trunctfhi2)
|
||
fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2;
|
||
#endif
|
||
#ifdef HAVE_fix_trunctfsi2
|
||
if (HAVE_fix_trunctfsi2)
|
||
fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2;
|
||
#endif
|
||
#ifdef HAVE_fix_trunctfdi2
|
||
if (HAVE_fix_trunctfdi2)
|
||
fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2;
|
||
#endif
|
||
#ifdef HAVE_fix_trunctfti2
|
||
if (HAVE_fix_trunctfti2)
|
||
fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixuns_truncsfqi2
|
||
if (HAVE_fixuns_truncsfqi2)
|
||
fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncsfhi2
|
||
if (HAVE_fixuns_truncsfhi2)
|
||
fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncsfsi2
|
||
if (HAVE_fixuns_truncsfsi2)
|
||
fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncsfdi2
|
||
if (HAVE_fixuns_truncsfdi2)
|
||
fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixuns_truncdfqi2
|
||
if (HAVE_fixuns_truncdfqi2)
|
||
fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncdfhi2
|
||
if (HAVE_fixuns_truncdfhi2)
|
||
fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncdfsi2
|
||
if (HAVE_fixuns_truncdfsi2)
|
||
fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncdfdi2
|
||
if (HAVE_fixuns_truncdfdi2)
|
||
fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_truncdfti2
|
||
if (HAVE_fixuns_truncdfti2)
|
||
fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2;
|
||
#endif
|
||
|
||
#ifdef HAVE_fixuns_trunctfqi2
|
||
if (HAVE_fixuns_trunctfqi2)
|
||
fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_trunctfhi2
|
||
if (HAVE_fixuns_trunctfhi2)
|
||
fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_trunctfsi2
|
||
if (HAVE_fixuns_trunctfsi2)
|
||
fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_trunctfdi2
|
||
if (HAVE_fixuns_trunctfdi2)
|
||
fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2;
|
||
#endif
|
||
#ifdef HAVE_fixuns_trunctfti2
|
||
if (HAVE_fixuns_trunctfti2)
|
||
fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2;
|
||
#endif
|
||
|
||
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
||
/* This flag says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
{
|
||
int i;
|
||
int j;
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void
|
||
init_floattab ()
|
||
{
|
||
enum insn_code *p;
|
||
for (p = floattab[0][0];
|
||
p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
|
||
p++)
|
||
*p = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_floatqisf2
|
||
if (HAVE_floatqisf2)
|
||
floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2;
|
||
#endif
|
||
#ifdef HAVE_floathisf2
|
||
if (HAVE_floathisf2)
|
||
floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2;
|
||
#endif
|
||
#ifdef HAVE_floatsisf2
|
||
if (HAVE_floatsisf2)
|
||
floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2;
|
||
#endif
|
||
#ifdef HAVE_floatdisf2
|
||
if (HAVE_floatdisf2)
|
||
floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2;
|
||
#endif
|
||
#ifdef HAVE_floattisf2
|
||
if (HAVE_floattisf2)
|
||
floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_floatqidf2
|
||
if (HAVE_floatqidf2)
|
||
floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2;
|
||
#endif
|
||
#ifdef HAVE_floathidf2
|
||
if (HAVE_floathidf2)
|
||
floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2;
|
||
#endif
|
||
#ifdef HAVE_floatsidf2
|
||
if (HAVE_floatsidf2)
|
||
floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2;
|
||
#endif
|
||
#ifdef HAVE_floatdidf2
|
||
if (HAVE_floatdidf2)
|
||
floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2;
|
||
#endif
|
||
#ifdef HAVE_floattidf2
|
||
if (HAVE_floattidf2)
|
||
floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_floatqitf2
|
||
if (HAVE_floatqitf2)
|
||
floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2;
|
||
#endif
|
||
#ifdef HAVE_floathitf2
|
||
if (HAVE_floathitf2)
|
||
floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2;
|
||
#endif
|
||
#ifdef HAVE_floatsitf2
|
||
if (HAVE_floatsitf2)
|
||
floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2;
|
||
#endif
|
||
#ifdef HAVE_floatditf2
|
||
if (HAVE_floatditf2)
|
||
floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2;
|
||
#endif
|
||
#ifdef HAVE_floattitf2
|
||
if (HAVE_floattitf2)
|
||
floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_floatunsqisf2
|
||
if (HAVE_floatunsqisf2)
|
||
floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2;
|
||
#endif
|
||
#ifdef HAVE_floatunshisf2
|
||
if (HAVE_floatunshisf2)
|
||
floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2;
|
||
#endif
|
||
#ifdef HAVE_floatunssisf2
|
||
if (HAVE_floatunssisf2)
|
||
floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2;
|
||
#endif
|
||
#ifdef HAVE_floatunsdisf2
|
||
if (HAVE_floatunsdisf2)
|
||
floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2;
|
||
#endif
|
||
#ifdef HAVE_floatunstisf2
|
||
if (HAVE_floatunstisf2)
|
||
floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_floatunsqidf2
|
||
if (HAVE_floatunsqidf2)
|
||
floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2;
|
||
#endif
|
||
#ifdef HAVE_floatunshidf2
|
||
if (HAVE_floatunshidf2)
|
||
floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2;
|
||
#endif
|
||
#ifdef HAVE_floatunssidf2
|
||
if (HAVE_floatunssidf2)
|
||
floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2;
|
||
#endif
|
||
#ifdef HAVE_floatunsdidf2
|
||
if (HAVE_floatunsdidf2)
|
||
floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2;
|
||
#endif
|
||
#ifdef HAVE_floatunstidf2
|
||
if (HAVE_floatunstidf2)
|
||
floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_floatunsqitf2
|
||
if (HAVE_floatunsqitf2)
|
||
floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2;
|
||
#endif
|
||
#ifdef HAVE_floatunshitf2
|
||
if (HAVE_floatunshitf2)
|
||
floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2;
|
||
#endif
|
||
#ifdef HAVE_floatunssitf2
|
||
if (HAVE_floatunssitf2)
|
||
floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2;
|
||
#endif
|
||
#ifdef HAVE_floatunsditf2
|
||
if (HAVE_floatunsditf2)
|
||
floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2;
|
||
#endif
|
||
#ifdef HAVE_floatunstitf2
|
||
if (HAVE_floatunstitf2)
|
||
floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2;
|
||
#endif
|
||
}
|
||
|
||
/* Generate code to convert FROM to floating point
|
||
and store in TO. FROM must be fixed point.
|
||
UNSIGNEDP nonzero means regard FROM as unsigned.
|
||
Normally this is done by correcting the final value
|
||
if it is negative. */
|
||
|
||
void
|
||
expand_float (to, from, unsignedp)
|
||
rtx to, from;
|
||
int unsignedp;
|
||
{
|
||
enum insn_code icode;
|
||
register rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
|
||
/* Look for an insn to do the conversion. Do it in the specified
|
||
modes if possible; otherwise convert either input, output or both to
|
||
wider mode. If the integer mode is wider than the mode of FROM,
|
||
we can do the conversion signed even if the input is unsigned. */
|
||
|
||
for (imode = GET_MODE (from); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
for (fmode = GET_MODE (to); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
icode = can_float_p (fmode, imode, unsignedp);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
|
||
icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
to = protect_from_queue (to, 1);
|
||
|
||
if (imode != GET_MODE (from))
|
||
from = convert_to_mode (imode, from, unsignedp);
|
||
else
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (fmode != GET_MODE (to))
|
||
target = gen_reg_rtx (fmode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
|
||
|
||
if (target != to)
|
||
convert_move (to, target, 0);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
|
||
/* Unsigned integer, and no way to convert directly.
|
||
Convert as signed, then conditionally adjust the result. */
|
||
if (unsignedp)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
rtx temp;
|
||
REAL_VALUE_TYPE offset;
|
||
|
||
emit_queue ();
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
/* If we are about to do some arithmetic to correct for an
|
||
unsigned operand, do it in a pseudo-register. */
|
||
|
||
if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER)
|
||
target = gen_reg_rtx (GET_MODE (to));
|
||
|
||
/* Convert as signed integer to floating. */
|
||
expand_float (target, from, 0);
|
||
|
||
/* If FROM is negative (and therefore TO is negative),
|
||
correct its value by 2**bitwidth. */
|
||
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_insn (from, const0_rtx, GE, 0, GET_MODE (from), 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
/* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
|
||
Rather than setting up a dconst_dot_5, let's hope SCO
|
||
fixes the bug. */
|
||
offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
|
||
temp = expand_binop (GET_MODE (to), add_optab, target,
|
||
immed_real_const_1 (offset, GET_MODE (to)),
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (temp != target)
|
||
emit_move_insn (target, temp);
|
||
do_pending_stack_adjust ();
|
||
emit_label (label);
|
||
}
|
||
else
|
||
#endif
|
||
|
||
/* No hardware instruction available; call a library
|
||
to convert from SImode or DImode into SFmode or DFmode. */
|
||
{
|
||
char *fnname;
|
||
rtx insns;
|
||
|
||
to = protect_from_queue (to, 1);
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
|
||
from = convert_to_mode (SImode, from, unsignedp);
|
||
else
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
if (GET_MODE (to) == SFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
fnname = "__floatsisf";
|
||
else if (GET_MODE (from) == DImode)
|
||
fnname = "__floatdisf";
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (to) == DFmode)
|
||
{
|
||
if (GET_MODE (from) == SImode)
|
||
fnname = "__floatsidf";
|
||
else if (GET_MODE (from) == DImode)
|
||
fnname = "__floatdidf";
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
start_sequence ();
|
||
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, fnname),
|
||
0, GET_MODE (to), 1, from, GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
|
||
gen_rtx (FLOAT, GET_MODE (to), from));
|
||
}
|
||
|
||
/* Copy result to requested destination
|
||
if we have been computing in a temp location. */
|
||
|
||
if (target != to)
|
||
{
|
||
if (GET_MODE (target) == GET_MODE (to))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
}
|
||
|
||
/* expand_fix: generate code to convert FROM to fixed point
|
||
and store in TO. FROM must be floating point. */
|
||
|
||
static rtx
|
||
ftruncify (x)
|
||
rtx x;
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (x));
|
||
return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
|
||
}
|
||
|
||
void
|
||
expand_fix (to, from, unsignedp)
|
||
register rtx to, from;
|
||
int unsignedp;
|
||
{
|
||
enum insn_code icode;
|
||
register rtx target = to;
|
||
enum machine_mode fmode, imode;
|
||
int must_trunc = 0;
|
||
char *fnname = 0;
|
||
|
||
/* We first try to find a pair of modes, one real and one integer, at
|
||
least as wide as FROM and TO, respectively, in which we can open-code
|
||
this conversion. If the integer mode is wider than the mode of TO,
|
||
we can do the conversion either signed or unsigned. */
|
||
|
||
for (imode = GET_MODE (to); imode != VOIDmode;
|
||
imode = GET_MODE_WIDER_MODE (imode))
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
{
|
||
int doing_unsigned = unsignedp;
|
||
|
||
icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
|
||
if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
|
||
icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
to = protect_from_queue (to, 1);
|
||
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
else
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (must_trunc)
|
||
from = ftruncify (from);
|
||
|
||
if (imode != GET_MODE (to))
|
||
target = gen_reg_rtx (imode);
|
||
|
||
emit_unop_insn (icode, target, from,
|
||
doing_unsigned ? UNSIGNED_FIX : FIX);
|
||
if (target != to)
|
||
convert_move (to, target, unsignedp);
|
||
return;
|
||
}
|
||
}
|
||
|
||
#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
|
||
/* For an unsigned conversion, there is one more way to do it.
|
||
If we have a signed conversion, we generate code that compares
|
||
the real value to the largest representable positive number. If if
|
||
is smaller, the conversion is done normally. Otherwise, subtract
|
||
one plus the highest signed number, convert, and add it back.
|
||
|
||
We only need to check all real modes, since we know we didn't find
|
||
anything with a wider inetger mode. */
|
||
|
||
if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_INT)
|
||
for (fmode = GET_MODE (from); fmode != VOIDmode;
|
||
fmode = GET_MODE_WIDER_MODE (fmode))
|
||
/* Make sure we won't lose significant bits doing this. */
|
||
if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
|
||
&& CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
|
||
&must_trunc))
|
||
{
|
||
int bitsize = GET_MODE_BITSIZE (GET_MODE (to));
|
||
REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
|
||
rtx limit = immed_real_const_1 (offset, fmode);
|
||
rtx lab1 = gen_label_rtx ();
|
||
rtx lab2 = gen_label_rtx ();
|
||
rtx insn;
|
||
|
||
emit_queue ();
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
if (fmode != GET_MODE (from))
|
||
from = convert_to_mode (fmode, from, 0);
|
||
|
||
/* See if we need to do the subtraction. */
|
||
do_pending_stack_adjust ();
|
||
emit_cmp_insn (from, limit, GE, 0, GET_MODE (from), 0, 0);
|
||
emit_jump_insn (gen_bge (lab1));
|
||
|
||
/* If not, do the signed "fix" and branch around fixup code. */
|
||
expand_fix (to, from, 0);
|
||
emit_jump_insn (gen_jump (lab2));
|
||
emit_barrier ();
|
||
|
||
/* Otherwise, subtract 2**(N-1), convert to signed number,
|
||
then add 2**(N-1). Do the addition using XOR since this
|
||
will often generate better code. */
|
||
emit_label (lab1);
|
||
target = expand_binop (GET_MODE (from), sub_optab, from, limit,
|
||
0, 0, OPTAB_LIB_WIDEN);
|
||
expand_fix (to, target, 0);
|
||
target = expand_binop (GET_MODE (to), xor_optab, to,
|
||
gen_rtx (CONST_INT, VOIDmode,
|
||
1 << (bitsize - 1)),
|
||
to, 1, OPTAB_LIB_WIDEN);
|
||
|
||
if (target != to)
|
||
emit_move_insn (to, target);
|
||
|
||
emit_label (lab2);
|
||
|
||
/* Make a place for a REG_NOTE and add it. */
|
||
insn = emit_move_insn (to, to);
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (UNSIGNED_FIX, GET_MODE (to),
|
||
from), REG_NOTES (insn));
|
||
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* We can't do it with an insn, so use a library call. But first ensure
|
||
that the mode of TO is at least as wide as SImode, since those are the
|
||
only library calls we know about. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
|
||
{
|
||
target = gen_reg_rtx (SImode);
|
||
|
||
expand_fix (target, from, unsignedp);
|
||
}
|
||
else if (GET_MODE (from) == SFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
fnname = unsignedp ? "__fixunssfsi" : "__fixsfsi";
|
||
else if (GET_MODE (to) == DImode)
|
||
fnname = unsignedp ? "__fixunssfdi" : "__fixsfdi";
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_MODE (from) == DFmode)
|
||
{
|
||
if (GET_MODE (to) == SImode)
|
||
fnname = unsignedp ? "__fixunsdfsi" : "__fixdfsi";
|
||
else if (GET_MODE (to) == DImode)
|
||
fnname = unsignedp ? "__fixunsdfdi" : "__fixdfdi";
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (fnname)
|
||
{
|
||
rtx insns;
|
||
|
||
to = protect_from_queue (to, 1);
|
||
from = protect_from_queue (from, 0);
|
||
|
||
if (flag_force_mem)
|
||
from = force_not_mem (from);
|
||
|
||
start_sequence ();
|
||
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, fnname),
|
||
0, GET_MODE (to), 1, from, GET_MODE (from));
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
|
||
gen_rtx (unsignedp ? FIX : UNSIGNED_FIX,
|
||
GET_MODE (to), from));
|
||
}
|
||
|
||
if (GET_MODE (to) == GET_MODE (target))
|
||
emit_move_insn (to, target);
|
||
else
|
||
convert_move (to, target, 0);
|
||
}
|
||
|
||
static optab
|
||
init_optab (code)
|
||
enum rtx_code code;
|
||
{
|
||
int i;
|
||
optab op = (optab) xmalloc (sizeof (struct optab));
|
||
op->code = code;
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
op->handlers[i].insn_code = CODE_FOR_nothing;
|
||
op->handlers[i].libfunc = 0;
|
||
}
|
||
return op;
|
||
}
|
||
|
||
/* Call this once to initialize the contents of the optabs
|
||
appropriately for the current target machine. */
|
||
|
||
void
|
||
init_optabs ()
|
||
{
|
||
int i;
|
||
|
||
init_fixtab ();
|
||
init_floattab ();
|
||
init_extends ();
|
||
|
||
add_optab = init_optab (PLUS);
|
||
sub_optab = init_optab (MINUS);
|
||
smul_optab = init_optab (MULT);
|
||
smul_widen_optab = init_optab (UNKNOWN);
|
||
umul_widen_optab = init_optab (UNKNOWN);
|
||
sdiv_optab = init_optab (DIV);
|
||
sdivmod_optab = init_optab (UNKNOWN);
|
||
udiv_optab = init_optab (UDIV);
|
||
udivmod_optab = init_optab (UNKNOWN);
|
||
smod_optab = init_optab (MOD);
|
||
umod_optab = init_optab (UMOD);
|
||
flodiv_optab = init_optab (DIV);
|
||
ftrunc_optab = init_optab (UNKNOWN);
|
||
and_optab = init_optab (AND);
|
||
ior_optab = init_optab (IOR);
|
||
xor_optab = init_optab (XOR);
|
||
ashl_optab = init_optab (ASHIFT);
|
||
ashr_optab = init_optab (ASHIFTRT);
|
||
lshl_optab = init_optab (LSHIFT);
|
||
lshr_optab = init_optab (LSHIFTRT);
|
||
rotl_optab = init_optab (ROTATE);
|
||
rotr_optab = init_optab (ROTATERT);
|
||
smin_optab = init_optab (SMIN);
|
||
smax_optab = init_optab (SMAX);
|
||
umin_optab = init_optab (UMIN);
|
||
umax_optab = init_optab (UMAX);
|
||
mov_optab = init_optab (UNKNOWN);
|
||
movstrict_optab = init_optab (UNKNOWN);
|
||
cmp_optab = init_optab (UNKNOWN);
|
||
ucmp_optab = init_optab (UNKNOWN);
|
||
tst_optab = init_optab (UNKNOWN);
|
||
neg_optab = init_optab (NEG);
|
||
abs_optab = init_optab (ABS);
|
||
one_cmpl_optab = init_optab (NOT);
|
||
ffs_optab = init_optab (FFS);
|
||
|
||
#ifdef HAVE_addqi3
|
||
if (HAVE_addqi3)
|
||
add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3;
|
||
#endif
|
||
#ifdef HAVE_addhi3
|
||
if (HAVE_addhi3)
|
||
add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3;
|
||
#endif
|
||
#ifdef HAVE_addpsi3
|
||
if (HAVE_addpsi3)
|
||
add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3;
|
||
#endif
|
||
#ifdef HAVE_addsi3
|
||
if (HAVE_addsi3)
|
||
add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3;
|
||
#endif
|
||
#ifdef HAVE_adddi3
|
||
if (HAVE_adddi3)
|
||
add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3;
|
||
#endif
|
||
#ifdef HAVE_addti3
|
||
if (HAVE_addti3)
|
||
add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3;
|
||
#endif
|
||
#ifdef HAVE_addsf3
|
||
if (HAVE_addsf3)
|
||
add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3;
|
||
#endif
|
||
#ifdef HAVE_adddf3
|
||
if (HAVE_adddf3)
|
||
add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3;
|
||
#endif
|
||
#ifdef HAVE_addtf3
|
||
if (HAVE_addtf3)
|
||
add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3;
|
||
#endif
|
||
add_optab->handlers[(int) SFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__addsf3");
|
||
add_optab->handlers[(int) DFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__adddf3");
|
||
|
||
#ifdef HAVE_subqi3
|
||
if (HAVE_subqi3)
|
||
sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3;
|
||
#endif
|
||
#ifdef HAVE_subhi3
|
||
if (HAVE_subhi3)
|
||
sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3;
|
||
#endif
|
||
#ifdef HAVE_subpsi3
|
||
if (HAVE_subpsi3)
|
||
sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3;
|
||
#endif
|
||
#ifdef HAVE_subsi3
|
||
if (HAVE_subsi3)
|
||
sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3;
|
||
#endif
|
||
#ifdef HAVE_subdi3
|
||
if (HAVE_subdi3)
|
||
sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3;
|
||
#endif
|
||
#ifdef HAVE_subti3
|
||
if (HAVE_subti3)
|
||
sub_optab->handlers[(int) Imode].insn_code = CODE_FOR_subti3;
|
||
#endif
|
||
#ifdef HAVE_subsf3
|
||
if (HAVE_subsf3)
|
||
sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3;
|
||
#endif
|
||
#ifdef HAVE_subdf3
|
||
if (HAVE_subdf3)
|
||
sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3;
|
||
#endif
|
||
#ifdef HAVE_subtf3
|
||
if (HAVE_subtf3)
|
||
sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3;
|
||
#endif
|
||
sub_optab->handlers[(int) SFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__subsf3");
|
||
sub_optab->handlers[(int) DFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__subdf3");
|
||
|
||
#ifdef HAVE_mulqi3
|
||
if (HAVE_mulqi3)
|
||
smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3;
|
||
#endif
|
||
#ifdef HAVE_mulhi3
|
||
if (HAVE_mulhi3)
|
||
smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3;
|
||
#endif
|
||
#ifdef HAVE_mulpsi3
|
||
if (HAVE_mulpsi3)
|
||
smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3;
|
||
#endif
|
||
#ifdef HAVE_mulsi3
|
||
if (HAVE_mulsi3)
|
||
smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3;
|
||
#endif
|
||
#ifdef HAVE_muldi3
|
||
if (HAVE_muldi3)
|
||
smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3;
|
||
#endif
|
||
#ifdef HAVE_multi3
|
||
if (HAVE_multi3)
|
||
smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3;
|
||
#endif
|
||
#ifdef HAVE_mulsf3
|
||
if (HAVE_mulsf3)
|
||
smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3;
|
||
#endif
|
||
#ifdef HAVE_muldf3
|
||
if (HAVE_muldf3)
|
||
smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3;
|
||
#endif
|
||
#ifdef HAVE_multf3
|
||
if (HAVE_multf3)
|
||
smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3;
|
||
#endif
|
||
|
||
#ifdef MULSI3_LIBCALL
|
||
smul_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
|
||
#else
|
||
smul_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__mulsi3");
|
||
#endif
|
||
#ifdef MULDI3_LIBCALL
|
||
smul_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
|
||
#else
|
||
smul_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__muldi3");
|
||
#endif
|
||
smul_optab->handlers[(int) SFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__mulsf3");
|
||
smul_optab->handlers[(int) DFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__muldf3");
|
||
|
||
#ifdef HAVE_mulqihi3
|
||
if (HAVE_mulqihi3)
|
||
smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3;
|
||
#endif
|
||
#ifdef HAVE_mulhisi3
|
||
if (HAVE_mulhisi3)
|
||
smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3;
|
||
#endif
|
||
#ifdef HAVE_mulsidi3
|
||
if (HAVE_mulsidi3)
|
||
smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3;
|
||
#endif
|
||
#ifdef HAVE_mulditi3
|
||
if (HAVE_mulditi3)
|
||
smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3;
|
||
#endif
|
||
|
||
#ifdef HAVE_umulqihi3
|
||
if (HAVE_umulqihi3)
|
||
umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3;
|
||
#endif
|
||
#ifdef HAVE_umulhisi3
|
||
if (HAVE_umulhisi3)
|
||
umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3;
|
||
#endif
|
||
#ifdef HAVE_umulsidi3
|
||
if (HAVE_umulsidi3)
|
||
umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3;
|
||
#endif
|
||
#ifdef HAVE_umulditi3
|
||
if (HAVE_umulditi3)
|
||
umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3;
|
||
#endif
|
||
|
||
#ifdef HAVE_divqi3
|
||
if (HAVE_divqi3)
|
||
sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3;
|
||
#endif
|
||
#ifdef HAVE_divhi3
|
||
if (HAVE_divhi3)
|
||
sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3;
|
||
#endif
|
||
#ifdef HAVE_divpsi3
|
||
if (HAVE_divpsi3)
|
||
sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3;
|
||
#endif
|
||
#ifdef HAVE_divsi3
|
||
if (HAVE_divsi3)
|
||
sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3;
|
||
#endif
|
||
#ifdef HAVE_divdi3
|
||
if (HAVE_divdi3)
|
||
sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3;
|
||
#endif
|
||
#ifdef HAVE_divti3
|
||
if (HAVE_divti3)
|
||
sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3;
|
||
#endif
|
||
|
||
#ifdef DIVSI3_LIBCALL
|
||
sdiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
|
||
#else
|
||
sdiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__divsi3");
|
||
#endif
|
||
#ifdef DIVDI3_LIBCALL
|
||
sdiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
|
||
#else
|
||
sdiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__divdi3");
|
||
#endif
|
||
|
||
#ifdef HAVE_udivqi3
|
||
if (HAVE_udivqi3)
|
||
udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3;
|
||
#endif
|
||
#ifdef HAVE_udivhi3
|
||
if (HAVE_udivhi3)
|
||
udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3;
|
||
#endif
|
||
#ifdef HAVE_udivpsi3
|
||
if (HAVE_udivpsi3)
|
||
udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3;
|
||
#endif
|
||
#ifdef HAVE_udivsi3
|
||
if (HAVE_udivsi3)
|
||
udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3;
|
||
#endif
|
||
#ifdef HAVE_udivdi3
|
||
if (HAVE_udivdi3)
|
||
udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3;
|
||
#endif
|
||
#ifdef HAVE_udivti3
|
||
if (HAVE_udivti3)
|
||
udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3;
|
||
#endif
|
||
|
||
#ifdef UDIVSI3_LIBCALL
|
||
udiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
|
||
#else
|
||
udiv_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__udivsi3");
|
||
#endif
|
||
#ifdef UDIVDI3_LIBCALL
|
||
udiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
|
||
#else
|
||
udiv_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__udivdi3");
|
||
#endif
|
||
|
||
#ifdef HAVE_divmodqi4
|
||
if (HAVE_divmodqi4)
|
||
sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4;
|
||
#endif
|
||
#ifdef HAVE_divmodhi4
|
||
if (HAVE_divmodhi4)
|
||
sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4;
|
||
#endif
|
||
#ifdef HAVE_divmodsi4
|
||
if (HAVE_divmodsi4)
|
||
sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4;
|
||
#endif
|
||
#ifdef HAVE_divmoddi4
|
||
if (HAVE_divmoddi4)
|
||
sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4;
|
||
#endif
|
||
#ifdef HAVE_divmodti4
|
||
if (HAVE_divmodti4)
|
||
sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4;
|
||
#endif
|
||
|
||
#ifdef HAVE_udivmodqi4
|
||
if (HAVE_udivmodqi4)
|
||
udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4;
|
||
#endif
|
||
#ifdef HAVE_udivmodhi4
|
||
if (HAVE_udivmodhi4)
|
||
udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4;
|
||
#endif
|
||
#ifdef HAVE_udivmodsi4
|
||
if (HAVE_udivmodsi4)
|
||
udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4;
|
||
#endif
|
||
#ifdef HAVE_udivmoddi4
|
||
if (HAVE_udivmoddi4)
|
||
udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4;
|
||
#endif
|
||
#ifdef HAVE_udivmodti4
|
||
if (HAVE_udivmodti4)
|
||
udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4;
|
||
#endif
|
||
|
||
#ifdef HAVE_modqi3
|
||
if (HAVE_modqi3)
|
||
smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3;
|
||
#endif
|
||
#ifdef HAVE_modhi3
|
||
if (HAVE_modhi3)
|
||
smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3;
|
||
#endif
|
||
#ifdef HAVE_modpsi3
|
||
if (HAVE_modpsi3)
|
||
smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3;
|
||
#endif
|
||
#ifdef HAVE_modsi3
|
||
if (HAVE_modsi3)
|
||
smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3;
|
||
#endif
|
||
#ifdef HAVE_moddi3
|
||
if (HAVE_moddi3)
|
||
smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3;
|
||
#endif
|
||
#ifdef HAVE_modti3
|
||
if (HAVE_modti3)
|
||
smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3;
|
||
#endif
|
||
|
||
#ifdef MODSI3_LIBCALL
|
||
smod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
|
||
#else
|
||
smod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__modsi3");
|
||
#endif
|
||
#ifdef MODDI3_LIBCALL
|
||
smod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
|
||
#else
|
||
smod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__moddi3");
|
||
#endif
|
||
|
||
#ifdef HAVE_umodqi3
|
||
if (HAVE_umodqi3)
|
||
umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3;
|
||
#endif
|
||
#ifdef HAVE_umodhi3
|
||
if (HAVE_umodhi3)
|
||
umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3;
|
||
#endif
|
||
#ifdef HAVE_umodpsi3
|
||
if (HAVE_umodpsi3)
|
||
umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3;
|
||
#endif
|
||
#ifdef HAVE_umodsi3
|
||
if (HAVE_umodsi3)
|
||
umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3;
|
||
#endif
|
||
#ifdef HAVE_umoddi3
|
||
if (HAVE_umoddi3)
|
||
umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3;
|
||
#endif
|
||
#ifdef HAVE_umodti3
|
||
if (HAVE_umodti3)
|
||
umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3;
|
||
#endif
|
||
|
||
#ifdef UMODSI3_LIBCALL
|
||
umod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
|
||
#else
|
||
umod_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__umodsi3");
|
||
#endif
|
||
#ifdef UMODDI3_LIBCALL
|
||
umod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
|
||
#else
|
||
umod_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__umoddi3");
|
||
#endif
|
||
|
||
#ifdef HAVE_divsf3
|
||
if (HAVE_divsf3)
|
||
flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3;
|
||
#endif
|
||
#ifdef HAVE_divdf3
|
||
if (HAVE_divdf3)
|
||
flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3;
|
||
#endif
|
||
#ifdef HAVE_divtf3
|
||
if (HAVE_divtf3)
|
||
flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3;
|
||
#endif
|
||
flodiv_optab->handlers[(int) SFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__divsf3");
|
||
flodiv_optab->handlers[(int) DFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__divdf3");
|
||
|
||
#ifdef HAVE_ftruncsf2
|
||
if (HAVE_ftruncsf2)
|
||
ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2;
|
||
#endif
|
||
#ifdef HAVE_ftruncdf2
|
||
if (HAVE_ftruncdf2)
|
||
ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2;
|
||
#endif
|
||
#ifdef HAVE_ftrunctf2
|
||
if (HAVE_ftrunctf2)
|
||
ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2;
|
||
#endif
|
||
|
||
#ifdef HAVE_andqi3
|
||
if (HAVE_andqi3)
|
||
and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3;
|
||
#endif
|
||
#ifdef HAVE_andhi3
|
||
if (HAVE_andhi3)
|
||
and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3;
|
||
#endif
|
||
#ifdef HAVE_andpsi3
|
||
if (HAVE_andpsi3)
|
||
and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3;
|
||
#endif
|
||
#ifdef HAVE_andsi3
|
||
if (HAVE_andsi3)
|
||
and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3;
|
||
#endif
|
||
#ifdef HAVE_anddi3
|
||
if (HAVE_anddi3)
|
||
and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3;
|
||
#endif
|
||
#ifdef HAVE_andti3
|
||
if (HAVE_andti3)
|
||
and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3;
|
||
#endif
|
||
|
||
#ifdef HAVE_iorqi3
|
||
if (HAVE_iorqi3)
|
||
ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3;
|
||
#endif
|
||
#ifdef HAVE_iorhi3
|
||
if (HAVE_iorhi3)
|
||
ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3;
|
||
#endif
|
||
#ifdef HAVE_iorpsi3
|
||
if (HAVE_iorpsi3)
|
||
ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3;
|
||
#endif
|
||
#ifdef HAVE_iorsi3
|
||
if (HAVE_iorsi3)
|
||
ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3;
|
||
#endif
|
||
#ifdef HAVE_iordi3
|
||
if (HAVE_iordi3)
|
||
ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3;
|
||
#endif
|
||
#ifdef HAVE_iorti3
|
||
if (HAVE_iorti3)
|
||
ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3;
|
||
#endif
|
||
|
||
#ifdef HAVE_xorqi3
|
||
if (HAVE_xorqi3)
|
||
xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3;
|
||
#endif
|
||
#ifdef HAVE_xorhi3
|
||
if (HAVE_xorhi3)
|
||
xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3;
|
||
#endif
|
||
#ifdef HAVE_xorpsi3
|
||
if (HAVE_xorpsi3)
|
||
xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3;
|
||
#endif
|
||
#ifdef HAVE_xorsi3
|
||
if (HAVE_xorsi3)
|
||
xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3;
|
||
#endif
|
||
#ifdef HAVE_xordi3
|
||
if (HAVE_xordi3)
|
||
xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3;
|
||
#endif
|
||
#ifdef HAVE_xorti3
|
||
if (HAVE_xorti3)
|
||
xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3;
|
||
#endif
|
||
|
||
#ifdef HAVE_ashlqi3
|
||
if (HAVE_ashlqi3)
|
||
ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3;
|
||
#endif
|
||
#ifdef HAVE_ashlhi3
|
||
if (HAVE_ashlhi3)
|
||
ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3;
|
||
#endif
|
||
#ifdef HAVE_ashlpsi3
|
||
if (HAVE_ashlpsi3)
|
||
ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3;
|
||
#endif
|
||
#ifdef HAVE_ashlsi3
|
||
if (HAVE_ashlsi3)
|
||
ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3;
|
||
#endif
|
||
#ifdef HAVE_ashldi3
|
||
if (HAVE_ashldi3)
|
||
ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3;
|
||
#endif
|
||
#ifdef HAVE_ashlti3
|
||
if (HAVE_ashlti3)
|
||
ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3;
|
||
#endif
|
||
ashl_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__ashlsi3");
|
||
ashl_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__ashldi3");
|
||
|
||
#ifdef HAVE_ashrqi3
|
||
if (HAVE_ashrqi3)
|
||
ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3;
|
||
#endif
|
||
#ifdef HAVE_ashrhi3
|
||
if (HAVE_ashrhi3)
|
||
ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3;
|
||
#endif
|
||
#ifdef HAVE_ashrpsi3
|
||
if (HAVE_ashrpsi3)
|
||
ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3;
|
||
#endif
|
||
#ifdef HAVE_ashrsi3
|
||
if (HAVE_ashrsi3)
|
||
ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3;
|
||
#endif
|
||
#ifdef HAVE_ashrdi3
|
||
if (HAVE_ashrdi3)
|
||
ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3;
|
||
#endif
|
||
#ifdef HAVE_ashrti3
|
||
if (HAVE_ashrti3)
|
||
ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3;
|
||
#endif
|
||
ashr_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__ashrsi3");
|
||
ashr_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__ashrdi3");
|
||
|
||
#ifdef HAVE_lshlqi3
|
||
if (HAVE_lshlqi3)
|
||
lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3;
|
||
#endif
|
||
#ifdef HAVE_lshlhi3
|
||
if (HAVE_lshlhi3)
|
||
lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3;
|
||
#endif
|
||
#ifdef HAVE_lshlpsi3
|
||
if (HAVE_lshlpsi3)
|
||
lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3;
|
||
#endif
|
||
#ifdef HAVE_lshlsi3
|
||
if (HAVE_lshlsi3)
|
||
lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3;
|
||
#endif
|
||
#ifdef HAVE_lshldi3
|
||
if (HAVE_lshldi3)
|
||
lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3;
|
||
#endif
|
||
#ifdef HAVE_lshlti3
|
||
if (HAVE_lshlti3)
|
||
lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3;
|
||
#endif
|
||
lshl_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__lshlsi3");
|
||
lshl_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__lshldi3");
|
||
|
||
#ifdef HAVE_lshrqi3
|
||
if (HAVE_lshrqi3)
|
||
lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3;
|
||
#endif
|
||
#ifdef HAVE_lshrhi3
|
||
if (HAVE_lshrhi3)
|
||
lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3;
|
||
#endif
|
||
#ifdef HAVE_lshrpsi3
|
||
if (HAVE_lshrpsi3)
|
||
lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3;
|
||
#endif
|
||
#ifdef HAVE_lshrsi3
|
||
if (HAVE_lshrsi3)
|
||
lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3;
|
||
#endif
|
||
#ifdef HAVE_lshrdi3
|
||
if (HAVE_lshrdi3)
|
||
lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3;
|
||
#endif
|
||
#ifdef HAVE_lshrti3
|
||
if (HAVE_lshrti3)
|
||
lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3;
|
||
#endif
|
||
lshr_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__lshrsi3");
|
||
lshr_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__lshrdi3");
|
||
|
||
#ifdef HAVE_rotlqi3
|
||
if (HAVE_rotlqi3)
|
||
rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3;
|
||
#endif
|
||
#ifdef HAVE_rotlhi3
|
||
if (HAVE_rotlhi3)
|
||
rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3;
|
||
#endif
|
||
#ifdef HAVE_rotlpsi3
|
||
if (HAVE_rotlpsi3)
|
||
rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3;
|
||
#endif
|
||
#ifdef HAVE_rotlsi3
|
||
if (HAVE_rotlsi3)
|
||
rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3;
|
||
#endif
|
||
#ifdef HAVE_rotldi3
|
||
if (HAVE_rotldi3)
|
||
rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3;
|
||
#endif
|
||
#ifdef HAVE_rotlti3
|
||
if (HAVE_rotlti3)
|
||
rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3;
|
||
#endif
|
||
rotl_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__rotlsi3");
|
||
rotl_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__rotldi3");
|
||
|
||
#ifdef HAVE_rotrqi3
|
||
if (HAVE_rotrqi3)
|
||
rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3;
|
||
#endif
|
||
#ifdef HAVE_rotrhi3
|
||
if (HAVE_rotrhi3)
|
||
rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3;
|
||
#endif
|
||
#ifdef HAVE_rotrpsi3
|
||
if (HAVE_rotrpsi3)
|
||
rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3;
|
||
#endif
|
||
#ifdef HAVE_rotrsi3
|
||
if (HAVE_rotrsi3)
|
||
rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3;
|
||
#endif
|
||
#ifdef HAVE_rotrdi3
|
||
if (HAVE_rotrdi3)
|
||
rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3;
|
||
#endif
|
||
#ifdef HAVE_rotrti3
|
||
if (HAVE_rotrti3)
|
||
rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3;
|
||
#endif
|
||
rotr_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__rotrsi3");
|
||
rotr_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__rotrdi3");
|
||
|
||
#ifdef HAVE_sminqi3
|
||
if (HAVE_sminqi3)
|
||
smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3;
|
||
#endif
|
||
#ifdef HAVE_sminhi3
|
||
if (HAVE_sminhi3)
|
||
smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3;
|
||
#endif
|
||
#ifdef HAVE_sminsi3
|
||
if (HAVE_sminsi3)
|
||
smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3;
|
||
#endif
|
||
#ifdef HAVE_smindi3
|
||
if (HAVE_smindi3)
|
||
smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3;
|
||
#endif
|
||
#ifdef HAVE_sminti3
|
||
if (HAVE_sminti3)
|
||
smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3;
|
||
#endif
|
||
#ifdef HAVE_sminsf3
|
||
if (HAVE_sminsf3)
|
||
smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sminsf3;
|
||
#endif
|
||
#ifdef HAVE_smindf3
|
||
if (HAVE_smindf3)
|
||
smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smindf3;
|
||
#endif
|
||
#ifdef HAVE_smintf3
|
||
if (HAVE_smintf3)
|
||
smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smintf3;
|
||
#endif
|
||
|
||
#ifdef HAVE_smaxqi3
|
||
if (HAVE_smaxqi3)
|
||
smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3;
|
||
#endif
|
||
#ifdef HAVE_smaxhi3
|
||
if (HAVE_smaxhi3)
|
||
smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3;
|
||
#endif
|
||
#ifdef HAVE_smaxsi3
|
||
if (HAVE_smaxsi3)
|
||
smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3;
|
||
#endif
|
||
#ifdef HAVE_smaxdi3
|
||
if (HAVE_smaxdi3)
|
||
smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3;
|
||
#endif
|
||
#ifdef HAVE_smaxti3
|
||
if (HAVE_smaxti3)
|
||
smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3;
|
||
#endif
|
||
#ifdef HAVE_smaxsf3
|
||
if (HAVE_smaxsf3)
|
||
smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_smaxsf3;
|
||
#endif
|
||
#ifdef HAVE_smaxdf3
|
||
if (HAVE_smaxdf3)
|
||
smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_smaxdf3;
|
||
#endif
|
||
#ifdef HAVE_smaxtf3
|
||
if (HAVE_smaxtf3)
|
||
smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_smaxtf3;
|
||
#endif
|
||
|
||
#ifdef HAVE_uminqi3
|
||
if (HAVE_uminqi3)
|
||
umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3;
|
||
#endif
|
||
#ifdef HAVE_uminhi3
|
||
if (HAVE_uminhi3)
|
||
umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3;
|
||
#endif
|
||
#ifdef HAVE_uminsi3
|
||
if (HAVE_uminsi3)
|
||
umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3;
|
||
#endif
|
||
#ifdef HAVE_umindi3
|
||
if (HAVE_umindi3)
|
||
umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3;
|
||
#endif
|
||
#ifdef HAVE_uminti3
|
||
if (HAVE_uminti3)
|
||
umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3;
|
||
#endif
|
||
|
||
#ifdef HAVE_umaxqi3
|
||
if (HAVE_umaxqi3)
|
||
umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3;
|
||
#endif
|
||
#ifdef HAVE_umaxhi3
|
||
if (HAVE_umaxhi3)
|
||
umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3;
|
||
#endif
|
||
#ifdef HAVE_umaxsi3
|
||
if (HAVE_umaxsi3)
|
||
umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3;
|
||
#endif
|
||
#ifdef HAVE_umaxdi3
|
||
if (HAVE_umaxdi3)
|
||
umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3;
|
||
#endif
|
||
#ifdef HAVE_umaxti3
|
||
if (HAVE_umaxti3)
|
||
umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3;
|
||
#endif
|
||
|
||
#ifdef HAVE_negqi2
|
||
if (HAVE_negqi2)
|
||
neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2;
|
||
#endif
|
||
#ifdef HAVE_neghi2
|
||
if (HAVE_neghi2)
|
||
neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2;
|
||
#endif
|
||
#ifdef HAVE_negpsi2
|
||
if (HAVE_negpsi2)
|
||
neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2;
|
||
#endif
|
||
#ifdef HAVE_negsi2
|
||
if (HAVE_negsi2)
|
||
neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2;
|
||
#endif
|
||
#ifdef HAVE_negdi2
|
||
if (HAVE_negdi2)
|
||
neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2;
|
||
#endif
|
||
#ifdef HAVE_negti2
|
||
if (HAVE_negti2)
|
||
neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2;
|
||
#endif
|
||
#ifdef HAVE_negsf2
|
||
if (HAVE_negsf2)
|
||
neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2;
|
||
#endif
|
||
#ifdef HAVE_negdf2
|
||
if (HAVE_negdf2)
|
||
neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2;
|
||
#endif
|
||
#ifdef HAVE_negtf2
|
||
if (HAVE_negtf2)
|
||
neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2;
|
||
#endif
|
||
neg_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__negsi2");
|
||
neg_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__negdi2");
|
||
neg_optab->handlers[(int) SFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__negsf2");
|
||
neg_optab->handlers[(int) DFmode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__negdf2");
|
||
|
||
#ifdef HAVE_absqi2
|
||
if (HAVE_absqi2)
|
||
abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2;
|
||
#endif
|
||
#ifdef HAVE_abshi2
|
||
if (HAVE_abshi2)
|
||
abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2;
|
||
#endif
|
||
#ifdef HAVE_abspsi2
|
||
if (HAVE_abspsi2)
|
||
abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2;
|
||
#endif
|
||
#ifdef HAVE_abssi2
|
||
if (HAVE_abssi2)
|
||
abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2;
|
||
#endif
|
||
#ifdef HAVE_absdi2
|
||
if (HAVE_absdi2)
|
||
abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2;
|
||
#endif
|
||
#ifdef HAVE_absti2
|
||
if (HAVE_absti2)
|
||
abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2;
|
||
#endif
|
||
#ifdef HAVE_abssf2
|
||
if (HAVE_abssf2)
|
||
abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2;
|
||
#endif
|
||
#ifdef HAVE_absdf2
|
||
if (HAVE_absdf2)
|
||
abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2;
|
||
#endif
|
||
#ifdef HAVE_abstf2
|
||
if (HAVE_abstf2)
|
||
abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2;
|
||
#endif
|
||
/* No library calls here! If there is no abs instruction,
|
||
expand_expr will generate a conditional negation. */
|
||
|
||
#ifdef HAVE_one_cmplqi2
|
||
if (HAVE_one_cmplqi2)
|
||
one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2;
|
||
#endif
|
||
#ifdef HAVE_one_cmplhi2
|
||
if (HAVE_one_cmplhi2)
|
||
one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2;
|
||
#endif
|
||
#ifdef HAVE_one_cmplpsi2
|
||
if (HAVE_one_cmplpsi2)
|
||
one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2;
|
||
#endif
|
||
#ifdef HAVE_one_cmplsi2
|
||
if (HAVE_one_cmplsi2)
|
||
one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2;
|
||
#endif
|
||
#ifdef HAVE_one_cmpldi2
|
||
if (HAVE_one_cmpldi2)
|
||
one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2;
|
||
#endif
|
||
#ifdef HAVE_one_cmplti2
|
||
if (HAVE_one_cmplti2)
|
||
one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2;
|
||
#endif
|
||
one_cmpl_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__one_cmplsi2");
|
||
|
||
#ifdef HAVE_ffsqi2
|
||
if (HAVE_ffsqi2)
|
||
ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2;
|
||
#endif
|
||
#ifdef HAVE_ffshi2
|
||
if (HAVE_ffshi2)
|
||
ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2;
|
||
#endif
|
||
#ifdef HAVE_ffspsi2
|
||
if (HAVE_ffspsi2)
|
||
ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2;
|
||
#endif
|
||
#ifdef HAVE_ffssi2
|
||
if (HAVE_ffssi2)
|
||
ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2;
|
||
#endif
|
||
#ifdef HAVE_ffsdi2
|
||
if (HAVE_ffsdi2)
|
||
ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2;
|
||
#endif
|
||
#ifdef HAVE_ffsti2
|
||
if (HAVE_ffsti2)
|
||
ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2;
|
||
#endif
|
||
ffs_optab->handlers[(int) SImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "ffs");
|
||
|
||
#ifdef HAVE_movqi
|
||
if (HAVE_movqi)
|
||
mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi;
|
||
#endif
|
||
#ifdef HAVE_movhi
|
||
if (HAVE_movhi)
|
||
mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi;
|
||
#endif
|
||
#ifdef HAVE_movpsi
|
||
if (HAVE_movpsi)
|
||
mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi;
|
||
#endif
|
||
#ifdef HAVE_movsi
|
||
if (HAVE_movsi)
|
||
mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi;
|
||
#endif
|
||
#ifdef HAVE_movdi
|
||
if (HAVE_movdi)
|
||
mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi;
|
||
#endif
|
||
#ifdef HAVE_movti
|
||
if (HAVE_movti)
|
||
mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti;
|
||
#endif
|
||
#ifdef HAVE_movsf
|
||
if (HAVE_movsf)
|
||
mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf;
|
||
#endif
|
||
#ifdef HAVE_movdf
|
||
if (HAVE_movdf)
|
||
mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf;
|
||
#endif
|
||
#ifdef HAVE_movtf
|
||
if (HAVE_movtf)
|
||
mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf;
|
||
#endif
|
||
#ifdef HAVE_movcc
|
||
if (HAVE_movcc)
|
||
mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc;
|
||
#endif
|
||
|
||
#ifdef EXTRA_CC_MODES
|
||
init_mov_optab ();
|
||
#endif
|
||
|
||
#ifdef HAVE_movstrictqi
|
||
if (HAVE_movstrictqi)
|
||
movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi;
|
||
#endif
|
||
#ifdef HAVE_movstricthi
|
||
if (HAVE_movstricthi)
|
||
movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi;
|
||
#endif
|
||
#ifdef HAVE_movstrictpsi
|
||
if (HAVE_movstrictpsi)
|
||
movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi;
|
||
#endif
|
||
#ifdef HAVE_movstrictsi
|
||
if (HAVE_movstrictsi)
|
||
movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi;
|
||
#endif
|
||
#ifdef HAVE_movstrictdi
|
||
if (HAVE_movstrictdi)
|
||
movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi;
|
||
#endif
|
||
#ifdef HAVE_movstrictti
|
||
if (HAVE_movstrictti)
|
||
movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti;
|
||
#endif
|
||
|
||
#ifdef HAVE_cmpqi
|
||
if (HAVE_cmpqi)
|
||
cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi;
|
||
#endif
|
||
#ifdef HAVE_cmphi
|
||
if (HAVE_cmphi)
|
||
cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi;
|
||
#endif
|
||
#ifdef HAVE_cmppsi
|
||
if (HAVE_cmppsi)
|
||
cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi;
|
||
#endif
|
||
#ifdef HAVE_cmpsi
|
||
if (HAVE_cmpsi)
|
||
cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi;
|
||
#endif
|
||
#ifdef HAVE_cmpdi
|
||
if (HAVE_cmpdi)
|
||
cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi;
|
||
#endif
|
||
#ifdef HAVE_cmpti
|
||
if (HAVE_cmpti)
|
||
cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti;
|
||
#endif
|
||
#ifdef HAVE_cmpsf
|
||
if (HAVE_cmpsf)
|
||
cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf;
|
||
#endif
|
||
#ifdef HAVE_cmpdf
|
||
if (HAVE_cmpdf)
|
||
cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf;
|
||
#endif
|
||
#ifdef HAVE_cmptf
|
||
if (HAVE_cmptf)
|
||
cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf;
|
||
#endif
|
||
#ifdef HAVE_tstqi
|
||
if (HAVE_tstqi)
|
||
tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi;
|
||
#endif
|
||
#ifdef HAVE_tsthi
|
||
if (HAVE_tsthi)
|
||
tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi;
|
||
#endif
|
||
#ifdef HAVE_tstpsi
|
||
if (HAVE_tstpsi)
|
||
tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi;
|
||
#endif
|
||
#ifdef HAVE_tstsi
|
||
if (HAVE_tstsi)
|
||
tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi;
|
||
#endif
|
||
#ifdef HAVE_tstdi
|
||
if (HAVE_tstdi)
|
||
tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi;
|
||
#endif
|
||
#ifdef HAVE_tstti
|
||
if (HAVE_tstti)
|
||
tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti;
|
||
#endif
|
||
#ifdef HAVE_tstsf
|
||
if (HAVE_tstsf)
|
||
tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf;
|
||
#endif
|
||
#ifdef HAVE_tstdf
|
||
if (HAVE_tstdf)
|
||
tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf;
|
||
#endif
|
||
#ifdef HAVE_tsttf
|
||
if (HAVE_tsttf)
|
||
tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf;
|
||
#endif
|
||
/* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
|
||
cmp_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__cmpdi2");
|
||
ucmp_optab->handlers[(int) DImode].libfunc
|
||
= gen_rtx (SYMBOL_REF, Pmode, "__ucmpdi2");
|
||
|
||
#ifdef HAVE_beq
|
||
if (HAVE_beq)
|
||
bcc_gen_fctn[(int) EQ] = gen_beq;
|
||
#endif
|
||
#ifdef HAVE_bne
|
||
if (HAVE_bne)
|
||
bcc_gen_fctn[(int) NE] = gen_bne;
|
||
#endif
|
||
#ifdef HAVE_bgt
|
||
if (HAVE_bgt)
|
||
bcc_gen_fctn[(int) GT] = gen_bgt;
|
||
#endif
|
||
#ifdef HAVE_bge
|
||
if (HAVE_bge)
|
||
bcc_gen_fctn[(int) GE] = gen_bge;
|
||
#endif
|
||
#ifdef HAVE_bgtu
|
||
if (HAVE_bgtu)
|
||
bcc_gen_fctn[(int) GTU] = gen_bgtu;
|
||
#endif
|
||
#ifdef HAVE_bgeu
|
||
if (HAVE_bgeu)
|
||
bcc_gen_fctn[(int) GEU] = gen_bgeu;
|
||
#endif
|
||
#ifdef HAVE_blt
|
||
if (HAVE_blt)
|
||
bcc_gen_fctn[(int) LT] = gen_blt;
|
||
#endif
|
||
#ifdef HAVE_ble
|
||
if (HAVE_ble)
|
||
bcc_gen_fctn[(int) LE] = gen_ble;
|
||
#endif
|
||
#ifdef HAVE_bltu
|
||
if (HAVE_bltu)
|
||
bcc_gen_fctn[(int) LTU] = gen_bltu;
|
||
#endif
|
||
#ifdef HAVE_bleu
|
||
if (HAVE_bleu)
|
||
bcc_gen_fctn[(int) LEU] = gen_bleu;
|
||
#endif
|
||
|
||
for (i = 0; i < NUM_RTX_CODE; i++)
|
||
setcc_gen_code[i] = CODE_FOR_nothing;
|
||
|
||
#ifdef HAVE_seq
|
||
if (HAVE_seq)
|
||
setcc_gen_code[(int) EQ] = CODE_FOR_seq;
|
||
#endif
|
||
#ifdef HAVE_sne
|
||
if (HAVE_sne)
|
||
setcc_gen_code[(int) NE] = CODE_FOR_sne;
|
||
#endif
|
||
#ifdef HAVE_sgt
|
||
if (HAVE_sgt)
|
||
setcc_gen_code[(int) GT] = CODE_FOR_sgt;
|
||
#endif
|
||
#ifdef HAVE_sge
|
||
if (HAVE_sge)
|
||
setcc_gen_code[(int) GE] = CODE_FOR_sge;
|
||
#endif
|
||
#ifdef HAVE_sgtu
|
||
if (HAVE_sgtu)
|
||
setcc_gen_code[(int) GTU] = CODE_FOR_sgtu;
|
||
#endif
|
||
#ifdef HAVE_sgeu
|
||
if (HAVE_sgeu)
|
||
setcc_gen_code[(int) GEU] = CODE_FOR_sgeu;
|
||
#endif
|
||
#ifdef HAVE_slt
|
||
if (HAVE_slt)
|
||
setcc_gen_code[(int) LT] = CODE_FOR_slt;
|
||
#endif
|
||
#ifdef HAVE_sle
|
||
if (HAVE_sle)
|
||
setcc_gen_code[(int) LE] = CODE_FOR_sle;
|
||
#endif
|
||
#ifdef HAVE_sltu
|
||
if (HAVE_sltu)
|
||
setcc_gen_code[(int) LTU] = CODE_FOR_sltu;
|
||
#endif
|
||
#ifdef HAVE_sleu
|
||
if (HAVE_sleu)
|
||
setcc_gen_code[(int) LEU] = CODE_FOR_sleu;
|
||
#endif
|
||
|
||
extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
|
||
truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
|
||
memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
|
||
bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
|
||
memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
|
||
bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcmp");
|
||
memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
|
||
bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
|
||
eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
|
||
nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
|
||
gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
|
||
gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
|
||
ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
|
||
lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
|
||
eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
|
||
nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
|
||
gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
|
||
gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
|
||
ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
|
||
ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
|
||
}
|