196ddf8aff
From-SVN: r4026
6673 lines
222 KiB
C
6673 lines
222 KiB
C
/* Reload pseudo regs into hard regs for insns that require hard regs.
|
||
Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include <stdio.h>
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "obstack.h"
|
||
#include "insn-config.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "reload.h"
|
||
#include "recog.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
|
||
/* This file contains the reload pass of the compiler, which is
|
||
run after register allocation has been done. It checks that
|
||
each insn is valid (operands required to be in registers really
|
||
are in registers of the proper class) and fixes up invalid ones
|
||
by copying values temporarily into registers for the insns
|
||
that need them.
|
||
|
||
The results of register allocation are described by the vector
|
||
reg_renumber; the insns still contain pseudo regs, but reg_renumber
|
||
can be used to find which hard reg, if any, a pseudo reg is in.
|
||
|
||
The technique we always use is to free up a few hard regs that are
|
||
called ``reload regs'', and for each place where a pseudo reg
|
||
must be in a hard reg, copy it temporarily into one of the reload regs.
|
||
|
||
All the pseudos that were formerly allocated to the hard regs that
|
||
are now in use as reload regs must be ``spilled''. This means
|
||
that they go to other hard regs, or to stack slots if no other
|
||
available hard regs can be found. Spilling can invalidate more
|
||
insns, requiring additional need for reloads, so we must keep checking
|
||
until the process stabilizes.
|
||
|
||
For machines with different classes of registers, we must keep track
|
||
of the register class needed for each reload, and make sure that
|
||
we allocate enough reload registers of each class.
|
||
|
||
The file reload.c contains the code that checks one insn for
|
||
validity and reports the reloads that it needs. This file
|
||
is in charge of scanning the entire rtl code, accumulating the
|
||
reload needs, spilling, assigning reload registers to use for
|
||
fixing up each insn, and generating the new insns to copy values
|
||
into the reload registers. */
|
||
|
||
|
||
#ifndef REGISTER_MOVE_COST
|
||
#define REGISTER_MOVE_COST(x, y) 2
|
||
#endif
|
||
|
||
#ifndef MEMORY_MOVE_COST
|
||
#define MEMORY_MOVE_COST(x) 4
|
||
#endif
|
||
|
||
/* During reload_as_needed, element N contains a REG rtx for the hard reg
|
||
into which reg N has been reloaded (perhaps for a previous insn). */
|
||
static rtx *reg_last_reload_reg;
|
||
|
||
/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
|
||
for an output reload that stores into reg N. */
|
||
static char *reg_has_output_reload;
|
||
|
||
/* Indicates which hard regs are reload-registers for an output reload
|
||
in the current insn. */
|
||
static HARD_REG_SET reg_is_output_reload;
|
||
|
||
/* Element N is the constant value to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a constant.
|
||
find_reloads looks at this in order to replace pseudo reg N
|
||
with the constant it stands for. */
|
||
rtx *reg_equiv_constant;
|
||
|
||
/* Element N is a memory location to which pseudo reg N is equivalent,
|
||
prior to any register elimination (such as frame pointer to stack
|
||
pointer). Depending on whether or not it is a valid address, this value
|
||
is transferred to either reg_equiv_address or reg_equiv_mem. */
|
||
rtx *reg_equiv_memory_loc;
|
||
|
||
/* Element N is the address of stack slot to which pseudo reg N is equivalent.
|
||
This is used when the address is not valid as a memory address
|
||
(because its displacement is too big for the machine.) */
|
||
rtx *reg_equiv_address;
|
||
|
||
/* Element N is the memory slot to which pseudo reg N is equivalent,
|
||
or zero if pseudo reg N is not equivalent to a memory slot. */
|
||
rtx *reg_equiv_mem;
|
||
|
||
/* Widest width in which each pseudo reg is referred to (via subreg). */
|
||
static int *reg_max_ref_width;
|
||
|
||
/* Element N is the insn that initialized reg N from its equivalent
|
||
constant or memory slot. */
|
||
static rtx *reg_equiv_init;
|
||
|
||
/* During reload_as_needed, element N contains the last pseudo regno
|
||
reloaded into the Nth reload register. This vector is in parallel
|
||
with spill_regs. If that pseudo reg occupied more than one register,
|
||
reg_reloaded_contents points to that pseudo for each spill register in
|
||
use; all of these must remain set for an inheritance to occur. */
|
||
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* During reload_as_needed, element N contains the insn for which
|
||
the Nth reload register was last used. This vector is in parallel
|
||
with spill_regs, and its contents are significant only when
|
||
reg_reloaded_contents is significant. */
|
||
static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Number of spill-regs so far; number of valid elements of spill_regs. */
|
||
static int n_spills;
|
||
|
||
/* In parallel with spill_regs, contains REG rtx's for those regs.
|
||
Holds the last rtx used for any given reg, or 0 if it has never
|
||
been used for spilling yet. This rtx is reused, provided it has
|
||
the proper mode. */
|
||
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* In parallel with spill_regs, contains nonzero for a spill reg
|
||
that was stored after the last time it was used.
|
||
The precise value is the insn generated to do the store. */
|
||
static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This table is the inverse mapping of spill_regs:
|
||
indexed by hard reg number,
|
||
it contains the position of that reg in spill_regs,
|
||
or -1 for something that is not in spill_regs. */
|
||
static short spill_reg_order[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* This reg set indicates registers that may not be used for retrying global
|
||
allocation. The registers that may not be used include all spill registers
|
||
and the frame pointer (if we are using one). */
|
||
HARD_REG_SET forbidden_regs;
|
||
|
||
/* This reg set indicates registers that are not good for spill registers.
|
||
They will not be used to complete groups of spill registers. This includes
|
||
all fixed registers, registers that may be eliminated, and, if
|
||
SMALL_REGISTER_CLASSES is not defined, registers explicitly used in the rtl.
|
||
|
||
(spill_reg_order prevents these registers from being used to start a
|
||
group.) */
|
||
static HARD_REG_SET bad_spill_regs;
|
||
|
||
/* Describes order of use of registers for reloading
|
||
of spilled pseudo-registers. `spills' is the number of
|
||
elements that are actually valid; new ones are added at the end. */
|
||
static short spill_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Describes order of preference for putting regs into spill_regs.
|
||
Contains the numbers of all the hard regs, in order most preferred first.
|
||
This order is different for each function.
|
||
It is set up by order_regs_for_reload.
|
||
Empty elements at the end contain -1. */
|
||
static short potential_reload_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* 1 for a hard register that appears explicitly in the rtl
|
||
(for example, function value registers, special registers
|
||
used by insns, structure value pointer registers). */
|
||
static char regs_explicitly_used[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Indicates if a register was counted against the need for
|
||
groups. 0 means it can count against max_nongroup instead. */
|
||
static HARD_REG_SET counted_for_groups;
|
||
|
||
/* Indicates if a register was counted against the need for
|
||
non-groups. 0 means it can become part of a new group.
|
||
During choose_reload_regs, 1 here means don't use this reg
|
||
as part of a group, even if it seems to be otherwise ok. */
|
||
static HARD_REG_SET counted_for_nongroups;
|
||
|
||
/* Nonzero if indirect addressing is supported on the machine; this means
|
||
that spilling (REG n) does not require reloading it into a register in
|
||
order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
|
||
value indicates the level of indirect addressing supported, e.g., two
|
||
means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
|
||
a hard register. */
|
||
|
||
static char spill_indirect_levels;
|
||
|
||
/* Nonzero if indirect addressing is supported when the innermost MEM is
|
||
of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
|
||
which these are valid is the same as spill_indirect_levels, above. */
|
||
|
||
char indirect_symref_ok;
|
||
|
||
/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
|
||
|
||
char double_reg_address_ok;
|
||
|
||
/* Record the stack slot for each spilled hard register. */
|
||
|
||
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Width allocated so far for that stack slot. */
|
||
|
||
static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Indexed by register class and basic block number, nonzero if there is
|
||
any need for a spill register of that class in that basic block.
|
||
The pointer is 0 if we did stupid allocation and don't know
|
||
the structure of basic blocks. */
|
||
|
||
char *basic_block_needs[N_REG_CLASSES];
|
||
|
||
/* First uid used by insns created by reload in this function.
|
||
Used in find_equiv_reg. */
|
||
int reload_first_uid;
|
||
|
||
/* Flag set by local-alloc or global-alloc if anything is live in
|
||
a call-clobbered reg across calls. */
|
||
|
||
int caller_save_needed;
|
||
|
||
/* Set to 1 while reload_as_needed is operating.
|
||
Required by some machines to handle any generated moves differently. */
|
||
|
||
int reload_in_progress = 0;
|
||
|
||
/* These arrays record the insn_code of insns that may be needed to
|
||
perform input and output reloads of special objects. They provide a
|
||
place to pass a scratch register. */
|
||
|
||
enum insn_code reload_in_optab[NUM_MACHINE_MODES];
|
||
enum insn_code reload_out_optab[NUM_MACHINE_MODES];
|
||
|
||
/* This obstack is used for allocation of rtl during register elimination.
|
||
The allocated storage can be freed once find_reloads has processed the
|
||
insn. */
|
||
|
||
struct obstack reload_obstack;
|
||
char *reload_firstobj;
|
||
|
||
#define obstack_chunk_alloc xmalloc
|
||
#define obstack_chunk_free free
|
||
|
||
/* List of labels that must never be deleted. */
|
||
extern rtx forced_labels;
|
||
|
||
/* This structure is used to record information about register eliminations.
|
||
Each array entry describes one possible way of eliminating a register
|
||
in favor of another. If there is more than one way of eliminating a
|
||
particular register, the most preferred should be specified first. */
|
||
|
||
static struct elim_table
|
||
{
|
||
int from; /* Register number to be eliminated. */
|
||
int to; /* Register number used as replacement. */
|
||
int initial_offset; /* Initial difference between values. */
|
||
int can_eliminate; /* Non-zero if this elimination can be done. */
|
||
int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
|
||
insns made by reload. */
|
||
int offset; /* Current offset between the two regs. */
|
||
int max_offset; /* Maximum offset between the two regs. */
|
||
int previous_offset; /* Offset at end of previous insn. */
|
||
int ref_outside_mem; /* "to" has been referenced outside a MEM. */
|
||
rtx from_rtx; /* REG rtx for the register to be eliminated.
|
||
We cannot simply compare the number since
|
||
we might then spuriously replace a hard
|
||
register corresponding to a pseudo
|
||
assigned to the reg to be eliminated. */
|
||
rtx to_rtx; /* REG rtx for the replacement. */
|
||
} reg_eliminate[] =
|
||
|
||
/* If a set of eliminable registers was specified, define the table from it.
|
||
Otherwise, default to the normal case of the frame pointer being
|
||
replaced by the stack pointer. */
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
ELIMINABLE_REGS;
|
||
#else
|
||
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
|
||
#endif
|
||
|
||
#define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0])
|
||
|
||
/* Record the number of pending eliminations that have an offset not equal
|
||
to their initial offset. If non-zero, we use a new copy of each
|
||
replacement result in any insns encountered. */
|
||
static int num_not_at_initial_offset;
|
||
|
||
/* Count the number of registers that we may be able to eliminate. */
|
||
static int num_eliminable;
|
||
|
||
/* For each label, we record the offset of each elimination. If we reach
|
||
a label by more than one path and an offset differs, we cannot do the
|
||
elimination. This information is indexed by the number of the label.
|
||
The first table is an array of flags that records whether we have yet
|
||
encountered a label and the second table is an array of arrays, one
|
||
entry in the latter array for each elimination. */
|
||
|
||
static char *offsets_known_at;
|
||
static int (*offsets_at)[NUM_ELIMINABLE_REGS];
|
||
|
||
/* Number of labels in the current function. */
|
||
|
||
static int num_labels;
|
||
|
||
struct hard_reg_n_uses { int regno; int uses; };
|
||
|
||
static int possible_group_p PROTO((int, int *));
|
||
static void count_possible_groups PROTO((int *, enum machine_mode *,
|
||
int *));
|
||
static int modes_equiv_for_class_p PROTO((enum machine_mode,
|
||
enum machine_mode,
|
||
enum reg_class));
|
||
static void spill_failure PROTO((rtx));
|
||
static int new_spill_reg PROTO((int, int, int *, int *, int,
|
||
FILE *));
|
||
static void delete_dead_insn PROTO((rtx));
|
||
static void alter_reg PROTO((int, int));
|
||
static void set_label_offsets PROTO((rtx, rtx, int));
|
||
static int eliminate_regs_in_insn PROTO((rtx, int));
|
||
static void mark_not_eliminable PROTO((rtx, rtx));
|
||
static int spill_hard_reg PROTO((int, int, FILE *, int));
|
||
static void scan_paradoxical_subregs PROTO((rtx));
|
||
static int hard_reg_use_compare PROTO((struct hard_reg_n_uses *,
|
||
struct hard_reg_n_uses *));
|
||
static void order_regs_for_reload PROTO((void));
|
||
static void reload_as_needed PROTO((rtx, int));
|
||
static void forget_old_reloads_1 PROTO((rtx));
|
||
static int reload_reg_class_lower PROTO((short *, short *));
|
||
static void mark_reload_reg_in_use PROTO((int, int, enum reload_type,
|
||
enum machine_mode));
|
||
static void clear_reload_reg_in_use PROTO((int, int, enum reload_type,
|
||
enum machine_mode));
|
||
static int reload_reg_free_p PROTO((int, int, enum reload_type));
|
||
static int reload_reg_free_before_p PROTO((int, int, enum reload_type));
|
||
static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type));
|
||
static int allocate_reload_reg PROTO((int, rtx, int, int));
|
||
static void choose_reload_regs PROTO((rtx, rtx));
|
||
static void merge_assigned_reloads PROTO((rtx));
|
||
static void emit_reload_insns PROTO((rtx));
|
||
static void delete_output_reload PROTO((rtx, int, rtx));
|
||
static void inc_for_reload PROTO((rtx, rtx, int));
|
||
static int constraint_accepts_reg_p PROTO((char *, rtx));
|
||
static int count_occurrences PROTO((rtx, rtx));
|
||
|
||
/* Initialize the reload pass once per compilation. */
|
||
|
||
void
|
||
init_reload ()
|
||
{
|
||
register int i;
|
||
|
||
/* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
|
||
Set spill_indirect_levels to the number of levels such addressing is
|
||
permitted, zero if it is not permitted at all. */
|
||
|
||
register rtx tem
|
||
= gen_rtx (MEM, Pmode,
|
||
gen_rtx (PLUS, Pmode,
|
||
gen_rtx (REG, Pmode, LAST_VIRTUAL_REGISTER + 1),
|
||
GEN_INT (4)));
|
||
spill_indirect_levels = 0;
|
||
|
||
while (memory_address_p (QImode, tem))
|
||
{
|
||
spill_indirect_levels++;
|
||
tem = gen_rtx (MEM, Pmode, tem);
|
||
}
|
||
|
||
/* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
|
||
|
||
tem = gen_rtx (MEM, Pmode, gen_rtx (SYMBOL_REF, Pmode, "foo"));
|
||
indirect_symref_ok = memory_address_p (QImode, tem);
|
||
|
||
/* See if reg+reg is a valid (and offsettable) address. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
tem = gen_rtx (PLUS, Pmode,
|
||
gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM),
|
||
gen_rtx (REG, Pmode, i));
|
||
/* This way, we make sure that reg+reg is an offsettable address. */
|
||
tem = plus_constant (tem, 4);
|
||
|
||
if (memory_address_p (QImode, tem))
|
||
{
|
||
double_reg_address_ok = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Initialize obstack for our rtl allocation. */
|
||
gcc_obstack_init (&reload_obstack);
|
||
reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
|
||
}
|
||
|
||
/* Main entry point for the reload pass.
|
||
|
||
FIRST is the first insn of the function being compiled.
|
||
|
||
GLOBAL nonzero means we were called from global_alloc
|
||
and should attempt to reallocate any pseudoregs that we
|
||
displace from hard regs we will use for reloads.
|
||
If GLOBAL is zero, we do not have enough information to do that,
|
||
so any pseudo reg that is spilled must go to the stack.
|
||
|
||
DUMPFILE is the global-reg debugging dump file stream, or 0.
|
||
If it is nonzero, messages are written to it to describe
|
||
which registers are seized as reload regs, which pseudo regs
|
||
are spilled from them, and where the pseudo regs are reallocated to.
|
||
|
||
Return value is nonzero if reload failed
|
||
and we must not do any more for this function. */
|
||
|
||
int
|
||
reload (first, global, dumpfile)
|
||
rtx first;
|
||
int global;
|
||
FILE *dumpfile;
|
||
{
|
||
register int class;
|
||
register int i, j;
|
||
register rtx insn;
|
||
register struct elim_table *ep;
|
||
|
||
int something_changed;
|
||
int something_needs_reloads;
|
||
int something_needs_elimination;
|
||
int new_basic_block_needs;
|
||
enum reg_class caller_save_spill_class = NO_REGS;
|
||
int caller_save_group_size = 1;
|
||
|
||
/* Nonzero means we couldn't get enough spill regs. */
|
||
int failure = 0;
|
||
|
||
/* The basic block number currently being processed for INSN. */
|
||
int this_block;
|
||
|
||
/* Make sure even insns with volatile mem refs are recognizable. */
|
||
init_recog ();
|
||
|
||
/* Enable find_equiv_reg to distinguish insns made by reload. */
|
||
reload_first_uid = get_max_uid ();
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
basic_block_needs[i] = 0;
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* Initialize the secondary memory table. */
|
||
clear_secondary_mem ();
|
||
#endif
|
||
|
||
/* Remember which hard regs appear explicitly
|
||
before we merge into `regs_ever_live' the ones in which
|
||
pseudo regs have been allocated. */
|
||
bcopy (regs_ever_live, regs_explicitly_used, sizeof regs_ever_live);
|
||
|
||
/* We don't have a stack slot for any spill reg yet. */
|
||
bzero (spill_stack_slot, sizeof spill_stack_slot);
|
||
bzero (spill_stack_slot_width, sizeof spill_stack_slot_width);
|
||
|
||
/* Initialize the save area information for caller-save, in case some
|
||
are needed. */
|
||
init_save_areas ();
|
||
|
||
/* Compute which hard registers are now in use
|
||
as homes for pseudo registers.
|
||
This is done here rather than (eg) in global_alloc
|
||
because this point is reached even if not optimizing. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
mark_home_live (i);
|
||
|
||
/* Make sure that the last insn in the chain
|
||
is not something that needs reloading. */
|
||
emit_note (NULL_PTR, NOTE_INSN_DELETED);
|
||
|
||
/* Find all the pseudo registers that didn't get hard regs
|
||
but do have known equivalent constants or memory slots.
|
||
These include parameters (known equivalent to parameter slots)
|
||
and cse'd or loop-moved constant memory addresses.
|
||
|
||
Record constant equivalents in reg_equiv_constant
|
||
so they will be substituted by find_reloads.
|
||
Record memory equivalents in reg_mem_equiv so they can
|
||
be substituted eventually by altering the REG-rtx's. */
|
||
|
||
reg_equiv_constant = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_equiv_constant, max_regno * sizeof (rtx));
|
||
reg_equiv_memory_loc = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_equiv_memory_loc, max_regno * sizeof (rtx));
|
||
reg_equiv_mem = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_equiv_mem, max_regno * sizeof (rtx));
|
||
reg_equiv_init = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_equiv_init, max_regno * sizeof (rtx));
|
||
reg_equiv_address = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_equiv_address, max_regno * sizeof (rtx));
|
||
reg_max_ref_width = (int *) alloca (max_regno * sizeof (int));
|
||
bzero (reg_max_ref_width, max_regno * sizeof (int));
|
||
|
||
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
|
||
Also find all paradoxical subregs
|
||
and find largest such for each pseudo. */
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
rtx set = single_set (insn);
|
||
|
||
if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
||
if (note
|
||
#ifdef LEGITIMATE_PIC_OPERAND_P
|
||
&& (! CONSTANT_P (XEXP (note, 0)) || ! flag_pic
|
||
|| LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
|
||
#endif
|
||
)
|
||
{
|
||
rtx x = XEXP (note, 0);
|
||
i = REGNO (SET_DEST (set));
|
||
if (i > LAST_VIRTUAL_REGISTER)
|
||
{
|
||
if (GET_CODE (x) == MEM)
|
||
reg_equiv_memory_loc[i] = x;
|
||
else if (CONSTANT_P (x))
|
||
{
|
||
if (LEGITIMATE_CONSTANT_P (x))
|
||
reg_equiv_constant[i] = x;
|
||
else
|
||
reg_equiv_memory_loc[i]
|
||
= force_const_mem (GET_MODE (SET_DEST (set)), x);
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* If this register is being made equivalent to a MEM
|
||
and the MEM is not SET_SRC, the equivalencing insn
|
||
is one with the MEM as a SET_DEST and it occurs later.
|
||
So don't mark this insn now. */
|
||
if (GET_CODE (x) != MEM
|
||
|| rtx_equal_p (SET_SRC (set), x))
|
||
reg_equiv_init[i] = insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If this insn is setting a MEM from a register equivalent to it,
|
||
this is the equivalencing insn. */
|
||
else if (set && GET_CODE (SET_DEST (set)) == MEM
|
||
&& GET_CODE (SET_SRC (set)) == REG
|
||
&& reg_equiv_memory_loc[REGNO (SET_SRC (set))]
|
||
&& rtx_equal_p (SET_DEST (set),
|
||
reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
|
||
reg_equiv_init[REGNO (SET_SRC (set))] = insn;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
scan_paradoxical_subregs (PATTERN (insn));
|
||
}
|
||
|
||
/* Does this function require a frame pointer? */
|
||
|
||
frame_pointer_needed = (! flag_omit_frame_pointer
|
||
#ifdef EXIT_IGNORE_STACK
|
||
/* ?? If EXIT_IGNORE_STACK is set, we will not save
|
||
and restore sp for alloca. So we can't eliminate
|
||
the frame pointer in that case. At some point,
|
||
we should improve this by emitting the
|
||
sp-adjusting insns for this case. */
|
||
|| (current_function_calls_alloca
|
||
&& EXIT_IGNORE_STACK)
|
||
#endif
|
||
|| FRAME_POINTER_REQUIRED);
|
||
|
||
num_eliminable = 0;
|
||
|
||
/* Initialize the table of registers to eliminate. The way we do this
|
||
depends on how the eliminable registers were defined. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
ep->can_eliminate = ep->can_eliminate_previous
|
||
= (CAN_ELIMINATE (ep->from, ep->to)
|
||
&& (ep->from != FRAME_POINTER_REGNUM || ! frame_pointer_needed));
|
||
}
|
||
#else
|
||
reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
|
||
= ! frame_pointer_needed;
|
||
#endif
|
||
|
||
/* Count the number of eliminable registers and build the FROM and TO
|
||
REG rtx's. Note that code in gen_rtx will cause, e.g.,
|
||
gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
|
||
We depend on this. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
num_eliminable += ep->can_eliminate;
|
||
ep->from_rtx = gen_rtx (REG, Pmode, ep->from);
|
||
ep->to_rtx = gen_rtx (REG, Pmode, ep->to);
|
||
}
|
||
|
||
num_labels = max_label_num () - get_first_label_num ();
|
||
|
||
/* Allocate the tables used to store offset information at labels. */
|
||
offsets_known_at = (char *) alloca (num_labels);
|
||
offsets_at
|
||
= (int (*)[NUM_ELIMINABLE_REGS])
|
||
alloca (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
|
||
|
||
offsets_known_at -= get_first_label_num ();
|
||
offsets_at -= get_first_label_num ();
|
||
|
||
/* Alter each pseudo-reg rtx to contain its hard reg number.
|
||
Assign stack slots to the pseudos that lack hard regs or equivalents.
|
||
Do not touch virtual registers. */
|
||
|
||
for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
|
||
alter_reg (i, -1);
|
||
|
||
/* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done here
|
||
because the stack size may be a part of the offset computation for
|
||
register elimination. */
|
||
assign_stack_local (BLKmode, 0, 0);
|
||
|
||
/* If we have some registers we think can be eliminated, scan all insns to
|
||
see if there is an insn that sets one of these registers to something
|
||
other than itself plus a constant. If so, the register cannot be
|
||
eliminated. Doing this scan here eliminates an extra pass through the
|
||
main reload loop in the most common case where register elimination
|
||
cannot be done. */
|
||
for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
note_stores (PATTERN (insn), mark_not_eliminable);
|
||
|
||
#ifndef REGISTER_CONSTRAINTS
|
||
/* If all the pseudo regs have hard regs,
|
||
except for those that are never referenced,
|
||
we know that no reloads are needed. */
|
||
/* But that is not true if there are register constraints, since
|
||
in that case some pseudos might be in the wrong kind of hard reg. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] == -1 && reg_n_refs[i] != 0)
|
||
break;
|
||
|
||
if (i == max_regno && num_eliminable == 0 && ! caller_save_needed)
|
||
return;
|
||
#endif
|
||
|
||
/* Compute the order of preference for hard registers to spill.
|
||
Store them by decreasing preference in potential_reload_regs. */
|
||
|
||
order_regs_for_reload ();
|
||
|
||
/* So far, no hard regs have been spilled. */
|
||
n_spills = 0;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
spill_reg_order[i] = -1;
|
||
|
||
/* On most machines, we can't use any register explicitly used in the
|
||
rtl as a spill register. But on some, we have to. Those will have
|
||
taken care to keep the life of hard regs as short as possible. */
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
CLEAR_HARD_REG_SET (forbidden_regs);
|
||
#else
|
||
COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
|
||
#endif
|
||
|
||
/* Spill any hard regs that we know we can't eliminate. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (! ep->can_eliminate)
|
||
{
|
||
spill_hard_reg (ep->from, global, dumpfile, 1);
|
||
regs_ever_live[ep->from] = 1;
|
||
}
|
||
|
||
if (global)
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
basic_block_needs[i] = (char *)alloca (n_basic_blocks);
|
||
bzero (basic_block_needs[i], n_basic_blocks);
|
||
}
|
||
|
||
/* From now on, we need to emit any moves without making new pseudos. */
|
||
reload_in_progress = 1;
|
||
|
||
/* This loop scans the entire function each go-round
|
||
and repeats until one repetition spills no additional hard regs. */
|
||
|
||
/* This flag is set when a pseudo reg is spilled,
|
||
to require another pass. Note that getting an additional reload
|
||
reg does not necessarily imply any pseudo reg was spilled;
|
||
sometimes we find a reload reg that no pseudo reg was allocated in. */
|
||
something_changed = 1;
|
||
/* This flag is set if there are any insns that require reloading. */
|
||
something_needs_reloads = 0;
|
||
/* This flag is set if there are any insns that require register
|
||
eliminations. */
|
||
something_needs_elimination = 0;
|
||
while (something_changed)
|
||
{
|
||
rtx after_call = 0;
|
||
|
||
/* For each class, number of reload regs needed in that class.
|
||
This is the maximum over all insns of the needs in that class
|
||
of the individual insn. */
|
||
int max_needs[N_REG_CLASSES];
|
||
/* For each class, size of group of consecutive regs
|
||
that is needed for the reloads of this class. */
|
||
int group_size[N_REG_CLASSES];
|
||
/* For each class, max number of consecutive groups needed.
|
||
(Each group contains group_size[CLASS] consecutive registers.) */
|
||
int max_groups[N_REG_CLASSES];
|
||
/* For each class, max number needed of regs that don't belong
|
||
to any of the groups. */
|
||
int max_nongroups[N_REG_CLASSES];
|
||
/* For each class, the machine mode which requires consecutive
|
||
groups of regs of that class.
|
||
If two different modes ever require groups of one class,
|
||
they must be the same size and equally restrictive for that class,
|
||
otherwise we can't handle the complexity. */
|
||
enum machine_mode group_mode[N_REG_CLASSES];
|
||
/* Record the insn where each maximum need is first found. */
|
||
rtx max_needs_insn[N_REG_CLASSES];
|
||
rtx max_groups_insn[N_REG_CLASSES];
|
||
rtx max_nongroups_insn[N_REG_CLASSES];
|
||
rtx x;
|
||
int starting_frame_size = get_frame_size ();
|
||
static char *reg_class_names[] = REG_CLASS_NAMES;
|
||
|
||
something_changed = 0;
|
||
bzero (max_needs, sizeof max_needs);
|
||
bzero (max_groups, sizeof max_groups);
|
||
bzero (max_nongroups, sizeof max_nongroups);
|
||
bzero (max_needs_insn, sizeof max_needs_insn);
|
||
bzero (max_groups_insn, sizeof max_groups_insn);
|
||
bzero (max_nongroups_insn, sizeof max_nongroups_insn);
|
||
bzero (group_size, sizeof group_size);
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
group_mode[i] = VOIDmode;
|
||
|
||
/* Keep track of which basic blocks are needing the reloads. */
|
||
this_block = 0;
|
||
|
||
/* Remember whether any element of basic_block_needs
|
||
changes from 0 to 1 in this pass. */
|
||
new_basic_block_needs = 0;
|
||
|
||
/* Reset all offsets on eliminable registers to their initial values. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
|
||
ep->previous_offset = ep->offset
|
||
= ep->max_offset = ep->initial_offset;
|
||
}
|
||
#else
|
||
#ifdef INITIAL_FRAME_POINTER_OFFSET
|
||
INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
|
||
#else
|
||
if (!FRAME_POINTER_REQUIRED)
|
||
abort ();
|
||
reg_eliminate[0].initial_offset = 0;
|
||
#endif
|
||
reg_eliminate[0].previous_offset = reg_eliminate[0].max_offset
|
||
= reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
|
||
#endif
|
||
|
||
num_not_at_initial_offset = 0;
|
||
|
||
bzero (&offsets_known_at[get_first_label_num ()], num_labels);
|
||
|
||
/* Set a known offset for each forced label to be at the initial offset
|
||
of each elimination. We do this because we assume that all
|
||
computed jumps occur from a location where each elimination is
|
||
at its initial offset. */
|
||
|
||
for (x = forced_labels; x; x = XEXP (x, 1))
|
||
if (XEXP (x, 0))
|
||
set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
|
||
|
||
/* For each pseudo register that has an equivalent location defined,
|
||
try to eliminate any eliminable registers (such as the frame pointer)
|
||
assuming initial offsets for the replacement register, which
|
||
is the normal case.
|
||
|
||
If the resulting location is directly addressable, substitute
|
||
the MEM we just got directly for the old REG.
|
||
|
||
If it is not addressable but is a constant or the sum of a hard reg
|
||
and constant, it is probably not addressable because the constant is
|
||
out of range, in that case record the address; we will generate
|
||
hairy code to compute the address in a register each time it is
|
||
needed.
|
||
|
||
If the location is not addressable, but does not have one of the
|
||
above forms, assign a stack slot. We have to do this to avoid the
|
||
potential of producing lots of reloads if, e.g., a location involves
|
||
a pseudo that didn't get a hard register and has an equivalent memory
|
||
location that also involves a pseudo that didn't get a hard register.
|
||
|
||
Perhaps at some point we will improve reload_when_needed handling
|
||
so this problem goes away. But that's very hairy. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
|
||
{
|
||
rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
|
||
|
||
if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
|
||
XEXP (x, 0)))
|
||
reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
|
||
else if (CONSTANT_P (XEXP (x, 0))
|
||
|| (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
||
&& (REGNO (XEXP (XEXP (x, 0), 0))
|
||
< FIRST_PSEUDO_REGISTER)
|
||
&& CONSTANT_P (XEXP (XEXP (x, 0), 1))))
|
||
reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
|
||
else
|
||
{
|
||
/* Make a new stack slot. Then indicate that something
|
||
changed so we go back and recompute offsets for
|
||
eliminable registers because the allocation of memory
|
||
below might change some offset. reg_equiv_{mem,address}
|
||
will be set up for this pseudo on the next pass around
|
||
the loop. */
|
||
reg_equiv_memory_loc[i] = 0;
|
||
reg_equiv_init[i] = 0;
|
||
alter_reg (i, -1);
|
||
something_changed = 1;
|
||
}
|
||
}
|
||
|
||
/* If we allocated another pseudo to the stack, redo elimination
|
||
bookkeeping. */
|
||
if (something_changed)
|
||
continue;
|
||
|
||
/* If caller-saves needs a group, initialize the group to include
|
||
the size and mode required for caller-saves. */
|
||
|
||
if (caller_save_group_size > 1)
|
||
{
|
||
group_mode[(int) caller_save_spill_class] = Pmode;
|
||
group_size[(int) caller_save_spill_class] = caller_save_group_size;
|
||
}
|
||
|
||
/* Compute the most additional registers needed by any instruction.
|
||
Collect information separately for each class of regs. */
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (global && this_block + 1 < n_basic_blocks
|
||
&& insn == basic_block_head[this_block+1])
|
||
++this_block;
|
||
|
||
/* If this is a label, a JUMP_INSN, or has REG_NOTES (which
|
||
might include REG_LABEL), we need to see what effects this
|
||
has on the known offsets at labels. */
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
|
||
|| (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& REG_NOTES (insn) != 0))
|
||
set_label_offsets (insn, insn, 0);
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
/* Nonzero means don't use a reload reg that overlaps
|
||
the place where a function value can be returned. */
|
||
rtx avoid_return_reg = 0;
|
||
|
||
rtx old_body = PATTERN (insn);
|
||
int old_code = INSN_CODE (insn);
|
||
rtx old_notes = REG_NOTES (insn);
|
||
int did_elimination = 0;
|
||
int max_total_input_groups = 0, max_total_output_groups = 0;
|
||
|
||
/* To compute the number of reload registers of each class
|
||
needed for an insn, we must similate what choose_reload_regs
|
||
can do. We do this by splitting an insn into an "input" and
|
||
an "output" part. RELOAD_OTHER reloads are used in both.
|
||
The input part uses those reloads, RELOAD_FOR_INPUT reloads,
|
||
which must be live over the entire input section of reloads,
|
||
and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and
|
||
RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the
|
||
inputs.
|
||
|
||
The registers needed for output are RELOAD_OTHER and
|
||
RELOAD_FOR_OUTPUT, which are live for the entire output
|
||
portion, and the maximum of all the RELOAD_FOR_OUTPUT_ADDRESS
|
||
reloads for each operand.
|
||
|
||
The total number of registers needed is the maximum of the
|
||
inputs and outputs. */
|
||
|
||
/* These just count RELOAD_OTHER. */
|
||
int insn_needs[N_REG_CLASSES];
|
||
int insn_groups[N_REG_CLASSES];
|
||
int insn_total_groups = 0;
|
||
|
||
/* Count RELOAD_FOR_INPUT reloads. */
|
||
int insn_needs_for_inputs[N_REG_CLASSES];
|
||
int insn_groups_for_inputs[N_REG_CLASSES];
|
||
int insn_total_groups_for_inputs = 0;
|
||
|
||
/* Count RELOAD_FOR_OUTPUT reloads. */
|
||
int insn_needs_for_outputs[N_REG_CLASSES];
|
||
int insn_groups_for_outputs[N_REG_CLASSES];
|
||
int insn_total_groups_for_outputs = 0;
|
||
|
||
/* Count RELOAD_FOR_INSN reloads. */
|
||
int insn_needs_for_insn[N_REG_CLASSES];
|
||
int insn_groups_for_insn[N_REG_CLASSES];
|
||
int insn_total_groups_for_insn = 0;
|
||
|
||
/* Count RELOAD_FOR_OTHER_ADDRESS reloads. */
|
||
int insn_needs_for_other_addr[N_REG_CLASSES];
|
||
int insn_groups_for_other_addr[N_REG_CLASSES];
|
||
int insn_total_groups_for_other_addr = 0;
|
||
|
||
/* Count RELOAD_FOR_INPUT_ADDRESS reloads. */
|
||
int insn_needs_for_in_addr[MAX_RECOG_OPERANDS][N_REG_CLASSES];
|
||
int insn_groups_for_in_addr[MAX_RECOG_OPERANDS][N_REG_CLASSES];
|
||
int insn_total_groups_for_in_addr[MAX_RECOG_OPERANDS];
|
||
|
||
/* Count RELOAD_FOR_OUTPUT_ADDRESS reloads. */
|
||
int insn_needs_for_out_addr[MAX_RECOG_OPERANDS][N_REG_CLASSES];
|
||
int insn_groups_for_out_addr[MAX_RECOG_OPERANDS][N_REG_CLASSES];
|
||
int insn_total_groups_for_out_addr[MAX_RECOG_OPERANDS];
|
||
|
||
/* Count RELOAD_FOR_OPERAND_ADDRESS reloads. */
|
||
int insn_needs_for_op_addr[N_REG_CLASSES];
|
||
int insn_groups_for_op_addr[N_REG_CLASSES];
|
||
int insn_total_groups_for_op_addr = 0;
|
||
|
||
#if 0 /* This wouldn't work nowadays, since optimize_bit_field
|
||
looks for non-strict memory addresses. */
|
||
/* Optimization: a bit-field instruction whose field
|
||
happens to be a byte or halfword in memory
|
||
can be changed to a move instruction. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
{
|
||
rtx dest = SET_DEST (PATTERN (insn));
|
||
rtx src = SET_SRC (PATTERN (insn));
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == SIGN_EXTRACT)
|
||
optimize_bit_field (PATTERN (insn), insn, reg_equiv_mem);
|
||
if (GET_CODE (src) == ZERO_EXTRACT
|
||
|| GET_CODE (src) == SIGN_EXTRACT)
|
||
optimize_bit_field (PATTERN (insn), insn, reg_equiv_mem);
|
||
}
|
||
#endif
|
||
|
||
/* If needed, eliminate any eliminable registers. */
|
||
if (num_eliminable)
|
||
did_elimination = eliminate_regs_in_insn (insn, 0);
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* Set avoid_return_reg if this is an insn
|
||
that might use the value of a function call. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
after_call = SET_DEST (PATTERN (insn));
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
|
||
after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
|
||
else
|
||
after_call = 0;
|
||
}
|
||
else if (after_call != 0
|
||
&& !(GET_CODE (PATTERN (insn)) == SET
|
||
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
|
||
{
|
||
if (reg_mentioned_p (after_call, PATTERN (insn)))
|
||
avoid_return_reg = after_call;
|
||
after_call = 0;
|
||
}
|
||
#endif /* SMALL_REGISTER_CLASSES */
|
||
|
||
/* Analyze the instruction. */
|
||
find_reloads (insn, 0, spill_indirect_levels, global,
|
||
spill_reg_order);
|
||
|
||
/* Remember for later shortcuts which insns had any reloads or
|
||
register eliminations.
|
||
|
||
One might think that it would be worthwhile to mark insns
|
||
that need register replacements but not reloads, but this is
|
||
not safe because find_reloads may do some manipulation of
|
||
the insn (such as swapping commutative operands), which would
|
||
be lost when we restore the old pattern after register
|
||
replacement. So the actions of find_reloads must be redone in
|
||
subsequent passes or in reload_as_needed.
|
||
|
||
However, it is safe to mark insns that need reloads
|
||
but not register replacement. */
|
||
|
||
PUT_MODE (insn, (did_elimination ? QImode
|
||
: n_reloads ? HImode
|
||
: GET_MODE (insn) == DImode ? DImode
|
||
: VOIDmode));
|
||
|
||
/* Discard any register replacements done. */
|
||
if (did_elimination)
|
||
{
|
||
obstack_free (&reload_obstack, reload_firstobj);
|
||
PATTERN (insn) = old_body;
|
||
INSN_CODE (insn) = old_code;
|
||
REG_NOTES (insn) = old_notes;
|
||
something_needs_elimination = 1;
|
||
}
|
||
|
||
/* If this insn has no reloads, we need not do anything except
|
||
in the case of a CALL_INSN when we have caller-saves and
|
||
caller-save needs reloads. */
|
||
|
||
if (n_reloads == 0
|
||
&& ! (GET_CODE (insn) == CALL_INSN
|
||
&& caller_save_spill_class != NO_REGS))
|
||
continue;
|
||
|
||
something_needs_reloads = 1;
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
insn_needs[i] = 0, insn_groups[i] = 0;
|
||
insn_needs_for_inputs[i] = 0, insn_groups_for_inputs[i] = 0;
|
||
insn_needs_for_outputs[i] = 0, insn_groups_for_outputs[i] = 0;
|
||
insn_needs_for_insn[i] = 0, insn_groups_for_insn[i] = 0;
|
||
insn_needs_for_op_addr[i] = 0, insn_groups_for_op_addr[i] = 0;
|
||
insn_needs_for_other_addr[i] = 0;
|
||
insn_groups_for_other_addr[i] = 0;
|
||
}
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
insn_total_groups_for_in_addr[i] = 0;
|
||
insn_total_groups_for_out_addr[i] = 0;
|
||
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
{
|
||
insn_needs_for_in_addr[i][j] = 0;
|
||
insn_needs_for_out_addr[i][j] = 0;
|
||
insn_groups_for_in_addr[i][j] = 0;
|
||
insn_groups_for_out_addr[i][j] = 0;
|
||
}
|
||
}
|
||
|
||
/* Count each reload once in every class
|
||
containing the reload's own class. */
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
register enum reg_class *p;
|
||
enum reg_class class = reload_reg_class[i];
|
||
int size;
|
||
enum machine_mode mode;
|
||
int *this_groups;
|
||
int *this_needs;
|
||
int *this_total_groups;
|
||
|
||
/* Don't count the dummy reloads, for which one of the
|
||
regs mentioned in the insn can be used for reloading.
|
||
Don't count optional reloads.
|
||
Don't count reloads that got combined with others. */
|
||
if (reload_reg_rtx[i] != 0
|
||
|| reload_optional[i] != 0
|
||
|| (reload_out[i] == 0 && reload_in[i] == 0
|
||
&& ! reload_secondary_p[i]))
|
||
continue;
|
||
|
||
/* Show that a reload register of this class is needed
|
||
in this basic block. We do not use insn_needs and
|
||
insn_groups because they are overly conservative for
|
||
this purpose. */
|
||
if (global && ! basic_block_needs[(int) class][this_block])
|
||
{
|
||
basic_block_needs[(int) class][this_block] = 1;
|
||
new_basic_block_needs = 1;
|
||
}
|
||
|
||
/* Decide which time-of-use to count this reload for. */
|
||
switch (reload_when_needed[i])
|
||
{
|
||
case RELOAD_OTHER:
|
||
this_needs = insn_needs;
|
||
this_groups = insn_groups;
|
||
this_total_groups = &insn_total_groups;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
this_needs = insn_needs_for_inputs;
|
||
this_groups = insn_groups_for_inputs;
|
||
this_total_groups = &insn_total_groups_for_inputs;
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
this_needs = insn_needs_for_outputs;
|
||
this_groups = insn_groups_for_outputs;
|
||
this_total_groups = &insn_total_groups_for_outputs;
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
this_needs = insn_needs_for_insn;
|
||
this_groups = insn_groups_for_outputs;
|
||
this_total_groups = &insn_total_groups_for_insn;
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
this_needs = insn_needs_for_other_addr;
|
||
this_groups = insn_groups_for_other_addr;
|
||
this_total_groups = &insn_total_groups_for_other_addr;
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
this_needs = insn_needs_for_in_addr[reload_opnum[i]];
|
||
this_groups = insn_groups_for_in_addr[reload_opnum[i]];
|
||
this_total_groups
|
||
= &insn_total_groups_for_in_addr[reload_opnum[i]];
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
this_needs = insn_needs_for_out_addr[reload_opnum[i]];
|
||
this_groups = insn_groups_for_out_addr[reload_opnum[i]];
|
||
this_total_groups
|
||
= &insn_total_groups_for_out_addr[reload_opnum[i]];
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
this_needs = insn_needs_for_op_addr;
|
||
this_groups = insn_groups_for_op_addr;
|
||
this_total_groups = &insn_total_groups_for_op_addr;
|
||
break;
|
||
}
|
||
|
||
mode = reload_inmode[i];
|
||
if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode))
|
||
mode = reload_outmode[i];
|
||
size = CLASS_MAX_NREGS (class, mode);
|
||
if (size > 1)
|
||
{
|
||
enum machine_mode other_mode, allocate_mode;
|
||
|
||
/* Count number of groups needed separately from
|
||
number of individual regs needed. */
|
||
this_groups[(int) class]++;
|
||
p = reg_class_superclasses[(int) class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
this_groups[(int) *p++]++;
|
||
(*this_total_groups)++;
|
||
|
||
/* Record size and mode of a group of this class. */
|
||
/* If more than one size group is needed,
|
||
make all groups the largest needed size. */
|
||
if (group_size[(int) class] < size)
|
||
{
|
||
other_mode = group_mode[(int) class];
|
||
allocate_mode = mode;
|
||
|
||
group_size[(int) class] = size;
|
||
group_mode[(int) class] = mode;
|
||
}
|
||
else
|
||
{
|
||
other_mode = mode;
|
||
allocate_mode = group_mode[(int) class];
|
||
}
|
||
|
||
/* Crash if two dissimilar machine modes both need
|
||
groups of consecutive regs of the same class. */
|
||
|
||
if (other_mode != VOIDmode
|
||
&& other_mode != allocate_mode
|
||
&& ! modes_equiv_for_class_p (allocate_mode,
|
||
other_mode,
|
||
class))
|
||
abort ();
|
||
}
|
||
else if (size == 1)
|
||
{
|
||
this_needs[(int) class] += 1;
|
||
p = reg_class_superclasses[(int) class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
this_needs[(int) *p++] += 1;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* All reloads have been counted for this insn;
|
||
now merge the various times of use.
|
||
This sets insn_needs, etc., to the maximum total number
|
||
of registers needed at any point in this insn. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
int in_max, out_max;
|
||
|
||
for (in_max = 0, out_max = 0, j = 0;
|
||
j < reload_n_operands; j++)
|
||
{
|
||
in_max = MAX (in_max, insn_needs_for_in_addr[j][i]);
|
||
out_max = MAX (out_max, insn_needs_for_out_addr[j][i]);
|
||
}
|
||
|
||
/* RELOAD_FOR_INSN reloads conflict with inputs, outputs,
|
||
and operand addresses but not things used to reload them.
|
||
Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads don't
|
||
conflict with things needed to reload inputs or
|
||
outputs. */
|
||
|
||
in_max = MAX (in_max, insn_needs_for_op_addr[i]);
|
||
out_max = MAX (out_max, insn_needs_for_insn[i]);
|
||
|
||
insn_needs_for_inputs[i]
|
||
= MAX (insn_needs_for_inputs[i]
|
||
+ insn_needs_for_op_addr[i]
|
||
+ insn_needs_for_insn[i],
|
||
in_max + insn_needs_for_inputs[i]);
|
||
|
||
insn_needs_for_outputs[i] += out_max;
|
||
insn_needs[i] += MAX (MAX (insn_needs_for_inputs[i],
|
||
insn_needs_for_outputs[i]),
|
||
insn_needs_for_other_addr[i]);
|
||
|
||
for (in_max = 0, out_max = 0, j = 0;
|
||
j < reload_n_operands; j++)
|
||
{
|
||
in_max = MAX (in_max, insn_groups_for_in_addr[j][i]);
|
||
out_max = MAX (out_max, insn_groups_for_out_addr[j][i]);
|
||
}
|
||
|
||
in_max = MAX (in_max, insn_groups_for_op_addr[i]);
|
||
out_max = MAX (out_max, insn_groups_for_insn[i]);
|
||
|
||
insn_groups_for_inputs[i]
|
||
= MAX (insn_groups_for_inputs[i]
|
||
+ insn_groups_for_op_addr[i]
|
||
+ insn_groups_for_insn[i],
|
||
in_max + insn_groups_for_inputs[i]);
|
||
|
||
insn_groups_for_outputs[i] += out_max;
|
||
insn_groups[i] += MAX (MAX (insn_groups_for_inputs[i],
|
||
insn_groups_for_outputs[i]),
|
||
insn_groups_for_other_addr[i]);
|
||
}
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
max_total_input_groups
|
||
= MAX (max_total_input_groups,
|
||
insn_total_groups_for_in_addr[i]);
|
||
max_total_output_groups
|
||
= MAX (max_total_output_groups,
|
||
insn_total_groups_for_out_addr[i]);
|
||
}
|
||
|
||
max_total_input_groups = MAX (max_total_input_groups,
|
||
insn_total_groups_for_op_addr);
|
||
max_total_output_groups = MAX (max_total_output_groups,
|
||
insn_total_groups_for_insn);
|
||
|
||
insn_total_groups_for_inputs
|
||
= MAX (max_total_input_groups + insn_total_groups_for_op_addr
|
||
+ insn_total_groups_for_insn,
|
||
max_total_input_groups + insn_total_groups_for_inputs);
|
||
|
||
insn_total_groups_for_outputs += max_total_output_groups;
|
||
|
||
insn_total_groups += MAX (MAX (insn_total_groups_for_outputs,
|
||
insn_total_groups_for_inputs),
|
||
insn_total_groups_for_other_addr);
|
||
|
||
/* If this is a CALL_INSN and caller-saves will need
|
||
a spill register, act as if the spill register is
|
||
needed for this insn. However, the spill register
|
||
can be used by any reload of this insn, so we only
|
||
need do something if no need for that class has
|
||
been recorded.
|
||
|
||
The assumption that every CALL_INSN will trigger a
|
||
caller-save is highly conservative, however, the number
|
||
of cases where caller-saves will need a spill register but
|
||
a block containing a CALL_INSN won't need a spill register
|
||
of that class should be quite rare.
|
||
|
||
If a group is needed, the size and mode of the group will
|
||
have been set up at the beginning of this loop. */
|
||
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& caller_save_spill_class != NO_REGS)
|
||
{
|
||
int *caller_save_needs
|
||
= (caller_save_group_size > 1 ? insn_groups : insn_needs);
|
||
|
||
if (caller_save_needs[(int) caller_save_spill_class] == 0)
|
||
{
|
||
register enum reg_class *p
|
||
= reg_class_superclasses[(int) caller_save_spill_class];
|
||
|
||
caller_save_needs[(int) caller_save_spill_class]++;
|
||
|
||
while (*p != LIM_REG_CLASSES)
|
||
caller_save_needs[(int) *p++] += 1;
|
||
}
|
||
|
||
if (caller_save_group_size > 1)
|
||
insn_total_groups = MAX (insn_total_groups, 1);
|
||
|
||
|
||
/* Show that this basic block will need a register of
|
||
this class. */
|
||
|
||
if (global
|
||
&& ! (basic_block_needs[(int) caller_save_spill_class]
|
||
[this_block]))
|
||
{
|
||
basic_block_needs[(int) caller_save_spill_class]
|
||
[this_block] = 1;
|
||
new_basic_block_needs = 1;
|
||
}
|
||
}
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* If this insn stores the value of a function call,
|
||
and that value is in a register that has been spilled,
|
||
and if the insn needs a reload in a class
|
||
that might use that register as the reload register,
|
||
then add add an extra need in that class.
|
||
This makes sure we have a register available that does
|
||
not overlap the return value. */
|
||
if (avoid_return_reg)
|
||
{
|
||
int regno = REGNO (avoid_return_reg);
|
||
int nregs
|
||
= HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
|
||
int r;
|
||
int basic_needs[N_REG_CLASSES], basic_groups[N_REG_CLASSES];
|
||
|
||
/* First compute the "basic needs", which counts a
|
||
need only in the smallest class in which it
|
||
is required. */
|
||
|
||
bcopy (insn_needs, basic_needs, sizeof basic_needs);
|
||
bcopy (insn_groups, basic_groups, sizeof basic_groups);
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
enum reg_class *p;
|
||
|
||
if (basic_needs[i] >= 0)
|
||
for (p = reg_class_superclasses[i];
|
||
*p != LIM_REG_CLASSES; p++)
|
||
basic_needs[(int) *p] -= basic_needs[i];
|
||
|
||
if (basic_groups[i] >= 0)
|
||
for (p = reg_class_superclasses[i];
|
||
*p != LIM_REG_CLASSES; p++)
|
||
basic_groups[(int) *p] -= basic_groups[i];
|
||
}
|
||
|
||
/* Now count extra regs if there might be a conflict with
|
||
the return value register.
|
||
|
||
??? This is not quite correct because we don't properly
|
||
handle the case of groups, but if we end up doing
|
||
something wrong, it either will end up not mattering or
|
||
we will abort elsewhere. */
|
||
|
||
for (r = regno; r < regno + nregs; r++)
|
||
if (spill_reg_order[r] >= 0)
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[i], r))
|
||
{
|
||
if (basic_needs[i] > 0 || basic_groups[i] > 0)
|
||
{
|
||
enum reg_class *p;
|
||
|
||
insn_needs[i]++;
|
||
p = reg_class_superclasses[i];
|
||
while (*p != LIM_REG_CLASSES)
|
||
insn_needs[(int) *p++]++;
|
||
}
|
||
}
|
||
}
|
||
#endif /* SMALL_REGISTER_CLASSES */
|
||
|
||
/* For each class, collect maximum need of any insn. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
if (max_needs[i] < insn_needs[i])
|
||
{
|
||
max_needs[i] = insn_needs[i];
|
||
max_needs_insn[i] = insn;
|
||
}
|
||
if (max_groups[i] < insn_groups[i])
|
||
{
|
||
max_groups[i] = insn_groups[i];
|
||
max_groups_insn[i] = insn;
|
||
}
|
||
if (insn_total_groups > 0)
|
||
if (max_nongroups[i] < insn_needs[i])
|
||
{
|
||
max_nongroups[i] = insn_needs[i];
|
||
max_nongroups_insn[i] = insn;
|
||
}
|
||
}
|
||
}
|
||
/* Note that there is a continue statement above. */
|
||
}
|
||
|
||
/* If we allocated any new memory locations, make another pass
|
||
since it might have changed elimination offsets. */
|
||
if (starting_frame_size != get_frame_size ())
|
||
something_changed = 1;
|
||
|
||
if (dumpfile)
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
if (max_needs[i] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d reg%s of class %s (for insn %d).\n",
|
||
max_needs[i], max_needs[i] == 1 ? "" : "s",
|
||
reg_class_names[i], INSN_UID (max_needs_insn[i]));
|
||
if (max_nongroups[i] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d nongroup reg%s of class %s (for insn %d).\n",
|
||
max_nongroups[i], max_nongroups[i] == 1 ? "" : "s",
|
||
reg_class_names[i], INSN_UID (max_nongroups_insn[i]));
|
||
if (max_groups[i] > 0)
|
||
fprintf (dumpfile,
|
||
";; Need %d group%s (%smode) of class %s (for insn %d).\n",
|
||
max_groups[i], max_groups[i] == 1 ? "" : "s",
|
||
mode_name[(int) group_mode[i]],
|
||
reg_class_names[i], INSN_UID (max_groups_insn[i]));
|
||
}
|
||
|
||
/* If we have caller-saves, set up the save areas and see if caller-save
|
||
will need a spill register. */
|
||
|
||
if (caller_save_needed
|
||
&& ! setup_save_areas (&something_changed)
|
||
&& caller_save_spill_class == NO_REGS)
|
||
{
|
||
/* The class we will need depends on whether the machine
|
||
supports the sum of two registers for an address; see
|
||
find_address_reloads for details. */
|
||
|
||
caller_save_spill_class
|
||
= double_reg_address_ok ? INDEX_REG_CLASS : BASE_REG_CLASS;
|
||
caller_save_group_size
|
||
= CLASS_MAX_NREGS (caller_save_spill_class, Pmode);
|
||
something_changed = 1;
|
||
}
|
||
|
||
/* See if anything that happened changes which eliminations are valid.
|
||
For example, on the Sparc, whether or not the frame pointer can
|
||
be eliminated can depend on what registers have been used. We need
|
||
not check some conditions again (such as flag_omit_frame_pointer)
|
||
since they can't have changed. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if ((ep->from == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
|
||
#ifdef ELIMINABLE_REGS
|
||
|| ! CAN_ELIMINATE (ep->from, ep->to)
|
||
#endif
|
||
)
|
||
ep->can_eliminate = 0;
|
||
|
||
/* Look for the case where we have discovered that we can't replace
|
||
register A with register B and that means that we will now be
|
||
trying to replace register A with register C. This means we can
|
||
no longer replace register C with register B and we need to disable
|
||
such an elimination, if it exists. This occurs often with A == ap,
|
||
B == sp, and C == fp. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
struct elim_table *op;
|
||
register int new_to = -1;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
/* Find the current elimination for ep->from, if there is a
|
||
new one. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == ep->from && op->can_eliminate)
|
||
{
|
||
new_to = op->to;
|
||
break;
|
||
}
|
||
|
||
/* See if there is an elimination of NEW_TO -> EP->TO. If so,
|
||
disable it. */
|
||
for (op = reg_eliminate;
|
||
op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++)
|
||
if (op->from == new_to && op->to == ep->to)
|
||
op->can_eliminate = 0;
|
||
}
|
||
}
|
||
|
||
/* See if any registers that we thought we could eliminate the previous
|
||
time are no longer eliminable. If so, something has changed and we
|
||
must spill the register. Also, recompute the number of eliminable
|
||
registers and see if the frame pointer is needed; it is if there is
|
||
no elimination of the frame pointer that we can perform. */
|
||
|
||
frame_pointer_needed = 1;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM)
|
||
frame_pointer_needed = 0;
|
||
|
||
if (! ep->can_eliminate && ep->can_eliminate_previous)
|
||
{
|
||
ep->can_eliminate_previous = 0;
|
||
spill_hard_reg (ep->from, global, dumpfile, 1);
|
||
regs_ever_live[ep->from] = 1;
|
||
something_changed = 1;
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
/* If all needs are met, we win. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
if (max_needs[i] > 0 || max_groups[i] > 0 || max_nongroups[i] > 0)
|
||
break;
|
||
if (i == N_REG_CLASSES && !new_basic_block_needs && ! something_changed)
|
||
break;
|
||
|
||
/* Not all needs are met; must spill some hard regs. */
|
||
|
||
/* Put all registers spilled so far back in potential_reload_regs, but
|
||
put them at the front, since we've already spilled most of the
|
||
psuedos in them (we might have left some pseudos unspilled if they
|
||
were in a block that didn't need any spill registers of a conflicting
|
||
class. We used to try to mark off the need for those registers,
|
||
but doing so properly is very complex and reallocating them is the
|
||
simpler approach. First, "pack" potential_reload_regs by pushing
|
||
any nonnegative entries towards the end. That will leave room
|
||
for the registers we already spilled.
|
||
|
||
Also, undo the marking of the spill registers from the last time
|
||
around in FORBIDDEN_REGS since we will be probably be allocating
|
||
them again below.
|
||
|
||
??? It is theoretically possible that we might end up not using one
|
||
of our previously-spilled registers in this allocation, even though
|
||
they are at the head of the list. It's not clear what to do about
|
||
this, but it was no better before, when we marked off the needs met
|
||
by the previously-spilled registers. With the current code, globals
|
||
can be allocated into these registers, but locals cannot. */
|
||
|
||
if (n_spills)
|
||
{
|
||
for (i = j = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
||
if (potential_reload_regs[i] != -1)
|
||
potential_reload_regs[j--] = potential_reload_regs[i];
|
||
|
||
for (i = 0; i < n_spills; i++)
|
||
{
|
||
potential_reload_regs[i] = spill_regs[i];
|
||
spill_reg_order[spill_regs[i]] = -1;
|
||
CLEAR_HARD_REG_BIT (forbidden_regs, spill_regs[i]);
|
||
}
|
||
|
||
n_spills = 0;
|
||
}
|
||
|
||
/* Now find more reload regs to satisfy the remaining need
|
||
Do it by ascending class number, since otherwise a reg
|
||
might be spilled for a big class and might fail to count
|
||
for a smaller class even though it belongs to that class.
|
||
|
||
Count spilled regs in `spills', and add entries to
|
||
`spill_regs' and `spill_reg_order'.
|
||
|
||
??? Note there is a problem here.
|
||
When there is a need for a group in a high-numbered class,
|
||
and also need for non-group regs that come from a lower class,
|
||
the non-group regs are chosen first. If there aren't many regs,
|
||
they might leave no room for a group.
|
||
|
||
This was happening on the 386. To fix it, we added the code
|
||
that calls possible_group_p, so that the lower class won't
|
||
break up the last possible group.
|
||
|
||
Really fixing the problem would require changes above
|
||
in counting the regs already spilled, and in choose_reload_regs.
|
||
It might be hard to avoid introducing bugs there. */
|
||
|
||
CLEAR_HARD_REG_SET (counted_for_groups);
|
||
CLEAR_HARD_REG_SET (counted_for_nongroups);
|
||
|
||
for (class = 0; class < N_REG_CLASSES; class++)
|
||
{
|
||
/* First get the groups of registers.
|
||
If we got single registers first, we might fragment
|
||
possible groups. */
|
||
while (max_groups[class] > 0)
|
||
{
|
||
/* If any single spilled regs happen to form groups,
|
||
count them now. Maybe we don't really need
|
||
to spill another group. */
|
||
count_possible_groups (group_size, group_mode, max_groups);
|
||
|
||
if (max_groups[class] <= 0)
|
||
break;
|
||
|
||
/* Groups of size 2 (the only groups used on most machines)
|
||
are treated specially. */
|
||
if (group_size[class] == 2)
|
||
{
|
||
/* First, look for a register that will complete a group. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int other;
|
||
|
||
j = potential_reload_regs[i];
|
||
if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j)
|
||
&&
|
||
((j > 0 && (other = j - 1, spill_reg_order[other] >= 0)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
|
||
&& HARD_REGNO_MODE_OK (other, group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups,
|
||
other)
|
||
/* We don't want one part of another group.
|
||
We could get "two groups" that overlap! */
|
||
&& ! TEST_HARD_REG_BIT (counted_for_groups, other))
|
||
||
|
||
(j < FIRST_PSEUDO_REGISTER - 1
|
||
&& (other = j + 1, spill_reg_order[other] >= 0)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], other)
|
||
&& HARD_REGNO_MODE_OK (j, group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups,
|
||
other)
|
||
&& ! TEST_HARD_REG_BIT (counted_for_groups,
|
||
other))))
|
||
{
|
||
register enum reg_class *p;
|
||
|
||
/* We have found one that will complete a group,
|
||
so count off one group as provided. */
|
||
max_groups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
max_groups[(int) *p++]--;
|
||
|
||
/* Indicate both these regs are part of a group. */
|
||
SET_HARD_REG_BIT (counted_for_groups, j);
|
||
SET_HARD_REG_BIT (counted_for_groups, other);
|
||
break;
|
||
}
|
||
}
|
||
/* We can't complete a group, so start one. */
|
||
if (i == FIRST_PSEUDO_REGISTER)
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
j = potential_reload_regs[i];
|
||
if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER
|
||
&& spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + 1)
|
||
&& HARD_REGNO_MODE_OK (j, group_mode[class])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups,
|
||
j + 1))
|
||
break;
|
||
}
|
||
|
||
/* I should be the index in potential_reload_regs
|
||
of the new reload reg we have found. */
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* There are no groups left to spill. */
|
||
spill_failure (max_groups_insn[class]);
|
||
failure = 1;
|
||
goto failed;
|
||
}
|
||
else
|
||
something_changed
|
||
|= new_spill_reg (i, class, max_needs, NULL_PTR,
|
||
global, dumpfile);
|
||
}
|
||
else
|
||
{
|
||
/* For groups of more than 2 registers,
|
||
look for a sufficient sequence of unspilled registers,
|
||
and spill them all at once. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int k;
|
||
|
||
j = potential_reload_regs[i];
|
||
if (j >= 0
|
||
&& j + group_size[class] <= FIRST_PSEUDO_REGISTER
|
||
&& HARD_REGNO_MODE_OK (j, group_mode[class]))
|
||
{
|
||
/* Check each reg in the sequence. */
|
||
for (k = 0; k < group_size[class]; k++)
|
||
if (! (spill_reg_order[j + k] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, j + k)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], j + k)))
|
||
break;
|
||
/* We got a full sequence, so spill them all. */
|
||
if (k == group_size[class])
|
||
{
|
||
register enum reg_class *p;
|
||
for (k = 0; k < group_size[class]; k++)
|
||
{
|
||
int idx;
|
||
SET_HARD_REG_BIT (counted_for_groups, j + k);
|
||
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
|
||
if (potential_reload_regs[idx] == j + k)
|
||
break;
|
||
something_changed
|
||
|= new_spill_reg (idx, class,
|
||
max_needs, NULL_PTR,
|
||
global, dumpfile);
|
||
}
|
||
|
||
/* We have found one that will complete a group,
|
||
so count off one group as provided. */
|
||
max_groups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
max_groups[(int) *p++]--;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
/* We couldn't find any registers for this reload.
|
||
Avoid going into an infinite loop. */
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* There are no groups left. */
|
||
spill_failure (max_groups_insn[class]);
|
||
failure = 1;
|
||
goto failed;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now similarly satisfy all need for single registers. */
|
||
|
||
while (max_needs[class] > 0 || max_nongroups[class] > 0)
|
||
{
|
||
/* Consider the potential reload regs that aren't
|
||
yet in use as reload regs, in order of preference.
|
||
Find the most preferred one that's in this class. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (potential_reload_regs[i] >= 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class],
|
||
potential_reload_regs[i])
|
||
/* If this reg will not be available for groups,
|
||
pick one that does not foreclose possible groups.
|
||
This is a kludge, and not very general,
|
||
but it should be sufficient to make the 386 work,
|
||
and the problem should not occur on machines with
|
||
more registers. */
|
||
&& (max_nongroups[class] == 0
|
||
|| possible_group_p (potential_reload_regs[i], max_groups)))
|
||
break;
|
||
|
||
/* If we couldn't get a register, try to get one even if we
|
||
might foreclose possible groups. This may cause problems
|
||
later, but that's better than aborting now, since it is
|
||
possible that we will, in fact, be able to form the needed
|
||
group even with this allocation. */
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER
|
||
&& (asm_noperands (max_needs[class] > 0
|
||
? max_needs_insn[class]
|
||
: max_nongroups_insn[class])
|
||
< 0))
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (potential_reload_regs[i] >= 0
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class],
|
||
potential_reload_regs[i]))
|
||
break;
|
||
|
||
/* I should be the index in potential_reload_regs
|
||
of the new reload reg we have found. */
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* There are no possible registers left to spill. */
|
||
spill_failure (max_needs[class] > 0 ? max_needs_insn[class]
|
||
: max_nongroups_insn[class]);
|
||
failure = 1;
|
||
goto failed;
|
||
}
|
||
else
|
||
something_changed
|
||
|= new_spill_reg (i, class, max_needs, max_nongroups,
|
||
global, dumpfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If global-alloc was run, notify it of any register eliminations we have
|
||
done. */
|
||
if (global)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->can_eliminate)
|
||
mark_elimination (ep->from, ep->to);
|
||
|
||
/* Insert code to save and restore call-clobbered hard regs
|
||
around calls. Tell if what mode to use so that we will process
|
||
those insns in reload_as_needed if we have to. */
|
||
|
||
if (caller_save_needed)
|
||
save_call_clobbered_regs (num_eliminable ? QImode
|
||
: caller_save_spill_class != NO_REGS ? HImode
|
||
: VOIDmode);
|
||
|
||
/* If a pseudo has no hard reg, delete the insns that made the equivalence.
|
||
If that insn didn't set the register (i.e., it copied the register to
|
||
memory), just delete that insn instead of the equivalencing insn plus
|
||
anything now dead. If we call delete_dead_insn on that insn, we may
|
||
delete the insn that actually sets the register if the register die
|
||
there and that is incorrect. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0
|
||
&& GET_CODE (reg_equiv_init[i]) != NOTE)
|
||
{
|
||
if (reg_set_p (regno_reg_rtx[i], PATTERN (reg_equiv_init[i])))
|
||
delete_dead_insn (reg_equiv_init[i]);
|
||
else
|
||
{
|
||
PUT_CODE (reg_equiv_init[i], NOTE);
|
||
NOTE_SOURCE_FILE (reg_equiv_init[i]) = 0;
|
||
NOTE_LINE_NUMBER (reg_equiv_init[i]) = NOTE_INSN_DELETED;
|
||
}
|
||
}
|
||
|
||
/* Use the reload registers where necessary
|
||
by generating move instructions to move the must-be-register
|
||
values into or out of the reload registers. */
|
||
|
||
if (something_needs_reloads || something_needs_elimination
|
||
|| (caller_save_needed && num_eliminable)
|
||
|| caller_save_spill_class != NO_REGS)
|
||
reload_as_needed (first, global);
|
||
|
||
/* If we were able to eliminate the frame pointer, show that it is no
|
||
longer live at the start of any basic block. If it ls live by
|
||
virtue of being in a pseudo, that pseudo will be marked live
|
||
and hence the frame pointer will be known to be live via that
|
||
pseudo. */
|
||
|
||
if (! frame_pointer_needed)
|
||
for (i = 0; i < n_basic_blocks; i++)
|
||
basic_block_live_at_start[i][FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
|
||
&= ~ ((REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS));
|
||
|
||
/* Come here (with failure set nonzero) if we can't get enough spill regs
|
||
and we decide not to abort about it. */
|
||
failed:
|
||
|
||
reload_in_progress = 0;
|
||
|
||
/* Now eliminate all pseudo regs by modifying them into
|
||
their equivalent memory references.
|
||
The REG-rtx's for the pseudos are modified in place,
|
||
so all insns that used to refer to them now refer to memory.
|
||
|
||
For a reg that has a reg_equiv_address, all those insns
|
||
were changed by reloading so that no insns refer to it any longer;
|
||
but the DECL_RTL of a variable decl may refer to it,
|
||
and if so this causes the debugging info to mention the variable. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
rtx addr = 0;
|
||
int in_struct = 0;
|
||
if (reg_equiv_mem[i])
|
||
{
|
||
addr = XEXP (reg_equiv_mem[i], 0);
|
||
in_struct = MEM_IN_STRUCT_P (reg_equiv_mem[i]);
|
||
}
|
||
if (reg_equiv_address[i])
|
||
addr = reg_equiv_address[i];
|
||
if (addr)
|
||
{
|
||
if (reg_renumber[i] < 0)
|
||
{
|
||
rtx reg = regno_reg_rtx[i];
|
||
XEXP (reg, 0) = addr;
|
||
REG_USERVAR_P (reg) = 0;
|
||
MEM_IN_STRUCT_P (reg) = in_struct;
|
||
PUT_CODE (reg, MEM);
|
||
}
|
||
else if (reg_equiv_mem[i])
|
||
XEXP (reg_equiv_mem[i], 0) = addr;
|
||
}
|
||
}
|
||
|
||
#ifdef PRESERVE_DEATH_INFO_REGNO_P
|
||
/* Make a pass over all the insns and remove death notes for things that
|
||
are no longer registers or no longer die in the insn (e.g., an input
|
||
and output pseudo being tied). */
|
||
|
||
for (insn = first; insn; insn = NEXT_INSN (insn))
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
rtx note, next;
|
||
|
||
for (note = REG_NOTES (insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
if (REG_NOTE_KIND (note) == REG_DEAD
|
||
&& (GET_CODE (XEXP (note, 0)) != REG
|
||
|| reg_set_p (XEXP (note, 0), PATTERN (insn))))
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Indicate that we no longer have known memory locations or constants. */
|
||
reg_equiv_constant = 0;
|
||
reg_equiv_memory_loc = 0;
|
||
|
||
return failure;
|
||
}
|
||
|
||
/* Nonzero if, after spilling reg REGNO for non-groups,
|
||
it will still be possible to find a group if we still need one. */
|
||
|
||
static int
|
||
possible_group_p (regno, max_groups)
|
||
int regno;
|
||
int *max_groups;
|
||
{
|
||
int i;
|
||
int class = (int) NO_REGS;
|
||
|
||
for (i = 0; i < (int) N_REG_CLASSES; i++)
|
||
if (max_groups[i] > 0)
|
||
{
|
||
class = i;
|
||
break;
|
||
}
|
||
|
||
if (class == (int) NO_REGS)
|
||
return 1;
|
||
|
||
/* Consider each pair of consecutive registers. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++)
|
||
{
|
||
/* Ignore pairs that include reg REGNO. */
|
||
if (i == regno || i + 1 == regno)
|
||
continue;
|
||
|
||
/* Ignore pairs that are outside the class that needs the group.
|
||
??? Here we fail to handle the case where two different classes
|
||
independently need groups. But this never happens with our
|
||
current machine descriptions. */
|
||
if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i)
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], i + 1)))
|
||
continue;
|
||
|
||
/* A pair of consecutive regs we can still spill does the trick. */
|
||
if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1))
|
||
return 1;
|
||
|
||
/* A pair of one already spilled and one we can spill does it
|
||
provided the one already spilled is not otherwise reserved. */
|
||
if (spill_reg_order[i] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i)
|
||
&& spill_reg_order[i + 1] >= 0
|
||
&& ! TEST_HARD_REG_BIT (counted_for_groups, i + 1)
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups, i + 1))
|
||
return 1;
|
||
if (spill_reg_order[i + 1] < 0
|
||
&& ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)
|
||
&& spill_reg_order[i] >= 0
|
||
&& ! TEST_HARD_REG_BIT (counted_for_groups, i)
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups, i))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Count any groups that can be formed from the registers recently spilled.
|
||
This is done class by class, in order of ascending class number. */
|
||
|
||
static void
|
||
count_possible_groups (group_size, group_mode, max_groups)
|
||
int *group_size;
|
||
enum machine_mode *group_mode;
|
||
int *max_groups;
|
||
{
|
||
int i;
|
||
/* Now find all consecutive groups of spilled registers
|
||
and mark each group off against the need for such groups.
|
||
But don't count them against ordinary need, yet. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
if (group_size[i] > 1)
|
||
{
|
||
HARD_REG_SET new;
|
||
int j;
|
||
|
||
CLEAR_HARD_REG_SET (new);
|
||
|
||
/* Make a mask of all the regs that are spill regs in class I. */
|
||
for (j = 0; j < n_spills; j++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[i], spill_regs[j])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[j])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups,
|
||
spill_regs[j]))
|
||
SET_HARD_REG_BIT (new, spill_regs[j]);
|
||
|
||
/* Find each consecutive group of them. */
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER && max_groups[i] > 0; j++)
|
||
if (TEST_HARD_REG_BIT (new, j)
|
||
&& j + group_size[i] <= FIRST_PSEUDO_REGISTER
|
||
/* Next line in case group-mode for this class
|
||
demands an even-odd pair. */
|
||
&& HARD_REGNO_MODE_OK (j, group_mode[i]))
|
||
{
|
||
int k;
|
||
for (k = 1; k < group_size[i]; k++)
|
||
if (! TEST_HARD_REG_BIT (new, j + k))
|
||
break;
|
||
if (k == group_size[i])
|
||
{
|
||
/* We found a group. Mark it off against this class's
|
||
need for groups, and against each superclass too. */
|
||
register enum reg_class *p;
|
||
max_groups[i]--;
|
||
p = reg_class_superclasses[i];
|
||
while (*p != LIM_REG_CLASSES)
|
||
max_groups[(int) *p++]--;
|
||
/* Don't count these registers again. */
|
||
for (k = 0; k < group_size[i]; k++)
|
||
SET_HARD_REG_BIT (counted_for_groups, j + k);
|
||
}
|
||
/* Skip to the last reg in this group. When j is incremented
|
||
above, it will then point to the first reg of the next
|
||
possible group. */
|
||
j += k - 1;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is
|
||
another mode that needs to be reloaded for the same register class CLASS.
|
||
If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail.
|
||
ALLOCATE_MODE will never be smaller than OTHER_MODE.
|
||
|
||
This code used to also fail if any reg in CLASS allows OTHER_MODE but not
|
||
ALLOCATE_MODE. This test is unnecessary, because we will never try to put
|
||
something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this
|
||
causes unnecessary failures on machines requiring alignment of register
|
||
groups when the two modes are different sizes, because the larger mode has
|
||
more strict alignment rules than the smaller mode. */
|
||
|
||
static int
|
||
modes_equiv_for_class_p (allocate_mode, other_mode, class)
|
||
enum machine_mode allocate_mode, other_mode;
|
||
enum reg_class class;
|
||
{
|
||
register int regno;
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
{
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
|
||
&& HARD_REGNO_MODE_OK (regno, allocate_mode)
|
||
&& ! HARD_REGNO_MODE_OK (regno, other_mode))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Handle the failure to find a register to spill.
|
||
INSN should be one of the insns which needed this particular spill reg. */
|
||
|
||
static void
|
||
spill_failure (insn)
|
||
rtx insn;
|
||
{
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
error_for_asm (insn, "`asm' needs too many reloads");
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Add a new register to the tables of available spill-registers
|
||
(as well as spilling all pseudos allocated to the register).
|
||
I is the index of this register in potential_reload_regs.
|
||
CLASS is the regclass whose need is being satisfied.
|
||
MAX_NEEDS and MAX_NONGROUPS are the vectors of needs,
|
||
so that this register can count off against them.
|
||
MAX_NONGROUPS is 0 if this register is part of a group.
|
||
GLOBAL and DUMPFILE are the same as the args that `reload' got. */
|
||
|
||
static int
|
||
new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile)
|
||
int i;
|
||
int class;
|
||
int *max_needs;
|
||
int *max_nongroups;
|
||
int global;
|
||
FILE *dumpfile;
|
||
{
|
||
register enum reg_class *p;
|
||
int val;
|
||
int regno = potential_reload_regs[i];
|
||
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
abort (); /* Caller failed to find any register. */
|
||
|
||
if (fixed_regs[regno] || TEST_HARD_REG_BIT (forbidden_regs, regno))
|
||
fatal ("fixed or forbidden register was spilled.\n\
|
||
This may be due to a compiler bug or to impossible asm statements.");
|
||
|
||
/* Make reg REGNO an additional reload reg. */
|
||
|
||
potential_reload_regs[i] = -1;
|
||
spill_regs[n_spills] = regno;
|
||
spill_reg_order[regno] = n_spills;
|
||
if (dumpfile)
|
||
fprintf (dumpfile, "Spilling reg %d.\n", spill_regs[n_spills]);
|
||
|
||
/* Clear off the needs we just satisfied. */
|
||
|
||
max_needs[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
max_needs[(int) *p++]--;
|
||
|
||
if (max_nongroups && max_nongroups[class] > 0)
|
||
{
|
||
SET_HARD_REG_BIT (counted_for_nongroups, regno);
|
||
max_nongroups[class]--;
|
||
p = reg_class_superclasses[class];
|
||
while (*p != LIM_REG_CLASSES)
|
||
max_nongroups[(int) *p++]--;
|
||
}
|
||
|
||
/* Spill every pseudo reg that was allocated to this reg
|
||
or to something that overlaps this reg. */
|
||
|
||
val = spill_hard_reg (spill_regs[n_spills], global, dumpfile, 0);
|
||
|
||
/* If there are some registers still to eliminate and this register
|
||
wasn't ever used before, additional stack space may have to be
|
||
allocated to store this register. Thus, we may have changed the offset
|
||
between the stack and frame pointers, so mark that something has changed.
|
||
(If new pseudos were spilled, thus requiring more space, VAL would have
|
||
been set non-zero by the call to spill_hard_reg above since additional
|
||
reloads may be needed in that case.
|
||
|
||
One might think that we need only set VAL to 1 if this is a call-used
|
||
register. However, the set of registers that must be saved by the
|
||
prologue is not identical to the call-used set. For example, the
|
||
register used by the call insn for the return PC is a call-used register,
|
||
but must be saved by the prologue. */
|
||
if (num_eliminable && ! regs_ever_live[spill_regs[n_spills]])
|
||
val = 1;
|
||
|
||
regs_ever_live[spill_regs[n_spills]] = 1;
|
||
n_spills++;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Delete an unneeded INSN and any previous insns who sole purpose is loading
|
||
data that is dead in INSN. */
|
||
|
||
static void
|
||
delete_dead_insn (insn)
|
||
rtx insn;
|
||
{
|
||
rtx prev = prev_real_insn (insn);
|
||
rtx prev_dest;
|
||
|
||
/* If the previous insn sets a register that dies in our insn, delete it
|
||
too. */
|
||
if (prev && GET_CODE (PATTERN (prev)) == SET
|
||
&& (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
|
||
&& reg_mentioned_p (prev_dest, PATTERN (insn))
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest)))
|
||
delete_dead_insn (prev);
|
||
|
||
PUT_CODE (insn, NOTE);
|
||
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (insn) = 0;
|
||
}
|
||
|
||
/* Modify the home of pseudo-reg I.
|
||
The new home is present in reg_renumber[I].
|
||
|
||
FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
|
||
or it may be -1, meaning there is none or it is not relevant.
|
||
This is used so that all pseudos spilled from a given hard reg
|
||
can share one stack slot. */
|
||
|
||
static void
|
||
alter_reg (i, from_reg)
|
||
register int i;
|
||
int from_reg;
|
||
{
|
||
/* When outputting an inline function, this can happen
|
||
for a reg that isn't actually used. */
|
||
if (regno_reg_rtx[i] == 0)
|
||
return;
|
||
|
||
/* If the reg got changed to a MEM at rtl-generation time,
|
||
ignore it. */
|
||
if (GET_CODE (regno_reg_rtx[i]) != REG)
|
||
return;
|
||
|
||
/* Modify the reg-rtx to contain the new hard reg
|
||
number or else to contain its pseudo reg number. */
|
||
REGNO (regno_reg_rtx[i])
|
||
= reg_renumber[i] >= 0 ? reg_renumber[i] : i;
|
||
|
||
/* If we have a pseudo that is needed but has no hard reg or equivalent,
|
||
allocate a stack slot for it. */
|
||
|
||
if (reg_renumber[i] < 0
|
||
&& reg_n_refs[i] > 0
|
||
&& reg_equiv_constant[i] == 0
|
||
&& reg_equiv_memory_loc[i] == 0)
|
||
{
|
||
register rtx x;
|
||
int inherent_size = PSEUDO_REGNO_BYTES (i);
|
||
int total_size = MAX (inherent_size, reg_max_ref_width[i]);
|
||
int adjust = 0;
|
||
|
||
/* Each pseudo reg has an inherent size which comes from its own mode,
|
||
and a total size which provides room for paradoxical subregs
|
||
which refer to the pseudo reg in wider modes.
|
||
|
||
We can use a slot already allocated if it provides both
|
||
enough inherent space and enough total space.
|
||
Otherwise, we allocate a new slot, making sure that it has no less
|
||
inherent space, and no less total space, then the previous slot. */
|
||
if (from_reg == -1)
|
||
{
|
||
/* No known place to spill from => no slot to reuse. */
|
||
x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size, -1);
|
||
#if BYTES_BIG_ENDIAN
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = inherent_size - total_size;
|
||
#endif
|
||
}
|
||
/* Reuse a stack slot if possible. */
|
||
else if (spill_stack_slot[from_reg] != 0
|
||
&& spill_stack_slot_width[from_reg] >= total_size
|
||
&& (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
>= inherent_size))
|
||
x = spill_stack_slot[from_reg];
|
||
/* Allocate a bigger slot. */
|
||
else
|
||
{
|
||
/* Compute maximum size needed, both for inherent size
|
||
and for total size. */
|
||
enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
||
if (spill_stack_slot[from_reg])
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
|
||
> inherent_size)
|
||
mode = GET_MODE (spill_stack_slot[from_reg]);
|
||
if (spill_stack_slot_width[from_reg] > total_size)
|
||
total_size = spill_stack_slot_width[from_reg];
|
||
}
|
||
/* Make a slot with that size. */
|
||
x = assign_stack_local (mode, total_size, -1);
|
||
#if BYTES_BIG_ENDIAN
|
||
/* Cancel the big-endian correction done in assign_stack_local.
|
||
Get the address of the beginning of the slot.
|
||
This is so we can do a big-endian correction unconditionally
|
||
below. */
|
||
adjust = GET_MODE_SIZE (mode) - total_size;
|
||
#endif
|
||
spill_stack_slot[from_reg] = x;
|
||
spill_stack_slot_width[from_reg] = total_size;
|
||
}
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* On a big endian machine, the "address" of the slot
|
||
is the address of the low part that fits its inherent mode. */
|
||
if (inherent_size < total_size)
|
||
adjust += (total_size - inherent_size);
|
||
#endif /* BYTES_BIG_ENDIAN */
|
||
|
||
/* If we have any adjustment to make, or if the stack slot is the
|
||
wrong mode, make a new stack slot. */
|
||
if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
|
||
{
|
||
x = gen_rtx (MEM, GET_MODE (regno_reg_rtx[i]),
|
||
plus_constant (XEXP (x, 0), adjust));
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
|
||
}
|
||
|
||
/* Save the stack slot for later. */
|
||
reg_equiv_memory_loc[i] = x;
|
||
}
|
||
}
|
||
|
||
/* Mark the slots in regs_ever_live for the hard regs
|
||
used by pseudo-reg number REGNO. */
|
||
|
||
void
|
||
mark_home_live (regno)
|
||
int regno;
|
||
{
|
||
register int i, lim;
|
||
i = reg_renumber[regno];
|
||
if (i < 0)
|
||
return;
|
||
lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
|
||
while (i < lim)
|
||
regs_ever_live[i++] = 1;
|
||
}
|
||
|
||
/* This function handles the tracking of elimination offsets around branches.
|
||
|
||
X is a piece of RTL being scanned.
|
||
|
||
INSN is the insn that it came from, if any.
|
||
|
||
INITIAL_P is non-zero if we are to set the offset to be the initial
|
||
offset and zero if we are setting the offset of the label to be the
|
||
current offset. */
|
||
|
||
static void
|
||
set_label_offsets (x, insn, initial_p)
|
||
rtx x;
|
||
rtx insn;
|
||
int initial_p;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx tem;
|
||
int i;
|
||
struct elim_table *p;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
if (LABEL_REF_NONLOCAL_P (x))
|
||
return;
|
||
|
||
x = XEXP (x, 0);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case CODE_LABEL:
|
||
/* If we know nothing about this label, set the desired offsets. Note
|
||
that this sets the offset at a label to be the offset before a label
|
||
if we don't know anything about the label. This is not correct for
|
||
the label after a BARRIER, but is the best guess we can make. If
|
||
we guessed wrong, we will suppress an elimination that might have
|
||
been possible had we been able to guess correctly. */
|
||
|
||
if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
|
||
{
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
offsets_at[CODE_LABEL_NUMBER (x)][i]
|
||
= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset);
|
||
offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
|
||
}
|
||
|
||
/* Otherwise, if this is the definition of a label and it is
|
||
preceded by a BARRIER, set our offsets to the known offset of
|
||
that label. */
|
||
|
||
else if (x == insn
|
||
&& (tem = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (tem) == BARRIER)
|
||
{
|
||
num_not_at_initial_offset = 0;
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
{
|
||
reg_eliminate[i].offset = reg_eliminate[i].previous_offset
|
||
= offsets_at[CODE_LABEL_NUMBER (x)][i];
|
||
if (reg_eliminate[i].can_eliminate
|
||
&& (reg_eliminate[i].offset
|
||
!= reg_eliminate[i].initial_offset))
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
else
|
||
/* If neither of the above cases is true, compare each offset
|
||
with those previously recorded and suppress any eliminations
|
||
where the offsets disagree. */
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (offsets_at[CODE_LABEL_NUMBER (x)][i]
|
||
!= (initial_p ? reg_eliminate[i].initial_offset
|
||
: reg_eliminate[i].offset))
|
||
reg_eliminate[i].can_eliminate = 0;
|
||
|
||
return;
|
||
|
||
case JUMP_INSN:
|
||
set_label_offsets (PATTERN (insn), insn, initial_p);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN:
|
||
case CALL_INSN:
|
||
/* Any labels mentioned in REG_LABEL notes can be branched to indirectly
|
||
and hence must have all eliminations at their initial offsets. */
|
||
for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
|
||
if (REG_NOTE_KIND (tem) == REG_LABEL)
|
||
set_label_offsets (XEXP (tem, 0), insn, 1);
|
||
return;
|
||
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
/* Each of the labels in the address vector must be at their initial
|
||
offsets. We want the first first for ADDR_VEC and the second
|
||
field for ADDR_DIFF_VEC. */
|
||
|
||
for (i = 0; i < XVECLEN (x, code == ADDR_DIFF_VEC); i++)
|
||
set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
|
||
insn, initial_p);
|
||
return;
|
||
|
||
case SET:
|
||
/* We only care about setting PC. If the source is not RETURN,
|
||
IF_THEN_ELSE, or a label, disable any eliminations not at
|
||
their initial offsets. Similarly if any arm of the IF_THEN_ELSE
|
||
isn't one of those possibilities. For branches to a label,
|
||
call ourselves recursively.
|
||
|
||
Note that this can disable elimination unnecessarily when we have
|
||
a non-local goto since it will look like a non-constant jump to
|
||
someplace in the current function. This isn't a significant
|
||
problem since such jumps will normally be when all elimination
|
||
pairs are back to their initial offsets. */
|
||
|
||
if (SET_DEST (x) != pc_rtx)
|
||
return;
|
||
|
||
switch (GET_CODE (SET_SRC (x)))
|
||
{
|
||
case PC:
|
||
case RETURN:
|
||
return;
|
||
|
||
case LABEL_REF:
|
||
set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
|
||
return;
|
||
|
||
case IF_THEN_ELSE:
|
||
tem = XEXP (SET_SRC (x), 1);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
|
||
tem = XEXP (SET_SRC (x), 2);
|
||
if (GET_CODE (tem) == LABEL_REF)
|
||
set_label_offsets (XEXP (tem, 0), insn, initial_p);
|
||
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
|
||
break;
|
||
return;
|
||
}
|
||
|
||
/* If we reach here, all eliminations must be at their initial
|
||
offset because we are doing a jump to a variable address. */
|
||
for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++)
|
||
if (p->offset != p->initial_offset)
|
||
p->can_eliminate = 0;
|
||
}
|
||
}
|
||
|
||
/* Used for communication between the next two function to properly share
|
||
the vector for an ASM_OPERANDS. */
|
||
|
||
static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec;
|
||
|
||
/* Scan X and replace any eliminable registers (such as fp) with a
|
||
replacement (such as sp), plus an offset.
|
||
|
||
MEM_MODE is the mode of an enclosing MEM. We need this to know how
|
||
much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
|
||
MEM, we are allowed to replace a sum of a register and the constant zero
|
||
with the register, which we cannot do outside a MEM. In addition, we need
|
||
to record the fact that a register is referenced outside a MEM.
|
||
|
||
If INSN is nonzero, it is the insn containing X. If we replace a REG
|
||
in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
|
||
CLOBBER of the pseudo after INSN so find_equiv_regs will know that
|
||
that the REG is being modified.
|
||
|
||
If we see a modification to a register we know about, take the
|
||
appropriate action (see case SET, below).
|
||
|
||
REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
|
||
replacements done assuming all offsets are at their initial values. If
|
||
they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
|
||
encounter, return the actual location so that find_reloads will do
|
||
the proper thing. */
|
||
|
||
rtx
|
||
eliminate_regs (x, mem_mode, insn)
|
||
rtx x;
|
||
enum machine_mode mem_mode;
|
||
rtx insn;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
struct elim_table *ep;
|
||
int regno;
|
||
rtx new;
|
||
int i, j;
|
||
char *fmt;
|
||
int copied = 0;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case ASM_INPUT:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case RETURN:
|
||
return x;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
|
||
/* First handle the case where we encounter a bare register that
|
||
is eliminable. Replace it with a PLUS. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == x && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode)
|
||
ep->ref_outside_mem = 1;
|
||
return plus_constant (ep->to_rtx, ep->previous_offset);
|
||
}
|
||
|
||
}
|
||
else if (reg_equiv_memory_loc && reg_equiv_memory_loc[regno]
|
||
&& (reg_equiv_address[regno] || num_not_at_initial_offset))
|
||
{
|
||
/* In this case, find_reloads would attempt to either use an
|
||
incorrect address (if something is not at its initial offset)
|
||
or substitute an replaced address into an insn (which loses
|
||
if the offset is changed by some later action). So we simply
|
||
return the replaced stack slot (assuming it is changed by
|
||
elimination) and ignore the fact that this is actually a
|
||
reference to the pseudo. Ensure we make a copy of the
|
||
address in case it is shared. */
|
||
new = eliminate_regs (reg_equiv_memory_loc[regno],
|
||
mem_mode, NULL_RTX);
|
||
if (new != reg_equiv_memory_loc[regno])
|
||
return copy_rtx (new);
|
||
}
|
||
return x;
|
||
|
||
case PLUS:
|
||
/* If this is the sum of an eliminable register and a constant, rework
|
||
the sum. */
|
||
if (GET_CODE (XEXP (x, 0)) == REG
|
||
&& REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
|
||
&& CONSTANT_P (XEXP (x, 1)))
|
||
{
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
|
||
{
|
||
if (! mem_mode)
|
||
ep->ref_outside_mem = 1;
|
||
|
||
/* The only time we want to replace a PLUS with a REG (this
|
||
occurs when the constant operand of the PLUS is the negative
|
||
of the offset) is when we are inside a MEM. We won't want
|
||
to do so at other times because that would change the
|
||
structure of the insn in a way that reload can't handle.
|
||
We special-case the commonest situation in
|
||
eliminate_regs_in_insn, so just replace a PLUS with a
|
||
PLUS here, unless inside a MEM. */
|
||
if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == - ep->previous_offset)
|
||
return ep->to_rtx;
|
||
else
|
||
return gen_rtx (PLUS, Pmode, ep->to_rtx,
|
||
plus_constant (XEXP (x, 1),
|
||
ep->previous_offset));
|
||
}
|
||
|
||
/* If the register is not eliminable, we are done since the other
|
||
operand is a constant. */
|
||
return x;
|
||
}
|
||
|
||
/* If this is part of an address, we want to bring any constant to the
|
||
outermost PLUS. We will do this by doing register replacement in
|
||
our operands and seeing if a constant shows up in one of them.
|
||
|
||
We assume here this is part of an address (or a "load address" insn)
|
||
since an eliminable register is not likely to appear in any other
|
||
context.
|
||
|
||
If we have (plus (eliminable) (reg)), we want to produce
|
||
(plus (plus (replacement) (reg) (const))). If this was part of a
|
||
normal add insn, (plus (replacement) (reg)) will be pushed as a
|
||
reload. This is the desired action. */
|
||
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, NULL_RTX);
|
||
rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, NULL_RTX);
|
||
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
{
|
||
/* If one side is a PLUS and the other side is a pseudo that
|
||
didn't get a hard register but has a reg_equiv_constant,
|
||
we must replace the constant here since it may no longer
|
||
be in the position of any operand. */
|
||
if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
|
||
&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new1)] < 0
|
||
&& reg_equiv_constant != 0
|
||
&& reg_equiv_constant[REGNO (new1)] != 0)
|
||
new1 = reg_equiv_constant[REGNO (new1)];
|
||
else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
|
||
&& REGNO (new0) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (new0)] < 0
|
||
&& reg_equiv_constant[REGNO (new0)] != 0)
|
||
new0 = reg_equiv_constant[REGNO (new0)];
|
||
|
||
new = form_sum (new0, new1);
|
||
|
||
/* As above, if we are not inside a MEM we do not want to
|
||
turn a PLUS into something else. We might try to do so here
|
||
for an addition of 0 if we aren't optimizing. */
|
||
if (! mem_mode && GET_CODE (new) != PLUS)
|
||
return gen_rtx (PLUS, GET_MODE (x), new, const0_rtx);
|
||
else
|
||
return new;
|
||
}
|
||
}
|
||
return x;
|
||
|
||
case EXPR_LIST:
|
||
/* If we have something in XEXP (x, 0), the usual case, eliminate it. */
|
||
if (XEXP (x, 0))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, NULL_RTX);
|
||
if (new != XEXP (x, 0))
|
||
x = gen_rtx (EXPR_LIST, REG_NOTE_KIND (x), new, XEXP (x, 1));
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case INSN_LIST:
|
||
/* Now do eliminations in the rest of the chain. If this was
|
||
an EXPR_LIST, this might result in allocating more memory than is
|
||
strictly needed, but it simplifies the code. */
|
||
if (XEXP (x, 1))
|
||
{
|
||
new = eliminate_regs (XEXP (x, 1), mem_mode, NULL_RTX);
|
||
if (new != XEXP (x, 1))
|
||
return gen_rtx (INSN_LIST, GET_MODE (x), XEXP (x, 0), new);
|
||
}
|
||
return x;
|
||
|
||
case CALL:
|
||
case COMPARE:
|
||
case MINUS:
|
||
case MULT:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
case AND: case IOR: case XOR:
|
||
case LSHIFT: case ASHIFT: case ROTATE:
|
||
case ASHIFTRT: case LSHIFTRT: case ROTATERT:
|
||
case NE: case EQ:
|
||
case GE: case GT: case GEU: case GTU:
|
||
case LE: case LT: case LEU: case LTU:
|
||
{
|
||
rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, NULL_RTX);
|
||
rtx new1
|
||
= XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, NULL_RTX) : 0;
|
||
|
||
if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
|
||
return gen_rtx (code, GET_MODE (x), new0, new1);
|
||
}
|
||
return x;
|
||
|
||
case PRE_INC:
|
||
case POST_INC:
|
||
case PRE_DEC:
|
||
case POST_DEC:
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
{
|
||
if (code == PRE_DEC || code == POST_DEC)
|
||
ep->offset += GET_MODE_SIZE (mem_mode);
|
||
else
|
||
ep->offset -= GET_MODE_SIZE (mem_mode);
|
||
}
|
||
|
||
/* Fall through to generic unary operation case. */
|
||
case USE:
|
||
case STRICT_LOW_PART:
|
||
case NEG: case NOT:
|
||
case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
||
case FLOAT: case FIX:
|
||
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
||
case ABS:
|
||
case SQRT:
|
||
case FFS:
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, NULL_RTX);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case SUBREG:
|
||
/* Similar to above processing, but preserve SUBREG_WORD.
|
||
Convert (subreg (mem)) to (mem) if not paradoxical.
|
||
Also, if we have a non-paradoxical (subreg (pseudo)) and the
|
||
pseudo didn't get a hard reg, we must replace this with the
|
||
eliminated version of the memory location because push_reloads
|
||
may do the replacement in certain circumstances. */
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
&& reg_equiv_memory_loc != 0
|
||
&& reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
|
||
{
|
||
new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))],
|
||
mem_mode, NULL_RTX);
|
||
|
||
/* If we didn't change anything, we must retain the pseudo. */
|
||
if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))])
|
||
new = XEXP (x, 0);
|
||
else
|
||
/* Otherwise, ensure NEW isn't shared in case we have to reload
|
||
it. */
|
||
new = copy_rtx (new);
|
||
}
|
||
else
|
||
new = eliminate_regs (SUBREG_REG (x), mem_mode, NULL_RTX);
|
||
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
if (GET_CODE (new) == MEM
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (new))))
|
||
{
|
||
int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
|
||
enum machine_mode mode = GET_MODE (x);
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
offset += (MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (new)))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
|
||
#endif
|
||
|
||
PUT_MODE (new, mode);
|
||
XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
|
||
return new;
|
||
}
|
||
else
|
||
return gen_rtx (SUBREG, GET_MODE (x), new, SUBREG_WORD (x));
|
||
}
|
||
|
||
return x;
|
||
|
||
case CLOBBER:
|
||
/* If clobbering a register that is the replacement register for an
|
||
elimination we still think can be performed, note that it cannot
|
||
be performed. Otherwise, we need not be concerned about it. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->to_rtx == XEXP (x, 0))
|
||
ep->can_eliminate = 0;
|
||
|
||
new = eliminate_regs (XEXP (x, 0), mem_mode, NULL_RTX);
|
||
if (new != XEXP (x, 0))
|
||
return gen_rtx (code, GET_MODE (x), new);
|
||
return x;
|
||
|
||
case ASM_OPERANDS:
|
||
{
|
||
rtx *temp_vec;
|
||
/* Properly handle sharing input and constraint vectors. */
|
||
if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec)
|
||
{
|
||
/* When we come to a new vector not seen before,
|
||
scan all its elements; keep the old vector if none
|
||
of them changes; otherwise, make a copy. */
|
||
old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x);
|
||
temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx));
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i),
|
||
mem_mode, NULL_RTX);
|
||
|
||
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
|
||
if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i))
|
||
break;
|
||
|
||
if (i == ASM_OPERANDS_INPUT_LENGTH (x))
|
||
new_asm_operands_vec = old_asm_operands_vec;
|
||
else
|
||
new_asm_operands_vec
|
||
= gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec);
|
||
}
|
||
|
||
/* If we had to copy the vector, copy the entire ASM_OPERANDS. */
|
||
if (new_asm_operands_vec == old_asm_operands_vec)
|
||
return x;
|
||
|
||
new = gen_rtx (ASM_OPERANDS, VOIDmode, ASM_OPERANDS_TEMPLATE (x),
|
||
ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
|
||
ASM_OPERANDS_OUTPUT_IDX (x), new_asm_operands_vec,
|
||
ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x),
|
||
ASM_OPERANDS_SOURCE_FILE (x),
|
||
ASM_OPERANDS_SOURCE_LINE (x));
|
||
new->volatil = x->volatil;
|
||
return new;
|
||
}
|
||
|
||
case SET:
|
||
/* Check for setting a register that we know about. */
|
||
if (GET_CODE (SET_DEST (x)) == REG)
|
||
{
|
||
/* See if this is setting the replacement register for an
|
||
elimination.
|
||
|
||
If DEST is the frame pointer, we do nothing because we assume that
|
||
all assignments to the frame pointer are for non-local gotos and
|
||
are being done at a time when they are valid and do not disturb
|
||
anything else. Some machines want to eliminate a fake argument
|
||
pointer with either the frame or stack pointer. Assignments to
|
||
the frame pointer must not prevent this elimination. */
|
||
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->to_rtx == SET_DEST (x)
|
||
&& SET_DEST (x) != frame_pointer_rtx)
|
||
{
|
||
/* If it is being incremented, adjust the offset. Otherwise,
|
||
this elimination can't be done. */
|
||
rtx src = SET_SRC (x);
|
||
|
||
if (GET_CODE (src) == PLUS
|
||
&& XEXP (src, 0) == SET_DEST (x)
|
||
&& GET_CODE (XEXP (src, 1)) == CONST_INT)
|
||
ep->offset -= INTVAL (XEXP (src, 1));
|
||
else
|
||
ep->can_eliminate = 0;
|
||
}
|
||
|
||
/* Now check to see we are assigning to a register that can be
|
||
eliminated. If so, it must be as part of a PARALLEL, since we
|
||
will not have been called if this is a single SET. So indicate
|
||
that we can no longer eliminate this reg. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate)
|
||
ep->can_eliminate = 0;
|
||
}
|
||
|
||
/* Now avoid the loop below in this common case. */
|
||
{
|
||
rtx new0 = eliminate_regs (SET_DEST (x), 0, NULL_RTX);
|
||
rtx new1 = eliminate_regs (SET_SRC (x), 0, NULL_RTX);
|
||
|
||
/* If SET_DEST changed from a REG to a MEM and INSN is non-zero,
|
||
write a CLOBBER insn. */
|
||
if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM
|
||
&& insn != 0)
|
||
emit_insn_after (gen_rtx (CLOBBER, VOIDmode, SET_DEST (x)), insn);
|
||
|
||
if (new0 != SET_DEST (x) || new1 != SET_SRC (x))
|
||
return gen_rtx (SET, VOIDmode, new0, new1);
|
||
}
|
||
|
||
return x;
|
||
|
||
case MEM:
|
||
/* Our only special processing is to pass the mode of the MEM to our
|
||
recursive call and copy the flags. While we are here, handle this
|
||
case more efficiently. */
|
||
new = eliminate_regs (XEXP (x, 0), GET_MODE (x), NULL_RTX);
|
||
if (new != XEXP (x, 0))
|
||
{
|
||
new = gen_rtx (MEM, GET_MODE (x), new);
|
||
new->volatil = x->volatil;
|
||
new->unchanging = x->unchanging;
|
||
new->in_struct = x->in_struct;
|
||
return new;
|
||
}
|
||
else
|
||
return x;
|
||
}
|
||
|
||
/* Process each of our operands recursively. If any have changed, make a
|
||
copy of the rtx. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
{
|
||
new = eliminate_regs (XEXP (x, i), mem_mode, NULL_RTX);
|
||
if (new != XEXP (x, i) && ! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
bcopy (x, new_x, (sizeof (*new_x) - sizeof (new_x->fld)
|
||
+ (sizeof (new_x->fld[0])
|
||
* GET_RTX_LENGTH (code))));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XEXP (x, i) = new;
|
||
}
|
||
else if (*fmt == 'E')
|
||
{
|
||
int copied_vec = 0;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
|
||
if (new != XVECEXP (x, i, j) && ! copied_vec)
|
||
{
|
||
rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
|
||
&XVECEXP (x, i, 0));
|
||
if (! copied)
|
||
{
|
||
rtx new_x = rtx_alloc (code);
|
||
bcopy (x, new_x, (sizeof (*new_x) - sizeof (new_x->fld)
|
||
+ (sizeof (new_x->fld[0])
|
||
* GET_RTX_LENGTH (code))));
|
||
x = new_x;
|
||
copied = 1;
|
||
}
|
||
XVEC (x, i) = new_v;
|
||
copied_vec = 1;
|
||
}
|
||
XVECEXP (x, i, j) = new;
|
||
}
|
||
}
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Scan INSN and eliminate all eliminable registers in it.
|
||
|
||
If REPLACE is nonzero, do the replacement destructively. Also
|
||
delete the insn as dead it if it is setting an eliminable register.
|
||
|
||
If REPLACE is zero, do all our allocations in reload_obstack.
|
||
|
||
If no eliminations were done and this insn doesn't require any elimination
|
||
processing (these are not identical conditions: it might be updating sp,
|
||
but not referencing fp; this needs to be seen during reload_as_needed so
|
||
that the offset between fp and sp can be taken into consideration), zero
|
||
is returned. Otherwise, 1 is returned. */
|
||
|
||
static int
|
||
eliminate_regs_in_insn (insn, replace)
|
||
rtx insn;
|
||
int replace;
|
||
{
|
||
rtx old_body = PATTERN (insn);
|
||
rtx new_body;
|
||
int val = 0;
|
||
struct elim_table *ep;
|
||
|
||
if (! replace)
|
||
push_obstacks (&reload_obstack, &reload_obstack);
|
||
|
||
if (GET_CODE (old_body) == SET && GET_CODE (SET_DEST (old_body)) == REG
|
||
&& REGNO (SET_DEST (old_body)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* Check for setting an eliminable register. */
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
if (ep->from_rtx == SET_DEST (old_body) && ep->can_eliminate)
|
||
{
|
||
/* In this case this insn isn't serving a useful purpose. We
|
||
will delete it in reload_as_needed once we know that this
|
||
elimination is, in fact, being done.
|
||
|
||
If REPLACE isn't set, we can't delete this insn, but neededn't
|
||
process it since it won't be used unless something changes. */
|
||
if (replace)
|
||
delete_dead_insn (insn);
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
|
||
/* Check for (set (reg) (plus (reg from) (offset))) where the offset
|
||
in the insn is the negative of the offset in FROM. Substitute
|
||
(set (reg) (reg to)) for the insn and change its code.
|
||
|
||
We have to do this here, rather than in eliminate_regs, do that we can
|
||
change the insn code. */
|
||
|
||
if (GET_CODE (SET_SRC (old_body)) == PLUS
|
||
&& GET_CODE (XEXP (SET_SRC (old_body), 0)) == REG
|
||
&& GET_CODE (XEXP (SET_SRC (old_body), 1)) == CONST_INT)
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS];
|
||
ep++)
|
||
if (ep->from_rtx == XEXP (SET_SRC (old_body), 0)
|
||
&& ep->can_eliminate
|
||
&& ep->offset == - INTVAL (XEXP (SET_SRC (old_body), 1)))
|
||
{
|
||
PATTERN (insn) = gen_rtx (SET, VOIDmode,
|
||
SET_DEST (old_body), ep->to_rtx);
|
||
INSN_CODE (insn) = -1;
|
||
val = 1;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
old_asm_operands_vec = 0;
|
||
|
||
/* Replace the body of this insn with a substituted form. If we changed
|
||
something, return non-zero. If this is the final call for this
|
||
insn (REPLACE is non-zero), do the elimination in REG_NOTES as well.
|
||
|
||
If we are replacing a body that was a (set X (plus Y Z)), try to
|
||
re-recognize the insn. We do this in case we had a simple addition
|
||
but now can do this as a load-address. This saves an insn in this
|
||
common case. */
|
||
|
||
new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX);
|
||
if (new_body != old_body)
|
||
{
|
||
/* If we aren't replacing things permanently and we changed something,
|
||
make another copy to ensure that all the RTL is new. Otherwise
|
||
things can go wrong if find_reload swaps commutative operands
|
||
and one is inside RTL that has been copied while the other is not. */
|
||
|
||
/* Don't copy an asm_operands because (1) there's no need and (2)
|
||
copy_rtx can't do it properly when there are multiple outputs. */
|
||
if (! replace && asm_noperands (old_body) < 0)
|
||
new_body = copy_rtx (new_body);
|
||
|
||
/* If we had a move insn but now we don't, rerecognize it. */
|
||
if ((GET_CODE (old_body) == SET && GET_CODE (SET_SRC (old_body)) == REG
|
||
&& (GET_CODE (new_body) != SET
|
||
|| GET_CODE (SET_SRC (new_body)) != REG))
|
||
/* If this was an add insn before, rerecognize. */
|
||
||
|
||
(GET_CODE (old_body) == SET
|
||
&& GET_CODE (SET_SRC (old_body)) == PLUS))
|
||
{
|
||
if (! validate_change (insn, &PATTERN (insn), new_body, 0))
|
||
/* If recognition fails, store the new body anyway.
|
||
It's normal to have recognition failures here
|
||
due to bizarre memory addresses; reloading will fix them. */
|
||
PATTERN (insn) = new_body;
|
||
}
|
||
else
|
||
PATTERN (insn) = new_body;
|
||
|
||
if (replace && REG_NOTES (insn))
|
||
REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, NULL_RTX);
|
||
val = 1;
|
||
}
|
||
|
||
/* Loop through all elimination pairs. See if any have changed and
|
||
recalculate the number not at initial offset.
|
||
|
||
Compute the maximum offset (minimum offset if the stack does not
|
||
grow downward) for each elimination pair.
|
||
|
||
We also detect a cases where register elimination cannot be done,
|
||
namely, if a register would be both changed and referenced outside a MEM
|
||
in the resulting insn since such an insn is often undefined and, even if
|
||
not, we cannot know what meaning will be given to it. Note that it is
|
||
valid to have a register used in an address in an insn that changes it
|
||
(presumably with a pre- or post-increment or decrement).
|
||
|
||
If anything changes, return nonzero. */
|
||
|
||
num_not_at_initial_offset = 0;
|
||
for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++)
|
||
{
|
||
if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
|
||
ep->can_eliminate = 0;
|
||
|
||
ep->ref_outside_mem = 0;
|
||
|
||
if (ep->previous_offset != ep->offset)
|
||
val = 1;
|
||
|
||
ep->previous_offset = ep->offset;
|
||
if (ep->can_eliminate && ep->offset != ep->initial_offset)
|
||
num_not_at_initial_offset++;
|
||
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
ep->max_offset = MAX (ep->max_offset, ep->offset);
|
||
#else
|
||
ep->max_offset = MIN (ep->max_offset, ep->offset);
|
||
#endif
|
||
}
|
||
|
||
done:
|
||
if (! replace)
|
||
pop_obstacks ();
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
|
||
replacement we currently believe is valid, mark it as not eliminable if X
|
||
modifies DEST in any way other than by adding a constant integer to it.
|
||
|
||
If DEST is the frame pointer, we do nothing because we assume that
|
||
all assignments to the frame pointer are nonlocal gotos and are being done
|
||
at a time when they are valid and do not disturb anything else.
|
||
Some machines want to eliminate a fake argument pointer with either the
|
||
frame or stack pointer. Assignments to the frame pointer must not prevent
|
||
this elimination.
|
||
|
||
Called via note_stores from reload before starting its passes to scan
|
||
the insns of the function. */
|
||
|
||
static void
|
||
mark_not_eliminable (dest, x)
|
||
rtx dest;
|
||
rtx x;
|
||
{
|
||
register int i;
|
||
|
||
/* A SUBREG of a hard register here is just changing its mode. We should
|
||
not see a SUBREG of an eliminable hard register, but check just in
|
||
case. */
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (dest == frame_pointer_rtx)
|
||
return;
|
||
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
|
||
&& (GET_CODE (x) != SET
|
||
|| GET_CODE (SET_SRC (x)) != PLUS
|
||
|| XEXP (SET_SRC (x), 0) != dest
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
|
||
{
|
||
reg_eliminate[i].can_eliminate_previous
|
||
= reg_eliminate[i].can_eliminate = 0;
|
||
num_eliminable--;
|
||
}
|
||
}
|
||
|
||
/* Kick all pseudos out of hard register REGNO.
|
||
If GLOBAL is nonzero, try to find someplace else to put them.
|
||
If DUMPFILE is nonzero, log actions taken on that file.
|
||
|
||
If CANT_ELIMINATE is nonzero, it means that we are doing this spill
|
||
because we found we can't eliminate some register. In the case, no pseudos
|
||
are allowed to be in the register, even if they are only in a block that
|
||
doesn't require spill registers, unlike the case when we are spilling this
|
||
hard reg to produce another spill register.
|
||
|
||
Return nonzero if any pseudos needed to be kicked out. */
|
||
|
||
static int
|
||
spill_hard_reg (regno, global, dumpfile, cant_eliminate)
|
||
register int regno;
|
||
int global;
|
||
FILE *dumpfile;
|
||
int cant_eliminate;
|
||
{
|
||
int something_changed = 0;
|
||
register int i;
|
||
|
||
SET_HARD_REG_BIT (forbidden_regs, regno);
|
||
|
||
/* Spill every pseudo reg that was allocated to this reg
|
||
or to something that overlaps this reg. */
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
if (reg_renumber[i] >= 0
|
||
&& reg_renumber[i] <= regno
|
||
&& (reg_renumber[i]
|
||
+ HARD_REGNO_NREGS (reg_renumber[i],
|
||
PSEUDO_REGNO_MODE (i))
|
||
> regno))
|
||
{
|
||
enum reg_class class = REGNO_REG_CLASS (regno);
|
||
|
||
/* If this register belongs solely to a basic block which needed no
|
||
spilling of any class that this register is contained in,
|
||
leave it be, unless we are spilling this register because
|
||
it was a hard register that can't be eliminated. */
|
||
|
||
if (! cant_eliminate
|
||
&& basic_block_needs[0]
|
||
&& reg_basic_block[i] >= 0
|
||
&& basic_block_needs[(int) class][reg_basic_block[i]] == 0)
|
||
{
|
||
enum reg_class *p;
|
||
|
||
for (p = reg_class_superclasses[(int) class];
|
||
*p != LIM_REG_CLASSES; p++)
|
||
if (basic_block_needs[(int) *p][reg_basic_block[i]] > 0)
|
||
break;
|
||
|
||
if (*p == LIM_REG_CLASSES)
|
||
continue;
|
||
}
|
||
|
||
/* Mark it as no longer having a hard register home. */
|
||
reg_renumber[i] = -1;
|
||
/* We will need to scan everything again. */
|
||
something_changed = 1;
|
||
if (global)
|
||
retry_global_alloc (i, forbidden_regs);
|
||
|
||
alter_reg (i, regno);
|
||
if (dumpfile)
|
||
{
|
||
if (reg_renumber[i] == -1)
|
||
fprintf (dumpfile, " Register %d now on stack.\n\n", i);
|
||
else
|
||
fprintf (dumpfile, " Register %d now in %d.\n\n",
|
||
i, reg_renumber[i]);
|
||
}
|
||
}
|
||
|
||
return something_changed;
|
||
}
|
||
|
||
/* Find all paradoxical subregs within X and update reg_max_ref_width. */
|
||
|
||
static void
|
||
scan_paradoxical_subregs (x)
|
||
register rtx x;
|
||
{
|
||
register int i;
|
||
register char *fmt;
|
||
register enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST_DOUBLE:
|
||
case CC0:
|
||
case PC:
|
||
case REG:
|
||
case USE:
|
||
case CLOBBER:
|
||
return;
|
||
|
||
case SUBREG:
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
reg_max_ref_width[REGNO (SUBREG_REG (x))]
|
||
= GET_MODE_SIZE (GET_MODE (x));
|
||
return;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
scan_paradoxical_subregs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >=0; j--)
|
||
scan_paradoxical_subregs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
static int
|
||
hard_reg_use_compare (p1, p2)
|
||
struct hard_reg_n_uses *p1, *p2;
|
||
{
|
||
int tem = p1->uses - p2->uses;
|
||
if (tem != 0) return tem;
|
||
/* If regs are equally good, sort by regno,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return p1->regno - p2->regno;
|
||
}
|
||
|
||
/* Choose the order to consider regs for use as reload registers
|
||
based on how much trouble would be caused by spilling one.
|
||
Store them in order of decreasing preference in potential_reload_regs. */
|
||
|
||
static void
|
||
order_regs_for_reload ()
|
||
{
|
||
register int i;
|
||
register int o = 0;
|
||
int large = 0;
|
||
|
||
struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER];
|
||
|
||
CLEAR_HARD_REG_SET (bad_spill_regs);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
potential_reload_regs[i] = -1;
|
||
|
||
/* Count number of uses of each hard reg by pseudo regs allocated to it
|
||
and then order them by decreasing use. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
hard_reg_n_uses[i].uses = 0;
|
||
hard_reg_n_uses[i].regno = i;
|
||
}
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
||
{
|
||
int regno = reg_renumber[i];
|
||
if (regno >= 0)
|
||
{
|
||
int lim = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
|
||
while (regno < lim)
|
||
hard_reg_n_uses[regno++].uses += reg_n_refs[i];
|
||
}
|
||
large += reg_n_refs[i];
|
||
}
|
||
|
||
/* Now fixed registers (which cannot safely be used for reloading)
|
||
get a very high use count so they will be considered least desirable.
|
||
Registers used explicitly in the rtl code are almost as bad. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (fixed_regs[i])
|
||
{
|
||
hard_reg_n_uses[i].uses += 2 * large + 2;
|
||
SET_HARD_REG_BIT (bad_spill_regs, i);
|
||
}
|
||
else if (regs_explicitly_used[i])
|
||
{
|
||
hard_reg_n_uses[i].uses += large + 1;
|
||
#ifndef SMALL_REGISTER_CLASSES
|
||
/* ??? We are doing this here because of the potential that
|
||
bad code may be generated if a register explicitly used in
|
||
an insn was used as a spill register for that insn. But
|
||
not using these are spill registers may lose on some machine.
|
||
We'll have to see how this works out. */
|
||
SET_HARD_REG_BIT (bad_spill_regs, i);
|
||
#endif
|
||
}
|
||
}
|
||
hard_reg_n_uses[FRAME_POINTER_REGNUM].uses += 2 * large + 2;
|
||
SET_HARD_REG_BIT (bad_spill_regs, FRAME_POINTER_REGNUM);
|
||
|
||
#ifdef ELIMINABLE_REGS
|
||
/* If registers other than the frame pointer are eliminable, mark them as
|
||
poor choices. */
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
{
|
||
hard_reg_n_uses[reg_eliminate[i].from].uses += 2 * large + 2;
|
||
SET_HARD_REG_BIT (bad_spill_regs, reg_eliminate[i].from);
|
||
}
|
||
#endif
|
||
|
||
/* Prefer registers not so far used, for use in temporary loading.
|
||
Among them, if REG_ALLOC_ORDER is defined, use that order.
|
||
Otherwise, prefer registers not preserved by calls. */
|
||
|
||
#ifdef REG_ALLOC_ORDER
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
int regno = reg_alloc_order[i];
|
||
|
||
if (hard_reg_n_uses[regno].uses == 0)
|
||
potential_reload_regs[o++] = regno;
|
||
}
|
||
#else
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i])
|
||
potential_reload_regs[o++] = i;
|
||
}
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i])
|
||
potential_reload_regs[o++] = i;
|
||
}
|
||
#endif
|
||
|
||
qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER,
|
||
sizeof hard_reg_n_uses[0], hard_reg_use_compare);
|
||
|
||
/* Now add the regs that are already used,
|
||
preferring those used less often. The fixed and otherwise forbidden
|
||
registers will be at the end of this list. */
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (hard_reg_n_uses[i].uses != 0)
|
||
potential_reload_regs[o++] = hard_reg_n_uses[i].regno;
|
||
}
|
||
|
||
/* Reload pseudo-registers into hard regs around each insn as needed.
|
||
Additional register load insns are output before the insn that needs it
|
||
and perhaps store insns after insns that modify the reloaded pseudo reg.
|
||
|
||
reg_last_reload_reg and reg_reloaded_contents keep track of
|
||
which registers are already available in reload registers.
|
||
We update these for the reloads that we perform,
|
||
as the insns are scanned. */
|
||
|
||
static void
|
||
reload_as_needed (first, live_known)
|
||
rtx first;
|
||
int live_known;
|
||
{
|
||
register rtx insn;
|
||
register int i;
|
||
int this_block = 0;
|
||
rtx x;
|
||
rtx after_call = 0;
|
||
|
||
bzero (spill_reg_rtx, sizeof spill_reg_rtx);
|
||
reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx));
|
||
bzero (reg_last_reload_reg, max_regno * sizeof (rtx));
|
||
reg_has_output_reload = (char *) alloca (max_regno);
|
||
for (i = 0; i < n_spills; i++)
|
||
{
|
||
reg_reloaded_contents[i] = -1;
|
||
reg_reloaded_insn[i] = 0;
|
||
}
|
||
|
||
/* Reset all offsets on eliminable registers to their initial values. */
|
||
#ifdef ELIMINABLE_REGS
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
{
|
||
INITIAL_ELIMINATION_OFFSET (reg_eliminate[i].from, reg_eliminate[i].to,
|
||
reg_eliminate[i].initial_offset);
|
||
reg_eliminate[i].previous_offset
|
||
= reg_eliminate[i].offset = reg_eliminate[i].initial_offset;
|
||
}
|
||
#else
|
||
INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset);
|
||
reg_eliminate[0].previous_offset
|
||
= reg_eliminate[0].offset = reg_eliminate[0].initial_offset;
|
||
#endif
|
||
|
||
num_not_at_initial_offset = 0;
|
||
|
||
for (insn = first; insn;)
|
||
{
|
||
register rtx next = NEXT_INSN (insn);
|
||
|
||
/* Notice when we move to a new basic block. */
|
||
if (live_known && this_block + 1 < n_basic_blocks
|
||
&& insn == basic_block_head[this_block+1])
|
||
++this_block;
|
||
|
||
/* If we pass a label, copy the offsets from the label information
|
||
into the current offsets of each elimination. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
{
|
||
num_not_at_initial_offset = 0;
|
||
for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
|
||
{
|
||
reg_eliminate[i].offset = reg_eliminate[i].previous_offset
|
||
= offsets_at[CODE_LABEL_NUMBER (insn)][i];
|
||
if (reg_eliminate[i].can_eliminate
|
||
&& (reg_eliminate[i].offset
|
||
!= reg_eliminate[i].initial_offset))
|
||
num_not_at_initial_offset++;
|
||
}
|
||
}
|
||
|
||
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
rtx avoid_return_reg = 0;
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* Set avoid_return_reg if this is an insn
|
||
that might use the value of a function call. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
after_call = SET_DEST (PATTERN (insn));
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
|
||
after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
|
||
else
|
||
after_call = 0;
|
||
}
|
||
else if (after_call != 0
|
||
&& !(GET_CODE (PATTERN (insn)) == SET
|
||
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
|
||
{
|
||
if (reg_mentioned_p (after_call, PATTERN (insn)))
|
||
avoid_return_reg = after_call;
|
||
after_call = 0;
|
||
}
|
||
#endif /* SMALL_REGISTER_CLASSES */
|
||
|
||
/* If this is a USE and CLOBBER of a MEM, ensure that any
|
||
references to eliminable registers have been removed. */
|
||
|
||
if ((GET_CODE (PATTERN (insn)) == USE
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
||
&& GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
|
||
XEXP (XEXP (PATTERN (insn), 0), 0)
|
||
= eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
|
||
GET_MODE (XEXP (PATTERN (insn), 0)), NULL_RTX);
|
||
|
||
/* If we need to do register elimination processing, do so.
|
||
This might delete the insn, in which case we are done. */
|
||
if (num_eliminable && GET_MODE (insn) == QImode)
|
||
{
|
||
eliminate_regs_in_insn (insn, 1);
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
insn = next;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (GET_MODE (insn) == VOIDmode)
|
||
n_reloads = 0;
|
||
/* First find the pseudo regs that must be reloaded for this insn.
|
||
This info is returned in the tables reload_... (see reload.h).
|
||
Also modify the body of INSN by substituting RELOAD
|
||
rtx's for those pseudo regs. */
|
||
else
|
||
{
|
||
bzero (reg_has_output_reload, max_regno);
|
||
CLEAR_HARD_REG_SET (reg_is_output_reload);
|
||
|
||
find_reloads (insn, 1, spill_indirect_levels, live_known,
|
||
spill_reg_order);
|
||
}
|
||
|
||
if (n_reloads > 0)
|
||
{
|
||
rtx prev = PREV_INSN (insn), next = NEXT_INSN (insn);
|
||
rtx p;
|
||
int class;
|
||
|
||
/* If this block has not had spilling done for a
|
||
particular clas and we have any non-optionals that need a
|
||
spill reg in that class, abort. */
|
||
|
||
for (class = 0; class < N_REG_CLASSES; class++)
|
||
if (basic_block_needs[class] != 0
|
||
&& basic_block_needs[class][this_block] == 0)
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (class == (int) reload_reg_class[i]
|
||
&& reload_reg_rtx[i] == 0
|
||
&& ! reload_optional[i]
|
||
&& (reload_in[i] != 0 || reload_out[i] != 0
|
||
|| reload_secondary_p[i] != 0))
|
||
abort ();
|
||
|
||
/* Now compute which reload regs to reload them into. Perhaps
|
||
reusing reload regs from previous insns, or else output
|
||
load insns to reload them. Maybe output store insns too.
|
||
Record the choices of reload reg in reload_reg_rtx. */
|
||
choose_reload_regs (insn, avoid_return_reg);
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* Merge any reloads that we didn't combine for fear of
|
||
increasing the number of spill registers needed but now
|
||
discover can be safely merged. */
|
||
merge_assigned_reloads (insn);
|
||
#endif
|
||
|
||
/* Generate the insns to reload operands into or out of
|
||
their reload regs. */
|
||
emit_reload_insns (insn);
|
||
|
||
/* Substitute the chosen reload regs from reload_reg_rtx
|
||
into the insn's body (or perhaps into the bodies of other
|
||
load and store insn that we just made for reloading
|
||
and that we moved the structure into). */
|
||
subst_reloads ();
|
||
|
||
/* If this was an ASM, make sure that all the reload insns
|
||
we have generated are valid. If not, give an error
|
||
and delete them. */
|
||
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
|
||
if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& (recog_memoized (p) < 0
|
||
|| (insn_extract (p),
|
||
! constrain_operands (INSN_CODE (p), 1))))
|
||
{
|
||
error_for_asm (insn,
|
||
"`asm' operand requires impossible reload");
|
||
PUT_CODE (p, NOTE);
|
||
NOTE_SOURCE_FILE (p) = 0;
|
||
NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
|
||
}
|
||
}
|
||
/* Any previously reloaded spilled pseudo reg, stored in this insn,
|
||
is no longer validly lying around to save a future reload.
|
||
Note that this does not detect pseudos that were reloaded
|
||
for this insn in order to be stored in
|
||
(obeying register constraints). That is correct; such reload
|
||
registers ARE still valid. */
|
||
note_stores (PATTERN (insn), forget_old_reloads_1);
|
||
|
||
/* There may have been CLOBBER insns placed after INSN. So scan
|
||
between INSN and NEXT and use them to forget old reloads. */
|
||
for (x = NEXT_INSN (insn); x != next; x = NEXT_INSN (x))
|
||
if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
|
||
note_stores (PATTERN (x), forget_old_reloads_1);
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
/* Likewise for regs altered by auto-increment in this insn.
|
||
But note that the reg-notes are not changed by reloading:
|
||
they still contain the pseudo-regs, not the spill regs. */
|
||
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
||
if (REG_NOTE_KIND (x) == REG_INC)
|
||
{
|
||
/* See if this pseudo reg was reloaded in this insn.
|
||
If so, its last-reload info is still valid
|
||
because it is based on this insn's reload. */
|
||
for (i = 0; i < n_reloads; i++)
|
||
if (reload_out[i] == XEXP (x, 0))
|
||
break;
|
||
|
||
if (i == n_reloads)
|
||
forget_old_reloads_1 (XEXP (x, 0));
|
||
}
|
||
#endif
|
||
}
|
||
/* A reload reg's contents are unknown after a label. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
for (i = 0; i < n_spills; i++)
|
||
{
|
||
reg_reloaded_contents[i] = -1;
|
||
reg_reloaded_insn[i] = 0;
|
||
}
|
||
|
||
/* Don't assume a reload reg is still good after a call insn
|
||
if it is a call-used reg. */
|
||
else if (GET_CODE (insn) == CALL_INSN)
|
||
for (i = 0; i < n_spills; i++)
|
||
if (call_used_regs[spill_regs[i]])
|
||
{
|
||
reg_reloaded_contents[i] = -1;
|
||
reg_reloaded_insn[i] = 0;
|
||
}
|
||
|
||
/* In case registers overlap, allow certain insns to invalidate
|
||
particular hard registers. */
|
||
|
||
#ifdef INSN_CLOBBERS_REGNO_P
|
||
for (i = 0 ; i < n_spills ; i++)
|
||
if (INSN_CLOBBERS_REGNO_P (insn, spill_regs[i]))
|
||
{
|
||
reg_reloaded_contents[i] = -1;
|
||
reg_reloaded_insn[i] = 0;
|
||
}
|
||
#endif
|
||
|
||
insn = next;
|
||
|
||
#ifdef USE_C_ALLOCA
|
||
alloca (0);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Discard all record of any value reloaded from X,
|
||
or reloaded in X from someplace else;
|
||
unless X is an output reload reg of the current insn.
|
||
|
||
X may be a hard reg (the reload reg)
|
||
or it may be a pseudo reg that was reloaded from. */
|
||
|
||
static void
|
||
forget_old_reloads_1 (x)
|
||
rtx x;
|
||
{
|
||
register int regno;
|
||
int nr;
|
||
int offset = 0;
|
||
|
||
/* note_stores does give us subregs of hard regs. */
|
||
while (GET_CODE (x) == SUBREG)
|
||
{
|
||
offset += SUBREG_WORD (x);
|
||
x = SUBREG_REG (x);
|
||
}
|
||
|
||
if (GET_CODE (x) != REG)
|
||
return;
|
||
|
||
regno = REGNO (x) + offset;
|
||
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
nr = 1;
|
||
else
|
||
{
|
||
int i;
|
||
nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
/* Storing into a spilled-reg invalidates its contents.
|
||
This can happen if a block-local pseudo is allocated to that reg
|
||
and it wasn't spilled because this block's total need is 0.
|
||
Then some insn might have an optional reload and use this reg. */
|
||
for (i = 0; i < nr; i++)
|
||
if (spill_reg_order[regno + i] >= 0
|
||
/* But don't do this if the reg actually serves as an output
|
||
reload reg in the current instruction. */
|
||
&& (n_reloads == 0
|
||
|| ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)))
|
||
{
|
||
reg_reloaded_contents[spill_reg_order[regno + i]] = -1;
|
||
reg_reloaded_insn[spill_reg_order[regno + i]] = 0;
|
||
}
|
||
}
|
||
|
||
/* Since value of X has changed,
|
||
forget any value previously copied from it. */
|
||
|
||
while (nr-- > 0)
|
||
/* But don't forget a copy if this is the output reload
|
||
that establishes the copy's validity. */
|
||
if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
|
||
reg_last_reload_reg[regno + nr] = 0;
|
||
}
|
||
|
||
/* For each reload, the mode of the reload register. */
|
||
static enum machine_mode reload_mode[MAX_RELOADS];
|
||
|
||
/* For each reload, the largest number of registers it will require. */
|
||
static int reload_nregs[MAX_RELOADS];
|
||
|
||
/* Comparison function for qsort to decide which of two reloads
|
||
should be handled first. *P1 and *P2 are the reload numbers. */
|
||
|
||
static int
|
||
reload_reg_class_lower (p1, p2)
|
||
short *p1, *p2;
|
||
{
|
||
register int r1 = *p1, r2 = *p2;
|
||
register int t;
|
||
|
||
/* Consider required reloads before optional ones. */
|
||
t = reload_optional[r1] - reload_optional[r2];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Count all solitary classes before non-solitary ones. */
|
||
t = ((reg_class_size[(int) reload_reg_class[r2]] == 1)
|
||
- (reg_class_size[(int) reload_reg_class[r1]] == 1));
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Aside from solitaires, consider all multi-reg groups first. */
|
||
t = reload_nregs[r2] - reload_nregs[r1];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* Consider reloads in order of increasing reg-class number. */
|
||
t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2];
|
||
if (t != 0)
|
||
return t;
|
||
|
||
/* If reloads are equally urgent, sort by reload number,
|
||
so that the results of qsort leave nothing to chance. */
|
||
return r1 - r2;
|
||
}
|
||
|
||
/* The following HARD_REG_SETs indicate when each hard register is
|
||
used for a reload of various parts of the current insn. */
|
||
|
||
/* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
|
||
static HARD_REG_SET reload_reg_used;
|
||
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
|
||
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
||
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_op_addr;
|
||
/* If reg is in use for a RELOAD_FOR_INSN reload. */
|
||
static HARD_REG_SET reload_reg_used_in_insn;
|
||
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
|
||
static HARD_REG_SET reload_reg_used_in_other_addr;
|
||
|
||
/* If reg is in use as a reload reg for any sort of reload. */
|
||
static HARD_REG_SET reload_reg_used_at_all;
|
||
|
||
/* If reg is use as an inherited reload. We just mark the first register
|
||
in the group. */
|
||
static HARD_REG_SET reload_reg_used_for_inherit;
|
||
|
||
/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
|
||
TYPE. MODE is used to indicate how many consecutive regs are
|
||
actually used. */
|
||
|
||
static void
|
||
mark_reload_reg_in_use (regno, opnum, type, mode)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
enum machine_mode mode;
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
int i;
|
||
|
||
for (i = regno; i < nregs + regno; i++)
|
||
{
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
SET_HARD_REG_BIT (reload_reg_used, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
|
||
break;
|
||
}
|
||
|
||
SET_HARD_REG_BIT (reload_reg_used_at_all, i);
|
||
}
|
||
}
|
||
|
||
/* Similarly, but show REGNO is no longer in use for a reload. */
|
||
|
||
static void
|
||
clear_reload_reg_in_use (regno, opnum, type, mode)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
enum machine_mode mode;
|
||
{
|
||
int nregs = HARD_REGNO_NREGS (regno, mode);
|
||
int i;
|
||
|
||
for (i = regno; i < nregs + regno; i++)
|
||
{
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
|
||
break;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
CLEAR_HARD_REG_BIT (reload_reg_used_in_insn, i);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* 1 if reg REGNO is free as a reload reg for a reload of the sort
|
||
specified by OPNUM and TYPE. */
|
||
|
||
static int
|
||
reload_reg_free_p (regno, opnum, type)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
int i;
|
||
|
||
/* In use for a RELOAD_OTHER means it's not available for anything except
|
||
RELOAD_FOR_OTHER_ADDRESS. Recall that RELOAD_FOR_OTHER_ADDRESS is known
|
||
to be used only for inputs. */
|
||
|
||
if (type != RELOAD_FOR_OTHER_ADDRESS
|
||
&& TEST_HARD_REG_BIT (reload_reg_used, regno))
|
||
return 0;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* In use for anything means not available for a RELOAD_OTHER. */
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_at_all, regno);
|
||
|
||
/* The other kinds of use can sometimes share a register. */
|
||
case RELOAD_FOR_INPUT:
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
|
||
return 0;
|
||
|
||
/* If it is used for some other input, can't use it. */
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* If it is used in a later operand's address, can't use it. */
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an input address for this
|
||
operand or used as an input in an earlier one. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
/* Can't use a register if it is used for an output address for this
|
||
operand or used as an output in this or a later operand. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* This cannot share a register with RELOAD_FOR_INSN reloads, other
|
||
outputs, or an operand address for this or an earlier output. */
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i <= opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
is not in use for a reload in any prior part of the insn.
|
||
|
||
We can assume that the reload reg was already tested for availability
|
||
at the time it is needed, and we should not check this again,
|
||
in case the reg has already been marked in use. */
|
||
|
||
static int
|
||
reload_reg_free_before_p (regno, opnum, type)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
int i;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* These always come first. */
|
||
return 1;
|
||
|
||
case RELOAD_OTHER:
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
|
||
/* If this use is for part of the insn,
|
||
check the reg is not in use for any prior part. It is tempting
|
||
to try to do this by falling through from objecs that occur
|
||
later in the insn to ones that occur earlier, but that will not
|
||
correctly take into account the fact that here we MUST ignore
|
||
things that would prevent the register from being allocated in
|
||
the first place, since we know that it was allocated. */
|
||
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
/* Earlier reloads are for earlier outputs or their addresses,
|
||
any RELOAD_FOR_INSN reloads, any inputs or their addresses, or any
|
||
RELOAD_FOR_OTHER_ADDRESS reloads (we know it can't conflict with
|
||
RELOAD_OTHER).. */
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
/* This can't be used in the output address for this operand and
|
||
anything that can't be used for it, except that we've already
|
||
tested for RELOAD_FOR_INSN objects. */
|
||
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
|
||
return 0;
|
||
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
case RELOAD_FOR_INSN:
|
||
/* These can't conflict with inputs, or each other, so all we have to
|
||
test is input addresses and the addresses of OTHER items. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno))
|
||
return 0;
|
||
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
/* The only things earlier are the address for this and
|
||
earlier inputs, other inputs (which we know we don't conflict
|
||
with), and addresses of RELOAD_OTHER objects. */
|
||
|
||
for (i = 0; i <= opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno))
|
||
return 0;
|
||
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
/* Similarly, all we have to check is for use in earlier inputs'
|
||
addresses. */
|
||
for (i = 0; i < opnum; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno))
|
||
return 0;
|
||
|
||
return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Return 1 if the value in reload reg REGNO, as used by a reload
|
||
needed for the part of the insn specified by OPNUM and TYPE,
|
||
is still available in REGNO at the end of the insn.
|
||
|
||
We can assume that the reload reg was already tested for availability
|
||
at the time it is needed, and we should not check this again,
|
||
in case the reg has already been marked in use. */
|
||
|
||
static int
|
||
reload_reg_reaches_end_p (regno, opnum, type)
|
||
int regno;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
int i;
|
||
|
||
switch (type)
|
||
{
|
||
case RELOAD_OTHER:
|
||
/* Since a RELOAD_OTHER reload claims the reg for the entire insn,
|
||
its value must reach the end. */
|
||
return 1;
|
||
|
||
/* If this use is for part of the insn,
|
||
its value reaches if no subsequent part uses the same register.
|
||
Just like the above function, don't try to do this with lots
|
||
of fallthroughs. */
|
||
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
/* Here we check for everything else, since these don't conflict
|
||
with anything else and everything comes later. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used, regno));
|
||
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
/* Similar, except that we check only for this and subsequent inputs
|
||
and the address of only subsequent inputs and we do not need
|
||
to check for RELOAD_OTHER objects since they are known not to
|
||
conflict. */
|
||
|
||
for (i = opnum; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno))
|
||
return 0;
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
|
||
|
||
case RELOAD_FOR_INPUT:
|
||
/* Similar to input address, except we start at the next operand for
|
||
both input and input address and we do not check for
|
||
RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
|
||
would conflict. */
|
||
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
|
||
return 0;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
/* Check outputs and their addresses. */
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
|
||
|| TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
|
||
case RELOAD_FOR_INSN:
|
||
/* These conflict with other outputs with with RELOAD_OTHER. So
|
||
we need only check for output addresses. */
|
||
|
||
opnum = -1;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case RELOAD_FOR_OUTPUT:
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
/* We already know these can't conflict with a later output. So the
|
||
only thing to check are later output addresses. */
|
||
for (i = opnum + 1; i < reload_n_operands; i++)
|
||
if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Vector of reload-numbers showing the order in which the reloads should
|
||
be processed. */
|
||
short reload_order[MAX_RELOADS];
|
||
|
||
/* Indexed by reload number, 1 if incoming value
|
||
inherited from previous insns. */
|
||
char reload_inherited[MAX_RELOADS];
|
||
|
||
/* For an inherited reload, this is the insn the reload was inherited from,
|
||
if we know it. Otherwise, this is 0. */
|
||
rtx reload_inheritance_insn[MAX_RELOADS];
|
||
|
||
/* If non-zero, this is a place to get the value of the reload,
|
||
rather than using reload_in. */
|
||
rtx reload_override_in[MAX_RELOADS];
|
||
|
||
/* For each reload, the index in spill_regs of the spill register used,
|
||
or -1 if we did not need one of the spill registers for this reload. */
|
||
int reload_spill_index[MAX_RELOADS];
|
||
|
||
/* Index of last register assigned as a spill register. We allocate in
|
||
a round-robin fashio. */
|
||
|
||
static last_spill_reg = 0;
|
||
|
||
/* Find a spill register to use as a reload register for reload R.
|
||
LAST_RELOAD is non-zero if this is the last reload for the insn being
|
||
processed.
|
||
|
||
Set reload_reg_rtx[R] to the register allocated.
|
||
|
||
If NOERROR is nonzero, we return 1 if successful,
|
||
or 0 if we couldn't find a spill reg and we didn't change anything. */
|
||
|
||
static int
|
||
allocate_reload_reg (r, insn, last_reload, noerror)
|
||
int r;
|
||
rtx insn;
|
||
int last_reload;
|
||
int noerror;
|
||
{
|
||
int i;
|
||
int pass;
|
||
int count;
|
||
rtx new;
|
||
int regno;
|
||
|
||
/* If we put this reload ahead, thinking it is a group,
|
||
then insist on finding a group. Otherwise we can grab a
|
||
reg that some other reload needs.
|
||
(That can happen when we have a 68000 DATA_OR_FP_REG
|
||
which is a group of data regs or one fp reg.)
|
||
We need not be so restrictive if there are no more reloads
|
||
for this insn.
|
||
|
||
??? Really it would be nicer to have smarter handling
|
||
for that kind of reg class, where a problem like this is normal.
|
||
Perhaps those classes should be avoided for reloading
|
||
by use of more alternatives. */
|
||
|
||
int force_group = reload_nregs[r] > 1 && ! last_reload;
|
||
|
||
/* If we want a single register and haven't yet found one,
|
||
take any reg in the right class and not in use.
|
||
If we want a consecutive group, here is where we look for it.
|
||
|
||
We use two passes so we can first look for reload regs to
|
||
reuse, which are already in use for other reloads in this insn,
|
||
and only then use additional registers.
|
||
I think that maximizing reuse is needed to make sure we don't
|
||
run out of reload regs. Suppose we have three reloads, and
|
||
reloads A and B can share regs. These need two regs.
|
||
Suppose A and B are given different regs.
|
||
That leaves none for C. */
|
||
for (pass = 0; pass < 2; pass++)
|
||
{
|
||
/* I is the index in spill_regs.
|
||
We advance it round-robin between insns to use all spill regs
|
||
equally, so that inherited reloads have a chance
|
||
of leapfrogging each other. */
|
||
|
||
for (count = 0, i = last_spill_reg; count < n_spills; count++)
|
||
{
|
||
int class = (int) reload_reg_class[r];
|
||
|
||
i = (i + 1) % n_spills;
|
||
|
||
if (reload_reg_free_p (spill_regs[i], reload_opnum[r],
|
||
reload_when_needed[r])
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i])
|
||
&& HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
|
||
/* Look first for regs to share, then for unshared. But
|
||
don't share regs used for inherited reloads; they are
|
||
the ones we want to preserve. */
|
||
&& (pass
|
||
|| (TEST_HARD_REG_BIT (reload_reg_used_at_all,
|
||
spill_regs[i])
|
||
&& ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
spill_regs[i]))))
|
||
{
|
||
int nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
|
||
/* Avoid the problem where spilling a GENERAL_OR_FP_REG
|
||
(on 68000) got us two FP regs. If NR is 1,
|
||
we would reject both of them. */
|
||
if (force_group)
|
||
nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]);
|
||
/* If we need only one reg, we have already won. */
|
||
if (nr == 1)
|
||
{
|
||
/* But reject a single reg if we demand a group. */
|
||
if (force_group)
|
||
continue;
|
||
break;
|
||
}
|
||
/* Otherwise check that as many consecutive regs as we need
|
||
are available here.
|
||
Also, don't use for a group registers that are
|
||
needed for nongroups. */
|
||
if (! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]))
|
||
while (nr > 1)
|
||
{
|
||
regno = spill_regs[i] + nr - 1;
|
||
if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
|
||
&& spill_reg_order[regno] >= 0
|
||
&& reload_reg_free_p (regno, reload_opnum[r],
|
||
reload_when_needed[r])
|
||
&& ! TEST_HARD_REG_BIT (counted_for_nongroups,
|
||
regno)))
|
||
break;
|
||
nr--;
|
||
}
|
||
if (nr == 1)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found something on pass 1, omit pass 2. */
|
||
if (count < n_spills)
|
||
break;
|
||
}
|
||
|
||
/* We should have found a spill register by now. */
|
||
if (count == n_spills)
|
||
{
|
||
if (noerror)
|
||
return 0;
|
||
goto failure;
|
||
}
|
||
|
||
/* I is the index in SPILL_REG_RTX of the reload register we are to
|
||
allocate. Get an rtx for it and find its register number. */
|
||
|
||
new = spill_reg_rtx[i];
|
||
|
||
if (new == 0 || GET_MODE (new) != reload_mode[r])
|
||
spill_reg_rtx[i] = new
|
||
= gen_rtx (REG, reload_mode[r], spill_regs[i]);
|
||
|
||
regno = true_regnum (new);
|
||
|
||
/* Detect when the reload reg can't hold the reload mode.
|
||
This used to be one `if', but Sequent compiler can't handle that. */
|
||
if (HARD_REGNO_MODE_OK (regno, reload_mode[r]))
|
||
{
|
||
enum machine_mode test_mode = VOIDmode;
|
||
if (reload_in[r])
|
||
test_mode = GET_MODE (reload_in[r]);
|
||
/* If reload_in[r] has VOIDmode, it means we will load it
|
||
in whatever mode the reload reg has: to wit, reload_mode[r].
|
||
We have already tested that for validity. */
|
||
/* Aside from that, we need to test that the expressions
|
||
to reload from or into have modes which are valid for this
|
||
reload register. Otherwise the reload insns would be invalid. */
|
||
if (! (reload_in[r] != 0 && test_mode != VOIDmode
|
||
&& ! HARD_REGNO_MODE_OK (regno, test_mode)))
|
||
if (! (reload_out[r] != 0
|
||
&& ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r]))))
|
||
{
|
||
/* The reg is OK. */
|
||
last_spill_reg = i;
|
||
|
||
/* Mark as in use for this insn the reload regs we use
|
||
for this. */
|
||
mark_reload_reg_in_use (spill_regs[i], reload_opnum[r],
|
||
reload_when_needed[r], reload_mode[r]);
|
||
|
||
reload_reg_rtx[r] = new;
|
||
reload_spill_index[r] = i;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* The reg is not OK. */
|
||
if (noerror)
|
||
return 0;
|
||
|
||
failure:
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
abort ();
|
||
|
||
/* It's the user's fault; the operand's mode and constraint
|
||
don't match. Disable this reload so we don't crash in final. */
|
||
error_for_asm (insn,
|
||
"`asm' operand constraint incompatible with operand size");
|
||
reload_in[r] = 0;
|
||
reload_out[r] = 0;
|
||
reload_reg_rtx[r] = 0;
|
||
reload_optional[r] = 1;
|
||
reload_secondary_p[r] = 1;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Assign hard reg targets for the pseudo-registers we must reload
|
||
into hard regs for this insn.
|
||
Also output the instructions to copy them in and out of the hard regs.
|
||
|
||
For machines with register classes, we are responsible for
|
||
finding a reload reg in the proper class. */
|
||
|
||
static void
|
||
choose_reload_regs (insn, avoid_return_reg)
|
||
rtx insn;
|
||
rtx avoid_return_reg;
|
||
{
|
||
register int i, j;
|
||
int max_group_size = 1;
|
||
enum reg_class group_class = NO_REGS;
|
||
int inheritance;
|
||
|
||
rtx save_reload_reg_rtx[MAX_RELOADS];
|
||
char save_reload_inherited[MAX_RELOADS];
|
||
rtx save_reload_inheritance_insn[MAX_RELOADS];
|
||
rtx save_reload_override_in[MAX_RELOADS];
|
||
int save_reload_spill_index[MAX_RELOADS];
|
||
HARD_REG_SET save_reload_reg_used;
|
||
HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS];
|
||
HARD_REG_SET save_reload_reg_used_in_op_addr;
|
||
HARD_REG_SET save_reload_reg_used_in_insn;
|
||
HARD_REG_SET save_reload_reg_used_in_other_addr;
|
||
HARD_REG_SET save_reload_reg_used_at_all;
|
||
|
||
bzero (reload_inherited, MAX_RELOADS);
|
||
bzero (reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
|
||
bzero (reload_override_in, MAX_RELOADS * sizeof (rtx));
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_at_all);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
|
||
CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
|
||
}
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* Don't bother with avoiding the return reg
|
||
if we have no mandatory reload that could use it. */
|
||
if (avoid_return_reg)
|
||
{
|
||
int do_avoid = 0;
|
||
int regno = REGNO (avoid_return_reg);
|
||
int nregs
|
||
= HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
|
||
int r;
|
||
|
||
for (r = regno; r < regno + nregs; r++)
|
||
if (spill_reg_order[r] >= 0)
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (!reload_optional[j] && reload_reg_rtx[j] == 0
|
||
&& (reload_in[j] != 0 || reload_out[j] != 0
|
||
|| reload_secondary_p[j])
|
||
&&
|
||
TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[j]], r))
|
||
do_avoid = 1;
|
||
if (!do_avoid)
|
||
avoid_return_reg = 0;
|
||
}
|
||
#endif /* SMALL_REGISTER_CLASSES */
|
||
|
||
#if 0 /* Not needed, now that we can always retry without inheritance. */
|
||
/* See if we have more mandatory reloads than spill regs.
|
||
If so, then we cannot risk optimizations that could prevent
|
||
reloads from sharing one spill register.
|
||
|
||
Since we will try finding a better register than reload_reg_rtx
|
||
unless it is equal to reload_in or reload_out, count such reloads. */
|
||
|
||
{
|
||
int tem = 0;
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
int tem = (avoid_return_reg != 0);
|
||
#endif
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (! reload_optional[j]
|
||
&& (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
|
||
&& (reload_reg_rtx[j] == 0
|
||
|| (! rtx_equal_p (reload_reg_rtx[j], reload_in[j])
|
||
&& ! rtx_equal_p (reload_reg_rtx[j], reload_out[j]))))
|
||
tem++;
|
||
if (tem > n_spills)
|
||
must_reuse = 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
/* Don't use the subroutine call return reg for a reload
|
||
if we are supposed to avoid it. */
|
||
if (avoid_return_reg)
|
||
{
|
||
int regno = REGNO (avoid_return_reg);
|
||
int nregs
|
||
= HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg));
|
||
int r;
|
||
|
||
for (r = regno; r < regno + nregs; r++)
|
||
if (spill_reg_order[r] >= 0)
|
||
SET_HARD_REG_BIT (reload_reg_used, r);
|
||
}
|
||
#endif /* SMALL_REGISTER_CLASSES */
|
||
|
||
/* In order to be certain of getting the registers we need,
|
||
we must sort the reloads into order of increasing register class.
|
||
Then our grabbing of reload registers will parallel the process
|
||
that provided the reload registers.
|
||
|
||
Also note whether any of the reloads wants a consecutive group of regs.
|
||
If so, record the maximum size of the group desired and what
|
||
register class contains all the groups needed by this insn. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
reload_order[j] = j;
|
||
reload_spill_index[j] = -1;
|
||
|
||
reload_mode[j]
|
||
= (reload_inmode[j] == VOIDmode
|
||
|| (GET_MODE_SIZE (reload_outmode[j])
|
||
> GET_MODE_SIZE (reload_inmode[j])))
|
||
? reload_outmode[j] : reload_inmode[j];
|
||
|
||
reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]);
|
||
|
||
if (reload_nregs[j] > 1)
|
||
{
|
||
max_group_size = MAX (reload_nregs[j], max_group_size);
|
||
group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class];
|
||
}
|
||
|
||
/* If we have already decided to use a certain register,
|
||
don't use it in another way. */
|
||
if (reload_reg_rtx[j])
|
||
mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j],
|
||
reload_when_needed[j], reload_mode[j]);
|
||
}
|
||
|
||
if (n_reloads > 1)
|
||
qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
|
||
|
||
bcopy (reload_reg_rtx, save_reload_reg_rtx, sizeof reload_reg_rtx);
|
||
bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited);
|
||
bcopy (reload_inheritance_insn, save_reload_inheritance_insn,
|
||
sizeof reload_inheritance_insn);
|
||
bcopy (reload_override_in, save_reload_override_in,
|
||
sizeof reload_override_in);
|
||
bcopy (reload_spill_index, save_reload_spill_index,
|
||
sizeof reload_spill_index);
|
||
COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr,
|
||
reload_reg_used_in_op_addr);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_insn,
|
||
reload_reg_used_in_insn);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr,
|
||
reload_reg_used_in_other_addr);
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_output[i],
|
||
reload_reg_used_in_output[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_input[i],
|
||
reload_reg_used_in_input[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i],
|
||
reload_reg_used_in_input_addr[i]);
|
||
COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i],
|
||
reload_reg_used_in_output_addr[i]);
|
||
}
|
||
|
||
/* If -O, try first with inheritance, then turning it off.
|
||
If not -O, don't do inheritance.
|
||
Using inheritance when not optimizing leads to paradoxes
|
||
with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
|
||
because one side of the comparison might be inherited. */
|
||
|
||
for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
|
||
{
|
||
/* Process the reloads in order of preference just found.
|
||
Beyond this point, subregs can be found in reload_reg_rtx.
|
||
|
||
This used to look for an existing reloaded home for all
|
||
of the reloads, and only then perform any new reloads.
|
||
But that could lose if the reloads were done out of reg-class order
|
||
because a later reload with a looser constraint might have an old
|
||
home in a register needed by an earlier reload with a tighter constraint.
|
||
|
||
To solve this, we make two passes over the reloads, in the order
|
||
described above. In the first pass we try to inherit a reload
|
||
from a previous insn. If there is a later reload that needs a
|
||
class that is a proper subset of the class being processed, we must
|
||
also allocate a spill register during the first pass.
|
||
|
||
Then make a second pass over the reloads to allocate any reloads
|
||
that haven't been given registers yet. */
|
||
|
||
CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
|
||
continue;
|
||
|
||
/* If find_reloads chose a to use reload_in or reload_out as a reload
|
||
register, we don't need to chose one. Otherwise, try even if it found
|
||
one since we might save an insn if we find the value lying around. */
|
||
if (reload_in[r] != 0 && reload_reg_rtx[r] != 0
|
||
&& (rtx_equal_p (reload_in[r], reload_reg_rtx[r])
|
||
|| rtx_equal_p (reload_out[r], reload_reg_rtx[r])))
|
||
continue;
|
||
|
||
#if 0 /* No longer needed for correct operation.
|
||
It might give better code, or might not; worth an experiment? */
|
||
/* If this is an optional reload, we can't inherit from earlier insns
|
||
until we are sure that any non-optional reloads have been allocated.
|
||
The following code takes advantage of the fact that optional reloads
|
||
are at the end of reload_order. */
|
||
if (reload_optional[r] != 0)
|
||
for (i = 0; i < j; i++)
|
||
if ((reload_out[reload_order[i]] != 0
|
||
|| reload_in[reload_order[i]] != 0
|
||
|| reload_secondary_p[reload_order[i]])
|
||
&& ! reload_optional[reload_order[i]]
|
||
&& reload_reg_rtx[reload_order[i]] == 0)
|
||
allocate_reload_reg (reload_order[i], insn, 0, inheritance);
|
||
#endif
|
||
|
||
/* First see if this pseudo is already available as reloaded
|
||
for a previous insn. We cannot try to inherit for reloads
|
||
that are smaller than the maximum number of registers needed
|
||
for groups unless the register we would allocate cannot be used
|
||
for the groups.
|
||
|
||
We could check here to see if this is a secondary reload for
|
||
an object that is already in a register of the desired class.
|
||
This would avoid the need for the secondary reload register.
|
||
But this is complex because we can't easily determine what
|
||
objects might want to be loaded via this reload. So let a register
|
||
be allocated here. In `emit_reload_insns' we suppress one of the
|
||
loads in the case described above. */
|
||
|
||
if (inheritance)
|
||
{
|
||
register int regno = -1;
|
||
enum machine_mode mode;
|
||
|
||
if (reload_in[r] == 0)
|
||
;
|
||
else if (GET_CODE (reload_in[r]) == REG)
|
||
{
|
||
regno = REGNO (reload_in[r]);
|
||
mode = GET_MODE (reload_in[r]);
|
||
}
|
||
else if (GET_CODE (reload_in_reg[r]) == REG)
|
||
{
|
||
regno = REGNO (reload_in_reg[r]);
|
||
mode = GET_MODE (reload_in_reg[r]);
|
||
}
|
||
#if 0
|
||
/* This won't work, since REGNO can be a pseudo reg number.
|
||
Also, it takes much more hair to keep track of all the things
|
||
that can invalidate an inherited reload of part of a pseudoreg. */
|
||
else if (GET_CODE (reload_in[r]) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (reload_in[r])) == REG)
|
||
regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]);
|
||
#endif
|
||
|
||
if (regno >= 0 && reg_last_reload_reg[regno] != 0)
|
||
{
|
||
i = spill_reg_order[REGNO (reg_last_reload_reg[regno])];
|
||
|
||
if (reg_reloaded_contents[i] == regno
|
||
&& (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
|
||
>= GET_MODE_SIZE (mode))
|
||
&& HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r])
|
||
&& TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
|
||
spill_regs[i])
|
||
&& (reload_nregs[r] == max_group_size
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
|
||
spill_regs[i]))
|
||
&& reload_reg_free_p (spill_regs[i], reload_opnum[r],
|
||
reload_when_needed[r])
|
||
&& reload_reg_free_before_p (spill_regs[i],
|
||
reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
{
|
||
/* If a group is needed, verify that all the subsequent
|
||
registers still have their values intact. */
|
||
int nr
|
||
= HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
|
||
int k;
|
||
|
||
for (k = 1; k < nr; k++)
|
||
if (reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
|
||
!= regno)
|
||
break;
|
||
|
||
if (k == nr)
|
||
{
|
||
/* Mark the register as in use for this part of
|
||
the insn. */
|
||
mark_reload_reg_in_use (spill_regs[i],
|
||
reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_mode[r]);
|
||
reload_reg_rtx[r] = reg_last_reload_reg[regno];
|
||
reload_inherited[r] = 1;
|
||
reload_inheritance_insn[r] = reg_reloaded_insn[i];
|
||
reload_spill_index[r] = i;
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit,
|
||
spill_regs[i]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Here's another way to see if the value is already lying around. */
|
||
if (inheritance
|
||
&& reload_in[r] != 0
|
||
&& ! reload_inherited[r]
|
||
&& reload_out[r] == 0
|
||
&& (CONSTANT_P (reload_in[r])
|
||
|| GET_CODE (reload_in[r]) == PLUS
|
||
|| GET_CODE (reload_in[r]) == REG
|
||
|| GET_CODE (reload_in[r]) == MEM)
|
||
&& (reload_nregs[r] == max_group_size
|
||
|| ! reg_classes_intersect_p (reload_reg_class[r], group_class)))
|
||
{
|
||
register rtx equiv
|
||
= find_equiv_reg (reload_in[r], insn, reload_reg_class[r],
|
||
-1, NULL_PTR, 0, reload_mode[r]);
|
||
int regno;
|
||
|
||
if (equiv != 0)
|
||
{
|
||
if (GET_CODE (equiv) == REG)
|
||
regno = REGNO (equiv);
|
||
else if (GET_CODE (equiv) == SUBREG)
|
||
{
|
||
regno = REGNO (SUBREG_REG (equiv));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
regno += SUBREG_WORD (equiv);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* If we found a spill reg, reject it unless it is free
|
||
and of the desired class. */
|
||
if (equiv != 0
|
||
&& ((spill_reg_order[regno] >= 0
|
||
&& ! reload_reg_free_before_p (regno, reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]],
|
||
regno)))
|
||
equiv = 0;
|
||
|
||
if (equiv != 0 && TEST_HARD_REG_BIT (reload_reg_used_at_all, regno))
|
||
equiv = 0;
|
||
|
||
if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r]))
|
||
equiv = 0;
|
||
|
||
/* We found a register that contains the value we need.
|
||
If this register is the same as an `earlyclobber' operand
|
||
of the current insn, just mark it as a place to reload from
|
||
since we can't use it as the reload register itself. */
|
||
|
||
if (equiv != 0)
|
||
for (i = 0; i < n_earlyclobbers; i++)
|
||
if (reg_overlap_mentioned_for_reload_p (equiv,
|
||
reload_earlyclobbers[i]))
|
||
{
|
||
reload_override_in[r] = equiv;
|
||
equiv = 0;
|
||
break;
|
||
}
|
||
|
||
/* JRV: If the equiv register we have found is explicitly
|
||
clobbered in the current insn, mark but don't use, as above. */
|
||
|
||
if (equiv != 0 && regno_clobbered_p (regno, insn))
|
||
{
|
||
reload_override_in[r] = equiv;
|
||
equiv = 0;
|
||
}
|
||
|
||
/* If we found an equivalent reg, say no code need be generated
|
||
to load it, and use it as our reload reg. */
|
||
if (equiv != 0 && regno != FRAME_POINTER_REGNUM)
|
||
{
|
||
reload_reg_rtx[r] = equiv;
|
||
reload_inherited[r] = 1;
|
||
/* If it is a spill reg,
|
||
mark the spill reg as in use for this insn. */
|
||
i = spill_reg_order[regno];
|
||
if (i >= 0)
|
||
{
|
||
mark_reload_reg_in_use (regno, reload_opnum[r],
|
||
reload_when_needed[r],
|
||
reload_mode[r]);
|
||
SET_HARD_REG_BIT (reload_reg_used_for_inherit, regno);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we found a register to use already, or if this is an optional
|
||
reload, we are done. */
|
||
if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0)
|
||
continue;
|
||
|
||
#if 0 /* No longer needed for correct operation. Might or might not
|
||
give better code on the average. Want to experiment? */
|
||
|
||
/* See if there is a later reload that has a class different from our
|
||
class that intersects our class or that requires less register
|
||
than our reload. If so, we must allocate a register to this
|
||
reload now, since that reload might inherit a previous reload
|
||
and take the only available register in our class. Don't do this
|
||
for optional reloads since they will force all previous reloads
|
||
to be allocated. Also don't do this for reloads that have been
|
||
turned off. */
|
||
|
||
for (i = j + 1; i < n_reloads; i++)
|
||
{
|
||
int s = reload_order[i];
|
||
|
||
if ((reload_in[s] == 0 && reload_out[s] == 0
|
||
&& ! reload_secondary_p[s])
|
||
|| reload_optional[s])
|
||
continue;
|
||
|
||
if ((reload_reg_class[s] != reload_reg_class[r]
|
||
&& reg_classes_intersect_p (reload_reg_class[r],
|
||
reload_reg_class[s]))
|
||
|| reload_nregs[s] < reload_nregs[r])
|
||
break;
|
||
}
|
||
|
||
if (i == n_reloads)
|
||
continue;
|
||
|
||
allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance);
|
||
#endif
|
||
}
|
||
|
||
/* Now allocate reload registers for anything non-optional that
|
||
didn't get one yet. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
/* Ignore reloads that got marked inoperative. */
|
||
if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r])
|
||
continue;
|
||
|
||
/* Skip reloads that already have a register allocated or are
|
||
optional. */
|
||
if (reload_reg_rtx[r] != 0 || reload_optional[r])
|
||
continue;
|
||
|
||
if (! allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance))
|
||
break;
|
||
}
|
||
|
||
/* If that loop got all the way, we have won. */
|
||
if (j == n_reloads)
|
||
break;
|
||
|
||
fail:
|
||
/* Loop around and try without any inheritance. */
|
||
/* First undo everything done by the failed attempt
|
||
to allocate with inheritance. */
|
||
bcopy (save_reload_reg_rtx, reload_reg_rtx, sizeof reload_reg_rtx);
|
||
bcopy (save_reload_inherited, reload_inherited, sizeof reload_inherited);
|
||
bcopy (save_reload_inheritance_insn, reload_inheritance_insn,
|
||
sizeof reload_inheritance_insn);
|
||
bcopy (save_reload_override_in, reload_override_in,
|
||
sizeof reload_override_in);
|
||
bcopy (save_reload_spill_index, reload_spill_index,
|
||
sizeof reload_spill_index);
|
||
COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used);
|
||
COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_op_addr,
|
||
save_reload_reg_used_in_op_addr);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_insn,
|
||
save_reload_reg_used_in_insn);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_other_addr,
|
||
save_reload_reg_used_in_other_addr);
|
||
|
||
for (i = 0; i < reload_n_operands; i++)
|
||
{
|
||
COPY_HARD_REG_SET (reload_reg_used_in_input[i],
|
||
save_reload_reg_used_in_input[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_output[i],
|
||
save_reload_reg_used_in_output[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i],
|
||
save_reload_reg_used_in_input_addr[i]);
|
||
COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i],
|
||
save_reload_reg_used_in_output_addr[i]);
|
||
}
|
||
}
|
||
|
||
/* If we thought we could inherit a reload, because it seemed that
|
||
nothing else wanted the same reload register earlier in the insn,
|
||
verify that assumption, now that all reloads have been assigned. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
if (reload_inherited[r] && reload_reg_rtx[r] != 0
|
||
&& ! reload_reg_free_before_p (true_regnum (reload_reg_rtx[r]),
|
||
reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
reload_inherited[r] = 0;
|
||
|
||
/* If we found a better place to reload from,
|
||
validate it in the same fashion, if it is a reload reg. */
|
||
if (reload_override_in[r]
|
||
&& (GET_CODE (reload_override_in[r]) == REG
|
||
|| GET_CODE (reload_override_in[r]) == SUBREG))
|
||
{
|
||
int regno = true_regnum (reload_override_in[r]);
|
||
if (spill_reg_order[regno] >= 0
|
||
&& ! reload_reg_free_before_p (regno, reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
reload_override_in[r] = 0;
|
||
}
|
||
}
|
||
|
||
/* Now that reload_override_in is known valid,
|
||
actually override reload_in. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_override_in[j])
|
||
reload_in[j] = reload_override_in[j];
|
||
|
||
/* If this reload won't be done because it has been cancelled or is
|
||
optional and not inherited, clear reload_reg_rtx so other
|
||
routines (such as subst_reloads) don't get confused. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_reg_rtx[j] != 0
|
||
&& ((reload_optional[j] && ! reload_inherited[j])
|
||
|| (reload_in[j] == 0 && reload_out[j] == 0
|
||
&& ! reload_secondary_p[j])))
|
||
{
|
||
int regno = true_regnum (reload_reg_rtx[j]);
|
||
|
||
if (spill_reg_order[regno] >= 0)
|
||
clear_reload_reg_in_use (regno, reload_opnum[j],
|
||
reload_when_needed[j], reload_mode[j]);
|
||
reload_reg_rtx[j] = 0;
|
||
}
|
||
|
||
/* Record which pseudos and which spill regs have output reloads. */
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
|
||
i = reload_spill_index[r];
|
||
|
||
/* I is nonneg if this reload used one of the spill regs.
|
||
If reload_reg_rtx[r] is 0, this is an optional reload
|
||
that we opted to ignore. */
|
||
if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG
|
||
&& reload_reg_rtx[r] != 0)
|
||
{
|
||
register int nregno = REGNO (reload_out[r]);
|
||
int nr = 1;
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
nr = HARD_REGNO_NREGS (nregno, reload_mode[r]);
|
||
|
||
while (--nr >= 0)
|
||
reg_has_output_reload[nregno + nr] = 1;
|
||
|
||
if (i >= 0)
|
||
{
|
||
nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]);
|
||
while (--nr >= 0)
|
||
SET_HARD_REG_BIT (reg_is_output_reload, spill_regs[i] + nr);
|
||
}
|
||
|
||
if (reload_when_needed[r] != RELOAD_OTHER
|
||
&& reload_when_needed[r] != RELOAD_FOR_OUTPUT
|
||
&& reload_when_needed[r] != RELOAD_FOR_INSN)
|
||
abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If SMALL_REGISTER_CLASSES are defined, we may not have merged two
|
||
reloads of the same item for fear that we might not have enough reload
|
||
registers. However, normally they will get the same reload register
|
||
and hence actually need not be loaded twice.
|
||
|
||
Here we check for the most common case of this phenomenon: when we have
|
||
a number of reloads for the same object, each of which were allocated
|
||
the same reload_reg_rtx, that reload_reg_rtx is not used for any other
|
||
reload, and is not modified in the insn itself. If we find such,
|
||
merge all the reloads and set the resulting reload to RELOAD_OTHER.
|
||
This will not increase the number of spill registers needed and will
|
||
prevent redundant code. */
|
||
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
|
||
static void
|
||
merge_assigned_reloads (insn)
|
||
rtx insn;
|
||
{
|
||
int i, j;
|
||
|
||
/* Scan all the reloads looking for ones that only load values and
|
||
are not already RELOAD_OTHER and ones whose reload_reg_rtx are
|
||
assigned and not modified by INSN. */
|
||
|
||
for (i = 0; i < n_reloads; i++)
|
||
{
|
||
if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER
|
||
|| reload_out[i] != 0 || reload_reg_rtx[i] == 0
|
||
|| reg_set_p (reload_reg_rtx[i], insn))
|
||
continue;
|
||
|
||
/* Look at all other reloads. Ensure that the only use of this
|
||
reload_reg_rtx is in a reload that just loads the same value
|
||
as we do. Note that any secondary reloads must be of the identical
|
||
class since the values, modes, and result registers are the
|
||
same, so we need not do anything with any secondary reloads. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
if (i == j || reload_reg_rtx[j] == 0
|
||
|| ! reg_overlap_mentioned_p (reload_reg_rtx[j],
|
||
reload_reg_rtx[i]))
|
||
continue;
|
||
|
||
/* If the reload regs aren't exactly the same (e.g, different modes)
|
||
or if the values are different, we can't merge anything with this
|
||
reload register. */
|
||
|
||
if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j])
|
||
|| reload_out[j] != 0 || reload_in[j] == 0
|
||
|| ! rtx_equal_p (reload_in[i], reload_in[j]))
|
||
break;
|
||
}
|
||
|
||
/* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
|
||
we, in fact, found any matching reloads. */
|
||
|
||
if (j == n_reloads)
|
||
{
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (i != j && reload_reg_rtx[j] != 0
|
||
&& rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]))
|
||
{
|
||
reload_when_needed[i] = RELOAD_OTHER;
|
||
reload_in[j] = 0;
|
||
transfer_replacements (i, j);
|
||
}
|
||
|
||
/* If this is now RELOAD_OTHER, look for any reloads that load
|
||
parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
|
||
if they were for inputs, RELOAD_OTHER for outputs. Note that
|
||
this test is equivalent to looking for reloads for this operand
|
||
number. */
|
||
|
||
if (reload_when_needed[i] == RELOAD_OTHER)
|
||
for (j = 0; j < n_reloads; j++)
|
||
if (reload_in[j] != 0
|
||
&& reload_when_needed[i] != RELOAD_OTHER
|
||
&& reg_overlap_mentioned_for_reload_p (reload_in[j],
|
||
reload_in[i]))
|
||
reload_when_needed[j]
|
||
= reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
|
||
? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER;
|
||
}
|
||
}
|
||
}
|
||
#endif /* SMALL_RELOAD_CLASSES */
|
||
|
||
/* Output insns to reload values in and out of the chosen reload regs. */
|
||
|
||
static void
|
||
emit_reload_insns (insn)
|
||
rtx insn;
|
||
{
|
||
register int j;
|
||
rtx input_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx other_input_address_reload_insns = 0;
|
||
rtx other_input_reload_insns = 0;
|
||
rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx output_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
|
||
rtx operand_reload_insns = 0;
|
||
rtx following_insn = NEXT_INSN (insn);
|
||
rtx before_insn = insn;
|
||
int special;
|
||
/* Values to be put in spill_reg_store are put here first. */
|
||
rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
input_reload_insns[j] = input_address_reload_insns[j]
|
||
= output_reload_insns[j] = output_address_reload_insns[j] = 0;
|
||
|
||
/* If this is a CALL_INSN preceded by USE insns, any reload insns
|
||
must go in front of the first USE insn, not in front of INSN. */
|
||
|
||
if (GET_CODE (insn) == CALL_INSN && GET_CODE (PREV_INSN (insn)) == INSN
|
||
&& GET_CODE (PATTERN (PREV_INSN (insn))) == USE)
|
||
while (GET_CODE (PREV_INSN (before_insn)) == INSN
|
||
&& GET_CODE (PATTERN (PREV_INSN (before_insn))) == USE)
|
||
before_insn = PREV_INSN (before_insn);
|
||
|
||
/* If this insn is followed by any CLOBBER insns made by find_reloads,
|
||
put our reloads after them since they may otherwise be
|
||
misinterpreted. */
|
||
|
||
while (NEXT_INSN (following_insn) != 0
|
||
&& GET_CODE (NEXT_INSN (following_insn)) == INSN
|
||
&& GET_MODE (NEXT_INSN (following_insn)) == DImode
|
||
&& GET_CODE (PATTERN (NEXT_INSN (following_insn))) == CLOBBER)
|
||
following_insn = NEXT_INSN (following_insn);
|
||
|
||
/* Now output the instructions to copy the data into and out of the
|
||
reload registers. Do these in the order that the reloads were reported,
|
||
since reloads of base and index registers precede reloads of operands
|
||
and the operands may need the base and index registers reloaded. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register rtx old;
|
||
rtx oldequiv_reg = 0;
|
||
rtx store_insn = 0;
|
||
|
||
old = reload_in[j];
|
||
if (old != 0 && ! reload_inherited[j]
|
||
&& ! rtx_equal_p (reload_reg_rtx[j], old)
|
||
&& reload_reg_rtx[j] != 0)
|
||
{
|
||
register rtx reloadreg = reload_reg_rtx[j];
|
||
rtx oldequiv = 0;
|
||
enum machine_mode mode;
|
||
rtx *where;
|
||
|
||
/* Determine the mode to reload in.
|
||
This is very tricky because we have three to choose from.
|
||
There is the mode the insn operand wants (reload_inmode[J]).
|
||
There is the mode of the reload register RELOADREG.
|
||
There is the intrinsic mode of the operand, which we could find
|
||
by stripping some SUBREGs.
|
||
It turns out that RELOADREG's mode is irrelevant:
|
||
we can change that arbitrarily.
|
||
|
||
Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
|
||
then the reload reg may not support QImode moves, so use SImode.
|
||
If foo is in memory due to spilling a pseudo reg, this is safe,
|
||
because the QImode value is in the least significant part of a
|
||
slot big enough for a SImode. If foo is some other sort of
|
||
memory reference, then it is impossible to reload this case,
|
||
so previous passes had better make sure this never happens.
|
||
|
||
Then consider a one-word union which has SImode and one of its
|
||
members is a float, being fetched as (SUBREG:SF union:SI).
|
||
We must fetch that as SFmode because we could be loading into
|
||
a float-only register. In this case OLD's mode is correct.
|
||
|
||
Consider an immediate integer: it has VOIDmode. Here we need
|
||
to get a mode from something else.
|
||
|
||
In some cases, there is a fourth mode, the operand's
|
||
containing mode. If the insn specifies a containing mode for
|
||
this operand, it overrides all others.
|
||
|
||
I am not sure whether the algorithm here is always right,
|
||
but it does the right things in those cases. */
|
||
|
||
mode = GET_MODE (old);
|
||
if (mode == VOIDmode)
|
||
mode = reload_inmode[j];
|
||
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
/* If we need a secondary register for this operation, see if
|
||
the value is already in a register in that class. Don't
|
||
do this if the secondary register will be used as a scratch
|
||
register. */
|
||
|
||
if (reload_secondary_reload[j] >= 0
|
||
&& reload_secondary_icode[j] == CODE_FOR_nothing
|
||
&& optimize)
|
||
oldequiv
|
||
= find_equiv_reg (old, insn,
|
||
reload_reg_class[reload_secondary_reload[j]],
|
||
-1, NULL_PTR, 0, mode);
|
||
#endif
|
||
|
||
/* If reloading from memory, see if there is a register
|
||
that already holds the same value. If so, reload from there.
|
||
We can pass 0 as the reload_reg_p argument because
|
||
any other reload has either already been emitted,
|
||
in which case find_equiv_reg will see the reload-insn,
|
||
or has yet to be emitted, in which case it doesn't matter
|
||
because we will use this equiv reg right away. */
|
||
|
||
if (oldequiv == 0 && optimize
|
||
&& (GET_CODE (old) == MEM
|
||
|| (GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_renumber[REGNO (old)] < 0)))
|
||
oldequiv = find_equiv_reg (old, insn, ALL_REGS,
|
||
-1, NULL_PTR, 0, mode);
|
||
|
||
if (oldequiv)
|
||
{
|
||
int regno = true_regnum (oldequiv);
|
||
|
||
/* If OLDEQUIV is a spill register, don't use it for this
|
||
if any other reload needs it at an earlier stage of this insn
|
||
or at this stage. */
|
||
if (spill_reg_order[regno] >= 0
|
||
&& (! reload_reg_free_p (regno, reload_opnum[j],
|
||
reload_when_needed[j])
|
||
|| ! reload_reg_free_before_p (regno, reload_opnum[j],
|
||
reload_when_needed[j])))
|
||
oldequiv = 0;
|
||
|
||
/* If OLDEQUIV is not a spill register,
|
||
don't use it if any other reload wants it. */
|
||
if (spill_reg_order[regno] < 0)
|
||
{
|
||
int k;
|
||
for (k = 0; k < n_reloads; k++)
|
||
if (reload_reg_rtx[k] != 0 && k != j
|
||
&& reg_overlap_mentioned_for_reload_p (reload_reg_rtx[k],
|
||
oldequiv))
|
||
{
|
||
oldequiv = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If it is no cheaper to copy from OLDEQUIV into the
|
||
reload register than it would be to move from memory,
|
||
don't use it. Likewise, if we need a secondary register
|
||
or memory. */
|
||
|
||
if (oldequiv != 0
|
||
&& ((REGNO_REG_CLASS (regno) != reload_reg_class[j]
|
||
&& (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
|
||
reload_reg_class[j])
|
||
>= MEMORY_MOVE_COST (mode)))
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
|| (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, oldequiv)
|
||
!= NO_REGS)
|
||
#endif
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
|| SECONDARY_MEMORY_NEEDED (reload_reg_class[j],
|
||
REGNO_REG_CLASS (regno),
|
||
mode)
|
||
#endif
|
||
))
|
||
oldequiv = 0;
|
||
}
|
||
|
||
if (oldequiv == 0)
|
||
oldequiv = old;
|
||
else if (GET_CODE (oldequiv) == REG)
|
||
oldequiv_reg = oldequiv;
|
||
else if (GET_CODE (oldequiv) == SUBREG)
|
||
oldequiv_reg = SUBREG_REG (oldequiv);
|
||
|
||
/* Encapsulate both RELOADREG and OLDEQUIV into that mode,
|
||
then load RELOADREG from OLDEQUIV. */
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_lowpart_common (mode, reloadreg);
|
||
while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
|
||
oldequiv = SUBREG_REG (oldequiv);
|
||
if (GET_MODE (oldequiv) != VOIDmode
|
||
&& mode != GET_MODE (oldequiv))
|
||
oldequiv = gen_rtx (SUBREG, mode, oldequiv, 0);
|
||
|
||
/* Switch to the right place to emit the reload insns. */
|
||
switch (reload_when_needed[j])
|
||
{
|
||
case RELOAD_OTHER:
|
||
where = &other_input_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_INPUT:
|
||
where = &input_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_INPUT_ADDRESS:
|
||
where = &input_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_OUTPUT_ADDRESS:
|
||
where = &output_address_reload_insns[reload_opnum[j]];
|
||
break;
|
||
case RELOAD_FOR_OPERAND_ADDRESS:
|
||
where = &operand_reload_insns;
|
||
break;
|
||
case RELOAD_FOR_OTHER_ADDRESS:
|
||
where = &other_input_address_reload_insns;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
push_to_sequence (*where);
|
||
special = 0;
|
||
|
||
/* Auto-increment addresses must be reloaded in a special way. */
|
||
if (GET_CODE (oldequiv) == POST_INC
|
||
|| GET_CODE (oldequiv) == POST_DEC
|
||
|| GET_CODE (oldequiv) == PRE_INC
|
||
|| GET_CODE (oldequiv) == PRE_DEC)
|
||
{
|
||
/* We are not going to bother supporting the case where a
|
||
incremented register can't be copied directly from
|
||
OLDEQUIV since this seems highly unlikely. */
|
||
if (reload_secondary_reload[j] >= 0)
|
||
abort ();
|
||
/* Prevent normal processing of this reload. */
|
||
special = 1;
|
||
/* Output a special code sequence for this case. */
|
||
inc_for_reload (reloadreg, oldequiv, reload_inc[j]);
|
||
}
|
||
|
||
/* If we are reloading a pseudo-register that was set by the previous
|
||
insn, see if we can get rid of that pseudo-register entirely
|
||
by redirecting the previous insn into our reload register. */
|
||
|
||
else if (optimize && GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& dead_or_set_p (insn, old)
|
||
/* This is unsafe if some other reload
|
||
uses the same reg first. */
|
||
&& reload_reg_free_before_p (REGNO (reloadreg),
|
||
reload_opnum[j],
|
||
reload_when_needed[j]))
|
||
{
|
||
rtx temp = PREV_INSN (insn);
|
||
while (temp && GET_CODE (temp) == NOTE)
|
||
temp = PREV_INSN (temp);
|
||
if (temp
|
||
&& GET_CODE (temp) == INSN
|
||
&& GET_CODE (PATTERN (temp)) == SET
|
||
&& SET_DEST (PATTERN (temp)) == old
|
||
/* Make sure we can access insn_operand_constraint. */
|
||
&& asm_noperands (PATTERN (temp)) < 0
|
||
/* This is unsafe if prev insn rejects our reload reg. */
|
||
&& constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0],
|
||
reloadreg)
|
||
/* This is unsafe if operand occurs more than once in current
|
||
insn. Perhaps some occurrences aren't reloaded. */
|
||
&& count_occurrences (PATTERN (insn), old) == 1
|
||
/* Don't risk splitting a matching pair of operands. */
|
||
&& ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
|
||
{
|
||
/* Store into the reload register instead of the pseudo. */
|
||
SET_DEST (PATTERN (temp)) = reloadreg;
|
||
/* If these are the only uses of the pseudo reg,
|
||
pretend for GDB it lives in the reload reg we used. */
|
||
if (reg_n_deaths[REGNO (old)] == 1
|
||
&& reg_n_sets[REGNO (old)] == 1)
|
||
{
|
||
reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]);
|
||
alter_reg (REGNO (old), -1);
|
||
}
|
||
special = 1;
|
||
}
|
||
}
|
||
|
||
/* We can't do that, so output an insn to load RELOADREG. */
|
||
|
||
if (! special)
|
||
{
|
||
#ifdef SECONDARY_INPUT_RELOAD_CLASS
|
||
rtx second_reload_reg = 0;
|
||
enum insn_code icode;
|
||
|
||
/* If we have a secondary reload, pick up the secondary register
|
||
and icode, if any. If OLDEQUIV and OLD are different or
|
||
if this is an in-out reload, recompute whether or not we
|
||
still need a secondary register and what the icode should
|
||
be. If we still need a secondary register and the class or
|
||
icode is different, go back to reloading from OLD if using
|
||
OLDEQUIV means that we got the wrong type of register. We
|
||
cannot have different class or icode due to an in-out reload
|
||
because we don't make such reloads when both the input and
|
||
output need secondary reload registers. */
|
||
|
||
if (reload_secondary_reload[j] >= 0)
|
||
{
|
||
int secondary_reload = reload_secondary_reload[j];
|
||
rtx real_oldequiv = oldequiv;
|
||
rtx real_old = old;
|
||
|
||
/* If OLDEQUIV is a pseudo with a MEM, get the real MEM
|
||
and similarly for OLD.
|
||
See comments in find_secondary_reload in reload.c. */
|
||
if (GET_CODE (oldequiv) == REG
|
||
&& REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_equiv_mem[REGNO (oldequiv)] != 0)
|
||
real_oldequiv = reg_equiv_mem[REGNO (oldequiv)];
|
||
|
||
if (GET_CODE (old) == REG
|
||
&& REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_equiv_mem[REGNO (old)] != 0)
|
||
real_old = reg_equiv_mem[REGNO (old)];
|
||
|
||
second_reload_reg = reload_reg_rtx[secondary_reload];
|
||
icode = reload_secondary_icode[j];
|
||
|
||
if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
|
||
|| (reload_in[j] != 0 && reload_out[j] != 0))
|
||
{
|
||
enum reg_class new_class
|
||
= SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, real_oldequiv);
|
||
|
||
if (new_class == NO_REGS)
|
||
second_reload_reg = 0;
|
||
else
|
||
{
|
||
enum insn_code new_icode;
|
||
enum machine_mode new_mode;
|
||
|
||
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
|
||
REGNO (second_reload_reg)))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
{
|
||
new_icode = reload_in_optab[(int) mode];
|
||
if (new_icode != CODE_FOR_nothing
|
||
&& ((insn_operand_predicate[(int) new_icode][0]
|
||
&& ! ((*insn_operand_predicate[(int) new_icode][0])
|
||
(reloadreg, mode)))
|
||
|| (insn_operand_predicate[(int) new_icode][1]
|
||
&& ! ((*insn_operand_predicate[(int) new_icode][1])
|
||
(real_oldequiv, mode)))))
|
||
new_icode = CODE_FOR_nothing;
|
||
|
||
if (new_icode == CODE_FOR_nothing)
|
||
new_mode = mode;
|
||
else
|
||
new_mode = insn_operand_mode[(int) new_icode][2];
|
||
|
||
if (GET_MODE (second_reload_reg) != new_mode)
|
||
{
|
||
if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
|
||
new_mode))
|
||
oldequiv = old, real_oldequiv = real_old;
|
||
else
|
||
second_reload_reg
|
||
= gen_rtx (REG, new_mode,
|
||
REGNO (second_reload_reg));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we still need a secondary reload register, check
|
||
to see if it is being used as a scratch or intermediate
|
||
register and generate code appropriately. If we need
|
||
a scratch register, use REAL_OLDEQUIV since the form of
|
||
the insn may depend on the actual address if it is
|
||
a MEM. */
|
||
|
||
if (second_reload_reg)
|
||
{
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
|
||
second_reload_reg));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need a scratch register to load the
|
||
intermediate register (a tertiary reload). */
|
||
enum insn_code tertiary_icode
|
||
= reload_secondary_icode[secondary_reload];
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reload_reg
|
||
= reload_reg_rtx[reload_secondary_reload[secondary_reload]];
|
||
|
||
emit_insn ((GEN_FCN (tertiary_icode)
|
||
(second_reload_reg, real_oldequiv,
|
||
third_reload_reg)));
|
||
}
|
||
else
|
||
gen_input_reload (second_reload_reg, oldequiv,
|
||
reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
|
||
oldequiv = second_reload_reg;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (! special)
|
||
gen_input_reload (reloadreg, oldequiv, reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
|
||
#if defined(SECONDARY_INPUT_RELOAD_CLASS) && defined(PRESERVE_DEATH_INFO_REGNO_P)
|
||
/* We may have to make a REG_DEAD note for the secondary reload
|
||
register in the insns we just made. Find the last insn that
|
||
mentioned the register. */
|
||
if (! special && second_reload_reg
|
||
&& PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reload_reg)))
|
||
{
|
||
rtx prev;
|
||
|
||
for (prev = get_last_insn (); prev;
|
||
prev = PREV_INSN (prev))
|
||
if (GET_RTX_CLASS (GET_CODE (prev) == 'i')
|
||
&& reg_overlap_mentioned_for_reload_p (second_reload_reg,
|
||
PATTERN (prev)))
|
||
{
|
||
REG_NOTES (prev) = gen_rtx (EXPR_LIST, REG_DEAD,
|
||
second_reload_reg,
|
||
REG_NOTES (prev));
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* End this sequence. */
|
||
*where = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Add a note saying the input reload reg
|
||
dies in this insn, if anyone cares. */
|
||
#ifdef PRESERVE_DEATH_INFO_REGNO_P
|
||
if (old != 0
|
||
&& reload_reg_rtx[j] != old
|
||
&& reload_reg_rtx[j] != 0
|
||
&& reload_out[j] == 0
|
||
&& ! reload_inherited[j]
|
||
&& PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j])))
|
||
{
|
||
register rtx reloadreg = reload_reg_rtx[j];
|
||
|
||
#if 0
|
||
/* We can't abort here because we need to support this for sched.c.
|
||
It's not terrible to miss a REG_DEAD note, but we should try
|
||
to figure out how to do this correctly. */
|
||
/* The code below is incorrect for address-only reloads. */
|
||
if (reload_when_needed[j] != RELOAD_OTHER
|
||
&& reload_when_needed[j] != RELOAD_FOR_INPUT)
|
||
abort ();
|
||
#endif
|
||
|
||
/* Add a death note to this insn, for an input reload. */
|
||
|
||
if ((reload_when_needed[j] == RELOAD_OTHER
|
||
|| reload_when_needed[j] == RELOAD_FOR_INPUT)
|
||
&& ! dead_or_set_p (insn, reloadreg))
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_DEAD,
|
||
reloadreg, REG_NOTES (insn));
|
||
}
|
||
|
||
/* When we inherit a reload, the last marked death of the reload reg
|
||
may no longer really be a death. */
|
||
if (reload_reg_rtx[j] != 0
|
||
&& PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j]))
|
||
&& reload_inherited[j])
|
||
{
|
||
/* Handle inheriting an output reload.
|
||
Remove the death note from the output reload insn. */
|
||
if (reload_spill_index[j] >= 0
|
||
&& GET_CODE (reload_in[j]) == REG
|
||
&& spill_reg_store[reload_spill_index[j]] != 0
|
||
&& find_regno_note (spill_reg_store[reload_spill_index[j]],
|
||
REG_DEAD, REGNO (reload_reg_rtx[j])))
|
||
remove_death (REGNO (reload_reg_rtx[j]),
|
||
spill_reg_store[reload_spill_index[j]]);
|
||
/* Likewise for input reloads that were inherited. */
|
||
else if (reload_spill_index[j] >= 0
|
||
&& GET_CODE (reload_in[j]) == REG
|
||
&& spill_reg_store[reload_spill_index[j]] == 0
|
||
&& reload_inheritance_insn[j] != 0
|
||
&& find_regno_note (reload_inheritance_insn[j], REG_DEAD,
|
||
REGNO (reload_reg_rtx[j])))
|
||
remove_death (REGNO (reload_reg_rtx[j]),
|
||
reload_inheritance_insn[j]);
|
||
else
|
||
{
|
||
rtx prev;
|
||
|
||
/* We got this register from find_equiv_reg.
|
||
Search back for its last death note and get rid of it.
|
||
But don't search back too far.
|
||
Don't go past a place where this reg is set,
|
||
since a death note before that remains valid. */
|
||
for (prev = PREV_INSN (insn);
|
||
prev && GET_CODE (prev) != CODE_LABEL;
|
||
prev = PREV_INSN (prev))
|
||
if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
|
||
&& dead_or_set_p (prev, reload_reg_rtx[j]))
|
||
{
|
||
if (find_regno_note (prev, REG_DEAD,
|
||
REGNO (reload_reg_rtx[j])))
|
||
remove_death (REGNO (reload_reg_rtx[j]), prev);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We might have used find_equiv_reg above to choose an alternate
|
||
place from which to reload. If so, and it died, we need to remove
|
||
that death and move it to one of the insns we just made. */
|
||
|
||
if (oldequiv_reg != 0
|
||
&& PRESERVE_DEATH_INFO_REGNO_P (true_regnum (oldequiv_reg)))
|
||
{
|
||
rtx prev, prev1;
|
||
|
||
for (prev = PREV_INSN (insn); prev && GET_CODE (prev) != CODE_LABEL;
|
||
prev = PREV_INSN (prev))
|
||
if (GET_RTX_CLASS (GET_CODE (prev)) == 'i'
|
||
&& dead_or_set_p (prev, oldequiv_reg))
|
||
{
|
||
if (find_regno_note (prev, REG_DEAD, REGNO (oldequiv_reg)))
|
||
{
|
||
for (prev1 = this_reload_insn;
|
||
prev1; prev1 = PREV_INSN (prev1))
|
||
if (GET_RTX_CLASS (GET_CODE (prev1) == 'i')
|
||
&& reg_overlap_mentioned_for_reload_p (oldequiv_reg,
|
||
PATTERN (prev1)))
|
||
{
|
||
REG_NOTES (prev1) = gen_rtx (EXPR_LIST, REG_DEAD,
|
||
oldequiv_reg,
|
||
REG_NOTES (prev1));
|
||
break;
|
||
}
|
||
remove_death (REGNO (oldequiv_reg), prev);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If we are reloading a register that was recently stored in with an
|
||
output-reload, see if we can prove there was
|
||
actually no need to store the old value in it. */
|
||
|
||
if (optimize && reload_inherited[j] && reload_spill_index[j] >= 0
|
||
&& reload_in[j] != 0
|
||
&& GET_CODE (reload_in[j]) == REG
|
||
#if 0
|
||
/* There doesn't seem to be any reason to restrict this to pseudos
|
||
and doing so loses in the case where we are copying from a
|
||
register of the wrong class. */
|
||
&& REGNO (reload_in[j]) >= FIRST_PSEUDO_REGISTER
|
||
#endif
|
||
&& spill_reg_store[reload_spill_index[j]] != 0
|
||
/* This is unsafe if some other reload uses the same reg first. */
|
||
&& reload_reg_free_before_p (spill_regs[reload_spill_index[j]],
|
||
reload_opnum[j], reload_when_needed[j])
|
||
&& dead_or_set_p (insn, reload_in[j])
|
||
/* This is unsafe if operand occurs more than once in current
|
||
insn. Perhaps some occurrences weren't reloaded. */
|
||
&& count_occurrences (PATTERN (insn), reload_in[j]) == 1)
|
||
delete_output_reload (insn, j,
|
||
spill_reg_store[reload_spill_index[j]]);
|
||
|
||
/* Input-reloading is done. Now do output-reloading,
|
||
storing the value from the reload-register after the main insn
|
||
if reload_out[j] is nonzero.
|
||
|
||
??? At some point we need to support handling output reloads of
|
||
JUMP_INSNs or insns that set cc0. */
|
||
old = reload_out[j];
|
||
if (old != 0
|
||
&& reload_reg_rtx[j] != old
|
||
&& reload_reg_rtx[j] != 0)
|
||
{
|
||
register rtx reloadreg = reload_reg_rtx[j];
|
||
register rtx second_reloadreg = 0;
|
||
rtx note, p;
|
||
enum machine_mode mode;
|
||
int special = 0;
|
||
|
||
/* An output operand that dies right away does need a reload,
|
||
but need not be copied from it. Show the new location in the
|
||
REG_UNUSED note. */
|
||
if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
|
||
&& (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
|
||
{
|
||
XEXP (note, 0) = reload_reg_rtx[j];
|
||
continue;
|
||
}
|
||
else if (GET_CODE (old) == SCRATCH)
|
||
/* If we aren't optimizing, there won't be a REG_UNUSED note,
|
||
but we don't want to make an output reload. */
|
||
continue;
|
||
|
||
#if 0
|
||
/* Strip off of OLD any size-increasing SUBREGs such as
|
||
(SUBREG:SI foo:QI 0). */
|
||
|
||
while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0
|
||
&& (GET_MODE_SIZE (GET_MODE (old))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (old)))))
|
||
old = SUBREG_REG (old);
|
||
#endif
|
||
|
||
/* If is a JUMP_INSN, we can't support output reloads yet. */
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
abort ();
|
||
|
||
push_to_sequence (output_reload_insns[reload_opnum[j]]);
|
||
|
||
/* Determine the mode to reload in.
|
||
See comments above (for input reloading). */
|
||
|
||
mode = GET_MODE (old);
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* VOIDmode should never happen for an output. */
|
||
if (asm_noperands (PATTERN (insn)) < 0)
|
||
/* It's the compiler's fault. */
|
||
abort ();
|
||
error_for_asm (insn, "output operand is constant in `asm'");
|
||
/* Prevent crash--use something we know is valid. */
|
||
mode = word_mode;
|
||
old = gen_rtx (REG, mode, REGNO (reloadreg));
|
||
}
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_lowpart_common (mode, reloadreg);
|
||
|
||
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|
||
|
||
/* If we need two reload regs, set RELOADREG to the intermediate
|
||
one, since it will be stored into OUT. We might need a secondary
|
||
register only for an input reload, so check again here. */
|
||
|
||
if (reload_secondary_reload[j] >= 0)
|
||
{
|
||
rtx real_old = old;
|
||
|
||
if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_equiv_mem[REGNO (old)] != 0)
|
||
real_old = reg_equiv_mem[REGNO (old)];
|
||
|
||
if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j],
|
||
mode, real_old)
|
||
!= NO_REGS))
|
||
{
|
||
second_reloadreg = reloadreg;
|
||
reloadreg = reload_reg_rtx[reload_secondary_reload[j]];
|
||
|
||
/* See if RELOADREG is to be used as a scratch register
|
||
or as an intermediate register. */
|
||
if (reload_secondary_icode[j] != CODE_FOR_nothing)
|
||
{
|
||
emit_insn ((GEN_FCN (reload_secondary_icode[j])
|
||
(real_old, second_reloadreg, reloadreg)));
|
||
special = 1;
|
||
}
|
||
else
|
||
{
|
||
/* See if we need both a scratch and intermediate reload
|
||
register. */
|
||
int secondary_reload = reload_secondary_reload[j];
|
||
enum insn_code tertiary_icode
|
||
= reload_secondary_icode[secondary_reload];
|
||
rtx pat;
|
||
|
||
if (GET_MODE (reloadreg) != mode)
|
||
reloadreg = gen_rtx (REG, mode, REGNO (reloadreg));
|
||
|
||
if (tertiary_icode != CODE_FOR_nothing)
|
||
{
|
||
rtx third_reloadreg
|
||
= reload_reg_rtx[reload_secondary_reload[secondary_reload]];
|
||
pat = (GEN_FCN (tertiary_icode)
|
||
(reloadreg, second_reloadreg, third_reloadreg));
|
||
}
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* If we need a memory location to do the move, do it that way. */
|
||
else if (GET_CODE (reloadreg) == REG
|
||
&& REGNO (reloadreg) < FIRST_PSEUDO_REGISTER
|
||
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (reloadreg)),
|
||
REGNO_REG_CLASS (REGNO (second_reloadreg)),
|
||
GET_MODE (second_reloadreg)))
|
||
{
|
||
/* Get the memory to use and rewrite both registers
|
||
to its mode. */
|
||
rtx loc
|
||
= get_secondary_mem (reloadreg,
|
||
GET_MODE (second_reloadreg),
|
||
reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
rtx tmp_reloadreg;
|
||
|
||
if (GET_MODE (loc) != GET_MODE (second_reloadreg))
|
||
second_reloadreg = gen_rtx (REG, GET_MODE (loc),
|
||
REGNO (second_reloadreg));
|
||
|
||
if (GET_MODE (loc) != GET_MODE (reloadreg))
|
||
tmp_reloadreg = gen_rtx (REG, GET_MODE (loc),
|
||
REGNO (reloadreg));
|
||
else
|
||
tmp_reloadreg = reloadreg;
|
||
|
||
emit_move_insn (loc, second_reloadreg);
|
||
pat = gen_move_insn (tmp_reloadreg, loc);
|
||
}
|
||
#endif
|
||
else
|
||
pat = gen_move_insn (reloadreg, second_reloadreg);
|
||
|
||
emit_insn (pat);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Output the last reload insn. */
|
||
if (! special)
|
||
{
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* If we need a memory location to do the move, do it that way. */
|
||
if (GET_CODE (old) == REG && REGNO (old) < FIRST_PSEUDO_REGISTER
|
||
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (old)),
|
||
REGNO_REG_CLASS (REGNO (reloadreg)),
|
||
GET_MODE (reloadreg)))
|
||
{
|
||
/* Get the memory to use and rewrite both registers to
|
||
its mode. */
|
||
rtx loc = get_secondary_mem (old, GET_MODE (reloadreg),
|
||
reload_opnum[j],
|
||
reload_when_needed[j]);
|
||
|
||
if (GET_MODE (loc) != GET_MODE (reloadreg))
|
||
reloadreg = gen_rtx (REG, GET_MODE (loc),
|
||
REGNO (reloadreg));
|
||
|
||
if (GET_MODE (loc) != GET_MODE (old))
|
||
old = gen_rtx (REG, GET_MODE (loc), REGNO (old));
|
||
|
||
emit_insn (gen_move_insn (loc, reloadreg));
|
||
emit_insn (gen_move_insn (old, loc));
|
||
}
|
||
else
|
||
#endif
|
||
emit_insn (gen_move_insn (old, reloadreg));
|
||
}
|
||
|
||
#ifdef PRESERVE_DEATH_INFO_REGNO_P
|
||
/* If final will look at death notes for this reg,
|
||
put one on the last output-reload insn to use it. Similarly
|
||
for any secondary register. */
|
||
if (PRESERVE_DEATH_INFO_REGNO_P (REGNO (reloadreg)))
|
||
for (p = get_last_insn (); p; p = PREV_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& reg_overlap_mentioned_for_reload_p (reloadreg,
|
||
PATTERN (p)))
|
||
REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
|
||
reloadreg, REG_NOTES (p));
|
||
|
||
#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
|
||
if (! special
|
||
&& PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reloadreg)))
|
||
for (p = get_last_insn (); p; p = PREV_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& reg_overlap_mentioned_for_reload_p (second_reloadreg,
|
||
PATTERN (p)))
|
||
REG_NOTES (p) = gen_rtx (EXPR_LIST, REG_DEAD,
|
||
second_reloadreg, REG_NOTES (p));
|
||
#endif
|
||
#endif
|
||
/* Look at all insns we emitted, just to be safe. */
|
||
for (p = get_insns (); p; p = NEXT_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
|
||
{
|
||
/* If this output reload doesn't come from a spill reg,
|
||
clear any memory of reloaded copies of the pseudo reg.
|
||
If this output reload comes from a spill reg,
|
||
reg_has_output_reload will make this do nothing. */
|
||
note_stores (PATTERN (p), forget_old_reloads_1);
|
||
|
||
if (reg_mentioned_p (reload_reg_rtx[j], PATTERN (p)))
|
||
store_insn = p;
|
||
}
|
||
|
||
output_reload_insns[reload_opnum[j]] = get_insns ();
|
||
end_sequence ();
|
||
|
||
}
|
||
|
||
if (reload_spill_index[j] >= 0)
|
||
new_spill_reg_store[reload_spill_index[j]] = store_insn;
|
||
}
|
||
|
||
/* Now write all the insns we made for reloads in the order expected by
|
||
the allocation functions. Prior to the insn being reloaded, we write
|
||
the following reloads:
|
||
|
||
RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
|
||
|
||
RELOAD_OTHER reloads.
|
||
|
||
For each operand, any RELOAD_FOR_INPUT_ADDRESS reloads followed by
|
||
the RELOAD_FOR_INPUT reload for the operand.
|
||
|
||
RELOAD_FOR_OPERAND_ADDRESS reloads.
|
||
|
||
After the insn being reloaded, we write the following:
|
||
|
||
For each operand, any RELOAD_FOR_OUTPUT_ADDRESS reload followed by
|
||
the RELOAD_FOR_OUTPUT reload for that operand. */
|
||
|
||
emit_insns_before (other_input_address_reload_insns, before_insn);
|
||
emit_insns_before (other_input_reload_insns, before_insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
emit_insns_before (input_address_reload_insns[j], before_insn);
|
||
emit_insns_before (input_reload_insns[j], before_insn);
|
||
}
|
||
|
||
emit_insns_before (operand_reload_insns, before_insn);
|
||
|
||
for (j = 0; j < reload_n_operands; j++)
|
||
{
|
||
emit_insns_before (output_address_reload_insns[j], following_insn);
|
||
emit_insns_before (output_reload_insns[j], following_insn);
|
||
}
|
||
|
||
/* Move death notes from INSN
|
||
to output-operand-address and output reload insns. */
|
||
#ifdef PRESERVE_DEATH_INFO_REGNO_P
|
||
{
|
||
rtx insn1;
|
||
/* Loop over those insns, last ones first. */
|
||
for (insn1 = PREV_INSN (following_insn); insn1 != insn;
|
||
insn1 = PREV_INSN (insn1))
|
||
if (GET_CODE (insn1) == INSN && GET_CODE (PATTERN (insn1)) == SET)
|
||
{
|
||
rtx source = SET_SRC (PATTERN (insn1));
|
||
rtx dest = SET_DEST (PATTERN (insn1));
|
||
|
||
/* The note we will examine next. */
|
||
rtx reg_notes = REG_NOTES (insn);
|
||
/* The place that pointed to this note. */
|
||
rtx *prev_reg_note = ®_NOTES (insn);
|
||
|
||
/* If the note is for something used in the source of this
|
||
reload insn, or in the output address, move the note. */
|
||
while (reg_notes)
|
||
{
|
||
rtx next_reg_notes = XEXP (reg_notes, 1);
|
||
if (REG_NOTE_KIND (reg_notes) == REG_DEAD
|
||
&& GET_CODE (XEXP (reg_notes, 0)) == REG
|
||
&& ((GET_CODE (dest) != REG
|
||
&& reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0),
|
||
dest))
|
||
|| reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0),
|
||
source)))
|
||
{
|
||
*prev_reg_note = next_reg_notes;
|
||
XEXP (reg_notes, 1) = REG_NOTES (insn1);
|
||
REG_NOTES (insn1) = reg_notes;
|
||
}
|
||
else
|
||
prev_reg_note = &XEXP (reg_notes, 1);
|
||
|
||
reg_notes = next_reg_notes;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* For all the spill regs newly reloaded in this instruction,
|
||
record what they were reloaded from, so subsequent instructions
|
||
can inherit the reloads.
|
||
|
||
Update spill_reg_store for the reloads of this insn.
|
||
Copy the elements that were updated in the loop above. */
|
||
|
||
for (j = 0; j < n_reloads; j++)
|
||
{
|
||
register int r = reload_order[j];
|
||
register int i = reload_spill_index[r];
|
||
|
||
/* I is nonneg if this reload used one of the spill regs.
|
||
If reload_reg_rtx[r] is 0, this is an optional reload
|
||
that we opted to ignore.
|
||
|
||
Also ignore reloads that don't reach the end of the insn,
|
||
since we will eventually see the one that does. */
|
||
|
||
if (i >= 0 && reload_reg_rtx[r] != 0
|
||
&& reload_reg_reaches_end_p (spill_regs[i], reload_opnum[r],
|
||
reload_when_needed[r]))
|
||
{
|
||
/* First, clear out memory of what used to be in this spill reg.
|
||
If consecutive registers are used, clear them all. */
|
||
int nr
|
||
= HARD_REGNO_NREGS (spill_regs[i], GET_MODE (reload_reg_rtx[r]));
|
||
int k;
|
||
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]] = -1;
|
||
reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = 0;
|
||
}
|
||
|
||
/* Maybe the spill reg contains a copy of reload_out. */
|
||
if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
|
||
{
|
||
register int nregno = REGNO (reload_out[r]);
|
||
int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (reload_reg_rtx[r])));
|
||
|
||
spill_reg_store[i] = new_spill_reg_store[i];
|
||
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
|
||
|
||
/* If NREGNO is a hard register, it may occupy more than
|
||
one register. If it does, say what is in the
|
||
rest of the registers assuming that both registers
|
||
agree on how many words the object takes. If not,
|
||
invalidate the subsequent registers. */
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr ? gen_rtx (REG, word_mode,
|
||
REGNO (reload_reg_rtx[r]) + k)
|
||
: 0);
|
||
|
||
/* Now do the inverse operation. */
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr ? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]] = insn;
|
||
}
|
||
}
|
||
|
||
/* Maybe the spill reg contains a copy of reload_in. Only do
|
||
something if there will not be an output reload for
|
||
the register being reloaded. */
|
||
else if (reload_out[r] == 0
|
||
&& reload_in[r] != 0
|
||
&& ((GET_CODE (reload_in[r]) == REG
|
||
&& ! reg_has_output_reload[REGNO (reload_in[r])]
|
||
|| (GET_CODE (reload_in_reg[r]) == REG
|
||
&& ! reg_has_output_reload[REGNO (reload_in_reg[r])]))))
|
||
{
|
||
register int nregno;
|
||
int nnr;
|
||
|
||
if (GET_CODE (reload_in[r]) == REG)
|
||
nregno = REGNO (reload_in[r]);
|
||
else
|
||
nregno = REGNO (reload_in_reg[r]);
|
||
|
||
nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
|
||
: HARD_REGNO_NREGS (nregno,
|
||
GET_MODE (reload_reg_rtx[r])));
|
||
|
||
reg_last_reload_reg[nregno] = reload_reg_rtx[r];
|
||
|
||
if (nregno < FIRST_PSEUDO_REGISTER)
|
||
for (k = 1; k < nnr; k++)
|
||
reg_last_reload_reg[nregno + k]
|
||
= (nr == nnr ? gen_rtx (REG, word_mode,
|
||
REGNO (reload_reg_rtx[r]) + k)
|
||
: 0);
|
||
|
||
/* Unless we inherited this reload, show we haven't
|
||
recently done a store. */
|
||
if (! reload_inherited[r])
|
||
spill_reg_store[i] = 0;
|
||
|
||
for (k = 0; k < nr; k++)
|
||
{
|
||
reg_reloaded_contents[spill_reg_order[spill_regs[i] + k]]
|
||
= (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr ? nregno
|
||
: nregno + k);
|
||
reg_reloaded_insn[spill_reg_order[spill_regs[i] + k]]
|
||
= insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The following if-statement was #if 0'd in 1.34 (or before...).
|
||
It's reenabled in 1.35 because supposedly nothing else
|
||
deals with this problem. */
|
||
|
||
/* If a register gets output-reloaded from a non-spill register,
|
||
that invalidates any previous reloaded copy of it.
|
||
But forget_old_reloads_1 won't get to see it, because
|
||
it thinks only about the original insn. So invalidate it here. */
|
||
if (i < 0 && reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG)
|
||
{
|
||
register int nregno = REGNO (reload_out[r]);
|
||
reg_last_reload_reg[nregno] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emit code to perform an input reload of IN to RELOADREG. IN is from
|
||
operand OPNUM with reload type TYPE.
|
||
|
||
Returns first insn emitted. */
|
||
|
||
rtx
|
||
gen_input_reload (reloadreg, in, opnum, type)
|
||
rtx reloadreg;
|
||
rtx in;
|
||
int opnum;
|
||
enum reload_type type;
|
||
{
|
||
rtx last = get_last_insn ();
|
||
|
||
/* How to do this reload can get quite tricky. Normally, we are being
|
||
asked to reload a simple operand, such as a MEM, a constant, or a pseudo
|
||
register that didn't get a hard register. In that case we can just
|
||
call emit_move_insn.
|
||
|
||
We can also be asked to reload a PLUS that adds either two registers, or
|
||
a register and a constant or MEM, or a MEM and a constant. This can
|
||
occur during frame pointer elimination and while reloading addresses.
|
||
This case is handled by trying to emit a single insn
|
||
to perform the add. If it is not valid, we use a two insn sequence.
|
||
|
||
Finally, we could be called to handle an 'o' constraint by putting
|
||
an address into a register. In that case, we first try to do this
|
||
with a named pattern of "reload_load_address". If no such pattern
|
||
exists, we just emit a SET insn and hope for the best (it will normally
|
||
be valid on machines that use 'o').
|
||
|
||
This entire process is made complex because reload will never
|
||
process the insns we generate here and so we must ensure that
|
||
they will fit their constraints and also by the fact that parts of
|
||
IN might be being reloaded separately and replaced with spill registers.
|
||
Because of this, we are, in some sense, just guessing the right approach
|
||
here. The one listed above seems to work.
|
||
|
||
??? At some point, this whole thing needs to be rethought. */
|
||
|
||
if (GET_CODE (in) == PLUS
|
||
&& ((GET_CODE (XEXP (in, 0)) == REG
|
||
&& (GET_CODE (XEXP (in, 1)) == REG
|
||
|| CONSTANT_P (XEXP (in, 1))
|
||
|| GET_CODE (XEXP (in, 1)) == MEM))
|
||
|| (GET_CODE (XEXP (in, 0)) == MEM
|
||
&& CONSTANT_P (XEXP (in, 1)))))
|
||
{
|
||
/* We need to compute the sum of what is either a register and a
|
||
constant, a register and memory, a hard register and a pseudo
|
||
register, or memory and a constant and put it into the reload
|
||
register. The best possible way of doing this is if the machine
|
||
has a three-operand ADD insn that accepts the required operands.
|
||
|
||
The simplest approach is to try to generate such an insn and see if it
|
||
is recognized and matches its constraints. If so, it can be used.
|
||
|
||
It might be better not to actually emit the insn unless it is valid,
|
||
but we need to pass the insn as an operand to `recog' and
|
||
`insn_extract' and it is simpler to emit and then delete the insn if
|
||
not valid than to dummy things up. */
|
||
|
||
rtx op0, op1, tem, insn;
|
||
int code;
|
||
|
||
op0 = find_replacement (&XEXP (in, 0));
|
||
op1 = find_replacement (&XEXP (in, 1));
|
||
|
||
/* Since constraint checking is strict, commutativity won't be
|
||
checked, so we need to do that here to avoid spurious failure
|
||
if the add instruction is two-address and the second operand
|
||
of the add is the same as the reload reg, which is frequently
|
||
the case. If the insn would be A = B + A, rearrange it so
|
||
it will be A = A + B as constrain_operands expects. */
|
||
|
||
if (GET_CODE (XEXP (in, 1)) == REG
|
||
&& REGNO (reloadreg) == REGNO (XEXP (in, 1)))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
|
||
in = gen_rtx (PLUS, GET_MODE (in), op0, op1);
|
||
|
||
insn = emit_insn (gen_rtx (SET, VOIDmode, reloadreg, in));
|
||
code = recog_memoized (insn);
|
||
|
||
if (code >= 0)
|
||
{
|
||
insn_extract (insn);
|
||
/* We want constrain operands to treat this insn strictly in
|
||
its validity determination, i.e., the way it would after reload
|
||
has completed. */
|
||
if (constrain_operands (code, 1))
|
||
return insn;
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* If that failed, we must use a conservative two-insn sequence.
|
||
use move to copy constant, MEM, or pseudo register to the reload
|
||
register since "move" will be able to handle an arbitrary operand,
|
||
unlike add which can't, in general. Then add the registers.
|
||
|
||
If there is another way to do this for a specific machine, a
|
||
DEFINE_PEEPHOLE should be specified that recognizes the sequence
|
||
we emit below. */
|
||
|
||
if (CONSTANT_P (op1) || GET_CODE (op1) == MEM
|
||
|| (GET_CODE (op1) == REG
|
||
&& REGNO (op1) >= FIRST_PSEUDO_REGISTER))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
emit_insn (gen_move_insn (reloadreg, op0));
|
||
|
||
/* If OP0 and OP1 are the same, we can use RELOADREG for OP1.
|
||
This fixes a problem on the 32K where the stack pointer cannot
|
||
be used as an operand of an add insn. */
|
||
|
||
if (rtx_equal_p (op0, op1))
|
||
op1 = reloadreg;
|
||
|
||
emit_insn (gen_add2_insn (reloadreg, op1));
|
||
}
|
||
|
||
#ifdef SECONDARY_MEMORY_NEEDED
|
||
/* If we need a memory location to do the move, do it that way. */
|
||
else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
|
||
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
|
||
REGNO_REG_CLASS (REGNO (reloadreg)),
|
||
GET_MODE (reloadreg)))
|
||
{
|
||
/* Get the memory to use and rewrite both registers to its mode. */
|
||
rtx loc = get_secondary_mem (in, GET_MODE (reloadreg), opnum, type);
|
||
|
||
if (GET_MODE (loc) != GET_MODE (reloadreg))
|
||
reloadreg = gen_rtx (REG, GET_MODE (loc), REGNO (reloadreg));
|
||
|
||
if (GET_MODE (loc) != GET_MODE (in))
|
||
in = gen_rtx (REG, GET_MODE (loc), REGNO (in));
|
||
|
||
emit_insn (gen_move_insn (loc, in));
|
||
emit_insn (gen_move_insn (reloadreg, loc));
|
||
}
|
||
#endif
|
||
|
||
/* If IN is a simple operand, use gen_move_insn. */
|
||
else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
|
||
emit_insn (gen_move_insn (reloadreg, in));
|
||
|
||
#ifdef HAVE_reload_load_address
|
||
else if (HAVE_reload_load_address)
|
||
emit_insn (gen_reload_load_address (reloadreg, in));
|
||
#endif
|
||
|
||
/* Otherwise, just write (set REGLOADREG IN) and hope for the best. */
|
||
else
|
||
emit_insn (gen_rtx (SET, VOIDmode, reloadreg, in));
|
||
|
||
/* Return the first insn emitted.
|
||
We can not just return get_last_insn, because there may have
|
||
been multiple instructions emitted. Also note that gen_move_insn may
|
||
emit more than one insn itself, so we can not assume that there is one
|
||
insn emitted per emit_insn_before call. */
|
||
|
||
return last ? NEXT_INSN (last) : get_insns ();
|
||
}
|
||
|
||
/* Delete a previously made output-reload
|
||
whose result we now believe is not needed.
|
||
First we double-check.
|
||
|
||
INSN is the insn now being processed.
|
||
OUTPUT_RELOAD_INSN is the insn of the output reload.
|
||
J is the reload-number for this insn. */
|
||
|
||
static void
|
||
delete_output_reload (insn, j, output_reload_insn)
|
||
rtx insn;
|
||
int j;
|
||
rtx output_reload_insn;
|
||
{
|
||
register rtx i1;
|
||
|
||
/* Get the raw pseudo-register referred to. */
|
||
|
||
rtx reg = reload_in[j];
|
||
while (GET_CODE (reg) == SUBREG)
|
||
reg = SUBREG_REG (reg);
|
||
|
||
/* If the pseudo-reg we are reloading is no longer referenced
|
||
anywhere between the store into it and here,
|
||
and no jumps or labels intervene, then the value can get
|
||
here through the reload reg alone.
|
||
Otherwise, give up--return. */
|
||
for (i1 = NEXT_INSN (output_reload_insn);
|
||
i1 != insn; i1 = NEXT_INSN (i1))
|
||
{
|
||
if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
|
||
return;
|
||
if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i1)))
|
||
return;
|
||
}
|
||
|
||
/* If this insn will store in the pseudo again,
|
||
the previous store can be removed. */
|
||
if (reload_out[j] == reload_in[j])
|
||
delete_insn (output_reload_insn);
|
||
|
||
/* See if the pseudo reg has been completely replaced
|
||
with reload regs. If so, delete the store insn
|
||
and forget we had a stack slot for the pseudo. */
|
||
else if (reg_n_deaths[REGNO (reg)] == 1
|
||
&& reg_basic_block[REGNO (reg)] >= 0
|
||
&& find_regno_note (insn, REG_DEAD, REGNO (reg)))
|
||
{
|
||
rtx i2;
|
||
|
||
/* We know that it was used only between here
|
||
and the beginning of the current basic block.
|
||
(We also know that the last use before INSN was
|
||
the output reload we are thinking of deleting, but never mind that.)
|
||
Search that range; see if any ref remains. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
/* Uses which just store in the pseudo don't count,
|
||
since if they are the only uses, they are dead. */
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
continue;
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
|
||
&& reg_mentioned_p (reg, PATTERN (i2)))
|
||
/* Some other ref remains;
|
||
we can't do anything. */
|
||
return;
|
||
}
|
||
|
||
/* Delete the now-dead stores into this pseudo. */
|
||
for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
|
||
{
|
||
rtx set = single_set (i2);
|
||
|
||
if (set != 0 && SET_DEST (set) == reg)
|
||
delete_insn (i2);
|
||
if (GET_CODE (i2) == CODE_LABEL
|
||
|| GET_CODE (i2) == JUMP_INSN)
|
||
break;
|
||
}
|
||
|
||
/* For the debugging info,
|
||
say the pseudo lives in this reload reg. */
|
||
reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]);
|
||
alter_reg (REGNO (reg), -1);
|
||
}
|
||
}
|
||
|
||
/* Output reload-insns to reload VALUE into RELOADREG.
|
||
VALUE is an autoincrement or autodecrement RTX whose operand
|
||
is a register or memory location;
|
||
so reloading involves incrementing that location.
|
||
|
||
INC_AMOUNT is the number to increment or decrement by (always positive).
|
||
This cannot be deduced from VALUE. */
|
||
|
||
static void
|
||
inc_for_reload (reloadreg, value, inc_amount)
|
||
rtx reloadreg;
|
||
rtx value;
|
||
int inc_amount;
|
||
{
|
||
/* REG or MEM to be copied and incremented. */
|
||
rtx incloc = XEXP (value, 0);
|
||
/* Nonzero if increment after copying. */
|
||
int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
|
||
rtx last;
|
||
rtx inc;
|
||
rtx add_insn;
|
||
int code;
|
||
|
||
/* No hard register is equivalent to this register after
|
||
inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
|
||
we could inc/dec that register as well (maybe even using it for
|
||
the source), but I'm not sure it's worth worrying about. */
|
||
if (GET_CODE (incloc) == REG)
|
||
reg_last_reload_reg[REGNO (incloc)] = 0;
|
||
|
||
if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
|
||
inc_amount = - inc_amount;
|
||
|
||
inc = GEN_INT (inc_amount);
|
||
|
||
/* If this is post-increment, first copy the location to the reload reg. */
|
||
if (post)
|
||
emit_insn (gen_move_insn (reloadreg, incloc));
|
||
|
||
/* See if we can directly increment INCLOC. Use a method similar to that
|
||
in gen_input_reload. */
|
||
|
||
last = get_last_insn ();
|
||
add_insn = emit_insn (gen_rtx (SET, VOIDmode, incloc,
|
||
gen_rtx (PLUS, GET_MODE (incloc),
|
||
incloc, inc)));
|
||
|
||
code = recog_memoized (add_insn);
|
||
if (code >= 0)
|
||
{
|
||
insn_extract (add_insn);
|
||
if (constrain_operands (code, 1))
|
||
{
|
||
/* If this is a pre-increment and we have incremented the value
|
||
where it lives, copy the incremented value to RELOADREG to
|
||
be used as an address. */
|
||
|
||
if (! post)
|
||
emit_insn (gen_move_insn (reloadreg, incloc));
|
||
|
||
return;
|
||
}
|
||
}
|
||
|
||
delete_insns_since (last);
|
||
|
||
/* If couldn't do the increment directly, must increment in RELOADREG.
|
||
The way we do this depends on whether this is pre- or post-increment.
|
||
For pre-increment, copy INCLOC to the reload register, increment it
|
||
there, then save back. */
|
||
|
||
if (! post)
|
||
{
|
||
emit_insn (gen_move_insn (reloadreg, incloc));
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
emit_insn (gen_move_insn (incloc, reloadreg));
|
||
}
|
||
else
|
||
{
|
||
/* Postincrement.
|
||
Because this might be a jump insn or a compare, and because RELOADREG
|
||
may not be available after the insn in an input reload, we must do
|
||
the incrementation before the insn being reloaded for.
|
||
|
||
We have already copied INCLOC to RELOADREG. Increment the copy in
|
||
RELOADREG, save that back, then decrement RELOADREG so it has
|
||
the original value. */
|
||
|
||
emit_insn (gen_add2_insn (reloadreg, inc));
|
||
emit_insn (gen_move_insn (incloc, reloadreg));
|
||
emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Return 1 if we are certain that the constraint-string STRING allows
|
||
the hard register REG. Return 0 if we can't be sure of this. */
|
||
|
||
static int
|
||
constraint_accepts_reg_p (string, reg)
|
||
char *string;
|
||
rtx reg;
|
||
{
|
||
int value = 0;
|
||
int regno = true_regnum (reg);
|
||
int c;
|
||
|
||
/* Initialize for first alternative. */
|
||
value = 0;
|
||
/* Check that each alternative contains `g' or `r'. */
|
||
while (1)
|
||
switch (c = *string++)
|
||
{
|
||
case 0:
|
||
/* If an alternative lacks `g' or `r', we lose. */
|
||
return value;
|
||
case ',':
|
||
/* If an alternative lacks `g' or `r', we lose. */
|
||
if (value == 0)
|
||
return 0;
|
||
/* Initialize for next alternative. */
|
||
value = 0;
|
||
break;
|
||
case 'g':
|
||
case 'r':
|
||
/* Any general reg wins for this alternative. */
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
|
||
value = 1;
|
||
break;
|
||
default:
|
||
/* Any reg in specified class wins for this alternative. */
|
||
{
|
||
enum reg_class class = REG_CLASS_FROM_LETTER (c);
|
||
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
|
||
value = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the number of places FIND appears within X, but don't count
|
||
an occurrence if some SET_DEST is FIND. */
|
||
|
||
static int
|
||
count_occurrences (x, find)
|
||
register rtx x, find;
|
||
{
|
||
register int i, j;
|
||
register enum rtx_code code;
|
||
register char *format_ptr;
|
||
int count;
|
||
|
||
if (x == find)
|
||
return 1;
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case QUEUED:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
return 0;
|
||
|
||
case SET:
|
||
if (SET_DEST (x) == find)
|
||
return count_occurrences (SET_SRC (x), find);
|
||
break;
|
||
}
|
||
|
||
format_ptr = GET_RTX_FORMAT (code);
|
||
count = 0;
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*format_ptr++)
|
||
{
|
||
case 'e':
|
||
count += count_occurrences (XEXP (x, i), find);
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (x, i) != NULL)
|
||
{
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
count += count_occurrences (XVECEXP (x, i, j), find);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
return count;
|
||
}
|