8sa1-gcc/gcc/ada/urealp.adb
Geert Bosch bcea76b65d 1aexcept.adb, [...]: Merge header, formatting and other trivial changes from ACT.
* 1aexcept.adb, 1aexcept.ads, 1ic.ads, 1ssecsta.adb,
	1ssecsta.ads, 31soccon.ads, 31soliop.ads, 3asoccon.ads,
	3bsoccon.ads, 3gsoccon.ads, 3hsoccon.ads, 3ssoccon.ads,
	3ssoliop.ads, 3wsoccon.ads, 3wsocthi.adb, 3wsocthi.ads,
	3wsoliop.ads, 41intnam.ads, 42intnam.ads, 4aintnam.ads,
	4cintnam.ads, 4dintnam.ads, 4gintnam.ads, 4hexcpol.adb,
	4hintnam.ads, 4lintnam.ads, 4mintnam.ads, 4nintnam.ads,
	4ointnam.ads, 4onumaux.ads, 4pintnam.ads, 4rintnam.ads,
	4sintnam.ads, 4uintnam.ads, 4vcaldel.adb, 4vcalend.adb,
	4vcalend.ads, 4vintnam.ads, 4wcalend.adb, 4wexcpol.adb,
	4wintnam.ads, 4zintnam.ads, 4znumaux.ads, 4zsytaco.adb,
	4zsytaco.ads, 51osinte.adb, 51osinte.ads, 52osinte.adb,
	52osinte.ads, 52system.ads, 53osinte.ads, 54osinte.ads,
	5amastop.adb, 5aosinte.adb, 5aosinte.ads, 5asystem.ads,
	5ataprop.adb, 5atasinf.ads, 5ataspri.ads, 5atpopsp.adb,
	5avxwork.ads, 5bosinte.adb, 5bosinte.ads, 5bsystem.ads,
	5cosinte.ads, 5dosinte.ads, 5esystem.ads, 5etpopse.adb,
	5fintman.adb, 5fosinte.ads, 5fsystem.ads, 5ftaprop.adb,
	5ftasinf.ads, 5ginterr.adb, 5gintman.adb, 5gmastop.adb,
	5gosinte.ads, 5gproinf.adb, 5gproinf.ads, 5gsystem.ads,
	5gtaprop.adb, 5gtasinf.adb, 5gtasinf.ads, 5gtpgetc.adb,
	5hosinte.adb, 5hosinte.ads, 5hparame.ads, 5hsystem.ads,
	5htaprop.adb, 5htaspri.ads, 5htraceb.adb, 5iosinte.adb,
	5iosinte.ads, 5itaprop.adb, 5itaspri.ads, 5ksystem.ads,
	5kvxwork.ads, 5lintman.adb, 5lml-tgt.adb, 5losinte.ads,
	5lsystem.ads, 5mosinte.ads, 5mvxwork.ads, 5ninmaop.adb,
	5nintman.adb, 5nosinte.ads, 5ntaprop.adb, 5ntaspri.ads,
	5ointerr.adb, 5omastop.adb, 5oosinte.adb, 5oosinte.ads,
	5oosprim.adb, 5oparame.adb, 5osystem.ads, 5otaprop.adb,
	5otaspri.ads, 5posinte.ads, 5posprim.adb, 5pvxwork.ads,
	5qosinte.adb, 5qosinte.ads, 5qstache.adb, 5qtaprop.adb,
	5qtaspri.ads, 5rosinte.adb, 5rosinte.ads, 5rparame.adb,
	5sintman.adb, 5sosinte.adb, 5sosinte.ads, 5sparame.adb,
	5ssystem.ads, 5staprop.adb, 5stasinf.adb, 5stasinf.ads,
	5staspri.ads, 5stpopse.adb, 5svxwork.ads, 5tosinte.ads,
	5uintman.adb, 5uosinte.ads, 5vasthan.adb, 5vinmaop.adb,
	5vinterr.adb, 5vintman.adb, 5vintman.ads, 5vmastop.adb,
	5vosinte.adb, 5vosinte.ads, 5vosprim.adb, 5vosprim.ads,
	5vparame.ads, 5vsystem.ads, 5vtaprop.adb, 5vtaspri.ads,
	5vtpopde.adb, 5vtpopde.ads, 5vvaflop.adb, 5wgloloc.adb,
	5wintman.adb, 5wmemory.adb, 5wosinte.ads, 5wosprim.adb,
	5wsystem.ads, 5wtaprop.adb, 5wtaspri.ads, 5ysystem.ads,
	5zinterr.adb, 5zintman.adb, 5zosinte.adb, 5zosinte.ads,
	5zosprim.adb, 5zsystem.ads, 5ztaprop.adb, 6vcpp.adb,
	6vcstrea.adb, 6vinterf.ads, 7sinmaop.adb, 7sintman.adb,
	7sosinte.adb, 7sosprim.adb, 7staprop.adb, 7staspri.ads,
	7stpopsp.adb, 7straceb.adb, 86numaux.adb, 86numaux.ads,
	9drpc.adb, a-astaco.adb, a-astaco.ads, a-caldel.adb,
	a-caldel.ads, a-calend.adb, a-calend.ads, a-chahan.adb,
	a-chahan.ads, a-charac.ads, a-chlat1.ads, a-chlat9.ads,
	a-colien.adb, a-colien.ads, a-colire.adb, a-colire.ads,
	a-comlin.adb, a-comlin.ads, a-cwila1.ads, a-cwila9.ads,
	a-decima.adb, a-decima.ads, a-diocst.adb, a-diocst.ads,
	a-direio.adb, a-direio.ads, a-dynpri.adb, a-dynpri.ads,
	a-einuoc.adb, a-einuoc.ads, a-except.adb, a-except.ads,
	a-excpol.adb, a-exctra.adb, a-exctra.ads, a-filico.adb,
	a-filico.ads, a-finali.adb, a-finali.ads, a-flteio.ads,
	a-fwteio.ads, a-inteio.ads, a-interr.adb, a-interr.ads,
	a-intnam.ads, a-intsig.adb, a-intsig.ads, a-ioexce.ads,
	a-iwteio.ads, a-lfteio.ads, a-lfwtio.ads, a-liteio.ads,
	a-liwtio.ads, a-llftio.ads, a-llfwti.ads, a-llitio.ads,
	a-lliwti.ads, a-ncelfu.ads, a-ngcefu.adb, a-ngcefu.ads,
	a-ngcoty.adb, a-ngcoty.ads, a-ngelfu.adb, a-ngelfu.ads,
	a-nlcefu.ads, a-nlcoty.ads, a-nlelfu.ads, a-nllcef.ads,
	a-nllcty.ads, a-nllefu.ads, a-nscefu.ads, a-nscoty.ads,
	a-nselfu.ads, a-nucoty.ads, a-nudira.adb, a-nudira.ads,
	a-nuelfu.ads, a-nuflra.adb, a-nuflra.ads, a-numaux.ads,
	a-numeri.ads, a-reatim.adb, a-reatim.ads, a-retide.adb,
	a-retide.ads, a-sequio.adb, a-sequio.ads, a-sfteio.ads,
	a-sfwtio.ads, a-siocst.adb, a-siocst.ads, a-siteio.ads,
	a-siwtio.ads, a-ssicst.adb, a-ssicst.ads, a-ssitio.ads,
	a-ssiwti.ads, a-stmaco.ads, a-storio.adb, a-storio.ads,
	a-strbou.adb, a-strbou.ads, a-stream.ads, a-strfix.adb,
	a-strfix.ads, a-string.ads, a-strmap.adb, a-strmap.ads,
	a-strsea.adb, a-strsea.ads, a-strunb.adb, a-strunb.ads,
	a-ststio.adb, a-ststio.ads, a-stunau.adb, a-stunau.ads,
	a-stwibo.adb, a-stwibo.ads, a-stwifi.adb, a-stwifi.ads,
	a-stwima.adb, a-stwima.ads, a-stwise.adb, a-stwise.ads,
	a-stwiun.adb, a-stwiun.ads, a-suteio.adb, a-suteio.ads,
	a-swmwco.ads, a-swuwti.adb, a-swuwti.ads, a-sytaco.adb,
	a-sytaco.ads, a-tags.adb, a-tags.ads, a-tasatt.adb,
	a-tasatt.ads, a-taside.adb, a-taside.ads, a-teioed.adb,
	a-teioed.ads, a-textio.adb, a-textio.ads, a-ticoau.adb,
	a-ticoau.ads, a-ticoio.adb, a-ticoio.ads, a-tideau.adb,
	a-tideau.ads, a-tideio.adb, a-tideio.ads, a-tienau.adb,
	a-tienau.ads, a-tienio.adb, a-tienio.ads, a-tifiio.adb,
	a-tifiio.ads, a-tiflau.adb, a-tiflau.ads, a-tiflio.adb,
	a-tiflio.ads, a-tigeau.adb, a-tigeau.ads, a-tiinau.adb,
	a-tiinau.ads, a-tiinio.adb, a-tiinio.ads, a-timoau.adb,
	a-timoau.ads, a-timoio.adb, a-timoio.ads, a-tiocst.adb,
	a-tiocst.ads, a-titest.adb, a-titest.ads, a-unccon.ads,
	a-uncdea.ads, a-witeio.adb, a-witeio.ads, a-wtcoau.adb,
	a-wtcoau.ads, a-wtcoio.adb, a-wtcoio.ads, a-wtcstr.adb,
	a-wtcstr.ads, a-wtdeau.adb, a-wtdeau.ads, a-wtdeio.adb,
	a-wtdeio.ads, a-wtedit.adb, a-wtedit.ads, a-wtenau.adb,
	a-wtenau.ads, a-wtenio.adb, a-wtenio.ads, a-wtfiio.adb,
	a-wtfiio.ads, a-wtflau.adb, a-wtflau.ads, a-wtflio.adb,
	a-wtflio.ads, a-wtgeau.adb, a-wtgeau.ads, a-wtinau.adb,
	a-wtinau.ads, a-wtinio.adb, a-wtinio.ads, a-wtmoau.adb,
	a-wtmoau.ads, a-wtmoio.adb, a-wtmoio.ads, a-wttest.adb,
	a-wttest.ads, ada-tree.h, ada.ads, ada.h,
	adadecode.c, adadecode.h, ali-util.adb, ali-util.ads,
	ali.adb, ali.ads, alloc.ads, argv.c,
	atree.adb, atree.ads, atree.h, aux-io.c,
	back_end.adb, back_end.ads, bcheck.adb, bcheck.ads,
	binde.adb, binde.ads, binderr.adb, binderr.ads,
	bindgen.adb, bindgen.ads, bindusg.adb, bindusg.ads,
	butil.adb, butil.ads, cal.c, calendar.ads,
	casing.adb, casing.ads, ceinfo.adb, checks.adb,
	checks.ads, cio.c, comperr.adb, comperr.ads,
	config-lang.in, csets.adb, csets.ads, csinfo.adb,
	cstand.adb, cstand.ads, cuintp.c, debug.adb,
	debug.ads, debug_a.adb, debug_a.ads, dec-io.adb,
	dec-io.ads, dec.ads, deftarg.c, directio.ads,
	einfo.adb, einfo.ads, elists.adb, elists.ads,
	elists.h, errno.c, errout.adb, errout.ads,
	eval_fat.adb, eval_fat.ads, exit.c, exp_aggr.adb,
	exp_aggr.ads, exp_attr.adb, exp_attr.ads, exp_ch10.ads,
	exp_ch11.adb, exp_ch11.ads, exp_ch12.adb, exp_ch12.ads,
	exp_ch13.adb, exp_ch13.ads, exp_ch2.adb, exp_ch2.ads,
	exp_ch3.adb, exp_ch3.ads, exp_ch4.adb, exp_ch4.ads,
	exp_ch5.adb, exp_ch5.ads, exp_ch6.adb, exp_ch6.ads,
	exp_ch7.adb, exp_ch7.ads, exp_ch8.adb, exp_ch8.ads,
	exp_ch9.adb, exp_ch9.ads, exp_code.adb, exp_code.ads,
	exp_dbug.adb, exp_dbug.ads, exp_disp.adb, exp_disp.ads,
	exp_dist.adb, exp_dist.ads, exp_fixd.adb, exp_fixd.ads,
	exp_imgv.adb, exp_imgv.ads, exp_intr.adb, exp_intr.ads,
	exp_pakd.adb, exp_pakd.ads, exp_prag.adb, exp_prag.ads,
	exp_smem.adb, exp_smem.ads, exp_strm.adb, exp_strm.ads,
	exp_tss.adb, exp_tss.ads, exp_util.adb, exp_util.ads,
	exp_vfpt.adb, exp_vfpt.ads, expander.adb, expander.ads,
	fmap.adb, fmap.ads, fname-sf.adb, fname-sf.ads,
	fname-uf.adb, fname-uf.ads, fname.adb, fname.ads,
	freeze.adb, freeze.ads, frontend.adb, frontend.ads,
	g-awk.adb, g-awk.ads, g-busora.adb, g-busora.ads,
	g-busorg.adb, g-busorg.ads, g-calend.adb, g-calend.ads,
	g-casuti.adb, g-casuti.ads, g-catiio.adb, g-catiio.ads,
	g-cgi.adb, g-cgi.ads, g-cgicoo.adb, g-cgicoo.ads,
	g-cgideb.adb, g-cgideb.ads, g-comlin.adb, g-comlin.ads,
	g-crc32.adb, g-crc32.ads, g-curexc.ads, g-debpoo.adb,
	g-debpoo.ads, g-debuti.adb, g-debuti.ads, g-diopit.adb,
	g-diopit.ads, g-dirope.adb, g-dirope.ads, g-dyntab.adb,
	g-dyntab.ads, g-enblsp.adb, g-except.ads, g-exctra.adb,
	g-exctra.ads, g-expect.adb, g-expect.ads, g-flocon.ads,
	g-hesora.adb, g-hesora.ads, g-hesorg.adb, g-hesorg.ads,
	g-htable.adb, g-htable.ads, g-io.adb, g-io.ads,
	g-io_aux.adb, g-io_aux.ads, g-locfil.ads, g-md5.adb,
	g-md5.ads, g-moreex.adb, g-moreex.ads, g-os_lib.adb,
	g-os_lib.ads, g-regexp.adb, g-regexp.ads, g-regist.ads,
	g-regpat.adb, g-regpat.ads, g-soccon.ads, g-socket.adb,
	g-socket.ads, g-socthi.adb, g-socthi.ads, g-soliop.ads,
	g-souinf.ads, g-speche.adb, g-speche.ads, g-spipat.adb,
	g-spipat.ads, g-spitbo.adb, g-spitbo.ads, g-sptabo.ads,
	g-sptain.ads, g-sptavs.ads, g-table.adb, g-table.ads,
	g-tasloc.adb, g-tasloc.ads, g-thread.adb, g-thread.ads,
	g-traceb.adb, g-traceb.ads, g-trasym.adb, g-trasym.ads,
	get_targ.adb, get_targ.ads, gnat-style.texi, gnat.ads,
	gnat1drv.adb, gnat1drv.ads, gnatbind.adb, gnatbind.ads,
	gnatbl.c, gnatchop.adb, gnatcmd.adb, gnatcmd.ads,
	gnatdll.adb, gnatfind.adb, gnatkr.adb, gnatkr.ads,
	gnatlbr.adb, gnatlink.adb, gnatlink.ads, gnatls.adb,
	gnatls.ads, gnatmake.adb, gnatmake.ads, gnatmem.adb,
	gnatname.adb, gnatname.ads, gnatprep.adb, gnatprep.ads,
	gnatpsta.adb, gnatvsn.adb, gnatvsn.ads, gnatxref.adb,
	hlo.adb, hlo.ads, hostparm.ads, i-c.adb,
	i-c.ads, i-cexten.ads, i-cobol.adb, i-cobol.ads,
	i-cpoint.adb, i-cpoint.ads, i-cpp.adb, i-cpp.ads,
	i-cstrea.adb, i-cstrea.ads, i-cstrin.adb, i-cstrin.ads,
	i-fortra.adb, i-fortra.ads, i-os2err.ads, i-os2lib.adb,
	i-os2lib.ads, i-os2syn.ads, i-os2thr.ads, i-pacdec.adb,
	i-pacdec.ads, i-vxwork.ads, impunit.adb, impunit.ads,
	inline.adb, inline.ads, interfac.ads, ioexcept.ads,
	itypes.adb, itypes.ads, krunch.adb, krunch.ads,
	layout.adb, layout.ads, lib-list.adb, lib-load.adb,
	lib-load.ads, lib-sort.adb, lib-util.adb, lib-util.ads,
	lib-writ.adb, lib-writ.ads, lib-xref.adb, lib-xref.ads,
	lib.adb, lib.ads, live.adb, live.ads,
	machcode.ads, make.adb, make.ads, makeusg.adb,
	makeusg.ads, math_lib.adb, mdll-fil.adb, mdll-fil.ads,
	mdll-utl.adb, mdll-utl.ads, mdll.adb, mdll.ads,
	memroot.adb, memroot.ads, memtrack.adb, mlib-fil.adb,
	mlib-fil.ads, mlib-prj.adb, mlib-prj.ads, mlib-tgt.adb,
	mlib-tgt.ads, mlib-utl.adb, mlib-utl.ads, mlib.adb,
	mlib.ads, namet.adb, namet.ads, nlists.adb,
	nlists.ads, opt.adb, opt.ads, osint-b.adb,
	osint-b.ads, osint-c.adb, osint-c.ads, osint-l.adb,
	osint-l.ads, osint-m.adb, osint-m.ads, osint.adb,
	osint.ads, output.adb, output.ads, par-ch10.adb,
	par-ch11.adb, par-ch12.adb, par-ch13.adb, par-ch2.adb,
	par-ch3.adb, par-ch4.adb, par-ch5.adb, par-ch6.adb,
	par-ch7.adb, par-ch8.adb, par-ch9.adb, par-endh.adb,
	par-labl.adb, par-load.adb, par-prag.adb, par-sync.adb,
	par-tchk.adb, par-util.adb, par.adb, par.ads,
	prj-attr.adb, prj-attr.ads, prj-com.adb, prj-com.ads,
	prj-dect.adb, prj-dect.ads, prj-env.adb, prj-env.ads,
	prj-ext.adb, prj-ext.ads, prj-makr.adb, prj-makr.ads,
	prj-nmsc.adb, prj-nmsc.ads, prj-pars.adb, prj-pars.ads,
	prj-part.adb, prj-part.ads, prj-pp.adb, prj-pp.ads,
	prj-proc.adb, prj-proc.ads, prj-strt.adb, prj-strt.ads,
	prj-tree.adb, prj-tree.ads, prj-util.adb, prj-util.ads,
	prj.adb, prj.ads, repinfo.adb, repinfo.ads,
	restrict.adb, restrict.ads, rident.ads, rtsfind.adb,
	rtsfind.ads, s-addima.adb, s-addima.ads, s-arit64.adb,
	s-arit64.ads, s-assert.adb, s-assert.ads, s-asthan.adb,
	s-asthan.ads, s-atacco.adb, s-atacco.ads, s-auxdec.adb,
	s-auxdec.ads, s-bitops.adb, s-bitops.ads, s-chepoo.ads,
	s-crc32.adb, s-crc32.ads, s-direio.adb, s-direio.ads,
	s-errrep.adb, s-errrep.ads, s-except.ads, s-exctab.adb,
	s-exctab.ads, s-exnflt.ads, s-exngen.adb, s-exngen.ads,
	s-exnint.ads, s-exnlfl.ads, s-exnlin.ads, s-exnllf.ads,
	s-exnlli.ads, s-exnsfl.ads, s-exnsin.ads, s-exnssi.ads,
	s-expflt.ads, s-expgen.adb, s-expgen.ads, s-expint.ads,
	s-explfl.ads, s-explin.ads, s-expllf.ads, s-explli.ads,
	s-expllu.adb, s-expllu.ads, s-expmod.adb, s-expmod.ads,
	s-expsfl.ads, s-expsin.ads, s-expssi.ads, s-expuns.adb,
	s-expuns.ads, s-fatflt.ads, s-fatgen.adb, s-fatgen.ads,
	s-fatlfl.ads, s-fatllf.ads, s-fatsfl.ads, s-ficobl.ads,
	s-fileio.adb, s-fileio.ads, s-finimp.adb, s-finimp.ads,
	s-finroo.adb, s-finroo.ads, s-fore.adb, s-fore.ads,
	s-gloloc.adb, s-gloloc.ads, s-imgbiu.adb, s-imgbiu.ads,
	s-imgboo.adb, s-imgboo.ads, s-imgcha.adb, s-imgcha.ads,
	s-imgdec.adb, s-imgdec.ads, s-imgenu.adb, s-imgenu.ads,
	s-imgint.adb, s-imgint.ads, s-imgllb.adb, s-imgllb.ads,
	s-imglld.adb, s-imglld.ads, s-imglli.adb, s-imglli.ads,
	s-imgllu.adb, s-imgllu.ads, s-imgllw.adb, s-imgllw.ads,
	s-imgrea.adb, s-imgrea.ads, s-imguns.adb, s-imguns.ads,
	s-imgwch.adb, s-imgwch.ads, s-imgwiu.adb, s-imgwiu.ads,
	s-inmaop.ads, s-interr.adb, s-interr.ads, s-intman.ads,
	s-io.adb, s-io.ads, s-maccod.ads, s-mantis.adb,
	s-mantis.ads, s-mastop.adb, s-mastop.ads, s-memory.adb,
	s-memory.ads, s-osprim.ads, s-pack03.adb, s-pack03.ads,
	s-pack05.adb, s-pack05.ads, s-pack06.adb, s-pack06.ads,
	s-pack07.adb, s-pack07.ads, s-pack09.adb, s-pack09.ads,
	s-pack10.adb, s-pack10.ads, s-pack11.adb, s-pack11.ads,
	s-pack12.adb, s-pack12.ads, s-pack13.adb, s-pack13.ads,
	s-pack14.adb, s-pack14.ads, s-pack15.adb, s-pack15.ads,
	s-pack17.adb, s-pack17.ads, s-pack18.adb, s-pack18.ads,
	s-pack19.adb, s-pack19.ads, s-pack20.adb, s-pack20.ads,
	s-pack21.adb, s-pack21.ads, s-pack22.adb, s-pack22.ads,
	s-pack23.adb, s-pack23.ads, s-pack24.adb, s-pack24.ads,
	s-pack25.adb, s-pack25.ads, s-pack26.adb, s-pack26.ads,
	s-pack27.adb, s-pack27.ads, s-pack28.adb, s-pack28.ads,
	s-pack29.adb, s-pack29.ads, s-pack30.adb, s-pack30.ads,
	s-pack31.adb, s-pack31.ads, s-pack33.adb, s-pack33.ads,
	s-pack34.adb, s-pack34.ads, s-pack35.adb, s-pack35.ads,
	s-pack36.adb, s-pack36.ads, s-pack37.adb, s-pack37.ads,
	s-pack38.adb, s-pack38.ads, s-pack39.adb, s-pack39.ads,
	s-pack40.adb, s-pack40.ads, s-pack41.adb, s-pack41.ads,
	s-pack42.adb, s-pack42.ads, s-pack43.adb, s-pack43.ads,
	s-pack44.adb, s-pack44.ads, s-pack45.adb, s-pack45.ads,
	s-pack46.adb, s-pack46.ads, s-pack47.adb, s-pack47.ads,
	s-pack48.adb, s-pack48.ads, s-pack49.adb, s-pack49.ads,
	s-pack50.adb, s-pack50.ads, s-pack51.adb, s-pack51.ads,
	s-pack52.adb, s-pack52.ads, s-pack53.adb, s-pack53.ads,
	s-pack54.adb, s-pack54.ads, s-pack55.adb, s-pack55.ads,
	s-pack56.adb, s-pack56.ads, s-pack57.adb, s-pack57.ads,
	s-pack58.adb, s-pack58.ads, s-pack59.adb, s-pack59.ads,
	s-pack60.adb, s-pack60.ads, s-pack61.adb, s-pack61.ads,
	s-pack62.adb, s-pack62.ads, s-pack63.adb, s-pack63.ads,
	s-parame.adb, s-parame.ads, s-parint.adb, s-parint.ads,
	s-pooglo.adb, s-pooglo.ads, s-pooloc.adb, s-pooloc.ads,
	s-poosiz.adb, s-poosiz.ads, s-powtab.ads, s-proinf.adb,
	s-proinf.ads, s-rpc.adb, s-rpc.ads, s-scaval.ads,
	s-secsta.adb, s-secsta.ads, s-sequio.adb, s-sequio.ads,
	s-shasto.adb, s-shasto.ads, s-soflin.adb, s-soflin.ads,
	s-sopco3.adb, s-sopco3.ads, s-sopco4.adb, s-sopco4.ads,
	s-sopco5.adb, s-sopco5.ads, s-stache.adb, s-stache.ads,
	s-stalib.adb, s-stalib.ads, s-stoele.adb, s-stoele.ads,
	s-stopoo.ads, s-stratt.adb, s-stratt.ads, s-strops.adb,
	s-strops.ads, s-taasde.adb, s-taasde.ads, s-tadeca.adb,
	s-tadeca.ads, s-tadert.adb, s-tadert.ads, s-taenca.adb,
	s-taenca.ads, s-taprob.adb, s-taprob.ads, s-taprop.ads,
	s-tarest.adb, s-tarest.ads, s-tasdeb.adb, s-tasdeb.ads,
	s-tasinf.adb, s-tasinf.ads, s-tasini.adb, s-tasini.ads,
	s-taskin.adb, s-taskin.ads, s-tasque.adb, s-tasque.ads,
	s-tasren.adb, s-tasren.ads, s-tasres.ads, s-tassta.adb,
	s-tassta.ads, s-tasuti.adb, s-tasuti.ads, s-tataat.adb,
	s-tataat.ads, s-tpinop.adb, s-tpinop.ads, s-tpoben.adb,
	s-tpoben.ads, s-tpobop.adb, s-tpobop.ads, s-tposen.adb,
	s-tposen.ads, s-traceb.adb, s-traceb.ads, s-traces.adb,
	s-traces.ads, s-tratas.adb, s-tratas.ads, s-unstyp.ads,
	s-vaflop.adb, s-vaflop.ads, s-valboo.adb, s-valboo.ads,
	s-valcha.adb, s-valcha.ads, s-valdec.adb, s-valdec.ads,
	s-valenu.adb, s-valenu.ads, s-valint.adb, s-valint.ads,
	s-vallld.adb, s-vallld.ads, s-vallli.adb, s-vallli.ads,
	s-valllu.adb, s-valllu.ads, s-valrea.adb, s-valrea.ads,
	s-valuns.adb, s-valuns.ads, s-valuti.adb, s-valuti.ads,
	s-valwch.adb, s-valwch.ads, s-vercon.adb, s-vercon.ads,
	s-vmexta.adb, s-vmexta.ads, s-wchcnv.adb, s-wchcnv.ads,
	s-wchcon.ads, s-wchjis.adb, s-wchjis.ads, s-wchstw.adb,
	s-wchstw.ads, s-wchwts.adb, s-wchwts.ads, s-widboo.adb,
	s-widboo.ads, s-widcha.adb, s-widcha.ads, s-widenu.adb,
	s-widenu.ads, s-widlli.adb, s-widlli.ads, s-widllu.adb,
	s-widllu.ads, s-widwch.adb, s-widwch.ads, s-wwdcha.adb,
	s-wwdcha.ads, s-wwdenu.adb, s-wwdenu.ads, s-wwdwch.adb,
	s-wwdwch.ads, scans.adb, scans.ads, scn-nlit.adb,
	scn-slit.adb, scn.adb, scn.ads, sdefault.ads,
	sem.adb, sem.ads, sem_aggr.adb, sem_aggr.ads,
	sem_attr.adb, sem_attr.ads, sem_case.adb, sem_case.ads,
	sem_cat.adb, sem_cat.ads, sem_ch10.adb, sem_ch10.ads,
	sem_ch11.adb, sem_ch11.ads, sem_ch12.adb, sem_ch12.ads,
	sem_ch13.adb, sem_ch13.ads, sem_ch2.adb, sem_ch2.ads,
	sem_ch3.adb, sem_ch3.ads, sem_ch4.adb, sem_ch4.ads,
	sem_ch5.adb, sem_ch5.ads, sem_ch6.adb, sem_ch6.ads,
	sem_ch7.adb, sem_ch7.ads, sem_ch8.adb, sem_ch8.ads,
	sem_ch9.adb, sem_ch9.ads, sem_disp.adb, sem_disp.ads,
	sem_dist.adb, sem_dist.ads, sem_elab.adb, sem_elab.ads,
	sem_elim.adb, sem_elim.ads, sem_eval.adb, sem_eval.ads,
	sem_intr.adb, sem_intr.ads, sem_maps.adb, sem_maps.ads,
	sem_mech.adb, sem_mech.ads, sem_prag.adb, sem_prag.ads,
	sem_res.adb, sem_res.ads, sem_smem.adb, sem_smem.ads,
	sem_type.adb, sem_type.ads, sem_util.adb, sem_util.ads,
	sem_vfpt.adb, sem_vfpt.ads, sem_warn.adb, sem_warn.ads,
	sequenio.ads, sfn_scan.adb, sfn_scan.ads, sinfo-cn.adb,
	sinfo-cn.ads, sinfo.adb, sinfo.ads, sinput-d.adb,
	sinput-d.ads, sinput-l.adb, sinput-l.ads, sinput-p.adb,
	sinput-p.ads, sinput.adb, sinput.ads, snames.adb,
	snames.ads, sprint.adb, sprint.ads, stand.adb,
	stand.ads, stringt.adb, stringt.ads, style.adb,
	style.ads, stylesw.adb, stylesw.ads, switch-b.adb,
	switch-b.ads, switch-c.adb, switch-c.ads, switch-m.adb,
	switch-m.ads, switch.adb, switch.ads, system.ads,
	table.adb, table.ads, targparm.adb, targparm.ads,
	tbuild.adb, tbuild.ads, text_io.ads, trans.c,
	tree_gen.adb, tree_gen.ads, tree_in.adb, tree_in.ads,
	tree_io.adb, tree_io.ads, treepr.adb, treepr.ads,
	ttypef.ads, ttypes.ads, types.adb, types.ads,
	uintp.adb, uintp.ads, uname.adb, uname.ads,
	unchconv.ads, unchdeal.ads, urealp.adb, urealp.ads,
	usage.adb, usage.ads, validsw.adb, validsw.ads,
	widechar.adb, widechar.ads, xeinfo.adb, xnmake.adb,
	xr_tabls.adb, xr_tabls.ads, xref_lib.adb, xref_lib.ads,
	xsinfo.adb, xsnames.adb, xtreeprs.adb : Merge header,
	formatting and other trivial changes from ACT.

From-SVN: r66044
2003-04-24 19:54:20 +02:00

1471 lines
42 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- U R E A L P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Alloc;
with Output; use Output;
with Table;
with Tree_IO; use Tree_IO;
package body Urealp is
Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
-- First subscript allocated in Ureal table (note that we can't just
-- add 1 to No_Ureal, since "+" means something different for Ureals!
type Ureal_Entry is record
Num : Uint;
-- Numerator (always non-negative)
Den : Uint;
-- Denominator (always non-zero, always positive if base is zero)
Rbase : Nat;
-- Base value. If Rbase is zero, then the value is simply Num / Den.
-- If Rbase is non-zero, then the value is Num / (Rbase ** Den)
Negative : Boolean;
-- Flag set if value is negative
end record;
package Ureals is new Table.Table (
Table_Component_Type => Ureal_Entry,
Table_Index_Type => Ureal,
Table_Low_Bound => Ureal_First_Entry,
Table_Initial => Alloc.Ureals_Initial,
Table_Increment => Alloc.Ureals_Increment,
Table_Name => "Ureals");
-- The following universal reals are the values returned by the constant
-- functions. They are initialized by the initialization procedure.
UR_M_0 : Ureal;
UR_0 : Ureal;
UR_Tenth : Ureal;
UR_Half : Ureal;
UR_1 : Ureal;
UR_2 : Ureal;
UR_10 : Ureal;
UR_100 : Ureal;
UR_2_128 : Ureal;
UR_2_M_128 : Ureal;
Num_Ureal_Constants : constant := 10;
-- This is used for an assertion check in Tree_Read and Tree_Write to
-- help remember to add values to these routines when we add to the list.
Normalized_Real : Ureal := No_Ureal;
-- Used to memoize Norm_Num and Norm_Den, if either of these functions
-- is called, this value is set and Normalized_Entry contains the result
-- of the normalization. On subsequent calls, this is used to avoid the
-- call to Normalize if it has already been made.
Normalized_Entry : Ureal_Entry;
-- Entry built by most recent call to Normalize
-----------------------
-- Local Subprograms --
-----------------------
function Decimal_Exponent_Hi (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or high, but never low. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Decimal_Exponent_Lo (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or low, but never high. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
-- U is a Ureal entry for which the base value is non-zero, the value
-- returned is the equivalent decimal exponent value, i.e. the value of
-- Den, adjusted as though the base were base 10. The value is rounded
-- to the nearest integer, and so can be one off.
function Is_Integer (Num, Den : Uint) return Boolean;
-- Return true if the real quotient of Num / Den is an integer value
function Normalize (Val : Ureal_Entry) return Ureal_Entry;
-- Normalizes the Ureal_Entry by reducing it to lowest terms (with a
-- base value of 0).
function Same (U1, U2 : Ureal) return Boolean;
pragma Inline (Same);
-- Determines if U1 and U2 are the same Ureal. Note that we cannot use
-- the equals operator for this test, since that tests for equality,
-- not identity.
function Store_Ureal (Val : Ureal_Entry) return Ureal;
-- This store a new entry in the universal reals table and return
-- its index in the table.
-------------------------
-- Decimal_Exponent_Hi --
-------------------------
function Decimal_Exponent_Hi (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- Zero always returns zero
if UR_Is_Zero (V) then
return 0;
-- For numbers in rational form, get the maximum number of digits in the
-- numerator and the minimum number of digits in the denominator, and
-- subtract. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be high, but that is acceptable
elsif Val.Rbase = 0 then
return UI_Decimal_Digits_Hi (Val.Num) -
UI_Decimal_Digits_Lo (Val.Den);
-- For based numbers, just subtract the decimal exponent from the
-- high estimate of the number of digits in the numerator and add
-- one to accommodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Hi (Val.Num) -
Equivalent_Decimal_Exponent (Val) + 1;
end if;
end Decimal_Exponent_Hi;
-------------------------
-- Decimal_Exponent_Lo --
-------------------------
function Decimal_Exponent_Lo (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- Zero always returns zero
if UR_Is_Zero (V) then
return 0;
-- For numbers in rational form, get min digits in numerator, max digits
-- in denominator, and subtract and subtract one more for possible loss
-- during the division. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be low, but that is acceptable
elsif Val.Rbase = 0 then
return UI_Decimal_Digits_Lo (Val.Num) -
UI_Decimal_Digits_Hi (Val.Den) - 1;
-- For based numbers, just subtract the decimal exponent from the
-- low estimate of the number of digits in the numerator and subtract
-- one to accommodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Lo (Val.Num) -
Equivalent_Decimal_Exponent (Val) - 1;
end if;
end Decimal_Exponent_Lo;
-----------------
-- Denominator --
-----------------
function Denominator (Real : Ureal) return Uint is
begin
return Ureals.Table (Real).Den;
end Denominator;
---------------------------------
-- Equivalent_Decimal_Exponent --
---------------------------------
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is
-- The following table is a table of logs to the base 10
Logs : constant array (Nat range 1 .. 16) of Long_Float := (
1 => 0.000000000000000,
2 => 0.301029995663981,
3 => 0.477121254719662,
4 => 0.602059991327962,
5 => 0.698970004336019,
6 => 0.778151250383644,
7 => 0.845098040014257,
8 => 0.903089986991944,
9 => 0.954242509439325,
10 => 1.000000000000000,
11 => 1.041392685158230,
12 => 1.079181246047620,
13 => 1.113943352306840,
14 => 1.146128035678240,
15 => 1.176091259055680,
16 => 1.204119982655920);
begin
pragma Assert (U.Rbase /= 0);
return Int (Long_Float (UI_To_Int (U.Den)) * Logs (U.Rbase));
end Equivalent_Decimal_Exponent;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Ureals.Init;
UR_0 := UR_From_Components (Uint_0, Uint_1, 0, False);
UR_M_0 := UR_From_Components (Uint_0, Uint_1, 0, True);
UR_Half := UR_From_Components (Uint_1, Uint_1, 2, False);
UR_Tenth := UR_From_Components (Uint_1, Uint_1, 10, False);
UR_1 := UR_From_Components (Uint_1, Uint_1, 0, False);
UR_2 := UR_From_Components (Uint_1, Uint_Minus_1, 2, False);
UR_10 := UR_From_Components (Uint_1, Uint_Minus_1, 10, False);
UR_100 := UR_From_Components (Uint_1, Uint_Minus_2, 10, False);
UR_2_128 := UR_From_Components (Uint_1, Uint_Minus_128, 2, False);
UR_2_M_128 := UR_From_Components (Uint_1, Uint_128, 2, False);
end Initialize;
----------------
-- Is_Integer --
----------------
function Is_Integer (Num, Den : Uint) return Boolean is
begin
return (Num / Den) * Den = Num;
end Is_Integer;
----------
-- Mark --
----------
function Mark return Save_Mark is
begin
return Save_Mark (Ureals.Last);
end Mark;
--------------
-- Norm_Den --
--------------
function Norm_Den (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Den;
end Norm_Den;
--------------
-- Norm_Num --
--------------
function Norm_Num (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Num;
end Norm_Num;
---------------
-- Normalize --
---------------
function Normalize (Val : Ureal_Entry) return Ureal_Entry is
J : Uint;
K : Uint;
Tmp : Uint;
Num : Uint;
Den : Uint;
M : constant Uintp.Save_Mark := Uintp.Mark;
begin
-- Start by setting J to the greatest of the absolute values of the
-- numerator and the denominator (taking into account the base value),
-- and K to the lesser of the two absolute values. The gcd of Num and
-- Den is the gcd of J and K.
if Val.Rbase = 0 then
J := Val.Num;
K := Val.Den;
elsif Val.Den < 0 then
J := Val.Num * Val.Rbase ** (-Val.Den);
K := Uint_1;
else
J := Val.Num;
K := Val.Rbase ** Val.Den;
end if;
Num := J;
Den := K;
if K > J then
Tmp := J;
J := K;
K := Tmp;
end if;
J := UI_GCD (J, K);
Num := Num / J;
Den := Den / J;
Uintp.Release_And_Save (M, Num, Den);
-- Divide numerator and denominator by gcd and return result
return (Num => Num,
Den => Den,
Rbase => 0,
Negative => Val.Negative);
end Normalize;
---------------
-- Numerator --
---------------
function Numerator (Real : Ureal) return Uint is
begin
return Ureals.Table (Real).Num;
end Numerator;
--------
-- pr --
--------
procedure pr (Real : Ureal) is
begin
UR_Write (Real);
Write_Eol;
end pr;
-----------
-- Rbase --
-----------
function Rbase (Real : Ureal) return Nat is
begin
return Ureals.Table (Real).Rbase;
end Rbase;
-------------
-- Release --
-------------
procedure Release (M : Save_Mark) is
begin
Ureals.Set_Last (Ureal (M));
end Release;
----------
-- Same --
----------
function Same (U1, U2 : Ureal) return Boolean is
begin
return Int (U1) = Int (U2);
end Same;
-----------------
-- Store_Ureal --
-----------------
function Store_Ureal (Val : Ureal_Entry) return Ureal is
begin
Ureals.Increment_Last;
Ureals.Table (Ureals.Last) := Val;
-- Normalize representation of signed values
if Val.Num < 0 then
Ureals.Table (Ureals.Last).Negative := True;
Ureals.Table (Ureals.Last).Num := -Val.Num;
end if;
return Ureals.Last;
end Store_Ureal;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
pragma Assert (Num_Ureal_Constants = 10);
Ureals.Tree_Read;
Tree_Read_Int (Int (UR_0));
Tree_Read_Int (Int (UR_M_0));
Tree_Read_Int (Int (UR_Tenth));
Tree_Read_Int (Int (UR_Half));
Tree_Read_Int (Int (UR_1));
Tree_Read_Int (Int (UR_2));
Tree_Read_Int (Int (UR_10));
Tree_Read_Int (Int (UR_100));
Tree_Read_Int (Int (UR_2_128));
Tree_Read_Int (Int (UR_2_M_128));
-- Clear the normalization cache
Normalized_Real := No_Ureal;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
pragma Assert (Num_Ureal_Constants = 10);
Ureals.Tree_Write;
Tree_Write_Int (Int (UR_0));
Tree_Write_Int (Int (UR_M_0));
Tree_Write_Int (Int (UR_Tenth));
Tree_Write_Int (Int (UR_Half));
Tree_Write_Int (Int (UR_1));
Tree_Write_Int (Int (UR_2));
Tree_Write_Int (Int (UR_10));
Tree_Write_Int (Int (UR_100));
Tree_Write_Int (Int (UR_2_128));
Tree_Write_Int (Int (UR_2_M_128));
end Tree_Write;
------------
-- UR_Abs --
------------
function UR_Abs (Real : Ureal) return Ureal is
Val : constant Ureal_Entry := Ureals.Table (Real);
begin
return Store_Ureal (
(Num => Val.Num,
Den => Val.Den,
Rbase => Val.Rbase,
Negative => False));
end UR_Abs;
------------
-- UR_Add --
------------
function UR_Add (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + Right;
end UR_Add;
function UR_Add (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (Right);
end UR_Add;
function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
Lval : Ureal_Entry := Ureals.Table (Left);
Rval : Ureal_Entry := Ureals.Table (Right);
Num : Uint;
begin
-- Note, in the temporary Ureal_Entry values used in this procedure,
-- we store the sign as the sign of the numerator (i.e. xxx.Num may
-- be negative, even though in stored entries this can never be so)
if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
declare
Opd_Min, Opd_Max : Ureal_Entry;
Exp_Min, Exp_Max : Uint;
begin
if Lval.Negative then
Lval.Num := (-Lval.Num);
end if;
if Rval.Negative then
Rval.Num := (-Rval.Num);
end if;
if Lval.Den < Rval.Den then
Exp_Min := Lval.Den;
Exp_Max := Rval.Den;
Opd_Min := Lval;
Opd_Max := Rval;
else
Exp_Min := Rval.Den;
Exp_Max := Lval.Den;
Opd_Min := Rval;
Opd_Max := Lval;
end if;
Num :=
Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;
if Num = 0 then
return Store_Ureal (
(Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal (
(Num => abs Num,
Den => Exp_Max,
Rbase => Lval.Rbase,
Negative => (Num < 0)));
end if;
end;
else
declare
Ln : Ureal_Entry := Normalize (Lval);
Rn : Ureal_Entry := Normalize (Rval);
begin
if Ln.Negative then
Ln.Num := (-Ln.Num);
end if;
if Rn.Negative then
Rn.Num := (-Rn.Num);
end if;
Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);
if Num = 0 then
return Store_Ureal (
(Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal (
Normalize (
(Num => abs Num,
Den => Ln.Den * Rn.Den,
Rbase => 0,
Negative => (Num < 0))));
end if;
end;
end if;
end UR_Add;
----------------
-- UR_Ceiling --
----------------
function UR_Ceiling (Real : Ureal) return Uint is
Val : Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return UI_Negate (Val.Num / Val.Den);
else
return (Val.Num + Val.Den - 1) / Val.Den;
end if;
end UR_Ceiling;
------------
-- UR_Div --
------------
function UR_Div (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) / Right;
end UR_Div;
function UR_Div (Left : Ureal; Right : Uint) return Ureal is
begin
return Left / UR_From_Uint (Right);
end UR_Div;
function UR_Div (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Rneg : constant Boolean := Rval.Negative xor Lval.Negative;
begin
pragma Assert (Rval.Num /= Uint_0);
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal (
Normalize (
(Num => Lval.Num * Rval.Den,
Den => Lval.Den * Rval.Num,
Rbase => 0,
Negative => Rneg)));
elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
return Store_Ureal (
(Num => Lval.Num / (Rval.Num * Lval.Den),
Den => (-Rval.Den),
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Lval.Num,
Den => Rval.Rbase ** (-Rval.Den) *
Rval.Num *
Lval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Lval.Num * Rval.Rbase ** Rval.Den,
Den => Rval.Num * Lval.Den,
Rbase => 0,
Negative => Rneg)));
end if;
elsif Is_Integer (Lval.Num, Rval.Num) then
if Rval.Rbase = Lval.Rbase then
return Store_Ureal (
(Num => Lval.Num / Rval.Num,
Den => Lval.Den - Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
return Store_Ureal (
(Num => (Lval.Num / Rval.Num) * Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Rbase ** (-Rval.Den);
else
Num := Lval.Num / Rval.Num;
Den := (Lval.Rbase ** Lval.Den) *
(Rval.Rbase ** (-Rval.Den));
end if;
return Store_Ureal (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg));
end;
else
return Store_Ureal (
(Num => (Lval.Num / Rval.Num) *
(Rval.Rbase ** Rval.Den),
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
end if;
else
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Num;
else
Num := Lval.Num;
Den := Rval.Num * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Rbase /= 0 then
if Rval.Den < 0 then
Den := Den * (Rval.Rbase ** (-Rval.Den));
else
Num := Num * (Rval.Rbase ** Rval.Den);
end if;
else
Num := Num * Rval.Den;
end if;
return Store_Ureal (
Normalize (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg)));
end;
end if;
end UR_Div;
-----------
-- UR_Eq --
-----------
function UR_Eq (Left, Right : Ureal) return Boolean is
begin
return not UR_Ne (Left, Right);
end UR_Eq;
---------------------
-- UR_Exponentiate --
---------------------
function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
Bas : Ureal;
Val : Ureal_Entry;
X : Uint := abs N;
Neg : Boolean;
IBas : Uint;
begin
-- If base is negative, then the resulting sign depends on whether
-- the exponent is even or odd (even => positive, odd = negative)
if UR_Is_Negative (Real) then
Neg := (N mod 2) /= 0;
Bas := UR_Negate (Real);
else
Neg := False;
Bas := Real;
end if;
Val := Ureals.Table (Bas);
-- If the base is a small integer, then we can return the result in
-- exponential form, which can save a lot of time for junk exponents.
IBas := UR_Trunc (Bas);
if IBas <= 16
and then UR_From_Uint (IBas) = Bas
then
return Store_Ureal (
(Num => Uint_1,
Den => -N,
Rbase => UI_To_Int (UR_Trunc (Bas)),
Negative => Neg));
-- If the exponent is negative then we raise the numerator and the
-- denominator (after normalization) to the absolute value of the
-- exponent and we return the reciprocal. An assert error will happen
-- if the numerator is zero.
elsif N < 0 then
pragma Assert (Val.Num /= 0);
Val := Normalize (Val);
return Store_Ureal (
(Num => Val.Den ** X,
Den => Val.Num ** X,
Rbase => 0,
Negative => Neg));
-- If positive, we distinguish the case when the base is not zero, in
-- which case the new denominator is just the product of the old one
-- with the exponent,
else
if Val.Rbase /= 0 then
return Store_Ureal (
(Num => Val.Num ** X,
Den => Val.Den * X,
Rbase => Val.Rbase,
Negative => Neg));
-- And when the base is zero, in which case we exponentiate
-- the old denominator.
else
return Store_Ureal (
(Num => Val.Num ** X,
Den => Val.Den ** X,
Rbase => 0,
Negative => Neg));
end if;
end if;
end UR_Exponentiate;
--------------
-- UR_Floor --
--------------
function UR_Floor (Real : Ureal) return Uint is
Val : Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return UI_Negate ((Val.Num + Val.Den - 1) / Val.Den);
else
return Val.Num / Val.Den;
end if;
end UR_Floor;
-------------------------
-- UR_From_Components --
-------------------------
function UR_From_Components
(Num : Uint;
Den : Uint;
Rbase : Nat := 0;
Negative : Boolean := False)
return Ureal
is
begin
return Store_Ureal (
(Num => Num,
Den => Den,
Rbase => Rbase,
Negative => Negative));
end UR_From_Components;
------------------
-- UR_From_Uint --
------------------
function UR_From_Uint (UI : Uint) return Ureal is
begin
return UR_From_Components
(abs UI, Uint_1, Negative => (UI < 0));
end UR_From_Uint;
-----------
-- UR_Ge --
-----------
function UR_Ge (Left, Right : Ureal) return Boolean is
begin
return not (Left < Right);
end UR_Ge;
-----------
-- UR_Gt --
-----------
function UR_Gt (Left, Right : Ureal) return Boolean is
begin
return (Right < Left);
end UR_Gt;
--------------------
-- UR_Is_Negative --
--------------------
function UR_Is_Negative (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Negative;
end UR_Is_Negative;
--------------------
-- UR_Is_Positive --
--------------------
function UR_Is_Positive (Real : Ureal) return Boolean is
begin
return not Ureals.Table (Real).Negative
and then Ureals.Table (Real).Num /= 0;
end UR_Is_Positive;
----------------
-- UR_Is_Zero --
----------------
function UR_Is_Zero (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Num = 0;
end UR_Is_Zero;
-----------
-- UR_Le --
-----------
function UR_Le (Left, Right : Ureal) return Boolean is
begin
return not (Right < Left);
end UR_Le;
-----------
-- UR_Lt --
-----------
function UR_Lt (Left, Right : Ureal) return Boolean is
begin
-- An operand is not less than itself
if Same (Left, Right) then
return False;
-- Deal with zero cases
elsif UR_Is_Zero (Left) then
return UR_Is_Positive (Right);
elsif UR_Is_Zero (Right) then
return Ureals.Table (Left).Negative;
-- Different signs are decisive (note we dealt with zero cases)
elsif Ureals.Table (Left).Negative
and then not Ureals.Table (Right).Negative
then
return True;
elsif not Ureals.Table (Left).Negative
and then Ureals.Table (Right).Negative
then
return False;
-- Signs are same, do rapid check based on worst case estimates of
-- decimal exponent, which will often be decisive. Precise test
-- depends on whether operands are positive or negative.
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
return UR_Is_Positive (Left);
elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
return UR_Is_Negative (Left);
-- If we fall through, full gruesome test is required. This happens
-- if the numbers are close together, or in some weird (/=10) base.
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : Ureal_Entry;
Rval : Ureal_Entry;
Result : Boolean;
begin
Lval := Ureals.Table (Left);
Rval := Ureals.Table (Right);
-- An optimization. If both numbers are based, then subtract
-- common value of base to avoid unnecessarily giant numbers
if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
if Lval.Den < Rval.Den then
Rval.Den := Rval.Den - Lval.Den;
Lval.Den := Uint_0;
else
Lval.Den := Lval.Den - Rval.Den;
Rval.Den := Uint_0;
end if;
end if;
Lval := Normalize (Lval);
Rval := Normalize (Rval);
if Lval.Negative then
Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
else
Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
end if;
Release (Imrk);
Release (Rmrk);
return Result;
end;
end if;
end UR_Lt;
------------
-- UR_Max --
------------
function UR_Max (Left, Right : Ureal) return Ureal is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end UR_Max;
------------
-- UR_Min --
------------
function UR_Min (Left, Right : Ureal) return Ureal is
begin
if Left <= Right then
return Left;
else
return Right;
end if;
end UR_Min;
------------
-- UR_Mul --
------------
function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) * Right;
end UR_Mul;
function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
begin
return Left * UR_From_Uint (Right);
end UR_Mul;
function UR_Mul (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Num : Uint := Lval.Num * Rval.Num;
Den : Uint;
Rneg : constant Boolean := Lval.Negative xor Rval.Negative;
begin
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal (
Normalize (
(Num => Num,
Den => Lval.Den * Rval.Den,
Rbase => 0,
Negative => Rneg)));
elsif Is_Integer (Num, Lval.Den) then
return Store_Ureal (
(Num => Num / Lval.Den,
Den => Rval.Den,
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Num * (Rval.Rbase ** (-Rval.Den)),
Den => Lval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Num,
Den => Lval.Den * (Rval.Rbase ** Rval.Den),
Rbase => 0,
Negative => Rneg)));
end if;
elsif Lval.Rbase = Rval.Rbase then
return Store_Ureal (
(Num => Num,
Den => Lval.Den + Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
if Is_Integer (Num, Rval.Den) then
return Store_Ureal (
(Num => Num / Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Lval.Den < 0 then
return Store_Ureal (
Normalize (
(Num => Num * (Lval.Rbase ** (-Lval.Den)),
Den => Rval.Den,
Rbase => 0,
Negative => Rneg)));
else
return Store_Ureal (
Normalize (
(Num => Num,
Den => Rval.Den * (Lval.Rbase ** Lval.Den),
Rbase => 0,
Negative => Rneg)));
end if;
else
Den := Uint_1;
if Lval.Den < 0 then
Num := Num * (Lval.Rbase ** (-Lval.Den));
else
Den := Den * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Den < 0 then
Num := Num * (Rval.Rbase ** (-Rval.Den));
else
Den := Den * (Rval.Rbase ** Rval.Den);
end if;
return Store_Ureal (
Normalize (
(Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg)));
end if;
end UR_Mul;
-----------
-- UR_Ne --
-----------
function UR_Ne (Left, Right : Ureal) return Boolean is
begin
-- Quick processing for case of identical Ureal values (note that
-- this also deals with comparing two No_Ureal values).
if Same (Left, Right) then
return False;
-- Deal with case of one or other operand is No_Ureal, but not both
elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
return True;
-- Do quick check based on number of decimal digits
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
then
return True;
-- Otherwise full comparison is required
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : constant Ureal_Entry := Normalize (Ureals.Table (Left));
Rval : constant Ureal_Entry := Normalize (Ureals.Table (Right));
Result : Boolean;
begin
if UR_Is_Zero (Left) then
return not UR_Is_Zero (Right);
elsif UR_Is_Zero (Right) then
return not UR_Is_Zero (Left);
-- Both operands are non-zero
else
Result :=
Rval.Negative /= Lval.Negative
or else Rval.Num /= Lval.Num
or else Rval.Den /= Lval.Den;
Release (Imrk);
Release (Rmrk);
return Result;
end if;
end;
end if;
end UR_Ne;
---------------
-- UR_Negate --
---------------
function UR_Negate (Real : Ureal) return Ureal is
begin
return Store_Ureal (
(Num => Ureals.Table (Real).Num,
Den => Ureals.Table (Real).Den,
Rbase => Ureals.Table (Real).Rbase,
Negative => not Ureals.Table (Real).Negative));
end UR_Negate;
------------
-- UR_Sub --
------------
function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + UR_Negate (Right);
end UR_Sub;
function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (-Right);
end UR_Sub;
function UR_Sub (Left, Right : Ureal) return Ureal is
begin
return Left + UR_Negate (Right);
end UR_Sub;
----------------
-- UR_To_Uint --
----------------
function UR_To_Uint (Real : Ureal) return Uint is
Val : Ureal_Entry := Normalize (Ureals.Table (Real));
Res : Uint;
begin
Res := (Val.Num + (Val.Den / 2)) / Val.Den;
if Val.Negative then
return UI_Negate (Res);
else
return Res;
end if;
end UR_To_Uint;
--------------
-- UR_Trunc --
--------------
function UR_Trunc (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return -(Val.Num / Val.Den);
else
return Val.Num / Val.Den;
end if;
end UR_Trunc;
--------------
-- UR_Write --
--------------
procedure UR_Write (Real : Ureal) is
Val : constant Ureal_Entry := Ureals.Table (Real);
begin
-- If value is negative, we precede the constant by a minus sign
-- and add an extra layer of parentheses on the outside since the
-- minus sign is part of the value, not a negation operator.
if Val.Negative then
Write_Str ("(-");
end if;
-- Constants in base 10 can be written in normal Ada literal style
-- If the literal is negative enclose in parens to emphasize that
-- it is part of the constant, and not a separate negation operator
if Val.Rbase = 10 then
UI_Write (Val.Num / 10);
Write_Char ('.');
UI_Write (Val.Num mod 10);
if Val.Den /= 0 then
Write_Char ('E');
UI_Write (1 - Val.Den);
end if;
-- Constants in a base other than 10 can still be easily written
-- in normal Ada literal style if the numerator is one.
elsif Val.Rbase /= 0 and then Val.Num = 1 then
Write_Int (Val.Rbase);
Write_Str ("#1.0#E");
UI_Write (-Val.Den);
-- Other constants with a base other than 10 are written using one
-- of the following forms, depending on the sign of the number
-- and the sign of the exponent (= minus denominator value)
-- (numerator.0*base**exponent)
-- (numerator.0*base**(-exponent))
elsif Val.Rbase /= 0 then
Write_Char ('(');
UI_Write (Val.Num, Decimal);
Write_Str (".0*");
Write_Int (Val.Rbase);
Write_Str ("**");
if Val.Den <= 0 then
UI_Write (-Val.Den, Decimal);
else
Write_Str ("(-");
UI_Write (Val.Den, Decimal);
Write_Char (')');
end if;
Write_Char (')');
-- Rational constants with a denominator of 1 can be written as
-- a real literal for the numerator integer.
elsif Val.Den = 1 then
UI_Write (Val.Num, Decimal);
Write_Str (".0");
-- Non-based (rational) constants are written in (num/den) style
else
Write_Char ('(');
UI_Write (Val.Num, Decimal);
Write_Str (".0/");
UI_Write (Val.Den, Decimal);
Write_Str (".0)");
end if;
-- Add trailing paren for negative values
if Val.Negative then
Write_Char (')');
end if;
end UR_Write;
-------------
-- Ureal_0 --
-------------
function Ureal_0 return Ureal is
begin
return UR_0;
end Ureal_0;
-------------
-- Ureal_1 --
-------------
function Ureal_1 return Ureal is
begin
return UR_1;
end Ureal_1;
-------------
-- Ureal_2 --
-------------
function Ureal_2 return Ureal is
begin
return UR_2;
end Ureal_2;
--------------
-- Ureal_10 --
--------------
function Ureal_10 return Ureal is
begin
return UR_10;
end Ureal_10;
---------------
-- Ureal_100 --
---------------
function Ureal_100 return Ureal is
begin
return UR_100;
end Ureal_100;
-----------------
-- Ureal_2_128 --
-----------------
function Ureal_2_128 return Ureal is
begin
return UR_2_128;
end Ureal_2_128;
-------------------
-- Ureal_2_M_128 --
-------------------
function Ureal_2_M_128 return Ureal is
begin
return UR_2_M_128;
end Ureal_2_M_128;
----------------
-- Ureal_Half --
----------------
function Ureal_Half return Ureal is
begin
return UR_Half;
end Ureal_Half;
---------------
-- Ureal_M_0 --
---------------
function Ureal_M_0 return Ureal is
begin
return UR_M_0;
end Ureal_M_0;
-----------------
-- Ureal_Tenth --
-----------------
function Ureal_Tenth return Ureal is
begin
return UR_Tenth;
end Ureal_Tenth;
end Urealp;