3504 lines
98 KiB
C
3504 lines
98 KiB
C
/* Subroutines for insn-output.c for Sun SPARC.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include <stdio.h>
|
||
#include "config.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
|
||
/* Global variables for machine-dependent things. */
|
||
|
||
/* Save the operands last given to a compare for use when we
|
||
generate a scc or bcc insn. */
|
||
|
||
rtx sparc_compare_op0, sparc_compare_op1;
|
||
|
||
/* We may need an epilogue if we spill too many registers.
|
||
If this is non-zero, then we branch here for the epilogue. */
|
||
static rtx leaf_label;
|
||
|
||
#ifdef LEAF_REGISTERS
|
||
|
||
/* Vector to say how input registers are mapped to output
|
||
registers. FRAME_POINTER_REGNUM cannot be remapped by
|
||
this function to eliminate it. You must use -fomit-frame-pointer
|
||
to get that. */
|
||
char leaf_reg_remap[] =
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
||
-1, -1, -1, -1, -1, -1, 14, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
8, 9, 10, 11, 12, 13, -1, 15,
|
||
|
||
32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47,
|
||
48, 49, 50, 51, 52, 53, 54, 55,
|
||
56, 57, 58, 59, 60, 61, 62, 63};
|
||
|
||
#if 0 /* not used anymore */
|
||
char leaf_reg_backmap[] =
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
||
24, 25, 26, 27, 28, 29, 14, 31,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
|
||
32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47,
|
||
48, 49, 50, 51, 52, 53, 54, 55,
|
||
56, 57, 58, 59, 60, 61, 62, 63};
|
||
#endif
|
||
#endif
|
||
|
||
/* Global variables set by FUNCTION_PROLOGUE. */
|
||
/* Size of frame. Need to know this to emit return insns from
|
||
leaf procedures. */
|
||
static int apparent_fsize;
|
||
static int actual_fsize;
|
||
|
||
/* Name of where we pretend to think the frame pointer points.
|
||
Normally, this is "%fp", but if we are in a leaf procedure,
|
||
this is "%sp+something". */
|
||
char *frame_base_name;
|
||
|
||
static rtx find_addr_reg ();
|
||
|
||
/* Return non-zero only if OP is a register of mode MODE,
|
||
or const0_rtx. */
|
||
int
|
||
reg_or_0_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (op == const0_rtx || register_operand (op, mode))
|
||
return 1;
|
||
if (GET_MODE (op) == DImode && GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& CONST_DOUBLE_LOW (op) == 0)
|
||
return 1;
|
||
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& fp_zero_operand (op))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if OP is a floating point value with value 0.0. */
|
||
int
|
||
fp_zero_operand (op)
|
||
rtx op;
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
||
return REAL_VALUES_EQUAL (r, dconst0);
|
||
}
|
||
|
||
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
|
||
int
|
||
restore_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == REG && GET_MODE (op) == mode
|
||
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
|
||
}
|
||
|
||
/* Call insn on SPARC can take a PC-relative constant address, or any regular
|
||
memory address. */
|
||
|
||
int
|
||
call_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
abort ();
|
||
op = XEXP (op, 0);
|
||
return (CONSTANT_P (op) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
int
|
||
call_operand_address (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (CONSTANT_P (op) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
|
||
reference and a constant. */
|
||
|
||
int
|
||
symbolic_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 1;
|
||
|
||
case CONST:
|
||
op = XEXP (op, 0);
|
||
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
|
||
|
||
/* ??? This clause seems to be irrelevant. */
|
||
case CONST_DOUBLE:
|
||
return GET_MODE (op) == mode;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a symbolic memory
|
||
operand of mode MODE. */
|
||
|
||
int
|
||
symbolic_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|
||
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or a memory operand that is
|
||
not symbolic. */
|
||
|
||
int
|
||
reg_or_nonsymb_mem_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
|
||
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
sparc_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return SMALL_INT (op);
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) == LO_SUM)
|
||
return (GET_CODE (XEXP (op, 0)) == REG
|
||
&& symbolic_operand (XEXP (op, 1), Pmode));
|
||
return memory_address_p (mode, op);
|
||
}
|
||
|
||
int
|
||
move_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode == DImode && arith_double_operand (op, mode))
|
||
return 1;
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return (SMALL_INT (op) || (INTVAL (op) & 0x3ff) == 0);
|
||
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) == LO_SUM)
|
||
return (register_operand (XEXP (op, 0), Pmode)
|
||
&& CONSTANT_P (XEXP (op, 1)));
|
||
return memory_address_p (mode, op);
|
||
}
|
||
|
||
int
|
||
move_pic_label (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* Special case for PIC. */
|
||
if (flag_pic && GET_CODE (op) == LABEL_REF)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
memop (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == MEM)
|
||
return (mode == VOIDmode || mode == GET_MODE (op));
|
||
return 0;
|
||
}
|
||
|
||
/* Return truth value of whether OP is EQ or NE. */
|
||
|
||
int
|
||
eq_or_neq (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
|
||
or LTU for non-floating-point. We handle those specially. */
|
||
|
||
int
|
||
normal_comp_operator (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CCFPmode
|
||
|| GET_MODE (XEXP (op, 0)) == CCFPEmode)
|
||
return 1;
|
||
|
||
return (code != NE && code != EQ && code != GEU && code != LTU);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator. This allows the use of
|
||
MATCH_OPERATOR to recognize all the branch insns. */
|
||
|
||
int
|
||
noov_compare_op (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
|
||
/* These are the only branches which work with CC_NOOVmode. */
|
||
return (code == EQ || code == NE || code == GE || code == LT);
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
|
||
|
||
int
|
||
extend_op (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can set
|
||
the condition codes explicitly. We do not include PLUS and MINUS
|
||
because these require CC_NOOVmode, which we handle explicitly. */
|
||
|
||
int
|
||
cc_arithop (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR
|
||
|| GET_CODE (op) == XOR)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can bitwise
|
||
complement its second operand and set the condition codes explicitly. */
|
||
|
||
int
|
||
cc_arithopn (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
|
||
and (xor ... (not ...)) to (not (xor ...)). */
|
||
return (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR);
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a 13
|
||
bit immediate field. This is an acceptable SImode operand for most 3
|
||
address instructions. */
|
||
|
||
int
|
||
arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in a 13 bit immediate field. This is an acceptable DImode operand
|
||
for most 3 address instructions. */
|
||
|
||
int
|
||
arith_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))
|
||
|| (GET_CODE (op) == CONST_INT
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned) (INTVAL (op) + 0x1000) < 0x2000));
|
||
}
|
||
|
||
/* Return truth value of whether OP is a integer which fits the
|
||
range constraining immediate operands in most three-address insns,
|
||
which have a 13 bit immediate field. */
|
||
|
||
int
|
||
small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
|
||
}
|
||
|
||
/* Recognize operand values for the umul instruction. That instruction sign
|
||
extends immediate values just like all other sparc instructions, but
|
||
interprets the extended result as an unsigned number. */
|
||
|
||
int
|
||
uns_small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT > 32
|
||
/* All allowed constants will fit a CONST_INT. */
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
|
||
|| (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000L)));
|
||
#else
|
||
return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
|
||
#endif
|
||
}
|
||
|
||
int
|
||
uns_arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return register_operand (op, mode) || uns_small_int (op, mode);
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a call-clobbered register. */
|
||
int
|
||
clobbered_register (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
|
||
}
|
||
|
||
/* X and Y are two things to compare using CODE. Emit the compare insn and
|
||
return the rtx for register 0 in the proper mode. */
|
||
|
||
rtx
|
||
gen_compare_reg (code, x, y)
|
||
enum rtx_code code;
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
|
||
rtx cc_reg = gen_rtx (REG, mode, 0);
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
|
||
gen_rtx (COMPARE, mode, x, y)));
|
||
|
||
return cc_reg;
|
||
}
|
||
|
||
/* Return nonzero if a return peephole merging return with
|
||
setting of output register is ok. */
|
||
int
|
||
leaf_return_peephole_ok ()
|
||
{
|
||
return (actual_fsize == 0);
|
||
}
|
||
|
||
/* Return nonzero if TRIAL can go into the function epilogue's
|
||
delay slot. SLOT is the slot we are trying to fill. */
|
||
|
||
int
|
||
eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot;
|
||
{
|
||
rtx pat, src;
|
||
|
||
if (slot >= 1)
|
||
return 0;
|
||
if (GET_CODE (trial) != INSN
|
||
|| GET_CODE (PATTERN (trial)) != SET)
|
||
return 0;
|
||
if (get_attr_length (trial) != 1)
|
||
return 0;
|
||
|
||
/* In the case of a true leaf function, anything can go into the delay slot.
|
||
A delay slot only exists however if the frame size is zero, otherwise
|
||
we will put an insn to adjust the stack after the return. */
|
||
if (leaf_function)
|
||
{
|
||
if (leaf_return_peephole_ok ())
|
||
return (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE);
|
||
return 0;
|
||
}
|
||
|
||
/* Otherwise, only operations which can be done in tandem with
|
||
a `restore' insn can go into the delay slot. */
|
||
pat = PATTERN (trial);
|
||
if (GET_CODE (SET_DEST (pat)) != REG
|
||
|| REGNO (SET_DEST (pat)) == 0
|
||
|| REGNO (SET_DEST (pat)) >= 32
|
||
|| REGNO (SET_DEST (pat)) < 24)
|
||
return 0;
|
||
|
||
src = SET_SRC (pat);
|
||
if (arith_operand (src, GET_MODE (src)))
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
|
||
if (arith_double_operand (src, GET_MODE (src)))
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
|
||
if (GET_CODE (src) == PLUS)
|
||
{
|
||
if (register_operand (XEXP (src, 0), SImode)
|
||
&& arith_operand (XEXP (src, 1), SImode))
|
||
return 1;
|
||
if (register_operand (XEXP (src, 1), SImode)
|
||
&& arith_operand (XEXP (src, 0), SImode))
|
||
return 1;
|
||
if (register_operand (XEXP (src, 0), DImode)
|
||
&& arith_double_operand (XEXP (src, 1), DImode))
|
||
return 1;
|
||
if (register_operand (XEXP (src, 1), DImode)
|
||
&& arith_double_operand (XEXP (src, 0), DImode))
|
||
return 1;
|
||
}
|
||
if (GET_CODE (src) == MINUS
|
||
&& register_operand (XEXP (src, 0), SImode)
|
||
&& small_int (XEXP (src, 1), VOIDmode))
|
||
return 1;
|
||
if (GET_CODE (src) == MINUS
|
||
&& register_operand (XEXP (src, 0), DImode)
|
||
&& !register_operand (XEXP (src, 1), DImode)
|
||
&& arith_double_operand (XEXP (src, 1), DImode))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
short_branch (uid1, uid2)
|
||
int uid1, uid2;
|
||
{
|
||
unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
|
||
if (delta + 1024 < 2048)
|
||
return 1;
|
||
/* warning ("long branch, distance %d", delta); */
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if REG is not used after INSN.
|
||
We assume REG is a reload reg, and therefore does
|
||
not live past labels or calls or jumps. */
|
||
int
|
||
reg_unused_after (reg, insn)
|
||
rtx reg;
|
||
rtx insn;
|
||
{
|
||
enum rtx_code code, prev_code = UNKNOWN;
|
||
|
||
while (insn = NEXT_INSN (insn))
|
||
{
|
||
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
|
||
return 1;
|
||
|
||
code = GET_CODE (insn);
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
return 1;
|
||
|
||
if (GET_RTX_CLASS (code) == 'i')
|
||
{
|
||
rtx set = single_set (insn);
|
||
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
|
||
if (set && in_src)
|
||
return 0;
|
||
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
||
return 1;
|
||
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
||
return 0;
|
||
}
|
||
prev_code = code;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The rtx for the global offset table which is a special form
|
||
that *is* a position independent symbolic constant. */
|
||
static rtx pic_pc_rtx;
|
||
|
||
/* Ensure that we are not using patterns that are not OK with PIC. */
|
||
|
||
int
|
||
check_pic (i)
|
||
int i;
|
||
{
|
||
switch (flag_pic)
|
||
{
|
||
case 1:
|
||
if (GET_CODE (recog_operand[i]) == SYMBOL_REF
|
||
|| (GET_CODE (recog_operand[i]) == CONST
|
||
&& ! rtx_equal_p (pic_pc_rtx, recog_operand[i])))
|
||
abort ();
|
||
case 2:
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Return true if X is an address which needs a temporary register when
|
||
reloaded while generating PIC code. */
|
||
|
||
int
|
||
pic_address_needs_scratch (x)
|
||
rtx x;
|
||
{
|
||
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
|
||
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Legitimize PIC addresses. If the address is already position-independent,
|
||
we return ORIG. Newly generated position-independent addresses go into a
|
||
reg. This is REG if non zero, otherwise we allocate register(s) as
|
||
necessary. */
|
||
|
||
rtx
|
||
legitimize_pic_address (orig, mode, reg)
|
||
rtx orig;
|
||
enum machine_mode mode;
|
||
rtx reg;
|
||
{
|
||
if (GET_CODE (orig) == SYMBOL_REF)
|
||
{
|
||
rtx pic_ref, address;
|
||
rtx insn;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (flag_pic == 2)
|
||
{
|
||
/* If not during reload, allocate another temp reg here for loading
|
||
in the address, so that these instructions can be optimized
|
||
properly. */
|
||
rtx temp_reg = ((reload_in_progress || reload_completed)
|
||
? reg : gen_reg_rtx (Pmode));
|
||
|
||
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
|
||
won't get confused into thinking that these two instructions
|
||
are loading in the true address of the symbol. If in the
|
||
future a PIC rtx exists, that should be used instead. */
|
||
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
|
||
gen_rtx (HIGH, Pmode,
|
||
gen_rtx (UNSPEC, Pmode,
|
||
gen_rtvec (1, orig),
|
||
0))));
|
||
emit_insn (gen_rtx (SET, VOIDmode, temp_reg,
|
||
gen_rtx (LO_SUM, Pmode, temp_reg,
|
||
gen_rtx (UNSPEC, Pmode,
|
||
gen_rtvec (1, orig),
|
||
0))));
|
||
address = temp_reg;
|
||
}
|
||
else
|
||
address = orig;
|
||
|
||
pic_ref = gen_rtx (MEM, Pmode,
|
||
gen_rtx (PLUS, Pmode,
|
||
pic_offset_table_rtx, address));
|
||
current_function_uses_pic_offset_table = 1;
|
||
RTX_UNCHANGING_P (pic_ref) = 1;
|
||
insn = emit_move_insn (reg, pic_ref);
|
||
/* Put a REG_EQUAL note on this insn, so that it can be optimized
|
||
by loop. */
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
|
||
REG_NOTES (insn));
|
||
return reg;
|
||
}
|
||
else if (GET_CODE (orig) == CONST)
|
||
{
|
||
rtx base, offset;
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
||
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
|
||
return orig;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS)
|
||
{
|
||
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
||
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
||
base == reg ? 0 : reg);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (GET_CODE (offset) == CONST_INT)
|
||
{
|
||
if (SMALL_INT (offset))
|
||
return plus_constant_for_output (base, INTVAL (offset));
|
||
else if (! reload_in_progress && ! reload_completed)
|
||
offset = force_reg (Pmode, offset);
|
||
else
|
||
/* If we reach here, then something is seriously wrong. */
|
||
abort ();
|
||
}
|
||
return gen_rtx (PLUS, Pmode, base, offset);
|
||
}
|
||
else if (GET_CODE (orig) == LABEL_REF)
|
||
current_function_uses_pic_offset_table = 1;
|
||
|
||
return orig;
|
||
}
|
||
|
||
/* Set up PIC-specific rtl. This should not cause any insns
|
||
to be emitted. */
|
||
|
||
void
|
||
initialize_pic ()
|
||
{
|
||
}
|
||
|
||
/* Emit special PIC prologues and epilogues. */
|
||
|
||
void
|
||
finalize_pic ()
|
||
{
|
||
/* The table we use to reference PIC data. */
|
||
rtx global_offset_table;
|
||
/* Labels to get the PC in the prologue of this function. */
|
||
rtx l1, l2;
|
||
rtx seq;
|
||
int orig_flag_pic = flag_pic;
|
||
|
||
if (current_function_uses_pic_offset_table == 0)
|
||
return;
|
||
|
||
if (! flag_pic)
|
||
abort ();
|
||
|
||
flag_pic = 0;
|
||
l1 = gen_label_rtx ();
|
||
l2 = gen_label_rtx ();
|
||
|
||
start_sequence ();
|
||
|
||
emit_label (l1);
|
||
/* Note that we pun calls and jumps here! */
|
||
emit_jump_insn (gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (2,
|
||
gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (LABEL_REF, VOIDmode, l2)),
|
||
gen_rtx (SET, VOIDmode, gen_rtx (REG, SImode, 15), gen_rtx (LABEL_REF, VOIDmode, l2)))));
|
||
emit_label (l2);
|
||
|
||
/* Initialize every time through, since we can't easily
|
||
know this to be permanent. */
|
||
global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
pic_pc_rtx = gen_rtx (CONST, Pmode,
|
||
gen_rtx (MINUS, Pmode,
|
||
global_offset_table,
|
||
gen_rtx (CONST, Pmode,
|
||
gen_rtx (MINUS, Pmode,
|
||
gen_rtx (LABEL_REF, VOIDmode, l1),
|
||
pc_rtx))));
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
|
||
gen_rtx (HIGH, Pmode, pic_pc_rtx)));
|
||
emit_insn (gen_rtx (SET, VOIDmode,
|
||
pic_offset_table_rtx,
|
||
gen_rtx (LO_SUM, Pmode,
|
||
pic_offset_table_rtx, pic_pc_rtx)));
|
||
emit_insn (gen_rtx (SET, VOIDmode,
|
||
pic_offset_table_rtx,
|
||
gen_rtx (PLUS, Pmode,
|
||
pic_offset_table_rtx, gen_rtx (REG, Pmode, 15))));
|
||
/* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */
|
||
LABEL_PRESERVE_P (l1) = 1;
|
||
LABEL_PRESERVE_P (l2) = 1;
|
||
flag_pic = orig_flag_pic;
|
||
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
emit_insn_after (seq, get_insns ());
|
||
|
||
/* Need to emit this whether or not we obey regdecls,
|
||
since setjmp/longjmp can cause life info to screw up. */
|
||
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
|
||
}
|
||
|
||
/* Emit insns to move operands[1] into operands[0].
|
||
|
||
Return 1 if we have written out everything that needs to be done to
|
||
do the move. Otherwise, return 0 and the caller will emit the move
|
||
normally. */
|
||
|
||
int
|
||
emit_move_sequence (operands, mode)
|
||
rtx *operands;
|
||
enum machine_mode mode;
|
||
{
|
||
register rtx operand0 = operands[0];
|
||
register rtx operand1 = operands[1];
|
||
|
||
if (CONSTANT_P (operand1) && flag_pic
|
||
&& pic_address_needs_scratch (operand1))
|
||
operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0);
|
||
|
||
/* Handle most common case first: storing into a register. */
|
||
if (register_operand (operand0, mode))
|
||
{
|
||
if (register_operand (operand1, mode)
|
||
|| (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
|
||
|| (GET_CODE (operand1) == CONST_DOUBLE
|
||
&& arith_double_operand (operand1, DImode))
|
||
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
|
||
/* Only `general_operands' can come here, so MEM is ok. */
|
||
|| GET_CODE (operand1) == MEM)
|
||
{
|
||
/* Run this case quickly. */
|
||
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
|
||
return 1;
|
||
}
|
||
}
|
||
else if (GET_CODE (operand0) == MEM)
|
||
{
|
||
if (register_operand (operand1, mode) || operand1 == const0_rtx)
|
||
{
|
||
/* Run this case quickly. */
|
||
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
|
||
return 1;
|
||
}
|
||
if (! reload_in_progress)
|
||
{
|
||
operands[0] = validize_mem (operand0);
|
||
operands[1] = operand1 = force_reg (mode, operand1);
|
||
}
|
||
}
|
||
|
||
/* Simplify the source if we need to. Must handle DImode HIGH operators
|
||
here because such a move needs a clobber added. */
|
||
if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|
||
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode))
|
||
{
|
||
if (flag_pic && symbolic_operand (operand1, mode))
|
||
{
|
||
rtx temp_reg = reload_in_progress ? operand0 : 0;
|
||
|
||
operands[1] = legitimize_pic_address (operand1, mode, temp_reg);
|
||
}
|
||
else if (GET_CODE (operand1) == CONST_INT
|
||
? (! SMALL_INT (operand1)
|
||
&& (INTVAL (operand1) & 0x3ff) != 0)
|
||
: (GET_CODE (operand1) == CONST_DOUBLE
|
||
? ! arith_double_operand (operand1, DImode)
|
||
: 1))
|
||
{
|
||
/* For DImode values, temp must be operand0 because of the way
|
||
HI and LO_SUM work. The LO_SUM operator only copies half of
|
||
the LSW from the dest of the HI operator. If the LO_SUM dest is
|
||
not the same as the HI dest, then the MSW of the LO_SUM dest will
|
||
never be set.
|
||
|
||
??? The real problem here is that the ...(HI:DImode pattern emits
|
||
multiple instructions, and the ...(LO_SUM:DImode pattern emits
|
||
one instruction. This fails, because the compiler assumes that
|
||
LO_SUM copies all bits of the first operand to its dest. Better
|
||
would be to have the HI pattern emit one instruction and the
|
||
LO_SUM pattern multiple instructions. Even better would be
|
||
to use four rtl insns. */
|
||
rtx temp = ((reload_in_progress || mode == DImode)
|
||
? operand0 : gen_reg_rtx (mode));
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode, temp,
|
||
gen_rtx (HIGH, mode, operand1)));
|
||
operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (operand1) == LABEL_REF && flag_pic)
|
||
{
|
||
/* The procedure for doing this involves using a call instruction to
|
||
get the pc into o7. We need to indicate this explicitly because
|
||
the tablejump pattern assumes that it can use this value also. */
|
||
emit_insn (gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (2,
|
||
gen_rtx (SET, VOIDmode, operand0,
|
||
operand1),
|
||
gen_rtx (SET, VOIDmode,
|
||
gen_rtx (REG, mode, 15),
|
||
pc_rtx))));
|
||
return 1;
|
||
}
|
||
|
||
/* Now have insn-emit do whatever it normally does. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the best assembler insn template
|
||
for moving operands[1] into operands[0] as a fullword. */
|
||
|
||
char *
|
||
singlemove_string (operands)
|
||
rtx *operands;
|
||
{
|
||
if (GET_CODE (operands[0]) == MEM)
|
||
{
|
||
if (GET_CODE (operands[1]) != MEM)
|
||
return "st %r1,%0";
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (operands[1]) == MEM)
|
||
return "ld %1,%0";
|
||
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long i;
|
||
|
||
/* Must be SFmode, otherwise this doesn't make sense. */
|
||
if (GET_MODE (operands[1]) != SFmode)
|
||
abort ();
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
|
||
REAL_VALUE_TO_TARGET_SINGLE (r, i);
|
||
operands[1] = gen_rtx (CONST_INT, VOIDmode, i);
|
||
|
||
if (CONST_OK_FOR_LETTER_P (i, 'I'))
|
||
return "mov %1,%0";
|
||
else if ((i & 0x000003FF) != 0)
|
||
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
|
||
else
|
||
return "sethi %%hi(%a1),%0";
|
||
}
|
||
else if (GET_CODE (operands[1]) == CONST_INT
|
||
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
|
||
{
|
||
int i = INTVAL (operands[1]);
|
||
|
||
/* If all low order 10 bits are clear, then we only need a single
|
||
sethi insn to load the constant. */
|
||
if ((i & 0x000003FF) != 0)
|
||
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
|
||
else
|
||
return "sethi %%hi(%a1),%0";
|
||
}
|
||
/* Operand 1 must be a register, or a 'I' type CONST_INT. */
|
||
return "mov %1,%0";
|
||
}
|
||
|
||
/* Return non-zero if it is OK to assume that the given memory operand is
|
||
aligned at least to a 8-byte boundary. This should only be called
|
||
for memory accesses whose size is 8 bytes or larger. */
|
||
|
||
int
|
||
mem_aligned_8 (mem)
|
||
register rtx mem;
|
||
{
|
||
register rtx addr;
|
||
register rtx base;
|
||
register rtx offset;
|
||
|
||
if (GET_CODE (mem) != MEM)
|
||
return 0; /* It's gotta be a MEM! */
|
||
|
||
addr = XEXP (mem, 0);
|
||
|
||
/* Now that all misaligned double parms are copied on function entry,
|
||
we can assume any 64-bit object is 64-bit aligned except those which
|
||
are at unaligned offsets from the stack or frame pointer. If the
|
||
TARGET_UNALIGNED_DOUBLES switch is given, we do not make this
|
||
assumption. */
|
||
|
||
/* See what register we use in the address. */
|
||
base = 0;
|
||
if (GET_CODE (addr) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) == REG
|
||
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
{
|
||
base = XEXP (addr, 0);
|
||
offset = XEXP (addr, 1);
|
||
}
|
||
}
|
||
else if (GET_CODE (addr) == REG)
|
||
{
|
||
base = addr;
|
||
offset = const0_rtx;
|
||
}
|
||
|
||
/* If it's the stack or frame pointer, check offset alignment.
|
||
We can have improper alignment in the function entry code. */
|
||
if (base
|
||
&& (REGNO (base) == FRAME_POINTER_REGNUM
|
||
|| REGNO (base) == STACK_POINTER_REGNUM))
|
||
{
|
||
if ((INTVAL (offset) & 0x7) == 0)
|
||
return 1;
|
||
}
|
||
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
|
||
is true, in which case we can only assume that an access is aligned if
|
||
it is to an aggregate, it is to a constant address, or the address
|
||
involves a LO_SUM. */
|
||
else if (! TARGET_UNALIGNED_DOUBLES || MEM_IN_STRUCT_P (mem)
|
||
|| CONSTANT_P (addr) || GET_CODE (addr) == LO_SUM)
|
||
return 1;
|
||
|
||
/* An obviously unaligned address. */
|
||
return 0;
|
||
}
|
||
|
||
enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP };
|
||
|
||
/* Output assembler code to perform a doubleword move insn
|
||
with operands OPERANDS. This is very similar to the following
|
||
output_move_quad function. */
|
||
|
||
char *
|
||
output_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
register enum optype optype0;
|
||
register enum optype optype1;
|
||
rtx latehalf[2];
|
||
rtx addreg0 = 0;
|
||
rtx addreg1 = 0;
|
||
int highest_first = 0;
|
||
int no_addreg1_decrement = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (op0))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (op0))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (op0) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (op1))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (op1))
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (op1))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (op1) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP
|
||
|| (optype0 == MEM && optype1 == MEM))
|
||
abort ();
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the second word. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (op0, 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (op1, 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Set up in LATEHALF the operands to use for the
|
||
high-numbered (least significant) word and in some cases alter the
|
||
operands in OPERANDS to be suitable for the low-numbered word. */
|
||
|
||
if (optype0 == REGOP)
|
||
latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
|
||
else if (optype0 == OFFSOP)
|
||
latehalf[0] = adj_offsettable_operand (op0, 4);
|
||
else
|
||
latehalf[0] = op0;
|
||
|
||
if (optype1 == REGOP)
|
||
latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
|
||
else if (optype1 == OFFSOP)
|
||
latehalf[1] = adj_offsettable_operand (op1, 4);
|
||
else if (optype1 == CNSTOP)
|
||
split_double (op1, &operands[1], &latehalf[1]);
|
||
else
|
||
latehalf[1] = op1;
|
||
|
||
/* Easy case: try moving both words at once. Check for moving between
|
||
an even/odd register pair and a memory location. */
|
||
if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
|
||
&& (REGNO (op0) & 1) == 0)
|
||
|| (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
|
||
&& (REGNO (op1) & 1) == 0))
|
||
{
|
||
register rtx mem;
|
||
|
||
if (optype0 == REGOP)
|
||
mem = op1;
|
||
else
|
||
mem = op0;
|
||
|
||
if (mem_aligned_8 (mem))
|
||
return (mem == op1 ? "ldd %1,%0" : "std %1,%0");
|
||
}
|
||
|
||
/* If the first move would clobber the source of the second one,
|
||
do them in the other order. */
|
||
|
||
/* Overlapping registers. */
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (op0) == REGNO (latehalf[1]))
|
||
{
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
/* Do low-numbered word. */
|
||
return singlemove_string (operands);
|
||
}
|
||
/* Loading into a register which overlaps a register used in the address. */
|
||
else if (optype0 == REGOP && optype1 != REGOP
|
||
&& reg_overlap_mentioned_p (op0, op1))
|
||
{
|
||
/* If both halves of dest are used in the src memory address,
|
||
add the two regs and put them in the low reg (op0).
|
||
Then it works to load latehalf first. */
|
||
if (reg_mentioned_p (op0, XEXP (op1, 0))
|
||
&& reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
|
||
{
|
||
rtx xops[2];
|
||
xops[0] = latehalf[0];
|
||
xops[1] = op0;
|
||
output_asm_insn ("add %1,%0,%1", xops);
|
||
operands[1] = gen_rtx (MEM, DImode, op0);
|
||
latehalf[1] = adj_offsettable_operand (operands[1], 4);
|
||
addreg1 = 0;
|
||
highest_first = 1;
|
||
}
|
||
/* Only one register in the dest is used in the src memory address,
|
||
and this is the first register of the dest, so we want to do
|
||
the late half first here also. */
|
||
else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
|
||
highest_first = 1;
|
||
/* Only one register in the dest is used in the src memory address,
|
||
and this is the second register of the dest, so we want to do
|
||
the late half last. If addreg1 is set, and addreg1 is the same
|
||
register as latehalf, then we must suppress the trailing decrement,
|
||
because it would clobber the value just loaded. */
|
||
else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
|
||
no_addreg1_decrement = 1;
|
||
}
|
||
|
||
/* Normal case: do the two words, low-numbered first.
|
||
Overlap case (highest_first set): do high-numbered word first. */
|
||
|
||
if (! highest_first)
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,-0x4,%0", &addreg0);
|
||
if (addreg1 && ! no_addreg1_decrement)
|
||
output_asm_insn ("add %0,-0x4,%0", &addreg1);
|
||
|
||
if (highest_first)
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Output assembler code to perform a quadword move insn
|
||
with operands OPERANDS. This is very similar to the preceding
|
||
output_move_double function. */
|
||
|
||
char *
|
||
output_move_quad (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
register enum optype optype0;
|
||
register enum optype optype1;
|
||
rtx wordpart[4][2];
|
||
rtx addreg0 = 0;
|
||
rtx addreg1 = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (op0))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (op0))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (op0) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (op1))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (op1))
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (op1))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (op1) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP
|
||
|| (optype0 == MEM && optype1 == MEM))
|
||
abort ();
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the later words. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (op0, 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (op1, 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Set up in wordpart the operands to use for each word of the arguments. */
|
||
|
||
if (optype0 == REGOP)
|
||
{
|
||
wordpart[0][0] = gen_rtx (REG, SImode, REGNO (op0) + 0);
|
||
wordpart[1][0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
|
||
wordpart[2][0] = gen_rtx (REG, SImode, REGNO (op0) + 2);
|
||
wordpart[3][0] = gen_rtx (REG, SImode, REGNO (op0) + 3);
|
||
}
|
||
else if (optype0 == OFFSOP)
|
||
{
|
||
wordpart[0][0] = adj_offsettable_operand (op0, 0);
|
||
wordpart[1][0] = adj_offsettable_operand (op0, 4);
|
||
wordpart[2][0] = adj_offsettable_operand (op0, 8);
|
||
wordpart[3][0] = adj_offsettable_operand (op0, 12);
|
||
}
|
||
else
|
||
{
|
||
wordpart[0][0] = op0;
|
||
wordpart[1][0] = op0;
|
||
wordpart[2][0] = op0;
|
||
wordpart[3][0] = op0;
|
||
}
|
||
|
||
if (optype1 == REGOP)
|
||
{
|
||
wordpart[0][1] = gen_rtx (REG, SImode, REGNO (op1) + 0);
|
||
wordpart[1][1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
|
||
wordpart[2][1] = gen_rtx (REG, SImode, REGNO (op1) + 2);
|
||
wordpart[3][1] = gen_rtx (REG, SImode, REGNO (op1) + 3);
|
||
}
|
||
else if (optype1 == OFFSOP)
|
||
{
|
||
wordpart[0][1] = adj_offsettable_operand (op1, 0);
|
||
wordpart[1][1] = adj_offsettable_operand (op1, 4);
|
||
wordpart[2][1] = adj_offsettable_operand (op1, 8);
|
||
wordpart[3][1] = adj_offsettable_operand (op1, 12);
|
||
}
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long l[4];
|
||
|
||
/* This only works for TFmode floating point constants. */
|
||
if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode)
|
||
abort ();
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op1);
|
||
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
|
||
|
||
wordpart[0][1] = GEN_INT (l[0]);
|
||
wordpart[1][1] = GEN_INT (l[1]);
|
||
wordpart[2][1] = GEN_INT (l[2]);
|
||
wordpart[3][1] = GEN_INT (l[3]);
|
||
}
|
||
else
|
||
{
|
||
wordpart[0][1] = op1;
|
||
wordpart[1][1] = op1;
|
||
wordpart[2][1] = op1;
|
||
wordpart[3][1] = op1;
|
||
}
|
||
|
||
/* Easy case: try moving the quad as two pairs. Check for moving between
|
||
an even/odd register pair and a memory location. */
|
||
/* ??? Should also handle the case of non-offsettable addresses here.
|
||
We can at least do the first pair as a ldd/std, and then do the third
|
||
and fourth words individually. */
|
||
if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0)
|
||
|| (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0))
|
||
{
|
||
rtx mem;
|
||
|
||
if (optype0 == REGOP)
|
||
mem = op1;
|
||
else
|
||
mem = op0;
|
||
|
||
if (mem_aligned_8 (mem))
|
||
{
|
||
operands[2] = adj_offsettable_operand (mem, 8);
|
||
if (mem == op1)
|
||
return "ldd %1,%0;ldd %2,%S0";
|
||
else
|
||
return "std %1,%0;std %S1,%2";
|
||
}
|
||
}
|
||
|
||
/* If the first move would clobber the source of the second one,
|
||
do them in the other order. */
|
||
|
||
/* Overlapping registers. */
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& (REGNO (op0) == REGNO (wordpart[1][3])
|
||
|| REGNO (op0) == REGNO (wordpart[1][2])
|
||
|| REGNO (op0) == REGNO (wordpart[1][1])))
|
||
{
|
||
/* Do fourth word. */
|
||
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
|
||
/* Do the third word. */
|
||
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
|
||
/* Do the second word. */
|
||
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
|
||
/* Do lowest-numbered word. */
|
||
return singlemove_string (wordpart[0]);
|
||
}
|
||
/* Loading into a register which overlaps a register used in the address. */
|
||
if (optype0 == REGOP && optype1 != REGOP
|
||
&& reg_overlap_mentioned_p (op0, op1))
|
||
{
|
||
/* ??? Not implemented yet. This is a bit complicated, because we
|
||
must load which ever part overlaps the address last. If the address
|
||
is a double-reg address, then there are two parts which need to
|
||
be done last, which is impossible. We would need a scratch register
|
||
in that case. */
|
||
abort ();
|
||
}
|
||
|
||
/* Normal case: move the four words in lowest to higest address order. */
|
||
|
||
output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);
|
||
|
||
/* Make any unoffsettable addresses point at the second word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the second word. */
|
||
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
|
||
|
||
/* Make any unoffsettable addresses point at the third word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the third word. */
|
||
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
|
||
|
||
/* Make any unoffsettable addresses point at the fourth word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the fourth word. */
|
||
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,-0xc,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,-0xc,%0", &addreg1);
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Output assembler code to perform a doubleword move insn with operands
|
||
OPERANDS, one of which must be a floating point register. */
|
||
|
||
char *
|
||
output_fp_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
if (FP_REG_P (operands[0]))
|
||
{
|
||
if (FP_REG_P (operands[1]))
|
||
return "fmovs %1,%0\n\tfmovs %R1,%R0";
|
||
else if (GET_CODE (operands[1]) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_double (operands);
|
||
}
|
||
else if (FP_REG_P (operands[1]))
|
||
{
|
||
if (GET_CODE (operands[0]) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_double (operands);
|
||
}
|
||
else abort ();
|
||
}
|
||
|
||
/* Output assembler code to perform a quadword move insn with operands
|
||
OPERANDS, one of which must be a floating point register. */
|
||
|
||
char *
|
||
output_fp_move_quad (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
|
||
if (FP_REG_P (op0))
|
||
{
|
||
if (FP_REG_P (op1))
|
||
return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0";
|
||
else if (GET_CODE (op1) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_quad (operands);
|
||
}
|
||
else if (FP_REG_P (op1))
|
||
{
|
||
if (GET_CODE (op0) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_quad (operands);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return a REG that occurs in ADDR with coefficient 1.
|
||
ADDR can be effectively incremented by incrementing REG. */
|
||
|
||
static rtx
|
||
find_addr_reg (addr)
|
||
rtx addr;
|
||
{
|
||
while (GET_CODE (addr) == PLUS)
|
||
{
|
||
/* We absolutely can not fudge the frame pointer here, because the
|
||
frame pointer must always be 8 byte aligned. It also confuses
|
||
debuggers. */
|
||
if (GET_CODE (XEXP (addr, 0)) == REG
|
||
&& REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
|
||
addr = XEXP (addr, 0);
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG
|
||
&& REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 0)))
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 1)))
|
||
addr = XEXP (addr, 0);
|
||
else
|
||
abort ();
|
||
}
|
||
if (GET_CODE (addr) == REG)
|
||
return addr;
|
||
abort ();
|
||
}
|
||
|
||
#if 0 /* not currently used */
|
||
|
||
void
|
||
output_sized_memop (opname, mode, signedp)
|
||
char *opname;
|
||
enum machine_mode mode;
|
||
int signedp;
|
||
{
|
||
static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
|
||
static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
|
||
static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
|
||
char **opnametab, *modename;
|
||
|
||
if (opname[0] == 'l')
|
||
if (signedp)
|
||
opnametab = ld_size_suffix_s;
|
||
else
|
||
opnametab = ld_size_suffix_u;
|
||
else
|
||
opnametab = st_size_suffix;
|
||
modename = opnametab[GET_MODE_SIZE (mode) >> 1];
|
||
|
||
fprintf (asm_out_file, "\t%s%s", opname, modename);
|
||
}
|
||
|
||
void
|
||
output_move_with_extension (operands)
|
||
rtx *operands;
|
||
{
|
||
if (GET_MODE (operands[2]) == HImode)
|
||
output_asm_insn ("sll %2,0x10,%0", operands);
|
||
else if (GET_MODE (operands[2]) == QImode)
|
||
output_asm_insn ("sll %2,0x18,%0", operands);
|
||
else
|
||
abort ();
|
||
}
|
||
#endif /* not currently used */
|
||
|
||
#if 0
|
||
/* ??? These are only used by the movstrsi pattern, but we get better code
|
||
in general without that, because emit_block_move can do just as good a
|
||
job as this function does when alignment and size are known. When they
|
||
aren't known, a call to strcpy may be faster anyways, because it is
|
||
likely to be carefully crafted assembly language code, and below we just
|
||
do a byte-wise copy.
|
||
|
||
Also, emit_block_move expands into multiple read/write RTL insns, which
|
||
can then be optimized, whereas our movstrsi pattern can not be optimized
|
||
at all. */
|
||
|
||
/* Load the address specified by OPERANDS[3] into the register
|
||
specified by OPERANDS[0].
|
||
|
||
OPERANDS[3] may be the result of a sum, hence it could either be:
|
||
|
||
(1) CONST
|
||
(2) REG
|
||
(2) REG + CONST_INT
|
||
(3) REG + REG + CONST_INT
|
||
(4) REG + REG (special case of 3).
|
||
|
||
Note that (3) is not a legitimate address.
|
||
All cases are handled here. */
|
||
|
||
void
|
||
output_load_address (operands)
|
||
rtx *operands;
|
||
{
|
||
rtx base, offset;
|
||
|
||
if (CONSTANT_P (operands[3]))
|
||
{
|
||
output_asm_insn ("set %3,%0", operands);
|
||
return;
|
||
}
|
||
|
||
if (REG_P (operands[3]))
|
||
{
|
||
if (REGNO (operands[0]) != REGNO (operands[3]))
|
||
output_asm_insn ("mov %3,%0", operands);
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (operands[3]) != PLUS)
|
||
abort ();
|
||
|
||
base = XEXP (operands[3], 0);
|
||
offset = XEXP (operands[3], 1);
|
||
|
||
if (GET_CODE (base) == CONST_INT)
|
||
{
|
||
rtx tmp = base;
|
||
base = offset;
|
||
offset = tmp;
|
||
}
|
||
|
||
if (GET_CODE (offset) != CONST_INT)
|
||
{
|
||
/* Operand is (PLUS (REG) (REG)). */
|
||
base = operands[3];
|
||
offset = const0_rtx;
|
||
}
|
||
|
||
if (REG_P (base))
|
||
{
|
||
operands[6] = base;
|
||
operands[7] = offset;
|
||
if (SMALL_INT (offset))
|
||
output_asm_insn ("add %6,%7,%0", operands);
|
||
else
|
||
output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
|
||
}
|
||
else if (GET_CODE (base) == PLUS)
|
||
{
|
||
operands[6] = XEXP (base, 0);
|
||
operands[7] = XEXP (base, 1);
|
||
operands[8] = offset;
|
||
|
||
if (SMALL_INT (offset))
|
||
output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
|
||
else
|
||
output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Output code to place a size count SIZE in register REG.
|
||
ALIGN is the size of the unit of transfer.
|
||
|
||
Because block moves are pipelined, we don't include the
|
||
first element in the transfer of SIZE to REG. */
|
||
|
||
static void
|
||
output_size_for_block_move (size, reg, align)
|
||
rtx size, reg;
|
||
rtx align;
|
||
{
|
||
rtx xoperands[3];
|
||
|
||
xoperands[0] = reg;
|
||
xoperands[1] = size;
|
||
xoperands[2] = align;
|
||
if (GET_CODE (size) == REG)
|
||
output_asm_insn ("sub %1,%2,%0", xoperands);
|
||
else
|
||
{
|
||
xoperands[1]
|
||
= gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
|
||
output_asm_insn ("set %1,%0", xoperands);
|
||
}
|
||
}
|
||
|
||
/* Emit code to perform a block move.
|
||
|
||
OPERANDS[0] is the destination.
|
||
OPERANDS[1] is the source.
|
||
OPERANDS[2] is the size.
|
||
OPERANDS[3] is the alignment safe to use.
|
||
OPERANDS[4] is a register we can safely clobber as a temp. */
|
||
|
||
char *
|
||
output_block_move (operands)
|
||
rtx *operands;
|
||
{
|
||
/* A vector for our computed operands. Note that load_output_address
|
||
makes use of (and can clobber) up to the 8th element of this vector. */
|
||
rtx xoperands[10];
|
||
rtx zoperands[10];
|
||
static int movstrsi_label = 0;
|
||
int i;
|
||
rtx temp1 = operands[4];
|
||
rtx sizertx = operands[2];
|
||
rtx alignrtx = operands[3];
|
||
int align = INTVAL (alignrtx);
|
||
char label3[30], label5[30];
|
||
|
||
xoperands[0] = operands[0];
|
||
xoperands[1] = operands[1];
|
||
xoperands[2] = temp1;
|
||
|
||
/* We can't move more than this many bytes at a time because we have only
|
||
one register, %g1, to move them through. */
|
||
if (align > UNITS_PER_WORD)
|
||
{
|
||
align = UNITS_PER_WORD;
|
||
alignrtx = gen_rtx (CONST_INT, VOIDmode, UNITS_PER_WORD);
|
||
}
|
||
|
||
/* We consider 8 ld/st pairs, for a total of 16 inline insns to be
|
||
reasonable here. (Actually will emit a maximum of 18 inline insns for
|
||
the case of size == 31 and align == 4). */
|
||
|
||
if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8
|
||
&& memory_address_p (QImode, plus_constant_for_output (xoperands[0],
|
||
INTVAL (sizertx)))
|
||
&& memory_address_p (QImode, plus_constant_for_output (xoperands[1],
|
||
INTVAL (sizertx))))
|
||
{
|
||
int size = INTVAL (sizertx);
|
||
int offset = 0;
|
||
|
||
/* We will store different integers into this particular RTX. */
|
||
xoperands[2] = rtx_alloc (CONST_INT);
|
||
PUT_MODE (xoperands[2], VOIDmode);
|
||
|
||
/* This case is currently not handled. Abort instead of generating
|
||
bad code. */
|
||
if (align > 4)
|
||
abort ();
|
||
|
||
if (align >= 4)
|
||
{
|
||
for (i = (size >> 2) - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = (i << 2) + offset;
|
||
output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
offset += (size & ~0x3);
|
||
size = size & 0x3;
|
||
if (size == 0)
|
||
return "";
|
||
}
|
||
|
||
if (align >= 2)
|
||
{
|
||
for (i = (size >> 1) - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = (i << 1) + offset;
|
||
output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
offset += (size & ~0x1);
|
||
size = size & 0x1;
|
||
if (size == 0)
|
||
return "";
|
||
}
|
||
|
||
if (align >= 1)
|
||
{
|
||
for (i = size - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = i + offset;
|
||
output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
return "";
|
||
}
|
||
|
||
/* We should never reach here. */
|
||
abort ();
|
||
}
|
||
|
||
/* If the size isn't known to be a multiple of the alignment,
|
||
we have to do it in smaller pieces. If we could determine that
|
||
the size was a multiple of 2 (or whatever), we could be smarter
|
||
about this. */
|
||
if (GET_CODE (sizertx) != CONST_INT)
|
||
align = 1;
|
||
else
|
||
{
|
||
int size = INTVAL (sizertx);
|
||
while (size % align)
|
||
align >>= 1;
|
||
}
|
||
|
||
if (align != INTVAL (alignrtx))
|
||
alignrtx = gen_rtx (CONST_INT, VOIDmode, align);
|
||
|
||
xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
|
||
xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align);
|
||
xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3]));
|
||
ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5]));
|
||
|
||
/* This is the size of the transfer. Emit code to decrement the size
|
||
value by ALIGN, and store the result in the temp1 register. */
|
||
output_size_for_block_move (sizertx, temp1, alignrtx);
|
||
|
||
/* Must handle the case when the size is zero or negative, so the first thing
|
||
we do is compare the size against zero, and only copy bytes if it is
|
||
zero or greater. Note that we have already subtracted off the alignment
|
||
once, so we must copy 1 alignment worth of bytes if the size is zero
|
||
here.
|
||
|
||
The SUN assembler complains about labels in branch delay slots, so we
|
||
do this before outputting the load address, so that there will always
|
||
be a harmless insn between the branch here and the next label emitted
|
||
below. */
|
||
|
||
{
|
||
char pattern[100];
|
||
|
||
sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]);
|
||
output_asm_insn (pattern, xoperands);
|
||
}
|
||
|
||
zoperands[0] = operands[0];
|
||
zoperands[3] = plus_constant_for_output (operands[0], align);
|
||
output_load_address (zoperands);
|
||
|
||
/* ??? This might be much faster if the loops below were preconditioned
|
||
and unrolled.
|
||
|
||
That is, at run time, copy enough bytes one at a time to ensure that the
|
||
target and source addresses are aligned to the the largest possible
|
||
alignment. Then use a preconditioned unrolled loop to copy say 16
|
||
bytes at a time. Then copy bytes one at a time until finish the rest. */
|
||
|
||
/* Output the first label separately, so that it is spaced properly. */
|
||
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));
|
||
|
||
{
|
||
char pattern[200];
|
||
register char *ld_suffix = (align == 1) ? "ub" : (align == 2) ? "uh" : "";
|
||
register char *st_suffix = (align == 1) ? "b" : (align == 2) ? "h" : "";
|
||
|
||
sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]);
|
||
output_asm_insn (pattern, xoperands);
|
||
}
|
||
|
||
return "";
|
||
}
|
||
#endif
|
||
|
||
/* Output reasonable peephole for set-on-condition-code insns.
|
||
Note that these insns assume a particular way of defining
|
||
labels. Therefore, *both* sparc.h and this function must
|
||
be changed if a new syntax is needed. */
|
||
|
||
char *
|
||
output_scc_insn (operands, insn)
|
||
rtx operands[];
|
||
rtx insn;
|
||
{
|
||
static char string[100];
|
||
rtx label = 0, next = insn;
|
||
int need_label = 0;
|
||
|
||
/* Try doing a jump optimization which jump.c can't do for us
|
||
because we did not expose that setcc works by using branches.
|
||
|
||
If this scc insn is followed by an unconditional branch, then have
|
||
the jump insn emitted here jump to that location, instead of to
|
||
the end of the scc sequence as usual. */
|
||
|
||
do
|
||
{
|
||
if (GET_CODE (next) == CODE_LABEL)
|
||
label = next;
|
||
next = NEXT_INSN (next);
|
||
if (next == 0)
|
||
break;
|
||
}
|
||
while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);
|
||
|
||
/* If we are in a sequence, and the following insn is a sequence also,
|
||
then just following the current insn's next field will take us to the
|
||
first insn of the next sequence, which is the wrong place. We don't
|
||
want to optimize with a branch that has had its delay slot filled.
|
||
Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
|
||
which fails only if NEXT is such a branch. */
|
||
|
||
if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
|
||
&& (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
|
||
label = JUMP_LABEL (next);
|
||
/* If not optimizing, jump label fields are not set. To be safe, always
|
||
check here to whether label is still zero. */
|
||
if (label == 0)
|
||
{
|
||
label = gen_label_rtx ();
|
||
need_label = 1;
|
||
}
|
||
|
||
LABEL_NUSES (label) += 1;
|
||
|
||
operands[2] = label;
|
||
|
||
/* If we are in a delay slot, assume it is the delay slot of an fpcc
|
||
insn since our type isn't allowed anywhere else. */
|
||
|
||
/* ??? Fpcc instructions no longer have delay slots, so this code is
|
||
probably obsolete. */
|
||
|
||
/* The fastest way to emit code for this is an annulled branch followed
|
||
by two move insns. This will take two cycles if the branch is taken,
|
||
and three cycles if the branch is not taken.
|
||
|
||
However, if we are in the delay slot of another branch, this won't work,
|
||
because we can't put a branch in the delay slot of another branch.
|
||
The above sequence would effectively take 3 or 4 cycles respectively
|
||
since a no op would have be inserted between the two branches.
|
||
In this case, we want to emit a move, annulled branch, and then the
|
||
second move. This sequence always takes 3 cycles, and hence is faster
|
||
when we are in a branch delay slot. */
|
||
|
||
if (final_sequence)
|
||
{
|
||
strcpy (string, "mov 0,%0\n\t");
|
||
strcat (string, output_cbranch (operands[1], 2, 0, 1, 0));
|
||
strcat (string, "\n\tmov 1,%0");
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, output_cbranch (operands[1], 2, 0, 1, 0));
|
||
strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
|
||
}
|
||
|
||
if (need_label)
|
||
strcat (string, "\n%l2:");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Vectors to keep interesting information about registers where
|
||
it can easily be got. */
|
||
|
||
/* Modes for condition codes. */
|
||
#define C_MODES \
|
||
((1 << (int) CCmode) | (1 << (int) CC_NOOVmode) \
|
||
| (1 << (int) CCFPmode) | (1 << (int) CCFPEmode))
|
||
|
||
/* Modes for single-word (and smaller) quantities. */
|
||
#define S_MODES \
|
||
((1 << (int) QImode) | (1 << (int) HImode) | (1 << (int) SImode) \
|
||
| (1 << (int) QFmode) | (1 << (int) HFmode) | (1 << (int) SFmode) \
|
||
| (1 << (int) CQImode) | (1 << (int) CHImode))
|
||
|
||
/* Modes for double-word (and smaller) quantities. */
|
||
#define D_MODES \
|
||
(S_MODES | (1 << (int) DImode) | (1 << (int) DFmode) \
|
||
| (1 << (int) CSImode) | (1 << (int) SCmode))
|
||
|
||
/* Modes for quad-word quantities. */
|
||
#define T_MODES \
|
||
(D_MODES | (1 << (int) TImode) | (1 << (int) TFmode) \
|
||
| (1 << (int) DCmode) | (1 << (int) CDImode))
|
||
|
||
/* Modes for single-float quantities. We must allow any single word or
|
||
smaller quantity. This is because the fix/float conversion instructions
|
||
take integer inputs/outputs from the float registers. */
|
||
#define SF_MODES (S_MODES)
|
||
|
||
/* Modes for double-float quantities. */
|
||
#define DF_MODES (SF_MODES | (1 << (int) DFmode) | (1 << (int) SCmode))
|
||
|
||
/* Modes for quad-float quantities. */
|
||
#define TF_MODES (DF_MODES | (1 << (int) TFmode) | (1 << (int) DCmode))
|
||
|
||
/* Value is 1 if register/mode pair is acceptable on sparc.
|
||
The funny mixture of D and T modes is because integer operations
|
||
do not specially operate on tetra quantities, so non-quad-aligned
|
||
registers can hold quadword quantities (except %o4 and %i4 because
|
||
they cross fixed registers. */
|
||
|
||
int hard_regno_mode_ok[] = {
|
||
C_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES};
|
||
|
||
#ifdef __GNUC__
|
||
inline
|
||
#endif
|
||
static int
|
||
save_regs (file, low, high, base, offset, n_fregs)
|
||
FILE *file;
|
||
int low, high;
|
||
char *base;
|
||
int offset;
|
||
int n_fregs;
|
||
{
|
||
int i;
|
||
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tstd %s,[%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_fregs),
|
||
n_fregs += 2;
|
||
else
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_fregs),
|
||
n_fregs += 2;
|
||
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[i+1], base, offset + 4 * n_fregs),
|
||
n_fregs += 2;
|
||
}
|
||
return n_fregs;
|
||
}
|
||
|
||
#ifdef __GNUC__
|
||
inline
|
||
#endif
|
||
static int
|
||
restore_regs (file, low, high, base, offset, n_fregs)
|
||
FILE *file;
|
||
int low, high;
|
||
char *base;
|
||
int offset;
|
||
{
|
||
int i;
|
||
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tldd [%s+%d], %s\n",
|
||
base, offset + 4 * n_fregs, reg_names[i]),
|
||
n_fregs += 2;
|
||
else
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
base, offset + 4 * n_fregs, reg_names[i]),
|
||
n_fregs += 2;
|
||
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
base, offset + 4 * n_fregs, reg_names[i+1]),
|
||
n_fregs += 2;
|
||
}
|
||
return n_fregs;
|
||
}
|
||
|
||
/* Static variables we want to share between prologue and epilogue. */
|
||
|
||
/* Number of live floating point registers needed to be saved. */
|
||
static int num_fregs;
|
||
|
||
int
|
||
compute_frame_size (size, leaf_function)
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
int fregs_ever_live = 0;
|
||
int n_fregs = 0, i;
|
||
int outgoing_args_size = (current_function_outgoing_args_size
|
||
+ REG_PARM_STACK_SPACE (current_function_decl));
|
||
|
||
apparent_fsize = ((size) + 7 - STARTING_FRAME_OFFSET) & -8;
|
||
for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
|
||
fregs_ever_live |= regs_ever_live[i]|regs_ever_live[i+1];
|
||
|
||
if (TARGET_EPILOGUE && fregs_ever_live)
|
||
{
|
||
for (i = 32; i < FIRST_PSEUDO_REGISTER; i += 2)
|
||
if ((regs_ever_live[i] && ! call_used_regs[i])
|
||
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
|
||
n_fregs += 2;
|
||
}
|
||
|
||
/* Set up values for use in `function_epilogue'. */
|
||
num_fregs = n_fregs;
|
||
|
||
apparent_fsize += (outgoing_args_size+7) & -8;
|
||
if (leaf_function && n_fregs == 0
|
||
&& apparent_fsize == (REG_PARM_STACK_SPACE (current_function_decl)
|
||
- STARTING_FRAME_OFFSET))
|
||
apparent_fsize = 0;
|
||
|
||
actual_fsize = apparent_fsize + n_fregs*4;
|
||
|
||
/* Make sure nothing can clobber our register windows.
|
||
If a SAVE must be done, or there is a stack-local variable,
|
||
the register window area must be allocated. */
|
||
if (leaf_function == 0 || size > 0)
|
||
actual_fsize += (16 * UNITS_PER_WORD)+8;
|
||
|
||
return actual_fsize;
|
||
}
|
||
|
||
/* Output code for the function prologue. */
|
||
|
||
void
|
||
output_function_prologue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
/* ??? This should be %sp+actual_fsize for a leaf function. I think it
|
||
works only because it is never used. */
|
||
if (leaf_function)
|
||
frame_base_name = "%sp+80";
|
||
else
|
||
frame_base_name = "%fp";
|
||
|
||
/* Need to use actual_fsize, since we are also allocating
|
||
space for our callee (and our own register save area). */
|
||
actual_fsize = compute_frame_size (size, leaf_function);
|
||
|
||
fprintf (file, "\t!#PROLOGUE# 0\n");
|
||
if (actual_fsize == 0)
|
||
/* do nothing. */ ;
|
||
else if (actual_fsize <= 4096)
|
||
{
|
||
if (! leaf_function)
|
||
fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
|
||
else
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
|
||
}
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
/* For frames in the range 4097..8192, we can use just two insns. */
|
||
if (! leaf_function)
|
||
{
|
||
fprintf (file, "\tsave %%sp,-4096,%%sp\n");
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tadd %%sp,-4096,%%sp\n");
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (! leaf_function)
|
||
{
|
||
fprintf (file, "\tsethi %%hi(-%d),%%g1\n", actual_fsize);
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
fprintf (file, "\tor %%g1,%%lo(-%d),%%g1\n", actual_fsize);
|
||
fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tsethi %%hi(-%d),%%g1\n", actual_fsize);
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
fprintf (file, "\tor %%g1,%%lo(-%d),%%g1\n", actual_fsize);
|
||
fprintf (file, "\tadd %%sp,%%g1,%%sp\n");
|
||
}
|
||
}
|
||
|
||
/* If doing anything with PIC, do it now. */
|
||
if (! flag_pic)
|
||
fprintf (file, "\t!#PROLOGUE# 1\n");
|
||
|
||
/* Figure out where to save any special registers. */
|
||
if (num_fregs)
|
||
{
|
||
int offset, n_fregs = num_fregs;
|
||
|
||
/* ??? This should always be -apparent_fsize. */
|
||
if (! leaf_function)
|
||
offset = -apparent_fsize;
|
||
else
|
||
offset = 0;
|
||
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
n_fregs = save_regs (file, 0, 16, frame_base_name, offset, 0);
|
||
else if (leaf_function)
|
||
n_fregs = save_regs (file, 0, 32, frame_base_name, offset, 0);
|
||
if (TARGET_EPILOGUE)
|
||
save_regs (file, 32, FIRST_PSEUDO_REGISTER,
|
||
frame_base_name, offset, n_fregs);
|
||
}
|
||
|
||
leaf_label = 0;
|
||
if (leaf_function && actual_fsize != 0)
|
||
{
|
||
/* warning ("leaf procedure with frame size %d", actual_fsize); */
|
||
if (! TARGET_EPILOGUE)
|
||
leaf_label = gen_label_rtx ();
|
||
}
|
||
}
|
||
|
||
/* Output code for the function epilogue. */
|
||
|
||
void
|
||
output_function_epilogue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
char *ret;
|
||
|
||
if (leaf_label)
|
||
{
|
||
emit_label_after (leaf_label, get_last_insn ());
|
||
final_scan_insn (get_last_insn (), file, 0, 0, 1);
|
||
}
|
||
|
||
if (num_fregs)
|
||
{
|
||
int offset, n_fregs = num_fregs;
|
||
|
||
/* ??? This should always be -apparent_fsize. */
|
||
if (! leaf_function)
|
||
offset = -apparent_fsize;
|
||
else
|
||
offset = 0;
|
||
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
n_fregs = restore_regs (file, 0, 16, frame_base_name, offset, 0);
|
||
else if (leaf_function)
|
||
n_fregs = restore_regs (file, 0, 32, frame_base_name, offset, 0);
|
||
if (TARGET_EPILOGUE)
|
||
restore_regs (file, 32, FIRST_PSEUDO_REGISTER,
|
||
frame_base_name, offset, n_fregs);
|
||
}
|
||
|
||
/* Work out how to skip the caller's unimp instruction if required. */
|
||
if (leaf_function)
|
||
ret = (current_function_returns_struct ? "jmp %o7+12" : "retl");
|
||
else
|
||
ret = (current_function_returns_struct ? "jmp %i7+12" : "ret");
|
||
|
||
if (TARGET_EPILOGUE || leaf_label)
|
||
{
|
||
int old_target_epilogue = TARGET_EPILOGUE;
|
||
target_flags &= ~old_target_epilogue;
|
||
|
||
if (! leaf_function)
|
||
{
|
||
/* If we wound up with things in our delay slot, flush them here. */
|
||
if (current_function_epilogue_delay_list)
|
||
{
|
||
rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
|
||
get_last_insn ());
|
||
PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (2,
|
||
PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
|
||
PATTERN (insn)));
|
||
final_scan_insn (insn, file, 1, 0, 1);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\n\trestore\n", ret);
|
||
}
|
||
/* All of the following cases are for leaf functions. */
|
||
else if (current_function_epilogue_delay_list)
|
||
{
|
||
/* eligible_for_epilogue_delay_slot ensures that if this is a
|
||
leaf function, then we will only have insn in the delay slot
|
||
if the frame size is zero, thus no adjust for the stack is
|
||
needed here. */
|
||
if (actual_fsize != 0)
|
||
abort ();
|
||
fprintf (file, "\t%s\n", ret);
|
||
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
|
||
file, 1, 0, 1);
|
||
}
|
||
/* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
|
||
avoid generating confusing assembly language output. */
|
||
else if (actual_fsize == 0)
|
||
fprintf (file, "\t%s\n\tnop\n", ret);
|
||
else if (actual_fsize <= 4096)
|
||
fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n",
|
||
ret, actual_fsize - 4096);
|
||
else if ((actual_fsize & 0x3ff) == 0)
|
||
fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
|
||
actual_fsize, ret);
|
||
else
|
||
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
|
||
actual_fsize, actual_fsize, ret);
|
||
target_flags |= old_target_epilogue;
|
||
}
|
||
}
|
||
|
||
/* Do what is necessary for `va_start'. The argument is ignored;
|
||
We look at the current function to determine if stdarg or varargs
|
||
is used and return the address of the first unnamed parameter. */
|
||
|
||
rtx
|
||
sparc_builtin_saveregs (arglist)
|
||
tree arglist;
|
||
{
|
||
tree fntype = TREE_TYPE (current_function_decl);
|
||
int stdarg = (TYPE_ARG_TYPES (fntype) != 0
|
||
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
||
!= void_type_node));
|
||
int first_reg = current_function_args_info;
|
||
rtx address;
|
||
int regno;
|
||
|
||
#if 0 /* This code seemed to have no effect except to make
|
||
varargs not work right when va_list wasn't the first arg. */
|
||
if (! stdarg)
|
||
first_reg = 0;
|
||
#endif
|
||
|
||
for (regno = first_reg; regno < NPARM_REGS; regno++)
|
||
emit_move_insn (gen_rtx (MEM, word_mode,
|
||
gen_rtx (PLUS, Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * regno))),
|
||
gen_rtx (REG, word_mode, BASE_INCOMING_ARG_REG (word_mode)
|
||
+ regno));
|
||
|
||
address = gen_rtx (PLUS, Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * first_reg));
|
||
|
||
return address;
|
||
}
|
||
|
||
/* Return the string to output a conditional branch to LABEL, which is
|
||
the operand number of the label. OP is the conditional expression. The
|
||
mode of register 0 says what kind of comparison we made.
|
||
|
||
REVERSED is non-zero if we should reverse the sense of the comparison.
|
||
|
||
ANNUL is non-zero if we should generate an annulling branch.
|
||
|
||
NOOP is non-zero if we have to follow this branch by a noop. */
|
||
|
||
char *
|
||
output_cbranch (op, label, reversed, annul, noop)
|
||
rtx op;
|
||
int label;
|
||
int reversed, annul, noop;
|
||
{
|
||
static char string[20];
|
||
enum rtx_code code = GET_CODE (op);
|
||
enum machine_mode mode = GET_MODE (XEXP (op, 0));
|
||
static char labelno[] = " %lX";
|
||
|
||
/* ??? FP branches can not be preceded by another floating point insn.
|
||
Because there is currently no concept of pre-delay slots, we can fix
|
||
this only by always emitting a nop before a floating point branch. */
|
||
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
strcpy (string, "nop\n\t");
|
||
|
||
/* If not floating-point or if EQ or NE, we can just reverse the code. */
|
||
if (reversed
|
||
&& ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
|
||
code = reverse_condition (code), reversed = 0;
|
||
|
||
/* Start by writing the branch condition. */
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
strcat (string, "fbne");
|
||
else
|
||
strcpy (string, "bne");
|
||
break;
|
||
|
||
case EQ:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
strcat (string, "fbe");
|
||
else
|
||
strcpy (string, "be");
|
||
break;
|
||
|
||
case GE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbul");
|
||
else
|
||
strcat (string, "fbge");
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
strcpy (string, "bpos");
|
||
else
|
||
strcpy (string, "bge");
|
||
break;
|
||
|
||
case GT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbule");
|
||
else
|
||
strcat (string, "fbg");
|
||
}
|
||
else
|
||
strcpy (string, "bg");
|
||
break;
|
||
|
||
case LE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbug");
|
||
else
|
||
strcat (string, "fble");
|
||
}
|
||
else
|
||
strcpy (string, "ble");
|
||
break;
|
||
|
||
case LT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbuge");
|
||
else
|
||
strcat (string, "fbl");
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
strcpy (string, "bneg");
|
||
else
|
||
strcpy (string, "bl");
|
||
break;
|
||
|
||
case GEU:
|
||
strcpy (string, "bgeu");
|
||
break;
|
||
|
||
case GTU:
|
||
strcpy (string, "bgu");
|
||
break;
|
||
|
||
case LEU:
|
||
strcpy (string, "bleu");
|
||
break;
|
||
|
||
case LTU:
|
||
strcpy (string, "blu");
|
||
break;
|
||
}
|
||
|
||
/* Now add the annulling, the label, and a possible noop. */
|
||
if (annul)
|
||
strcat (string, ",a");
|
||
|
||
labelno[3] = label + '0';
|
||
strcat (string, labelno);
|
||
|
||
if (noop)
|
||
strcat (string, "\n\tnop");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Output assembler code to return from a function. */
|
||
|
||
char *
|
||
output_return (operands)
|
||
rtx *operands;
|
||
{
|
||
if (leaf_label)
|
||
{
|
||
operands[0] = leaf_label;
|
||
return "b,a %l0";
|
||
}
|
||
else if (leaf_function)
|
||
{
|
||
/* If we didn't allocate a frame pointer for the current function,
|
||
the stack pointer might have been adjusted. Output code to
|
||
restore it now. */
|
||
|
||
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize);
|
||
|
||
/* Use sub of negated value in first two cases instead of add to
|
||
allow actual_fsize == 4096. */
|
||
|
||
if (actual_fsize <= 4096)
|
||
{
|
||
if (current_function_returns_struct)
|
||
return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp";
|
||
else
|
||
return "retl\n\tsub %%sp,-%0,%%sp";
|
||
}
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize - 4096);
|
||
if (current_function_returns_struct)
|
||
return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp";
|
||
else
|
||
return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp";
|
||
}
|
||
else if (current_function_returns_struct)
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
|
||
else
|
||
return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
|
||
}
|
||
else
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
else
|
||
return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (current_function_returns_struct)
|
||
return "jmp %%i7+12\n\trestore";
|
||
else
|
||
return "ret\n\trestore";
|
||
}
|
||
}
|
||
|
||
/* Leaf functions and non-leaf functions have different needs. */
|
||
|
||
static int
|
||
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
|
||
|
||
static int
|
||
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
|
||
|
||
static int *reg_alloc_orders[] = {
|
||
reg_leaf_alloc_order,
|
||
reg_nonleaf_alloc_order};
|
||
|
||
void
|
||
order_regs_for_local_alloc ()
|
||
{
|
||
static int last_order_nonleaf = 1;
|
||
|
||
if (regs_ever_live[15] != last_order_nonleaf)
|
||
{
|
||
last_order_nonleaf = !last_order_nonleaf;
|
||
bcopy (reg_alloc_orders[last_order_nonleaf], reg_alloc_order,
|
||
FIRST_PSEUDO_REGISTER * sizeof (int));
|
||
}
|
||
}
|
||
|
||
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
|
||
This makes them candidates for using ldd and std insns.
|
||
|
||
Note reg1 and reg2 *must* be hard registers. To be sure we will
|
||
abort if we are passed pseudo registers. */
|
||
|
||
int
|
||
registers_ok_for_ldd_peep (reg1, reg2)
|
||
rtx reg1, reg2;
|
||
{
|
||
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg1) % 2 != 0)
|
||
return 0;
|
||
|
||
return (REGNO (reg1) == REGNO (reg2) - 1);
|
||
|
||
}
|
||
|
||
/* Return 1 if addr1 and addr2 are suitable for use in an ldd or
|
||
std insn.
|
||
|
||
This can only happen when addr1 and addr2 are consecutive memory
|
||
locations (addr1 + 4 == addr2). addr1 must also be aligned on a
|
||
64 bit boundary (addr1 % 8 == 0).
|
||
|
||
We know %sp and %fp are kept aligned on a 64 bit boundary. Other
|
||
registers are assumed to *never* be properly aligned and are
|
||
rejected.
|
||
|
||
Knowing %sp and %fp are kept aligned on a 64 bit boundary, we
|
||
need only check that the offset for addr1 % 8 == 0. */
|
||
|
||
int
|
||
addrs_ok_for_ldd_peep (addr1, addr2)
|
||
rtx addr1, addr2;
|
||
{
|
||
int reg1, offset1;
|
||
|
||
/* Extract a register number and offset (if used) from the first addr. */
|
||
if (GET_CODE (addr1) == PLUS)
|
||
{
|
||
/* If not a REG, return zero. */
|
||
if (GET_CODE (XEXP (addr1, 0)) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (XEXP (addr1, 0));
|
||
/* The offset must be constant! */
|
||
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
|
||
return 0;
|
||
offset1 = INTVAL (XEXP (addr1, 1));
|
||
}
|
||
}
|
||
else if (GET_CODE (addr1) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (addr1);
|
||
/* This was a simple (mem (reg)) expression. Offset is 0. */
|
||
offset1 = 0;
|
||
}
|
||
|
||
/* Make sure the second address is a (mem (plus (reg) (const_int). */
|
||
if (GET_CODE (addr2) != PLUS)
|
||
return 0;
|
||
|
||
if (GET_CODE (XEXP (addr2, 0)) != REG
|
||
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
|
||
return 0;
|
||
|
||
/* Only %fp and %sp are allowed. Additionally both addresses must
|
||
use the same register. */
|
||
if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
|
||
return 0;
|
||
|
||
if (reg1 != REGNO (XEXP (addr2, 0)))
|
||
return 0;
|
||
|
||
/* The first offset must be evenly divisible by 8 to ensure the
|
||
address is 64 bit aligned. */
|
||
if (offset1 % 8 != 0)
|
||
return 0;
|
||
|
||
/* The offset for the second addr must be 4 more than the first addr. */
|
||
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
|
||
return 0;
|
||
|
||
/* All the tests passed. addr1 and addr2 are valid for ldd and std
|
||
instructions. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if reg is a pseudo, or is the first register in
|
||
a hard register pair. This makes it a candidate for use in
|
||
ldd and std insns. */
|
||
|
||
int
|
||
register_ok_for_ldd (reg)
|
||
rtx reg;
|
||
{
|
||
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
return (REGNO (reg) % 2 == 0);
|
||
else
|
||
return 1;
|
||
|
||
}
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case '#':
|
||
/* Output a 'nop' if there's nothing for the delay slot. */
|
||
if (dbr_sequence_length () == 0)
|
||
fputs ("\n\tnop", file);
|
||
return;
|
||
case '*':
|
||
/* Output an annul flag if there's nothing for the delay slot and we
|
||
are optimizing. This is always used with '(' below. */
|
||
/* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
|
||
this is a dbx bug. So, we only do this when optimizing. */
|
||
if (dbr_sequence_length () == 0 && optimize)
|
||
fputs (",a", file);
|
||
return;
|
||
case '(':
|
||
/* Output a 'nop' if there's nothing for the delay slot and we are
|
||
not optimizing. This is always used with '*' above. */
|
||
if (dbr_sequence_length () == 0 && ! optimize)
|
||
fputs ("\n\tnop", file);
|
||
return;
|
||
case 'Y':
|
||
/* Adjust the operand to take into account a RESTORE operation. */
|
||
if (GET_CODE (x) != REG)
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
else if (REGNO (x) < 8)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (REGNO (x) >= 24 && REGNO (x) < 32)
|
||
fputs (reg_names[REGNO (x)-16], file);
|
||
else
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
return;
|
||
case 'R':
|
||
/* Print out the second register name of a register pair or quad.
|
||
I.e., R (%o0) => %o1. */
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
return;
|
||
case 'S':
|
||
/* Print out the third register name of a register quad.
|
||
I.e., S (%o0) => %o2. */
|
||
fputs (reg_names[REGNO (x)+2], file);
|
||
return;
|
||
case 'T':
|
||
/* Print out the fourth register name of a register quad.
|
||
I.e., T (%o0) => %o3. */
|
||
fputs (reg_names[REGNO (x)+3], file);
|
||
return;
|
||
case 'm':
|
||
/* Print the operand's address only. */
|
||
output_address (XEXP (x, 0));
|
||
return;
|
||
case 'r':
|
||
/* In this case we need a register. Use %g0 if the
|
||
operand is const0_rtx. */
|
||
if (x == const0_rtx
|
||
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
|
||
{
|
||
fputs ("%g0", file);
|
||
return;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case 'A':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("or", file); break;
|
||
case AND: fputs ("and", file); break;
|
||
case XOR: fputs ("xor", file); break;
|
||
default: output_operand_lossage ("Invalid %%A operand");
|
||
}
|
||
return;
|
||
|
||
case 'B':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("orn", file); break;
|
||
case AND: fputs ("andn", file); break;
|
||
case XOR: fputs ("xnor", file); break;
|
||
default: output_operand_lossage ("Invalid %%B operand");
|
||
}
|
||
return;
|
||
|
||
case 'b':
|
||
{
|
||
/* Print a sign-extended character. */
|
||
int i = INTVAL (x) & 0xff;
|
||
if (i & 0x80)
|
||
i |= 0xffffff00;
|
||
fprintf (file, "%d", i);
|
||
return;
|
||
}
|
||
|
||
case 0:
|
||
/* Do nothing special. */
|
||
break;
|
||
|
||
default:
|
||
/* Undocumented flag. */
|
||
output_operand_lossage ("invalid operand output code");
|
||
}
|
||
|
||
if (GET_CODE (x) == REG)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
fputc ('[', file);
|
||
if (CONSTANT_P (XEXP (x, 0)))
|
||
/* Poor Sun assembler doesn't understand absolute addressing. */
|
||
fputs ("%g0+", file);
|
||
output_address (XEXP (x, 0));
|
||
fputc (']', file);
|
||
}
|
||
else if (GET_CODE (x) == HIGH)
|
||
{
|
||
fputs ("%hi(", file);
|
||
output_addr_const (file, XEXP (x, 0));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == LO_SUM)
|
||
{
|
||
print_operand (file, XEXP (x, 0), 0);
|
||
fputs ("+%lo(", file);
|
||
output_addr_const (file, XEXP (x, 1));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& (GET_MODE (x) == VOIDmode
|
||
|| GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
|
||
{
|
||
if (CONST_DOUBLE_HIGH (x) == 0)
|
||
fprintf (file, "%u", CONST_DOUBLE_LOW (x));
|
||
else if (CONST_DOUBLE_HIGH (x) == -1
|
||
&& CONST_DOUBLE_LOW (x) < 0)
|
||
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
|
||
else
|
||
output_operand_lossage ("long long constant not a valid immediate operand");
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE)
|
||
output_operand_lossage ("floating point constant not a valid immediate operand");
|
||
else { output_addr_const (file, x); }
|
||
}
|
||
|
||
/* This function outputs assembler code for VALUE to FILE, where VALUE is
|
||
a 64 bit (DImode) value. */
|
||
|
||
/* ??? If there is a 64 bit counterpart to .word that the assembler
|
||
understands, then using that would simply this code greatly. */
|
||
|
||
void
|
||
output_double_int (file, value)
|
||
FILE *file;
|
||
rtx value;
|
||
{
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
if (INTVAL (value) < 0)
|
||
ASM_OUTPUT_INT (file, constm1_rtx);
|
||
else
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
}
|
||
else if (GET_CODE (value) == CONST_DOUBLE)
|
||
{
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_HIGH (value)));
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_LOW (value)));
|
||
}
|
||
else if (GET_CODE (value) == SYMBOL_REF
|
||
|| GET_CODE (value) == CONST
|
||
|| GET_CODE (value) == PLUS)
|
||
{
|
||
/* Addresses are only 32 bits. */
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
#ifndef CHAR_TYPE_SIZE
|
||
#define CHAR_TYPE_SIZE BITS_PER_UNIT
|
||
#endif
|
||
|
||
#ifndef SHORT_TYPE_SIZE
|
||
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
|
||
#endif
|
||
|
||
#ifndef INT_TYPE_SIZE
|
||
#define INT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_TYPE_SIZE
|
||
#define LONG_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_LONG_TYPE_SIZE
|
||
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef FLOAT_TYPE_SIZE
|
||
#define FLOAT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef DOUBLE_TYPE_SIZE
|
||
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef LONG_DOUBLE_TYPE_SIZE
|
||
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
unsigned long
|
||
sparc_type_code (type)
|
||
register tree type;
|
||
{
|
||
register unsigned long qualifiers = 0;
|
||
register unsigned shift = 6;
|
||
|
||
for (;;)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case ERROR_MARK:
|
||
return qualifiers;
|
||
|
||
case ARRAY_TYPE:
|
||
qualifiers |= (3 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
qualifiers |= (2 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
qualifiers |= (1 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
return (qualifiers | 8);
|
||
|
||
case UNION_TYPE:
|
||
return (qualifiers | 9);
|
||
|
||
case ENUMERAL_TYPE:
|
||
return (qualifiers | 10);
|
||
|
||
case VOID_TYPE:
|
||
return (qualifiers | 16);
|
||
|
||
case INTEGER_TYPE:
|
||
/* If this is a range type, consider it to be the underlying
|
||
type. */
|
||
if (TREE_TYPE (type) != 0)
|
||
{
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
}
|
||
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C.
|
||
Note that we check only for the names that contain spaces;
|
||
other names might occur by coincidence in other languages. */
|
||
if (TYPE_NAME (type) != 0
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (type)) != 0
|
||
&& TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
|
||
{
|
||
char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
|
||
|
||
if (!strcmp (name, "unsigned char"))
|
||
return (qualifiers | 12);
|
||
if (!strcmp (name, "signed char"))
|
||
return (qualifiers | 2);
|
||
if (!strcmp (name, "unsigned int"))
|
||
return (qualifiers | 14);
|
||
if (!strcmp (name, "short int"))
|
||
return (qualifiers | 3);
|
||
if (!strcmp (name, "short unsigned int"))
|
||
return (qualifiers | 13);
|
||
if (!strcmp (name, "long int"))
|
||
return (qualifiers | 5);
|
||
if (!strcmp (name, "long unsigned int"))
|
||
return (qualifiers | 15);
|
||
if (!strcmp (name, "long long int"))
|
||
return (qualifiers | 5); /* Who knows? */
|
||
if (!strcmp (name, "long long unsigned int"))
|
||
return (qualifiers | 15); /* Who knows? */
|
||
}
|
||
|
||
/* Most integer types will be sorted out above, however, for the
|
||
sake of special `array index' integer types, the following code
|
||
is also provided. */
|
||
|
||
if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
|
||
|
||
if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
|
||
|
||
if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
|
||
|
||
if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
|
||
|
||
if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
|
||
|
||
abort ();
|
||
|
||
case REAL_TYPE:
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C. */
|
||
if (TYPE_NAME (type) != 0
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (type)) != 0
|
||
&& TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
|
||
{
|
||
char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
|
||
|
||
if (!strcmp (name, "long double"))
|
||
return (qualifiers | 7); /* Who knows? */
|
||
}
|
||
|
||
if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
|
||
return (qualifiers | 7);
|
||
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
|
||
return (qualifiers | 6);
|
||
if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
|
||
return (qualifiers | 7); /* Who knows? */
|
||
abort ();
|
||
|
||
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
|
||
/* ??? We need to distinguish between double and float complex types,
|
||
but I don't know how yet because I can't reach this code from
|
||
existing front-ends. */
|
||
return (qualifiers | 7); /* Who knows? */
|
||
|
||
case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */
|
||
case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */
|
||
case FILE_TYPE: /* GNU Pascal FILE type. */
|
||
case STRING_TYPE: /* GNU Fortran STRING type. */
|
||
case SET_TYPE: /* GNU Pascal SET type. */
|
||
case LANG_TYPE: /* ? */
|
||
return qualifiers;
|
||
|
||
default:
|
||
abort (); /* Not a type! */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Subroutines to support a flat (single) register window calling
|
||
convention. */
|
||
|
||
/* Single-register window sparc stack frames look like:
|
||
|
||
Before call After call
|
||
+-----------------------+ +-----------------------+
|
||
high | | | |
|
||
mem. | | | |
|
||
| caller's temps. | | caller's temps. |
|
||
| | | |
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
| arguments on stack. | | arguments on stack. |
|
||
| |FP+92->| |
|
||
+-----------------------+ +-----------------------+
|
||
| 6 words to save | | 6 words to save |
|
||
| arguments passed | | arguments passed |
|
||
| in registers, even | | in registers, even |
|
||
SP+68->| if not passed. |FP+68->| if not passed. |
|
||
+-----------------------+ +-----------------------+
|
||
| 1 word struct addr |FP+64->| 1 word struct addr |
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
| 16 word reg save area | | 16 word reg save area |
|
||
SP->| | FP->| |
|
||
+-----------------------+ +-----------------------+
|
||
| 4 word area for |
|
||
FP-16->| fp/alu reg moves |
|
||
+-----------------------+
|
||
| |
|
||
| local variables |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| fp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| gp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| alloca allocations |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| arguments on stack |
|
||
SP+92->| |
|
||
+-----------------------+
|
||
| 6 words to save |
|
||
| arguments passed |
|
||
| in registers, even |
|
||
low SP+68->| if not passed. |
|
||
memory +-----------------------+
|
||
SP+64->| 1 word struct addr |
|
||
+-----------------------+
|
||
| |
|
||
I 16 word reg save area |
|
||
SP->| |
|
||
+-----------------------+ */
|
||
|
||
/* Structure to be filled in by sparc_frw_compute_frame_size with register
|
||
save masks, and offsets for the current function. */
|
||
|
||
struct sparc_frame_info
|
||
{
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # bytes of extra gunk. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long mask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
unsigned long gp_sp_offset; /* Offset from new sp to store gp regs. */
|
||
unsigned long fp_sp_offset; /* Offset from new sp to store fp regs. */
|
||
int initialized; /* Nonzero if frame size already calculated. */
|
||
};
|
||
|
||
/* Current frame information calculated by sparc_frw_compute_frame_size. */
|
||
struct sparc_frame_info current_frame_info;
|
||
|
||
/* Zero structure to initialize current_frame_info. */
|
||
struct sparc_frame_info zero_frame_info;
|
||
|
||
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
|
||
|
||
#define MUST_SAVE_REGISTER(regno) \
|
||
((regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|
||
|| (regno == 15 && regs_ever_live[15]))
|
||
|
||
/* Return the bytes needed to compute the frame pointer from the current
|
||
stack pointer. */
|
||
|
||
unsigned long
|
||
sparc_frw_compute_frame_size (size)
|
||
int size; /* # of var. bytes allocated. */
|
||
{
|
||
int regno;
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # extra bytes. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long mask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
|
||
/* This is the size of the 16 word reg save area, 1 word struct addr
|
||
area, and 4 word fp/alu register copy area. */
|
||
extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
|
||
var_size = size;
|
||
/* Also include the size needed for the 6 parameter registers. */
|
||
args_size = current_function_outgoing_args_size + 24;
|
||
total_size = var_size + args_size + extra_size;
|
||
gp_reg_size = 0;
|
||
fp_reg_size = 0;
|
||
mask = 0;
|
||
fmask = 0;
|
||
|
||
/* Calculate space needed for gp registers. */
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if (MUST_SAVE_REGISTER (regno))
|
||
{
|
||
if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
|
||
{
|
||
if (gp_reg_size % 8 != 0)
|
||
gp_reg_size += UNITS_PER_WORD;
|
||
gp_reg_size += 2 * UNITS_PER_WORD;
|
||
mask |= 3 << regno;
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
gp_reg_size += UNITS_PER_WORD;
|
||
mask |= 1 << regno;
|
||
}
|
||
}
|
||
}
|
||
/* Add extra word in case we have to align the space to a double word
|
||
boundary. */
|
||
if (gp_reg_size != 0)
|
||
gp_reg_size += UNITS_PER_WORD;
|
||
|
||
/* Calculate space needed for fp registers. */
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if (regs_ever_live[regno] && !call_used_regs[regno])
|
||
{
|
||
fp_reg_size += UNITS_PER_WORD;
|
||
fmask |= 1 << (regno - 32);
|
||
}
|
||
}
|
||
|
||
total_size += gp_reg_size + fp_reg_size;
|
||
|
||
if (total_size == extra_size)
|
||
total_size = extra_size = 0;
|
||
|
||
total_size = SPARC_STACK_ALIGN (total_size);
|
||
|
||
/* Save other computed information. */
|
||
current_frame_info.total_size = total_size;
|
||
current_frame_info.var_size = var_size;
|
||
current_frame_info.args_size = args_size;
|
||
current_frame_info.extra_size = extra_size;
|
||
current_frame_info.gp_reg_size = gp_reg_size;
|
||
current_frame_info.fp_reg_size = fp_reg_size;
|
||
current_frame_info.mask = mask;
|
||
current_frame_info.fmask = fmask;
|
||
current_frame_info.initialized = reload_completed;
|
||
|
||
if (mask)
|
||
{
|
||
unsigned long offset = args_size;
|
||
if (extra_size)
|
||
offset += FIRST_PARM_OFFSET(0);
|
||
current_frame_info.gp_sp_offset = offset;
|
||
}
|
||
|
||
if (fmask)
|
||
{
|
||
unsigned long offset = args_size + gp_reg_size;
|
||
if (extra_size)
|
||
offset += FIRST_PARM_OFFSET(0);
|
||
current_frame_info.fp_sp_offset = offset;
|
||
}
|
||
|
||
/* Ok, we're done. */
|
||
return total_size;
|
||
}
|
||
|
||
/* Common code to save/restore registers. */
|
||
|
||
void
|
||
sparc_frw_save_restore (file, word_op, doubleword_op)
|
||
FILE *file; /* Stream to write to. */
|
||
char *word_op; /* Operation to do for one word. */
|
||
char *doubleword_op; /* Operation to do for doubleword. */
|
||
{
|
||
int regno;
|
||
unsigned long mask = current_frame_info.mask;
|
||
unsigned long fmask = current_frame_info.fmask;
|
||
unsigned long gp_offset;
|
||
unsigned long fp_offset;
|
||
unsigned long max_offset;
|
||
char *base_reg;
|
||
|
||
if (mask == 0 && fmask == 0)
|
||
return;
|
||
|
||
base_reg = reg_names[STACK_POINTER_REGNUM];
|
||
gp_offset = current_frame_info.gp_sp_offset;
|
||
fp_offset = current_frame_info.fp_sp_offset;
|
||
max_offset = (gp_offset > fp_offset) ? gp_offset : fp_offset;
|
||
|
||
/* Deal with calling functions with a large structure. */
|
||
if (max_offset >= 4096)
|
||
{
|
||
char *temp = "%g2";
|
||
fprintf (file, "\tset %ld,%s\n", max_offset, temp);
|
||
fprintf (file, "\tadd %s,%s,%s\n", temp, base_reg, temp);
|
||
base_reg = temp;
|
||
gp_offset = max_offset - gp_offset;
|
||
fp_offset = max_offset - fp_offset;
|
||
}
|
||
|
||
/* Save registers starting from high to low. The debuggers prefer
|
||
at least the return register be stored at func+4, and also it
|
||
allows us not to need a nop in the epilog if at least one
|
||
register is reloaded in addition to return address. */
|
||
|
||
if (mask || frame_pointer_needed)
|
||
{
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if ((mask & (1L << regno)) != 0
|
||
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed))
|
||
{
|
||
if ((regno & 0x1) == 0 && ((mask & (1L << (regno+1))) != 0))
|
||
{
|
||
if (gp_offset % 8 != 0)
|
||
gp_offset += UNITS_PER_WORD;
|
||
|
||
if (word_op[0] == 's')
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
doubleword_op, reg_names[regno],
|
||
base_reg, gp_offset);
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
doubleword_op, base_reg, gp_offset,
|
||
reg_names[regno]);
|
||
|
||
gp_offset += 2 * UNITS_PER_WORD;
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
if (word_op[0] == 's')
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, gp_offset);
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
word_op, base_reg, gp_offset, reg_names[regno]);
|
||
|
||
gp_offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (fmask)
|
||
{
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if ((fmask & (1L << (regno - 32))) != 0)
|
||
{
|
||
if (word_op[0] == 's')
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, gp_offset);
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
word_op, base_reg, gp_offset, reg_names[regno]);
|
||
|
||
fp_offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set up the stack and frame (if desired) for the function. */
|
||
|
||
void
|
||
sparc_frw_output_function_prologue (file, size, ignored)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
extern char call_used_regs[];
|
||
int tsize;
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
|
||
/* ??? This should be %sp+actual_fsize for a leaf function. I think it
|
||
works only because it is never used. */
|
||
frame_base_name
|
||
= (!frame_pointer_needed) ? "%sp+80" : reg_names[FRAME_POINTER_REGNUM];
|
||
|
||
fprintf (file, "\t!#PROLOGUE# 0\n");
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
tsize = (! current_frame_info.initialized
|
||
? sparc_frw_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
if (tsize > 0)
|
||
{
|
||
if (tsize <= 4095)
|
||
fprintf (file,
|
||
"\tsub %s,%d,%s\t\t!# vars= %d, regs= %d/%d, args = %d, extra= %d\n",
|
||
sp_str, tsize, sp_str, current_frame_info.var_size,
|
||
current_frame_info.gp_reg_size / 4,
|
||
current_frame_info.fp_reg_size / 8,
|
||
current_function_outgoing_args_size,
|
||
current_frame_info.extra_size);
|
||
else
|
||
fprintf (file,
|
||
"\tset %d,%s\n\tsub\t%s,%s,%s\t\t!# vars= %d, regs= %d/%d, args = %d, sfo= %d\n",
|
||
tsize, "%g1", sp_str, "%g1",
|
||
sp_str, current_frame_info.var_size,
|
||
current_frame_info.gp_reg_size / 4,
|
||
current_frame_info.fp_reg_size / 8,
|
||
current_function_outgoing_args_size,
|
||
current_frame_info.extra_size);
|
||
}
|
||
|
||
sparc_frw_save_restore (file, "st", "std");
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
if (tsize <= 4095)
|
||
fprintf (file, "\tadd %s,%d,%s\t!# set up frame pointer\n", sp_str,
|
||
tsize, frame_base_name);
|
||
else
|
||
fprintf (file, "\tadd %s,%s,%s\t!# set up frame pointer\n", sp_str,
|
||
"%g1", frame_base_name);
|
||
}
|
||
}
|
||
|
||
/* Do any necessary cleanup after a function to restore stack, frame,
|
||
and regs. */
|
||
|
||
void
|
||
sparc_frw_output_function_epilogue (file, size, ignored1, ignored2)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
extern FILE *asm_out_data_file, *asm_out_file;
|
||
extern char call_used_regs[];
|
||
extern int frame_pointer_needed;
|
||
int tsize;
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
char *t1_str = "%g1";
|
||
rtx epilogue_delay = current_function_epilogue_delay_list;
|
||
int noepilogue = FALSE;
|
||
|
||
/* The epilogue does not depend on any registers, but the stack
|
||
registers, so we assume that if we have 1 pending nop, it can be
|
||
ignored, and 2 it must be filled (2 nops occur for integer
|
||
multiply and divide). */
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
tsize = (!current_frame_info.initialized
|
||
? sparc_frw_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
if (tsize == 0 && epilogue_delay == 0)
|
||
{
|
||
rtx insn = get_last_insn ();
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write any code
|
||
because a jump (aka return) was put there. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
noepilogue = TRUE;
|
||
}
|
||
|
||
if (!noepilogue)
|
||
{
|
||
/* In the reload sequence, we don't need to fill the load delay
|
||
slots for most of the loads, also see if we can fill the final
|
||
delay slot if not otherwise filled by the reload sequence. */
|
||
|
||
if (tsize > 4095)
|
||
fprintf (file, "\tset %d,%s\n", tsize, t1_str);
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
if (tsize > 4095)
|
||
fprintf (file,"\tsub %s,%s,%s\t\t!# sp not trusted here\n",
|
||
fp_str, t1_str, sp_str);
|
||
else
|
||
fprintf (file,"\tsub %s,%d,%s\t\t!# sp not trusted here\n",
|
||
fp_str, tsize, sp_str);
|
||
}
|
||
|
||
sparc_frw_save_restore (file, "ld", "ldd");
|
||
|
||
if (current_function_returns_struct)
|
||
fprintf (file, "\tjmp %%o7+12\n");
|
||
else
|
||
fprintf (file, "\tretl\n");
|
||
|
||
/* If the only register saved is the return address, we need a
|
||
nop, unless we have an instruction to put into it. Otherwise
|
||
we don't since reloading multiple registers doesn't reference
|
||
the register being loaded. */
|
||
|
||
if (epilogue_delay)
|
||
{
|
||
if (tsize)
|
||
abort ();
|
||
final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
|
||
}
|
||
|
||
else if (tsize > 4095)
|
||
fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str);
|
||
|
||
else if (tsize > 0)
|
||
fprintf (file, "\tadd %s,%d,%s\n", sp_str, tsize, sp_str);
|
||
|
||
else
|
||
fprintf (file, "\tnop\n");
|
||
}
|
||
|
||
/* Reset state info for each function. */
|
||
current_frame_info = zero_frame_info;
|
||
}
|
||
|
||
/* Define the number of delay slots needed for the function epilogue.
|
||
|
||
On the sparc, we need a slot if either no stack has been allocated,
|
||
or the only register saved is the return register. */
|
||
|
||
int
|
||
sparc_frw_epilogue_delay_slots ()
|
||
{
|
||
if (!current_frame_info.initialized)
|
||
(void) sparc_frw_compute_frame_size (get_frame_size ());
|
||
|
||
if (current_frame_info.total_size == 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true is TRIAL is a valid insn for the epilogue delay slot.
|
||
Any single length instruction which doesn't reference the stack or frame
|
||
pointer is OK. */
|
||
|
||
int
|
||
sparc_frw_eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot;
|
||
{
|
||
if (get_attr_length (trial) == 1
|
||
&& ! reg_mentioned_p (stack_pointer_rtx, PATTERN (trial))
|
||
&& ! reg_mentioned_p (frame_pointer_rtx, PATTERN (trial)))
|
||
return 1;
|
||
return 0;
|
||
}
|