bc9e02aec7
(TARGET_SWITCHES): Add -mf930 and -mf934 options. -msparclite no longer does -mno-fpu. From-SVN: r5510
1852 lines
69 KiB
C++
1852 lines
69 KiB
C++
/* Definitions of target machine for GNU compiler, for Sun SPARC.
|
||
Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Note that some other tm.h files include this one and then override
|
||
many of the definitions that relate to assembler syntax. */
|
||
|
||
#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
|
||
%{a:/usr/lib/bb_link.o}"
|
||
|
||
/* Provide required defaults for linker -e and -d switches. */
|
||
|
||
#define LINK_SPEC \
|
||
"%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
|
||
|
||
/* Special flags to the Sun-4 assembler when using pipe for input. */
|
||
|
||
#define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
|
||
|
||
/* Define macros to distinguish architectures. */
|
||
#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mf930:-D__sparclite__} \
|
||
%{mf934:-D__sparclite__} %{mv8:-D__sparc_v8__}"
|
||
|
||
/* Prevent error on `-sun4' and `-target sun4' options. */
|
||
/* This used to translate -dalign to -malign, but that is no good
|
||
because it can't turn off the usual meaning of making debugging dumps. */
|
||
|
||
#define CC1_SPEC "%{sun4:} %{target:}"
|
||
|
||
#define PTRDIFF_TYPE "int"
|
||
/* In 2.4 it should work to delete this.
|
||
#define SIZE_TYPE "int" */
|
||
#define WCHAR_TYPE "short unsigned int"
|
||
#define WCHAR_TYPE_SIZE 16
|
||
|
||
/* Omit frame pointer at high optimization levels. */
|
||
|
||
#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
|
||
{ \
|
||
if (OPTIMIZE >= 2) \
|
||
{ \
|
||
flag_omit_frame_pointer = 1; \
|
||
} \
|
||
}
|
||
|
||
/* To make profiling work with -f{pic,PIC}, we need to emit the profiling
|
||
code into the rtl. Also, if we are profiling, we cannot eliminate
|
||
the frame pointer (because the return address will get smashed). */
|
||
|
||
#define OVERRIDE_OPTIONS \
|
||
{ \
|
||
if (profile_flag || profile_block_flag) \
|
||
flag_omit_frame_pointer = 0, flag_pic = 0; \
|
||
SUBTARGET_OVERRIDE_OPTIONS \
|
||
}
|
||
|
||
/* This is meant to be redefined in the host dependent files */
|
||
#define SUBTARGET_OVERRIDE_OPTIONS
|
||
|
||
/* These compiler options take an argument. We ignore -target for now. */
|
||
|
||
#define WORD_SWITCH_TAKES_ARG(STR) \
|
||
(DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
|
||
|| !strcmp (STR, "target") || !strcmp (STR, "assert"))
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
/* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
|
||
new versions, which have an incompatible va-sparc.h file. This matters
|
||
because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
|
||
wrong varargs file when it is compiled with a different version of gcc. */
|
||
|
||
#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fprintf (stderr, " (sparc)");
|
||
|
||
/* Generate DBX debugging information. */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Nonzero if we should generate code to use the fpu. */
|
||
#define TARGET_FPU (target_flags & 1)
|
||
|
||
/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
|
||
use fast return insns, but lose some generality. */
|
||
#define TARGET_EPILOGUE (target_flags & 2)
|
||
|
||
/* Nonzero if we should assume that double pointers might be unaligned.
|
||
This can happen when linking gcc compiled code with other compilers,
|
||
because the ABI only guarantees 4 byte alignment. */
|
||
#define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
|
||
|
||
/* Nonzero means that we should generate code for a v8 sparc. */
|
||
#define TARGET_V8 (target_flags & 64)
|
||
|
||
/* Nonzero means that we should generate code for a sparclite.
|
||
This enables the sparclite specific instructions, but does not affect
|
||
whether FPU instructions are emitted. */
|
||
#define TARGET_SPARCLITE (target_flags & 128)
|
||
|
||
/* Nonzero means that we should generate code using a flat register window
|
||
model, i.e. no save/restore instructions are generated, in the most
|
||
efficient manner. This code is not compatible with normal sparc code. */
|
||
/* This is not a user selectable option yet, because it requires changes
|
||
that are not yet switchable via command line arguments. */
|
||
#define TARGET_FRW (target_flags & 256)
|
||
|
||
/* Nonzero means that we should generate code using a flat register window
|
||
model, i.e. no save/restore instructions are generated, but which is
|
||
compatible with normal sparc code. This is the same as above, except
|
||
that the frame pointer is %l6 instead of %fp. This code is not as efficient
|
||
as TARGET_FRW, because it has one less allocatable register. */
|
||
/* This is not a user selectable option yet, because it requires changes
|
||
that are not yet switchable via command line arguments. */
|
||
#define TARGET_FRW_COMPAT (target_flags & 512)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
|
||
The Fujitsu MB86934 is the recent sparclite chip, with an fup.
|
||
We use -mf930 and -mf934 options to choose which.
|
||
??? These should perhaps be -mcpu= options. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ {"fpu", 1}, \
|
||
{"no-fpu", -1}, \
|
||
{"hard-float", 1}, \
|
||
{"soft-float", -1}, \
|
||
{"epilogue", 2}, \
|
||
{"no-epilogue", -2}, \
|
||
{"unaligned-doubles", 4}, \
|
||
{"no-unaligned-doubles", -4},\
|
||
{"v8", 64}, \
|
||
{"no-v8", -64}, \
|
||
{"sparclite", 128}, \
|
||
{"no-sparclite", -128}, \
|
||
/* {"frw", 256}, */ \
|
||
/* {"no-frw", -256}, */ \
|
||
/* {"frw-compat", 256+512}, */ \
|
||
/* {"no-frw-compat", -(256+512)}, */ \
|
||
{"f930", 128}, \
|
||
{"f930", -1}, \
|
||
{"f934", 128}, \
|
||
SUBTARGET_SWITCHES \
|
||
{ "", TARGET_DEFAULT}}
|
||
|
||
#define TARGET_DEFAULT 3
|
||
|
||
/* This is meant to be redefined in the host dependent files */
|
||
#define SUBTARGET_SWITCHES
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define for support of TFmode long double and REAL_ARITHMETIC.
|
||
Sparc ABI says that long double is 4 words. */
|
||
#define LONG_DOUBLE_TYPE_SIZE 128
|
||
|
||
/* Define for cross-compilation to a sparc target with no TFmode from a host
|
||
with a different float format (e.g. VAX). */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* This is true on the SPARC. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* Doubles are stored in memory with the high order word first. This
|
||
matters when cross-compiling. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
#define MAX_BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 64
|
||
|
||
/* ALIGN FRAMES on double word boundaries */
|
||
|
||
#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 64
|
||
|
||
/* The best alignment to use in cases where we have a choice. */
|
||
#define FASTEST_ALIGNMENT 64
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < FASTEST_ALIGNMENT) \
|
||
? FASTEST_ALIGNMENT : (ALIGN))
|
||
|
||
/* Make arrays of chars word-aligned for the same reasons. */
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
||
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Things that must be doubleword aligned cannot go in the text section,
|
||
because the linker fails to align the text section enough!
|
||
Put them in the data section. */
|
||
#define MAX_TEXT_ALIGN 32
|
||
|
||
#define SELECT_SECTION(T,RELOC) \
|
||
{ \
|
||
if (TREE_CODE (T) == VAR_DECL) \
|
||
{ \
|
||
if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
|
||
&& DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
|
||
&& ! (flag_pic && (RELOC))) \
|
||
text_section (); \
|
||
else \
|
||
data_section (); \
|
||
} \
|
||
else if (TREE_CODE (T) == CONSTRUCTOR) \
|
||
{ \
|
||
if (flag_pic != 0 && (RELOC) != 0) \
|
||
data_section (); \
|
||
} \
|
||
else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
|
||
{ \
|
||
if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
|
||
|| TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
|
||
data_section (); \
|
||
else \
|
||
text_section (); \
|
||
} \
|
||
}
|
||
|
||
/* Use text section for a constant
|
||
unless we need more alignment than that offers. */
|
||
#define SELECT_RTX_SECTION(MODE, X) \
|
||
{ \
|
||
if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
|
||
&& ! (flag_pic && symbolic_operand (X))) \
|
||
text_section (); \
|
||
else \
|
||
data_section (); \
|
||
}
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
SPARC has 32 integer registers and 32 floating point registers. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 64
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
g0 is used for the condition code and not to represent %g0, which is
|
||
hardwired to 0, so reg 0 is *not* fixed.
|
||
g1 through g4 are free to use as temporaries.
|
||
g5 through g7 are reserved for the operating system. */
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 1, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 1, 1, \
|
||
\
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 1, 1, \
|
||
\
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1}
|
||
|
||
/* If !TARGET_FPU, then make the fp registers fixed so that they won't
|
||
be allocated. */
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
do \
|
||
{ \
|
||
if (! TARGET_FPU) \
|
||
{ \
|
||
int regno; \
|
||
for (regno = 32; regno < 64; regno++) \
|
||
fixed_regs[regno] = 1; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On SPARC, ordinary registers hold 32 bits worth;
|
||
this means both integer and floating point registers.
|
||
|
||
We use vectors to keep this information about registers. */
|
||
|
||
/* How many hard registers it takes to make a register of this mode. */
|
||
extern int hard_regno_nregs[];
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if register/mode pair is acceptable on sparc. */
|
||
extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On SPARC, the cpu registers can hold any mode but the float registers
|
||
can only hold SFmode or DFmode. See sparc.c for how we
|
||
initialize this. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* SPARC pc isn't overloaded on a register that the compiler knows about. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 14
|
||
|
||
/* Actual top-of-stack address is 92 greater than the contents
|
||
of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
|
||
for the ins and local registers, 4 byte for structure return address, and
|
||
24 bytes for the 6 register parameters. */
|
||
#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 30
|
||
|
||
#if 0
|
||
/* Register that is used for the return address. */
|
||
#define RETURN_ADDR_REGNUM 15
|
||
#endif
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c.
|
||
|
||
Used in flow.c, global.c, and reload1.c. */
|
||
extern int leaf_function;
|
||
|
||
#define FRAME_POINTER_REQUIRED \
|
||
(! (leaf_function_p () && only_leaf_regs_used ()))
|
||
|
||
/* C statement to store the difference between the frame pointer
|
||
and the stack pointer values immediately after the function prologue.
|
||
|
||
Note, we always pretend that this is a leaf function because if
|
||
it's not, there's no point in trying to eliminate the
|
||
frame pointer. If it is a leaf function, we guessed right! */
|
||
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
|
||
((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
|
||
: compute_frame_size (get_frame_size (), 1)))
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 30
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
/* ??? */
|
||
#define STATIC_CHAIN_REGNUM 1
|
||
|
||
/* Register which holds offset table for position-independent
|
||
data references. */
|
||
|
||
#define PIC_OFFSET_TABLE_REGNUM 23
|
||
|
||
#define INITIALIZE_PIC initialize_pic ()
|
||
#define FINALIZE_PIC finalize_pic ()
|
||
|
||
/* Sparc ABI says that quad-precision floats and all structures are returned
|
||
in memory. */
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
(TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
|
||
|
||
/* Functions which return large structures get the address
|
||
to place the wanted value at offset 64 from the frame.
|
||
Must reserve 64 bytes for the in and local registers. */
|
||
/* Used only in other #defines in this file. */
|
||
#define STRUCT_VALUE_OFFSET 64
|
||
|
||
#define STRUCT_VALUE \
|
||
gen_rtx (MEM, Pmode, \
|
||
gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
|
||
gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
|
||
#define STRUCT_VALUE_INCOMING \
|
||
gen_rtx (MEM, Pmode, \
|
||
gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
|
||
gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The SPARC has two kinds of registers, general and floating point. */
|
||
|
||
enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#if 0 && defined (__GNUC__)
|
||
#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
|
||
#else
|
||
#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
|
||
#endif
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
|
||
|
||
/* This is the order in which to allocate registers
|
||
normally.
|
||
|
||
We put %f0/%f1 last among the float registers, so as to make it more
|
||
likely that a pseudo-register which dies in the float return register
|
||
will get allocated to the float return register, thus saving a move
|
||
instruction at the end of the function. */
|
||
#define REG_ALLOC_ORDER \
|
||
{ 8, 9, 10, 11, 12, 13, 2, 3, \
|
||
15, 16, 17, 18, 19, 20, 21, 22, \
|
||
23, 24, 25, 26, 27, 28, 29, 31, \
|
||
34, 35, 36, 37, 38, 39, \
|
||
40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52, 53, 54, 55, \
|
||
56, 57, 58, 59, 60, 61, 62, 63, \
|
||
32, 33, \
|
||
1, 4, 5, 6, 7, 0, 14, 30}
|
||
|
||
/* This is the order in which to allocate registers for
|
||
leaf functions. If all registers can fit in the "i" registers,
|
||
then we have the possibility of having a leaf function. */
|
||
#define REG_LEAF_ALLOC_ORDER \
|
||
{ 2, 3, 24, 25, 26, 27, 28, 29, \
|
||
15, 8, 9, 10, 11, 12, 13, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, \
|
||
34, 35, 36, 37, 38, 39, \
|
||
40, 41, 42, 43, 44, 45, 46, 47, \
|
||
48, 49, 50, 51, 52, 53, 54, 55, \
|
||
56, 57, 58, 59, 60, 61, 62, 63, \
|
||
32, 33, \
|
||
1, 4, 5, 6, 7, 0, 14, 30, 31}
|
||
|
||
#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
|
||
|
||
#define LEAF_REGISTERS \
|
||
{ 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 1, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 1, 1, 0, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1}
|
||
|
||
extern char leaf_reg_remap[];
|
||
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
|
||
extern char leaf_reg_backmap[];
|
||
#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
For SPARC, `I' is used for the range of constants an insn
|
||
can actually contain.
|
||
`J' is used for the range which is just zero (since that is R0).
|
||
`K' is used for constants which can be loaded with a single sethi insn. */
|
||
|
||
#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
|
||
: (C) == 'J' ? (VALUE) == 0 \
|
||
: (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? fp_zero_operand (VALUE) \
|
||
: (C) == 'H' ? arith_double_operand (VALUE, DImode) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
/* We can't load constants into FP registers. We can't load any FP constant
|
||
if an 'E' constraint fails to match it. */
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
(CONSTANT_P (X) \
|
||
&& ((CLASS) == FP_REGS \
|
||
|| (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
||
&& (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
|
||
|| HOST_BITS_PER_INT != BITS_PER_WORD))) \
|
||
? NO_REGS : (CLASS))
|
||
|
||
/* Return the register class of a scratch register needed to load IN into
|
||
a register of class CLASS in MODE.
|
||
|
||
On the SPARC, when PIC, we need a temporary when loading some addresses
|
||
into a register.
|
||
|
||
Also, we need a temporary when loading/storing a HImode/QImode value
|
||
between memory and the FPU registers. This can happen when combine puts
|
||
a paradoxical subreg in a float/fix conversion insn. */
|
||
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
||
(((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
|
||
&& (GET_CODE (IN) == MEM \
|
||
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
||
&& true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
|
||
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
|
||
((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
|
||
&& (GET_CODE (IN) == MEM \
|
||
|| ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
|
||
&& true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
|
||
|
||
/* On SPARC it is not possible to directly move data between
|
||
GENERAL_REGS and FP_REGS. */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
(((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
|
||
|| ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
|
||
|
||
/* Return the stack location to use for secondary memory needed reloads. */
|
||
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
|
||
gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
|
||
GEN_INT (STARTING_FRAME_OFFSET)))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On SPARC, this is the size of MODE in words. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define the number of register that can hold parameters.
|
||
These two macros are used only in other macro definitions below. */
|
||
#define NPARM_REGS 6
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
/* This is 16 to allow space for one TFmode floating point value. */
|
||
#define STARTING_FRAME_OFFSET (-16)
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On SPARC, don't define this because there are no push insns. */
|
||
/* #define PUSH_ROUNDING(BYTES) */
|
||
|
||
/* Offset of first parameter from the argument pointer register value.
|
||
This is 64 for the ins and locals, plus 4 for the struct-return reg
|
||
even if this function isn't going to use it. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
|
||
|
||
/* When a parameter is passed in a register, stack space is still
|
||
allocated for it. */
|
||
#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
|
||
|
||
/* Keep the stack pointer constant throughout the function.
|
||
This is both an optimization and a necessity: longjmp
|
||
doesn't behave itself when the stack pointer moves within
|
||
the function! */
|
||
#define ACCUMULATE_OUTGOING_ARGS
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
|
||
|
||
/* Some subroutine macros specific to this machine.
|
||
When !TARGET_FPU, put float return values in the general registers,
|
||
since we don't have any fp registers. */
|
||
#define BASE_RETURN_VALUE_REG(MODE) \
|
||
(((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
|
||
#define BASE_OUTGOING_VALUE_REG(MODE) \
|
||
(((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
|
||
: (TARGET_FRW ? 8 : 24))
|
||
#define BASE_PASSING_ARG_REG(MODE) (8)
|
||
#define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
|
||
|
||
/* Define this macro if the target machine has "register windows". This
|
||
C expression returns the register number as seen by the called function
|
||
corresponding to register number OUT as seen by the calling function.
|
||
Return OUT if register number OUT is not an outbound register. */
|
||
|
||
#define INCOMING_REGNO(OUT) \
|
||
((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
|
||
|
||
/* Define this macro if the target machine has "register windows". This
|
||
C expression returns the register number as seen by the calling function
|
||
corresponding to register number IN as seen by the called function.
|
||
Return IN if register number IN is not an inbound register. */
|
||
|
||
#define OUTGOING_REGNO(IN) \
|
||
((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On SPARC the value is found in the first "output" register. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
|
||
|
||
/* But the called function leaves it in the first "input" register. */
|
||
|
||
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
|
||
|
||
/* 1 if N is a possible register number for a function value
|
||
as seen by the caller.
|
||
On SPARC, the first "output" reg is used for integer values,
|
||
and the first floating point register is used for floating point values. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On SPARC, these are the "output" registers. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On SPARC, this is a single integer, which is a number of words
|
||
of arguments scanned so far (including the invisible argument,
|
||
if any, which holds the structure-value-address).
|
||
Thus 7 or more means all following args should go on the stack. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
#define ROUND_ADVANCE(SIZE) \
|
||
((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On SPARC, the offset always starts at 0: the first parm reg is always
|
||
the same reg. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
|
||
: ROUND_ADVANCE (int_size_in_bytes (TYPE))))
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On SPARC the first six args are normally in registers
|
||
and the rest are pushed. Any arg that starts within the first 6 words
|
||
is at least partially passed in a register unless its data type forbids. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) < NPARM_REGS \
|
||
&& ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
|
||
&& ((TYPE)==0 || (MODE) != BLKmode \
|
||
|| (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
|
||
? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
|
||
: 0)
|
||
|
||
/* Define where a function finds its arguments.
|
||
This is different from FUNCTION_ARG because of register windows. */
|
||
|
||
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) < NPARM_REGS \
|
||
&& ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
|
||
&& ((TYPE)==0 || (MODE) != BLKmode \
|
||
|| (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
|
||
? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
|
||
: 0)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero.
|
||
Any arg that starts in the first 6 regs but won't entirely fit in them
|
||
needs partial registers on the Sparc. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) < NPARM_REGS \
|
||
&& ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
|
||
&& ((TYPE)==0 || (MODE) != BLKmode \
|
||
|| (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
|
||
&& ((CUM) + ((MODE) == BLKmode \
|
||
? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
|
||
: ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
|
||
? (NPARM_REGS - (CUM)) \
|
||
: 0)
|
||
|
||
/* The SPARC ABI stipulates passing struct arguments (of any size) and
|
||
quad-precision floats by invisible reference. */
|
||
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
|
||
((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
|
||
|| TREE_CODE (TYPE) == UNION_TYPE)) \
|
||
|| (MODE == TFmode))
|
||
|
||
/* Define the information needed to generate branch and scc insns. This is
|
||
stored from the compare operation. Note that we can't use "rtx" here
|
||
since it hasn't been defined! */
|
||
|
||
extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
|
||
|
||
/* Define the function that build the compare insn for scc and bcc. */
|
||
|
||
extern struct rtx_def *gen_compare_reg ();
|
||
|
||
/* Generate the special assembly code needed to tell the assembler whatever
|
||
it might need to know about the return value of a function.
|
||
|
||
For Sparc assemblers, we need to output a .proc pseudo-op which conveys
|
||
information to the assembler relating to peephole optimization (done in
|
||
the assembler). */
|
||
|
||
#define ASM_DECLARE_RESULT(FILE, RESULT) \
|
||
fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
|
||
|
||
/* Output the label for a function definition. */
|
||
|
||
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
|
||
do { \
|
||
ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
|
||
ASM_OUTPUT_LABEL (FILE, NAME); \
|
||
} while (0)
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
|
||
of memory. If any fpu reg is used in the function, we allocate
|
||
such a block here, at the bottom of the frame, just in case it's needed.
|
||
|
||
If this function is a leaf procedure, then we may choose not
|
||
to do a "save" insn. The decision about whether or not
|
||
to do this is made in regclass.c. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
(TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
|
||
: output_function_prologue (FILE, SIZE, leaf_function))
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
do { \
|
||
fputs ("\tsethi %hi(", (FILE)); \
|
||
ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
|
||
fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
|
||
ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
|
||
fputs ("),%o0,%o0\n", (FILE)); \
|
||
} while (0)
|
||
|
||
/* Output assembler code to FILE to initialize this source file's
|
||
basic block profiling info, if that has not already been done. */
|
||
/* FIXME -- this does not parameterize how it generates labels (like the
|
||
above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
|
||
|
||
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
|
||
(LABELNO), (LABELNO))
|
||
|
||
/* Output assembler code to FILE to increment the entry-count for
|
||
the BLOCKNO'th basic block in this source file. */
|
||
|
||
#define BLOCK_PROFILER(FILE, BLOCKNO) \
|
||
{ \
|
||
int blockn = (BLOCKNO); \
|
||
fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
|
||
\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
|
||
4 * blockn, 4 * blockn, 4 * blockn); \
|
||
}
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
extern int current_function_calls_alloca;
|
||
extern int current_function_outgoing_args_size;
|
||
|
||
#define EXIT_IGNORE_STACK \
|
||
(get_frame_size () != 0 \
|
||
|| current_function_calls_alloca || current_function_outgoing_args_size)
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer!
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
/* This declaration is needed due to traditional/ANSI
|
||
incompatibilities which cannot be #ifdefed away
|
||
because they occur inside of macros. Sigh. */
|
||
extern union tree_node *current_function_decl;
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
(TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
|
||
: output_function_epilogue (FILE, SIZE, leaf_function))
|
||
|
||
#define DELAY_SLOTS_FOR_EPILOGUE \
|
||
(TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
|
||
#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
|
||
(TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
|
||
: eligible_for_epilogue_delay (trial, slots_filled))
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the sparc, the trampoline contains five instructions:
|
||
sethi #TOP_OF_FUNCTION,%g2
|
||
or #BOTTOM_OF_FUNCTION,%g2,%g2
|
||
sethi #TOP_OF_STATIC,%g1
|
||
jmp g2
|
||
or #BOTTOM_OF_STATIC,%g1,%g1 */
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
|
||
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
|
||
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
|
||
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
|
||
ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE 20
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function.
|
||
|
||
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
|
||
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
|
||
(to store insns). This is a bit excessive. Perhaps a different
|
||
mechanism would be better here. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
|
||
size_int (10), 0, 1); \
|
||
rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
|
||
size_int (10), 0, 1); \
|
||
rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
|
||
rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
|
||
rtx g1_sethi = gen_rtx (HIGH, SImode, \
|
||
gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
|
||
rtx g2_sethi = gen_rtx (HIGH, SImode, \
|
||
gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
|
||
rtx g1_ori = gen_rtx (HIGH, SImode, \
|
||
gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
|
||
rtx g2_ori = gen_rtx (HIGH, SImode, \
|
||
gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
|
||
rtx tem = gen_reg_rtx (SImode); \
|
||
emit_move_insn (tem, g2_sethi); \
|
||
emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
|
||
emit_move_insn (tem, g2_ori); \
|
||
emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
|
||
emit_move_insn (tem, g1_sethi); \
|
||
emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
|
||
emit_move_insn (tem, g1_ori); \
|
||
emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
|
||
}
|
||
|
||
/* Generate necessary RTL for __builtin_saveregs().
|
||
ARGLIST is the argument list; see expr.c. */
|
||
extern struct rtx_def *sparc_builtin_saveregs ();
|
||
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
|
||
|
||
/* Generate RTL to flush the register windows so as to make arbitrary frames
|
||
available. */
|
||
#define SETUP_FRAME_ADDRESSES() \
|
||
emit_insn (gen_flush_register_windows ())
|
||
|
||
/* Given an rtx for the address of a frame,
|
||
return an rtx for the address of the word in the frame
|
||
that holds the dynamic chain--the previous frame's address. */
|
||
#define DYNAMIC_CHAIN_ADDRESS(frame) \
|
||
gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
|
||
|
||
/* The return address isn't on the stack, it is in a register, so we can't
|
||
access it from the current frame pointer. We can access it from the
|
||
previous frame pointer though by reading a value from the register window
|
||
save area. */
|
||
#define RETURN_ADDR_IN_PREVIOUS_FRAME
|
||
|
||
/* The current return address is in %i7. The return address of anything
|
||
farther back is in the register window save area at [%fp+60]. */
|
||
/* ??? This ignores the fact that the actual return address is +8 for normal
|
||
returns, and +12 for structure returns. */
|
||
#define RETURN_ADDR_RTX(count, frame) \
|
||
((count == -1) \
|
||
? gen_rtx (REG, Pmode, 31) \
|
||
: copy_to_reg (gen_rtx (MEM, Pmode, \
|
||
memory_address (Pmode, plus_constant (frame, 60)))))
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
|
||
#define REGNO_OK_FOR_FP_P(REGNO) \
|
||
(((REGNO) ^ 0x20) < 32 \
|
||
|| (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
|
||
These macros are specific to the SPARC, and may be used only
|
||
in code for printing assembler insns and in conditions for
|
||
define_optimization. */
|
||
|
||
/* 1 if X is an fp register. */
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address.
|
||
When PIC, we do not accept an address that would require a scratch reg
|
||
to load into a register. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|
||
|| (GET_CODE (X) == CONST \
|
||
&& ! (flag_pic && pic_address_needs_scratch (X))))
|
||
|
||
/* Define this, so that when PIC, reload won't try to reload invalid
|
||
addresses which require two reload registers. */
|
||
|
||
#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
Anything can be made to work except floating point constants. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
/* Optional extra constraints for this machine. Borrowed from romp.h.
|
||
|
||
For the SPARC, `Q' means that this is a memory operand but not a
|
||
symbolic memory operand. Note that an unassigned pseudo register
|
||
is such a memory operand. Needed because reload will generate
|
||
these things in insns and then not re-recognize the insns, causing
|
||
constrain_operands to fail.
|
||
|
||
`S' handles constraints for calls. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' \
|
||
? ((GET_CODE (OP) == MEM \
|
||
&& memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
|
||
&& ! symbolic_memory_operand (OP, VOIDmode)) \
|
||
|| (reload_in_progress && GET_CODE (OP) == REG \
|
||
&& REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
|
||
: (C) == 'T' \
|
||
? (mem_aligned_8 (OP)) \
|
||
: (C) == 'U' \
|
||
? (register_ok_for_ldd (OP)) \
|
||
: 0)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' \
|
||
? (GET_CODE (OP) == REG \
|
||
? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
|
||
&& reg_renumber[REGNO (OP)] < 0) \
|
||
: GET_CODE (OP) == MEM) \
|
||
: (C) == 'T' \
|
||
? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
|
||
: (C) == 'U' \
|
||
? (GET_CODE (OP) == REG \
|
||
&& (REGNO (OP) < FIRST_PSEUDO_REGISTER \
|
||
|| reg_renumber[REGNO (OP)] > 0) \
|
||
&& register_ok_for_ldd (OP)) : 0)
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
|
||
ordinarily. This changes a bit when generating PIC.
|
||
|
||
If you change this, execute "rm explow.o recog.o reload.o". */
|
||
|
||
#define RTX_OK_FOR_BASE_P(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == SUBREG \
|
||
&& GET_CODE (SUBREG_REG (X)) == REG \
|
||
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
||
|
||
#define RTX_OK_FOR_INDEX_P(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|
||
|| (GET_CODE (X) == SUBREG \
|
||
&& GET_CODE (SUBREG_REG (X)) == REG \
|
||
&& REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
|
||
|
||
#define RTX_OK_FOR_OFFSET_P(X) \
|
||
(GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ if (RTX_OK_FOR_BASE_P (X)) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
register rtx op0 = XEXP (X, 0); \
|
||
register rtx op1 = XEXP (X, 1); \
|
||
if (flag_pic && op0 == pic_offset_table_rtx) \
|
||
{ \
|
||
if (RTX_OK_FOR_BASE_P (op1)) \
|
||
goto ADDR; \
|
||
else if (flag_pic == 1 \
|
||
&& GET_CODE (op1) != REG \
|
||
&& GET_CODE (op1) != LO_SUM \
|
||
&& GET_CODE (op1) != MEM \
|
||
&& (GET_CODE (op1) != CONST_INT \
|
||
|| SMALL_INT (op1))) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (RTX_OK_FOR_BASE_P (op0)) \
|
||
{ \
|
||
if (RTX_OK_FOR_INDEX_P (op1) \
|
||
|| RTX_OK_FOR_OFFSET_P (op1)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (RTX_OK_FOR_BASE_P (op1)) \
|
||
{ \
|
||
if (RTX_OK_FOR_INDEX_P (op0) \
|
||
|| RTX_OK_FOR_OFFSET_P (op0)) \
|
||
goto ADDR; \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (X) == LO_SUM) \
|
||
{ \
|
||
register rtx op0 = XEXP (X, 0); \
|
||
register rtx op1 = XEXP (X, 1); \
|
||
if (RTX_OK_FOR_BASE_P (op0) \
|
||
&& CONSTANT_P (op1)) \
|
||
goto ADDR; \
|
||
} \
|
||
else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
|
||
goto ADDR; \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output. */
|
||
|
||
/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
|
||
extern struct rtx_def *legitimize_pic_address ();
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
{ rtx sparc_x = (X); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
|
||
(X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
|
||
force_operand (XEXP (X, 0), NULL_RTX)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
|
||
(X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
|
||
force_operand (XEXP (X, 1), NULL_RTX)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
|
||
(X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
|
||
XEXP (X, 1)); \
|
||
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
|
||
(X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
|
||
force_operand (XEXP (X, 1), NULL_RTX)); \
|
||
if (sparc_x != (X) && memory_address_p (MODE, X)) \
|
||
goto WIN; \
|
||
if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
|
||
else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
|
||
(X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
|
||
copy_to_mode_reg (Pmode, XEXP (X, 1))); \
|
||
else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
|
||
(X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
|
||
copy_to_mode_reg (Pmode, XEXP (X, 0))); \
|
||
else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == LABEL_REF) \
|
||
(X) = gen_rtx (LO_SUM, Pmode, \
|
||
copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
|
||
if (memory_address_p (MODE, X)) \
|
||
goto WIN; }
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the SPARC this is never true. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 8
|
||
|
||
#if 0 /* Sun 4 has matherr, so this is no good. */
|
||
/* This is the value of the error code EDOM for this machine,
|
||
used by the sqrt instruction. */
|
||
#define TARGET_EDOM 33
|
||
|
||
/* This is how to refer to the variable errno. */
|
||
#define GEN_ERRNO_RTX \
|
||
gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
|
||
#endif /* 0 */
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable.
|
||
For RISC chips, it means that access to memory by bytes is no
|
||
better than access by words when possible, so grab a whole word
|
||
and maybe make use of that. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
#define SHIFT_COUNT_TRUNCATED
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* Generate calls to memcpy, memcmp and memset. */
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
On the Sparc, we have a "no-overflow" mode which is used when an add or
|
||
subtract insn is used to set the condition code. Different branches are
|
||
used in this case for some operations.
|
||
|
||
We also have two modes to indicate that the relevant condition code is
|
||
in the floating-point condition code register. One for comparisons which
|
||
will generate an exception if the result is unordered (CCFPEmode) and
|
||
one for comparisons which will never trap (CCFPmode). This really should
|
||
be a separate register, but we don't want to go to 65 registers. */
|
||
#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
|
||
|
||
/* Define the names for the modes specified above. */
|
||
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
|
||
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. For floating-point,
|
||
CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
|
||
PLUS, MINUS, or NEG. CCmode should be used when no special processing is
|
||
needed. */
|
||
#define SELECT_CC_MODE(OP,X,Y) \
|
||
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
||
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
|
||
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
|
||
? CC_NOOVmode : CCmode))
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE SImode
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* alloca should avoid clobbering the old register save area. */
|
||
#define SETJMP_VIA_SAVE_AREA
|
||
|
||
/* Define subroutines to call to handle multiply and divide.
|
||
Use the subroutines that Sun's library provides.
|
||
The `*' prevents an underscore from being prepended by the compiler. */
|
||
|
||
#define DIVSI3_LIBCALL "*.div"
|
||
#define UDIVSI3_LIBCALL "*.udiv"
|
||
#define MODSI3_LIBCALL "*.rem"
|
||
#define UMODSI3_LIBCALL "*.urem"
|
||
/* .umul is a little faster than .mul. */
|
||
#define MULSI3_LIBCALL "*.umul"
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
|
||
return 0; \
|
||
case HIGH: \
|
||
return 2; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 4; \
|
||
case CONST_DOUBLE: \
|
||
if (GET_MODE (RTX) == DImode) \
|
||
if ((XINT (RTX, 3) == 0 \
|
||
&& (unsigned) XINT (RTX, 2) < 0x1000) \
|
||
|| (XINT (RTX, 3) == -1 \
|
||
&& XINT (RTX, 2) < 0 \
|
||
&& XINT (RTX, 2) >= -0x1000)) \
|
||
return 0; \
|
||
return 8;
|
||
|
||
/* SPARC offers addressing modes which are "as cheap as a register".
|
||
See sparc.c (or gcc.texinfo) for details. */
|
||
|
||
#define ADDRESS_COST(RTX) \
|
||
(GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
|
||
|
||
/* Compute extra cost of moving data between one register class
|
||
and another. */
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
|
||
(((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
|
||
|| (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE. The purpose for the cost of MULT is to encourage
|
||
`synth_mult' to find a synthetic multiply when reasonable.
|
||
|
||
If we need more than 12 insns to do a multiply, then go out-of-line,
|
||
since the call overhead will be < 10% of the cost of the multiply. */
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MULT: \
|
||
return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
|
||
case DIV: \
|
||
case UDIV: \
|
||
case MOD: \
|
||
case UMOD: \
|
||
return COSTS_N_INSNS (25); \
|
||
/* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
|
||
so that cse will favor the latter. */ \
|
||
case FLOAT: \
|
||
case FIX: \
|
||
return 19;
|
||
|
||
/* Conditional branches with empty delay slots have a length of two. */
|
||
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
|
||
if (GET_CODE (INSN) == CALL_INSN \
|
||
|| (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
|
||
LENGTH += 1;
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(file)
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
|
||
#define ASM_LONG ".word"
|
||
#define ASM_SHORT ".half"
|
||
#define ASM_BYTE_OP ".byte"
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
|
||
"%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
|
||
"%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
|
||
"%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
|
||
"%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
|
||
"%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
|
||
"%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
|
||
"%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
|
||
|
||
/* Define additional names for use in asm clobbers and asm declarations.
|
||
|
||
We define the fake Condition Code register as an alias for reg 0 (which
|
||
is our `condition code' register), so that condition codes can easily
|
||
be clobbered by an asm. No such register actually exists. Condition
|
||
codes are partly stored in the PSR and partly in the FSR. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
|
||
since the length can run past this up to a continuation point. */
|
||
#define DBX_CONTIN_LENGTH 1500
|
||
|
||
/* This is how to output a note to DBX telling it the line number
|
||
to which the following sequence of instructions corresponds.
|
||
|
||
This is needed for SunOS 4.0, and should not hurt for 3.2
|
||
versions either. */
|
||
#define ASM_OUTPUT_SOURCE_LINE(file, line) \
|
||
{ static int sym_lineno = 1; \
|
||
fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
|
||
line, sym_lineno, sym_lineno); \
|
||
sym_lineno += 1; }
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
fprintf (FILE, "_%s", NAME)
|
||
|
||
/* This is how to output a definition of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to output a reference to an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
/* FIXME: This should be used throughout gcc, and documented in the texinfo
|
||
files. There is no reason you should have to allocate a buffer and
|
||
`sprintf' to reference an internal label (as opposed to defining it). */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
{ \
|
||
long t[2]; \
|
||
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
|
||
fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
|
||
ASM_LONG, t[0], ASM_LONG, t[1]); \
|
||
}
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
{ \
|
||
long t; \
|
||
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
|
||
fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
|
||
} \
|
||
|
||
/* This is how to output an assembler line defining a `long double'
|
||
constant. */
|
||
|
||
#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
|
||
{ \
|
||
long t[4]; \
|
||
REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
|
||
fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
|
||
ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
|
||
}
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t%s\t", ASM_LONG), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line defining a DImode constant. */
|
||
#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
|
||
output_double_int (FILE, VALUE)
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t%s\t", ASM_SHORT), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
do { \
|
||
char label[30]; \
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
|
||
fprintf (FILE, "\t.word\t"); \
|
||
assemble_name (FILE, label); \
|
||
fprintf (FILE, "\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
(SPARC uses such vectors only when generating PIC.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
do { \
|
||
char label[30]; \
|
||
ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
|
||
fprintf (FILE, "\t.word\t"); \
|
||
assemble_name (FILE, label); \
|
||
fprintf (FILE, "-1b\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.skip %u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.global ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fputs ("\n\t.common ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\n\t.reserve ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
#define IDENT_ASM_OP ".ident"
|
||
|
||
/* Output #ident as a .ident. */
|
||
|
||
#define ASM_OUTPUT_IDENT(FILE, NAME) \
|
||
fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
||
((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ register rtx base, index = 0; \
|
||
int offset = 0; \
|
||
register rtx addr = ADDR; \
|
||
if (GET_CODE (addr) == REG) \
|
||
fputs (reg_names[REGNO (addr)], FILE); \
|
||
else if (GET_CODE (addr) == PLUS) \
|
||
{ \
|
||
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
|
||
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
|
||
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
|
||
else \
|
||
base = XEXP (addr, 0), index = XEXP (addr, 1); \
|
||
fputs (reg_names[REGNO (base)], FILE); \
|
||
if (index == 0) \
|
||
fprintf (FILE, "%+d", offset); \
|
||
else if (GET_CODE (index) == REG) \
|
||
fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
|
||
else if (GET_CODE (index) == SYMBOL_REF) \
|
||
fputc ('+', FILE), output_addr_const (FILE, index); \
|
||
else abort (); \
|
||
} \
|
||
else if (GET_CODE (addr) == MINUS \
|
||
&& GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
|
||
{ \
|
||
output_addr_const (FILE, XEXP (addr, 0)); \
|
||
fputs ("-(", FILE); \
|
||
output_addr_const (FILE, XEXP (addr, 1)); \
|
||
fputs ("-.)", FILE); \
|
||
} \
|
||
else if (GET_CODE (addr) == LO_SUM) \
|
||
{ \
|
||
output_operand (XEXP (addr, 0), 0); \
|
||
fputs ("+%lo(", FILE); \
|
||
output_address (XEXP (addr, 1)); \
|
||
fputc (')', FILE); \
|
||
} \
|
||
else if (flag_pic && GET_CODE (addr) == CONST \
|
||
&& GET_CODE (XEXP (addr, 0)) == MINUS \
|
||
&& GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
|
||
&& GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
|
||
&& XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
|
||
{ \
|
||
addr = XEXP (addr, 0); \
|
||
output_addr_const (FILE, XEXP (addr, 0)); \
|
||
/* Group the args of the second CONST in parenthesis. */ \
|
||
fputs ("-(", FILE); \
|
||
/* Skip past the second CONST--it does nothing for us. */\
|
||
output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
|
||
/* Close the parenthesis. */ \
|
||
fputc (')', FILE); \
|
||
} \
|
||
else \
|
||
{ \
|
||
output_addr_const (FILE, addr); \
|
||
} \
|
||
}
|
||
|
||
/* Declare functions defined in sparc.c and used in templates. */
|
||
|
||
extern char *singlemove_string ();
|
||
extern char *output_move_double ();
|
||
extern char *output_move_quad ();
|
||
extern char *output_fp_move_double ();
|
||
extern char *output_fp_move_quad ();
|
||
extern char *output_block_move ();
|
||
extern char *output_scc_insn ();
|
||
extern char *output_cbranch ();
|
||
extern char *output_return ();
|
||
|
||
/* Defined in flags.h, but insn-emit.c does not include flags.h. */
|
||
|
||
extern int flag_pic;
|