d14057222f
* combine.c (nonzero_bits, case PLUS): If pointers extend unsigned and this is the sum of a pointer and a constant, we know the result did not overflow. (num_sign_bit_copies, case PLUS): Likewise. * explow.c (convert_memory_address): Remove opposite SUBREG. * function.c (instantiate_new_reg): New function (from common code). (instantiate_virtual_regs_1): Call it. For PLUS, handle if (plus (subreg (virt-reg) (const_int)) if pointers sign- or zero-extend. * simplify-rtx.c (simplify_unary_operation, case ZERO_EXTEND): If pointers extend unsigned, use inside of SUBREG. (simplify_unary_operation, case SIGN_EXTEND): Likewise, if sign extend. From-SVN: r39489
1769 lines
49 KiB
C
1769 lines
49 KiB
C
/* Subroutines for manipulating rtx's in semantically interesting ways.
|
||
Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "toplev.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "flags.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "hard-reg-set.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
|
||
#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
|
||
#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
|
||
#endif
|
||
|
||
static rtx break_out_memory_refs PARAMS ((rtx));
|
||
static void emit_stack_probe PARAMS ((rtx));
|
||
|
||
|
||
/* Truncate and perhaps sign-extend C as appropriate for MODE. */
|
||
|
||
HOST_WIDE_INT
|
||
trunc_int_for_mode (c, mode)
|
||
HOST_WIDE_INT c;
|
||
enum machine_mode mode;
|
||
{
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
|
||
if (mode == BImode)
|
||
return c & 1 ? STORE_FLAG_VALUE : 0;
|
||
|
||
/* We clear out all bits that don't belong in MODE, unless they and our
|
||
sign bit are all one. So we get either a reasonable negative
|
||
value or a reasonable unsigned value. */
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT
|
||
&& ((c & ((HOST_WIDE_INT) (-1) << (width - 1)))
|
||
!= ((HOST_WIDE_INT) (-1) << (width - 1))))
|
||
c &= ((HOST_WIDE_INT) 1 << width) - 1;
|
||
|
||
/* If this would be an entire word for the target, but is not for
|
||
the host, then sign-extend on the host so that the number will look
|
||
the same way on the host that it would on the target.
|
||
|
||
For example, when building a 64 bit alpha hosted 32 bit sparc
|
||
targeted compiler, then we want the 32 bit unsigned value -1 to be
|
||
represented as a 64 bit value -1, and not as 0x00000000ffffffff.
|
||
The later confuses the sparc backend. */
|
||
|
||
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
|
||
&& BITS_PER_WORD == width
|
||
&& (c & ((HOST_WIDE_INT) 1 << (width - 1))))
|
||
c |= ((HOST_WIDE_INT) (-1) << width);
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Return an rtx for the sum of X and the integer C.
|
||
|
||
This function should be used via the `plus_constant' macro. */
|
||
|
||
rtx
|
||
plus_constant_wide (x, c)
|
||
register rtx x;
|
||
register HOST_WIDE_INT c;
|
||
{
|
||
register RTX_CODE code;
|
||
register enum machine_mode mode;
|
||
register rtx tem;
|
||
int all_constant = 0;
|
||
|
||
if (c == 0)
|
||
return x;
|
||
|
||
restart:
|
||
|
||
code = GET_CODE (x);
|
||
mode = GET_MODE (x);
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
return GEN_INT (INTVAL (x) + c);
|
||
|
||
case CONST_DOUBLE:
|
||
{
|
||
unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
|
||
HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
|
||
unsigned HOST_WIDE_INT l2 = c;
|
||
HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
|
||
unsigned HOST_WIDE_INT lv;
|
||
HOST_WIDE_INT hv;
|
||
|
||
add_double (l1, h1, l2, h2, &lv, &hv);
|
||
|
||
return immed_double_const (lv, hv, VOIDmode);
|
||
}
|
||
|
||
case MEM:
|
||
/* If this is a reference to the constant pool, try replacing it with
|
||
a reference to a new constant. If the resulting address isn't
|
||
valid, don't return it because we have no way to validize it. */
|
||
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
|
||
{
|
||
tem
|
||
= force_const_mem (GET_MODE (x),
|
||
plus_constant (get_pool_constant (XEXP (x, 0)),
|
||
c));
|
||
if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
case CONST:
|
||
/* If adding to something entirely constant, set a flag
|
||
so that we can add a CONST around the result. */
|
||
x = XEXP (x, 0);
|
||
all_constant = 1;
|
||
goto restart;
|
||
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
all_constant = 1;
|
||
break;
|
||
|
||
case PLUS:
|
||
/* The interesting case is adding the integer to a sum.
|
||
Look for constant term in the sum and combine
|
||
with C. For an integer constant term, we make a combined
|
||
integer. For a constant term that is not an explicit integer,
|
||
we cannot really combine, but group them together anyway.
|
||
|
||
Restart or use a recursive call in case the remaining operand is
|
||
something that we handle specially, such as a SYMBOL_REF.
|
||
|
||
We may not immediately return from the recursive call here, lest
|
||
all_constant gets lost. */
|
||
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
{
|
||
c += INTVAL (XEXP (x, 1));
|
||
|
||
if (GET_MODE (x) != VOIDmode)
|
||
c = trunc_int_for_mode (c, GET_MODE (x));
|
||
|
||
x = XEXP (x, 0);
|
||
goto restart;
|
||
}
|
||
else if (CONSTANT_P (XEXP (x, 0)))
|
||
{
|
||
x = gen_rtx_PLUS (mode,
|
||
plus_constant (XEXP (x, 0), c),
|
||
XEXP (x, 1));
|
||
c = 0;
|
||
}
|
||
else if (CONSTANT_P (XEXP (x, 1)))
|
||
{
|
||
x = gen_rtx_PLUS (mode,
|
||
XEXP (x, 0),
|
||
plus_constant (XEXP (x, 1), c));
|
||
c = 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (c != 0)
|
||
x = gen_rtx_PLUS (mode, x, GEN_INT (c));
|
||
|
||
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
|
||
return x;
|
||
else if (all_constant)
|
||
return gen_rtx_CONST (mode, x);
|
||
else
|
||
return x;
|
||
}
|
||
|
||
/* This is the same as `plus_constant', except that it handles LO_SUM.
|
||
|
||
This function should be used via the `plus_constant_for_output' macro. */
|
||
|
||
rtx
|
||
plus_constant_for_output_wide (x, c)
|
||
register rtx x;
|
||
register HOST_WIDE_INT c;
|
||
{
|
||
register enum machine_mode mode = GET_MODE (x);
|
||
|
||
if (GET_CODE (x) == LO_SUM)
|
||
return gen_rtx_LO_SUM (mode, XEXP (x, 0),
|
||
plus_constant_for_output (XEXP (x, 1), c));
|
||
|
||
else
|
||
return plus_constant (x, c);
|
||
}
|
||
|
||
/* If X is a sum, return a new sum like X but lacking any constant terms.
|
||
Add all the removed constant terms into *CONSTPTR.
|
||
X itself is not altered. The result != X if and only if
|
||
it is not isomorphic to X. */
|
||
|
||
rtx
|
||
eliminate_constant_term (x, constptr)
|
||
rtx x;
|
||
rtx *constptr;
|
||
{
|
||
register rtx x0, x1;
|
||
rtx tem;
|
||
|
||
if (GET_CODE (x) != PLUS)
|
||
return x;
|
||
|
||
/* First handle constants appearing at this level explicitly. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
|
||
XEXP (x, 1)))
|
||
&& GET_CODE (tem) == CONST_INT)
|
||
{
|
||
*constptr = tem;
|
||
return eliminate_constant_term (XEXP (x, 0), constptr);
|
||
}
|
||
|
||
tem = const0_rtx;
|
||
x0 = eliminate_constant_term (XEXP (x, 0), &tem);
|
||
x1 = eliminate_constant_term (XEXP (x, 1), &tem);
|
||
if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
|
||
&& 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
|
||
*constptr, tem))
|
||
&& GET_CODE (tem) == CONST_INT)
|
||
{
|
||
*constptr = tem;
|
||
return gen_rtx_PLUS (GET_MODE (x), x0, x1);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Returns the insn that next references REG after INSN, or 0
|
||
if REG is clobbered before next referenced or we cannot find
|
||
an insn that references REG in a straight-line piece of code. */
|
||
|
||
rtx
|
||
find_next_ref (reg, insn)
|
||
rtx reg;
|
||
rtx insn;
|
||
{
|
||
rtx next;
|
||
|
||
for (insn = NEXT_INSN (insn); insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE)
|
||
continue;
|
||
if (GET_CODE (insn) == CODE_LABEL
|
||
|| GET_CODE (insn) == BARRIER)
|
||
return 0;
|
||
if (GET_CODE (insn) == INSN
|
||
|| GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
if (reg_set_p (reg, insn))
|
||
return 0;
|
||
if (reg_mentioned_p (reg, PATTERN (insn)))
|
||
return insn;
|
||
if (GET_CODE (insn) == JUMP_INSN)
|
||
{
|
||
if (any_uncondjump_p (insn))
|
||
next = JUMP_LABEL (insn);
|
||
else
|
||
return 0;
|
||
}
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
|
||
&& call_used_regs[REGNO (reg)])
|
||
return 0;
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return an rtx for the size in bytes of the value of EXP. */
|
||
|
||
rtx
|
||
expr_size (exp)
|
||
tree exp;
|
||
{
|
||
tree size = size_in_bytes (TREE_TYPE (exp));
|
||
|
||
if (TREE_CODE (size) != INTEGER_CST
|
||
&& contains_placeholder_p (size))
|
||
size = build (WITH_RECORD_EXPR, sizetype, size, exp);
|
||
|
||
return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
|
||
EXPAND_MEMORY_USE_BAD);
|
||
}
|
||
|
||
/* Return a copy of X in which all memory references
|
||
and all constants that involve symbol refs
|
||
have been replaced with new temporary registers.
|
||
Also emit code to load the memory locations and constants
|
||
into those registers.
|
||
|
||
If X contains no such constants or memory references,
|
||
X itself (not a copy) is returned.
|
||
|
||
If a constant is found in the address that is not a legitimate constant
|
||
in an insn, it is left alone in the hope that it might be valid in the
|
||
address.
|
||
|
||
X may contain no arithmetic except addition, subtraction and multiplication.
|
||
Values returned by expand_expr with 1 for sum_ok fit this constraint. */
|
||
|
||
static rtx
|
||
break_out_memory_refs (x)
|
||
register rtx x;
|
||
{
|
||
if (GET_CODE (x) == MEM
|
||
|| (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
|
||
&& GET_MODE (x) != VOIDmode))
|
||
x = force_reg (GET_MODE (x), x);
|
||
else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
|
||
|| GET_CODE (x) == MULT)
|
||
{
|
||
register rtx op0 = break_out_memory_refs (XEXP (x, 0));
|
||
register rtx op1 = break_out_memory_refs (XEXP (x, 1));
|
||
|
||
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
|
||
/* Given X, a memory address in ptr_mode, convert it to an address
|
||
in Pmode, or vice versa (TO_MODE says which way). We take advantage of
|
||
the fact that pointers are not allowed to overflow by commuting arithmetic
|
||
operations over conversions so that address arithmetic insns can be
|
||
used. */
|
||
|
||
rtx
|
||
convert_memory_address (to_mode, x)
|
||
enum machine_mode to_mode;
|
||
rtx x;
|
||
{
|
||
enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
|
||
rtx temp;
|
||
|
||
/* Here we handle some special cases. If none of them apply, fall through
|
||
to the default case. */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
return x;
|
||
|
||
case SUBREG:
|
||
if (GET_MODE (SUBREG_REG (x)) == to_mode)
|
||
return SUBREG_REG (x);
|
||
break;
|
||
|
||
case LABEL_REF:
|
||
temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
|
||
LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
|
||
return temp;
|
||
|
||
case SYMBOL_REF:
|
||
temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
|
||
SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
|
||
CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
|
||
STRING_POOL_ADDRESS_P (temp) = STRING_POOL_ADDRESS_P (x);
|
||
return temp;
|
||
|
||
case CONST:
|
||
return gen_rtx_CONST (to_mode,
|
||
convert_memory_address (to_mode, XEXP (x, 0)));
|
||
|
||
case PLUS:
|
||
case MULT:
|
||
/* For addition the second operand is a small constant, we can safely
|
||
permute the conversion and addition operation. We can always safely
|
||
permute them if we are making the address narrower. In addition,
|
||
always permute the operations if this is a constant. */
|
||
if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
|
||
|| (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (x, 1)) + 20000 < 40000
|
||
|| CONSTANT_P (XEXP (x, 0)))))
|
||
return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
|
||
convert_memory_address (to_mode, XEXP (x, 0)),
|
||
convert_memory_address (to_mode, XEXP (x, 1)));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return convert_modes (to_mode, from_mode,
|
||
x, POINTERS_EXTEND_UNSIGNED);
|
||
}
|
||
#endif
|
||
|
||
/* Given a memory address or facsimile X, construct a new address,
|
||
currently equivalent, that is stable: future stores won't change it.
|
||
|
||
X must be composed of constants, register and memory references
|
||
combined with addition, subtraction and multiplication:
|
||
in other words, just what you can get from expand_expr if sum_ok is 1.
|
||
|
||
Works by making copies of all regs and memory locations used
|
||
by X and combining them the same way X does.
|
||
You could also stabilize the reference to this address
|
||
by copying the address to a register with copy_to_reg;
|
||
but then you wouldn't get indexed addressing in the reference. */
|
||
|
||
rtx
|
||
copy_all_regs (x)
|
||
register rtx x;
|
||
{
|
||
if (GET_CODE (x) == REG)
|
||
{
|
||
if (REGNO (x) != FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& REGNO (x) != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
)
|
||
x = copy_to_reg (x);
|
||
}
|
||
else if (GET_CODE (x) == MEM)
|
||
x = copy_to_reg (x);
|
||
else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
|
||
|| GET_CODE (x) == MULT)
|
||
{
|
||
register rtx op0 = copy_all_regs (XEXP (x, 0));
|
||
register rtx op1 = copy_all_regs (XEXP (x, 1));
|
||
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Return something equivalent to X but valid as a memory address
|
||
for something of mode MODE. When X is not itself valid, this
|
||
works by copying X or subexpressions of it into registers. */
|
||
|
||
rtx
|
||
memory_address (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
register rtx oldx = x;
|
||
|
||
if (GET_CODE (x) == ADDRESSOF)
|
||
return x;
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (x) == ptr_mode)
|
||
x = convert_memory_address (Pmode, x);
|
||
#endif
|
||
|
||
/* By passing constant addresses thru registers
|
||
we get a chance to cse them. */
|
||
if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
|
||
x = force_reg (Pmode, x);
|
||
|
||
/* Accept a QUEUED that refers to a REG
|
||
even though that isn't a valid address.
|
||
On attempting to put this in an insn we will call protect_from_queue
|
||
which will turn it into a REG, which is valid. */
|
||
else if (GET_CODE (x) == QUEUED
|
||
&& GET_CODE (QUEUED_VAR (x)) == REG)
|
||
;
|
||
|
||
/* We get better cse by rejecting indirect addressing at this stage.
|
||
Let the combiner create indirect addresses where appropriate.
|
||
For now, generate the code so that the subexpressions useful to share
|
||
are visible. But not if cse won't be done! */
|
||
else
|
||
{
|
||
if (! cse_not_expected && GET_CODE (x) != REG)
|
||
x = break_out_memory_refs (x);
|
||
|
||
/* At this point, any valid address is accepted. */
|
||
GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
|
||
|
||
/* If it was valid before but breaking out memory refs invalidated it,
|
||
use it the old way. */
|
||
if (memory_address_p (mode, oldx))
|
||
goto win2;
|
||
|
||
/* Perform machine-dependent transformations on X
|
||
in certain cases. This is not necessary since the code
|
||
below can handle all possible cases, but machine-dependent
|
||
transformations can make better code. */
|
||
LEGITIMIZE_ADDRESS (x, oldx, mode, win);
|
||
|
||
/* PLUS and MULT can appear in special ways
|
||
as the result of attempts to make an address usable for indexing.
|
||
Usually they are dealt with by calling force_operand, below.
|
||
But a sum containing constant terms is special
|
||
if removing them makes the sum a valid address:
|
||
then we generate that address in a register
|
||
and index off of it. We do this because it often makes
|
||
shorter code, and because the addresses thus generated
|
||
in registers often become common subexpressions. */
|
||
if (GET_CODE (x) == PLUS)
|
||
{
|
||
rtx constant_term = const0_rtx;
|
||
rtx y = eliminate_constant_term (x, &constant_term);
|
||
if (constant_term == const0_rtx
|
||
|| ! memory_address_p (mode, y))
|
||
x = force_operand (x, NULL_RTX);
|
||
else
|
||
{
|
||
y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
|
||
if (! memory_address_p (mode, y))
|
||
x = force_operand (x, NULL_RTX);
|
||
else
|
||
x = y;
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
|
||
x = force_operand (x, NULL_RTX);
|
||
|
||
/* If we have a register that's an invalid address,
|
||
it must be a hard reg of the wrong class. Copy it to a pseudo. */
|
||
else if (GET_CODE (x) == REG)
|
||
x = copy_to_reg (x);
|
||
|
||
/* Last resort: copy the value to a register, since
|
||
the register is a valid address. */
|
||
else
|
||
x = force_reg (Pmode, x);
|
||
|
||
goto done;
|
||
|
||
win2:
|
||
x = oldx;
|
||
win:
|
||
if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
|
||
/* Don't copy an addr via a reg if it is one of our stack slots. */
|
||
&& ! (GET_CODE (x) == PLUS
|
||
&& (XEXP (x, 0) == virtual_stack_vars_rtx
|
||
|| XEXP (x, 0) == virtual_incoming_args_rtx)))
|
||
{
|
||
if (general_operand (x, Pmode))
|
||
x = force_reg (Pmode, x);
|
||
else
|
||
x = force_operand (x, NULL_RTX);
|
||
}
|
||
}
|
||
|
||
done:
|
||
|
||
/* If we didn't change the address, we are done. Otherwise, mark
|
||
a reg as a pointer if we have REG or REG + CONST_INT. */
|
||
if (oldx == x)
|
||
return x;
|
||
else if (GET_CODE (x) == REG)
|
||
mark_reg_pointer (x, BITS_PER_UNIT);
|
||
else if (GET_CODE (x) == PLUS
|
||
&& GET_CODE (XEXP (x, 0)) == REG
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
|
||
|
||
/* OLDX may have been the address on a temporary. Update the address
|
||
to indicate that X is now used. */
|
||
update_temp_slot_address (oldx, x);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Like `memory_address' but pretend `flag_force_addr' is 0. */
|
||
|
||
rtx
|
||
memory_address_noforce (mode, x)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
{
|
||
int ambient_force_addr = flag_force_addr;
|
||
rtx val;
|
||
|
||
flag_force_addr = 0;
|
||
val = memory_address (mode, x);
|
||
flag_force_addr = ambient_force_addr;
|
||
return val;
|
||
}
|
||
|
||
/* Convert a mem ref into one with a valid memory address.
|
||
Pass through anything else unchanged. */
|
||
|
||
rtx
|
||
validize_mem (ref)
|
||
rtx ref;
|
||
{
|
||
if (GET_CODE (ref) != MEM)
|
||
return ref;
|
||
if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
|
||
return ref;
|
||
/* Don't alter REF itself, since that is probably a stack slot. */
|
||
return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
|
||
}
|
||
|
||
/* Given REF, either a MEM or a REG, and T, either the type of X or
|
||
the expression corresponding to REF, set RTX_UNCHANGING_P if
|
||
appropriate. */
|
||
|
||
void
|
||
maybe_set_unchanging (ref, t)
|
||
rtx ref;
|
||
tree t;
|
||
{
|
||
/* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
|
||
initialization is only executed once, or whose initializer always
|
||
has the same value. Currently we simplify this to PARM_DECLs in the
|
||
first case, and decls with TREE_CONSTANT initializers in the second. */
|
||
if ((TREE_READONLY (t) && DECL_P (t)
|
||
&& (TREE_CODE (t) == PARM_DECL
|
||
|| DECL_INITIAL (t) == NULL_TREE
|
||
|| TREE_CONSTANT (DECL_INITIAL (t))))
|
||
|| TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
|
||
RTX_UNCHANGING_P (ref) = 1;
|
||
}
|
||
|
||
/* Given REF, a MEM, and T, either the type of X or the expression
|
||
corresponding to REF, set the memory attributes. OBJECTP is nonzero
|
||
if we are making a new object of this type. */
|
||
|
||
void
|
||
set_mem_attributes (ref, t, objectp)
|
||
rtx ref;
|
||
tree t;
|
||
int objectp;
|
||
{
|
||
tree type;
|
||
|
||
/* It can happen that type_for_mode was given a mode for which there
|
||
is no language-level type. In which case it returns NULL, which
|
||
we can see here. */
|
||
if (t == NULL_TREE)
|
||
return;
|
||
|
||
type = TYPE_P (t) ? t : TREE_TYPE (t);
|
||
|
||
/* Get the alias set from the expression or type (perhaps using a
|
||
front-end routine) and then copy bits from the type. */
|
||
|
||
/* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
|
||
here, because, in C and C++, the fact that a location is accessed
|
||
through a const expression does not mean that the value there can
|
||
never change. */
|
||
MEM_ALIAS_SET (ref) = get_alias_set (t);
|
||
MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
|
||
MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
|
||
|
||
/* If we are making an object of this type, we know that it is a scalar if
|
||
the type is not an aggregate. */
|
||
if (objectp && ! AGGREGATE_TYPE_P (type))
|
||
MEM_SCALAR_P (ref) = 1;
|
||
|
||
/* If T is a type, this is all we can do. Otherwise, we may be able
|
||
to deduce some more information about the expression. */
|
||
if (TYPE_P (t))
|
||
return;
|
||
|
||
maybe_set_unchanging (ref, t);
|
||
if (TREE_THIS_VOLATILE (t))
|
||
MEM_VOLATILE_P (ref) = 1;
|
||
|
||
/* Now see if we can say more about whether it's an aggregate or
|
||
scalar. If we already know it's an aggregate, don't bother. */
|
||
if (MEM_IN_STRUCT_P (ref))
|
||
return;
|
||
|
||
/* Now remove any NOPs: they don't change what the underlying object is.
|
||
Likewise for SAVE_EXPR. */
|
||
while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
|
||
|| TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
|
||
t = TREE_OPERAND (t, 0);
|
||
|
||
/* Since we already know the type isn't an aggregate, if this is a decl,
|
||
it must be a scalar. Or if it is a reference into an aggregate,
|
||
this is part of an aggregate. Otherwise we don't know. */
|
||
if (DECL_P (t))
|
||
MEM_SCALAR_P (ref) = 1;
|
||
else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
|
||
|| TREE_CODE (t) == BIT_FIELD_REF)
|
||
MEM_IN_STRUCT_P (ref) = 1;
|
||
}
|
||
|
||
/* Return a modified copy of X with its memory address copied
|
||
into a temporary register to protect it from side effects.
|
||
If X is not a MEM, it is returned unchanged (and not copied).
|
||
Perhaps even if it is a MEM, if there is no need to change it. */
|
||
|
||
rtx
|
||
stabilize (x)
|
||
rtx x;
|
||
{
|
||
register rtx addr;
|
||
|
||
if (GET_CODE (x) != MEM)
|
||
return x;
|
||
|
||
addr = XEXP (x, 0);
|
||
if (rtx_unstable_p (addr))
|
||
{
|
||
rtx temp = force_reg (Pmode, copy_all_regs (addr));
|
||
rtx mem = gen_rtx_MEM (GET_MODE (x), temp);
|
||
|
||
MEM_COPY_ATTRIBUTES (mem, x);
|
||
return mem;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Copy the value or contents of X to a new temp reg and return that reg. */
|
||
|
||
rtx
|
||
copy_to_reg (x)
|
||
rtx x;
|
||
{
|
||
register rtx temp = gen_reg_rtx (GET_MODE (x));
|
||
|
||
/* If not an operand, must be an address with PLUS and MULT so
|
||
do the computation. */
|
||
if (! general_operand (x, VOIDmode))
|
||
x = force_operand (x, temp);
|
||
|
||
if (x != temp)
|
||
emit_move_insn (temp, x);
|
||
|
||
return temp;
|
||
}
|
||
|
||
/* Like copy_to_reg but always give the new register mode Pmode
|
||
in case X is a constant. */
|
||
|
||
rtx
|
||
copy_addr_to_reg (x)
|
||
rtx x;
|
||
{
|
||
return copy_to_mode_reg (Pmode, x);
|
||
}
|
||
|
||
/* Like copy_to_reg but always give the new register mode MODE
|
||
in case X is a constant. */
|
||
|
||
rtx
|
||
copy_to_mode_reg (mode, x)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
{
|
||
register rtx temp = gen_reg_rtx (mode);
|
||
|
||
/* If not an operand, must be an address with PLUS and MULT so
|
||
do the computation. */
|
||
if (! general_operand (x, VOIDmode))
|
||
x = force_operand (x, temp);
|
||
|
||
if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
|
||
abort ();
|
||
if (x != temp)
|
||
emit_move_insn (temp, x);
|
||
return temp;
|
||
}
|
||
|
||
/* Load X into a register if it is not already one.
|
||
Use mode MODE for the register.
|
||
X should be valid for mode MODE, but it may be a constant which
|
||
is valid for all integer modes; that's why caller must specify MODE.
|
||
|
||
The caller must not alter the value in the register we return,
|
||
since we mark it as a "constant" register. */
|
||
|
||
rtx
|
||
force_reg (mode, x)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
{
|
||
register rtx temp, insn, set;
|
||
|
||
if (GET_CODE (x) == REG)
|
||
return x;
|
||
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
if (! general_operand (x, mode))
|
||
x = force_operand (x, NULL_RTX);
|
||
|
||
insn = emit_move_insn (temp, x);
|
||
|
||
/* Let optimizers know that TEMP's value never changes
|
||
and that X can be substituted for it. Don't get confused
|
||
if INSN set something else (such as a SUBREG of TEMP). */
|
||
if (CONSTANT_P (x)
|
||
&& (set = single_set (insn)) != 0
|
||
&& SET_DEST (set) == temp)
|
||
{
|
||
rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
||
|
||
if (note)
|
||
XEXP (note, 0) = x;
|
||
else
|
||
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
|
||
}
|
||
return temp;
|
||
}
|
||
|
||
/* If X is a memory ref, copy its contents to a new temp reg and return
|
||
that reg. Otherwise, return X. */
|
||
|
||
rtx
|
||
force_not_mem (x)
|
||
rtx x;
|
||
{
|
||
register rtx temp;
|
||
|
||
if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
|
||
return x;
|
||
|
||
temp = gen_reg_rtx (GET_MODE (x));
|
||
emit_move_insn (temp, x);
|
||
return temp;
|
||
}
|
||
|
||
/* Copy X to TARGET (if it's nonzero and a reg)
|
||
or to a new temp reg and return that reg.
|
||
MODE is the mode to use for X in case it is a constant. */
|
||
|
||
rtx
|
||
copy_to_suggested_reg (x, target, mode)
|
||
rtx x, target;
|
||
enum machine_mode mode;
|
||
{
|
||
register rtx temp;
|
||
|
||
if (target && GET_CODE (target) == REG)
|
||
temp = target;
|
||
else
|
||
temp = gen_reg_rtx (mode);
|
||
|
||
emit_move_insn (temp, x);
|
||
return temp;
|
||
}
|
||
|
||
/* Return the mode to use to store a scalar of TYPE and MODE.
|
||
PUNSIGNEDP points to the signedness of the type and may be adjusted
|
||
to show what signedness to use on extension operations.
|
||
|
||
FOR_CALL is non-zero if this call is promoting args for a call. */
|
||
|
||
enum machine_mode
|
||
promote_mode (type, mode, punsignedp, for_call)
|
||
tree type;
|
||
enum machine_mode mode;
|
||
int *punsignedp;
|
||
int for_call ATTRIBUTE_UNUSED;
|
||
{
|
||
enum tree_code code = TREE_CODE (type);
|
||
int unsignedp = *punsignedp;
|
||
|
||
#ifdef PROMOTE_FOR_CALL_ONLY
|
||
if (! for_call)
|
||
return mode;
|
||
#endif
|
||
|
||
switch (code)
|
||
{
|
||
#ifdef PROMOTE_MODE
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
|
||
PROMOTE_MODE (mode, unsignedp, type);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
case REFERENCE_TYPE:
|
||
case POINTER_TYPE:
|
||
mode = Pmode;
|
||
unsignedp = POINTERS_EXTEND_UNSIGNED;
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
*punsignedp = unsignedp;
|
||
return mode;
|
||
}
|
||
|
||
/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
|
||
This pops when ADJUST is positive. ADJUST need not be constant. */
|
||
|
||
void
|
||
adjust_stack (adjust)
|
||
rtx adjust;
|
||
{
|
||
rtx temp;
|
||
adjust = protect_from_queue (adjust, 0);
|
||
|
||
if (adjust == const0_rtx)
|
||
return;
|
||
|
||
/* We expect all variable sized adjustments to be multiple of
|
||
PREFERRED_STACK_BOUNDARY. */
|
||
if (GET_CODE (adjust) == CONST_INT)
|
||
stack_pointer_delta -= INTVAL (adjust);
|
||
|
||
temp = expand_binop (Pmode,
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
add_optab,
|
||
#else
|
||
sub_optab,
|
||
#endif
|
||
stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
if (temp != stack_pointer_rtx)
|
||
emit_move_insn (stack_pointer_rtx, temp);
|
||
}
|
||
|
||
/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
|
||
This pushes when ADJUST is positive. ADJUST need not be constant. */
|
||
|
||
void
|
||
anti_adjust_stack (adjust)
|
||
rtx adjust;
|
||
{
|
||
rtx temp;
|
||
adjust = protect_from_queue (adjust, 0);
|
||
|
||
if (adjust == const0_rtx)
|
||
return;
|
||
|
||
/* We expect all variable sized adjustments to be multiple of
|
||
PREFERRED_STACK_BOUNDARY. */
|
||
if (GET_CODE (adjust) == CONST_INT)
|
||
stack_pointer_delta += INTVAL (adjust);
|
||
|
||
temp = expand_binop (Pmode,
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
sub_optab,
|
||
#else
|
||
add_optab,
|
||
#endif
|
||
stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
if (temp != stack_pointer_rtx)
|
||
emit_move_insn (stack_pointer_rtx, temp);
|
||
}
|
||
|
||
/* Round the size of a block to be pushed up to the boundary required
|
||
by this machine. SIZE is the desired size, which need not be constant. */
|
||
|
||
rtx
|
||
round_push (size)
|
||
rtx size;
|
||
{
|
||
#ifdef PREFERRED_STACK_BOUNDARY
|
||
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
||
if (align == 1)
|
||
return size;
|
||
if (GET_CODE (size) == CONST_INT)
|
||
{
|
||
int new = (INTVAL (size) + align - 1) / align * align;
|
||
if (INTVAL (size) != new)
|
||
size = GEN_INT (new);
|
||
}
|
||
else
|
||
{
|
||
/* CEIL_DIV_EXPR needs to worry about the addition overflowing,
|
||
but we know it can't. So add ourselves and then do
|
||
TRUNC_DIV_EXPR. */
|
||
size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
|
||
NULL_RTX, 1);
|
||
size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
|
||
}
|
||
#endif /* PREFERRED_STACK_BOUNDARY */
|
||
return size;
|
||
}
|
||
|
||
/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
|
||
to a previously-created save area. If no save area has been allocated,
|
||
this function will allocate one. If a save area is specified, it
|
||
must be of the proper mode.
|
||
|
||
The insns are emitted after insn AFTER, if nonzero, otherwise the insns
|
||
are emitted at the current position. */
|
||
|
||
void
|
||
emit_stack_save (save_level, psave, after)
|
||
enum save_level save_level;
|
||
rtx *psave;
|
||
rtx after;
|
||
{
|
||
rtx sa = *psave;
|
||
/* The default is that we use a move insn and save in a Pmode object. */
|
||
rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
|
||
enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
|
||
|
||
/* See if this machine has anything special to do for this kind of save. */
|
||
switch (save_level)
|
||
{
|
||
#ifdef HAVE_save_stack_block
|
||
case SAVE_BLOCK:
|
||
if (HAVE_save_stack_block)
|
||
fcn = gen_save_stack_block;
|
||
break;
|
||
#endif
|
||
#ifdef HAVE_save_stack_function
|
||
case SAVE_FUNCTION:
|
||
if (HAVE_save_stack_function)
|
||
fcn = gen_save_stack_function;
|
||
break;
|
||
#endif
|
||
#ifdef HAVE_save_stack_nonlocal
|
||
case SAVE_NONLOCAL:
|
||
if (HAVE_save_stack_nonlocal)
|
||
fcn = gen_save_stack_nonlocal;
|
||
break;
|
||
#endif
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If there is no save area and we have to allocate one, do so. Otherwise
|
||
verify the save area is the proper mode. */
|
||
|
||
if (sa == 0)
|
||
{
|
||
if (mode != VOIDmode)
|
||
{
|
||
if (save_level == SAVE_NONLOCAL)
|
||
*psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
|
||
else
|
||
*psave = sa = gen_reg_rtx (mode);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (mode == VOIDmode || GET_MODE (sa) != mode)
|
||
abort ();
|
||
}
|
||
|
||
if (after)
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
/* We must validize inside the sequence, to ensure that any instructions
|
||
created by the validize call also get moved to the right place. */
|
||
if (sa != 0)
|
||
sa = validize_mem (sa);
|
||
emit_insn (fcn (sa, stack_pointer_rtx));
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
emit_insn_after (seq, after);
|
||
}
|
||
else
|
||
{
|
||
if (sa != 0)
|
||
sa = validize_mem (sa);
|
||
emit_insn (fcn (sa, stack_pointer_rtx));
|
||
}
|
||
}
|
||
|
||
/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
|
||
area made by emit_stack_save. If it is zero, we have nothing to do.
|
||
|
||
Put any emitted insns after insn AFTER, if nonzero, otherwise at
|
||
current position. */
|
||
|
||
void
|
||
emit_stack_restore (save_level, sa, after)
|
||
enum save_level save_level;
|
||
rtx after;
|
||
rtx sa;
|
||
{
|
||
/* The default is that we use a move insn. */
|
||
rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
|
||
|
||
/* See if this machine has anything special to do for this kind of save. */
|
||
switch (save_level)
|
||
{
|
||
#ifdef HAVE_restore_stack_block
|
||
case SAVE_BLOCK:
|
||
if (HAVE_restore_stack_block)
|
||
fcn = gen_restore_stack_block;
|
||
break;
|
||
#endif
|
||
#ifdef HAVE_restore_stack_function
|
||
case SAVE_FUNCTION:
|
||
if (HAVE_restore_stack_function)
|
||
fcn = gen_restore_stack_function;
|
||
break;
|
||
#endif
|
||
#ifdef HAVE_restore_stack_nonlocal
|
||
case SAVE_NONLOCAL:
|
||
if (HAVE_restore_stack_nonlocal)
|
||
fcn = gen_restore_stack_nonlocal;
|
||
break;
|
||
#endif
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (sa != 0)
|
||
sa = validize_mem (sa);
|
||
|
||
if (after)
|
||
{
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
emit_insn (fcn (stack_pointer_rtx, sa));
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
emit_insn_after (seq, after);
|
||
}
|
||
else
|
||
emit_insn (fcn (stack_pointer_rtx, sa));
|
||
}
|
||
|
||
#ifdef SETJMP_VIA_SAVE_AREA
|
||
/* Optimize RTL generated by allocate_dynamic_stack_space for targets
|
||
where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
|
||
platforms, the dynamic stack space used can corrupt the original
|
||
frame, thus causing a crash if a longjmp unwinds to it. */
|
||
|
||
void
|
||
optimize_save_area_alloca (insns)
|
||
rtx insns;
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = insns; insn; insn = NEXT_INSN(insn))
|
||
{
|
||
rtx note;
|
||
|
||
if (GET_CODE (insn) != INSN)
|
||
continue;
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
|
||
continue;
|
||
|
||
if (!current_function_calls_setjmp)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
/* If we do not see the note in a pattern matching
|
||
these precise characteristics, we did something
|
||
entirely wrong in allocate_dynamic_stack_space.
|
||
|
||
Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
|
||
was defined on a machine where stacks grow towards higher
|
||
addresses.
|
||
|
||
Right now only supported port with stack that grow upward
|
||
is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
|
||
if (GET_CODE (pat) != SET
|
||
|| SET_DEST (pat) != stack_pointer_rtx
|
||
|| GET_CODE (SET_SRC (pat)) != MINUS
|
||
|| XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
|
||
abort ();
|
||
|
||
/* This will now be transformed into a (set REG REG)
|
||
so we can just blow away all the other notes. */
|
||
XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
|
||
REG_NOTES (insn) = NULL_RTX;
|
||
}
|
||
else
|
||
{
|
||
/* setjmp was called, we must remove the REG_SAVE_AREA
|
||
note so that later passes do not get confused by its
|
||
presence. */
|
||
if (note == REG_NOTES (insn))
|
||
{
|
||
REG_NOTES (insn) = XEXP (note, 1);
|
||
}
|
||
else
|
||
{
|
||
rtx srch;
|
||
|
||
for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
|
||
if (XEXP (srch, 1) == note)
|
||
break;
|
||
|
||
if (srch == NULL_RTX)
|
||
abort();
|
||
|
||
XEXP (srch, 1) = XEXP (note, 1);
|
||
}
|
||
}
|
||
/* Once we've seen the note of interest, we need not look at
|
||
the rest of them. */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#endif /* SETJMP_VIA_SAVE_AREA */
|
||
|
||
/* Return an rtx representing the address of an area of memory dynamically
|
||
pushed on the stack. This region of memory is always aligned to
|
||
a multiple of BIGGEST_ALIGNMENT.
|
||
|
||
Any required stack pointer alignment is preserved.
|
||
|
||
SIZE is an rtx representing the size of the area.
|
||
TARGET is a place in which the address can be placed.
|
||
|
||
KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
|
||
|
||
rtx
|
||
allocate_dynamic_stack_space (size, target, known_align)
|
||
rtx size;
|
||
rtx target;
|
||
int known_align;
|
||
{
|
||
#ifdef SETJMP_VIA_SAVE_AREA
|
||
rtx setjmpless_size = NULL_RTX;
|
||
#endif
|
||
|
||
/* If we're asking for zero bytes, it doesn't matter what we point
|
||
to since we can't dereference it. But return a reasonable
|
||
address anyway. */
|
||
if (size == const0_rtx)
|
||
return virtual_stack_dynamic_rtx;
|
||
|
||
/* Otherwise, show we're calling alloca or equivalent. */
|
||
current_function_calls_alloca = 1;
|
||
|
||
/* Ensure the size is in the proper mode. */
|
||
if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
|
||
size = convert_to_mode (Pmode, size, 1);
|
||
|
||
/* We can't attempt to minimize alignment necessary, because we don't
|
||
know the final value of preferred_stack_boundary yet while executing
|
||
this code. */
|
||
#ifdef PREFERRED_STACK_BOUNDARY
|
||
cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
|
||
#endif
|
||
|
||
/* We will need to ensure that the address we return is aligned to
|
||
BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
|
||
always know its final value at this point in the compilation (it
|
||
might depend on the size of the outgoing parameter lists, for
|
||
example), so we must align the value to be returned in that case.
|
||
(Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
|
||
STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
|
||
We must also do an alignment operation on the returned value if
|
||
the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
|
||
|
||
If we have to align, we must leave space in SIZE for the hole
|
||
that might result from the alignment operation. */
|
||
|
||
#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
|
||
#define MUST_ALIGN 1
|
||
#else
|
||
#define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
|
||
#endif
|
||
|
||
if (MUST_ALIGN)
|
||
size
|
||
= force_operand (plus_constant (size,
|
||
BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
|
||
NULL_RTX);
|
||
|
||
#ifdef SETJMP_VIA_SAVE_AREA
|
||
/* If setjmp restores regs from a save area in the stack frame,
|
||
avoid clobbering the reg save area. Note that the offset of
|
||
virtual_incoming_args_rtx includes the preallocated stack args space.
|
||
It would be no problem to clobber that, but it's on the wrong side
|
||
of the old save area. */
|
||
{
|
||
rtx dynamic_offset
|
||
= expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
|
||
stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
|
||
if (!current_function_calls_setjmp)
|
||
{
|
||
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
||
|
||
/* See optimize_save_area_alloca to understand what is being
|
||
set up here. */
|
||
|
||
#if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
|
||
/* If anyone creates a target with these characteristics, let them
|
||
know that our optimization cannot work correctly in such a case. */
|
||
abort ();
|
||
#endif
|
||
|
||
if (GET_CODE (size) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT new = INTVAL (size) / align * align;
|
||
|
||
if (INTVAL (size) != new)
|
||
setjmpless_size = GEN_INT (new);
|
||
else
|
||
setjmpless_size = size;
|
||
}
|
||
else
|
||
{
|
||
/* Since we know overflow is not possible, we avoid using
|
||
CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
|
||
setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
|
||
GEN_INT (align), NULL_RTX, 1);
|
||
setjmpless_size = expand_mult (Pmode, setjmpless_size,
|
||
GEN_INT (align), NULL_RTX, 1);
|
||
}
|
||
/* Our optimization works based upon being able to perform a simple
|
||
transformation of this RTL into a (set REG REG) so make sure things
|
||
did in fact end up in a REG. */
|
||
if (!register_operand (setjmpless_size, Pmode))
|
||
setjmpless_size = force_reg (Pmode, setjmpless_size);
|
||
}
|
||
|
||
size = expand_binop (Pmode, add_optab, size, dynamic_offset,
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
}
|
||
#endif /* SETJMP_VIA_SAVE_AREA */
|
||
|
||
/* Round the size to a multiple of the required stack alignment.
|
||
Since the stack if presumed to be rounded before this allocation,
|
||
this will maintain the required alignment.
|
||
|
||
If the stack grows downward, we could save an insn by subtracting
|
||
SIZE from the stack pointer and then aligning the stack pointer.
|
||
The problem with this is that the stack pointer may be unaligned
|
||
between the execution of the subtraction and alignment insns and
|
||
some machines do not allow this. Even on those that do, some
|
||
signal handlers malfunction if a signal should occur between those
|
||
insns. Since this is an extremely rare event, we have no reliable
|
||
way of knowing which systems have this problem. So we avoid even
|
||
momentarily mis-aligning the stack. */
|
||
|
||
#ifdef PREFERRED_STACK_BOUNDARY
|
||
/* If we added a variable amount to SIZE,
|
||
we can no longer assume it is aligned. */
|
||
#if !defined (SETJMP_VIA_SAVE_AREA)
|
||
if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
|
||
#endif
|
||
size = round_push (size);
|
||
#endif
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
/* We ought to be called always on the toplevel and stack ought to be aligned
|
||
propertly. */
|
||
#ifdef PREFERRED_STACK_BOUNDARY
|
||
if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
|
||
abort ();
|
||
#endif
|
||
|
||
/* If needed, check that we have the required amount of stack. Take into
|
||
account what has already been checked. */
|
||
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
||
probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
|
||
|
||
/* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
|
||
if (target == 0 || GET_CODE (target) != REG
|
||
|| REGNO (target) < FIRST_PSEUDO_REGISTER
|
||
|| GET_MODE (target) != Pmode)
|
||
target = gen_reg_rtx (Pmode);
|
||
|
||
mark_reg_pointer (target, known_align);
|
||
|
||
/* Perform the required allocation from the stack. Some systems do
|
||
this differently than simply incrementing/decrementing from the
|
||
stack pointer, such as acquiring the space by calling malloc(). */
|
||
#ifdef HAVE_allocate_stack
|
||
if (HAVE_allocate_stack)
|
||
{
|
||
enum machine_mode mode = STACK_SIZE_MODE;
|
||
insn_operand_predicate_fn pred;
|
||
|
||
pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
|
||
if (pred && ! ((*pred) (target, Pmode)))
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
target = convert_memory_address (Pmode, target);
|
||
#else
|
||
target = copy_to_mode_reg (Pmode, target);
|
||
#endif
|
||
|
||
if (mode == VOIDmode)
|
||
mode = Pmode;
|
||
|
||
pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
|
||
if (pred && ! ((*pred) (size, mode)))
|
||
size = copy_to_mode_reg (mode, size);
|
||
|
||
emit_insn (gen_allocate_stack (target, size));
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
#ifndef STACK_GROWS_DOWNWARD
|
||
emit_move_insn (target, virtual_stack_dynamic_rtx);
|
||
#endif
|
||
|
||
/* Check stack bounds if necessary. */
|
||
if (current_function_limit_stack)
|
||
{
|
||
rtx available;
|
||
rtx space_available = gen_label_rtx ();
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
available = expand_binop (Pmode, sub_optab,
|
||
stack_pointer_rtx, stack_limit_rtx,
|
||
NULL_RTX, 1, OPTAB_WIDEN);
|
||
#else
|
||
available = expand_binop (Pmode, sub_optab,
|
||
stack_limit_rtx, stack_pointer_rtx,
|
||
NULL_RTX, 1, OPTAB_WIDEN);
|
||
#endif
|
||
emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
|
||
0, space_available);
|
||
#ifdef HAVE_trap
|
||
if (HAVE_trap)
|
||
emit_insn (gen_trap ());
|
||
else
|
||
#endif
|
||
error ("stack limits not supported on this target");
|
||
emit_barrier ();
|
||
emit_label (space_available);
|
||
}
|
||
|
||
anti_adjust_stack (size);
|
||
#ifdef SETJMP_VIA_SAVE_AREA
|
||
if (setjmpless_size != NULL_RTX)
|
||
{
|
||
rtx note_target = get_last_insn ();
|
||
|
||
REG_NOTES (note_target)
|
||
= gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
|
||
REG_NOTES (note_target));
|
||
}
|
||
#endif /* SETJMP_VIA_SAVE_AREA */
|
||
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
emit_move_insn (target, virtual_stack_dynamic_rtx);
|
||
#endif
|
||
}
|
||
|
||
if (MUST_ALIGN)
|
||
{
|
||
/* CEIL_DIV_EXPR needs to worry about the addition overflowing,
|
||
but we know it can't. So add ourselves and then do
|
||
TRUNC_DIV_EXPR. */
|
||
target = expand_binop (Pmode, add_optab, target,
|
||
GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
|
||
GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
|
||
NULL_RTX, 1);
|
||
target = expand_mult (Pmode, target,
|
||
GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
|
||
NULL_RTX, 1);
|
||
}
|
||
|
||
/* Some systems require a particular insn to refer to the stack
|
||
to make the pages exist. */
|
||
#ifdef HAVE_probe
|
||
if (HAVE_probe)
|
||
emit_insn (gen_probe ());
|
||
#endif
|
||
|
||
/* Record the new stack level for nonlocal gotos. */
|
||
if (nonlocal_goto_handler_slots != 0)
|
||
emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* A front end may want to override GCC's stack checking by providing a
|
||
run-time routine to call to check the stack, so provide a mechanism for
|
||
calling that routine. */
|
||
|
||
static rtx stack_check_libfunc;
|
||
|
||
void
|
||
set_stack_check_libfunc (libfunc)
|
||
rtx libfunc;
|
||
{
|
||
stack_check_libfunc = libfunc;
|
||
}
|
||
|
||
/* Emit one stack probe at ADDRESS, an address within the stack. */
|
||
|
||
static void
|
||
emit_stack_probe (address)
|
||
rtx address;
|
||
{
|
||
rtx memref = gen_rtx_MEM (word_mode, address);
|
||
|
||
MEM_VOLATILE_P (memref) = 1;
|
||
|
||
if (STACK_CHECK_PROBE_LOAD)
|
||
emit_move_insn (gen_reg_rtx (word_mode), memref);
|
||
else
|
||
emit_move_insn (memref, const0_rtx);
|
||
}
|
||
|
||
/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
|
||
FIRST is a constant and size is a Pmode RTX. These are offsets from the
|
||
current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
|
||
subtract from the stack. If SIZE is constant, this is done
|
||
with a fixed number of probes. Otherwise, we must make a loop. */
|
||
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#define STACK_GROW_OP MINUS
|
||
#else
|
||
#define STACK_GROW_OP PLUS
|
||
#endif
|
||
|
||
void
|
||
probe_stack_range (first, size)
|
||
HOST_WIDE_INT first;
|
||
rtx size;
|
||
{
|
||
/* First see if the front end has set up a function for us to call to
|
||
check the stack. */
|
||
if (stack_check_libfunc != 0)
|
||
{
|
||
rtx addr = memory_address (QImode,
|
||
gen_rtx (STACK_GROW_OP, Pmode,
|
||
stack_pointer_rtx,
|
||
plus_constant (size, first)));
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
if (GET_MODE (addr) != ptr_mode)
|
||
addr = convert_memory_address (ptr_mode, addr);
|
||
#endif
|
||
|
||
emit_library_call (stack_check_libfunc, 0, VOIDmode, 1, addr,
|
||
ptr_mode);
|
||
}
|
||
|
||
/* Next see if we have an insn to check the stack. Use it if so. */
|
||
#ifdef HAVE_check_stack
|
||
else if (HAVE_check_stack)
|
||
{
|
||
insn_operand_predicate_fn pred;
|
||
rtx last_addr
|
||
= force_operand (gen_rtx_STACK_GROW_OP (Pmode,
|
||
stack_pointer_rtx,
|
||
plus_constant (size, first)),
|
||
NULL_RTX);
|
||
|
||
pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
|
||
if (pred && ! ((*pred) (last_addr, Pmode)))
|
||
last_addr = copy_to_mode_reg (Pmode, last_addr);
|
||
|
||
emit_insn (gen_check_stack (last_addr));
|
||
}
|
||
#endif
|
||
|
||
/* If we have to generate explicit probes, see if we have a constant
|
||
small number of them to generate. If so, that's the easy case. */
|
||
else if (GET_CODE (size) == CONST_INT
|
||
&& INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
|
||
{
|
||
HOST_WIDE_INT offset;
|
||
|
||
/* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
|
||
for values of N from 1 until it exceeds LAST. If only one
|
||
probe is needed, this will not generate any code. Then probe
|
||
at LAST. */
|
||
for (offset = first + STACK_CHECK_PROBE_INTERVAL;
|
||
offset < INTVAL (size);
|
||
offset = offset + STACK_CHECK_PROBE_INTERVAL)
|
||
emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
|
||
stack_pointer_rtx,
|
||
GEN_INT (offset)));
|
||
|
||
emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
|
||
stack_pointer_rtx,
|
||
plus_constant (size, first)));
|
||
}
|
||
|
||
/* In the variable case, do the same as above, but in a loop. We emit loop
|
||
notes so that loop optimization can be done. */
|
||
else
|
||
{
|
||
rtx test_addr
|
||
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
|
||
stack_pointer_rtx,
|
||
GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
|
||
NULL_RTX);
|
||
rtx last_addr
|
||
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
|
||
stack_pointer_rtx,
|
||
plus_constant (size, first)),
|
||
NULL_RTX);
|
||
rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
|
||
rtx loop_lab = gen_label_rtx ();
|
||
rtx test_lab = gen_label_rtx ();
|
||
rtx end_lab = gen_label_rtx ();
|
||
rtx temp;
|
||
|
||
if (GET_CODE (test_addr) != REG
|
||
|| REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
|
||
test_addr = force_reg (Pmode, test_addr);
|
||
|
||
emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
|
||
emit_jump (test_lab);
|
||
|
||
emit_label (loop_lab);
|
||
emit_stack_probe (test_addr);
|
||
|
||
emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
|
||
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
#define CMP_OPCODE GTU
|
||
temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
|
||
1, OPTAB_WIDEN);
|
||
#else
|
||
#define CMP_OPCODE LTU
|
||
temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
|
||
1, OPTAB_WIDEN);
|
||
#endif
|
||
|
||
if (temp != test_addr)
|
||
abort ();
|
||
|
||
emit_label (test_lab);
|
||
emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
|
||
NULL_RTX, Pmode, 1, 0, loop_lab);
|
||
emit_jump (end_lab);
|
||
emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
|
||
emit_label (end_lab);
|
||
|
||
emit_stack_probe (last_addr);
|
||
}
|
||
}
|
||
|
||
/* Return an rtx representing the register or memory location
|
||
in which a scalar value of data type VALTYPE
|
||
was returned by a function call to function FUNC.
|
||
FUNC is a FUNCTION_DECL node if the precise function is known,
|
||
otherwise 0.
|
||
OUTGOING is 1 if on a machine with register windows this function
|
||
should return the register in which the function will put its result
|
||
and 0 otherwise. */
|
||
|
||
rtx
|
||
hard_function_value (valtype, func, outgoing)
|
||
tree valtype;
|
||
tree func ATTRIBUTE_UNUSED;
|
||
int outgoing ATTRIBUTE_UNUSED;
|
||
{
|
||
rtx val;
|
||
|
||
#ifdef FUNCTION_OUTGOING_VALUE
|
||
if (outgoing)
|
||
val = FUNCTION_OUTGOING_VALUE (valtype, func);
|
||
else
|
||
#endif
|
||
val = FUNCTION_VALUE (valtype, func);
|
||
|
||
if (GET_CODE (val) == REG
|
||
&& GET_MODE (val) == BLKmode)
|
||
{
|
||
unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
|
||
enum machine_mode tmpmode;
|
||
|
||
for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
tmpmode != VOIDmode;
|
||
tmpmode = GET_MODE_WIDER_MODE (tmpmode))
|
||
{
|
||
/* Have we found a large enough mode? */
|
||
if (GET_MODE_SIZE (tmpmode) >= bytes)
|
||
break;
|
||
}
|
||
|
||
/* No suitable mode found. */
|
||
if (tmpmode == VOIDmode)
|
||
abort ();
|
||
|
||
PUT_MODE (val, tmpmode);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
/* Return an rtx representing the register or memory location
|
||
in which a scalar value of mode MODE was returned by a library call. */
|
||
|
||
rtx
|
||
hard_libcall_value (mode)
|
||
enum machine_mode mode;
|
||
{
|
||
return LIBCALL_VALUE (mode);
|
||
}
|
||
|
||
/* Look up the tree code for a given rtx code
|
||
to provide the arithmetic operation for REAL_ARITHMETIC.
|
||
The function returns an int because the caller may not know
|
||
what `enum tree_code' means. */
|
||
|
||
int
|
||
rtx_to_tree_code (code)
|
||
enum rtx_code code;
|
||
{
|
||
enum tree_code tcode;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
tcode = PLUS_EXPR;
|
||
break;
|
||
case MINUS:
|
||
tcode = MINUS_EXPR;
|
||
break;
|
||
case MULT:
|
||
tcode = MULT_EXPR;
|
||
break;
|
||
case DIV:
|
||
tcode = RDIV_EXPR;
|
||
break;
|
||
case SMIN:
|
||
tcode = MIN_EXPR;
|
||
break;
|
||
case SMAX:
|
||
tcode = MAX_EXPR;
|
||
break;
|
||
default:
|
||
tcode = LAST_AND_UNUSED_TREE_CODE;
|
||
break;
|
||
}
|
||
return ((int) tcode);
|
||
}
|