b76e0b7680
From-SVN: r2683
1194 lines
41 KiB
C++
1194 lines
41 KiB
C++
/* Definitions of target machine for GNU compiler. Convex version.
|
||
Copyright (C) 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* Standard GCC variables that we reference. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Interface to convex.c. */
|
||
|
||
extern int current_section_is_text;
|
||
extern int const_double_low_int ();
|
||
extern int const_double_high_int ();
|
||
extern char *set_cmp (), *gen_cmp ();
|
||
extern char *output_call ();
|
||
|
||
/* Use the proper incantation to search Posix-compliant libraries. */
|
||
|
||
#define LINK_SPEC \
|
||
"%{!traditional:-Eposix}%{traditional:-Enoposix}\
|
||
-A__iob=___ap$iob\
|
||
-A_use_libc_sema=___ap$use_libc_sema\
|
||
-L /usr/lib"
|
||
|
||
/* Use the matching startup files. */
|
||
|
||
#define STARTFILE_SPEC \
|
||
"%{pg:/usr/lib/crt/gcrt0.o}\
|
||
%{!pg:%{p:/usr/lib/crt/mcrt0.o}\
|
||
%{!p:/usr/lib/crt/crt0.o}}"
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dconvex -Dunix"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fprintf (stderr, " (convex)");
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/*
|
||
-mc1 C1 target (avoid C2-only instructions)
|
||
-mc2 C2 target
|
||
-mc32 vitesse
|
||
-mc34 javelin
|
||
-mc38 neptune
|
||
-margcount use standard calling sequence, with arg count word
|
||
-mnoargcount don't push arg count, depend on symbol table
|
||
*/
|
||
|
||
#define TARGET_C1 (target_flags & 1)
|
||
#define TARGET_C2 (target_flags & 2)
|
||
#define TARGET_C34 (target_flags & 4)
|
||
#define TARGET_C38 (target_flags & 010)
|
||
#define TARGET_INDIRECTS (1)
|
||
#define TARGET_ARGCOUNT (target_flags & 040)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "c1", 021 }, \
|
||
{ "c2", 022 }, \
|
||
{ "c32", 022 }, \
|
||
{ "c34", 006 }, \
|
||
{ "c38", 012 }, \
|
||
{ "noc1", -001 }, \
|
||
{ "noc2", -002 }, \
|
||
{ "argcount", 040 }, \
|
||
{ "noargcount", -040 }, \
|
||
{ "", TARGET_DEFAULT }}
|
||
|
||
/* Default target_flags if no switches specified. */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT 0
|
||
#endif
|
||
|
||
/* Allow $ in identifiers. */
|
||
|
||
#define DOLLARS_IN_IDENTIFIERS 2
|
||
|
||
/* Target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is numbered. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 64
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 8
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
/* beware of doubles in structs -- 64 is incompatible with pcc */
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 0
|
||
|
||
/* Define sizes of basic C types to conform to ordinary usage -- these
|
||
types depend on BITS_PER_WORD otherwise. */
|
||
#define CHAR_TYPE_SIZE 8
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define LONG_TYPE_SIZE 32
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
#define LONG_DOUBLE_TYPE_SIZE 64
|
||
|
||
/* Declare the standard types used by builtins to match convex stddef.h --
|
||
with int rather than long. */
|
||
|
||
#define SIZE_TYPE "unsigned int"
|
||
#define PTRDIFF_TYPE "int"
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers. */
|
||
#define FIRST_PSEUDO_REGISTER 16
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
For Convex, these are AP, FP, and SP. */
|
||
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On Convex, S registers can hold any type, A registers any nonfloat. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((REGNO) < 8 || (GET_MODE_CLASS (MODE) != MODE_FLOAT && \
|
||
GET_MODE_CLASS (MODE) != MODE_COMPLEX_FLOAT && \
|
||
(MODE) != DImode))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
|
||
|| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT \
|
||
|| (MODE1) == DImode) \
|
||
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
|
||
|| GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT \
|
||
|| (MODE2) == DImode))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 8
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 15
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 1
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 14
|
||
|
||
/* Register in which static-chain is passed to a function.
|
||
Use S0, not an A reg, because this rare use would otherwise prevent
|
||
an A reg from being available to global-alloc across calls. */
|
||
#define STATIC_CHAIN_REGNUM 0
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 9
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* Convex has classes A (address) and S (scalar).
|
||
A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
|
||
Seems to work better to put S first, here and in the md. */
|
||
|
||
enum reg_class {
|
||
NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, ALL_REGS, LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Since GENERAL_REGS is the same class as ALL_REGS,
|
||
don't give it a different class number; just make it an alias. */
|
||
|
||
#define GENERAL_REGS ALL_REGS
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS {0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xffff}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
(S_REGNO_P (REGNO) ? S_REGS : REGNO == 8 ? SP_REGS : INDEX_REGS)
|
||
|
||
#define S_REGNO_P(REGNO) ((REGNO) < 8)
|
||
#define A_REGNO_P(REGNO) ((REGNO) >= 8)
|
||
|
||
#define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
|
||
#define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS INDEX_REGS
|
||
#define BASE_REG_CLASS INDEX_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
/* S regs use the letter 'd' because 's' is taken. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'a' ? A_REGS : \
|
||
(C) == 'd' ? S_REGS : \
|
||
(C) == 'A' ? INDEX_REGS : \
|
||
NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C. */
|
||
|
||
/* Convex uses only I:
|
||
32-bit value with sign bit off, usable as immediate in DImode logical
|
||
instructions and, or, xor */
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) ((VALUE) >= 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
/* Convex uses only G:
|
||
value usable in ld.d (low word 0) or ld.l (high word all sign) */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
(LD_D_P (VALUE) || LD_L_P (VALUE))
|
||
|
||
#define LD_D_P(X) (const_double_low_int (X) == 0)
|
||
|
||
#define LD_L_P(X) (const_double_low_int (X) >= 0 \
|
||
? const_double_high_int (X) == 0 \
|
||
: const_double_high_int (X) == -1)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
/* CONST_DOUBLEs (constraint 'F') are passed by LEGITIMATE_CONSTANT_P
|
||
without regard to their value. Constraint 'G' is used by instructions
|
||
that need to reject non-immediate values. The rejected values are
|
||
dealt with by reload -- PREFERRED_RELOAD_CLASS returns NO_REGS for
|
||
nonimmediate values, causing reload to put them in memory. Every insn
|
||
that uses 'G' must have an alternative that accepts memory. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
(GET_CODE (X) != CONST_DOUBLE ? (CLASS) : \
|
||
(GET_MODE (X) != TFmode && (LD_L_P (X) || LD_D_P (X))) ? (CLASS) : NO_REGS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Define this if should default to -fcaller-saves. */
|
||
#define DEFAULT_CALLER_SAVES
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
#define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack. */
|
||
/* The standard Convex call, with arg count word, includes popping the
|
||
args as part of the call template. We optionally omit the arg count
|
||
word and let gcc combine the arg pops. */
|
||
#define RETURN_POPS_ARGS(FUNTYPE, SIZE) (TARGET_ARGCOUNT ? (SIZE) : 0)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On Convex the return value is in S0 regardless. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On Convex the return value is in S0 regardless. */
|
||
|
||
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
#define PCC_STATIC_STRUCT_RETURN
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the Convex, S0 is the only register thus used. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
|
||
|
||
/* 1 if N is a possible register number for function argument passing. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On convex, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On Convex, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On Convex, all args are pushed. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ if ((SIZE) != 0) fprintf (FILE, "\tsub.w #%d,sp\n", ((SIZE) + 3) & -4);}
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On convex, the code for a trampoline is
|
||
ld.w #<link>,s0
|
||
jmp <func> */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x11c8)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x0140)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE 12
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
|
||
emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
|
||
emit_call_insn (gen_call (gen_rtx (MEM, QImode, \
|
||
gen_rtx (SYMBOL_REF, Pmode, \
|
||
"__enable_execute_stack")), \
|
||
const0_rtx)); \
|
||
}
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE. */
|
||
|
||
/* #define FUNCTION_EPILOGUE(FILE, SIZE) */
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved. */
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
|
||
{ (DEPTH) = get_frame_size (); }
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(regno) \
|
||
((((regno) ^ 010) < 8 || ((reg_renumber[regno] ^ 010) & -8) == 0) \
|
||
&& regno != 8)
|
||
|
||
#define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
/* 1 if X is an rtx for a constant that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
/* For convex, any single-word constant is ok; the only contexts
|
||
allowing general_operand of mode DI or DF are movdi and movdf. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE ? 1 : (LD_D_P (X) || LD_L_P (X)))
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(REGNO (X) > 8 \
|
||
&& REGNO (X) != VIRTUAL_STACK_VARS_REGNUM \
|
||
&& REGNO (X) != VIRTUAL_STACK_DYNAMIC_REGNUM \
|
||
&& REGNO (X) != VIRTUAL_OUTGOING_ARGS_REGNUM)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
For Convex, valid addresses are
|
||
indirectable or (MEM indirectable)
|
||
where indirectable is
|
||
const, reg, (PLUS reg const)
|
||
|
||
On C3-series processors, we avoid indirection since it's substantially
|
||
slower. */
|
||
|
||
/* 1 if X is an address that we could indirect through. */
|
||
#define INDIRECTABLE_ADDRESS_P(X) \
|
||
(CONSTANT_ADDRESS_P (X) \
|
||
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 1))) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 1)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 1)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 0))))
|
||
|
||
/* Go to ADDR if X is a valid address. */
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ register rtx xfoob = (X); \
|
||
if (INDIRECTABLE_ADDRESS_P (xfoob)) \
|
||
goto ADDR; \
|
||
xfoob = XEXP (X, 0); \
|
||
if (GET_CODE (X) == MEM \
|
||
&& TARGET_INDIRECTS \
|
||
&& INDIRECTABLE_ADDRESS_P (xfoob)) \
|
||
goto ADDR; \
|
||
if (GET_CODE (X) == PRE_DEC && REG_P (xfoob) \
|
||
&& REGNO (xfoob) == STACK_POINTER_REGNUM) \
|
||
goto ADDR; }
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For Convex, nothing needs to be done. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the case instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE */
|
||
|
||
/* Define this if the case instruction drops through after the table
|
||
when the index is out of range. Don't define it if the case insn
|
||
jumps to the default label instead. */
|
||
/* #define CASE_DROPS_THROUGH */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 8
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* On Convex, it is as good to call a constant function address as to
|
||
call an address kept in a register. */
|
||
#define NO_FUNCTION_CSE
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
case CONST_INT: \
|
||
return 0; \
|
||
case CONST_DOUBLE: \
|
||
return 2;
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE.
|
||
On C1 and C2, multiply is faster than shift. */
|
||
|
||
#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case MULT: \
|
||
total = COSTS_N_INSNS (4); \
|
||
break; \
|
||
case LSHIFT: \
|
||
case ASHIFT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFTRT: \
|
||
total = COSTS_N_INSNS (3); \
|
||
break;
|
||
|
||
/* Compute the cost of an address. This is meant to approximate the size
|
||
and/or execution delay of an insn using that address. If the cost is
|
||
approximated by the RTL complexity, including CONST_COSTS above, as
|
||
is usually the case for CISC machines, this macro should not be defined.
|
||
For aggressively RISCy machines, only one insn format is allowed, so
|
||
this macro should be a constant. The value of this macro only matters
|
||
for valid addresses. */
|
||
|
||
#define ADDRESS_COST(RTX) (GET_CODE (RTX) == MEM ? 3 : 1)
|
||
|
||
/* Specify the cost of a branch insn; roughly the number of extra insns that
|
||
should be added to avoid a branch. */
|
||
|
||
#define BRANCH_COST 0
|
||
|
||
/* Check a `double' value for validity for a particular machine mode. */
|
||
|
||
#define CHECK_FLOAT_VALUE(mode, d) \
|
||
if ((mode) == SFmode) \
|
||
{ \
|
||
if ((d) > 1.7014117331926443e+38) \
|
||
{ error ("magnitude of constant too large for `float'"); \
|
||
(d) = 1.7014117331926443e+38; } \
|
||
else if ((d) < -1.7014117331926443e+38) \
|
||
{ error ("magnitude of constant too large for `float'"); \
|
||
(d) = -1.7014117331926443e+38; } \
|
||
else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \
|
||
{ warning ("`float' constant truncated to zero"); \
|
||
(d) = 0.0; } \
|
||
else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \
|
||
{ warning ("`float' constant truncated to zero"); \
|
||
(d) = 0.0; } \
|
||
}
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). No extra ones are needed for convex. */
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP,INSN) {}
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n")
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ";APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ";NO_APP\n"
|
||
|
||
/* Output something following the gcc2_compiled tag to keep that label from
|
||
hiding a real function name for tools like adb and prof. */
|
||
|
||
#define ASM_IDENTIFY_GCC(FILE) \
|
||
fprintf (FILE, "gcc2_compiled.:\n\tds.h 0\n");
|
||
|
||
/* Alignment with Convex's assembler goes like this:
|
||
.text can be .aligned up to a halfword.
|
||
.data and .bss can be .aligned up to a longword.
|
||
.lcomm is not supported, explicit declarations in .bss must be used instead.
|
||
We get alignment for word and longword .text data by conventionally
|
||
using .text 2 for word-aligned data and .text 3 for longword-aligned
|
||
data. This requires that the data's size be a multiple of its alignment,
|
||
which seems to be always true. */
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
|
||
|
||
/* Output before uninitialized data. */
|
||
|
||
#define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
|
||
|
||
/* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
|
||
|
||
#define EXTRA_SECTIONS in_bss
|
||
|
||
#define EXTRA_SECTION_FUNCTIONS \
|
||
void \
|
||
bss_section () \
|
||
{ \
|
||
if (in_section != in_bss) \
|
||
{ \
|
||
fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
|
||
in_section = in_bss; \
|
||
} \
|
||
}
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if (current_section_is_text && (LOG) > 1) \
|
||
fprintf (FILE, ".text %d\n", LOG); \
|
||
else if (current_section_is_text) \
|
||
fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
|
||
else \
|
||
fprintf (FILE, ".align %d\n", 1 << (LOG))
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
|
||
"sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp"}
|
||
|
||
/* This is BSD, so it wants DBX format. */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* Do not break .stabs pseudos into continuations. */
|
||
|
||
#define DBX_CONTIN_LENGTH 0
|
||
|
||
/* This is the char to use for continuation (in case we need to turn
|
||
continuation back on). */
|
||
|
||
#define DBX_CONTIN_CHAR '?'
|
||
|
||
/* Don't use stab extensions until GDB v4 port is available for convex. */
|
||
|
||
#define DEFAULT_GDB_EXTENSIONS 0
|
||
#define DBX_NO_XREFS
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
|
||
/* This is how to output a reference to a user-level label named NAME. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
fprintf (FILE, "_%s", NAME)
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* Put case tables in .text 2, where they will be word-aligned */
|
||
|
||
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
|
||
ASM_OUTPUT_ALIGN (FILE, 2); \
|
||
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
|
||
|
||
#define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
|
||
ASM_OUTPUT_ALIGN (FILE, 1)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
fprintf (FILE, "\tds.d %.17e\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
fprintf (FILE, "\tds.s %.9e\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\tds.w "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for a `long long int' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
|
||
{ \
|
||
if (GET_CODE (VALUE) == CONST_DOUBLE) \
|
||
fprintf (FILE, "\tds.w %d,%d\n", \
|
||
const_double_high_int (VALUE), const_double_low_int (VALUE)); \
|
||
else if (GET_CODE (VALUE) == CONST_INT) \
|
||
{ \
|
||
int val = INTVAL (VALUE); \
|
||
fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
|
||
} \
|
||
else \
|
||
abort (); \
|
||
}
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\tds.h "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\tds.b "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\tds.b %#x\n", (VALUE))
|
||
|
||
/* This is how to output a string */
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
|
||
int i; \
|
||
fprintf ((FILE), "\tds.b \""); \
|
||
for (i = 0; i < (SIZE); i++) { \
|
||
register int c = (STR)[i] & 0377; \
|
||
if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
|
||
putc (c, (FILE)); \
|
||
else \
|
||
fprintf ((FILE), "\\%03o", c);} \
|
||
fprintf ((FILE), "\"\n");} while (0)
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tpsh.%c %s\n", \
|
||
S_REGNO_P (REGNO) ? 'l' : 'w', \
|
||
reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tpop.%c %s\n", \
|
||
S_REGNO_P (REGNO) ? 'l' : 'w', \
|
||
reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\tds.w L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
(not used on Convex) */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter by SIZE bytes. */
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs (".comm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( bss_section (), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print an instruction operand X on file FILE.
|
||
CODE is the code from the %-spec that requested printing this operand;
|
||
if `%z3' was used to print operand 3, then CODE is 'z'. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ if (GET_CODE (X) == REG) \
|
||
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
|
||
else if (GET_CODE (X) == MEM) \
|
||
output_address (XEXP (X, 0)); \
|
||
else if (GET_CODE (X) == CONST_DOUBLE \
|
||
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
|
||
{ union { double d; int i[2]; } u; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
fprintf (FILE, "#%.9e", u.d); } \
|
||
else { putc ('#', FILE); output_addr_const (FILE, X); }}
|
||
|
||
/* Print a memory operand whose address is X, on file FILE. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ \
|
||
register rtx addr = ADDR; \
|
||
register rtx index = 0; \
|
||
register rtx offset = 0; \
|
||
\
|
||
if (GET_CODE (addr) == MEM) \
|
||
{ \
|
||
fprintf (FILE, "@"); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
\
|
||
switch (GET_CODE (addr)) \
|
||
{ \
|
||
case REG: \
|
||
index = addr; \
|
||
break; \
|
||
\
|
||
case PLUS: \
|
||
index = XEXP (addr, 0); \
|
||
if (REG_P (index)) \
|
||
offset = XEXP (addr, 1); \
|
||
else \
|
||
{ \
|
||
offset = XEXP (addr, 0); \
|
||
index = XEXP (addr, 1); \
|
||
if (! REG_P (index)) abort (); \
|
||
} \
|
||
break; \
|
||
\
|
||
default: \
|
||
offset = addr; \
|
||
break; \
|
||
} \
|
||
\
|
||
if (offset) \
|
||
output_addr_const (FILE, offset); \
|
||
\
|
||
if (index) \
|
||
fprintf (FILE, "(%s)", reg_names[REGNO (index)]); \
|
||
}
|
||
|
||
/* Definitions for g++. */
|
||
|
||
/* Do not put out GNU stabs for constructors and destructors.
|
||
ld bounces them. */
|
||
|
||
#define FASCIST_ASSEMBLER
|
||
|
||
/* Convex user addresses are negative, so use positive numbers
|
||
to mean `vtable index'. */
|
||
|
||
#define VTABLE_USES_MASK
|
||
#define VINDEX_MAX ((unsigned) 0x80000000)
|
||
#define SET_DECL_VINDEX(DECL, INDEX) \
|
||
(DECL_VINDEX (DECL) = (INDEX))
|
||
|
||
#if 0 /* collect2.c should no longer need these. */
|
||
/* Defs for compiling collect2.c in -pcc mode during bootstrap. */
|
||
|
||
#ifdef COLLECT
|
||
|
||
#ifndef __STDC__
|
||
|
||
#define WTERMSIG(x) (((union wait *) &(x))->w_termsig)
|
||
#define WEXITSTATUS(x) (((union wait *) &(x))->w_retcode)
|
||
|
||
#endif
|
||
|
||
#endif /* COLLECT */
|
||
#endif /* 0 */
|