PR tree-optimization/47538 * tree-ssa-ccp.c (bit_value_binop_1): For uns computation use type instead of r1type, except for comparisons. For right shifts and comparisons punt if there are mismatches in sizetype vs. non-sizetype types. * gcc.c-torture/execute/pr47538.c: New test. Co-Authored-By: Richard Guenther <rguenther@suse.de> From-SVN: r169441
2858 lines
83 KiB
C
2858 lines
83 KiB
C
/* Conditional constant propagation pass for the GNU compiler.
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
|
2010, 2011 Free Software Foundation, Inc.
|
|
Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
|
|
Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Conditional constant propagation (CCP) is based on the SSA
|
|
propagation engine (tree-ssa-propagate.c). Constant assignments of
|
|
the form VAR = CST are propagated from the assignments into uses of
|
|
VAR, which in turn may generate new constants. The simulation uses
|
|
a four level lattice to keep track of constant values associated
|
|
with SSA names. Given an SSA name V_i, it may take one of the
|
|
following values:
|
|
|
|
UNINITIALIZED -> the initial state of the value. This value
|
|
is replaced with a correct initial value
|
|
the first time the value is used, so the
|
|
rest of the pass does not need to care about
|
|
it. Using this value simplifies initialization
|
|
of the pass, and prevents us from needlessly
|
|
scanning statements that are never reached.
|
|
|
|
UNDEFINED -> V_i is a local variable whose definition
|
|
has not been processed yet. Therefore we
|
|
don't yet know if its value is a constant
|
|
or not.
|
|
|
|
CONSTANT -> V_i has been found to hold a constant
|
|
value C.
|
|
|
|
VARYING -> V_i cannot take a constant value, or if it
|
|
does, it is not possible to determine it
|
|
at compile time.
|
|
|
|
The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
|
|
|
|
1- In ccp_visit_stmt, we are interested in assignments whose RHS
|
|
evaluates into a constant and conditional jumps whose predicate
|
|
evaluates into a boolean true or false. When an assignment of
|
|
the form V_i = CONST is found, V_i's lattice value is set to
|
|
CONSTANT and CONST is associated with it. This causes the
|
|
propagation engine to add all the SSA edges coming out the
|
|
assignment into the worklists, so that statements that use V_i
|
|
can be visited.
|
|
|
|
If the statement is a conditional with a constant predicate, we
|
|
mark the outgoing edges as executable or not executable
|
|
depending on the predicate's value. This is then used when
|
|
visiting PHI nodes to know when a PHI argument can be ignored.
|
|
|
|
|
|
2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
|
|
same constant C, then the LHS of the PHI is set to C. This
|
|
evaluation is known as the "meet operation". Since one of the
|
|
goals of this evaluation is to optimistically return constant
|
|
values as often as possible, it uses two main short cuts:
|
|
|
|
- If an argument is flowing in through a non-executable edge, it
|
|
is ignored. This is useful in cases like this:
|
|
|
|
if (PRED)
|
|
a_9 = 3;
|
|
else
|
|
a_10 = 100;
|
|
a_11 = PHI (a_9, a_10)
|
|
|
|
If PRED is known to always evaluate to false, then we can
|
|
assume that a_11 will always take its value from a_10, meaning
|
|
that instead of consider it VARYING (a_9 and a_10 have
|
|
different values), we can consider it CONSTANT 100.
|
|
|
|
- If an argument has an UNDEFINED value, then it does not affect
|
|
the outcome of the meet operation. If a variable V_i has an
|
|
UNDEFINED value, it means that either its defining statement
|
|
hasn't been visited yet or V_i has no defining statement, in
|
|
which case the original symbol 'V' is being used
|
|
uninitialized. Since 'V' is a local variable, the compiler
|
|
may assume any initial value for it.
|
|
|
|
|
|
After propagation, every variable V_i that ends up with a lattice
|
|
value of CONSTANT will have the associated constant value in the
|
|
array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
|
|
final substitution and folding.
|
|
|
|
References:
|
|
|
|
Constant propagation with conditional branches,
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
|
|
|
Building an Optimizing Compiler,
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
|
|
|
Advanced Compiler Design and Implementation,
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "flags.h"
|
|
#include "tm_p.h"
|
|
#include "basic-block.h"
|
|
#include "output.h"
|
|
#include "function.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "timevar.h"
|
|
#include "tree-dump.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "value-prof.h"
|
|
#include "langhooks.h"
|
|
#include "target.h"
|
|
#include "diagnostic-core.h"
|
|
#include "dbgcnt.h"
|
|
|
|
|
|
/* Possible lattice values. */
|
|
typedef enum
|
|
{
|
|
UNINITIALIZED,
|
|
UNDEFINED,
|
|
CONSTANT,
|
|
VARYING
|
|
} ccp_lattice_t;
|
|
|
|
struct prop_value_d {
|
|
/* Lattice value. */
|
|
ccp_lattice_t lattice_val;
|
|
|
|
/* Propagated value. */
|
|
tree value;
|
|
|
|
/* Mask that applies to the propagated value during CCP. For
|
|
X with a CONSTANT lattice value X & ~mask == value & ~mask. */
|
|
double_int mask;
|
|
};
|
|
|
|
typedef struct prop_value_d prop_value_t;
|
|
|
|
/* Array of propagated constant values. After propagation,
|
|
CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
|
|
the constant is held in an SSA name representing a memory store
|
|
(i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
|
|
memory reference used to store (i.e., the LHS of the assignment
|
|
doing the store). */
|
|
static prop_value_t *const_val;
|
|
|
|
static void canonicalize_float_value (prop_value_t *);
|
|
static bool ccp_fold_stmt (gimple_stmt_iterator *);
|
|
static tree fold_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size);
|
|
|
|
/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
|
|
|
|
static void
|
|
dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
|
|
{
|
|
switch (val.lattice_val)
|
|
{
|
|
case UNINITIALIZED:
|
|
fprintf (outf, "%sUNINITIALIZED", prefix);
|
|
break;
|
|
case UNDEFINED:
|
|
fprintf (outf, "%sUNDEFINED", prefix);
|
|
break;
|
|
case VARYING:
|
|
fprintf (outf, "%sVARYING", prefix);
|
|
break;
|
|
case CONSTANT:
|
|
fprintf (outf, "%sCONSTANT ", prefix);
|
|
if (TREE_CODE (val.value) != INTEGER_CST
|
|
|| double_int_zero_p (val.mask))
|
|
print_generic_expr (outf, val.value, dump_flags);
|
|
else
|
|
{
|
|
double_int cval = double_int_and_not (tree_to_double_int (val.value),
|
|
val.mask);
|
|
fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
|
|
prefix, cval.high, cval.low);
|
|
fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
|
|
val.mask.high, val.mask.low);
|
|
}
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Print lattice value VAL to stderr. */
|
|
|
|
void debug_lattice_value (prop_value_t val);
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_lattice_value (prop_value_t val)
|
|
{
|
|
dump_lattice_value (stderr, "", val);
|
|
fprintf (stderr, "\n");
|
|
}
|
|
|
|
|
|
/* Compute a default value for variable VAR and store it in the
|
|
CONST_VAL array. The following rules are used to get default
|
|
values:
|
|
|
|
1- Global and static variables that are declared constant are
|
|
considered CONSTANT.
|
|
|
|
2- Any other value is considered UNDEFINED. This is useful when
|
|
considering PHI nodes. PHI arguments that are undefined do not
|
|
change the constant value of the PHI node, which allows for more
|
|
constants to be propagated.
|
|
|
|
3- Variables defined by statements other than assignments and PHI
|
|
nodes are considered VARYING.
|
|
|
|
4- Initial values of variables that are not GIMPLE registers are
|
|
considered VARYING. */
|
|
|
|
static prop_value_t
|
|
get_default_value (tree var)
|
|
{
|
|
tree sym = SSA_NAME_VAR (var);
|
|
prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
|
|
gimple stmt;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
if (gimple_nop_p (stmt))
|
|
{
|
|
/* Variables defined by an empty statement are those used
|
|
before being initialized. If VAR is a local variable, we
|
|
can assume initially that it is UNDEFINED, otherwise we must
|
|
consider it VARYING. */
|
|
if (is_gimple_reg (sym)
|
|
&& TREE_CODE (sym) == VAR_DECL)
|
|
val.lattice_val = UNDEFINED;
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = double_int_minus_one;
|
|
}
|
|
}
|
|
else if (is_gimple_assign (stmt)
|
|
/* Value-returning GIMPLE_CALL statements assign to
|
|
a variable, and are treated similarly to GIMPLE_ASSIGN. */
|
|
|| (is_gimple_call (stmt)
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
|
|| gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
tree cst;
|
|
if (gimple_assign_single_p (stmt)
|
|
&& DECL_P (gimple_assign_rhs1 (stmt))
|
|
&& (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = cst;
|
|
}
|
|
else
|
|
/* Any other variable defined by an assignment or a PHI node
|
|
is considered UNDEFINED. */
|
|
val.lattice_val = UNDEFINED;
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, VAR will never take on a constant value. */
|
|
val.lattice_val = VARYING;
|
|
val.mask = double_int_minus_one;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
/* Get the constant value associated with variable VAR. */
|
|
|
|
static inline prop_value_t *
|
|
get_value (tree var)
|
|
{
|
|
prop_value_t *val;
|
|
|
|
if (const_val == NULL)
|
|
return NULL;
|
|
|
|
val = &const_val[SSA_NAME_VERSION (var)];
|
|
if (val->lattice_val == UNINITIALIZED)
|
|
*val = get_default_value (var);
|
|
|
|
canonicalize_float_value (val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Return the constant tree value associated with VAR. */
|
|
|
|
static inline tree
|
|
get_constant_value (tree var)
|
|
{
|
|
prop_value_t *val;
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
if (is_gimple_min_invariant (var))
|
|
return var;
|
|
return NULL_TREE;
|
|
}
|
|
val = get_value (var);
|
|
if (val
|
|
&& val->lattice_val == CONSTANT
|
|
&& (TREE_CODE (val->value) != INTEGER_CST
|
|
|| double_int_zero_p (val->mask)))
|
|
return val->value;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Sets the value associated with VAR to VARYING. */
|
|
|
|
static inline void
|
|
set_value_varying (tree var)
|
|
{
|
|
prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
|
|
|
|
val->lattice_val = VARYING;
|
|
val->value = NULL_TREE;
|
|
val->mask = double_int_minus_one;
|
|
}
|
|
|
|
/* For float types, modify the value of VAL to make ccp work correctly
|
|
for non-standard values (-0, NaN):
|
|
|
|
If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
|
|
If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
|
|
This is to fix the following problem (see PR 29921): Suppose we have
|
|
|
|
x = 0.0 * y
|
|
|
|
and we set value of y to NaN. This causes value of x to be set to NaN.
|
|
When we later determine that y is in fact VARYING, fold uses the fact
|
|
that HONOR_NANS is false, and we try to change the value of x to 0,
|
|
causing an ICE. With HONOR_NANS being false, the real appearance of
|
|
NaN would cause undefined behavior, though, so claiming that y (and x)
|
|
are UNDEFINED initially is correct. */
|
|
|
|
static void
|
|
canonicalize_float_value (prop_value_t *val)
|
|
{
|
|
enum machine_mode mode;
|
|
tree type;
|
|
REAL_VALUE_TYPE d;
|
|
|
|
if (val->lattice_val != CONSTANT
|
|
|| TREE_CODE (val->value) != REAL_CST)
|
|
return;
|
|
|
|
d = TREE_REAL_CST (val->value);
|
|
type = TREE_TYPE (val->value);
|
|
mode = TYPE_MODE (type);
|
|
|
|
if (!HONOR_SIGNED_ZEROS (mode)
|
|
&& REAL_VALUE_MINUS_ZERO (d))
|
|
{
|
|
val->value = build_real (type, dconst0);
|
|
return;
|
|
}
|
|
|
|
if (!HONOR_NANS (mode)
|
|
&& REAL_VALUE_ISNAN (d))
|
|
{
|
|
val->lattice_val = UNDEFINED;
|
|
val->value = NULL;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Return whether the lattice transition is valid. */
|
|
|
|
static bool
|
|
valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
|
|
{
|
|
/* Lattice transitions must always be monotonically increasing in
|
|
value. */
|
|
if (old_val.lattice_val < new_val.lattice_val)
|
|
return true;
|
|
|
|
if (old_val.lattice_val != new_val.lattice_val)
|
|
return false;
|
|
|
|
if (!old_val.value && !new_val.value)
|
|
return true;
|
|
|
|
/* Now both lattice values are CONSTANT. */
|
|
|
|
/* Allow transitioning from &x to &x & ~3. */
|
|
if (TREE_CODE (old_val.value) != INTEGER_CST
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST)
|
|
return true;
|
|
|
|
/* Bit-lattices have to agree in the still valid bits. */
|
|
if (TREE_CODE (old_val.value) == INTEGER_CST
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST)
|
|
return double_int_equal_p
|
|
(double_int_and_not (tree_to_double_int (old_val.value),
|
|
new_val.mask),
|
|
double_int_and_not (tree_to_double_int (new_val.value),
|
|
new_val.mask));
|
|
|
|
/* Otherwise constant values have to agree. */
|
|
return operand_equal_p (old_val.value, new_val.value, 0);
|
|
}
|
|
|
|
/* Set the value for variable VAR to NEW_VAL. Return true if the new
|
|
value is different from VAR's previous value. */
|
|
|
|
static bool
|
|
set_lattice_value (tree var, prop_value_t new_val)
|
|
{
|
|
/* We can deal with old UNINITIALIZED values just fine here. */
|
|
prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
|
|
|
|
canonicalize_float_value (&new_val);
|
|
|
|
/* We have to be careful to not go up the bitwise lattice
|
|
represented by the mask.
|
|
??? This doesn't seem to be the best place to enforce this. */
|
|
if (new_val.lattice_val == CONSTANT
|
|
&& old_val->lattice_val == CONSTANT
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST
|
|
&& TREE_CODE (old_val->value) == INTEGER_CST)
|
|
{
|
|
double_int diff;
|
|
diff = double_int_xor (tree_to_double_int (new_val.value),
|
|
tree_to_double_int (old_val->value));
|
|
new_val.mask = double_int_ior (new_val.mask,
|
|
double_int_ior (old_val->mask, diff));
|
|
}
|
|
|
|
gcc_assert (valid_lattice_transition (*old_val, new_val));
|
|
|
|
/* If *OLD_VAL and NEW_VAL are the same, return false to inform the
|
|
caller that this was a non-transition. */
|
|
if (old_val->lattice_val != new_val.lattice_val
|
|
|| (new_val.lattice_val == CONSTANT
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST
|
|
&& (TREE_CODE (old_val->value) != INTEGER_CST
|
|
|| !double_int_equal_p (new_val.mask, old_val->mask))))
|
|
{
|
|
/* ??? We would like to delay creation of INTEGER_CSTs from
|
|
partially constants here. */
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
|
|
fprintf (dump_file, ". Adding SSA edges to worklist.\n");
|
|
}
|
|
|
|
*old_val = new_val;
|
|
|
|
gcc_assert (new_val.lattice_val != UNINITIALIZED);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static prop_value_t get_value_for_expr (tree, bool);
|
|
static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
|
|
static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
|
|
tree, double_int, double_int,
|
|
tree, double_int, double_int);
|
|
|
|
/* Return a double_int that can be used for bitwise simplifications
|
|
from VAL. */
|
|
|
|
static double_int
|
|
value_to_double_int (prop_value_t val)
|
|
{
|
|
if (val.value
|
|
&& TREE_CODE (val.value) == INTEGER_CST)
|
|
return tree_to_double_int (val.value);
|
|
else
|
|
return double_int_zero;
|
|
}
|
|
|
|
/* Return the value for the address expression EXPR based on alignment
|
|
information. */
|
|
|
|
static prop_value_t
|
|
get_value_from_alignment (tree expr)
|
|
{
|
|
prop_value_t val;
|
|
HOST_WIDE_INT bitsize, bitpos;
|
|
tree base, offset;
|
|
enum machine_mode mode;
|
|
int align;
|
|
|
|
gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
|
|
|
|
base = get_inner_reference (TREE_OPERAND (expr, 0),
|
|
&bitsize, &bitpos, &offset,
|
|
&mode, &align, &align, false);
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr),
|
|
TREE_OPERAND (base, 0), TREE_OPERAND (base, 1));
|
|
else if (base
|
|
/* ??? While function decls have DECL_ALIGN their addresses
|
|
may encode extra information in the lower bits on some
|
|
targets (PR47239). Simply punt for function decls for now. */
|
|
&& TREE_CODE (base) != FUNCTION_DECL
|
|
&& ((align = get_object_alignment (base, BIGGEST_ALIGNMENT))
|
|
> BITS_PER_UNIT))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
/* We assume pointers are zero-extended. */
|
|
val.mask = double_int_and_not
|
|
(double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))),
|
|
uhwi_to_double_int (align / BITS_PER_UNIT - 1));
|
|
val.value = build_int_cst (TREE_TYPE (expr), 0);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = double_int_minus_one;
|
|
val.value = NULL_TREE;
|
|
}
|
|
if (bitpos != 0)
|
|
{
|
|
double_int value, mask;
|
|
bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
|
|
TREE_TYPE (expr), value_to_double_int (val), val.mask,
|
|
TREE_TYPE (expr),
|
|
shwi_to_double_int (bitpos / BITS_PER_UNIT),
|
|
double_int_zero);
|
|
val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT;
|
|
val.mask = mask;
|
|
if (val.lattice_val == CONSTANT)
|
|
val.value = double_int_to_tree (TREE_TYPE (expr), value);
|
|
else
|
|
val.value = NULL_TREE;
|
|
}
|
|
/* ??? We should handle i * 4 and more complex expressions from
|
|
the offset, possibly by just expanding get_value_for_expr. */
|
|
if (offset != NULL_TREE)
|
|
{
|
|
double_int value, mask;
|
|
prop_value_t oval = get_value_for_expr (offset, true);
|
|
bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
|
|
TREE_TYPE (expr), value_to_double_int (val), val.mask,
|
|
TREE_TYPE (expr), value_to_double_int (oval),
|
|
oval.mask);
|
|
val.mask = mask;
|
|
if (double_int_minus_one_p (mask))
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = double_int_to_tree (TREE_TYPE (expr), value);
|
|
}
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Return the value for the tree operand EXPR. If FOR_BITS_P is true
|
|
return constant bits extracted from alignment information for
|
|
invariant addresses. */
|
|
|
|
static prop_value_t
|
|
get_value_for_expr (tree expr, bool for_bits_p)
|
|
{
|
|
prop_value_t val;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
val = *get_value (expr);
|
|
if (for_bits_p
|
|
&& val.lattice_val == CONSTANT
|
|
&& TREE_CODE (val.value) == ADDR_EXPR)
|
|
val = get_value_from_alignment (val.value);
|
|
}
|
|
else if (is_gimple_min_invariant (expr)
|
|
&& (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = expr;
|
|
val.mask = double_int_zero;
|
|
canonicalize_float_value (&val);
|
|
}
|
|
else if (TREE_CODE (expr) == ADDR_EXPR)
|
|
val = get_value_from_alignment (expr);
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = double_int_minus_one;
|
|
val.value = NULL_TREE;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Return the likely CCP lattice value for STMT.
|
|
|
|
If STMT has no operands, then return CONSTANT.
|
|
|
|
Else if undefinedness of operands of STMT cause its value to be
|
|
undefined, then return UNDEFINED.
|
|
|
|
Else if any operands of STMT are constants, then return CONSTANT.
|
|
|
|
Else return VARYING. */
|
|
|
|
static ccp_lattice_t
|
|
likely_value (gimple stmt)
|
|
{
|
|
bool has_constant_operand, has_undefined_operand, all_undefined_operands;
|
|
tree use;
|
|
ssa_op_iter iter;
|
|
unsigned i;
|
|
|
|
enum gimple_code code = gimple_code (stmt);
|
|
|
|
/* This function appears to be called only for assignments, calls,
|
|
conditionals, and switches, due to the logic in visit_stmt. */
|
|
gcc_assert (code == GIMPLE_ASSIGN
|
|
|| code == GIMPLE_CALL
|
|
|| code == GIMPLE_COND
|
|
|| code == GIMPLE_SWITCH);
|
|
|
|
/* If the statement has volatile operands, it won't fold to a
|
|
constant value. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return VARYING;
|
|
|
|
/* Arrive here for more complex cases. */
|
|
has_constant_operand = false;
|
|
has_undefined_operand = false;
|
|
all_undefined_operands = true;
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
prop_value_t *val = get_value (use);
|
|
|
|
if (val->lattice_val == UNDEFINED)
|
|
has_undefined_operand = true;
|
|
else
|
|
all_undefined_operands = false;
|
|
|
|
if (val->lattice_val == CONSTANT)
|
|
has_constant_operand = true;
|
|
}
|
|
|
|
/* There may be constants in regular rhs operands. For calls we
|
|
have to ignore lhs, fndecl and static chain, otherwise only
|
|
the lhs. */
|
|
for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
|
|
i < gimple_num_ops (stmt); ++i)
|
|
{
|
|
tree op = gimple_op (stmt, i);
|
|
if (!op || TREE_CODE (op) == SSA_NAME)
|
|
continue;
|
|
if (is_gimple_min_invariant (op))
|
|
has_constant_operand = true;
|
|
}
|
|
|
|
if (has_constant_operand)
|
|
all_undefined_operands = false;
|
|
|
|
/* If the operation combines operands like COMPLEX_EXPR make sure to
|
|
not mark the result UNDEFINED if only one part of the result is
|
|
undefined. */
|
|
if (has_undefined_operand && all_undefined_operands)
|
|
return UNDEFINED;
|
|
else if (code == GIMPLE_ASSIGN && has_undefined_operand)
|
|
{
|
|
switch (gimple_assign_rhs_code (stmt))
|
|
{
|
|
/* Unary operators are handled with all_undefined_operands. */
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
/* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
|
|
Not bitwise operators, one VARYING operand may specify the
|
|
result completely. Not logical operators for the same reason.
|
|
Not COMPLEX_EXPR as one VARYING operand makes the result partly
|
|
not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
|
|
the undefined operand may be promoted. */
|
|
return UNDEFINED;
|
|
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
/* If there was an UNDEFINED operand but the result may be not UNDEFINED
|
|
fall back to VARYING even if there were CONSTANT operands. */
|
|
if (has_undefined_operand)
|
|
return VARYING;
|
|
|
|
/* We do not consider virtual operands here -- load from read-only
|
|
memory may have only VARYING virtual operands, but still be
|
|
constant. */
|
|
if (has_constant_operand
|
|
|| gimple_references_memory_p (stmt))
|
|
return CONSTANT;
|
|
|
|
return VARYING;
|
|
}
|
|
|
|
/* Returns true if STMT cannot be constant. */
|
|
|
|
static bool
|
|
surely_varying_stmt_p (gimple stmt)
|
|
{
|
|
/* If the statement has operands that we cannot handle, it cannot be
|
|
constant. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return true;
|
|
|
|
/* If it is a call and does not return a value or is not a
|
|
builtin and not an indirect call, it is varying. */
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
tree fndecl;
|
|
if (!gimple_call_lhs (stmt)
|
|
|| ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
|
|
&& !DECL_BUILT_IN (fndecl)))
|
|
return true;
|
|
}
|
|
|
|
/* Any other store operation is not interesting. */
|
|
else if (gimple_vdef (stmt))
|
|
return true;
|
|
|
|
/* Anything other than assignments and conditional jumps are not
|
|
interesting for CCP. */
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH
|
|
&& gimple_code (stmt) != GIMPLE_CALL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Initialize local data structures for CCP. */
|
|
|
|
static void
|
|
ccp_initialize (void)
|
|
{
|
|
basic_block bb;
|
|
|
|
const_val = XCNEWVEC (prop_value_t, num_ssa_names);
|
|
|
|
/* Initialize simulation flags for PHI nodes and statements. */
|
|
FOR_EACH_BB (bb)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gimple stmt = gsi_stmt (i);
|
|
bool is_varying;
|
|
|
|
/* If the statement is a control insn, then we do not
|
|
want to avoid simulating the statement once. Failure
|
|
to do so means that those edges will never get added. */
|
|
if (stmt_ends_bb_p (stmt))
|
|
is_varying = false;
|
|
else
|
|
is_varying = surely_varying_stmt_p (stmt);
|
|
|
|
if (is_varying)
|
|
{
|
|
tree def;
|
|
ssa_op_iter iter;
|
|
|
|
/* If the statement will not produce a constant, mark
|
|
all its outputs VARYING. */
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
set_value_varying (def);
|
|
}
|
|
prop_set_simulate_again (stmt, !is_varying);
|
|
}
|
|
}
|
|
|
|
/* Now process PHI nodes. We never clear the simulate_again flag on
|
|
phi nodes, since we do not know which edges are executable yet,
|
|
except for phi nodes for virtual operands when we do not do store ccp. */
|
|
FOR_EACH_BB (bb)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
|
|
for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gimple phi = gsi_stmt (i);
|
|
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
|
prop_set_simulate_again (phi, false);
|
|
else
|
|
prop_set_simulate_again (phi, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Debug count support. Reset the values of ssa names
|
|
VARYING when the total number ssa names analyzed is
|
|
beyond the debug count specified. */
|
|
|
|
static void
|
|
do_dbg_cnt (void)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < num_ssa_names; i++)
|
|
{
|
|
if (!dbg_cnt (ccp))
|
|
{
|
|
const_val[i].lattice_val = VARYING;
|
|
const_val[i].mask = double_int_minus_one;
|
|
const_val[i].value = NULL_TREE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Do final substitution of propagated values, cleanup the flowgraph and
|
|
free allocated storage.
|
|
|
|
Return TRUE when something was optimized. */
|
|
|
|
static bool
|
|
ccp_finalize (void)
|
|
{
|
|
bool something_changed;
|
|
unsigned i;
|
|
|
|
do_dbg_cnt ();
|
|
|
|
/* Derive alignment and misalignment information from partially
|
|
constant pointers in the lattice. */
|
|
for (i = 1; i < num_ssa_names; ++i)
|
|
{
|
|
tree name = ssa_name (i);
|
|
prop_value_t *val;
|
|
struct ptr_info_def *pi;
|
|
unsigned int tem, align;
|
|
|
|
if (!name
|
|
|| !POINTER_TYPE_P (TREE_TYPE (name)))
|
|
continue;
|
|
|
|
val = get_value (name);
|
|
if (val->lattice_val != CONSTANT
|
|
|| TREE_CODE (val->value) != INTEGER_CST)
|
|
continue;
|
|
|
|
/* Trailing constant bits specify the alignment, trailing value
|
|
bits the misalignment. */
|
|
tem = val->mask.low;
|
|
align = (tem & -tem);
|
|
if (align == 1)
|
|
continue;
|
|
|
|
pi = get_ptr_info (name);
|
|
pi->align = align;
|
|
pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
|
|
}
|
|
|
|
/* Perform substitutions based on the known constant values. */
|
|
something_changed = substitute_and_fold (get_constant_value,
|
|
ccp_fold_stmt, true);
|
|
|
|
free (const_val);
|
|
const_val = NULL;
|
|
return something_changed;;
|
|
}
|
|
|
|
|
|
/* Compute the meet operator between *VAL1 and *VAL2. Store the result
|
|
in VAL1.
|
|
|
|
any M UNDEFINED = any
|
|
any M VARYING = VARYING
|
|
Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
*/
|
|
|
|
static void
|
|
ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
|
|
{
|
|
if (val1->lattice_val == UNDEFINED)
|
|
{
|
|
/* UNDEFINED M any = any */
|
|
*val1 = *val2;
|
|
}
|
|
else if (val2->lattice_val == UNDEFINED)
|
|
{
|
|
/* any M UNDEFINED = any
|
|
Nothing to do. VAL1 already contains the value we want. */
|
|
;
|
|
}
|
|
else if (val1->lattice_val == VARYING
|
|
|| val2->lattice_val == VARYING)
|
|
{
|
|
/* any M VARYING = VARYING. */
|
|
val1->lattice_val = VARYING;
|
|
val1->mask = double_int_minus_one;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& TREE_CODE (val1->value) == INTEGER_CST
|
|
&& TREE_CODE (val2->value) == INTEGER_CST)
|
|
{
|
|
/* Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
|
|
For INTEGER_CSTs mask unequal bits. If no equal bits remain,
|
|
drop to varying. */
|
|
val1->mask
|
|
= double_int_ior (double_int_ior (val1->mask,
|
|
val2->mask),
|
|
double_int_xor (tree_to_double_int (val1->value),
|
|
tree_to_double_int (val2->value)));
|
|
if (double_int_minus_one_p (val1->mask))
|
|
{
|
|
val1->lattice_val = VARYING;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& simple_cst_equal (val1->value, val2->value) == 1)
|
|
{
|
|
/* Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
|
|
VAL1 already contains the value we want for equivalent values. */
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& (TREE_CODE (val1->value) == ADDR_EXPR
|
|
|| TREE_CODE (val2->value) == ADDR_EXPR))
|
|
{
|
|
/* When not equal addresses are involved try meeting for
|
|
alignment. */
|
|
prop_value_t tem = *val2;
|
|
if (TREE_CODE (val1->value) == ADDR_EXPR)
|
|
*val1 = get_value_for_expr (val1->value, true);
|
|
if (TREE_CODE (val2->value) == ADDR_EXPR)
|
|
tem = get_value_for_expr (val2->value, true);
|
|
ccp_lattice_meet (val1, &tem);
|
|
}
|
|
else
|
|
{
|
|
/* Any other combination is VARYING. */
|
|
val1->lattice_val = VARYING;
|
|
val1->mask = double_int_minus_one;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
}
|
|
|
|
|
|
/* Loop through the PHI_NODE's parameters for BLOCK and compare their
|
|
lattice values to determine PHI_NODE's lattice value. The value of a
|
|
PHI node is determined calling ccp_lattice_meet with all the arguments
|
|
of the PHI node that are incoming via executable edges. */
|
|
|
|
static enum ssa_prop_result
|
|
ccp_visit_phi_node (gimple phi)
|
|
{
|
|
unsigned i;
|
|
prop_value_t *old_val, new_val;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
|
}
|
|
|
|
old_val = get_value (gimple_phi_result (phi));
|
|
switch (old_val->lattice_val)
|
|
{
|
|
case VARYING:
|
|
return SSA_PROP_VARYING;
|
|
|
|
case CONSTANT:
|
|
new_val = *old_val;
|
|
break;
|
|
|
|
case UNDEFINED:
|
|
new_val.lattice_val = UNDEFINED;
|
|
new_val.value = NULL_TREE;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
/* Compute the meet operator over all the PHI arguments flowing
|
|
through executable edges. */
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"\n Argument #%d (%d -> %d %sexecutable)\n",
|
|
i, e->src->index, e->dest->index,
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
|
}
|
|
|
|
/* If the incoming edge is executable, Compute the meet operator for
|
|
the existing value of the PHI node and the current PHI argument. */
|
|
if (e->flags & EDGE_EXECUTABLE)
|
|
{
|
|
tree arg = gimple_phi_arg (phi, i)->def;
|
|
prop_value_t arg_val = get_value_for_expr (arg, false);
|
|
|
|
ccp_lattice_meet (&new_val, &arg_val);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\t");
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
|
dump_lattice_value (dump_file, "\tValue: ", arg_val);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (new_val.lattice_val == VARYING)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
|
|
/* Make the transition to the new value. */
|
|
if (set_lattice_value (gimple_phi_result (phi), new_val))
|
|
{
|
|
if (new_val.lattice_val == VARYING)
|
|
return SSA_PROP_VARYING;
|
|
else
|
|
return SSA_PROP_INTERESTING;
|
|
}
|
|
else
|
|
return SSA_PROP_NOT_INTERESTING;
|
|
}
|
|
|
|
/* Return the constant value for OP or OP otherwise. */
|
|
|
|
static tree
|
|
valueize_op (tree op)
|
|
{
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
tree tem = get_constant_value (op);
|
|
if (tem)
|
|
return tem;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
/* CCP specific front-end to the non-destructive constant folding
|
|
routines.
|
|
|
|
Attempt to simplify the RHS of STMT knowing that one or more
|
|
operands are constants.
|
|
|
|
If simplification is possible, return the simplified RHS,
|
|
otherwise return the original RHS or NULL_TREE. */
|
|
|
|
static tree
|
|
ccp_fold (gimple stmt)
|
|
{
|
|
location_t loc = gimple_location (stmt);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
|
|
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
|
{
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
|
if any. */
|
|
return get_constant_value (rhs);
|
|
}
|
|
/* Handle propagating invariant addresses into address operations.
|
|
The folding we do here matches that in tree-ssa-forwprop.c. */
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
{
|
|
tree *base;
|
|
base = &TREE_OPERAND (rhs, 0);
|
|
while (handled_component_p (*base))
|
|
base = &TREE_OPERAND (*base, 0);
|
|
if (TREE_CODE (*base) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (*base, 0)) == SSA_NAME)
|
|
{
|
|
tree val = get_constant_value (TREE_OPERAND (*base, 0));
|
|
if (val
|
|
&& TREE_CODE (val) == ADDR_EXPR)
|
|
{
|
|
tree ret, save = *base;
|
|
tree new_base;
|
|
new_base = fold_build2 (MEM_REF, TREE_TYPE (*base),
|
|
unshare_expr (val),
|
|
TREE_OPERAND (*base, 1));
|
|
/* We need to return a new tree, not modify the IL
|
|
or share parts of it. So play some tricks to
|
|
avoid manually building it. */
|
|
*base = new_base;
|
|
ret = unshare_expr (rhs);
|
|
recompute_tree_invariant_for_addr_expr (ret);
|
|
*base = save;
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
|
{
|
|
unsigned i;
|
|
tree val, list;
|
|
|
|
list = NULL_TREE;
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
|
{
|
|
val = valueize_op (val);
|
|
if (TREE_CODE (val) == INTEGER_CST
|
|
|| TREE_CODE (val) == REAL_CST
|
|
|| TREE_CODE (val) == FIXED_CST)
|
|
list = tree_cons (NULL_TREE, val, list);
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
|
|
return build_vector (TREE_TYPE (rhs), nreverse (list));
|
|
}
|
|
|
|
if (kind == tcc_reference)
|
|
{
|
|
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|
|
|| TREE_CODE (rhs) == REALPART_EXPR
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR)
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = get_constant_value (TREE_OPERAND (rhs, 0));
|
|
if (val)
|
|
return fold_unary_loc (EXPR_LOCATION (rhs),
|
|
TREE_CODE (rhs),
|
|
TREE_TYPE (rhs), val);
|
|
}
|
|
else if (TREE_CODE (rhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
|
{
|
|
tree val = get_constant_value (TREE_OPERAND (rhs, 0));
|
|
if (val
|
|
&& TREE_CODE (val) == ADDR_EXPR)
|
|
{
|
|
tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
|
|
unshare_expr (val),
|
|
TREE_OPERAND (rhs, 1));
|
|
if (tem)
|
|
rhs = tem;
|
|
}
|
|
}
|
|
return fold_const_aggregate_ref (rhs);
|
|
}
|
|
else if (kind == tcc_declaration)
|
|
return get_symbol_constant_value (rhs);
|
|
return rhs;
|
|
}
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
{
|
|
/* Handle unary operators that can appear in GIMPLE form.
|
|
Note that we know the single operand must be a constant,
|
|
so this should almost always return a simplified RHS. */
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
|
|
|
|
/* Conversions are useless for CCP purposes if they are
|
|
value-preserving. Thus the restrictions that
|
|
useless_type_conversion_p places for pointer type conversions
|
|
do not apply here. Substitution later will only substitute to
|
|
allowed places. */
|
|
if (CONVERT_EXPR_CODE_P (subcode)
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))
|
|
&& POINTER_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
tree tem;
|
|
/* Try to re-construct array references on-the-fly. */
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (op0))
|
|
&& ((tem = maybe_fold_offset_to_address
|
|
(loc,
|
|
op0, integer_zero_node, TREE_TYPE (lhs)))
|
|
!= NULL_TREE))
|
|
return tem;
|
|
return op0;
|
|
}
|
|
|
|
return
|
|
fold_unary_ignore_overflow_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0);
|
|
}
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
{
|
|
/* Handle binary operators that can appear in GIMPLE form. */
|
|
tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
|
|
tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
|
|
|
|
/* Translate &x + CST into an invariant form suitable for
|
|
further propagation. */
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
|
&& TREE_CODE (op0) == ADDR_EXPR
|
|
&& TREE_CODE (op1) == INTEGER_CST)
|
|
{
|
|
tree off = fold_convert (ptr_type_node, op1);
|
|
return build_fold_addr_expr
|
|
(fold_build2 (MEM_REF,
|
|
TREE_TYPE (TREE_TYPE (op0)),
|
|
unshare_expr (op0), off));
|
|
}
|
|
|
|
return fold_binary_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0, op1);
|
|
}
|
|
|
|
case GIMPLE_TERNARY_RHS:
|
|
{
|
|
/* Handle ternary operators that can appear in GIMPLE form. */
|
|
tree op0 = valueize_op (gimple_assign_rhs1 (stmt));
|
|
tree op1 = valueize_op (gimple_assign_rhs2 (stmt));
|
|
tree op2 = valueize_op (gimple_assign_rhs3 (stmt));
|
|
|
|
return fold_ternary_loc (loc, subcode,
|
|
gimple_expr_type (stmt), op0, op1, op2);
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree fn = valueize_op (gimple_call_fn (stmt));
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
|
&& DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
|
|
{
|
|
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
|
|
tree call, retval;
|
|
unsigned i;
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
|
args[i] = valueize_op (gimple_call_arg (stmt, i));
|
|
call = build_call_array_loc (loc,
|
|
gimple_call_return_type (stmt),
|
|
fn, gimple_call_num_args (stmt), args);
|
|
retval = fold_call_expr (EXPR_LOCATION (call), call, false);
|
|
if (retval)
|
|
/* fold_call_expr wraps the result inside a NOP_EXPR. */
|
|
STRIP_NOPS (retval);
|
|
return retval;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
case GIMPLE_COND:
|
|
{
|
|
/* Handle comparison operators that can appear in GIMPLE form. */
|
|
tree op0 = valueize_op (gimple_cond_lhs (stmt));
|
|
tree op1 = valueize_op (gimple_cond_rhs (stmt));
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
|
|
}
|
|
|
|
case GIMPLE_SWITCH:
|
|
{
|
|
/* Return the constant switch index. */
|
|
return valueize_op (gimple_switch_index (stmt));
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* See if we can find constructor defining value of BASE.
|
|
When we know the consructor with constant offset (such as
|
|
base is array[40] and we do know constructor of array), then
|
|
BIT_OFFSET is adjusted accordingly.
|
|
|
|
As a special case, return error_mark_node when constructor
|
|
is not explicitly available, but it is known to be zero
|
|
such as 'static const int a;'. */
|
|
static tree
|
|
get_base_constructor (tree base, HOST_WIDE_INT *bit_offset)
|
|
{
|
|
HOST_WIDE_INT bit_offset2, size, max_size;
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
|
{
|
|
if (!host_integerp (TREE_OPERAND (base, 1), 0))
|
|
return NULL_TREE;
|
|
*bit_offset += (mem_ref_offset (base).low
|
|
* BITS_PER_UNIT);
|
|
}
|
|
|
|
base = get_constant_value (TREE_OPERAND (base, 0));
|
|
if (!base || TREE_CODE (base) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
base = TREE_OPERAND (base, 0);
|
|
}
|
|
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
|
the inner reference. */
|
|
switch (TREE_CODE (base))
|
|
{
|
|
case VAR_DECL:
|
|
if (!const_value_known_p (base))
|
|
return NULL_TREE;
|
|
|
|
/* Fallthru. */
|
|
case CONST_DECL:
|
|
if (!DECL_INITIAL (base)
|
|
&& (TREE_STATIC (base) || DECL_EXTERNAL (base)))
|
|
return error_mark_node;
|
|
return DECL_INITIAL (base);
|
|
|
|
case ARRAY_REF:
|
|
case COMPONENT_REF:
|
|
base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
|
|
if (max_size == -1 || size != max_size)
|
|
return NULL_TREE;
|
|
*bit_offset += bit_offset2;
|
|
return get_base_constructor (base, bit_offset);
|
|
|
|
case STRING_CST:
|
|
case CONSTRUCTOR:
|
|
return base;
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
|
|
to the memory at bit OFFSET.
|
|
|
|
We do only simple job of folding byte accesses. */
|
|
|
|
static tree
|
|
fold_string_cst_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size)
|
|
{
|
|
if (INTEGRAL_TYPE_P (type)
|
|
&& (TYPE_MODE (type)
|
|
== TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
|
&& (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
|
== MODE_INT)
|
|
&& GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
|
|
&& size == BITS_PER_UNIT
|
|
&& !(offset % BITS_PER_UNIT))
|
|
{
|
|
offset /= BITS_PER_UNIT;
|
|
if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
|
|
return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
|
|
[offset]));
|
|
/* Folding
|
|
const char a[20]="hello";
|
|
return a[10];
|
|
|
|
might lead to offset greater than string length. In this case we
|
|
know value is either initialized to 0 or out of bounds. Return 0
|
|
in both cases. */
|
|
return build_zero_cst (type);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
|
|
SIZE to the memory at bit OFFSET. */
|
|
|
|
static tree
|
|
fold_array_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size)
|
|
{
|
|
unsigned HOST_WIDE_INT cnt;
|
|
tree cfield, cval;
|
|
double_int low_bound, elt_size;
|
|
double_int index, max_index;
|
|
double_int access_index;
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
|
|
HOST_WIDE_INT inner_offset;
|
|
|
|
/* Compute low bound and elt size. */
|
|
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
|
{
|
|
/* Static constructors for variably sized objects makes no sense. */
|
|
gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
|
|
low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
|
|
}
|
|
else
|
|
low_bound = double_int_zero;
|
|
/* Static constructors for variably sized objects makes no sense. */
|
|
gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
|
|
== INTEGER_CST);
|
|
elt_size =
|
|
tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
|
|
|
|
|
|
/* We can handle only constantly sized accesses that are known to not
|
|
be larger than size of array element. */
|
|
if (!TYPE_SIZE_UNIT (type)
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
|
|
|| double_int_cmp (elt_size,
|
|
tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
|
|
return NULL_TREE;
|
|
|
|
/* Compute the array index we look for. */
|
|
access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
|
|
elt_size, TRUNC_DIV_EXPR);
|
|
access_index = double_int_add (access_index, low_bound);
|
|
|
|
/* And offset within the access. */
|
|
inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
|
|
|
|
/* See if the array field is large enough to span whole access. We do not
|
|
care to fold accesses spanning multiple array indexes. */
|
|
if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
|
|
return NULL_TREE;
|
|
|
|
index = double_int_sub (low_bound, double_int_one);
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
|
|
{
|
|
/* Array constructor might explicitely set index, or specify range
|
|
or leave index NULL meaning that it is next index after previous
|
|
one. */
|
|
if (cfield)
|
|
{
|
|
if (TREE_CODE (cfield) == INTEGER_CST)
|
|
max_index = index = tree_to_double_int (cfield);
|
|
else
|
|
{
|
|
gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
|
|
index = tree_to_double_int (TREE_OPERAND (cfield, 0));
|
|
max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
|
|
}
|
|
}
|
|
else
|
|
max_index = index = double_int_add (index, double_int_one);
|
|
|
|
/* Do we have match? */
|
|
if (double_int_cmp (access_index, index, 1) >= 0
|
|
&& double_int_cmp (access_index, max_index, 1) <= 0)
|
|
return fold_ctor_reference (type, cval, inner_offset, size);
|
|
}
|
|
/* When memory is not explicitely mentioned in constructor,
|
|
it is 0 (or out of range). */
|
|
return build_zero_cst (type);
|
|
}
|
|
|
|
/* CTOR is CONSTRUCTOR of an aggregate or vector.
|
|
Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
|
|
|
|
static tree
|
|
fold_nonarray_ctor_reference (tree type, tree ctor,
|
|
unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size)
|
|
{
|
|
unsigned HOST_WIDE_INT cnt;
|
|
tree cfield, cval;
|
|
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
|
|
cval)
|
|
{
|
|
tree byte_offset = DECL_FIELD_OFFSET (cfield);
|
|
tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
|
|
tree field_size = DECL_SIZE (cfield);
|
|
double_int bitoffset;
|
|
double_int byte_offset_cst = tree_to_double_int (byte_offset);
|
|
double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
|
|
double_int bitoffset_end;
|
|
|
|
/* Variable sized objects in static constructors makes no sense,
|
|
but field_size can be NULL for flexible array members. */
|
|
gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
|
|
&& TREE_CODE (byte_offset) == INTEGER_CST
|
|
&& (field_size != NULL_TREE
|
|
? TREE_CODE (field_size) == INTEGER_CST
|
|
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
|
|
|
|
/* Compute bit offset of the field. */
|
|
bitoffset = double_int_add (tree_to_double_int (field_offset),
|
|
double_int_mul (byte_offset_cst,
|
|
bits_per_unit_cst));
|
|
/* Compute bit offset where the field ends. */
|
|
if (field_size != NULL_TREE)
|
|
bitoffset_end = double_int_add (bitoffset,
|
|
tree_to_double_int (field_size));
|
|
else
|
|
bitoffset_end = double_int_zero;
|
|
|
|
/* Is OFFSET in the range (BITOFFSET, BITOFFSET_END)? */
|
|
if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) >= 0
|
|
&& (field_size == NULL_TREE
|
|
|| double_int_cmp (uhwi_to_double_int (offset),
|
|
bitoffset_end, 0) < 0))
|
|
{
|
|
double_int access_end = double_int_add (uhwi_to_double_int (offset),
|
|
uhwi_to_double_int (size));
|
|
double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
|
|
bitoffset);
|
|
/* We do have overlap. Now see if field is large enough to
|
|
cover the access. Give up for accesses spanning multiple
|
|
fields. */
|
|
if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
|
|
return NULL_TREE;
|
|
return fold_ctor_reference (type, cval,
|
|
double_int_to_uhwi (inner_offset), size);
|
|
}
|
|
}
|
|
/* When memory is not explicitely mentioned in constructor, it is 0. */
|
|
return build_zero_cst (type);
|
|
}
|
|
|
|
/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
|
|
to the memory at bit OFFSET. */
|
|
|
|
static tree
|
|
fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
|
|
unsigned HOST_WIDE_INT size)
|
|
{
|
|
tree ret;
|
|
|
|
/* We found the field with exact match. */
|
|
if (useless_type_conversion_p (type, TREE_TYPE (ctor))
|
|
&& !offset)
|
|
return canonicalize_constructor_val (ctor);
|
|
|
|
/* We are at the end of walk, see if we can view convert the
|
|
result. */
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
|
|
/* VIEW_CONVERT_EXPR is defined only for matching sizes. */
|
|
&& operand_equal_p (TYPE_SIZE (type),
|
|
TYPE_SIZE (TREE_TYPE (ctor)), 0))
|
|
{
|
|
ret = canonicalize_constructor_val (ctor);
|
|
ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
|
|
if (ret)
|
|
STRIP_NOPS (ret);
|
|
return ret;
|
|
}
|
|
if (TREE_CODE (ctor) == STRING_CST)
|
|
return fold_string_cst_ctor_reference (type, ctor, offset, size);
|
|
if (TREE_CODE (ctor) == CONSTRUCTOR)
|
|
{
|
|
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
|
|
return fold_array_ctor_reference (type, ctor, offset, size);
|
|
else
|
|
return fold_nonarray_ctor_reference (type, ctor, offset, size);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Return the tree representing the element referenced by T if T is an
|
|
ARRAY_REF or COMPONENT_REF into constant aggregates. Return
|
|
NULL_TREE otherwise. */
|
|
|
|
tree
|
|
fold_const_aggregate_ref (tree t)
|
|
{
|
|
tree ctor, idx, base;
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
tree tem;
|
|
|
|
if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
|
|
return get_symbol_constant_value (t);
|
|
|
|
tem = fold_read_from_constant_string (t);
|
|
if (tem)
|
|
return tem;
|
|
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
/* Constant indexes are handled well by get_base_constructor.
|
|
Only special case variable offsets.
|
|
FIXME: This code can't handle nested references with variable indexes
|
|
(they will be handled only by iteration of ccp). Perhaps we can bring
|
|
get_ref_base_and_extent here and make it use get_constant_value. */
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
|
|
&& (idx = get_constant_value (TREE_OPERAND (t, 1)))
|
|
&& host_integerp (idx, 0))
|
|
{
|
|
tree low_bound, unit_size;
|
|
|
|
/* If the resulting bit-offset is constant, track it. */
|
|
if ((low_bound = array_ref_low_bound (t),
|
|
host_integerp (low_bound, 0))
|
|
&& (unit_size = array_ref_element_size (t),
|
|
host_integerp (unit_size, 1)))
|
|
{
|
|
offset = TREE_INT_CST_LOW (idx);
|
|
offset -= TREE_INT_CST_LOW (low_bound);
|
|
offset *= TREE_INT_CST_LOW (unit_size);
|
|
offset *= BITS_PER_UNIT;
|
|
|
|
base = TREE_OPERAND (t, 0);
|
|
ctor = get_base_constructor (base, &offset);
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* Out of bound array access. Value is undefined, but don't fold. */
|
|
if (offset < 0)
|
|
return NULL_TREE;
|
|
/* We can not determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
|
|
TREE_INT_CST_LOW (unit_size)
|
|
* BITS_PER_UNIT);
|
|
}
|
|
}
|
|
/* Fallthru. */
|
|
|
|
case COMPONENT_REF:
|
|
case BIT_FIELD_REF:
|
|
case TARGET_MEM_REF:
|
|
case MEM_REF:
|
|
base = get_ref_base_and_extent (t, &offset, &size, &max_size);
|
|
ctor = get_base_constructor (base, &offset);
|
|
|
|
/* Empty constructor. Always fold to 0. */
|
|
if (ctor == error_mark_node)
|
|
return build_zero_cst (TREE_TYPE (t));
|
|
/* We do not know precise address. */
|
|
if (max_size == -1 || max_size != size)
|
|
return NULL_TREE;
|
|
/* We can not determine ctor. */
|
|
if (!ctor)
|
|
return NULL_TREE;
|
|
|
|
/* Out of bound array access. Value is undefined, but don't fold. */
|
|
if (offset < 0)
|
|
return NULL_TREE;
|
|
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size);
|
|
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
{
|
|
tree c = fold_const_aggregate_ref (TREE_OPERAND (t, 0));
|
|
if (c && TREE_CODE (c) == COMPLEX_CST)
|
|
return fold_build1_loc (EXPR_LOCATION (t),
|
|
TREE_CODE (t), TREE_TYPE (t), c);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Apply the operation CODE in type TYPE to the value, mask pair
|
|
RVAL and RMASK representing a value of type RTYPE and set
|
|
the value, mask pair *VAL and *MASK to the result. */
|
|
|
|
static void
|
|
bit_value_unop_1 (enum tree_code code, tree type,
|
|
double_int *val, double_int *mask,
|
|
tree rtype, double_int rval, double_int rmask)
|
|
{
|
|
switch (code)
|
|
{
|
|
case BIT_NOT_EXPR:
|
|
*mask = rmask;
|
|
*val = double_int_not (rval);
|
|
break;
|
|
|
|
case NEGATE_EXPR:
|
|
{
|
|
double_int temv, temm;
|
|
/* Return ~rval + 1. */
|
|
bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
|
|
bit_value_binop_1 (PLUS_EXPR, type, val, mask,
|
|
type, temv, temm,
|
|
type, double_int_one, double_int_zero);
|
|
break;
|
|
}
|
|
|
|
CASE_CONVERT:
|
|
{
|
|
bool uns;
|
|
|
|
/* First extend mask and value according to the original type. */
|
|
uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
|
|
? 0 : TYPE_UNSIGNED (rtype));
|
|
*mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
|
|
*val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
|
|
|
|
/* Then extend mask and value according to the target type. */
|
|
uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
|
|
? 0 : TYPE_UNSIGNED (type));
|
|
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
|
|
*val = double_int_ext (*val, TYPE_PRECISION (type), uns);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
*mask = double_int_minus_one;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Apply the operation CODE in type TYPE to the value, mask pairs
|
|
R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
|
|
and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
|
|
|
|
static void
|
|
bit_value_binop_1 (enum tree_code code, tree type,
|
|
double_int *val, double_int *mask,
|
|
tree r1type, double_int r1val, double_int r1mask,
|
|
tree r2type, double_int r2val, double_int r2mask)
|
|
{
|
|
bool uns = (TREE_CODE (type) == INTEGER_TYPE
|
|
&& TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
|
|
/* Assume we'll get a constant result. Use an initial varying value,
|
|
we fall back to varying in the end if necessary. */
|
|
*mask = double_int_minus_one;
|
|
switch (code)
|
|
{
|
|
case BIT_AND_EXPR:
|
|
/* The mask is constant where there is a known not
|
|
set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
|
|
*mask = double_int_and (double_int_ior (r1mask, r2mask),
|
|
double_int_and (double_int_ior (r1val, r1mask),
|
|
double_int_ior (r2val, r2mask)));
|
|
*val = double_int_and (r1val, r2val);
|
|
break;
|
|
|
|
case BIT_IOR_EXPR:
|
|
/* The mask is constant where there is a known
|
|
set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
|
|
*mask = double_int_and_not
|
|
(double_int_ior (r1mask, r2mask),
|
|
double_int_ior (double_int_and_not (r1val, r1mask),
|
|
double_int_and_not (r2val, r2mask)));
|
|
*val = double_int_ior (r1val, r2val);
|
|
break;
|
|
|
|
case BIT_XOR_EXPR:
|
|
/* m1 | m2 */
|
|
*mask = double_int_ior (r1mask, r2mask);
|
|
*val = double_int_xor (r1val, r2val);
|
|
break;
|
|
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
if (double_int_zero_p (r2mask))
|
|
{
|
|
HOST_WIDE_INT shift = r2val.low;
|
|
if (code == RROTATE_EXPR)
|
|
shift = -shift;
|
|
*mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
|
|
*val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
|
|
}
|
|
break;
|
|
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
/* ??? We can handle partially known shift counts if we know
|
|
its sign. That way we can tell that (x << (y | 8)) & 255
|
|
is zero. */
|
|
if (double_int_zero_p (r2mask))
|
|
{
|
|
HOST_WIDE_INT shift = r2val.low;
|
|
if (code == RSHIFT_EXPR)
|
|
shift = -shift;
|
|
/* We need to know if we are doing a left or a right shift
|
|
to properly shift in zeros for left shift and unsigned
|
|
right shifts and the sign bit for signed right shifts.
|
|
For signed right shifts we shift in varying in case
|
|
the sign bit was varying. */
|
|
if (shift > 0)
|
|
{
|
|
*mask = double_int_lshift (r1mask, shift,
|
|
TYPE_PRECISION (type), false);
|
|
*val = double_int_lshift (r1val, shift,
|
|
TYPE_PRECISION (type), false);
|
|
}
|
|
else if (shift < 0)
|
|
{
|
|
/* ??? We can have sizetype related inconsistencies in
|
|
the IL. */
|
|
if ((TREE_CODE (r1type) == INTEGER_TYPE
|
|
&& (TYPE_IS_SIZETYPE (r1type)
|
|
? 0 : TYPE_UNSIGNED (r1type))) != uns)
|
|
break;
|
|
|
|
shift = -shift;
|
|
*mask = double_int_rshift (r1mask, shift,
|
|
TYPE_PRECISION (type), !uns);
|
|
*val = double_int_rshift (r1val, shift,
|
|
TYPE_PRECISION (type), !uns);
|
|
}
|
|
else
|
|
{
|
|
*mask = r1mask;
|
|
*val = r1val;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PLUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
{
|
|
double_int lo, hi;
|
|
/* Do the addition with unknown bits set to zero, to give carry-ins of
|
|
zero wherever possible. */
|
|
lo = double_int_add (double_int_and_not (r1val, r1mask),
|
|
double_int_and_not (r2val, r2mask));
|
|
lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
|
|
/* Do the addition with unknown bits set to one, to give carry-ins of
|
|
one wherever possible. */
|
|
hi = double_int_add (double_int_ior (r1val, r1mask),
|
|
double_int_ior (r2val, r2mask));
|
|
hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
|
|
/* Each bit in the result is known if (a) the corresponding bits in
|
|
both inputs are known, and (b) the carry-in to that bit position
|
|
is known. We can check condition (b) by seeing if we got the same
|
|
result with minimised carries as with maximised carries. */
|
|
*mask = double_int_ior (double_int_ior (r1mask, r2mask),
|
|
double_int_xor (lo, hi));
|
|
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
|
|
/* It shouldn't matter whether we choose lo or hi here. */
|
|
*val = lo;
|
|
break;
|
|
}
|
|
|
|
case MINUS_EXPR:
|
|
{
|
|
double_int temv, temm;
|
|
bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
|
|
r2type, r2val, r2mask);
|
|
bit_value_binop_1 (PLUS_EXPR, type, val, mask,
|
|
r1type, r1val, r1mask,
|
|
r2type, temv, temm);
|
|
break;
|
|
}
|
|
|
|
case MULT_EXPR:
|
|
{
|
|
/* Just track trailing zeros in both operands and transfer
|
|
them to the other. */
|
|
int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
|
|
int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
|
|
if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
*mask = double_int_zero;
|
|
*val = double_int_zero;
|
|
}
|
|
else if (r1tz + r2tz > 0)
|
|
{
|
|
*mask = double_int_not (double_int_mask (r1tz + r2tz));
|
|
*mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
|
|
*val = double_int_zero;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
{
|
|
double_int m = double_int_ior (r1mask, r2mask);
|
|
if (!double_int_equal_p (double_int_and_not (r1val, m),
|
|
double_int_and_not (r2val, m)))
|
|
{
|
|
*mask = double_int_zero;
|
|
*val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
|
|
}
|
|
else
|
|
{
|
|
/* We know the result of a comparison is always one or zero. */
|
|
*mask = double_int_one;
|
|
*val = double_int_zero;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GE_EXPR:
|
|
case GT_EXPR:
|
|
{
|
|
double_int tem = r1val;
|
|
r1val = r2val;
|
|
r2val = tem;
|
|
tem = r1mask;
|
|
r1mask = r2mask;
|
|
r2mask = tem;
|
|
code = swap_tree_comparison (code);
|
|
}
|
|
/* Fallthru. */
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
{
|
|
int minmax, maxmin;
|
|
/* If the most significant bits are not known we know nothing. */
|
|
if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
|
|
break;
|
|
|
|
/* For comparisons the signedness is in the comparison operands. */
|
|
uns = (TREE_CODE (r1type) == INTEGER_TYPE
|
|
&& TYPE_IS_SIZETYPE (r1type) ? 0 : TYPE_UNSIGNED (r1type));
|
|
/* ??? We can have sizetype related inconsistencies in the IL. */
|
|
if ((TREE_CODE (r2type) == INTEGER_TYPE
|
|
&& TYPE_IS_SIZETYPE (r2type) ? 0 : TYPE_UNSIGNED (r2type)) != uns)
|
|
break;
|
|
|
|
/* If we know the most significant bits we know the values
|
|
value ranges by means of treating varying bits as zero
|
|
or one. Do a cross comparison of the max/min pairs. */
|
|
maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
|
|
double_int_and_not (r2val, r2mask), uns);
|
|
minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
|
|
double_int_ior (r2val, r2mask), uns);
|
|
if (maxmin < 0) /* r1 is less than r2. */
|
|
{
|
|
*mask = double_int_zero;
|
|
*val = double_int_one;
|
|
}
|
|
else if (minmax > 0) /* r1 is not less or equal to r2. */
|
|
{
|
|
*mask = double_int_zero;
|
|
*val = double_int_zero;
|
|
}
|
|
else if (maxmin == minmax) /* r1 and r2 are equal. */
|
|
{
|
|
/* This probably should never happen as we'd have
|
|
folded the thing during fully constant value folding. */
|
|
*mask = double_int_zero;
|
|
*val = (code == LE_EXPR ? double_int_one : double_int_zero);
|
|
}
|
|
else
|
|
{
|
|
/* We know the result of a comparison is always one or zero. */
|
|
*mask = double_int_one;
|
|
*val = double_int_zero;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:;
|
|
}
|
|
}
|
|
|
|
/* Return the propagation value when applying the operation CODE to
|
|
the value RHS yielding type TYPE. */
|
|
|
|
static prop_value_t
|
|
bit_value_unop (enum tree_code code, tree type, tree rhs)
|
|
{
|
|
prop_value_t rval = get_value_for_expr (rhs, true);
|
|
double_int value, mask;
|
|
prop_value_t val;
|
|
gcc_assert ((rval.lattice_val == CONSTANT
|
|
&& TREE_CODE (rval.value) == INTEGER_CST)
|
|
|| double_int_minus_one_p (rval.mask));
|
|
bit_value_unop_1 (code, type, &value, &mask,
|
|
TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
|
|
if (!double_int_minus_one_p (mask))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.mask = mask;
|
|
/* ??? Delay building trees here. */
|
|
val.value = double_int_to_tree (type, value);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = double_int_minus_one;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Return the propagation value when applying the operation CODE to
|
|
the values RHS1 and RHS2 yielding type TYPE. */
|
|
|
|
static prop_value_t
|
|
bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
|
|
{
|
|
prop_value_t r1val = get_value_for_expr (rhs1, true);
|
|
prop_value_t r2val = get_value_for_expr (rhs2, true);
|
|
double_int value, mask;
|
|
prop_value_t val;
|
|
gcc_assert ((r1val.lattice_val == CONSTANT
|
|
&& TREE_CODE (r1val.value) == INTEGER_CST)
|
|
|| double_int_minus_one_p (r1val.mask));
|
|
gcc_assert ((r2val.lattice_val == CONSTANT
|
|
&& TREE_CODE (r2val.value) == INTEGER_CST)
|
|
|| double_int_minus_one_p (r2val.mask));
|
|
bit_value_binop_1 (code, type, &value, &mask,
|
|
TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
|
|
TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
|
|
if (!double_int_minus_one_p (mask))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.mask = mask;
|
|
/* ??? Delay building trees here. */
|
|
val.value = double_int_to_tree (type, value);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = double_int_minus_one;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Evaluate statement STMT.
|
|
Valid only for assignments, calls, conditionals, and switches. */
|
|
|
|
static prop_value_t
|
|
evaluate_stmt (gimple stmt)
|
|
{
|
|
prop_value_t val;
|
|
tree simplified = NULL_TREE;
|
|
ccp_lattice_t likelyvalue = likely_value (stmt);
|
|
bool is_constant = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "which is likely ");
|
|
switch (likelyvalue)
|
|
{
|
|
case CONSTANT:
|
|
fprintf (dump_file, "CONSTANT");
|
|
break;
|
|
case UNDEFINED:
|
|
fprintf (dump_file, "UNDEFINED");
|
|
break;
|
|
case VARYING:
|
|
fprintf (dump_file, "VARYING");
|
|
break;
|
|
default:;
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* If the statement is likely to have a CONSTANT result, then try
|
|
to fold the statement to determine the constant value. */
|
|
/* FIXME. This is the only place that we call ccp_fold.
|
|
Since likely_value never returns CONSTANT for calls, we will
|
|
not attempt to fold them, including builtins that may profit. */
|
|
if (likelyvalue == CONSTANT)
|
|
{
|
|
fold_defer_overflow_warnings ();
|
|
simplified = ccp_fold (stmt);
|
|
is_constant = simplified && is_gimple_min_invariant (simplified);
|
|
fold_undefer_overflow_warnings (is_constant, stmt, 0);
|
|
if (is_constant)
|
|
{
|
|
/* The statement produced a constant value. */
|
|
val.lattice_val = CONSTANT;
|
|
val.value = simplified;
|
|
val.mask = double_int_zero;
|
|
}
|
|
}
|
|
/* If the statement is likely to have a VARYING result, then do not
|
|
bother folding the statement. */
|
|
else if (likelyvalue == VARYING)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Other cases cannot satisfy is_gimple_min_invariant
|
|
without folding. */
|
|
if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
|
|
simplified = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else if (code == GIMPLE_SWITCH)
|
|
simplified = gimple_switch_index (stmt);
|
|
else
|
|
/* These cannot satisfy is_gimple_min_invariant without folding. */
|
|
gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
|
|
is_constant = simplified && is_gimple_min_invariant (simplified);
|
|
if (is_constant)
|
|
{
|
|
/* The statement produced a constant value. */
|
|
val.lattice_val = CONSTANT;
|
|
val.value = simplified;
|
|
val.mask = double_int_zero;
|
|
}
|
|
}
|
|
|
|
/* Resort to simplification for bitwise tracking. */
|
|
if (flag_tree_bit_ccp
|
|
&& likelyvalue == CONSTANT
|
|
&& !is_constant)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
tree fndecl;
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = double_int_minus_one;
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
|
|
val = get_value_for_expr (rhs1, true);
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
|
|
&& (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
|
|
|| POINTER_TYPE_P (gimple_expr_type (stmt))))
|
|
val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
val = bit_value_binop (subcode,
|
|
TREE_TYPE (lhs), rhs1, rhs2);
|
|
}
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
}
|
|
else if (code == GIMPLE_COND)
|
|
{
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
tree rhs1 = gimple_cond_lhs (stmt);
|
|
tree rhs2 = gimple_cond_rhs (stmt);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
|
|
val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
|
|
}
|
|
else if (code == GIMPLE_CALL
|
|
&& (fndecl = gimple_call_fndecl (stmt))
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
|
{
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
|
{
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_REALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
|
|
val.mask = shwi_to_double_int
|
|
(~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
|
|
/ BITS_PER_UNIT - 1));
|
|
break;
|
|
|
|
case BUILT_IN_ALLOCA:
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
|
|
val.mask = shwi_to_double_int
|
|
(~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT)
|
|
/ BITS_PER_UNIT - 1));
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
}
|
|
is_constant = (val.lattice_val == CONSTANT);
|
|
}
|
|
|
|
if (!is_constant)
|
|
{
|
|
/* The statement produced a nonconstant value. If the statement
|
|
had UNDEFINED operands, then the result of the statement
|
|
should be UNDEFINED. Otherwise, the statement is VARYING. */
|
|
if (likelyvalue == UNDEFINED)
|
|
{
|
|
val.lattice_val = likelyvalue;
|
|
val.mask = double_int_zero;
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = double_int_minus_one;
|
|
}
|
|
|
|
val.value = NULL_TREE;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Fold the stmt at *GSI with CCP specific information that propagating
|
|
and regular folding does not catch. */
|
|
|
|
static bool
|
|
ccp_fold_stmt (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple stmt = gsi_stmt (*gsi);
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_COND:
|
|
{
|
|
prop_value_t val;
|
|
/* Statement evaluation will handle type mismatches in constants
|
|
more gracefully than the final propagation. This allows us to
|
|
fold more conditionals here. */
|
|
val = evaluate_stmt (stmt);
|
|
if (val.lattice_val != CONSTANT
|
|
|| !double_int_zero_p (val.mask))
|
|
return false;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Folding predicate ");
|
|
print_gimple_expr (dump_file, stmt, 0, 0);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, val.value, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (integer_zerop (val.value))
|
|
gimple_cond_make_false (stmt);
|
|
else
|
|
gimple_cond_make_true (stmt);
|
|
|
|
return true;
|
|
}
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
tree val;
|
|
tree argt;
|
|
tree callee;
|
|
bool changed = false;
|
|
unsigned i;
|
|
|
|
/* If the call was folded into a constant make sure it goes
|
|
away even if we cannot propagate into all uses because of
|
|
type issues. */
|
|
if (lhs
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& (val = get_constant_value (lhs)))
|
|
{
|
|
tree new_rhs = unshare_expr (val);
|
|
bool res;
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (new_rhs)))
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
|
res = update_call_from_tree (gsi, new_rhs);
|
|
gcc_assert (res);
|
|
return true;
|
|
}
|
|
|
|
/* Propagate into the call arguments. Compared to replace_uses_in
|
|
this can use the argument slot types for type verification
|
|
instead of the current argument type. We also can safely
|
|
drop qualifiers here as we are dealing with constants anyway. */
|
|
argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
|
|
for (i = 0; i < gimple_call_num_args (stmt) && argt;
|
|
++i, argt = TREE_CHAIN (argt))
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& (val = get_constant_value (arg))
|
|
&& useless_type_conversion_p
|
|
(TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (val))))
|
|
{
|
|
gimple_call_set_arg (stmt, i, unshare_expr (val));
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
callee = gimple_call_fn (stmt);
|
|
if (TREE_CODE (callee) == OBJ_TYPE_REF
|
|
&& TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == SSA_NAME)
|
|
{
|
|
tree expr = OBJ_TYPE_REF_EXPR (callee);
|
|
OBJ_TYPE_REF_EXPR (callee) = valueize_op (expr);
|
|
if (gimple_fold_call (gsi, false))
|
|
changed = true;
|
|
OBJ_TYPE_REF_EXPR (callee) = expr;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree val;
|
|
|
|
/* If we have a load that turned out to be constant replace it
|
|
as we cannot propagate into all uses in all cases. */
|
|
if (gimple_assign_single_p (stmt)
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& (val = get_constant_value (lhs)))
|
|
{
|
|
tree rhs = unshare_expr (val);
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
|
rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
|
|
gimple_assign_set_rhs_from_tree (gsi, rhs);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Visit the assignment statement STMT. Set the value of its LHS to the
|
|
value computed by the RHS and store LHS in *OUTPUT_P. If STMT
|
|
creates virtual definitions, set the value of each new name to that
|
|
of the RHS (if we can derive a constant out of the RHS).
|
|
Value-returning call statements also perform an assignment, and
|
|
are handled here. */
|
|
|
|
static enum ssa_prop_result
|
|
visit_assignment (gimple stmt, tree *output_p)
|
|
{
|
|
prop_value_t val;
|
|
enum ssa_prop_result retval;
|
|
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
|
|
gcc_assert (gimple_code (stmt) != GIMPLE_CALL
|
|
|| gimple_call_lhs (stmt) != NULL_TREE);
|
|
|
|
if (gimple_assign_single_p (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == SSA_NAME)
|
|
/* For a simple copy operation, we copy the lattice values. */
|
|
val = *get_value (gimple_assign_rhs1 (stmt));
|
|
else
|
|
/* Evaluate the statement, which could be
|
|
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
|
|
val = evaluate_stmt (stmt);
|
|
|
|
retval = SSA_PROP_NOT_INTERESTING;
|
|
|
|
/* Set the lattice value of the statement's output. */
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
/* If STMT is an assignment to an SSA_NAME, we only have one
|
|
value to set. */
|
|
if (set_lattice_value (lhs, val))
|
|
{
|
|
*output_p = lhs;
|
|
if (val.lattice_val == VARYING)
|
|
retval = SSA_PROP_VARYING;
|
|
else
|
|
retval = SSA_PROP_INTERESTING;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
|
|
if it can determine which edge will be taken. Otherwise, return
|
|
SSA_PROP_VARYING. */
|
|
|
|
static enum ssa_prop_result
|
|
visit_cond_stmt (gimple stmt, edge *taken_edge_p)
|
|
{
|
|
prop_value_t val;
|
|
basic_block block;
|
|
|
|
block = gimple_bb (stmt);
|
|
val = evaluate_stmt (stmt);
|
|
if (val.lattice_val != CONSTANT
|
|
|| !double_int_zero_p (val.mask))
|
|
return SSA_PROP_VARYING;
|
|
|
|
/* Find which edge out of the conditional block will be taken and add it
|
|
to the worklist. If no single edge can be determined statically,
|
|
return SSA_PROP_VARYING to feed all the outgoing edges to the
|
|
propagation engine. */
|
|
*taken_edge_p = find_taken_edge (block, val.value);
|
|
if (*taken_edge_p)
|
|
return SSA_PROP_INTERESTING;
|
|
else
|
|
return SSA_PROP_VARYING;
|
|
}
|
|
|
|
|
|
/* Evaluate statement STMT. If the statement produces an output value and
|
|
its evaluation changes the lattice value of its output, return
|
|
SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
|
|
output value.
|
|
|
|
If STMT is a conditional branch and we can determine its truth
|
|
value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
|
|
value, return SSA_PROP_VARYING. */
|
|
|
|
static enum ssa_prop_result
|
|
ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
|
|
{
|
|
tree def;
|
|
ssa_op_iter iter;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* If the statement is an assignment that produces a single
|
|
output value, evaluate its RHS to see if the lattice value of
|
|
its output has changed. */
|
|
return visit_assignment (stmt, output_p);
|
|
|
|
case GIMPLE_CALL:
|
|
/* A value-returning call also performs an assignment. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return visit_assignment (stmt, output_p);
|
|
break;
|
|
|
|
case GIMPLE_COND:
|
|
case GIMPLE_SWITCH:
|
|
/* If STMT is a conditional branch, see if we can determine
|
|
which branch will be taken. */
|
|
/* FIXME. It appears that we should be able to optimize
|
|
computed GOTOs here as well. */
|
|
return visit_cond_stmt (stmt, taken_edge_p);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Any other kind of statement is not interesting for constant
|
|
propagation and, therefore, not worth simulating. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
|
|
|
|
/* Definitions made by statements other than assignments to
|
|
SSA_NAMEs represent unknown modifications to their outputs.
|
|
Mark them VARYING. */
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
|
|
set_lattice_value (def, v);
|
|
}
|
|
|
|
return SSA_PROP_VARYING;
|
|
}
|
|
|
|
|
|
/* Main entry point for SSA Conditional Constant Propagation. */
|
|
|
|
static unsigned int
|
|
do_ssa_ccp (void)
|
|
{
|
|
ccp_initialize ();
|
|
ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
|
|
if (ccp_finalize ())
|
|
return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
static bool
|
|
gate_ccp (void)
|
|
{
|
|
return flag_tree_ccp != 0;
|
|
}
|
|
|
|
|
|
struct gimple_opt_pass pass_ccp =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"ccp", /* name */
|
|
gate_ccp, /* gate */
|
|
do_ssa_ccp, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_TREE_CCP, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func | TODO_verify_ssa
|
|
| TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/* Try to optimize out __builtin_stack_restore. Optimize it out
|
|
if there is another __builtin_stack_restore in the same basic
|
|
block and no calls or ASM_EXPRs are in between, or if this block's
|
|
only outgoing edge is to EXIT_BLOCK and there are no calls or
|
|
ASM_EXPRs after this __builtin_stack_restore. */
|
|
|
|
static tree
|
|
optimize_stack_restore (gimple_stmt_iterator i)
|
|
{
|
|
tree callee;
|
|
gimple stmt;
|
|
|
|
basic_block bb = gsi_bb (i);
|
|
gimple call = gsi_stmt (i);
|
|
|
|
if (gimple_code (call) != GIMPLE_CALL
|
|
|| gimple_call_num_args (call) != 1
|
|
|| TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
|
|
|| !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
|
|
return NULL_TREE;
|
|
|
|
for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
stmt = gsi_stmt (i);
|
|
if (gimple_code (stmt) == GIMPLE_ASM)
|
|
return NULL_TREE;
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
continue;
|
|
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee
|
|
|| DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
|
|
/* All regular builtins are ok, just obviously not alloca. */
|
|
|| DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
|
|
return NULL_TREE;
|
|
|
|
if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
|
|
goto second_stack_restore;
|
|
}
|
|
|
|
if (!gsi_end_p (i))
|
|
return NULL_TREE;
|
|
|
|
/* Allow one successor of the exit block, or zero successors. */
|
|
switch (EDGE_COUNT (bb->succs))
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
|
|
return NULL_TREE;
|
|
break;
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
second_stack_restore:
|
|
|
|
/* If there's exactly one use, then zap the call to __builtin_stack_save.
|
|
If there are multiple uses, then the last one should remove the call.
|
|
In any case, whether the call to __builtin_stack_save can be removed
|
|
or not is irrelevant to removing the call to __builtin_stack_restore. */
|
|
if (has_single_use (gimple_call_arg (call, 0)))
|
|
{
|
|
gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
|
|
if (is_gimple_call (stack_save))
|
|
{
|
|
callee = gimple_call_fndecl (stack_save);
|
|
if (callee
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
|
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
|
|
{
|
|
gimple_stmt_iterator stack_save_gsi;
|
|
tree rhs;
|
|
|
|
stack_save_gsi = gsi_for_stmt (stack_save);
|
|
rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
|
|
update_call_from_tree (&stack_save_gsi, rhs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No effect, so the statement will be deleted. */
|
|
return integer_zero_node;
|
|
}
|
|
|
|
/* If va_list type is a simple pointer and nothing special is needed,
|
|
optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
|
|
__builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
|
|
pointer assignment. */
|
|
|
|
static tree
|
|
optimize_stdarg_builtin (gimple call)
|
|
{
|
|
tree callee, lhs, rhs, cfun_va_list;
|
|
bool va_list_simple_ptr;
|
|
location_t loc = gimple_location (call);
|
|
|
|
if (gimple_code (call) != GIMPLE_CALL)
|
|
return NULL_TREE;
|
|
|
|
callee = gimple_call_fndecl (call);
|
|
|
|
cfun_va_list = targetm.fn_abi_va_list (callee);
|
|
va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
|
|
&& (TREE_TYPE (cfun_va_list) == void_type_node
|
|
|| TREE_TYPE (cfun_va_list) == char_type_node);
|
|
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_VA_START:
|
|
if (!va_list_simple_ptr
|
|
|| targetm.expand_builtin_va_start != NULL
|
|
|| built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
|
|
return NULL_TREE;
|
|
|
|
if (gimple_call_num_args (call) != 2)
|
|
return NULL_TREE;
|
|
|
|
lhs = gimple_call_arg (call, 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
|
rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
|
|
1, integer_zero_node);
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
|
|
|
case BUILT_IN_VA_COPY:
|
|
if (!va_list_simple_ptr)
|
|
return NULL_TREE;
|
|
|
|
if (gimple_call_num_args (call) != 2)
|
|
return NULL_TREE;
|
|
|
|
lhs = gimple_call_arg (call, 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
|
rhs = gimple_call_arg (call, 1);
|
|
if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
|
|
|
case BUILT_IN_VA_END:
|
|
/* No effect, so the statement will be deleted. */
|
|
return integer_zero_node;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* A simple pass that attempts to fold all builtin functions. This pass
|
|
is run after we've propagated as many constants as we can. */
|
|
|
|
static unsigned int
|
|
execute_fold_all_builtins (void)
|
|
{
|
|
bool cfg_changed = false;
|
|
basic_block bb;
|
|
unsigned int todoflags = 0;
|
|
|
|
FOR_EACH_BB (bb)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
|
|
{
|
|
gimple stmt, old_stmt;
|
|
tree callee, result;
|
|
enum built_in_function fcode;
|
|
|
|
stmt = gsi_stmt (i);
|
|
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
fcode = DECL_FUNCTION_CODE (callee);
|
|
|
|
result = gimple_fold_builtin (stmt);
|
|
|
|
if (result)
|
|
gimple_remove_stmt_histograms (cfun, stmt);
|
|
|
|
if (!result)
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_CONSTANT_P:
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
|
folded to integer_one_node by now, it's fairly
|
|
certain that the value simply isn't constant. */
|
|
result = integer_zero_node;
|
|
break;
|
|
|
|
case BUILT_IN_STACK_RESTORE:
|
|
result = optimize_stack_restore (i);
|
|
if (result)
|
|
break;
|
|
gsi_next (&i);
|
|
continue;
|
|
|
|
case BUILT_IN_VA_START:
|
|
case BUILT_IN_VA_END:
|
|
case BUILT_IN_VA_COPY:
|
|
/* These shouldn't be folded before pass_stdarg. */
|
|
result = optimize_stdarg_builtin (stmt);
|
|
if (result)
|
|
break;
|
|
/* FALLTHRU */
|
|
|
|
default:
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Simplified\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
old_stmt = stmt;
|
|
if (!update_call_from_tree (&i, result))
|
|
{
|
|
gimplify_and_update_call_from_tree (&i, result);
|
|
todoflags |= TODO_update_address_taken;
|
|
}
|
|
|
|
stmt = gsi_stmt (i);
|
|
update_stmt (stmt);
|
|
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
|
|
&& gimple_purge_dead_eh_edges (bb))
|
|
cfg_changed = true;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "to\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Retry the same statement if it changed into another
|
|
builtin, there might be new opportunities now. */
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee
|
|
|| DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
|
|
|| DECL_FUNCTION_CODE (callee) == fcode)
|
|
gsi_next (&i);
|
|
}
|
|
}
|
|
|
|
/* Delete unreachable blocks. */
|
|
if (cfg_changed)
|
|
todoflags |= TODO_cleanup_cfg;
|
|
|
|
return todoflags;
|
|
}
|
|
|
|
|
|
struct gimple_opt_pass pass_fold_builtins =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"fab", /* name */
|
|
NULL, /* gate */
|
|
execute_fold_all_builtins, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_NONE, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func
|
|
| TODO_verify_ssa
|
|
| TODO_update_ssa /* todo_flags_finish */
|
|
}
|
|
};
|