06c94bceeb
Handle fields split across more than 2 aligned units. From-SVN: r4840
3150 lines
97 KiB
C
3150 lines
97 KiB
C
/* Medium-level subroutines: convert bit-field store and extract
|
||
and shifts, multiplies and divides to rtl instructions.
|
||
Copyright (C) 1987, 1988, 1989, 1992, 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "insn-config.h"
|
||
#include "expr.h"
|
||
#include "real.h"
|
||
#include "recog.h"
|
||
|
||
static rtx extract_split_bit_field ();
|
||
static rtx extract_fixed_bit_field ();
|
||
static void store_split_bit_field ();
|
||
static void store_fixed_bit_field ();
|
||
static rtx mask_rtx ();
|
||
static rtx lshift_value ();
|
||
|
||
#define CEIL(x,y) (((x) + (y) - 1) / (y))
|
||
|
||
/* Non-zero means multiply instructions are cheaper than shifts. */
|
||
int mult_is_very_cheap;
|
||
|
||
/* Non-zero means divides or modulus operations are relatively cheap for
|
||
powers of two, so don't use branches; emit the operation instead.
|
||
Usually, this will mean that the MD file will emit non-branch
|
||
sequences. */
|
||
|
||
static int sdiv_pow2_cheap, smod_pow2_cheap;
|
||
|
||
/* For compilers that support multiple targets with different word sizes,
|
||
MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
|
||
is the H8/300(H) compiler. */
|
||
|
||
#ifndef MAX_BITS_PER_WORD
|
||
#define MAX_BITS_PER_WORD BITS_PER_WORD
|
||
#endif
|
||
|
||
/* Cost of various pieces of RTL. */
|
||
static int add_cost, mult_cost, negate_cost, zero_cost;
|
||
static int shift_cost[MAX_BITS_PER_WORD];
|
||
static int shiftadd_cost[MAX_BITS_PER_WORD];
|
||
static int shiftsub_cost[MAX_BITS_PER_WORD];
|
||
|
||
void
|
||
init_expmed ()
|
||
{
|
||
char *free_point;
|
||
/* This is "some random pseudo register" for purposes of calling recog
|
||
to see what insns exist. */
|
||
rtx reg = gen_rtx (REG, word_mode, FIRST_PSEUDO_REGISTER);
|
||
rtx shift_insn, shiftadd_insn, shiftsub_insn;
|
||
int dummy;
|
||
int m;
|
||
|
||
start_sequence ();
|
||
|
||
/* Since we are on the permanent obstack, we must be sure we save this
|
||
spot AFTER we call start_sequence, since it will reuse the rtl it
|
||
makes. */
|
||
|
||
free_point = (char *) oballoc (0);
|
||
|
||
zero_cost = rtx_cost (const0_rtx, 0);
|
||
add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
|
||
|
||
shift_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (ASHIFT, word_mode, reg,
|
||
const0_rtx)));
|
||
|
||
shiftadd_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (PLUS, word_mode,
|
||
gen_rtx (MULT, word_mode,
|
||
reg, const0_rtx),
|
||
reg)));
|
||
|
||
shiftsub_insn = emit_insn (gen_rtx (SET, VOIDmode, reg,
|
||
gen_rtx (MINUS, word_mode,
|
||
gen_rtx (MULT, word_mode,
|
||
reg, const0_rtx),
|
||
reg)));
|
||
|
||
init_recog ();
|
||
|
||
shift_cost[0] = 0;
|
||
shiftadd_cost[0] = shiftsub_cost[0] = add_cost;
|
||
|
||
for (m = 1; m < BITS_PER_WORD; m++)
|
||
{
|
||
shift_cost[m] = shiftadd_cost[m] = shiftsub_cost[m] = 32000;
|
||
|
||
XEXP (SET_SRC (PATTERN (shift_insn)), 1) = GEN_INT (m);
|
||
if (recog (PATTERN (shift_insn), shift_insn, &dummy) >= 0)
|
||
shift_cost[m] = rtx_cost (SET_SRC (PATTERN (shift_insn)), SET);
|
||
|
||
XEXP (XEXP (SET_SRC (PATTERN (shiftadd_insn)), 0), 1)
|
||
= GEN_INT ((HOST_WIDE_INT) 1 << m);
|
||
if (recog (PATTERN (shiftadd_insn), shiftadd_insn, &dummy) >= 0)
|
||
shiftadd_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftadd_insn)), SET);
|
||
|
||
XEXP (XEXP (SET_SRC (PATTERN (shiftsub_insn)), 0), 1)
|
||
= GEN_INT ((HOST_WIDE_INT) 1 << m);
|
||
if (recog (PATTERN (shiftsub_insn), shiftsub_insn, &dummy) >= 0)
|
||
shiftsub_cost[m] = rtx_cost (SET_SRC (PATTERN (shiftsub_insn)), SET);
|
||
}
|
||
|
||
mult_cost = rtx_cost (gen_rtx (MULT, word_mode, reg, reg), SET);
|
||
/* For gcc 2.4 keep MULT_COST small to avoid really slow searches
|
||
in synth_mult. */
|
||
mult_cost = MIN (12 * add_cost, mult_cost);
|
||
negate_cost = rtx_cost (gen_rtx (NEG, word_mode, reg), SET);
|
||
|
||
/* 999999 is chosen to avoid any plausible faster special case. */
|
||
mult_is_very_cheap
|
||
= (rtx_cost (gen_rtx (MULT, word_mode, reg, GEN_INT (999999)), SET)
|
||
< rtx_cost (gen_rtx (ASHIFT, word_mode, reg, GEN_INT (7)), SET));
|
||
|
||
sdiv_pow2_cheap
|
||
= (rtx_cost (gen_rtx (DIV, word_mode, reg, GEN_INT (32)), SET)
|
||
<= 2 * add_cost);
|
||
smod_pow2_cheap
|
||
= (rtx_cost (gen_rtx (MOD, word_mode, reg, GEN_INT (32)), SET)
|
||
<= 2 * add_cost);
|
||
|
||
/* Free the objects we just allocated. */
|
||
end_sequence ();
|
||
obfree (free_point);
|
||
}
|
||
|
||
/* Return an rtx representing minus the value of X.
|
||
MODE is the intended mode of the result,
|
||
useful if X is a CONST_INT. */
|
||
|
||
rtx
|
||
negate_rtx (mode, x)
|
||
enum machine_mode mode;
|
||
rtx x;
|
||
{
|
||
if (GET_CODE (x) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT val = - INTVAL (x);
|
||
if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
/* Sign extend the value from the bits that are significant. */
|
||
if (val & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
|
||
val |= (HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (mode);
|
||
else
|
||
val &= ((HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (mode)) - 1;
|
||
}
|
||
return GEN_INT (val);
|
||
}
|
||
else
|
||
return expand_unop (GET_MODE (x), neg_optab, x, NULL_RTX, 0);
|
||
}
|
||
|
||
/* Generate code to store value from rtx VALUE
|
||
into a bit-field within structure STR_RTX
|
||
containing BITSIZE bits starting at bit BITNUM.
|
||
FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
|
||
TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
|
||
|
||
/* ??? Note that there are two different ideas here for how
|
||
to determine the size to count bits within, for a register.
|
||
One is BITS_PER_WORD, and the other is the size of operand 3
|
||
of the insv pattern. (The latter assumes that an n-bit machine
|
||
will be able to insert bit fields up to n bits wide.)
|
||
It isn't certain that either of these is right.
|
||
extract_bit_field has the same quandary. */
|
||
|
||
rtx
|
||
store_bit_field (str_rtx, bitsize, bitnum, fieldmode, value, align, total_size)
|
||
rtx str_rtx;
|
||
register int bitsize;
|
||
int bitnum;
|
||
enum machine_mode fieldmode;
|
||
rtx value;
|
||
int align;
|
||
int total_size;
|
||
{
|
||
int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
|
||
register int offset = bitnum / unit;
|
||
register int bitpos = bitnum % unit;
|
||
register rtx op0 = str_rtx;
|
||
|
||
if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
|
||
abort ();
|
||
|
||
/* Discount the part of the structure before the desired byte.
|
||
We need to know how many bytes are safe to reference after it. */
|
||
if (total_size >= 0)
|
||
total_size -= (bitpos / BIGGEST_ALIGNMENT
|
||
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
/* The following line once was done only if WORDS_BIG_ENDIAN,
|
||
but I think that is a mistake. WORDS_BIG_ENDIAN is
|
||
meaningful at a much higher level; when structures are copied
|
||
between memory and regs, the higher-numbered regs
|
||
always get higher addresses. */
|
||
offset += SUBREG_WORD (op0);
|
||
/* We used to adjust BITPOS here, but now we do the whole adjustment
|
||
right after the loop. */
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* If OP0 is a register, BITPOS must count within a word.
|
||
But as we have it, it counts within whatever size OP0 now has.
|
||
On a bigendian machine, these are not the same, so convert. */
|
||
if (GET_CODE (op0) != MEM && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
||
#endif
|
||
|
||
value = protect_from_queue (value, 0);
|
||
|
||
if (flag_force_mem)
|
||
value = force_not_mem (value);
|
||
|
||
/* Note that the adjustment of BITPOS above has no effect on whether
|
||
BITPOS is 0 in a REG bigger than a word. */
|
||
if (GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
|
||
&& (! STRICT_ALIGNMENT || GET_CODE (op0) != MEM)
|
||
&& bitpos == 0 && bitsize == GET_MODE_BITSIZE (fieldmode))
|
||
{
|
||
/* Storing in a full-word or multi-word field in a register
|
||
can be done with just SUBREG. */
|
||
if (GET_MODE (op0) != fieldmode)
|
||
if (GET_CODE (op0) == REG)
|
||
op0 = gen_rtx (SUBREG, fieldmode, op0, offset);
|
||
else
|
||
op0 = change_address (op0, fieldmode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
emit_move_insn (op0, value);
|
||
return value;
|
||
}
|
||
|
||
/* Storing an lsb-aligned field in a register
|
||
can be done with a movestrict instruction. */
|
||
|
||
if (GET_CODE (op0) != MEM
|
||
#if BYTES_BIG_ENDIAN
|
||
&& bitpos + bitsize == unit
|
||
#else
|
||
&& bitpos == 0
|
||
#endif
|
||
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
||
&& (GET_MODE (op0) == fieldmode
|
||
|| (movstrict_optab->handlers[(int) fieldmode].insn_code
|
||
!= CODE_FOR_nothing)))
|
||
{
|
||
/* Get appropriate low part of the value being stored. */
|
||
if (GET_CODE (value) == CONST_INT || GET_CODE (value) == REG)
|
||
value = gen_lowpart (fieldmode, value);
|
||
else if (!(GET_CODE (value) == SYMBOL_REF
|
||
|| GET_CODE (value) == LABEL_REF
|
||
|| GET_CODE (value) == CONST))
|
||
value = convert_to_mode (fieldmode, value, 0);
|
||
|
||
if (GET_MODE (op0) == fieldmode)
|
||
emit_move_insn (op0, value);
|
||
else
|
||
{
|
||
int icode = movstrict_optab->handlers[(int) fieldmode].insn_code;
|
||
if(! (*insn_operand_predicate[icode][1]) (value, fieldmode))
|
||
value = copy_to_mode_reg (fieldmode, value);
|
||
emit_insn (GEN_FCN (icode)
|
||
(gen_rtx (SUBREG, fieldmode, op0, offset), value));
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full. */
|
||
|
||
int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
int i;
|
||
|
||
/* This is the mode we must force value to, so that there will be enough
|
||
subwords to extract. Note that fieldmode will often (always?) be
|
||
VOIDmode, because that is what store_field uses to indicate that this
|
||
is a bit field, but passing VOIDmode to operand_subword_force will
|
||
result in an abort. */
|
||
fieldmode = mode_for_size (nwords * BITS_PER_WORD, MODE_INT, 0);
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
int wordnum = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
int bit_offset = (WORDS_BIG_ENDIAN
|
||
? MAX (bitsize - (i + 1) * BITS_PER_WORD, 0)
|
||
: i * BITS_PER_WORD);
|
||
store_bit_field (op0, MIN (BITS_PER_WORD,
|
||
bitsize - i * BITS_PER_WORD),
|
||
bitnum + bit_offset, word_mode,
|
||
operand_subword_force (value, wordnum, fieldmode),
|
||
align, total_size);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/* From here on we can assume that the field to be stored in is
|
||
a full-word (whatever type that is), since it is shorter than a word. */
|
||
|
||
/* OFFSET is the number of words or bytes (UNIT says which)
|
||
from STR_RTX to the first word or byte containing part of the field. */
|
||
|
||
if (GET_CODE (op0) == REG)
|
||
{
|
||
if (offset != 0
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
||
op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
|
||
op0, offset);
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
op0 = protect_from_queue (op0, 1);
|
||
}
|
||
|
||
/* Now OFFSET is nonzero only if OP0 is memory
|
||
and is therefore always measured in bytes. */
|
||
|
||
#ifdef HAVE_insv
|
||
if (HAVE_insv
|
||
&& !(bitsize == 1 && GET_CODE (value) == CONST_INT)
|
||
/* Ensure insv's size is wide enough for this field. */
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_insv][3])
|
||
>= bitsize))
|
||
{
|
||
int xbitpos = bitpos;
|
||
rtx value1;
|
||
rtx xop0 = op0;
|
||
rtx last = get_last_insn ();
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_insv][3];
|
||
|
||
int save_volatile_ok = volatile_ok;
|
||
volatile_ok = 1;
|
||
|
||
/* If this machine's insv can only insert into a register, or if we
|
||
are to force MEMs into a register, copy OP0 into a register and
|
||
save it back later. */
|
||
if (GET_CODE (op0) == MEM
|
||
&& (flag_force_mem
|
||
|| ! ((*insn_operand_predicate[(int) CODE_FOR_insv][0])
|
||
(op0, VOIDmode))))
|
||
{
|
||
rtx tempreg;
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If OP0 is
|
||
BLKmode, get the smallest mode consistent with the alignment. If
|
||
OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
|
||
mode. Otherwise, use the smallest mode containing the field. */
|
||
|
||
if (GET_MODE (op0) == BLKmode
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
|
||
bestmode
|
||
= get_best_mode (bitsize, bitnum, align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (op0));
|
||
else
|
||
bestmode = GET_MODE (op0);
|
||
|
||
if (bestmode == VOIDmode)
|
||
goto insv_loses;
|
||
|
||
/* Adjust address to point to the containing unit of that mode. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
/* Compute offset as multiple of this unit, counting in bytes. */
|
||
offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
bitpos = bitnum % unit;
|
||
op0 = change_address (op0, bestmode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
|
||
/* Fetch that unit, store the bitfield in it, then store the unit. */
|
||
tempreg = copy_to_reg (op0);
|
||
store_bit_field (tempreg, bitsize, bitpos, fieldmode, value,
|
||
align, total_size);
|
||
emit_move_insn (op0, tempreg);
|
||
return value;
|
||
}
|
||
volatile_ok = save_volatile_ok;
|
||
|
||
/* Add OFFSET into OP0's address. */
|
||
if (GET_CODE (xop0) == MEM)
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), offset));
|
||
|
||
/* If xop0 is a register, we need it in MAXMODE
|
||
to make it acceptable to the format of insv. */
|
||
if (GET_CODE (xop0) == SUBREG)
|
||
PUT_MODE (xop0, maxmode);
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
|
||
#if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
#endif
|
||
/* We have been counting XBITPOS within UNIT.
|
||
Count instead within the size of the register. */
|
||
#if BITS_BIG_ENDIAN
|
||
if (GET_CODE (xop0) != MEM)
|
||
xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
|
||
#endif
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
/* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
|
||
value1 = value;
|
||
if (GET_MODE (value) != maxmode)
|
||
{
|
||
if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
|
||
{
|
||
/* Optimization: Don't bother really extending VALUE
|
||
if it has all the bits we will actually use. However,
|
||
if we must narrow it, be sure we do it correctly. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
|
||
{
|
||
/* Avoid making subreg of a subreg, or of a mem. */
|
||
if (GET_CODE (value1) != REG)
|
||
value1 = copy_to_reg (value1);
|
||
value1 = gen_rtx (SUBREG, maxmode, value1, 0);
|
||
}
|
||
else
|
||
value1 = gen_lowpart (maxmode, value1);
|
||
}
|
||
else if (!CONSTANT_P (value))
|
||
/* Parse phase is supposed to make VALUE's data type
|
||
match that of the component reference, which is a type
|
||
at least as wide as the field; so VALUE should have
|
||
a mode that corresponds to that type. */
|
||
abort ();
|
||
}
|
||
|
||
/* If this machine's insv insists on a register,
|
||
get VALUE1 into a register. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_insv][3])
|
||
(value1, maxmode)))
|
||
value1 = force_reg (maxmode, value1);
|
||
|
||
pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
|
||
if (pat)
|
||
emit_insn (pat);
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
|
||
}
|
||
}
|
||
else
|
||
insv_loses:
|
||
#endif
|
||
/* Insv is not available; store using shifts and boolean ops. */
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, align);
|
||
return value;
|
||
}
|
||
|
||
/* Use shifts and boolean operations to store VALUE
|
||
into a bit field of width BITSIZE
|
||
in a memory location specified by OP0 except offset by OFFSET bytes.
|
||
(OFFSET must be 0 if OP0 is a register.)
|
||
The field starts at position BITPOS within the byte.
|
||
(If OP0 is a register, it may be a full word or a narrower mode,
|
||
but BITPOS still counts within a full word,
|
||
which is significant on bigendian machines.)
|
||
STRUCT_ALIGN is the alignment the structure is known to have (in bytes).
|
||
|
||
Note that protect_from_queue has already been done on OP0 and VALUE. */
|
||
|
||
static void
|
||
store_fixed_bit_field (op0, offset, bitsize, bitpos, value, struct_align)
|
||
register rtx op0;
|
||
register int offset, bitsize, bitpos;
|
||
register rtx value;
|
||
int struct_align;
|
||
{
|
||
register enum machine_mode mode;
|
||
int total_bits = BITS_PER_WORD;
|
||
rtx subtarget, temp;
|
||
int all_zero = 0;
|
||
int all_one = 0;
|
||
|
||
/* There is a case not handled here:
|
||
a structure with a known alignment of just a halfword
|
||
and a field split across two aligned halfwords within the structure.
|
||
Or likewise a structure with a known alignment of just a byte
|
||
and a field split across two bytes.
|
||
Such cases are not supposed to be able to occur. */
|
||
|
||
if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG)
|
||
{
|
||
if (offset != 0)
|
||
abort ();
|
||
/* Special treatment for a bit field split across two registers. */
|
||
if (bitsize + bitpos > BITS_PER_WORD)
|
||
{
|
||
store_split_bit_field (op0, bitsize, bitpos,
|
||
value, BITS_PER_WORD);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Get the proper mode to use for this field. We want a mode that
|
||
includes the entire field. If such a mode would be larger than
|
||
a word, we won't be doing the extraction the normal way. */
|
||
|
||
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
struct_align * BITS_PER_UNIT, word_mode,
|
||
GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
store_split_bit_field (op0,
|
||
bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
value, struct_align);
|
||
return;
|
||
}
|
||
|
||
total_bits = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Get ref to an aligned byte, halfword, or word containing the field.
|
||
Adjust BITPOS to be position within a word,
|
||
and OFFSET to be the offset of that word.
|
||
Then alter OP0 to refer to that word. */
|
||
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
||
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
||
op0 = change_address (op0, mode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
|
||
mode = GET_MODE (op0);
|
||
|
||
/* Now MODE is either some integral mode for a MEM as OP0,
|
||
or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
|
||
The bit field is contained entirely within OP0.
|
||
BITPOS is the starting bit number within OP0.
|
||
(OP0's mode may actually be narrower than MODE.) */
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* BITPOS is the distance between our msb
|
||
and that of the containing datum.
|
||
Convert it to the distance from the lsb. */
|
||
|
||
bitpos = total_bits - bitsize - bitpos;
|
||
#endif
|
||
/* Now BITPOS is always the distance between our lsb
|
||
and that of OP0. */
|
||
|
||
/* Shift VALUE left by BITPOS bits. If VALUE is not constant,
|
||
we must first convert its mode to MODE. */
|
||
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
register HOST_WIDE_INT v = INTVAL (value);
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
||
|
||
if (v == 0)
|
||
all_zero = 1;
|
||
else if ((bitsize < HOST_BITS_PER_WIDE_INT
|
||
&& v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
|
||
|| (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
|
||
all_one = 1;
|
||
|
||
value = lshift_value (mode, value, bitpos, bitsize);
|
||
}
|
||
else
|
||
{
|
||
int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
|
||
&& bitpos + bitsize != GET_MODE_BITSIZE (mode));
|
||
|
||
if (GET_MODE (value) != mode)
|
||
{
|
||
/* If VALUE is a floating-point mode, access it as an integer
|
||
of the corresponding size, then convert it. This can occur on
|
||
a machine with 64 bit registers that uses SFmode for float. */
|
||
if (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT)
|
||
{
|
||
if (GET_CODE (value) != REG)
|
||
value = copy_to_reg (value);
|
||
value
|
||
= gen_rtx (SUBREG, word_mode, value, 0);
|
||
}
|
||
|
||
if ((GET_CODE (value) == REG || GET_CODE (value) == SUBREG)
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
|
||
value = gen_lowpart (mode, value);
|
||
else
|
||
value = convert_to_mode (mode, value, 1);
|
||
}
|
||
|
||
if (must_and)
|
||
value = expand_binop (mode, and_optab, value,
|
||
mask_rtx (mode, 0, bitsize, 0),
|
||
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
||
if (bitpos > 0)
|
||
value = expand_shift (LSHIFT_EXPR, mode, value,
|
||
build_int_2 (bitpos, 0), NULL_RTX, 1);
|
||
}
|
||
|
||
/* Now clear the chosen bits in OP0,
|
||
except that if VALUE is -1 we need not bother. */
|
||
|
||
subtarget = (GET_CODE (op0) == REG || ! flag_force_mem) ? op0 : 0;
|
||
|
||
if (! all_one)
|
||
{
|
||
temp = expand_binop (mode, and_optab, op0,
|
||
mask_rtx (mode, bitpos, bitsize, 1),
|
||
subtarget, 1, OPTAB_LIB_WIDEN);
|
||
subtarget = temp;
|
||
}
|
||
else
|
||
temp = op0;
|
||
|
||
/* Now logical-or VALUE into OP0, unless it is zero. */
|
||
|
||
if (! all_zero)
|
||
temp = expand_binop (mode, ior_optab, temp, value,
|
||
subtarget, 1, OPTAB_LIB_WIDEN);
|
||
if (op0 != temp)
|
||
emit_move_insn (op0, temp);
|
||
}
|
||
|
||
/* Store a bit field that is split across multiple accessible memory objects.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
|
||
BITSIZE is the field width; BITPOS the position of its first bit
|
||
(within the word).
|
||
VALUE is the value to store.
|
||
ALIGN is the known alignment of OP0, measured in bytes.
|
||
This is also the size of the memory objects to be used.
|
||
|
||
This does not yet handle fields wider than BITS_PER_WORD. */
|
||
|
||
static void
|
||
store_split_bit_field (op0, bitsize, bitpos, value, align)
|
||
rtx op0;
|
||
int bitsize, bitpos;
|
||
rtx value;
|
||
int align;
|
||
{
|
||
int unit = align * BITS_PER_UNIT;
|
||
rtx word;
|
||
int bitsdone = 0;
|
||
|
||
if (GET_CODE (value) == CONST_DOUBLE
|
||
&& (word = gen_lowpart_common (word_mode, value)) != 0)
|
||
value = word;
|
||
|
||
if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
|
||
value = copy_to_mode_reg (word_mode, value);
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
int thissize;
|
||
rtx part, word;
|
||
int thispos;
|
||
int offset;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
thissize = unit - offset * BITS_PER_UNIT % unit;
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* Fetch successively less significant portions. */
|
||
if (GET_CODE (value) == CONST_INT)
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
||
>> (bitsize - bitsdone - thissize))
|
||
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
||
else
|
||
/* The args are chosen so that the last part
|
||
includes the lsb. */
|
||
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
||
BITS_PER_WORD - bitsize + bitsdone,
|
||
NULL_RTX, 1, align);
|
||
#else
|
||
/* Fetch successively more significant portions. */
|
||
if (GET_CODE (value) == CONST_INT)
|
||
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) >> bitsdone)
|
||
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
||
else
|
||
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
||
bitsdone, NULL_RTX, 1, align);
|
||
#endif
|
||
|
||
/* If OP0 is a register, then handle OFFSET here.
|
||
In the register case, UNIT must be a whole word. */
|
||
if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
|
||
{
|
||
word = operand_subword (op0, offset, 1, GET_MODE (op0));
|
||
offset = 0;
|
||
}
|
||
else
|
||
word = op0;
|
||
|
||
if (word == 0)
|
||
abort ();
|
||
|
||
store_fixed_bit_field (word, offset, thissize, thispos, part, align);
|
||
bitsdone += thissize;
|
||
}
|
||
}
|
||
|
||
/* Generate code to extract a byte-field from STR_RTX
|
||
containing BITSIZE bits, starting at BITNUM,
|
||
and put it in TARGET if possible (if TARGET is nonzero).
|
||
Regardless of TARGET, we return the rtx for where the value is placed.
|
||
It may be a QUEUED.
|
||
|
||
STR_RTX is the structure containing the byte (a REG or MEM).
|
||
UNSIGNEDP is nonzero if this is an unsigned bit field.
|
||
MODE is the natural mode of the field value once extracted.
|
||
TMODE is the mode the caller would like the value to have;
|
||
but the value may be returned with type MODE instead.
|
||
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes.
|
||
TOTAL_SIZE is the size in bytes of the containing structure,
|
||
or -1 if varying.
|
||
|
||
If a TARGET is specified and we can store in it at no extra cost,
|
||
we do so, and return TARGET.
|
||
Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
|
||
if they are equally easy. */
|
||
|
||
rtx
|
||
extract_bit_field (str_rtx, bitsize, bitnum, unsignedp,
|
||
target, mode, tmode, align, total_size)
|
||
rtx str_rtx;
|
||
register int bitsize;
|
||
int bitnum;
|
||
int unsignedp;
|
||
rtx target;
|
||
enum machine_mode mode, tmode;
|
||
int align;
|
||
int total_size;
|
||
{
|
||
int unit = (GET_CODE (str_rtx) == MEM) ? BITS_PER_UNIT : BITS_PER_WORD;
|
||
register int offset = bitnum / unit;
|
||
register int bitpos = bitnum % unit;
|
||
register rtx op0 = str_rtx;
|
||
rtx spec_target = target;
|
||
rtx spec_target_subreg = 0;
|
||
|
||
if (GET_CODE (str_rtx) == MEM && ! MEM_IN_STRUCT_P (str_rtx))
|
||
abort ();
|
||
|
||
/* Discount the part of the structure before the desired byte.
|
||
We need to know how many bytes are safe to reference after it. */
|
||
if (total_size >= 0)
|
||
total_size -= (bitpos / BIGGEST_ALIGNMENT
|
||
* (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
|
||
if (tmode == VOIDmode)
|
||
tmode = mode;
|
||
while (GET_CODE (op0) == SUBREG)
|
||
{
|
||
offset += SUBREG_WORD (op0);
|
||
op0 = SUBREG_REG (op0);
|
||
}
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* If OP0 is a register, BITPOS must count within a word.
|
||
But as we have it, it counts within whatever size OP0 now has.
|
||
On a bigendian machine, these are not the same, so convert. */
|
||
if (GET_CODE (op0) != MEM && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
||
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
||
#endif
|
||
|
||
/* Extracting a full-word or multi-word value
|
||
from a structure in a register.
|
||
This can be done with just SUBREG.
|
||
So too extracting a subword value in
|
||
the least significant part of the register. */
|
||
|
||
if (GET_CODE (op0) == REG
|
||
&& ((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
|
||
&& bitpos % BITS_PER_WORD == 0)
|
||
|| (mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0) != BLKmode
|
||
#if BYTES_BIG_ENDIAN
|
||
&& bitpos + bitsize == BITS_PER_WORD
|
||
#else
|
||
&& bitpos == 0
|
||
#endif
|
||
)))
|
||
{
|
||
enum machine_mode mode1
|
||
= mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0);
|
||
|
||
if (mode1 != GET_MODE (op0))
|
||
op0 = gen_rtx (SUBREG, mode1, op0, offset);
|
||
|
||
if (mode1 != mode)
|
||
return convert_to_mode (tmode, op0, unsignedp);
|
||
return op0;
|
||
}
|
||
|
||
/* Handle fields bigger than a word. */
|
||
|
||
if (bitsize > BITS_PER_WORD)
|
||
{
|
||
/* Here we transfer the words of the field
|
||
in the order least significant first.
|
||
This is because the most significant word is the one which may
|
||
be less than full. */
|
||
|
||
int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
||
int i;
|
||
|
||
if (target == 0 || GET_CODE (target) != REG)
|
||
target = gen_reg_rtx (mode);
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
/* If I is 0, use the low-order word in both field and target;
|
||
if I is 1, use the next to lowest word; and so on. */
|
||
int wordnum = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
|
||
int bit_offset = (WORDS_BIG_ENDIAN
|
||
? MAX (0, bitsize - (i + 1) * BITS_PER_WORD)
|
||
: i * BITS_PER_WORD);
|
||
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
||
rtx result_part
|
||
= extract_bit_field (op0, MIN (BITS_PER_WORD,
|
||
bitsize - i * BITS_PER_WORD),
|
||
bitnum + bit_offset,
|
||
1, target_part, mode, word_mode,
|
||
align, total_size);
|
||
|
||
if (target_part == 0)
|
||
abort ();
|
||
|
||
if (result_part != target_part)
|
||
emit_move_insn (target_part, result_part);
|
||
}
|
||
|
||
return target;
|
||
}
|
||
|
||
/* From here on we know the desired field is smaller than a word
|
||
so we can assume it is an integer. So we can safely extract it as one
|
||
size of integer, if necessary, and then truncate or extend
|
||
to the size that is wanted. */
|
||
|
||
/* OFFSET is the number of words or bytes (UNIT says which)
|
||
from STR_RTX to the first word or byte containing part of the field. */
|
||
|
||
if (GET_CODE (op0) == REG)
|
||
{
|
||
if (offset != 0
|
||
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
||
op0 = gen_rtx (SUBREG, TYPE_MODE (type_for_size (BITS_PER_WORD, 0)),
|
||
op0, offset);
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
op0 = protect_from_queue (str_rtx, 1);
|
||
}
|
||
|
||
/* Now OFFSET is nonzero only for memory operands. */
|
||
|
||
if (unsignedp)
|
||
{
|
||
#ifdef HAVE_extzv
|
||
if (HAVE_extzv
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extzv][0])
|
||
>= bitsize))
|
||
{
|
||
int xbitpos = bitpos, xoffset = offset;
|
||
rtx bitsize_rtx, bitpos_rtx;
|
||
rtx last = get_last_insn();
|
||
rtx xop0 = op0;
|
||
rtx xtarget = target;
|
||
rtx xspec_target = spec_target;
|
||
rtx xspec_target_subreg = spec_target_subreg;
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_extzv][0];
|
||
|
||
if (GET_CODE (xop0) == MEM)
|
||
{
|
||
int save_volatile_ok = volatile_ok;
|
||
volatile_ok = 1;
|
||
|
||
/* Is the memory operand acceptable? */
|
||
if (flag_force_mem
|
||
|| ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][1])
|
||
(xop0, GET_MODE (xop0))))
|
||
{
|
||
/* No, load into a reg and extract from there. */
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If
|
||
OP0 is BLKmode, get the smallest mode consistent with the
|
||
alignment. If OP0 is a non-BLKmode object that is no
|
||
wider than MAXMODE, use its mode. Otherwise, use the
|
||
smallest mode containing the field. */
|
||
|
||
if (GET_MODE (xop0) == BLKmode
|
||
|| (GET_MODE_SIZE (GET_MODE (op0))
|
||
> GET_MODE_SIZE (maxmode)))
|
||
bestmode = get_best_mode (bitsize, bitnum,
|
||
align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (xop0));
|
||
else
|
||
bestmode = GET_MODE (xop0);
|
||
|
||
if (bestmode == VOIDmode)
|
||
goto extzv_loses;
|
||
|
||
/* Compute offset as multiple of this unit,
|
||
counting in bytes. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
xbitpos = bitnum % unit;
|
||
xop0 = change_address (xop0, bestmode,
|
||
plus_constant (XEXP (xop0, 0),
|
||
xoffset));
|
||
/* Fetch it to a register in that size. */
|
||
xop0 = force_reg (bestmode, xop0);
|
||
|
||
/* XBITPOS counts within UNIT, which is what is expected. */
|
||
}
|
||
else
|
||
/* Get ref to first byte containing part of the field. */
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), xoffset));
|
||
|
||
volatile_ok = save_volatile_ok;
|
||
}
|
||
|
||
/* If op0 is a register, we need it in MAXMODE (which is usually
|
||
SImode). to make it acceptable to the format of extzv. */
|
||
if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
|
||
abort ();
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
#if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
#endif
|
||
/* Now convert from counting within UNIT to counting in MAXMODE. */
|
||
#if BITS_BIG_ENDIAN
|
||
if (GET_CODE (xop0) != MEM)
|
||
xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
|
||
#endif
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
if (xtarget == 0
|
||
|| (flag_force_mem && GET_CODE (xtarget) == MEM))
|
||
xtarget = xspec_target = gen_reg_rtx (tmode);
|
||
|
||
if (GET_MODE (xtarget) != maxmode)
|
||
{
|
||
if (GET_CODE (xtarget) == REG)
|
||
{
|
||
int wider = (GET_MODE_SIZE (maxmode)
|
||
> GET_MODE_SIZE (GET_MODE (xtarget)));
|
||
xtarget = gen_lowpart (maxmode, xtarget);
|
||
if (wider)
|
||
xspec_target_subreg = xtarget;
|
||
}
|
||
else
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
}
|
||
|
||
/* If this machine's extzv insists on a register target,
|
||
make sure we have one. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0])
|
||
(xtarget, maxmode)))
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
|
||
bitsize_rtx = GEN_INT (bitsize);
|
||
bitpos_rtx = GEN_INT (xbitpos);
|
||
|
||
pat = gen_extzv (protect_from_queue (xtarget, 1),
|
||
xop0, bitsize_rtx, bitpos_rtx);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
target = xtarget;
|
||
spec_target = xspec_target;
|
||
spec_target_subreg = xspec_target_subreg;
|
||
}
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
|
||
bitpos, target, 1, align);
|
||
}
|
||
}
|
||
else
|
||
extzv_loses:
|
||
#endif
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, 1, align);
|
||
}
|
||
else
|
||
{
|
||
#ifdef HAVE_extv
|
||
if (HAVE_extv
|
||
&& (GET_MODE_BITSIZE (insn_operand_mode[(int) CODE_FOR_extv][0])
|
||
>= bitsize))
|
||
{
|
||
int xbitpos = bitpos, xoffset = offset;
|
||
rtx bitsize_rtx, bitpos_rtx;
|
||
rtx last = get_last_insn();
|
||
rtx xop0 = op0, xtarget = target;
|
||
rtx xspec_target = spec_target;
|
||
rtx xspec_target_subreg = spec_target_subreg;
|
||
rtx pat;
|
||
enum machine_mode maxmode
|
||
= insn_operand_mode[(int) CODE_FOR_extv][0];
|
||
|
||
if (GET_CODE (xop0) == MEM)
|
||
{
|
||
/* Is the memory operand acceptable? */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][1])
|
||
(xop0, GET_MODE (xop0))))
|
||
{
|
||
/* No, load into a reg and extract from there. */
|
||
enum machine_mode bestmode;
|
||
|
||
/* Get the mode to use for inserting into this field. If
|
||
OP0 is BLKmode, get the smallest mode consistent with the
|
||
alignment. If OP0 is a non-BLKmode object that is no
|
||
wider than MAXMODE, use its mode. Otherwise, use the
|
||
smallest mode containing the field. */
|
||
|
||
if (GET_MODE (xop0) == BLKmode
|
||
|| (GET_MODE_SIZE (GET_MODE (op0))
|
||
> GET_MODE_SIZE (maxmode)))
|
||
bestmode = get_best_mode (bitsize, bitnum,
|
||
align * BITS_PER_UNIT, maxmode,
|
||
MEM_VOLATILE_P (xop0));
|
||
else
|
||
bestmode = GET_MODE (xop0);
|
||
|
||
if (bestmode == VOIDmode)
|
||
goto extv_loses;
|
||
|
||
/* Compute offset as multiple of this unit,
|
||
counting in bytes. */
|
||
unit = GET_MODE_BITSIZE (bestmode);
|
||
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
||
xbitpos = bitnum % unit;
|
||
xop0 = change_address (xop0, bestmode,
|
||
plus_constant (XEXP (xop0, 0),
|
||
xoffset));
|
||
/* Fetch it to a register in that size. */
|
||
xop0 = force_reg (bestmode, xop0);
|
||
|
||
/* XBITPOS counts within UNIT, which is what is expected. */
|
||
}
|
||
else
|
||
/* Get ref to first byte containing part of the field. */
|
||
xop0 = change_address (xop0, byte_mode,
|
||
plus_constant (XEXP (xop0, 0), xoffset));
|
||
}
|
||
|
||
/* If op0 is a register, we need it in MAXMODE (which is usually
|
||
SImode) to make it acceptable to the format of extv. */
|
||
if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
|
||
abort ();
|
||
if (GET_CODE (xop0) == REG && GET_MODE (xop0) != maxmode)
|
||
xop0 = gen_rtx (SUBREG, maxmode, xop0, 0);
|
||
|
||
/* On big-endian machines, we count bits from the most significant.
|
||
If the bit field insn does not, we must invert. */
|
||
#if BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN
|
||
xbitpos = unit - bitsize - xbitpos;
|
||
#endif
|
||
/* XBITPOS counts within a size of UNIT.
|
||
Adjust to count within a size of MAXMODE. */
|
||
#if BITS_BIG_ENDIAN
|
||
if (GET_CODE (xop0) != MEM)
|
||
xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
|
||
#endif
|
||
unit = GET_MODE_BITSIZE (maxmode);
|
||
|
||
if (xtarget == 0
|
||
|| (flag_force_mem && GET_CODE (xtarget) == MEM))
|
||
xtarget = xspec_target = gen_reg_rtx (tmode);
|
||
|
||
if (GET_MODE (xtarget) != maxmode)
|
||
{
|
||
if (GET_CODE (xtarget) == REG)
|
||
{
|
||
int wider = (GET_MODE_SIZE (maxmode)
|
||
> GET_MODE_SIZE (GET_MODE (xtarget)));
|
||
xtarget = gen_lowpart (maxmode, xtarget);
|
||
if (wider)
|
||
xspec_target_subreg = xtarget;
|
||
}
|
||
else
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
}
|
||
|
||
/* If this machine's extv insists on a register target,
|
||
make sure we have one. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extv][0])
|
||
(xtarget, maxmode)))
|
||
xtarget = gen_reg_rtx (maxmode);
|
||
|
||
bitsize_rtx = GEN_INT (bitsize);
|
||
bitpos_rtx = GEN_INT (xbitpos);
|
||
|
||
pat = gen_extv (protect_from_queue (xtarget, 1),
|
||
xop0, bitsize_rtx, bitpos_rtx);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
target = xtarget;
|
||
spec_target = xspec_target;
|
||
spec_target_subreg = xspec_target_subreg;
|
||
}
|
||
else
|
||
{
|
||
delete_insns_since (last);
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize,
|
||
bitpos, target, 0, align);
|
||
}
|
||
}
|
||
else
|
||
extv_loses:
|
||
#endif
|
||
target = extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, 0, align);
|
||
}
|
||
if (target == spec_target)
|
||
return target;
|
||
if (target == spec_target_subreg)
|
||
return spec_target;
|
||
if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
|
||
{
|
||
/* If the target mode is floating-point, first convert to the
|
||
integer mode of that size and then access it as a floating-point
|
||
value via a SUBREG. */
|
||
if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
|
||
{
|
||
target = convert_to_mode (mode_for_size (GET_MODE_BITSIZE (tmode),
|
||
MODE_INT, 0),
|
||
target, unsignedp);
|
||
if (GET_CODE (target) != REG)
|
||
target = copy_to_reg (target);
|
||
return gen_rtx (SUBREG, tmode, target, 0);
|
||
}
|
||
else
|
||
return convert_to_mode (tmode, target, unsignedp);
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Extract a bit field using shifts and boolean operations
|
||
Returns an rtx to represent the value.
|
||
OP0 addresses a register (word) or memory (byte).
|
||
BITPOS says which bit within the word or byte the bit field starts in.
|
||
OFFSET says how many bytes farther the bit field starts;
|
||
it is 0 if OP0 is a register.
|
||
BITSIZE says how many bits long the bit field is.
|
||
(If OP0 is a register, it may be narrower than a full word,
|
||
but BITPOS still counts within a full word,
|
||
which is significant on bigendian machines.)
|
||
|
||
UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
|
||
If TARGET is nonzero, attempts to store the value there
|
||
and return TARGET, but this is not guaranteed.
|
||
If TARGET is not used, create a pseudo-reg of mode TMODE for the value.
|
||
|
||
ALIGN is the alignment that STR_RTX is known to have, measured in bytes. */
|
||
|
||
static rtx
|
||
extract_fixed_bit_field (tmode, op0, offset, bitsize, bitpos,
|
||
target, unsignedp, align)
|
||
enum machine_mode tmode;
|
||
register rtx op0, target;
|
||
register int offset, bitsize, bitpos;
|
||
int unsignedp;
|
||
int align;
|
||
{
|
||
int total_bits = BITS_PER_WORD;
|
||
enum machine_mode mode;
|
||
|
||
if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
|
||
{
|
||
/* Special treatment for a bit field split across two registers. */
|
||
if (bitsize + bitpos > BITS_PER_WORD)
|
||
return extract_split_bit_field (op0, bitsize, bitpos,
|
||
unsignedp, align);
|
||
}
|
||
else
|
||
{
|
||
/* Get the proper mode to use for this field. We want a mode that
|
||
includes the entire field. If such a mode would be larger than
|
||
a word, we won't be doing the extraction the normal way. */
|
||
|
||
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
||
align * BITS_PER_UNIT, word_mode,
|
||
GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0));
|
||
|
||
if (mode == VOIDmode)
|
||
/* The only way this should occur is if the field spans word
|
||
boundaries. */
|
||
return extract_split_bit_field (op0, bitsize,
|
||
bitpos + offset * BITS_PER_UNIT,
|
||
unsignedp, align);
|
||
|
||
total_bits = GET_MODE_BITSIZE (mode);
|
||
|
||
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
||
be be in the range 0 to total_bits-1, and put any excess bytes in
|
||
OFFSET. */
|
||
if (bitpos >= total_bits)
|
||
{
|
||
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
||
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
||
* BITS_PER_UNIT);
|
||
}
|
||
|
||
/* Get ref to an aligned byte, halfword, or word containing the field.
|
||
Adjust BITPOS to be position within a word,
|
||
and OFFSET to be the offset of that word.
|
||
Then alter OP0 to refer to that word. */
|
||
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
||
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
||
op0 = change_address (op0, mode,
|
||
plus_constant (XEXP (op0, 0), offset));
|
||
}
|
||
|
||
mode = GET_MODE (op0);
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
/* BITPOS is the distance between our msb and that of OP0.
|
||
Convert it to the distance from the lsb. */
|
||
|
||
bitpos = total_bits - bitsize - bitpos;
|
||
#endif
|
||
/* Now BITPOS is always the distance between the field's lsb and that of OP0.
|
||
We have reduced the big-endian case to the little-endian case. */
|
||
|
||
if (unsignedp)
|
||
{
|
||
if (bitpos)
|
||
{
|
||
/* If the field does not already start at the lsb,
|
||
shift it so it does. */
|
||
tree amount = build_int_2 (bitpos, 0);
|
||
/* Maybe propagate the target for the shift. */
|
||
/* But not if we will return it--could confuse integrate.c. */
|
||
rtx subtarget = (target != 0 && GET_CODE (target) == REG
|
||
&& !REG_FUNCTION_VALUE_P (target)
|
||
? target : 0);
|
||
if (tmode != mode) subtarget = 0;
|
||
op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
||
}
|
||
/* Convert the value to the desired mode. */
|
||
if (mode != tmode)
|
||
op0 = convert_to_mode (tmode, op0, 1);
|
||
|
||
/* Unless the msb of the field used to be the msb when we shifted,
|
||
mask out the upper bits. */
|
||
|
||
if (GET_MODE_BITSIZE (mode) != bitpos + bitsize
|
||
#if 0
|
||
#ifdef SLOW_ZERO_EXTEND
|
||
/* Always generate an `and' if
|
||
we just zero-extended op0 and SLOW_ZERO_EXTEND, since it
|
||
will combine fruitfully with the zero-extend. */
|
||
|| tmode != mode
|
||
#endif
|
||
#endif
|
||
)
|
||
return expand_binop (GET_MODE (op0), and_optab, op0,
|
||
mask_rtx (GET_MODE (op0), 0, bitsize, 0),
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
return op0;
|
||
}
|
||
|
||
/* To extract a signed bit-field, first shift its msb to the msb of the word,
|
||
then arithmetic-shift its lsb to the lsb of the word. */
|
||
op0 = force_reg (mode, op0);
|
||
if (mode != tmode)
|
||
target = 0;
|
||
|
||
/* Find the narrowest integer mode that contains the field. */
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
|
||
{
|
||
op0 = convert_to_mode (mode, op0, 0);
|
||
break;
|
||
}
|
||
|
||
if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
|
||
{
|
||
tree amount = build_int_2 (GET_MODE_BITSIZE (mode) - (bitsize + bitpos), 0);
|
||
/* Maybe propagate the target for the shift. */
|
||
/* But not if we will return the result--could confuse integrate.c. */
|
||
rtx subtarget = (target != 0 && GET_CODE (target) == REG
|
||
&& ! REG_FUNCTION_VALUE_P (target)
|
||
? target : 0);
|
||
op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
||
}
|
||
|
||
return expand_shift (RSHIFT_EXPR, mode, op0,
|
||
build_int_2 (GET_MODE_BITSIZE (mode) - bitsize, 0),
|
||
target, 0);
|
||
}
|
||
|
||
/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
|
||
of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
|
||
complement of that if COMPLEMENT. The mask is truncated if
|
||
necessary to the width of mode MODE. */
|
||
|
||
static rtx
|
||
mask_rtx (mode, bitpos, bitsize, complement)
|
||
enum machine_mode mode;
|
||
int bitpos, bitsize, complement;
|
||
{
|
||
HOST_WIDE_INT masklow, maskhigh;
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
masklow = (HOST_WIDE_INT) -1 << bitpos;
|
||
else
|
||
masklow = 0;
|
||
|
||
if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
|
||
masklow &= ((unsigned HOST_WIDE_INT) -1
|
||
>> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
||
|
||
if (bitpos <= HOST_BITS_PER_WIDE_INT)
|
||
maskhigh = -1;
|
||
else
|
||
maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
|
||
if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
|
||
maskhigh &= ((unsigned HOST_WIDE_INT) -1
|
||
>> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
|
||
else
|
||
maskhigh = 0;
|
||
|
||
if (complement)
|
||
{
|
||
maskhigh = ~maskhigh;
|
||
masklow = ~masklow;
|
||
}
|
||
|
||
return immed_double_const (masklow, maskhigh, mode);
|
||
}
|
||
|
||
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
|
||
VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
|
||
|
||
static rtx
|
||
lshift_value (mode, value, bitpos, bitsize)
|
||
enum machine_mode mode;
|
||
rtx value;
|
||
int bitpos, bitsize;
|
||
{
|
||
unsigned HOST_WIDE_INT v = INTVAL (value);
|
||
HOST_WIDE_INT low, high;
|
||
|
||
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
||
v &= ~((HOST_WIDE_INT) -1 << bitsize);
|
||
|
||
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
low = v << bitpos;
|
||
high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
|
||
}
|
||
else
|
||
{
|
||
low = 0;
|
||
high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
|
||
return immed_double_const (low, high, mode);
|
||
}
|
||
|
||
/* Extract a bit field that is split across two words
|
||
and return an RTX for the result.
|
||
|
||
OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
|
||
BITSIZE is the field width; BITPOS, position of its first bit, in the word.
|
||
UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
|
||
|
||
ALIGN is the known alignment of OP0, measured in bytes.
|
||
This is also the size of the memory objects to be used. */
|
||
|
||
static rtx
|
||
extract_split_bit_field (op0, bitsize, bitpos, unsignedp, align)
|
||
rtx op0;
|
||
int bitsize, bitpos, unsignedp, align;
|
||
{
|
||
int unit = align * BITS_PER_UNIT;
|
||
int bitsdone = 0;
|
||
rtx result;
|
||
int first = 1;
|
||
|
||
while (bitsdone < bitsize)
|
||
{
|
||
int thissize;
|
||
rtx part, word;
|
||
int thispos;
|
||
int offset;
|
||
|
||
offset = (bitpos + bitsdone) / unit;
|
||
thispos = (bitpos + bitsdone) % unit;
|
||
|
||
thissize = unit - offset * BITS_PER_UNIT % unit;
|
||
|
||
/* If OP0 is a register, then handle OFFSET here.
|
||
In the register case, UNIT must be a whole word. */
|
||
if (GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
|
||
{
|
||
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
||
offset = 0;
|
||
}
|
||
else
|
||
word = op0;
|
||
|
||
if (word == 0)
|
||
abort ();
|
||
|
||
/* Extract the parts in bit-counting order,
|
||
whose meaning is determined by BYTES_PER_UNIT. */
|
||
part = extract_fixed_bit_field (word_mode, word, offset,
|
||
thissize, thispos, 0, 1, align);
|
||
bitsdone += thissize;
|
||
|
||
/* Shift this part into place for the result. */
|
||
#if BYTES_BIG_ENDIAN
|
||
if (bitsize != bitsdone)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
build_int_2 (bitsize - bitsdone, 0), 0, 1);
|
||
#else
|
||
if (bitsdone != 0)
|
||
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
||
build_int_2 (bitsdone, 0), 0, 1);
|
||
#endif
|
||
|
||
if (first)
|
||
result = part;
|
||
else
|
||
/* Combine the parts with bitwise or. This works
|
||
because we extracted each part as an unsigned bit field. */
|
||
result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
|
||
OPTAB_LIB_WIDEN);
|
||
|
||
first = 0;
|
||
}
|
||
|
||
/* Unsigned bit field: we are done. */
|
||
if (unsignedp)
|
||
return result;
|
||
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
||
result = expand_shift (LSHIFT_EXPR, word_mode, result,
|
||
build_int_2 (BITS_PER_WORD - bitsize, 0),
|
||
NULL_RTX, 0);
|
||
return expand_shift (RSHIFT_EXPR, word_mode, result,
|
||
build_int_2 (BITS_PER_WORD - bitsize, 0), NULL_RTX, 0);
|
||
}
|
||
|
||
/* Add INC into TARGET. */
|
||
|
||
void
|
||
expand_inc (target, inc)
|
||
rtx target, inc;
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), add_optab,
|
||
target, inc,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Subtract DEC from TARGET. */
|
||
|
||
void
|
||
expand_dec (target, dec)
|
||
rtx target, dec;
|
||
{
|
||
rtx value = expand_binop (GET_MODE (target), sub_optab,
|
||
target, dec,
|
||
target, 0, OPTAB_LIB_WIDEN);
|
||
if (value != target)
|
||
emit_move_insn (target, value);
|
||
}
|
||
|
||
/* Output a shift instruction for expression code CODE,
|
||
with SHIFTED being the rtx for the value to shift,
|
||
and AMOUNT the tree for the amount to shift by.
|
||
Store the result in the rtx TARGET, if that is convenient.
|
||
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
||
Return the rtx for where the value is. */
|
||
|
||
rtx
|
||
expand_shift (code, mode, shifted, amount, target, unsignedp)
|
||
enum tree_code code;
|
||
register enum machine_mode mode;
|
||
rtx shifted;
|
||
tree amount;
|
||
register rtx target;
|
||
int unsignedp;
|
||
{
|
||
register rtx op1, temp = 0;
|
||
register int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
|
||
register int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
|
||
int try;
|
||
|
||
/* Previously detected shift-counts computed by NEGATE_EXPR
|
||
and shifted in the other direction; but that does not work
|
||
on all machines. */
|
||
|
||
op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
|
||
|
||
if (op1 == const0_rtx)
|
||
return shifted;
|
||
|
||
for (try = 0; temp == 0 && try < 3; try++)
|
||
{
|
||
enum optab_methods methods;
|
||
|
||
if (try == 0)
|
||
methods = OPTAB_DIRECT;
|
||
else if (try == 1)
|
||
methods = OPTAB_WIDEN;
|
||
else
|
||
methods = OPTAB_LIB_WIDEN;
|
||
|
||
if (rotate)
|
||
{
|
||
/* Widening does not work for rotation. */
|
||
if (methods == OPTAB_WIDEN)
|
||
continue;
|
||
else if (methods == OPTAB_LIB_WIDEN)
|
||
{
|
||
/* If we are rotating by a constant that is valid and
|
||
we have been unable to open-code this by a rotation,
|
||
do it as the IOR of two shifts. I.e., to rotate A
|
||
by N bits, compute (A << N) | ((unsigned) A >> (C - N))
|
||
where C is the bitsize of A.
|
||
|
||
It is theoretically possible that the target machine might
|
||
not be able to perform either shift and hence we would
|
||
be making two libcalls rather than just the one for the
|
||
shift (similarly if IOR could not be done). We will allow
|
||
this extremely unlikely lossage to avoid complicating the
|
||
code below. */
|
||
|
||
if (GET_CODE (op1) == CONST_INT && INTVAL (op1) > 0
|
||
&& INTVAL (op1) < GET_MODE_BITSIZE (mode))
|
||
{
|
||
rtx subtarget = target == shifted ? 0 : target;
|
||
rtx temp1;
|
||
tree other_amount
|
||
= build_int_2 (GET_MODE_BITSIZE (mode) - INTVAL (op1), 0);
|
||
|
||
shifted = force_reg (mode, shifted);
|
||
|
||
temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
|
||
mode, shifted, amount, subtarget, 1);
|
||
temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
|
||
mode, shifted, other_amount, 0, 1);
|
||
return expand_binop (mode, ior_optab, temp, temp1, target,
|
||
unsignedp, methods);
|
||
}
|
||
else
|
||
methods = OPTAB_LIB;
|
||
}
|
||
|
||
temp = expand_binop (mode,
|
||
left ? rotl_optab : rotr_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
|
||
/* If we don't have the rotate, but we are rotating by a constant
|
||
that is in range, try a rotate in the opposite direction. */
|
||
|
||
if (temp == 0 && GET_CODE (op1) == CONST_INT
|
||
&& INTVAL (op1) > 0 && INTVAL (op1) < GET_MODE_BITSIZE (mode))
|
||
temp = expand_binop (mode,
|
||
left ? rotr_optab : rotl_optab,
|
||
shifted,
|
||
GEN_INT (GET_MODE_BITSIZE (mode)
|
||
- INTVAL (op1)),
|
||
target, unsignedp, methods);
|
||
}
|
||
else if (unsignedp)
|
||
{
|
||
temp = expand_binop (mode,
|
||
left ? lshl_optab : lshr_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
if (temp == 0 && left)
|
||
temp = expand_binop (mode, ashl_optab,
|
||
shifted, op1, target, unsignedp, methods);
|
||
}
|
||
|
||
/* Do arithmetic shifts.
|
||
Also, if we are going to widen the operand, we can just as well
|
||
use an arithmetic right-shift instead of a logical one. */
|
||
if (temp == 0 && ! rotate
|
||
&& (! unsignedp || (! left && methods == OPTAB_WIDEN)))
|
||
{
|
||
enum optab_methods methods1 = methods;
|
||
|
||
/* If trying to widen a log shift to an arithmetic shift,
|
||
don't accept an arithmetic shift of the same size. */
|
||
if (unsignedp)
|
||
methods1 = OPTAB_MUST_WIDEN;
|
||
|
||
/* Arithmetic shift */
|
||
|
||
temp = expand_binop (mode,
|
||
left ? ashl_optab : ashr_optab,
|
||
shifted, op1, target, unsignedp, methods1);
|
||
}
|
||
|
||
#ifdef HAVE_extzv
|
||
/* We can do a logical (unsigned) right shift with a bit-field
|
||
extract insn. But first check if one of the above methods worked. */
|
||
if (temp != 0)
|
||
return temp;
|
||
|
||
if (unsignedp && code == RSHIFT_EXPR && ! BITS_BIG_ENDIAN && HAVE_extzv)
|
||
{
|
||
enum machine_mode output_mode
|
||
= insn_operand_mode[(int) CODE_FOR_extzv][0];
|
||
|
||
if ((methods == OPTAB_DIRECT && mode == output_mode)
|
||
|| (methods == OPTAB_WIDEN
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (output_mode)))
|
||
{
|
||
rtx shifted1 = convert_to_mode (output_mode,
|
||
protect_from_queue (shifted, 0),
|
||
1);
|
||
enum machine_mode length_mode
|
||
= insn_operand_mode[(int) CODE_FOR_extzv][2];
|
||
enum machine_mode pos_mode
|
||
= insn_operand_mode[(int) CODE_FOR_extzv][3];
|
||
rtx target1 = 0;
|
||
rtx last = get_last_insn ();
|
||
rtx width;
|
||
rtx xop1 = op1;
|
||
rtx pat;
|
||
|
||
if (target != 0)
|
||
target1 = protect_from_queue (target, 1);
|
||
|
||
/* We define extract insns as having OUTPUT_MODE in a register
|
||
and the mode of operand 1 in memory. Since we want
|
||
OUTPUT_MODE, we will always force the operand into a
|
||
register. At some point we might want to support MEM
|
||
directly. */
|
||
shifted1 = force_reg (output_mode, shifted1);
|
||
|
||
/* If we don't have or cannot use a suggested target,
|
||
make a place for the result, in the proper mode. */
|
||
if (methods == OPTAB_WIDEN || target1 == 0
|
||
|| ! ((*insn_operand_predicate[(int) CODE_FOR_extzv][0])
|
||
(target1, output_mode)))
|
||
target1 = gen_reg_rtx (output_mode);
|
||
|
||
xop1 = protect_from_queue (xop1, 0);
|
||
xop1 = convert_to_mode (pos_mode, xop1,
|
||
TREE_UNSIGNED (TREE_TYPE (amount)));
|
||
|
||
/* If this machine's extzv insists on a register for
|
||
operand 3 (position), arrange for that. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][3])
|
||
(xop1, pos_mode)))
|
||
xop1 = force_reg (pos_mode, xop1);
|
||
|
||
/* WIDTH gets the width of the bit field to extract:
|
||
wordsize minus # bits to shift by. */
|
||
if (GET_CODE (xop1) == CONST_INT)
|
||
width = GEN_INT (GET_MODE_BITSIZE (mode) - INTVAL (op1));
|
||
else
|
||
{
|
||
/* Now get the width in the proper mode. */
|
||
op1 = protect_from_queue (op1, 0);
|
||
width = convert_to_mode (length_mode, op1,
|
||
TREE_UNSIGNED (TREE_TYPE (amount)));
|
||
|
||
width = expand_binop (length_mode, sub_optab,
|
||
GEN_INT (GET_MODE_BITSIZE (mode)),
|
||
width, NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* If this machine's extzv insists on a register for
|
||
operand 2 (length), arrange for that. */
|
||
if (! ((*insn_operand_predicate[(int) CODE_FOR_extzv][2])
|
||
(width, length_mode)))
|
||
width = force_reg (length_mode, width);
|
||
|
||
/* Now extract with WIDTH, omitting OP1 least sig bits. */
|
||
pat = gen_extzv (target1, shifted1, width, xop1);
|
||
if (pat)
|
||
{
|
||
emit_insn (pat);
|
||
temp = convert_to_mode (mode, target1, 1);
|
||
}
|
||
else
|
||
delete_insns_since (last);
|
||
}
|
||
|
||
/* Can also do logical shift with signed bit-field extract
|
||
followed by inserting the bit-field at a different position.
|
||
That strategy is not yet implemented. */
|
||
}
|
||
#endif /* HAVE_extzv */
|
||
}
|
||
|
||
if (temp == 0)
|
||
abort ();
|
||
return temp;
|
||
}
|
||
|
||
enum alg_code { alg_zero, alg_m, alg_shift,
|
||
alg_add_t_m2, alg_sub_t_m2,
|
||
alg_add_factor, alg_sub_factor,
|
||
alg_add_t2_m, alg_sub_t2_m,
|
||
alg_add, alg_subtract, alg_factor, alg_shiftop };
|
||
|
||
/* This structure records a sequence of operations.
|
||
`ops' is the number of operations recorded.
|
||
`cost' is their total cost.
|
||
The operations are stored in `op' and the corresponding
|
||
logarithms of the integer coefficients in `log'.
|
||
|
||
These are the operations:
|
||
alg_zero total := 0;
|
||
alg_m total := multiplicand;
|
||
alg_shift total := total * coeff
|
||
alg_add_t_m2 total := total + multiplicand * coeff;
|
||
alg_sub_t_m2 total := total - multiplicand * coeff;
|
||
alg_add_factor total := total * coeff + total;
|
||
alg_sub_factor total := total * coeff - total;
|
||
alg_add_t2_m total := total * coeff + multiplicand;
|
||
alg_sub_t2_m total := total * coeff - multiplicand;
|
||
|
||
The first operand must be either alg_zero or alg_m. */
|
||
|
||
struct algorithm
|
||
{
|
||
short cost;
|
||
short ops;
|
||
/* The size of the OP and LOG fields are not directly related to the
|
||
word size, but the worst-case algorithms will be if we have few
|
||
consecutive ones or zeros, i.e., a multiplicand like 10101010101...
|
||
In that case we will generate shift-by-2, add, shift-by-2, add,...,
|
||
in total wordsize operations. */
|
||
enum alg_code op[MAX_BITS_PER_WORD];
|
||
char log[MAX_BITS_PER_WORD];
|
||
};
|
||
|
||
/* Compute and return the best algorithm for multiplying by T.
|
||
The algorithm must cost less than cost_limit
|
||
If retval.cost >= COST_LIMIT, no algorithm was found and all
|
||
other field of the returned struct are undefined. */
|
||
|
||
static struct algorithm
|
||
synth_mult (t, cost_limit)
|
||
unsigned HOST_WIDE_INT t;
|
||
int cost_limit;
|
||
{
|
||
int m;
|
||
struct algorithm *best_alg
|
||
= (struct algorithm *)alloca (sizeof (struct algorithm));
|
||
struct algorithm *alg_in
|
||
= (struct algorithm *)alloca (sizeof (struct algorithm));
|
||
unsigned int cost;
|
||
unsigned HOST_WIDE_INT q;
|
||
|
||
/* Indicate that no algorithm is yet found. If no algorithm
|
||
is found, this value will be returned and indicate failure. */
|
||
best_alg->cost = cost_limit;
|
||
|
||
if (cost_limit <= 0)
|
||
return *best_alg;
|
||
|
||
/* t == 1 can be done in zero cost. */
|
||
if (t == 1)
|
||
{
|
||
best_alg->ops = 1;
|
||
best_alg->cost = 0;
|
||
best_alg->op[0] = alg_m;
|
||
return *best_alg;
|
||
}
|
||
|
||
/* t == 0 sometimes has a cost. If it does and it exceeds our limit,
|
||
fail now. */
|
||
|
||
else if (t == 0)
|
||
{
|
||
if (zero_cost >= cost_limit)
|
||
return *best_alg;
|
||
else
|
||
{
|
||
best_alg->ops = 1;
|
||
best_alg->cost = zero_cost;
|
||
best_alg->op[0] = alg_zero;
|
||
return *best_alg;
|
||
}
|
||
}
|
||
|
||
/* If we have a group of zero bits at the low-order part of T, try
|
||
multiplying by the remaining bits and then doing a shift. */
|
||
|
||
if ((t & 1) == 0)
|
||
{
|
||
m = floor_log2 (t & -t); /* m = number of low zero bits */
|
||
q = t >> m;
|
||
cost = shift_cost[m];
|
||
if (cost < cost_limit)
|
||
{
|
||
*alg_in = synth_mult (q, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops++] = alg_shift;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we have an odd number, add or subtract one. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
unsigned HOST_WIDE_INT w;
|
||
|
||
for (w = 1; (w & t) != 0; w <<= 1)
|
||
;
|
||
if (w > 2
|
||
/* Reject the case where t is 3.
|
||
Thus we prefer addition in that case. */
|
||
&& t != 3)
|
||
{
|
||
/* T ends with ...111. Multiply by (T + 1) and subtract 1. */
|
||
|
||
cost = add_cost;
|
||
*alg_in = synth_mult (t + 1, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops++] = alg_sub_t_m2;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
|
||
|
||
cost = add_cost;
|
||
*alg_in = synth_mult (t - 1, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = 0;
|
||
best_alg->op[best_alg->ops++] = alg_add_t_m2;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Look for factors of t of the form
|
||
t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
|
||
If we find such a factor, we can multiply by t using an algorithm that
|
||
multiplies by q, shift the result by m and add/subtract it to itself.
|
||
|
||
We search for large factors first and loop down, even if large factors
|
||
are less probable than small; if we find a large factor we will find a
|
||
good sequence quickly, and therefore be able to prune (by decreasing
|
||
COST_LIMIT) the search. */
|
||
|
||
for (m = floor_log2 (t - 1); m >= 2; m--)
|
||
{
|
||
unsigned HOST_WIDE_INT d;
|
||
|
||
d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
|
||
if (t % d == 0 && t > d)
|
||
{
|
||
cost = MIN (shiftadd_cost[m], add_cost + shift_cost[m]);
|
||
*alg_in = synth_mult (t / d, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops++] = alg_add_factor;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
|
||
d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
|
||
if (t % d == 0 && t > d)
|
||
{
|
||
cost = MIN (shiftsub_cost[m], add_cost + shift_cost[m]);
|
||
*alg_in = synth_mult (t / d, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops++] = alg_sub_factor;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try shift-and-add (load effective address) instructions,
|
||
i.e. do a*3, a*5, a*9. */
|
||
if ((t & 1) != 0)
|
||
{
|
||
q = t - 1;
|
||
q = q & -q;
|
||
m = exact_log2 (q);
|
||
if (m >= 0)
|
||
{
|
||
cost = shiftadd_cost[m];
|
||
*alg_in = synth_mult ((t - 1) >> m, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops++] = alg_add_t2_m;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
|
||
q = t + 1;
|
||
q = q & -q;
|
||
m = exact_log2 (q);
|
||
if (m >= 0)
|
||
{
|
||
cost = shiftsub_cost[m];
|
||
*alg_in = synth_mult ((t + 1) >> m, cost_limit - cost);
|
||
|
||
cost += alg_in->cost;
|
||
if (cost < best_alg->cost)
|
||
{
|
||
struct algorithm *x;
|
||
x = alg_in, alg_in = best_alg, best_alg = x;
|
||
best_alg->log[best_alg->ops] = m;
|
||
best_alg->op[best_alg->ops++] = alg_sub_t2_m;
|
||
best_alg->cost = cost_limit = cost;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we are getting a too long sequence for `struct algorithm'
|
||
to record, store a fake cost to make this search fail. */
|
||
if (best_alg->ops == MAX_BITS_PER_WORD)
|
||
best_alg->cost = cost_limit;
|
||
|
||
return *best_alg;
|
||
}
|
||
|
||
/* Perform a multiplication and return an rtx for the result.
|
||
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
|
||
We check specially for a constant integer as OP1.
|
||
If you want this check for OP0 as well, then before calling
|
||
you should swap the two operands if OP0 would be constant. */
|
||
|
||
rtx
|
||
expand_mult (mode, op0, op1, target, unsignedp)
|
||
enum machine_mode mode;
|
||
register rtx op0, op1, target;
|
||
int unsignedp;
|
||
{
|
||
rtx const_op1 = op1;
|
||
|
||
/* If we are multiplying in DImode, it may still be a win
|
||
to try to work with shifts and adds. */
|
||
if (GET_CODE (op1) == CONST_DOUBLE
|
||
&& GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
|
||
&& HOST_BITS_PER_INT <= BITS_PER_WORD)
|
||
{
|
||
if ((CONST_DOUBLE_HIGH (op1) == 0 && CONST_DOUBLE_LOW (op1) >= 0)
|
||
|| (CONST_DOUBLE_HIGH (op1) == -1 && CONST_DOUBLE_LOW (op1) < 0))
|
||
const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
|
||
}
|
||
|
||
/* We used to test optimize here, on the grounds that it's better to
|
||
produce a smaller program when -O is not used.
|
||
But this causes such a terrible slowdown sometimes
|
||
that it seems better to use synth_mult always. */
|
||
|
||
if (GET_CODE (const_op1) == CONST_INT && ! mult_is_very_cheap)
|
||
{
|
||
struct algorithm alg;
|
||
struct algorithm neg_alg;
|
||
int negate = 0;
|
||
HOST_WIDE_INT val = INTVAL (op1);
|
||
HOST_WIDE_INT val_so_far;
|
||
rtx insn;
|
||
|
||
/* Try to do the computation two ways: multiply by the negative of OP1
|
||
and then negate, or do the multiplication directly. The latter is
|
||
usually faster for positive numbers and the former for negative
|
||
numbers, but the opposite can be faster if the original value
|
||
has a factor of 2**m +/- 1, while the negated value does not or
|
||
vice versa. */
|
||
|
||
alg = synth_mult (val, mult_cost);
|
||
neg_alg = synth_mult (- val,
|
||
(alg.cost < mult_cost ? alg.cost : mult_cost)
|
||
- negate_cost);
|
||
|
||
if (neg_alg.cost + negate_cost < alg.cost)
|
||
alg = neg_alg, negate = 1;
|
||
|
||
if (alg.cost < mult_cost)
|
||
{
|
||
/* We found something cheaper than a multiply insn. */
|
||
int opno;
|
||
rtx accum, tem;
|
||
|
||
op0 = protect_from_queue (op0, 0);
|
||
|
||
/* Avoid referencing memory over and over.
|
||
For speed, but also for correctness when mem is volatile. */
|
||
if (GET_CODE (op0) == MEM)
|
||
op0 = force_reg (mode, op0);
|
||
|
||
/* ACCUM starts out either as OP0 or as a zero, depending on
|
||
the first operation. */
|
||
|
||
if (alg.op[0] == alg_zero)
|
||
{
|
||
accum = copy_to_mode_reg (mode, const0_rtx);
|
||
val_so_far = 0;
|
||
}
|
||
else if (alg.op[0] == alg_m)
|
||
{
|
||
accum = copy_to_mode_reg (mode, op0);
|
||
val_so_far = 1;
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
for (opno = 1; opno < alg.ops; opno++)
|
||
{
|
||
int log = alg.log[opno];
|
||
rtx shift_subtarget = preserve_subexpressions_p () ? 0 : accum;
|
||
rtx add_target = opno == alg.ops - 1 && target != 0 ? target : 0;
|
||
|
||
switch (alg.op[opno])
|
||
{
|
||
case alg_shift:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
val_so_far <<= log;
|
||
break;
|
||
|
||
case alg_add_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
|
||
add_target ? add_target : accum);
|
||
val_so_far += (HOST_WIDE_INT) 1 << log;
|
||
break;
|
||
|
||
case alg_sub_t_m2:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, op0,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, accum, tem),
|
||
add_target ? add_target : accum);
|
||
val_so_far -= (HOST_WIDE_INT) 1 << log;
|
||
break;
|
||
|
||
case alg_add_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), accum, 0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, op0),
|
||
add_target ? add_target : accum);
|
||
val_so_far = (val_so_far << log) + 1;
|
||
break;
|
||
|
||
case alg_sub_t2_m:
|
||
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), accum, 0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, accum, op0),
|
||
add_target ? add_target : accum);
|
||
val_so_far = (val_so_far << log) - 1;
|
||
break;
|
||
|
||
case alg_add_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (PLUS, mode, accum, tem),
|
||
add_target ? add_target : accum);
|
||
val_so_far += val_so_far << log;
|
||
break;
|
||
|
||
case alg_sub_factor:
|
||
tem = expand_shift (LSHIFT_EXPR, mode, accum,
|
||
build_int_2 (log, 0), NULL_RTX, 0);
|
||
accum = force_operand (gen_rtx (MINUS, mode, tem, accum),
|
||
add_target ? add_target : tem);
|
||
val_so_far = (val_so_far << log) - val_so_far;
|
||
break;
|
||
|
||
default:
|
||
abort ();;
|
||
}
|
||
|
||
/* Write a REG_EQUAL note on the last insn so that we can cse
|
||
multiplication sequences. */
|
||
|
||
insn = get_last_insn ();
|
||
REG_NOTES (insn)
|
||
= gen_rtx (EXPR_LIST, REG_EQUAL,
|
||
gen_rtx (MULT, mode, op0, GEN_INT (val_so_far)),
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
if (negate)
|
||
{
|
||
val_so_far = - val_so_far;
|
||
accum = expand_unop (mode, neg_optab, accum, target, 0);
|
||
}
|
||
|
||
if (val != val_so_far)
|
||
abort ();
|
||
|
||
return accum;
|
||
}
|
||
}
|
||
|
||
/* This used to use umul_optab if unsigned,
|
||
but for non-widening multiply there is no difference
|
||
between signed and unsigned. */
|
||
op0 = expand_binop (mode, smul_optab,
|
||
op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
|
||
if (op0 == 0)
|
||
abort ();
|
||
return op0;
|
||
}
|
||
|
||
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
|
||
if that is convenient, and returning where the result is.
|
||
You may request either the quotient or the remainder as the result;
|
||
specify REM_FLAG nonzero to get the remainder.
|
||
|
||
CODE is the expression code for which kind of division this is;
|
||
it controls how rounding is done. MODE is the machine mode to use.
|
||
UNSIGNEDP nonzero means do unsigned division. */
|
||
|
||
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
|
||
and then correct it by or'ing in missing high bits
|
||
if result of ANDI is nonzero.
|
||
For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
|
||
This could optimize to a bfexts instruction.
|
||
But C doesn't use these operations, so their optimizations are
|
||
left for later. */
|
||
|
||
rtx
|
||
expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
|
||
int rem_flag;
|
||
enum tree_code code;
|
||
enum machine_mode mode;
|
||
register rtx op0, op1, target;
|
||
int unsignedp;
|
||
{
|
||
register rtx result = 0;
|
||
enum machine_mode compute_mode;
|
||
int log = -1;
|
||
int size;
|
||
int can_clobber_op0;
|
||
int mod_insn_no_good = 0;
|
||
rtx adjusted_op0 = op0;
|
||
optab optab1, optab2;
|
||
|
||
/* We shouldn't be called with op1 == const1_rtx, but some of the
|
||
code below will malfunction if we are, so check here and handle
|
||
the special case if so. */
|
||
if (op1 == const1_rtx)
|
||
return rem_flag ? const0_rtx : op0;
|
||
|
||
/* Don't use the function value register as a target
|
||
since we have to read it as well as write it,
|
||
and function-inlining gets confused by this. */
|
||
if (target && REG_P (target) && REG_FUNCTION_VALUE_P (target))
|
||
target = 0;
|
||
|
||
/* Don't clobber an operand while doing a multi-step calculation. */
|
||
if (target)
|
||
if ((rem_flag && (reg_mentioned_p (target, op0)
|
||
|| (GET_CODE (op0) == MEM && GET_CODE (target) == MEM)))
|
||
|| reg_mentioned_p (target, op1)
|
||
|| (GET_CODE (op1) == MEM && GET_CODE (target) == MEM))
|
||
target = 0;
|
||
|
||
can_clobber_op0 = (GET_CODE (op0) == REG && op0 == target);
|
||
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
log = exact_log2 (INTVAL (op1));
|
||
|
||
/* If log is >= 0, we are dividing by 2**log, and will do it by shifting,
|
||
which is really floor-division. Otherwise we will really do a divide,
|
||
and we assume that is trunc-division.
|
||
|
||
We must correct the dividend by adding or subtracting something
|
||
based on the divisor, in order to do the kind of rounding specified
|
||
by CODE. The correction depends on what kind of rounding is actually
|
||
available, and that depends on whether we will shift or divide.
|
||
|
||
In many of these cases it is possible to perform the operation by a
|
||
clever series of logical operations (shifts and/or exclusive-ors).
|
||
Although avoiding the jump has the advantage that it extends the basic
|
||
block and allows further optimization, the branch-free code is normally
|
||
at least one instruction longer in the (most common) case where the
|
||
dividend is non-negative. Performance measurements of the two
|
||
alternatives show that the branch-free code is slightly faster on the
|
||
IBM ROMP but slower on CISC processors (significantly slower on the
|
||
VAX). Accordingly, the jump code has been retained.
|
||
|
||
On machines where the jump code is slower, the cost of a DIV or MOD
|
||
operation can be set small (less than twice that of an addition); in
|
||
that case, we pretend that we don't have a power of two and perform
|
||
a normal division or modulus operation. */
|
||
|
||
if ((code == TRUNC_MOD_EXPR || code == TRUNC_DIV_EXPR)
|
||
&& ! unsignedp
|
||
&& (rem_flag ? smod_pow2_cheap : sdiv_pow2_cheap))
|
||
log = -1;
|
||
|
||
/* Get the mode in which to perform this computation. Normally it will
|
||
be MODE, but sometimes we can't do the desired operation in MODE.
|
||
If so, pick a wider mode in which we can do the operation. Convert
|
||
to that mode at the start to avoid repeated conversions.
|
||
|
||
First see what operations we need. These depend on the expression
|
||
we are evaluating. (We assume that divxx3 insns exist under the
|
||
same conditions that modxx3 insns and that these insns don't normally
|
||
fail. If these assumptions are not correct, we may generate less
|
||
efficient code in some cases.)
|
||
|
||
Then see if we find a mode in which we can open-code that operation
|
||
(either a division, modulus, or shift). Finally, check for the smallest
|
||
mode for which we can do the operation with a library call. */
|
||
|
||
optab1 = (log >= 0 ? (unsignedp ? lshr_optab : ashr_optab)
|
||
: (unsignedp ? udiv_optab : sdiv_optab));
|
||
optab2 = (log >= 0 ? optab1 : (unsignedp ? udivmod_optab : sdivmod_optab));
|
||
|
||
for (compute_mode = mode; compute_mode != VOIDmode;
|
||
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
||
if (optab1->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing
|
||
|| optab2->handlers[(int) compute_mode].insn_code != CODE_FOR_nothing)
|
||
break;
|
||
|
||
if (compute_mode == VOIDmode)
|
||
for (compute_mode = mode; compute_mode != VOIDmode;
|
||
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
||
if (optab1->handlers[(int) compute_mode].libfunc
|
||
|| optab2->handlers[(int) compute_mode].libfunc)
|
||
break;
|
||
|
||
/* If we still couldn't find a mode, use MODE; we'll probably abort in
|
||
expand_binop. */
|
||
if (compute_mode == VOIDmode)
|
||
compute_mode = mode;
|
||
|
||
size = GET_MODE_BITSIZE (compute_mode);
|
||
|
||
/* Now convert to the best mode to use. Show we made a copy of OP0
|
||
and hence we can clobber it (we cannot use a SUBREG to widen
|
||
something. */
|
||
if (compute_mode != mode)
|
||
{
|
||
adjusted_op0 = op0 = convert_to_mode (compute_mode, op0, unsignedp);
|
||
can_clobber_op0 = 1;
|
||
op1 = convert_to_mode (compute_mode, op1, unsignedp);
|
||
}
|
||
|
||
/* If we are computing the remainder and one of the operands is a volatile
|
||
MEM, copy it into a register. */
|
||
|
||
if (rem_flag && GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0))
|
||
adjusted_op0 = op0 = force_reg (compute_mode, op0), can_clobber_op0 = 1;
|
||
if (rem_flag && GET_CODE (op1) == MEM && MEM_VOLATILE_P (op1))
|
||
op1 = force_reg (compute_mode, op1);
|
||
|
||
/* If we are computing the remainder, op0 will be needed later to calculate
|
||
X - Y * (X / Y), therefore cannot be clobbered. */
|
||
if (rem_flag)
|
||
can_clobber_op0 = 0;
|
||
|
||
if (target == 0 || GET_MODE (target) != compute_mode)
|
||
target = gen_reg_rtx (compute_mode);
|
||
|
||
switch (code)
|
||
{
|
||
case TRUNC_MOD_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
if (log >= 0 && ! unsignedp)
|
||
{
|
||
/* Here we need to add OP1-1 if OP0 is negative, 0 otherwise.
|
||
This can be computed without jumps by arithmetically shifting
|
||
OP0 right LOG-1 places and then shifting right logically
|
||
SIZE-LOG bits. The resulting value is unconditionally added
|
||
to OP0. */
|
||
if (log == 1 || BRANCH_COST >= 3)
|
||
{
|
||
rtx temp = gen_reg_rtx (compute_mode);
|
||
if (! can_clobber_op0)
|
||
/* Copy op0 to a reg, to play safe,
|
||
since this is done in the other path. */
|
||
op0 = force_reg (compute_mode, op0);
|
||
temp = copy_to_suggested_reg (adjusted_op0, temp, compute_mode);
|
||
temp = expand_shift (RSHIFT_EXPR, compute_mode, temp,
|
||
build_int_2 (log - 1, 0), NULL_RTX, 0);
|
||
temp = expand_shift (RSHIFT_EXPR, compute_mode, temp,
|
||
build_int_2 (size - log, 0),
|
||
temp, 1);
|
||
/* We supply 0 as the target to make a new pseudo
|
||
for the value; that helps loop.c optimize the result. */
|
||
adjusted_op0 = expand_binop (compute_mode, add_optab,
|
||
adjusted_op0, temp,
|
||
0, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
else
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
if (! can_clobber_op0)
|
||
{
|
||
adjusted_op0 = copy_to_suggested_reg (adjusted_op0, target,
|
||
compute_mode);
|
||
/* Copy op0 to a reg, since emit_cmp_insn will call emit_queue
|
||
which will screw up mem refs for autoincrements. */
|
||
op0 = force_reg (compute_mode, op0);
|
||
}
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, GE,
|
||
NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
expand_inc (adjusted_op0, plus_constant (op1, -1));
|
||
emit_label (label);
|
||
}
|
||
mod_insn_no_good = 1;
|
||
}
|
||
break;
|
||
|
||
case FLOOR_DIV_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
if (log < 0 && ! unsignedp)
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
if (! can_clobber_op0)
|
||
{
|
||
adjusted_op0 = copy_to_suggested_reg (adjusted_op0, target,
|
||
compute_mode);
|
||
/* Copy op0 to a reg, since emit_cmp_insn will call emit_queue
|
||
which will screw up mem refs for autoincrements. */
|
||
op0 = force_reg (compute_mode, op0);
|
||
}
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, GE,
|
||
NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
expand_dec (adjusted_op0, op1);
|
||
expand_inc (adjusted_op0, const1_rtx);
|
||
emit_label (label);
|
||
mod_insn_no_good = 1;
|
||
}
|
||
break;
|
||
|
||
case CEIL_DIV_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
if (! can_clobber_op0)
|
||
{
|
||
adjusted_op0 = copy_to_suggested_reg (adjusted_op0, target,
|
||
compute_mode);
|
||
/* Copy op0 to a reg, since emit_cmp_insn will call emit_queue
|
||
which will screw up mem refs for autoincrements. */
|
||
op0 = force_reg (compute_mode, op0);
|
||
}
|
||
if (log < 0)
|
||
{
|
||
rtx label = 0;
|
||
if (! unsignedp)
|
||
{
|
||
label = gen_label_rtx ();
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, LE,
|
||
NULL_RTX, compute_mode, 0, 0);
|
||
emit_jump_insn (gen_ble (label));
|
||
}
|
||
expand_inc (adjusted_op0, op1);
|
||
expand_dec (adjusted_op0, const1_rtx);
|
||
if (! unsignedp)
|
||
emit_label (label);
|
||
}
|
||
else
|
||
{
|
||
adjusted_op0 = expand_binop (compute_mode, add_optab,
|
||
adjusted_op0, plus_constant (op1, -1),
|
||
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
||
}
|
||
mod_insn_no_good = 1;
|
||
break;
|
||
|
||
case ROUND_DIV_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
if (! can_clobber_op0)
|
||
{
|
||
adjusted_op0 = copy_to_suggested_reg (adjusted_op0, target,
|
||
compute_mode);
|
||
/* Copy op0 to a reg, since emit_cmp_insn will call emit_queue
|
||
which will screw up mem refs for autoincrements. */
|
||
op0 = force_reg (compute_mode, op0);
|
||
}
|
||
if (log < 0)
|
||
{
|
||
op1 = expand_shift (RSHIFT_EXPR, compute_mode, op1,
|
||
integer_one_node, NULL_RTX, 0);
|
||
if (! unsignedp)
|
||
{
|
||
if (BRANCH_COST >= 2)
|
||
{
|
||
/* Negate OP1 if OP0 < 0. Do this by computing a temporary
|
||
that has all bits equal to the sign bit and exclusive
|
||
or-ing it with OP1. */
|
||
rtx temp = gen_reg_rtx (compute_mode);
|
||
temp = copy_to_suggested_reg (adjusted_op0, temp, compute_mode);
|
||
temp = expand_shift (RSHIFT_EXPR, compute_mode, temp,
|
||
build_int_2 (size - 1, 0),
|
||
NULL_RTX, 0);
|
||
op1 = expand_binop (compute_mode, xor_optab, op1, temp, op1,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
else
|
||
{
|
||
rtx label = gen_label_rtx ();
|
||
emit_cmp_insn (adjusted_op0, const0_rtx, GE, NULL_RTX,
|
||
compute_mode, 0, 0);
|
||
emit_jump_insn (gen_bge (label));
|
||
expand_unop (compute_mode, neg_optab, op1, op1, 0);
|
||
emit_label (label);
|
||
}
|
||
}
|
||
expand_inc (adjusted_op0, op1);
|
||
}
|
||
else
|
||
{
|
||
op1 = GEN_INT (((HOST_WIDE_INT) 1 << log) / 2);
|
||
expand_inc (adjusted_op0, op1);
|
||
}
|
||
mod_insn_no_good = 1;
|
||
break;
|
||
}
|
||
|
||
if (rem_flag && !mod_insn_no_good)
|
||
{
|
||
/* Try to produce the remainder directly */
|
||
if (log >= 0)
|
||
result = expand_binop (compute_mode, and_optab, adjusted_op0,
|
||
GEN_INT (((HOST_WIDE_INT) 1 << log) - 1),
|
||
target, 1, OPTAB_LIB_WIDEN);
|
||
else
|
||
{
|
||
/* See if we can do remainder without a library call. */
|
||
result = sign_expand_binop (mode, umod_optab, smod_optab,
|
||
adjusted_op0, op1, target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (result == 0)
|
||
{
|
||
/* No luck there. Can we do remainder and divide at once
|
||
without a library call? */
|
||
result = gen_reg_rtx (compute_mode);
|
||
if (! expand_twoval_binop (unsignedp
|
||
? udivmod_optab : sdivmod_optab,
|
||
adjusted_op0, op1,
|
||
NULL_RTX, result, unsignedp))
|
||
result = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (result)
|
||
return gen_lowpart (mode, result);
|
||
|
||
/* Produce the quotient. */
|
||
if (log >= 0)
|
||
result = expand_shift (RSHIFT_EXPR, compute_mode, adjusted_op0,
|
||
build_int_2 (log, 0), target, unsignedp);
|
||
else if (rem_flag && !mod_insn_no_good)
|
||
/* If producing quotient in order to subtract for remainder,
|
||
and a remainder subroutine would be ok,
|
||
don't use a divide subroutine. */
|
||
result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
||
adjusted_op0, op1, NULL_RTX, unsignedp,
|
||
OPTAB_WIDEN);
|
||
else
|
||
{
|
||
/* Try a quotient insn, but not a library call. */
|
||
result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
||
adjusted_op0, op1,
|
||
rem_flag ? NULL_RTX : target,
|
||
unsignedp, OPTAB_WIDEN);
|
||
if (result == 0)
|
||
{
|
||
/* No luck there. Try a quotient-and-remainder insn,
|
||
keeping the quotient alone. */
|
||
result = gen_reg_rtx (mode);
|
||
if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
|
||
adjusted_op0, op1,
|
||
result, NULL_RTX, unsignedp))
|
||
result = 0;
|
||
}
|
||
|
||
/* If still no luck, use a library call. */
|
||
if (result == 0)
|
||
result = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
||
adjusted_op0, op1,
|
||
rem_flag ? NULL_RTX : target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
|
||
/* If we really want the remainder, get it by subtraction. */
|
||
if (rem_flag)
|
||
{
|
||
if (result == 0)
|
||
/* No divide instruction either. Use library for remainder. */
|
||
result = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
||
op0, op1, target,
|
||
unsignedp, OPTAB_LIB_WIDEN);
|
||
else
|
||
{
|
||
/* We divided. Now finish doing X - Y * (X / Y). */
|
||
result = expand_mult (compute_mode, result, op1, target, unsignedp);
|
||
if (! result) abort ();
|
||
result = expand_binop (compute_mode, sub_optab, op0,
|
||
result, target, unsignedp, OPTAB_LIB_WIDEN);
|
||
}
|
||
}
|
||
|
||
if (result == 0)
|
||
abort ();
|
||
|
||
return gen_lowpart (mode, result);
|
||
}
|
||
|
||
/* Return a tree node with data type TYPE, describing the value of X.
|
||
Usually this is an RTL_EXPR, if there is no obvious better choice.
|
||
X may be an expression, however we only support those expressions
|
||
generated by loop.c. */
|
||
|
||
tree
|
||
make_tree (type, x)
|
||
tree type;
|
||
rtx x;
|
||
{
|
||
tree t;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case CONST_INT:
|
||
t = build_int_2 (INTVAL (x),
|
||
! TREE_UNSIGNED (type) && INTVAL (x) >= 0 ? 0 : -1);
|
||
TREE_TYPE (t) = type;
|
||
return t;
|
||
|
||
case CONST_DOUBLE:
|
||
if (GET_MODE (x) == VOIDmode)
|
||
{
|
||
t = build_int_2 (CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
|
||
TREE_TYPE (t) = type;
|
||
}
|
||
else
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
||
t = build_real (type, d);
|
||
}
|
||
|
||
return t;
|
||
|
||
case PLUS:
|
||
return fold (build (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case MINUS:
|
||
return fold (build (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case NEG:
|
||
return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
|
||
|
||
case MULT:
|
||
return fold (build (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case ASHIFT:
|
||
return fold (build (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1))));
|
||
|
||
case LSHIFTRT:
|
||
return fold (convert (type,
|
||
build (RSHIFT_EXPR, unsigned_type (type),
|
||
make_tree (unsigned_type (type),
|
||
XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)))));
|
||
|
||
case ASHIFTRT:
|
||
return fold (convert (type,
|
||
build (RSHIFT_EXPR, signed_type (type),
|
||
make_tree (signed_type (type), XEXP (x, 0)),
|
||
make_tree (type, XEXP (x, 1)))));
|
||
|
||
case DIV:
|
||
if (TREE_CODE (type) != REAL_TYPE)
|
||
t = signed_type (type);
|
||
else
|
||
t = type;
|
||
|
||
return fold (convert (type,
|
||
build (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1)))));
|
||
case UDIV:
|
||
t = unsigned_type (type);
|
||
return fold (convert (type,
|
||
build (TRUNC_DIV_EXPR, t,
|
||
make_tree (t, XEXP (x, 0)),
|
||
make_tree (t, XEXP (x, 1)))));
|
||
default:
|
||
t = make_node (RTL_EXPR);
|
||
TREE_TYPE (t) = type;
|
||
RTL_EXPR_RTL (t) = x;
|
||
/* There are no insns to be output
|
||
when this rtl_expr is used. */
|
||
RTL_EXPR_SEQUENCE (t) = 0;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Return an rtx representing the value of X * MULT + ADD.
|
||
TARGET is a suggestion for where to store the result (an rtx).
|
||
MODE is the machine mode for the computation.
|
||
X and MULT must have mode MODE. ADD may have a different mode.
|
||
So can X (defaults to same as MODE).
|
||
UNSIGNEDP is non-zero to do unsigned multiplication.
|
||
This may emit insns. */
|
||
|
||
rtx
|
||
expand_mult_add (x, target, mult, add, mode, unsignedp)
|
||
rtx x, target, mult, add;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
{
|
||
tree type = type_for_mode (mode, unsignedp);
|
||
tree add_type = (GET_MODE (add) == VOIDmode
|
||
? type : type_for_mode (GET_MODE (add), unsignedp));
|
||
tree result = fold (build (PLUS_EXPR, type,
|
||
fold (build (MULT_EXPR, type,
|
||
make_tree (type, x),
|
||
make_tree (type, mult))),
|
||
make_tree (add_type, add)));
|
||
|
||
return expand_expr (result, target, VOIDmode, 0);
|
||
}
|
||
|
||
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
|
||
and returning TARGET.
|
||
|
||
If TARGET is 0, a pseudo-register or constant is returned. */
|
||
|
||
rtx
|
||
expand_and (op0, op1, target)
|
||
rtx op0, op1, target;
|
||
{
|
||
enum machine_mode mode = VOIDmode;
|
||
rtx tem;
|
||
|
||
if (GET_MODE (op0) != VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
else if (GET_MODE (op1) != VOIDmode)
|
||
mode = GET_MODE (op1);
|
||
|
||
if (mode != VOIDmode)
|
||
tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
|
||
else if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT)
|
||
tem = GEN_INT (INTVAL (op0) & INTVAL (op1));
|
||
else
|
||
abort ();
|
||
|
||
if (target == 0)
|
||
target = tem;
|
||
else if (tem != target)
|
||
emit_move_insn (target, tem);
|
||
return target;
|
||
}
|
||
|
||
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
|
||
and storing in TARGET. Normally return TARGET.
|
||
Return 0 if that cannot be done.
|
||
|
||
MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
|
||
it is VOIDmode, they cannot both be CONST_INT.
|
||
|
||
UNSIGNEDP is for the case where we have to widen the operands
|
||
to perform the operation. It says to use zero-extension.
|
||
|
||
NORMALIZEP is 1 if we should convert the result to be either zero
|
||
or one one. Normalize is -1 if we should convert the result to be
|
||
either zero or -1. If NORMALIZEP is zero, the result will be left
|
||
"raw" out of the scc insn. */
|
||
|
||
rtx
|
||
emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep)
|
||
rtx target;
|
||
enum rtx_code code;
|
||
rtx op0, op1;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
int normalizep;
|
||
{
|
||
rtx subtarget;
|
||
enum insn_code icode;
|
||
enum machine_mode compare_mode;
|
||
enum machine_mode target_mode = GET_MODE (target);
|
||
rtx tem;
|
||
rtx last = 0;
|
||
rtx pattern, comparison;
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op0);
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
|
||
|| (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
|
||
{
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* For some comparisons with 1 and -1, we can convert this to
|
||
comparisons with zero. This will often produce more opportunities for
|
||
store-flag insns. */
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = LE;
|
||
break;
|
||
case LE:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = LT;
|
||
break;
|
||
case GE:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = GT;
|
||
break;
|
||
case GT:
|
||
if (op1 == constm1_rtx)
|
||
op1 = const0_rtx, code = GE;
|
||
break;
|
||
case GEU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = NE;
|
||
break;
|
||
case LTU:
|
||
if (op1 == const1_rtx)
|
||
op1 = const0_rtx, code = EQ;
|
||
break;
|
||
}
|
||
|
||
/* From now on, we won't change CODE, so set ICODE now. */
|
||
icode = setcc_gen_code[(int) code];
|
||
|
||
/* If this is A < 0 or A >= 0, we can do this by taking the ones
|
||
complement of A (for GE) and shifting the sign bit to the low bit. */
|
||
if (op1 == const0_rtx && (code == LT || code == GE)
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& (normalizep || STORE_FLAG_VALUE == 1
|
||
|| (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
|
||
{
|
||
subtarget = target;
|
||
|
||
/* If the result is to be wider than OP0, it is best to convert it
|
||
first. If it is to be narrower, it is *incorrect* to convert it
|
||
first. */
|
||
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
|
||
{
|
||
op0 = protect_from_queue (op0, 0);
|
||
op0 = convert_to_mode (target_mode, op0, 0);
|
||
mode = target_mode;
|
||
}
|
||
|
||
if (target_mode != mode)
|
||
subtarget = 0;
|
||
|
||
if (code == GE)
|
||
op0 = expand_unop (mode, one_cmpl_optab, op0, subtarget, 0);
|
||
|
||
if (normalizep || STORE_FLAG_VALUE == 1)
|
||
/* If we are supposed to produce a 0/1 value, we want to do
|
||
a logical shift from the sign bit to the low-order bit; for
|
||
a -1/0 value, we do an arithmetic shift. */
|
||
op0 = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
subtarget, normalizep != -1);
|
||
|
||
if (mode != target_mode)
|
||
op0 = convert_to_mode (target_mode, op0, 0);
|
||
|
||
return op0;
|
||
}
|
||
|
||
if (icode != CODE_FOR_nothing)
|
||
{
|
||
/* We think we may be able to do this with a scc insn. Emit the
|
||
comparison and then the scc insn.
|
||
|
||
compare_from_rtx may call emit_queue, which would be deleted below
|
||
if the scc insn fails. So call it ourselves before setting LAST. */
|
||
|
||
emit_queue ();
|
||
last = get_last_insn ();
|
||
|
||
comparison
|
||
= compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX, 0);
|
||
if (GET_CODE (comparison) == CONST_INT)
|
||
return (comparison == const0_rtx ? const0_rtx
|
||
: normalizep == 1 ? const1_rtx
|
||
: normalizep == -1 ? constm1_rtx
|
||
: const_true_rtx);
|
||
|
||
/* If the code of COMPARISON doesn't match CODE, something is
|
||
wrong; we can no longer be sure that we have the operation.
|
||
We could handle this case, but it should not happen. */
|
||
|
||
if (GET_CODE (comparison) != code)
|
||
abort ();
|
||
|
||
/* Get a reference to the target in the proper mode for this insn. */
|
||
compare_mode = insn_operand_mode[(int) icode][0];
|
||
subtarget = target;
|
||
if (preserve_subexpressions_p ()
|
||
|| ! (*insn_operand_predicate[(int) icode][0]) (subtarget, compare_mode))
|
||
subtarget = gen_reg_rtx (compare_mode);
|
||
|
||
pattern = GEN_FCN (icode) (subtarget);
|
||
if (pattern)
|
||
{
|
||
emit_insn (pattern);
|
||
|
||
/* If we are converting to a wider mode, first convert to
|
||
TARGET_MODE, then normalize. This produces better combining
|
||
opportunities on machines that have a SIGN_EXTRACT when we are
|
||
testing a single bit. This mostly benefits the 68k.
|
||
|
||
If STORE_FLAG_VALUE does not have the sign bit set when
|
||
interpreted in COMPARE_MODE, we can do this conversion as
|
||
unsigned, which is usually more efficient. */
|
||
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
|
||
{
|
||
convert_move (target, subtarget,
|
||
(GET_MODE_BITSIZE (compare_mode)
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& 0 == (STORE_FLAG_VALUE
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (compare_mode) -1))));
|
||
op0 = target;
|
||
compare_mode = target_mode;
|
||
}
|
||
else
|
||
op0 = subtarget;
|
||
|
||
/* If we want to keep subexpressions around, don't reuse our
|
||
last target. */
|
||
|
||
if (preserve_subexpressions_p ())
|
||
subtarget = 0;
|
||
|
||
/* Now normalize to the proper value in COMPARE_MODE. Sometimes
|
||
we don't have to do anything. */
|
||
if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
|
||
;
|
||
else if (normalizep == - STORE_FLAG_VALUE)
|
||
op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
|
||
|
||
/* We don't want to use STORE_FLAG_VALUE < 0 below since this
|
||
makes it hard to use a value of just the sign bit due to
|
||
ANSI integer constant typing rules. */
|
||
else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (compare_mode) - 1))))
|
||
op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
|
||
size_int (GET_MODE_BITSIZE (compare_mode) - 1),
|
||
subtarget, normalizep == 1);
|
||
else if (STORE_FLAG_VALUE & 1)
|
||
{
|
||
op0 = expand_and (op0, const1_rtx, subtarget);
|
||
if (normalizep == -1)
|
||
op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* If we were converting to a smaller mode, do the
|
||
conversion now. */
|
||
if (target_mode != compare_mode)
|
||
{
|
||
convert_move (target, op0, 0);
|
||
return target;
|
||
}
|
||
else
|
||
return op0;
|
||
}
|
||
}
|
||
|
||
if (last)
|
||
delete_insns_since (last);
|
||
|
||
subtarget = target_mode == mode ? target : 0;
|
||
|
||
/* If we reached here, we can't do this with a scc insn. However, there
|
||
are some comparisons that can be done directly. For example, if
|
||
this is an equality comparison of integers, we can try to exclusive-or
|
||
(or subtract) the two operands and use a recursive call to try the
|
||
comparison with zero. Don't do any of these cases if branches are
|
||
very cheap. */
|
||
|
||
if (BRANCH_COST > 0
|
||
&& GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
|
||
&& op1 != const0_rtx)
|
||
{
|
||
tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem == 0)
|
||
tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
|
||
OPTAB_WIDEN);
|
||
if (tem != 0)
|
||
tem = emit_store_flag (target, code, tem, const0_rtx,
|
||
mode, unsignedp, normalizep);
|
||
if (tem == 0)
|
||
delete_insns_since (last);
|
||
return tem;
|
||
}
|
||
|
||
/* Some other cases we can do are EQ, NE, LE, and GT comparisons with
|
||
the constant zero. Reject all other comparisons at this point. Only
|
||
do LE and GT if branches are expensive since they are expensive on
|
||
2-operand machines. */
|
||
|
||
if (BRANCH_COST == 0
|
||
|| GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
|
||
|| (code != EQ && code != NE
|
||
&& (BRANCH_COST <= 1 || (code != LE && code != GT))))
|
||
return 0;
|
||
|
||
/* See what we need to return. We can only return a 1, -1, or the
|
||
sign bit. */
|
||
|
||
if (normalizep == 0)
|
||
{
|
||
if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
normalizep = STORE_FLAG_VALUE;
|
||
|
||
else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
|
||
;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Try to put the result of the comparison in the sign bit. Assume we can't
|
||
do the necessary operation below. */
|
||
|
||
tem = 0;
|
||
|
||
/* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
|
||
the sign bit set. */
|
||
|
||
if (code == LE)
|
||
{
|
||
/* This is destructive, so SUBTARGET can't be OP0. */
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
if (tem)
|
||
tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
/* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
|
||
number of bits in the mode of OP0, minus one. */
|
||
|
||
if (code == GT)
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
subtarget, 0);
|
||
tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
}
|
||
|
||
if (code == EQ || code == NE)
|
||
{
|
||
/* For EQ or NE, one way to do the comparison is to apply an operation
|
||
that converts the operand into a positive number if it is non-zero
|
||
or zero if it was originally zero. Then, for EQ, we subtract 1 and
|
||
for NE we negate. This puts the result in the sign bit. Then we
|
||
normalize with a shift, if needed.
|
||
|
||
Two operations that can do the above actions are ABS and FFS, so try
|
||
them. If that doesn't work, and MODE is smaller than a full word,
|
||
we can use zero-extension to the wider mode (an unsigned conversion)
|
||
as the operation. */
|
||
|
||
if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
|
||
else if (ffs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
|
||
tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
|
||
else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
||
{
|
||
mode = word_mode;
|
||
op0 = protect_from_queue (op0, 0);
|
||
tem = convert_to_mode (mode, op0, 1);
|
||
}
|
||
|
||
if (tem != 0)
|
||
{
|
||
if (code == EQ)
|
||
tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
|
||
0, OPTAB_WIDEN);
|
||
else
|
||
tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
|
||
}
|
||
|
||
/* If we couldn't do it that way, for NE we can "or" the two's complement
|
||
of the value with itself. For EQ, we take the one's complement of
|
||
that "or", which is an extra insn, so we only handle EQ if branches
|
||
are expensive. */
|
||
|
||
if (tem == 0 && (code == NE || BRANCH_COST > 1))
|
||
{
|
||
if (rtx_equal_p (subtarget, op0))
|
||
subtarget = 0;
|
||
|
||
tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
|
||
tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
|
||
OPTAB_WIDEN);
|
||
|
||
if (tem && code == EQ)
|
||
tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
|
||
}
|
||
}
|
||
|
||
if (tem && normalizep)
|
||
tem = expand_shift (RSHIFT_EXPR, mode, tem,
|
||
size_int (GET_MODE_BITSIZE (mode) - 1),
|
||
tem, normalizep == 1);
|
||
|
||
if (tem && GET_MODE (tem) != target_mode)
|
||
{
|
||
convert_move (target, tem, 0);
|
||
tem = target;
|
||
}
|
||
|
||
if (tem == 0)
|
||
delete_insns_since (last);
|
||
|
||
return tem;
|
||
}
|
||
emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
|
||
emit_move_insn (target, const1_rtx);
|
||
emit_label (label);
|
||
|
||
return target;
|
||
}
|