8sa1-gcc/gcc/config/sparc/lb1spc.asm
Doug Evans b3ab657fbf Initial revision
From-SVN: r8497
1994-11-18 00:10:29 +00:00

487 lines
10 KiB
NASM

/* This is an assembly language implementation of libgcc1.c for the sparc
processor.
These routines are derived from the Sparc Architecture Manual, version 8,
slightly edited to match the desired calling convention, and also to
optimize them for our purposes. */
#ifdef L_mulsi3
.text
.align 4
.global .umul
.proc 4
.umul:
or %o0, %o1, %o4 ! logical or of multiplier and multiplicand
mov %o0, %y ! multiplier to Y register
andncc %o4, 0xfff, %o5 ! mask out lower 12 bits
be mul_shortway ! can do it the short way
andcc %g0, %g0, %o4 ! zero the partial product and clear NV cc
!
! long multiply
!
mulscc %o4, %o1, %o4 ! first iteration of 33
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4 ! 32nd iteration
mulscc %o4, %g0, %o4 ! last iteration only shifts
! the upper 32 bits of product are wrong, but we do not care
retl
rd %y, %o0
!
! short multiply
!
mul_shortway:
mulscc %o4, %o1, %o4 ! first iteration of 13
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4 ! 12th iteration
mulscc %o4, %g0, %o4 ! last iteration only shifts
rd %y, %o5
sll %o4, 12, %o4 ! left shift partial product by 12 bits
srl %o5, 20, %o5 ! right shift partial product by 20 bits
retl
or %o5, %o4, %o0 ! merge for true product
#endif
#ifdef L_divsi3
.text
.align 4
.global .udiv
.proc 4
.udiv:
save %sp, -64, %sp
b divide
mov 0, %i2 ! result always positive
.global .div
.proc 4
.div:
save %sp, -64, %sp
orcc %i1, %i0, %g0 ! is either operand negative
bge divide ! if not, skip this junk
xor %i1, %i0, %i2 ! record sign of result in sign of %i2
tst %i1
bge 2f
tst %i0
! %i1 < 0
bge divide
neg %i1
2: ! %i0 < 0
neg %i0
! FALL THROUGH
divide:
! Compute size of quotient, scale comparand.
orcc %i1, %g0, %l1 ! movcc %i1, %l1
te 2 ! if %i1 = 0
mov %i0, %i3
mov 0, %i2
sethi %hi(1<<(32-2-1)), %l3
cmp %i3, %l3
blu not_really_big
mov 0, %l0
!
! Here, the %i0 is >= 2^(31-3) or so. We must be careful here,
! as our usual 3-at-a-shot divide step will cause overflow and havoc.
! The total number of bits in the result here is 3*%l0+%l4, where
! %l4 <= 3.
! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into
! the top decade: so do not even bother to compare to %i3.
1: cmp %l1, %l3
bgeu 3f
mov 1, %l4
sll %l1, 3, %l1
b 1b
inc %l0
!
! Now compute %l4
!
2: addcc %l1, %l1, %l1
bcc not_too_big
add %l4, 1, %l4
!
! We are here if the %i1 overflowed when Shifting.
! This means that %i3 has the high-order bit set.
! Restore %l1 and subtract from %i3.
sll %l3, 2, %l3
srl %l1, 1, %l1
add %l1, %l3, %l1
b do_single_div
dec %l4
not_too_big:
3: cmp %l1, %i3
blu 2b
nop
be do_single_div
nop
! %l1 > %i3: went too far: back up 1 step
! srl %l1, 1, %l1
! dec %l4
! do single-bit divide steps
!
! We have to be careful here. We know that %i3 >= %l1, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %i3 >= 0. Because both %i3 and %l1 may have the
! high-order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
deccc %l4
bl end_regular_divide
nop
sub %i3, %l1, %i3
mov 1, %i2
b end_single_divloop
nop
single_divloop:
sll %i2, 1, %i2
bl 1f
srl %l1, 1, %l1
! %i3 >= 0
sub %i3, %l1, %i3
b 2f
inc %i2
1: ! %i3 < 0
add %i3, %l1, %i3
dec %i2
end_single_divloop:
2: deccc %l4
bge single_divloop
tst %i3
b end_regular_divide
nop
not_really_big:
1: sll %l1, 3, %l1
cmp %l1, %i3
bleu 1b
inccc %l0
be got_result
dec %l0
do_regular_divide:
! Do the main division iteration
tst %i3
! Fall through into divide loop
divloop:
sll %i2, 3, %i2
! depth 1, accumulated bits 0
bl L.1.8
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 2, accumulated bits 1
bl L.2.9
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 3, accumulated bits 3
bl L.3.11
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (3*2+1), %i2
L.3.11: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (3*2-1), %i2
L.2.9: ! remainder is negative
addcc %i3,%l1,%i3
! depth 3, accumulated bits 1
bl L.3.9
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (1*2+1), %i2
L.3.9: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (1*2-1), %i2
L.1.8: ! remainder is negative
addcc %i3,%l1,%i3
! depth 2, accumulated bits -1
bl L.2.7
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 3, accumulated bits -1
bl L.3.7
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (-1*2+1), %i2
L.3.7: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (-1*2-1), %i2
L.2.7: ! remainder is negative
addcc %i3,%l1,%i3
! depth 3, accumulated bits -3
bl L.3.5
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (-3*2+1), %i2
L.3.5: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (-3*2-1), %i2
end_regular_divide:
9: deccc %l0
bge divloop
tst %i3
bge got_result
nop
! non-restoring fixup here
dec %i2
got_result:
tst %i2
bge 1f
restore
! answer < 0
retl ! leaf-routine return
neg %o2, %o0 ! quotient <- -%i2
1: retl ! leaf-routine return
mov %o2, %o0 ! quotient <- %i2
#endif
#ifdef L_modsi3
.text
.align 4
.global .urem
.proc 4
.urem:
save %sp, -64, %sp
b divide
mov 0, %i2 ! result always positive
.global .rem
.proc 4
.rem:
save %sp, -64, %sp
orcc %i1, %i0, %g0 ! is either operand negative
bge divide ! if not, skip this junk
mov %i0, %i2 ! record sign of result in sign of %i2
tst %i1
bge 2f
tst %i0
! %i1 < 0
bge divide
neg %i1
2: ! %i0 < 0
neg %i0
! FALL THROUGH
divide:
! Compute size of quotient, scale comparand.
orcc %i1, %g0, %l1 ! movcc %i1, %l1
te 2 ! if %i1 = 0
mov %i0, %i3
mov 0, %i2
sethi %hi(1<<(32-2-1)), %l3
cmp %i3, %l3
blu not_really_big
mov 0, %l0
!
! Here, the %i0 is >= 2^(31-3) or so. We must be careful here,
! as our usual 3-at-a-shot divide step will cause overflow and havoc.
! The total number of bits in the result here is 3*%l0+%l4, where
! %l4 <= 3.
! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into
! the top decade: so do not even bother to compare to %i3.
1: cmp %l1, %l3
bgeu 3f
mov 1, %l4
sll %l1, 3, %l1
b 1b
inc %l0
!
! Now compute %l4
!
2: addcc %l1, %l1, %l1
bcc not_too_big
add %l4, 1, %l4
!
! We are here if the %i1 overflowed when Shifting.
! This means that %i3 has the high-order bit set.
! Restore %l1 and subtract from %i3.
sll %l3, 2, %l3
srl %l1, 1, %l1
add %l1, %l3, %l1
b do_single_div
dec %l4
not_too_big:
3: cmp %l1, %i3
blu 2b
nop
be do_single_div
nop
! %l1 > %i3: went too far: back up 1 step
! srl %l1, 1, %l1
! dec %l4
! do single-bit divide steps
!
! We have to be careful here. We know that %i3 >= %l1, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %i3 >= 0. Because both %i3 and %l1 may have the
! high-order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
deccc %l4
bl end_regular_divide
nop
sub %i3, %l1, %i3
mov 1, %i2
b end_single_divloop
nop
single_divloop:
sll %i2, 1, %i2
bl 1f
srl %l1, 1, %l1
! %i3 >= 0
sub %i3, %l1, %i3
b 2f
inc %i2
1: ! %i3 < 0
add %i3, %l1, %i3
dec %i2
end_single_divloop:
2: deccc %l4
bge single_divloop
tst %i3
b end_regular_divide
nop
not_really_big:
1: sll %l1, 3, %l1
cmp %l1, %i3
bleu 1b
inccc %l0
be got_result
dec %l0
do_regular_divide:
! Do the main division iteration
tst %i3
! Fall through into divide loop
divloop:
sll %i2, 3, %i2
! depth 1, accumulated bits 0
bl L.1.8
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 2, accumulated bits 1
bl L.2.9
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 3, accumulated bits 3
bl L.3.11
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (3*2+1), %i2
L.3.11: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (3*2-1), %i2
L.2.9: ! remainder is negative
addcc %i3,%l1,%i3
! depth 3, accumulated bits 1
bl L.3.9
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (1*2+1), %i2
L.3.9: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (1*2-1), %i2
L.1.8: ! remainder is negative
addcc %i3,%l1,%i3
! depth 2, accumulated bits -1
bl L.2.7
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
! depth 3, accumulated bits -1
bl L.3.7
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (-1*2+1), %i2
L.3.7: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (-1*2-1), %i2
L.2.7: ! remainder is negative
addcc %i3,%l1,%i3
! depth 3, accumulated bits -3
bl L.3.5
srl %l1,1,%l1
! remainder is positive
subcc %i3,%l1,%i3
b 9f
add %i2, (-3*2+1), %i2
L.3.5: ! remainder is negative
addcc %i3,%l1,%i3
b 9f
add %i2, (-3*2-1), %i2
end_regular_divide:
9: deccc %l0
bge divloop
tst %i3
bge got_result
nop
! non-restoring fixup here
add %i3, %i1, %i3
got_result:
tst %i2
bge 1f
restore
! answer < 0
retl ! leaf-routine return
neg %o3, %o0 ! remainder <- -%i3
1: retl ! leaf-routine return
mov %o3, %o0 ! remainder <- %i3
#endif