d1abe60219
(output_encoded_offset): New function. (output_epilogue): Minor changes to traceback table; call new output_encoded_offset. (romp_debugger_{auto,arg}_correction): New functions. From-SVN: r4717
2037 lines
53 KiB
C
2037 lines
53 KiB
C
/* Subroutines used for code generation on ROMP.
|
||
Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@nyu.edu)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include <stdio.h>
|
||
#include "config.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "obstack.h"
|
||
#include "tree.h"
|
||
|
||
#define min(A,B) ((A) < (B) ? (A) : (B))
|
||
#define max(A,B) ((A) > (B) ? (A) : (B))
|
||
|
||
static int unsigned_comparisons_p ();
|
||
static void output_loadsave_fpregs ();
|
||
static void output_fpops ();
|
||
static void init_fpops ();
|
||
|
||
/* Return 1 if the insn using CC0 set by INSN does not contain
|
||
any unsigned tests applied to the condition codes.
|
||
|
||
Based on `next_insn_tests_no_inequality' in recog.c. */
|
||
|
||
int
|
||
next_insn_tests_no_unsigned (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx next = next_cc0_user (insn);
|
||
|
||
if (next == 0)
|
||
{
|
||
if (find_reg_note (insn, REG_UNUSED, cc0_rtx))
|
||
return 1;
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
return ((GET_CODE (next) == JUMP_INSN
|
||
|| GET_CODE (next) == INSN
|
||
|| GET_CODE (next) == CALL_INSN)
|
||
&& ! unsigned_comparisons_p (PATTERN (next)));
|
||
}
|
||
|
||
static int
|
||
unsigned_comparisons_p (x)
|
||
rtx x;
|
||
{
|
||
register char *fmt;
|
||
register int len, i;
|
||
register enum rtx_code code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
case PC:
|
||
case CC0:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
return 0;
|
||
|
||
case LTU:
|
||
case GTU:
|
||
case LEU:
|
||
case GEU:
|
||
return (XEXP (x, 0) == cc0_rtx || XEXP (x, 1) == cc0_rtx);
|
||
}
|
||
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (unsigned_comparisons_p (XEXP (x, i)))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (unsigned_comparisons_p (XVECEXP (x, i, j)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Update the condition code from the insn. Look mostly at the first
|
||
byte of the machine-specific insn description information.
|
||
|
||
cc_state.value[12] refer to two possible values that might correspond
|
||
to the CC. We only store register values. */
|
||
|
||
update_cc (body, insn)
|
||
rtx body;
|
||
rtx insn;
|
||
{
|
||
switch (get_attr_cc (insn))
|
||
{
|
||
case CC_NONE:
|
||
/* Insn does not affect the CC at all. */
|
||
break;
|
||
|
||
case CC_CHANGE0:
|
||
/* Insn doesn't affect the CC but does modify operand[0], known to be
|
||
a register. */
|
||
if (cc_status.value1 != 0
|
||
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
|
||
cc_status.value1 = 0;
|
||
|
||
if (cc_status.value2 != 0
|
||
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value2))
|
||
cc_status.value2 = 0;
|
||
|
||
break;
|
||
|
||
case CC_COPY1TO0:
|
||
/* Insn copies operand[1] to operand[0], both registers, but doesn't
|
||
affect the CC. */
|
||
if (cc_status.value1 != 0
|
||
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
|
||
cc_status.value1 = 0;
|
||
|
||
if (cc_status.value2 != 0
|
||
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value2))
|
||
cc_status.value2 = 0;
|
||
|
||
if (cc_status.value1 != 0
|
||
&& rtx_equal_p (cc_status.value1, recog_operand[1]))
|
||
cc_status.value2 = recog_operand[0];
|
||
|
||
if (cc_status.value2 != 0
|
||
&& rtx_equal_p (cc_status.value2, recog_operand[1]))
|
||
cc_status.value1 = recog_operand[0];
|
||
|
||
break;
|
||
|
||
case CC_CLOBBER:
|
||
/* Insn clobbers CC. */
|
||
CC_STATUS_INIT;
|
||
break;
|
||
|
||
case CC_SETS:
|
||
/* Insn sets CC to recog_operand[0], but overflow is impossible. */
|
||
CC_STATUS_INIT;
|
||
cc_status.flags |= CC_NO_OVERFLOW;
|
||
cc_status.value1 = recog_operand[0];
|
||
break;
|
||
|
||
case CC_COMPARE:
|
||
/* Insn is a compare which sets the CC fully. Update CC_STATUS for this
|
||
compare and mark whether the test will be signed or unsigned. */
|
||
{
|
||
register rtx p = PATTERN (insn);
|
||
|
||
CC_STATUS_INIT;
|
||
|
||
if (GET_CODE (p) == PARALLEL)
|
||
p = XVECEXP (p, 0, 0);
|
||
cc_status.value1 = SET_SRC (p);
|
||
|
||
if (GET_CODE (SET_SRC (p)) == REG)
|
||
cc_status.flags |= CC_NO_OVERFLOW;
|
||
if (! next_insn_tests_no_unsigned (insn))
|
||
cc_status.flags |= CC_UNSIGNED;
|
||
}
|
||
break;
|
||
|
||
case CC_TBIT:
|
||
/* Insn sets T bit if result is non-zero. Next insn must be branch. */
|
||
CC_STATUS_INIT;
|
||
cc_status.flags = CC_IN_TB | CC_NOT_NEGATIVE;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return 1 if a previous compare needs to be re-issued. This will happen
|
||
if two compares tested the same objects, but one was signed and the
|
||
other unsigned. OP is the comparison operation being performed. */
|
||
|
||
int
|
||
restore_compare_p (op)
|
||
rtx op;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
return (((code == GEU || code == LEU || code == GTU || code == LTU)
|
||
&& ! (cc_status.flags & CC_UNSIGNED))
|
||
|| ((code == GE || code == LE || code == GT || code == LT)
|
||
&& (cc_status.flags & CC_UNSIGNED)));
|
||
}
|
||
|
||
/* Generate the (long) string corresponding to an inline multiply insn.
|
||
Note that `r10' does not refer to the register r10, but rather to the
|
||
SCR used as the MQ. */
|
||
char *
|
||
output_in_line_mul ()
|
||
{
|
||
static char insns[200];
|
||
int i;
|
||
|
||
strcpy (insns, "s %0,%0\n");
|
||
strcat (insns, "\tmts r10,%1\n");
|
||
for (i = 0; i < 16; i++)
|
||
strcat (insns, "\tm %0,%2\n");
|
||
strcat (insns, "\tmfs r10,%0");
|
||
|
||
return insns;
|
||
}
|
||
|
||
/* Returns 1 if OP is a memory reference with an offset from a register within
|
||
the range specified. The offset must also be a multiple of the size of the
|
||
mode. */
|
||
|
||
static int
|
||
memory_offset_in_range_p (op, mode, low, high)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
int low, high;
|
||
{
|
||
int offset = 0;
|
||
|
||
if (! memory_operand (op, mode))
|
||
return 0;
|
||
|
||
while (GET_CODE (op) == SUBREG)
|
||
{
|
||
offset += SUBREG_WORD (op) * UNITS_PER_WORD;
|
||
#if BYTES_BIG_ENDIAN
|
||
offset -= (min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (op)))
|
||
- min (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))));
|
||
#endif
|
||
op = SUBREG_REG (op);
|
||
}
|
||
|
||
/* We must now have either (mem (reg (x)), (mem (plus (reg (x)) (c))),
|
||
or a constant pool address. */
|
||
if (GET_CODE (op) != MEM)
|
||
abort ();
|
||
|
||
/* Now use the actual mode and get the address. */
|
||
mode = GET_MODE (op);
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op))
|
||
offset = get_pool_offset (op) + 12;
|
||
else if (GET_CODE (op) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (op, 1)) != CONST_INT
|
||
|| ! register_operand (XEXP (op, 0), Pmode))
|
||
return 0;
|
||
|
||
offset += INTVAL (XEXP (op, 1));
|
||
}
|
||
|
||
else if (! register_operand (op, Pmode))
|
||
return 0;
|
||
|
||
return (offset >= low && offset <= high
|
||
&& (offset % GET_MODE_SIZE (mode) == 0));
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for a memory reference insn that can
|
||
only reference indirect through a register. */
|
||
|
||
int
|
||
zero_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return memory_offset_in_range_p (op, mode, 0, 0);
|
||
}
|
||
|
||
/* Return 1 if OP is a valid operand for a `short' memory reference insn. */
|
||
|
||
int
|
||
short_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (op);
|
||
|
||
return memory_offset_in_range_p (op, mode, 0,
|
||
15 * min (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (mode)));
|
||
}
|
||
|
||
/* Returns 1 if OP is a memory reference involving a symbolic constant
|
||
that is not in the constant pool. */
|
||
|
||
int
|
||
symbolic_memory_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (! memory_operand (op, mode))
|
||
return 0;
|
||
|
||
while (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
|
||
if (GET_CODE (op) != MEM)
|
||
abort ();
|
||
|
||
op = XEXP (op, 0);
|
||
if (constant_pool_address_operand (op, VOIDmode))
|
||
return 0;
|
||
else
|
||
return romp_symbolic_operand (op, Pmode)
|
||
|| (GET_CODE (op) == PLUS && register_operand (XEXP (op, 0), Pmode)
|
||
&& romp_symbolic_operand (XEXP (op, 1), Pmode));
|
||
}
|
||
|
||
|
||
/* Returns 1 if OP is a constant pool reference to the current function. */
|
||
|
||
int
|
||
current_function_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
|
||
|| ! CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
|
||
return 0;
|
||
|
||
op = get_pool_constant (XEXP (op, 0));
|
||
return (GET_CODE (op) == SYMBOL_REF
|
||
&& ! strcmp (current_function_name, XSTR (op, 0)));
|
||
}
|
||
|
||
/* Return non-zero if this function is known to have a null epilogue. */
|
||
|
||
int
|
||
null_epilogue ()
|
||
{
|
||
return (reload_completed
|
||
&& first_reg_to_save () == 16
|
||
&& ! romp_pushes_stack ());
|
||
}
|
||
|
||
/* Returns 1 if OP is the address of a location in the constant pool. */
|
||
|
||
int
|
||
constant_pool_address_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((GET_CODE (op) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (op))
|
||
|| (GET_CODE (op) == CONST && GET_CODE (XEXP (op, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (op, 0), 0))));
|
||
}
|
||
|
||
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
|
||
reference and a constant. */
|
||
|
||
int
|
||
romp_symbolic_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return ! op->integrated;
|
||
|
||
case CONST:
|
||
op = XEXP (op, 0);
|
||
return (GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Returns 1 if OP is a valid constant for the ROMP. */
|
||
|
||
int
|
||
constant_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case PLUS:
|
||
case CONST:
|
||
return romp_symbolic_operand (op,mode);
|
||
|
||
case CONST_INT:
|
||
return (unsigned int) (INTVAL (op) + 0x8000) < 0x10000
|
||
|| (INTVAL (op) & 0xffff) == 0 || (INTVAL (op) & 0xffff0000) == 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Returns 1 if OP is either a constant integer valid for the ROMP or a
|
||
register. If a register, it must be in the proper mode unless MODE is
|
||
VOIDmode. */
|
||
|
||
int
|
||
reg_or_cint_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return constant_operand (op, mode);
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 is the operand is either a register or ANY constant integer. */
|
||
|
||
int
|
||
reg_or_any_cint_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return GET_CODE (op) == CONST_INT || register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or a valid D-type operand. */
|
||
|
||
int
|
||
reg_or_D_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return (unsigned) (INTVAL (op) + 0x8000) < 0x10000;
|
||
|
||
return register_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or an item that can be
|
||
used as the operand of an SI add insn. */
|
||
|
||
int
|
||
reg_or_add_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return reg_or_D_operand (op, mode) || romp_symbolic_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff) == 0);
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or an item that can be
|
||
used as the operand of a ROMP logical AND insn. */
|
||
|
||
int
|
||
reg_or_and_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (reg_or_cint_operand (op, mode))
|
||
return 1;
|
||
|
||
if (GET_CODE (op) != CONST_INT)
|
||
return 0;
|
||
|
||
return (INTVAL (op) & 0xffff) == 0xffff
|
||
|| (INTVAL (op) & 0xffff0000) == 0xffff0000;
|
||
}
|
||
|
||
/* Return 1 if the operand is a register or memory operand. */
|
||
|
||
int
|
||
reg_or_mem_operand (op, mode)
|
||
register rtx op;
|
||
register enum machine_mode mode;
|
||
{
|
||
return register_operand (op, mode) || memory_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or a memory operand that is
|
||
not symbolic. */
|
||
|
||
int
|
||
reg_or_nonsymb_mem_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
|
||
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if this operand is valid for the ROMP. This is any operand except
|
||
certain constant integers. */
|
||
|
||
int
|
||
romp_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return constant_operand (op, mode);
|
||
|
||
return general_operand (op, mode);
|
||
}
|
||
|
||
/* Return 1 if the operand is (reg:mode 0). */
|
||
|
||
int
|
||
reg_0_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((mode == VOIDmode || mode == GET_MODE (op))
|
||
&& GET_CODE (op) == REG && REGNO (op) == 0);
|
||
}
|
||
|
||
/* Return 1 if the operand is (reg:mode 15). */
|
||
|
||
int
|
||
reg_15_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return ((mode == VOIDmode || mode == GET_MODE (op))
|
||
&& GET_CODE (op) == REG && REGNO (op) == 15);
|
||
}
|
||
|
||
/* Return 1 if this is a binary floating-point operation. */
|
||
|
||
int
|
||
float_binary (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode)
|
||
return 0;
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
case PLUS:
|
||
case MINUS:
|
||
case MULT:
|
||
case DIV:
|
||
return GET_MODE (XEXP (op, 0)) == GET_MODE (op)
|
||
&& GET_MODE (XEXP (op, 1)) == GET_MODE (op);
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if this is a unary floating-point operation. */
|
||
|
||
int
|
||
float_unary (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
if (GET_MODE (op) != SFmode && GET_MODE (op) != DFmode)
|
||
return 0;
|
||
|
||
return (GET_CODE (op) == NEG || GET_CODE (op) == ABS)
|
||
&& GET_MODE (XEXP (op, 0)) == GET_MODE (op);
|
||
}
|
||
|
||
/* Return 1 if this is a valid floating-point conversion that can be done
|
||
as part of an operation by the RT floating-point routines. */
|
||
|
||
int
|
||
float_conversion (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
|
||
switch (GET_CODE (op))
|
||
{
|
||
case FLOAT_TRUNCATE:
|
||
return GET_MODE (op) == SFmode && GET_MODE (XEXP (op, 0)) == DFmode;
|
||
|
||
case FLOAT_EXTEND:
|
||
return GET_MODE (op) == DFmode && GET_MODE (XEXP (op, 0)) == SFmode;
|
||
|
||
case FLOAT:
|
||
return ((GET_MODE (XEXP (op, 0)) == SImode
|
||
|| GET_CODE (XEXP (op, 0)) == CONST_INT)
|
||
&& (GET_MODE (op) == SFmode || GET_MODE (op) == DFmode));
|
||
|
||
case FIX:
|
||
return ((GET_MODE (op) == SImode
|
||
|| GET_CODE (XEXP (op, 0)) == CONST_INT)
|
||
&& (GET_MODE (XEXP (op, 0)) == SFmode
|
||
|| GET_MODE (XEXP (op, 0)) == DFmode));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Print an operand. Recognize special options, documented below. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
char code;
|
||
{
|
||
int i;
|
||
|
||
switch (code)
|
||
{
|
||
case 'B':
|
||
/* Byte number (const/8) */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%B value");
|
||
|
||
fprintf (file, "%d", INTVAL (x) / 8);
|
||
break;
|
||
|
||
case 'L':
|
||
/* Low order 16 bits of constant. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%L value");
|
||
|
||
fprintf (file, "%d", INTVAL (x) & 0xffff);
|
||
break;
|
||
|
||
case 's':
|
||
/* Null or "16" depending on whether the constant is greater than 16. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%s value");
|
||
|
||
if (INTVAL (x) >= 16)
|
||
fprintf (file, "16");
|
||
|
||
break;
|
||
|
||
case 'S':
|
||
/* For shifts: 's' will have given the half. Just give the amount
|
||
within 16. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%S value");
|
||
|
||
fprintf (file, "%d", INTVAL (x) & 15);
|
||
break;
|
||
|
||
case 'b':
|
||
/* The number of a single bit set or cleared, mod 16. Note that the ROMP
|
||
numbers bits with the high-order bit 31. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%b value");
|
||
|
||
if ((i = exact_log2 (INTVAL (x))) >= 0)
|
||
fprintf (file, "%d", (31 - i) % 16);
|
||
else if ((i = exact_log2 (~ INTVAL (x))) >= 0)
|
||
fprintf (file, "%d", (31 - i) % 16);
|
||
else
|
||
output_operand_lossage ("invalid %%b value");
|
||
|
||
break;
|
||
|
||
case 'h':
|
||
/* "l" or "u" depending on which half of the constant is zero. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%h value");
|
||
|
||
if ((INTVAL (x) & 0xffff0000) == 0)
|
||
fprintf (file, "l");
|
||
else if ((INTVAL (x) & 0xffff) == 0)
|
||
fprintf (file, "u");
|
||
else
|
||
output_operand_lossage ("invalid %%h value");
|
||
|
||
break;
|
||
|
||
case 'H':
|
||
/* Upper or lower half, depending on which half is zero. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%H value");
|
||
|
||
if ((INTVAL (x) & 0xffff0000) == 0)
|
||
fprintf (file, "%d", INTVAL (x) & 0xffff);
|
||
else if ((INTVAL (x) & 0xffff) == 0)
|
||
fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff);
|
||
else
|
||
output_operand_lossage ("invalid %%H value");
|
||
|
||
break;
|
||
|
||
case 'z':
|
||
/* Write two characters:
|
||
'lo' if the high order part is all ones
|
||
'lz' if the high order part is all zeros
|
||
'uo' if the low order part is all ones
|
||
'uz' if the low order part is all zeros
|
||
*/
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%z value");
|
||
|
||
if ((INTVAL (x) & 0xffff0000) == 0)
|
||
fprintf (file, "lz");
|
||
else if ((INTVAL (x) & 0xffff0000) == 0xffff0000)
|
||
fprintf (file, "lo");
|
||
else if ((INTVAL (x) & 0xffff) == 0)
|
||
fprintf (file, "uz");
|
||
else if ((INTVAL (x) & 0xffff) == 0xffff)
|
||
fprintf (file, "uo");
|
||
else
|
||
output_operand_lossage ("invalid %%z value");
|
||
|
||
break;
|
||
|
||
case 'Z':
|
||
/* Upper or lower half, depending on which is non-zero or not
|
||
all ones. Must be consistent with 'z' above. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%Z value");
|
||
|
||
if ((INTVAL (x) & 0xffff0000) == 0
|
||
|| (INTVAL (x) & 0xffff0000) == 0xffff0000)
|
||
fprintf (file, "%d", INTVAL (x) & 0xffff);
|
||
else if ((INTVAL (x) & 0xffff) == 0 || (INTVAL (x) & 0xffff) == 0xffff)
|
||
fprintf (file, "%d", (INTVAL (x) >> 16) & 0xffff);
|
||
else
|
||
output_operand_lossage ("invalid %%Z value");
|
||
|
||
break;
|
||
|
||
case 'k':
|
||
/* Same as 'z', except the trailing 'o' or 'z' is not written. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%k value");
|
||
|
||
if ((INTVAL (x) & 0xffff0000) == 0
|
||
|| (INTVAL (x) & 0xffff0000) == 0xffff0000)
|
||
fprintf (file, "l");
|
||
else if ((INTVAL (x) & 0xffff) == 0
|
||
|| (INTVAL (x) & 0xffff) == 0xffff)
|
||
fprintf (file, "u");
|
||
else
|
||
output_operand_lossage ("invalid %%k value");
|
||
|
||
break;
|
||
|
||
case 't':
|
||
/* Similar to 's', except that we write 'h' or 'u'. */
|
||
if (GET_CODE (x) != CONST_INT)
|
||
output_operand_lossage ("invalid %%k value");
|
||
|
||
if (INTVAL (x) < 16)
|
||
fprintf (file, "u");
|
||
else
|
||
fprintf (file, "l");
|
||
break;
|
||
|
||
case 'M':
|
||
/* For memory operations, write 's' if the operand is a short
|
||
memory operand. */
|
||
if (short_memory_operand (x, VOIDmode))
|
||
fprintf (file, "s");
|
||
break;
|
||
|
||
case 'N':
|
||
/* Like 'M', but check for zero memory offset. */
|
||
if (zero_memory_operand (x, VOIDmode))
|
||
fprintf (file, "s");
|
||
break;
|
||
|
||
case 'O':
|
||
/* Write low-order part of DImode or DFmode. Supported for MEM
|
||
and REG only. */
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
|
||
else if (GET_CODE (x) == MEM)
|
||
print_operand (file, gen_rtx (MEM, GET_MODE (x),
|
||
plus_constant (XEXP (x, 0), 4)), 0);
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case 'C':
|
||
/* Offset in constant pool for constant pool address. */
|
||
if (! constant_pool_address_operand (x, VOIDmode))
|
||
abort ();
|
||
if (GET_CODE (x) == SYMBOL_REF)
|
||
fprintf (file, "%d", get_pool_offset (x) + 12);
|
||
else
|
||
/* Must be (const (plus (symbol_ref) (const_int))) */
|
||
fprintf (file, "%d",
|
||
(get_pool_offset (XEXP (XEXP (x, 0), 0)) + 12
|
||
+ INTVAL (XEXP (XEXP (x, 0), 1))));
|
||
break;
|
||
|
||
case 'j':
|
||
/* Branch opcode. Check for condition in test bit for eq/ne. */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case EQ:
|
||
if (cc_status.flags & CC_IN_TB)
|
||
fprintf (file, "ntb");
|
||
else
|
||
fprintf (file, "eq");
|
||
break;
|
||
|
||
case NE:
|
||
if (cc_status.flags & CC_IN_TB)
|
||
fprintf (file, "tb");
|
||
else
|
||
fprintf (file, "ne");
|
||
break;
|
||
|
||
case GT:
|
||
case GTU:
|
||
fprintf (file, "h");
|
||
break;
|
||
|
||
case LT:
|
||
case LTU:
|
||
fprintf (file, "l");
|
||
break;
|
||
|
||
case GE:
|
||
case GEU:
|
||
fprintf (file, "he");
|
||
break;
|
||
|
||
case LE:
|
||
case LEU:
|
||
fprintf (file, "le");
|
||
break;
|
||
|
||
default:
|
||
output_operand_lossage ("invalid %%j value");
|
||
}
|
||
break;
|
||
|
||
case 'J':
|
||
/* Reversed branch opcode. */
|
||
switch (GET_CODE (x))
|
||
{
|
||
case EQ:
|
||
if (cc_status.flags & CC_IN_TB)
|
||
fprintf (file, "tb");
|
||
else
|
||
fprintf (file, "ne");
|
||
break;
|
||
|
||
case NE:
|
||
if (cc_status.flags & CC_IN_TB)
|
||
fprintf (file, "ntb");
|
||
else
|
||
fprintf (file, "eq");
|
||
break;
|
||
|
||
case GT:
|
||
case GTU:
|
||
fprintf (file, "le");
|
||
break;
|
||
|
||
case LT:
|
||
case LTU:
|
||
fprintf (file, "he");
|
||
break;
|
||
|
||
case GE:
|
||
case GEU:
|
||
fprintf (file, "l");
|
||
break;
|
||
|
||
case LE:
|
||
case LEU:
|
||
fprintf (file, "h");
|
||
break;
|
||
|
||
default:
|
||
output_operand_lossage ("invalid %%j value");
|
||
}
|
||
break;
|
||
|
||
case '.':
|
||
/* Output nothing. Used as delimiter in, e.g., "mc%B1%.3 " */
|
||
break;
|
||
|
||
case '#':
|
||
/* Output 'x' if this insn has a delay slot, else nothing. */
|
||
if (dbr_sequence_length ())
|
||
fprintf (file, "x");
|
||
break;
|
||
|
||
case 0:
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", reg_names[REGNO (x)]);
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
||
&& current_function_operand (x, Pmode))
|
||
fprintf (file, "r14");
|
||
else
|
||
output_address (XEXP (x, 0));
|
||
}
|
||
else
|
||
output_addr_const (file, x);
|
||
break;
|
||
|
||
default:
|
||
output_operand_lossage ("invalid %%xn code");
|
||
}
|
||
}
|
||
|
||
/* This page contains routines that are used to determine what the function
|
||
prologue and epilogue code will do and write them out. */
|
||
|
||
/* Return the first register that is required to be saved. 16 if none. */
|
||
|
||
int
|
||
first_reg_to_save()
|
||
{
|
||
int first_reg;
|
||
|
||
/* Find lowest numbered live register. */
|
||
for (first_reg = 6; first_reg <= 15; first_reg++)
|
||
if (regs_ever_live[first_reg])
|
||
break;
|
||
|
||
/* If we think that we do not have to save r14, see if it will be used
|
||
to be sure. */
|
||
if (first_reg > 14 && romp_using_r14 ())
|
||
first_reg = 14;
|
||
|
||
return first_reg;
|
||
}
|
||
|
||
/* Compute the size of the save area in the stack, including the space for
|
||
the first four incoming arguments. */
|
||
|
||
int
|
||
romp_sa_size ()
|
||
{
|
||
int size;
|
||
int i;
|
||
|
||
/* We have the 4 words corresponding to the arguments passed in registers,
|
||
4 reserved words, space for static chain, general register save area,
|
||
and floating-point save area. */
|
||
size = 4 + 4 + 1 + (16 - first_reg_to_save ());
|
||
|
||
/* The documentation says we have to leave 18 words in the save area if
|
||
any floating-point registers at all are saved, not the three words
|
||
per register you might otherwise expect. */
|
||
for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++)
|
||
if (regs_ever_live[i + 17])
|
||
{
|
||
size += 18;
|
||
break;
|
||
}
|
||
|
||
return size * 4;
|
||
}
|
||
|
||
/* Return non-zero if this function makes calls or has fp operations
|
||
(which are really calls). */
|
||
|
||
int
|
||
romp_makes_calls ()
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = get_insns (); insn; insn = next_insn (insn))
|
||
{
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
return 1;
|
||
else if (GET_CODE (insn) == INSN)
|
||
{
|
||
rtx body = PATTERN (insn);
|
||
|
||
if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER
|
||
&& GET_CODE (body) != ADDR_VEC
|
||
&& GET_CODE (body) != ADDR_DIFF_VEC
|
||
&& get_attr_type (insn) == TYPE_FP)
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if this function will use r14 as a pointer to its
|
||
constant pool. */
|
||
|
||
int
|
||
romp_using_r14 ()
|
||
{
|
||
/* If we are debugging, profiling, have a non-empty constant pool, or
|
||
call a function, we need r14. */
|
||
return (write_symbols != NO_DEBUG || profile_flag || get_pool_size () != 0
|
||
|| romp_makes_calls ());
|
||
}
|
||
|
||
/* Return non-zero if this function needs to push space on the stack. */
|
||
|
||
int
|
||
romp_pushes_stack ()
|
||
{
|
||
/* We need to push the stack if a frame pointer is needed (because the
|
||
stack might be dynamically adjusted), if we are debugging, if the
|
||
total required size is more than 100 bytes, or if we make calls. */
|
||
|
||
return (frame_pointer_needed || write_symbols != NO_DEBUG
|
||
|| (romp_sa_size () + get_frame_size ()) > 100
|
||
|| romp_makes_calls ());
|
||
}
|
||
|
||
/* Write function prologue.
|
||
|
||
We compute the size of the fixed area required as follows:
|
||
|
||
We always allocate 4 words for incoming arguments, 4 word reserved, 1
|
||
word for static link, as many words as required for general register
|
||
save area, plus 2 words for each FP reg 2-7 that must be saved. */
|
||
|
||
void
|
||
output_prolog (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
int first_reg;
|
||
int reg_save_offset;
|
||
int fp_save = size + current_function_outgoing_args_size;
|
||
|
||
init_fpops ();
|
||
|
||
/* Add in fixed size plus output argument area. */
|
||
size += romp_sa_size () + current_function_outgoing_args_size;
|
||
|
||
/* Compute first register to save and perform the save operation if anything
|
||
needs to be saved. */
|
||
first_reg = first_reg_to_save();
|
||
reg_save_offset = - (4 + 4 + 1 + (16 - first_reg)) * 4;
|
||
if (first_reg == 15)
|
||
fprintf (file, "\tst r15,%d(r1)\n", reg_save_offset);
|
||
else if (first_reg < 16)
|
||
fprintf (file, "\tstm r%d,%d(r1)\n", first_reg, reg_save_offset);
|
||
|
||
/* Set up pointer to data area if it is needed. */
|
||
if (romp_using_r14 ())
|
||
fprintf (file, "\tcas r14,r0,r0\n");
|
||
|
||
/* Set up frame pointer if needed. */
|
||
if (frame_pointer_needed)
|
||
fprintf (file, "\tcal r13,-%d(r1)\n", romp_sa_size () + 64);
|
||
|
||
/* Push stack if neeeded. There are a couple of ways of doing this. */
|
||
if (romp_pushes_stack ())
|
||
{
|
||
if (size >= 32768)
|
||
{
|
||
if (size >= 65536)
|
||
{
|
||
fprintf (file, "\tcau r0,%d(r0)\n", size >> 16);
|
||
fprintf (file, "\toil r0,r0,%d\n", size & 0xffff);
|
||
}
|
||
else
|
||
fprintf (file, "\tcal16 r0,%d(r0)\n", size);
|
||
fprintf (file, "\ts r1,r0\n");
|
||
}
|
||
else
|
||
fprintf (file, "\tcal r1,-%d(r1)\n", size);
|
||
}
|
||
|
||
/* Save floating-point registers. */
|
||
output_loadsave_fpregs (file, USE,
|
||
plus_constant (stack_pointer_rtx, fp_save));
|
||
}
|
||
|
||
/* Output the offset information used by debuggers.
|
||
This is the exactly the total_size value of output_epilog
|
||
which is added to the frame pointer. However the value in the debug
|
||
table is encoded in a space-saving way as follows:
|
||
|
||
The first byte contains two fields: a 2-bit size field and the first
|
||
6 bits of an offset value. The 2-bit size field is in the high-order
|
||
position and specifies how many subsequent bytes follow after
|
||
this one. An offset value is at most 4-bytes long.
|
||
|
||
The last 6 bits of the first byte initialize the offset value. In many
|
||
cases where procedures have small local storage, this is enough and, in
|
||
this case, the high-order size field is zero so the byte can (almost) be
|
||
used as is (see below). Thus, the byte value of 0x0d is encodes a offset
|
||
size of 13 words, or 52 bytes.
|
||
|
||
For procedures with a local space larger than 60 bytes, the 6 bits
|
||
are the high-order 6 bits. The remaining bytes follow as necessary,
|
||
in Big Endian order. Thus, the short value of 16907 (= 16384+523)
|
||
encodes an offset of 2092 bytes (523 words).
|
||
|
||
The total offset value is in words (not bytes), so the final value has to
|
||
be multiplied by 4 before it can be used in address computations by a
|
||
debugger. */
|
||
|
||
void
|
||
output_encoded_offset (file, reg_offset)
|
||
FILE *file;
|
||
unsigned reg_offset;
|
||
{
|
||
/* Convert the offset value to 4-byte words rather than bytes. */
|
||
reg_offset = (reg_offset + 3) / 4;
|
||
|
||
/* Now output 1-4 bytes in encoded form. */
|
||
if (reg_offset < (1 << 6))
|
||
/* Fits into one byte */
|
||
fprintf (file, "\t.byte %d\n", reg_offset);
|
||
else if (reg_offset < (1 << (6 + 8)))
|
||
/* Fits into two bytes */
|
||
fprintf (file, "\t.short %d\n", (1 << (6 + 8)) + reg_offset);
|
||
else if (reg_offset < (1 << (6 + 8 + 8)))
|
||
{
|
||
/* Fits in three bytes */
|
||
fprintf (file, "\t.byte %d\n", (2 << 6) + (reg_offset >> ( 6+ 8)));
|
||
fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8)));
|
||
}
|
||
else
|
||
{
|
||
/* Use 4 bytes. */
|
||
fprintf (file, "\t.short %d", (3 << (6 + 8)) + (reg_offset >> (6 + 8)));
|
||
fprintf (file, "\t.short %d\n", reg_offset % (1 << (6 + 8)));
|
||
}
|
||
}
|
||
|
||
/* Write function epilogue. */
|
||
|
||
void
|
||
output_epilog (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
int first_reg = first_reg_to_save();
|
||
int pushes_stack = romp_pushes_stack ();
|
||
int reg_save_offset = - ((16 - first_reg) + 1 + 4 + 4) * 4;
|
||
int total_size = (size + romp_sa_size ()
|
||
+ current_function_outgoing_args_size);
|
||
int fp_save = size + current_function_outgoing_args_size;
|
||
int long_frame = total_size >= 32768;
|
||
rtx insn = get_last_insn ();
|
||
int write_code = 1;
|
||
|
||
int nargs = 0; /* words of arguments */
|
||
tree argptr;
|
||
|
||
/* Compute the number of words of arguments. Since this is just for
|
||
the traceback table, we ignore arguments that don't have a size or
|
||
don't have a fixed size. */
|
||
|
||
for (argptr = DECL_ARGUMENTS (current_function_decl);
|
||
argptr; argptr = TREE_CHAIN (argptr))
|
||
{
|
||
int this_size = int_size_in_bytes (TREE_TYPE (argptr));
|
||
|
||
if (this_size > 0)
|
||
nargs += (this_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
}
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write anything except
|
||
the trace table. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
write_code = 0;
|
||
|
||
/* Restore floating-point registers. */
|
||
if (write_code)
|
||
output_loadsave_fpregs (file, CLOBBER,
|
||
gen_rtx (PLUS, Pmode, gen_rtx (REG, Pmode, 1),
|
||
gen_rtx (CONST_INT, VOIDmode, fp_save)));
|
||
|
||
/* If we push the stack and do not have size > 32K, adjust the register
|
||
save location to the current position of sp. Otherwise, if long frame,
|
||
restore sp from fp. */
|
||
if (pushes_stack && ! long_frame)
|
||
reg_save_offset += total_size;
|
||
else if (long_frame && write_code)
|
||
fprintf (file, "\tcal r1,%d(r13)\n", romp_sa_size () + 64);
|
||
|
||
/* Restore registers. */
|
||
if (first_reg == 15 && write_code)
|
||
fprintf (file, "\tl r15,%d(r1)\n", reg_save_offset);
|
||
else if (first_reg < 16 && write_code)
|
||
fprintf (file, "\tlm r%d,%d(r1)\n", first_reg, reg_save_offset);
|
||
if (first_reg == 16) first_reg = 0;
|
||
|
||
/* Handle popping stack, if needed and write debug table entry. */
|
||
if (pushes_stack)
|
||
{
|
||
if (write_code)
|
||
{
|
||
if (long_frame)
|
||
fprintf (file, "\tbr r15\n");
|
||
else
|
||
fprintf (file, "\tbrx r15\n\tcal r1,%d(r1)\n", total_size);
|
||
}
|
||
|
||
/* Table header (0xdf), usual-type stack frame (0x07),
|
||
table header (0xdf), and first register saved.
|
||
|
||
The final 0x08 means that there is a byte following this one
|
||
describing the number of parameter words and the register used as
|
||
stack pointer.
|
||
|
||
If GCC passed floating-point parameters in floating-point registers,
|
||
it would be necessary to change the final byte from 0x08 to 0x0c.
|
||
Also an additional entry byte would be need to be emitted to specify
|
||
the first floating-point register.
|
||
|
||
(See also Section 11 (Trace Tables) in ``IBM/4.3 Linkage Convention,''
|
||
pages IBM/4.3-PSD:5-7 of Volume III of the IBM Academic Operating
|
||
System Manual dated July 1987.) */
|
||
|
||
fprintf (file, "\t.long 0x%x\n", 0xdf07df08 + first_reg * 0x10);
|
||
|
||
if (nargs > 15) nargs = 15;
|
||
|
||
/* The number of parameter words and the register used as the stack
|
||
pointer (encoded here as r1).
|
||
|
||
Note: The MetWare Hich C Compiler R2.1y actually gets this wrong;
|
||
it erroneously lists r13 but uses r1 as the stack too. But a bug in
|
||
dbx 1.5 nullifies this mistake---most of the time.
|
||
(Dbx retrieves the value of r13 saved on the stack which is often
|
||
the value of r1 before the call.) */
|
||
|
||
fprintf (file, "\t.byte 0x%x1\n", nargs);
|
||
output_encoded_offset (file, total_size);
|
||
}
|
||
else
|
||
{
|
||
if (write_code)
|
||
fprintf (file, "\tbr r15\n");
|
||
|
||
/* Table header (0xdf), no stack frame (0x02),
|
||
table header (0xdf) and no parameters saved (0x00).
|
||
|
||
If GCC passed floating-point parameters in floating-point registers,
|
||
it might be necessary to change the final byte from 0x00 to 0x04.
|
||
Also a byte would be needed to specify the first floating-point
|
||
register. */
|
||
fprintf (file, "\t.long 0xdf02df00\n");
|
||
}
|
||
|
||
/* Output any pending floating-point operations. */
|
||
output_fpops (file);
|
||
}
|
||
|
||
/* For the ROMP we need to make new SYMBOL_REFs for the actual name of a
|
||
called routine. To keep them unique we maintain a hash table of all
|
||
that have been created so far. */
|
||
|
||
struct symref_hashent {
|
||
rtx symref; /* Created SYMBOL_REF rtx. */
|
||
struct symref_hashent *next; /* Next with same hash code. */
|
||
};
|
||
|
||
#define SYMHASHSIZE 151
|
||
#define HASHBITS 65535
|
||
|
||
/* Define the hash table itself. */
|
||
|
||
static struct symref_hashent *symref_hash_table[SYMHASHSIZE];
|
||
|
||
/* Given a name (allocatable in temporary storage), return a SYMBOL_REF
|
||
for the name. The rtx is allocated from the current rtl_obstack, while
|
||
the name string is allocated from the permanent obstack. */
|
||
rtx
|
||
get_symref (name)
|
||
register char *name;
|
||
{
|
||
extern struct obstack permanent_obstack;
|
||
register char *sp = name;
|
||
unsigned int hash = 0;
|
||
struct symref_hashent *p, **last_p;
|
||
|
||
/* Compute the hash code for the string. */
|
||
while (*sp)
|
||
hash = (hash << 4) + *sp++;
|
||
|
||
/* Search for a matching entry in the hash table, keeping track of the
|
||
insertion location as we do so. */
|
||
hash = (hash & HASHBITS) % SYMHASHSIZE;
|
||
for (last_p = &symref_hash_table[hash], p = *last_p;
|
||
p; last_p = &p->next, p = *last_p)
|
||
if (strcmp (name, XSTR (p->symref, 0)) == 0)
|
||
break;
|
||
|
||
/* If couldn't find matching SYMBOL_REF, make a new one. */
|
||
if (p == 0)
|
||
{
|
||
/* Ensure SYMBOL_REF will stay around. */
|
||
end_temporary_allocation ();
|
||
p = *last_p = (struct symref_hashent *)
|
||
permalloc (sizeof (struct symref_hashent));
|
||
p->symref = gen_rtx (SYMBOL_REF, Pmode,
|
||
obstack_copy0 (&permanent_obstack,
|
||
name, strlen (name)));
|
||
p->next = 0;
|
||
resume_temporary_allocation ();
|
||
}
|
||
|
||
return p->symref;
|
||
}
|
||
|
||
/* Validate the precision of a floating-point operation.
|
||
|
||
We merge conversions from integers and between floating-point modes into
|
||
the insn. However, this must not effect the desired precision of the
|
||
insn. The RT floating-point system uses the widest of the operand modes.
|
||
If this should be a double-precision insn, ensure that one operand
|
||
passed to the floating-point processor has double mode.
|
||
|
||
Note that since we don't check anything if the mode is single precision,
|
||
it, strictly speaking, isn't necessary to call this for those insns.
|
||
However, we do so in case something else needs to be checked in the
|
||
future.
|
||
|
||
This routine returns 1 if the operation is OK. */
|
||
|
||
int
|
||
check_precision (opmode, op1, op2)
|
||
enum machine_mode opmode;
|
||
rtx op1, op2;
|
||
{
|
||
if (opmode == SFmode)
|
||
return 1;
|
||
|
||
/* If operand is not a conversion from an integer mode or an extension from
|
||
single-precision, it must be a double-precision value. */
|
||
if (GET_CODE (op1) != FLOAT && GET_CODE (op1) != FLOAT_EXTEND)
|
||
return 1;
|
||
|
||
if (op2 && GET_CODE (op2) != FLOAT && GET_CODE (op2) != FLOAT_EXTEND)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Floating-point on the RT is done by creating an operation block in the data
|
||
area that describes the operation. If two floating-point operations are the
|
||
same in a single function, they can use the same block.
|
||
|
||
These routines are responsible for managing these blocks. */
|
||
|
||
/* Structure to describe a floating-point operation. */
|
||
|
||
struct fp_op {
|
||
struct fp_op *next_same_hash; /* Next op with same hash code. */
|
||
struct fp_op *next_in_mem; /* Next op in memory. */
|
||
int mem_offset; /* Offset from data area. */
|
||
short size; /* Size of block in bytes. */
|
||
short noperands; /* Number of operands in block. */
|
||
rtx ops[3]; /* RTL for operands. */
|
||
enum rtx_code opcode; /* Operation being performed. */
|
||
};
|
||
|
||
/* Size of hash table. */
|
||
#define FP_HASH_SIZE 101
|
||
|
||
/* Hash table of floating-point operation blocks. */
|
||
static struct fp_op *fp_hash_table[FP_HASH_SIZE];
|
||
|
||
/* First floating-point block in data area. */
|
||
static struct fp_op *first_fpop;
|
||
|
||
/* Last block in data area so far. */
|
||
static struct fp_op *last_fpop_in_mem;
|
||
|
||
/* Subroutine number in file, to get unique "LF" labels. */
|
||
static int subr_number = 0;
|
||
|
||
/* Current word offset in data area (includes header and any constant pool). */
|
||
int data_offset;
|
||
|
||
/* Compute hash code for an RTX used in floating-point. */
|
||
|
||
static unsigned int
|
||
hash_rtx (x)
|
||
register rtx x;
|
||
{
|
||
register unsigned int hash = (((int) GET_CODE (x) << 10)
|
||
+ ((int) GET_MODE (x) << 20));
|
||
register int i;
|
||
register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
|
||
if (fmt[i] == 'e')
|
||
hash += hash_rtx (XEXP (x, i));
|
||
else if (fmt[i] == 'u')
|
||
hash += (int) XEXP (x, i);
|
||
else if (fmt[i] == 'i')
|
||
hash += XINT (x, i);
|
||
else if (fmt[i] == 's')
|
||
hash += (int) XSTR (x, i);
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Given an operation code and up to three operands, return a character string
|
||
corresponding to the code to emit to branch to a floating-point operation
|
||
block. INSN is provided to see if the delay slot has been filled or not.
|
||
|
||
A new floating-point operation block is created if this operation has not
|
||
been seen before. */
|
||
|
||
char *
|
||
output_fpop (code, op0, op1, op2, insn)
|
||
enum rtx_code code;
|
||
rtx op0, op1, op2;
|
||
rtx insn;
|
||
{
|
||
static char outbuf[40];
|
||
unsigned int hash, hash0, hash1, hash2;
|
||
int size, i;
|
||
register struct fp_op *fpop, *last_fpop;
|
||
int dyadic = (op2 != 0);
|
||
enum machine_mode opmode;
|
||
int noperands;
|
||
rtx tem;
|
||
unsigned int tem_hash;
|
||
int fr0_avail = 0;
|
||
|
||
/* Compute hash code for each operand. If the operation is commutative,
|
||
put the one with the smaller hash code first. This will make us see
|
||
more operations as identical. */
|
||
hash0 = op0 ? hash_rtx (op0) : 0;
|
||
hash1 = op1 ? hash_rtx (op1) : 0;
|
||
hash2 = op2 ? hash_rtx (op2) : 0;
|
||
|
||
if (hash0 > hash1 && code == EQ)
|
||
{
|
||
tem = op0; op0 = op1; op1 = tem;
|
||
tem_hash = hash0; hash0 = hash1; hash1 = tem_hash;
|
||
}
|
||
else if (hash1 > hash2 && (code == PLUS || code == MULT))
|
||
{
|
||
tem = op1; op1 = op2; op2 = tem;
|
||
tem_hash = hash1; hash1 = hash2; hash2 = tem_hash;
|
||
}
|
||
|
||
/* If operation is commutative and the first and third operands are equal,
|
||
swap the second and third operands. Note that we must consider two
|
||
operands equal if they are the same register even if different modes. */
|
||
if (op2 && (code == PLUS || code == MULT)
|
||
&& (rtx_equal_p (op0, op2)
|
||
|| (GET_CODE (op0) == REG && GET_CODE (op2) == REG
|
||
&& REGNO (op0) == REGNO (op2))))
|
||
{
|
||
tem = op1; op1 = op2; op2 = tem;
|
||
tem_hash = hash1; hash1 = hash2; hash2 = tem_hash;
|
||
}
|
||
|
||
/* If the first and second operands are the same, merge them. Don't do this
|
||
for SFmode or SImode in general registers because this triggers a bug in
|
||
the RT fp code. */
|
||
if (op1 && rtx_equal_p (op0, op1)
|
||
&& code != EQ && code != GE && code != SET
|
||
&& ((GET_MODE (op1) != SFmode && GET_MODE (op1) != SImode)
|
||
|| GET_CODE (op0) != REG || FP_REGNO_P (REGNO (op0))))
|
||
{
|
||
op1 = op2;
|
||
op2 = 0;
|
||
}
|
||
|
||
noperands = 1 + (op1 != 0) + (op2 != 0);
|
||
|
||
/* Compute hash code for entire expression and see if operation block
|
||
already exists. */
|
||
hash = ((int) code << 13) + (hash0 << 2) + (hash1 << 1) + hash2;
|
||
|
||
hash %= FP_HASH_SIZE;
|
||
for (fpop = fp_hash_table[hash], last_fpop = 0;
|
||
fpop;
|
||
last_fpop = fpop, fpop = fpop->next_same_hash)
|
||
if (fpop->opcode == code && noperands == fpop->noperands
|
||
&& (op0 == 0 || rtx_equal_p (op0, fpop->ops[0]))
|
||
&& (op1 == 0 || rtx_equal_p (op1, fpop->ops[1]))
|
||
&& (op2 == 0 || rtx_equal_p (op2, fpop->ops[2])))
|
||
goto win;
|
||
|
||
/* We have never seen this operation before. */
|
||
fpop = (struct fp_op *) oballoc (sizeof (struct fp_op));
|
||
fpop->mem_offset = data_offset;
|
||
fpop->opcode = code;
|
||
fpop->noperands = noperands;
|
||
fpop->ops[0] = op0;
|
||
fpop->ops[1] = op1;
|
||
fpop->ops[2] = op2;
|
||
|
||
/* Compute the size using the rules in Appendix A of the RT Linkage
|
||
Convention (4.3/RT-PSD:5) manual. These rules are a bit ambiguous,
|
||
but if we guess wrong, it will effect only efficiency, not correctness. */
|
||
|
||
/* Size = 24 + 32 for each non-fp (or fr7) */
|
||
size = 24;
|
||
if (op0 && (GET_CODE (op0) != REG
|
||
|| ! FP_REGNO_P (REGNO (op0)) || REGNO (op0) == 23))
|
||
size += 32;
|
||
|
||
if (op1 && (GET_CODE (op1) != REG
|
||
|| ! FP_REGNO_P (REGNO (op1)) || REGNO (op1) == 23))
|
||
size += 32;
|
||
|
||
if (op2 && (GET_CODE (op2) != REG
|
||
|| ! FP_REGNO_P (REGNO (op2)) || REGNO (op2) == 23))
|
||
size += 32;
|
||
|
||
/* Size + 12 for each conversion. First get operation mode. */
|
||
if ((op0 && GET_MODE (op0) == DFmode)
|
||
|| (op1 && GET_MODE (op1) == DFmode)
|
||
|| (op2 && GET_MODE (op2) == DFmode))
|
||
opmode = DFmode;
|
||
else
|
||
opmode = SFmode;
|
||
|
||
if (op0 && GET_MODE (op0) != opmode)
|
||
size += 12;
|
||
if (op1 && GET_MODE (op1) != opmode)
|
||
size += 12;
|
||
if (op2 && GET_MODE (op2) != opmode)
|
||
size += 12;
|
||
|
||
/* 12 more if first and third operand types not the same. */
|
||
if (op2 && GET_MODE (op0) != GET_MODE (op2))
|
||
size += 12;
|
||
|
||
/* CMP and CMPT need additional. Also, compute size of save/restore here. */
|
||
if (code == EQ)
|
||
size += 32;
|
||
else if (code == GE)
|
||
size += 64;
|
||
else if (code == USE || code == CLOBBER)
|
||
{
|
||
/* 34 + 24 for each additional register plus 8 if fr7 saved. (We
|
||
call it 36 because we need to keep the block length a multiple
|
||
of four. */
|
||
size = 36 - 24;
|
||
for (i = 0; i <= 7; i++)
|
||
if (INTVAL (op0) & (1 << (7-i)))
|
||
size += 24 + 8 * (i == 7);
|
||
}
|
||
|
||
/* We provide no general-purpose scratch registers. */
|
||
size +=16;
|
||
|
||
/* No floating-point scratch registers are provided. Compute extra
|
||
length due to this. This logic is that shown in the referenced
|
||
appendix. */
|
||
|
||
i = 0;
|
||
if (op0 && GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)))
|
||
i++;
|
||
if (op1 && GET_CODE (op1) == REG && FP_REGNO_P (REGNO (op1)))
|
||
i++;
|
||
if (op2 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
|
||
i++;
|
||
|
||
if ((op0 == 0 || GET_CODE (op0) != REG || REGNO(op0) != 17)
|
||
&& (op1 == 0 || GET_CODE (op1) != REG || REGNO(op1) != 17)
|
||
&& (op2 == 0 || GET_CODE (op2) != REG || REGNO(op2) != 17))
|
||
fr0_avail = 1;
|
||
|
||
if (dyadic)
|
||
{
|
||
if (i == 0)
|
||
size += fr0_avail ? 64 : 112;
|
||
else if (fpop->noperands == 2 && i == 1)
|
||
size += fr0_avail ? 0 : 64;
|
||
else if (fpop->noperands == 3)
|
||
{
|
||
if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0))
|
||
&& GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
|
||
{
|
||
if (REGNO (op0) == REGNO (op2))
|
||
#if 1
|
||
/* This triggers a bug on the RT. */
|
||
abort ();
|
||
#else
|
||
size += fr0_avail ? 0 : 64;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
i = 0;
|
||
if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)))
|
||
i++;
|
||
if (GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)))
|
||
i++;
|
||
if (i == 0)
|
||
size += fr0_avail ? 64 : 112;
|
||
else if (i == 1)
|
||
size += fr0_avail ? 0 : 64;
|
||
}
|
||
}
|
||
}
|
||
else if (code != USE && code != CLOBBER
|
||
&& (GET_CODE (op0) != REG || ! FP_REGNO_P (REGNO (op0))))
|
||
size += 64;
|
||
|
||
if (! TARGET_FULL_FP_BLOCKS)
|
||
{
|
||
/* If we are not to pad the blocks, just compute its actual length. */
|
||
size = 12; /* Header + opcode */
|
||
if (code == USE || code == CLOBBER)
|
||
size += 2;
|
||
else
|
||
{
|
||
if (op0) size += 2;
|
||
if (op1) size += 2;
|
||
if (op2) size += 2;
|
||
}
|
||
|
||
/* If in the middle of a word, round. */
|
||
if (size % UNITS_PER_WORD)
|
||
size += 2;
|
||
|
||
/* Handle any immediates. */
|
||
if (code != USE && code != CLOBBER && op0 && GET_CODE (op0) != REG)
|
||
size += 4;
|
||
if (op1 && GET_CODE (op1) != REG)
|
||
size += 4;
|
||
if (op2 && GET_CODE (op2) != REG)
|
||
size += 4;
|
||
|
||
if (code != USE && code != CLOBBER &&
|
||
op0 && GET_CODE (op0) == CONST_DOUBLE && GET_MODE (op0) == DFmode)
|
||
size += 4;
|
||
if (op1 && GET_CODE (op1) == CONST_DOUBLE && GET_MODE (op1) == DFmode)
|
||
size += 4;
|
||
if (op2 && GET_CODE (op2) == CONST_DOUBLE && GET_MODE (op2) == DFmode)
|
||
size += 4;
|
||
}
|
||
|
||
/* Done with size computation! Chain this in. */
|
||
fpop->size = size;
|
||
data_offset += size / UNITS_PER_WORD;
|
||
fpop->next_in_mem = 0;
|
||
fpop->next_same_hash = 0;
|
||
|
||
if (last_fpop_in_mem)
|
||
last_fpop_in_mem->next_in_mem = fpop;
|
||
else
|
||
first_fpop = fpop;
|
||
last_fpop_in_mem = fpop;
|
||
|
||
if (last_fpop)
|
||
last_fpop->next_same_hash = fpop;
|
||
else
|
||
fp_hash_table[hash] = fpop;
|
||
|
||
win:
|
||
/* FPOP describes the operation to be performed. Return a string to branch
|
||
to it. */
|
||
if (fpop->mem_offset < 32768 / UNITS_PER_WORD)
|
||
sprintf (outbuf, "cal r15,%d(r14)\n\tbalr%s r15,r15",
|
||
fpop->mem_offset * UNITS_PER_WORD,
|
||
dbr_sequence_length () ? "x" : "");
|
||
else
|
||
sprintf (outbuf, "get r15,$L%dF%d\n\tbalr%s r15,r15",
|
||
subr_number, fpop->mem_offset * UNITS_PER_WORD,
|
||
dbr_sequence_length () ? "x" : "");
|
||
return outbuf;
|
||
}
|
||
|
||
/* If necessary, output a floating-point operation to save or restore all
|
||
floating-point registers.
|
||
|
||
file is the file to write the operation to, CODE is USE for save, CLOBBER
|
||
for restore, and ADDR is the address of the same area, as RTL. */
|
||
|
||
static void
|
||
output_loadsave_fpregs (file, code, addr)
|
||
FILE *file;
|
||
enum rtx_code code;
|
||
rtx addr;
|
||
{
|
||
register int i;
|
||
register int mask = 0;
|
||
|
||
for (i = 2 + (TARGET_FP_REGS != 0); i <= 7; i++)
|
||
if (regs_ever_live[i + 17])
|
||
mask |= 1 << (7 - i);
|
||
|
||
if (mask)
|
||
fprintf (file, "\t%s\n",
|
||
output_fpop (code, gen_rtx (CONST_INT, VOIDmode, mask),
|
||
gen_rtx (MEM, Pmode, addr),
|
||
0, const0_rtx));
|
||
|
||
}
|
||
|
||
/* Output any floating-point operations at the end of the routine. */
|
||
|
||
static void
|
||
output_fpops (file)
|
||
FILE *file;
|
||
{
|
||
register struct fp_op *fpop;
|
||
register int size_so_far;
|
||
register int i;
|
||
rtx immed[3];
|
||
|
||
if (first_fpop == 0)
|
||
return;
|
||
|
||
data_section ();
|
||
|
||
ASM_OUTPUT_ALIGN (file, 2);
|
||
|
||
for (fpop = first_fpop; fpop; fpop = fpop->next_in_mem)
|
||
{
|
||
if (fpop->mem_offset < 32768 / UNITS_PER_WORD)
|
||
fprintf (file, "# data area offset = %d\n",
|
||
fpop->mem_offset * UNITS_PER_WORD);
|
||
else
|
||
fprintf (file, "L%dF%d:\n",
|
||
subr_number, fpop->mem_offset * UNITS_PER_WORD);
|
||
|
||
fprintf (file, "\tcas r0,r15,r0\n");
|
||
fprintf (file, "\t.long FPGLUE\n");
|
||
switch (fpop->opcode)
|
||
{
|
||
case USE:
|
||
fprintf (file, "\t.byte 0x1d\t# STOREM\n");
|
||
break;
|
||
case CLOBBER:
|
||
fprintf (file, "\t.byte 0x0f\t# LOADM\n");
|
||
break;
|
||
case ABS:
|
||
fprintf (file, "\t.byte 0x00\t# ABS\n");
|
||
break;
|
||
case PLUS:
|
||
fprintf (file, "\t.byte 0x02\t# ADD\n");
|
||
break;
|
||
case EQ:
|
||
fprintf (file, "\t.byte 0x07\t# CMP\n");
|
||
break;
|
||
case GE:
|
||
fprintf (file, "\t.byte 0x08\t# CMPT\n");
|
||
break;
|
||
case DIV:
|
||
fprintf (file, "\t.byte 0x0c\t# DIV\n");
|
||
break;
|
||
case SET:
|
||
fprintf (file, "\t.byte 0x14\t# MOVE\n");
|
||
break;
|
||
case MULT:
|
||
fprintf (file, "\t.byte 0x15\t# MUL\n");
|
||
break;
|
||
case NEG:
|
||
fprintf (file, "\t.byte 0x16\t# NEG\n");
|
||
break;
|
||
case SQRT:
|
||
fprintf (file, "\t.byte 0x1c\t# SQRT\n");
|
||
break;
|
||
case MINUS:
|
||
fprintf (file, "\t.byte 0x1e\t# SUB\n");
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
fprintf (file, "\t.byte %d\n", fpop->noperands);
|
||
fprintf (file, "\t.short 0x8001\n");
|
||
|
||
if ((fpop->ops[0] == 0
|
||
|| GET_CODE (fpop->ops[0]) != REG || REGNO(fpop->ops[0]) != 17)
|
||
&& (fpop->ops[1] == 0 || GET_CODE (fpop->ops[1]) != REG
|
||
|| REGNO(fpop->ops[1]) != 17)
|
||
&& (fpop->ops[2] == 0 || GET_CODE (fpop->ops[2]) != REG
|
||
|| REGNO(fpop->ops[2]) != 17))
|
||
fprintf (file, "\t.byte %d, 0x80\n", fpop->size);
|
||
else
|
||
fprintf (file, "\t.byte %d, 0\n", fpop->size);
|
||
size_so_far = 12;
|
||
for (i = 0; i < fpop->noperands; i++)
|
||
{
|
||
register int type;
|
||
register int opbyte;
|
||
register char *desc0;
|
||
char desc1[50];
|
||
|
||
immed[i] = 0;
|
||
switch (GET_MODE (fpop->ops[i]))
|
||
{
|
||
case SImode:
|
||
case VOIDmode:
|
||
desc0 = "int";
|
||
type = 0;
|
||
break;
|
||
case SFmode:
|
||
desc0 = "float";
|
||
type = 2;
|
||
break;
|
||
case DFmode:
|
||
desc0 = "double";
|
||
type = 3;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
switch (GET_CODE (fpop->ops[i]))
|
||
{
|
||
case REG:
|
||
strcpy(desc1, reg_names[REGNO (fpop->ops[i])]);
|
||
if (FP_REGNO_P (REGNO (fpop->ops[i])))
|
||
{
|
||
type += 0x10;
|
||
opbyte = REGNO (fpop->ops[i]) - 17;
|
||
}
|
||
else
|
||
{
|
||
type += 0x00;
|
||
opbyte = REGNO (fpop->ops[i]);
|
||
if (type == 3)
|
||
opbyte = (opbyte << 4) + opbyte + 1;
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
type += 0x30;
|
||
if (GET_CODE (XEXP (fpop->ops[i], 0)) == PLUS)
|
||
{
|
||
immed[i] = XEXP (XEXP (fpop->ops[i], 0), 1);
|
||
opbyte = REGNO (XEXP (XEXP (fpop->ops[i], 0), 0));
|
||
if (GET_CODE (immed[i]) == CONST_INT)
|
||
sprintf (desc1, "%d(%s)", INTVAL (immed[i]),
|
||
reg_names[opbyte]);
|
||
else
|
||
sprintf (desc1, "<memory> (%s)", reg_names[opbyte]);
|
||
}
|
||
else if (GET_CODE (XEXP (fpop->ops[i], 0)) == REG)
|
||
{
|
||
opbyte = REGNO (XEXP (fpop->ops[i], 0));
|
||
immed[i] = const0_rtx;
|
||
sprintf (desc1, "(%s)", reg_names[opbyte]);
|
||
}
|
||
else
|
||
{
|
||
immed[i] = XEXP (fpop->ops[i], 0);
|
||
opbyte = 0;
|
||
sprintf(desc1, "<memory>");
|
||
}
|
||
break;
|
||
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
type += 0x20;
|
||
opbyte = 0;
|
||
immed[i] = fpop->ops[i];
|
||
desc1[0] = '$';
|
||
desc1[1] = '\0';
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Save/restore is special. */
|
||
if (i == 0 && (fpop->opcode == USE || fpop->opcode == CLOBBER))
|
||
type = 0xff, opbyte = INTVAL (fpop->ops[0]), immed[i] = 0;
|
||
|
||
fprintf (file, "\t.byte 0x%x,0x%x # (%s) %s\n",
|
||
type, opbyte, desc0, desc1);
|
||
|
||
size_so_far += 2;
|
||
}
|
||
|
||
/* If in the middle of a word, round. */
|
||
if (size_so_far % UNITS_PER_WORD)
|
||
{
|
||
fprintf (file, "\t.space 2\n");
|
||
size_so_far += 2;
|
||
}
|
||
|
||
for (i = 0; i < fpop->noperands; i++)
|
||
if (immed[i])
|
||
switch (GET_MODE (immed[i]))
|
||
{
|
||
case SImode:
|
||
case VOIDmode:
|
||
size_so_far += 4;
|
||
fprintf (file, "\t.long ");
|
||
output_addr_const (file, immed[i]);
|
||
fprintf (file, "\n");
|
||
break;
|
||
|
||
case DFmode:
|
||
size_so_far += 4;
|
||
case SFmode:
|
||
size_so_far += 4;
|
||
if (GET_CODE (immed[i]) == CONST_DOUBLE)
|
||
{
|
||
union real_extract u;
|
||
|
||
bcopy (&CONST_DOUBLE_LOW (immed[i]), &u, sizeof u);
|
||
if (GET_MODE (immed[i]) == DFmode)
|
||
ASM_OUTPUT_DOUBLE (file, u.d);
|
||
else
|
||
ASM_OUTPUT_FLOAT (file, u.d);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (size_so_far != fpop->size)
|
||
{
|
||
if (TARGET_FULL_FP_BLOCKS)
|
||
fprintf (file, "\t.space %d\n", fpop->size - size_so_far);
|
||
else
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Update for next subroutine. */
|
||
subr_number++;
|
||
text_section ();
|
||
}
|
||
|
||
/* Initialize floating-point operation table. */
|
||
|
||
static void
|
||
init_fpops()
|
||
{
|
||
register int i;
|
||
|
||
first_fpop = last_fpop_in_mem = 0;
|
||
for (i = 0; i < FP_HASH_SIZE; i++)
|
||
fp_hash_table[i] = 0;
|
||
}
|
||
|
||
/* Return the offset value of an automatic variable (N_LSYM) having
|
||
the given offset. Basically, we correct by going from a frame pointer to
|
||
stack pointer value.
|
||
*/
|
||
|
||
int
|
||
romp_debugger_auto_correction(offset)
|
||
int offset;
|
||
{
|
||
int fp_to_sp;
|
||
|
||
/* We really want to go from STACK_POINTER_REGNUM to
|
||
FRAME_POINTER_REGNUM, but this isn't defined. So go the other
|
||
direction and negate. */
|
||
INITIAL_ELIMINATION_OFFSET (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM,
|
||
fp_to_sp);
|
||
|
||
/* The offset value points somewhere between the frame pointer and
|
||
the stack pointer. What is up from the frame pointer is down from the
|
||
stack pointer. Therefore the negation in the offset value too. */
|
||
|
||
return -(offset+fp_to_sp+4);
|
||
}
|
||
|
||
/* Return the offset value of an argument having
|
||
the given offset. Basically, we correct by going from a arg pointer to
|
||
stack pointer value. */
|
||
|
||
int
|
||
romp_debugger_arg_correction (offset)
|
||
int offset;
|
||
{
|
||
int fp_to_argp;
|
||
|
||
INITIAL_ELIMINATION_OFFSET (ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM,
|
||
fp_to_argp);
|
||
|
||
/* Actually, something different happens if offset is from a floating-point
|
||
register argument, but we don't handle it here. */
|
||
|
||
return (offset - fp_to_argp);
|
||
}
|