2c609fee57
register class GEN_AND_FLOAT_REGS. From-SVN: r4048
1353 lines
48 KiB
C++
1353 lines
48 KiB
C++
/* Definitions of target machine for GNU compiler. NS32000 version.
|
||
Copyright (C) 1988 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@mcc.com)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* Note that some other tm.h files include this one and then override
|
||
many of the definitions that relate to assembler syntax. */
|
||
|
||
extern enum reg_class secondary_reload_class();
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dns32000 -Dunix"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
#define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
|
||
|
||
|
||
/* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
|
||
to cover most NS32k addressing syntax variations. This way we don't
|
||
need to redefine long macros in all the tm.h files for just slight
|
||
variations in assembler syntax. */
|
||
|
||
#ifndef ABSOLUTE_PREFIX
|
||
#define ABSOLUTE_PREFIX '@'
|
||
#endif
|
||
|
||
#if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
|
||
#define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
|
||
#else
|
||
#define PUT_IMMEDIATE_PREFIX(FILE)
|
||
#endif
|
||
#if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
|
||
#define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
|
||
#else
|
||
#define PUT_ABSOLUTE_PREFIX(FILE)
|
||
#endif
|
||
#if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
|
||
#define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
|
||
#else
|
||
#define PUT_EXTERNAL_PREFIX(FILE)
|
||
#endif
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Compile 32081 insns for floating point (not library calls). */
|
||
#define TARGET_32081 (target_flags & 1)
|
||
|
||
/* Compile using rtd insn calling sequence.
|
||
This will not work unless you use prototypes at least
|
||
for all functions that can take varying numbers of args. */
|
||
#define TARGET_RTD (target_flags & 2)
|
||
|
||
/* Compile passing first two args in regs 0 and 1. */
|
||
#define TARGET_REGPARM (target_flags & 4)
|
||
|
||
/* Options to select type of CPU, for better optimization.
|
||
The output is correct for any kind of 32000 regardless of these options. */
|
||
#define TARGET_32532 (target_flags & 8)
|
||
#define TARGET_32332 (target_flags & 16)
|
||
|
||
/* Ok to use the static base register (and presume it's 0) */
|
||
#define TARGET_SB ((target_flags & 32) == 0)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "32081", 1}, \
|
||
{ "soft-float", -1}, \
|
||
{ "rtd", 2}, \
|
||
{ "nortd", -2}, \
|
||
{ "regparm", 4}, \
|
||
{ "noregparm", -4}, \
|
||
{ "32532", 24}, \
|
||
{ "32332", -8}, \
|
||
{ "32332", 16}, \
|
||
{ "32032", -24}, \
|
||
{ "sb", -32}, \
|
||
{ "nosb", 32}, \
|
||
{ "", TARGET_DEFAULT}}
|
||
/* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
This is not true on the ns32k. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is not true on the ns32k. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is lowest
|
||
numbered. This is not true on the ns32k. */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 32000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. National claims that the NS32032
|
||
works without strict alignment, but rumor has it that operands
|
||
crossing a page boundary cause unpredictable results. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* If bit field type is int, dont let it cross an int,
|
||
and give entire struct the alignment of an int. */
|
||
/* Required on the 386 since it doesn't have a full set of bitfield insns.
|
||
(There is no signed extv insn.) */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers. */
|
||
#define FIRST_PSEUDO_REGISTER 18
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the ns32k, these are the FP, SP, (SB and PC are not included here). */
|
||
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
|
||
1, 1, 1, 1, 0, 0, 0, 0, \
|
||
1, 1}
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
On the ns32k, all registers are 32 bits long. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode) == \
|
||
((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* NS32000 pc is not overloaded on a register. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 17
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 16
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 16
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM 1
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 2
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, GEN_AND_FP_REGS,
|
||
FRAME_POINTER_REG, STACK_POINTER_REG,
|
||
GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "GEN_AND_FP_REGS", \
|
||
"FRAME_POINTER_REG", "STACK_POINTER_REG", "GEN_AND_MEM_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0xffff, \
|
||
0x10000, 0x20000, 0x300ff, 0x3ffff }
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO) < 8 ? GENERAL_REGS \
|
||
: (REGNO) < 16 ? FLOAT_REGS \
|
||
: (REGNO) == 16 ? FRAME_POINTER_REG \
|
||
: (REGNO) == 17 ? STACK_POINTER_REG \
|
||
: NO_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GEN_AND_MEM_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'f' ? FLOAT_REGS \
|
||
: (C) == 'x' ? FRAME_POINTER_REG \
|
||
: (C) == 'y' ? STACK_POINTER_REG \
|
||
: NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
On the ns32k, these letters are used as follows:
|
||
|
||
I : Matches integers which are valid shift amounts for scaled indexing.
|
||
These are 0, 1, 2, 3 for byte, word, double, and quadword.
|
||
Used for matching arithmetic shifts only on 32032 & 32332.
|
||
J : Matches integers which fit a "quick" operand.
|
||
K : Matches integers 0 to 7 (for inss and exts instructions).
|
||
*/
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
|
||
((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
|
||
(C) == 'J' ? (VALUE) <= 7 : \
|
||
(C) == 'K' ? 0 <= (VALUE) : 0) : 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
/* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
|
||
The latter offers no real additional possibilities
|
||
and can cause spurious secondary reloading. */
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the 32000, this is the size of MODE in words */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the 32000, sp@- in a byte insn really pushes a BYTE. */
|
||
#define PUSH_ROUNDING(BYTES) (BYTES)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 8
|
||
|
||
/* Value is the number of byte of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the 32000, the RET insn may be used to pop them if the number
|
||
of args is fixed, but if the number is variable then the caller
|
||
must pop them all. RET can't be used for library calls now
|
||
because the library is compiled with the Unix compiler.
|
||
Use of RET is a selectable option, since it is incompatible with
|
||
standard Unix calling sequences. If the option is not selected,
|
||
the caller must always pop the args. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
|
||
((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
|
||
&& (TYPE_ARG_TYPES (FUNTYPE) == 0 \
|
||
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
|
||
== void_type_node))) \
|
||
? (SIZE) : 0)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the 32000 the return value is in R0,
|
||
or perhaps in F0 is there is fp support. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
(TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
|
||
? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
|
||
: gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On the 32000 the return value is in R0,
|
||
or perhaps F0 is there is fp support. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
|
||
? gen_rtx (REG, MODE, 8) \
|
||
: gen_rtx (REG, MODE, 0))
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
#define PCC_STATIC_STRUCT_RETURN
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the 32000, R0 and F0 are the only registers thus used. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the 32000, no registers are used in this way. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the ns32k, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the ns32k, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the 32000 all args are pushed, except if -mregparm is specified
|
||
then the first two words of arguments are passed in r0, r1.
|
||
*NOTE* -mregparm does not work.
|
||
It exists only to test register calling conventions. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
((TARGET_REGPARM && (CUM) < 8 \
|
||
&& 8 < ((CUM) + ((MODE) == BLKmode \
|
||
? int_size_in_bytes (TYPE) \
|
||
: GET_MODE_SIZE (MODE)))) \
|
||
? 2 - (CUM) / 4 : 0)
|
||
|
||
#ifndef MAIN_FUNCTION_PROLOGUE
|
||
#define MAIN_FUNCTION_PROLOGUE
|
||
#endif
|
||
|
||
/*
|
||
* The function prologue for the ns32k is fairly simple.
|
||
* If a frame pointer is needed (decided in reload.c ?) then
|
||
* we need assembler of the form
|
||
*
|
||
* # Save the oldframe pointer, set the new frame pointer, make space
|
||
* # on the stack and save any general purpose registers necessary
|
||
*
|
||
* enter [<general purpose regs to save>], <local stack space>
|
||
*
|
||
* movf fn, tos # Save any floating point registers necessary
|
||
* .
|
||
* .
|
||
*
|
||
* If a frame pointer is not needed we need assembler of the form
|
||
* # Save any general purpose registers necessary
|
||
*
|
||
* save [<general purpose regs to save>]
|
||
*
|
||
* movf fn, tos # Save any floating point registers necessary
|
||
* .
|
||
* .
|
||
*/
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ register int regno, g_regs_used = 0; \
|
||
int used_regs_buf[8], *bufp = used_regs_buf; \
|
||
int used_fregs_buf[8], *fbufp = used_fregs_buf; \
|
||
extern char call_used_regs[]; \
|
||
MAIN_FUNCTION_PROLOGUE; \
|
||
for (regno = 0; regno < 8; regno++) \
|
||
if (regs_ever_live[regno] \
|
||
&& ! call_used_regs[regno]) \
|
||
{ \
|
||
*bufp++ = regno; g_regs_used++; \
|
||
} \
|
||
*bufp = -1; \
|
||
for (; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && !call_used_regs[regno]) { \
|
||
*fbufp++ = regno; \
|
||
} \
|
||
*fbufp = -1; \
|
||
bufp = used_regs_buf; \
|
||
if (frame_pointer_needed) \
|
||
fprintf (FILE, "\tenter ["); \
|
||
else if (g_regs_used) \
|
||
fprintf (FILE, "\tsave ["); \
|
||
while (*bufp >= 0) \
|
||
{ \
|
||
fprintf (FILE, "r%d", *bufp++); \
|
||
if (*bufp >= 0) \
|
||
fputc (',', FILE); \
|
||
} \
|
||
if (frame_pointer_needed) \
|
||
fprintf (FILE, "],%d\n", SIZE); \
|
||
else if (g_regs_used) \
|
||
fprintf (FILE, "]\n"); \
|
||
fbufp = used_fregs_buf; \
|
||
while (*fbufp >= 0) \
|
||
{ \
|
||
if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
|
||
fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
|
||
else \
|
||
{ \
|
||
fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
|
||
fbufp += 2; \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry.
|
||
|
||
THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero.
|
||
|
||
We use 0, because using 1 requires hair in FUNCTION_EPILOGUE
|
||
that is worse than the stack adjust we could save. */
|
||
|
||
/* #define EXIT_IGNORE_STACK 1 */
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer,
|
||
if EXIT_IGNORE_STACK is nonzero. That doesn't apply here.
|
||
|
||
If a frame pointer is needed (decided in reload.c ?) then
|
||
we need assembler of the form
|
||
|
||
movf tos, fn # Restore any saved floating point registers
|
||
.
|
||
.
|
||
|
||
# Restore any saved general purpose registers, restore the stack
|
||
# pointer from the frame pointer, restore the old frame pointer.
|
||
exit [<general purpose regs to save>]
|
||
|
||
If a frame pointer is not needed we need assembler of the form
|
||
# Restore any general purpose registers saved
|
||
|
||
movf tos, fn # Restore any saved floating point registers
|
||
.
|
||
.
|
||
.
|
||
restore [<general purpose regs to save>] */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
{ register int regno, g_regs_used = 0, f_regs_used = 0; \
|
||
int used_regs_buf[8], *bufp = used_regs_buf; \
|
||
int used_fregs_buf[8], *fbufp = used_fregs_buf; \
|
||
extern char call_used_regs[]; \
|
||
*fbufp++ = -2; \
|
||
for (regno = 8; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && !call_used_regs[regno]) { \
|
||
*fbufp++ = regno; f_regs_used++; \
|
||
} \
|
||
fbufp--; \
|
||
for (regno = 0; regno < 8; regno++) \
|
||
if (regs_ever_live[regno] \
|
||
&& ! call_used_regs[regno]) \
|
||
{ \
|
||
*bufp++ = regno; g_regs_used++; \
|
||
} \
|
||
while (fbufp > used_fregs_buf) \
|
||
{ \
|
||
if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
|
||
{ \
|
||
fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
|
||
fbufp -= 2; \
|
||
} \
|
||
else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
|
||
} \
|
||
if (frame_pointer_needed) \
|
||
fprintf (FILE, "\texit ["); \
|
||
else if (g_regs_used) \
|
||
fprintf (FILE, "\trestore ["); \
|
||
while (bufp > used_regs_buf) \
|
||
{ \
|
||
fprintf (FILE, "r%d", *--bufp); \
|
||
if (bufp > used_regs_buf) \
|
||
fputc (',', FILE); \
|
||
} \
|
||
if (g_regs_used || frame_pointer_needed) \
|
||
fprintf (FILE, "]\n"); \
|
||
if (current_function_pops_args) \
|
||
fprintf (FILE, "\tret %d\n", current_function_pops_args); \
|
||
else fprintf (FILE, "\tret 0\n"); }
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved. */
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
|
||
{ \
|
||
int regno; \
|
||
int offset = -4; \
|
||
for (regno = 0; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 4; \
|
||
(DEPTH) = offset - get_frame_size (); \
|
||
}
|
||
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the 32k, the trampoline looks like this:
|
||
addr .,r2
|
||
jump @__trampoline
|
||
.int STATIC
|
||
.int FUNCTION
|
||
Doing trampolines with a library assist function is easier than figuring
|
||
out how to do stores to memory in reverse byte order (the way immediate
|
||
operands on the 32k are stored). */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
fprintf (FILE, "\taddr .,r2\n" ); \
|
||
fprintf (FILE, "\tjump " ); \
|
||
PUT_ABSOLUTE_PREFIX (FILE); \
|
||
fprintf (FILE, "__trampoline\n" ); \
|
||
ASM_OUTPUT_INT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_INT (FILE, const0_rtx); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE 20
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), CXT); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), FNADDR); \
|
||
}
|
||
|
||
/* This is the library routine that is used
|
||
to transfer control from the trampoline
|
||
to the actual nested function. */
|
||
|
||
/* The function name __transfer_from_trampoline is not actually used.
|
||
The function definition just permits use of "asm with operands"
|
||
(though the operand list is empty). */
|
||
#define TRANSFER_FROM_TRAMPOLINE \
|
||
void \
|
||
__transfer_from_trampoline () \
|
||
{ \
|
||
asm ("___trampoline:"); \
|
||
asm ("movd 16(r2),tos"); \
|
||
asm ("movd 12(r2),r2"); \
|
||
asm ("ret 0"); \
|
||
}
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
/* note that FP and SP cannot be used as an index. What about PC? */
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
|
||
|| (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
|
||
|
||
#define FP_REG_P(X) (GET_CODE (X) == REG && REGNO (X) > 7 && REGNO (X) < 16)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address.
|
||
This might not work on future ns32k processors as negative
|
||
displacements are not officially allowed but a mode reserved
|
||
to National. This works on processors up to 32532, though. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST \
|
||
|| (GET_CODE (X) == CONST_INT \
|
||
&& ((unsigned)INTVAL (X) >= 0xe0000000 \
|
||
|| (unsigned)INTVAL (X) < 0x20000000)))
|
||
|
||
#define CONSTANT_ADDRESS_NO_LABEL_P(X) \
|
||
(GET_CODE (X) == CONST_INT \
|
||
&& ((unsigned)INTVAL (X) >= 0xe0000000 \
|
||
|| (unsigned)INTVAL (X) < 0x20000000))
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
|
||
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
|
||
secondary_reload_class (CLASS, MODE, IN)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) 1
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
(REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
of if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
|
||
/* Nonzero if X is a floating point reg or a pseudo reg. */
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
|
||
|
||
/* 1 if X is an address that we could indirect through. */
|
||
/***** NOTE ***** There is a bug in the Sequent assembler which fails
|
||
to fixup addressing information for symbols used as offsets
|
||
from registers which are not FP or SP (or SB or PC). This
|
||
makes _x(fp) valid, while _x(r0) is invalid. */
|
||
|
||
#define INDIRECTABLE_1_ADDRESS_P(X) \
|
||
(CONSTANT_ADDRESS_P (X) \
|
||
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 1)) \
|
||
&& (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
|
||
|
||
/* 1 if integer I will fit in a 4 byte displacement field.
|
||
Strictly speaking, we can't be sure that a symbol will fit this range.
|
||
But, in practice, it always will. */
|
||
|
||
/* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
|
||
can handle the full range of displacements--it is only the addresses
|
||
that have a limited range. So the following was deleted:
|
||
(((i) <= 16777215 && (i) >= -16777216)
|
||
|| ((TARGET_32532 || TARGET_32332) && ...)) */
|
||
#define NS32K_DISPLACEMENT_P(i) \
|
||
((i) < (1 << 29) && (i) >= - (1 << 29))
|
||
|
||
/* Check for frame pointer or stack pointer. */
|
||
#define MEM_REG(X) \
|
||
(GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2)
|
||
|
||
/* A memory ref whose address is the FP or SP, with optional integer offset,
|
||
or (on certain machines) a constant address. */
|
||
#define INDIRECTABLE_2_ADDRESS_P(X) \
|
||
(GET_CODE (X) == MEM \
|
||
&& (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
|
||
|| (GET_CODE (xfoo0) == PLUS \
|
||
&& MEM_REG (XEXP (xfoo0, 0)) \
|
||
&& CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
|
||
|| (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
|
||
|
||
/* Go to ADDR if X is a valid address not using indexing.
|
||
(This much is the easy part.) */
|
||
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
|
||
{ register rtx xfoob = (X); \
|
||
if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
|
||
if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
|
||
if (GET_CODE (X) == PLUS) \
|
||
if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
|
||
if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
|
||
goto ADDR; \
|
||
}
|
||
|
||
/* Go to ADDR if X is a valid address not using indexing.
|
||
(This much is the easy part.) */
|
||
#define GO_IF_INDEXING(X, MODE, ADDR) \
|
||
{ register rtx xfoob = (X); \
|
||
if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
|
||
GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
|
||
if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
|
||
GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
|
||
|
||
#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
|
||
{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
|
||
if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
|
||
}
|
||
|
||
/* 1 if PROD is either a reg times size of mode MODE
|
||
or just a reg, if MODE is just one byte. Actually, on the ns32k,
|
||
since the index mode is independent of the operand size,
|
||
we can match more stuff...
|
||
|
||
This macro's expansion uses the temporary variables xfoo0, xfoo1
|
||
and xfoo2 that must be declared in the surrounding context. */
|
||
#define INDEX_TERM_P(PROD, MODE) \
|
||
((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
|
||
|| (GET_CODE (PROD) == MULT \
|
||
&& (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
|
||
(GET_CODE (xfoo1) == CONST_INT \
|
||
&& GET_CODE (xfoo0) == REG \
|
||
&& FITS_INDEX_RANGE (INTVAL (xfoo1)) \
|
||
&& REG_OK_FOR_INDEX_P (xfoo0)))))
|
||
|
||
#define FITS_INDEX_RANGE(X) \
|
||
((xfoo2 = (unsigned)(X)-1), \
|
||
((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
|
||
|
||
/* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ register rtx xfooy, xfoo0, xfoo1; \
|
||
unsigned xfoo2; \
|
||
xfooy = X; \
|
||
GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
|
||
if (GET_CODE (xfooy) == PLUS) \
|
||
{ \
|
||
if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
|
||
&& GET_CODE (XEXP (xfooy, 0)) == PLUS) \
|
||
xfooy = XEXP (xfooy, 0); \
|
||
else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
|
||
&& GET_CODE (XEXP (xfooy, 1)) == PLUS) \
|
||
xfooy = XEXP (xfooy, 1); \
|
||
GO_IF_INDEXING (xfooy, MODE, ADDR); \
|
||
} \
|
||
else if (INDEX_TERM_P (xfooy, MODE)) \
|
||
goto ADDR; \
|
||
else if (GET_CODE (xfooy) == PRE_DEC) \
|
||
if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
|
||
else abort (); \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the ns32k, we do nothing */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the ns32k, only predecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand). */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL;}
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction.
|
||
Can do SImode, but HI mode is more efficient. */
|
||
#define CASE_VECTOR_MODE HImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Compute the cost of address ADDRESS. */
|
||
|
||
#define ADDRESS_COST(RTX) calc_address_cost (RTX)
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
|
||
if (INTVAL (RTX) < 0x4000 && INTVAL (RTX) >= -0x4000) \
|
||
return 1; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 3; \
|
||
case CONST_DOUBLE: \
|
||
return 5;
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
/* This bit means that what ought to be in the Z bit
|
||
should be tested in the F bit. */
|
||
#define CC_Z_IN_F 04000
|
||
|
||
/* This bit means that what ought to be in the Z bit
|
||
is complemented in the F bit. */
|
||
#define CC_Z_IN_NOT_F 010000
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
{ if (GET_CODE (EXP) == SET) \
|
||
{ if (GET_CODE (SET_DEST (EXP)) == CC0) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (EXP); \
|
||
cc_status.value2 = SET_SRC (EXP); \
|
||
} \
|
||
else if (GET_CODE (SET_SRC (EXP)) == CALL) \
|
||
{ CC_STATUS_INIT; } \
|
||
else if (GET_CODE (SET_DEST (EXP)) == REG) \
|
||
{ if (cc_status.value1 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
|
||
cc_status.value1 = 0; \
|
||
if (cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
|
||
cc_status.value2 = 0; \
|
||
} \
|
||
else if (GET_CODE (SET_DEST (EXP)) == MEM) \
|
||
{ CC_STATUS_INIT; } \
|
||
} \
|
||
else if (GET_CODE (EXP) == PARALLEL \
|
||
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
|
||
{ if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
|
||
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
|
||
} \
|
||
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
|
||
{ if (cc_status.value1 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
|
||
cc_status.value1 = 0; \
|
||
if (cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
|
||
cc_status.value2 = 0; \
|
||
} \
|
||
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
|
||
{ CC_STATUS_INIT; } \
|
||
} \
|
||
else if (GET_CODE (EXP) == CALL) \
|
||
{ /* all bets are off */ CC_STATUS_INIT; } \
|
||
else { /* nothing happens? CC_STATUS_INIT; */} \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
|
||
&& cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
|
||
abort (); \
|
||
}
|
||
|
||
/* Describe the costs of the following register moves which are discouraged:
|
||
1.) Moves between the Floating point registers and the frame pointer and stack pointer
|
||
2.) Moves between the stack pointer and the frame pointer
|
||
3.) Moves between the floating point and general registers */
|
||
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
|
||
((((CLASS1) == FLOAT_REGS && ((CLASS2) == STACK_POINTER_REG || (CLASS2) == FRAME_POINTER_REG)) \
|
||
|| ((CLASS2) == FLOAT_REGS && ((CLASS1) == STACK_POINTER_REG || (CLASS1) == FRAME_POINTER_REG)) \
|
||
|| ((CLASS1) == STACK_POINTER_REG && (CLASS2) == FRAME_POINTER_REG) \
|
||
|| ((CLASS2) == STACK_POINTER_REG && (CLASS1) == FRAME_POINTER_REG) \
|
||
|| ((CLASS1) == FLOAT_REGS && (CLASS2) == GENERAL_REGS) \
|
||
|| ((CLASS1) == GENERAL_REGS && (CLASS2) == FLOAT_REGS)) \
|
||
? 4 : 2)
|
||
|
||
#define OUTPUT_JUMP(NORMAL, NO_OV) \
|
||
{ if (cc_status.flags & CC_NO_OVERFLOW) \
|
||
return NO_OV; \
|
||
return NORMAL; }
|
||
|
||
/* Dividing the output into sections */
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* Define the output Assembly Language */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON "#APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF "#NO_APP\n"
|
||
|
||
/* Output of Data */
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.long "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.word "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.byte "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining an external/static
|
||
address which is not in tree format (for collect.c). */
|
||
|
||
#define ASM_OUTPUT_LABELREF_AS_INT(STREAM, NAME) \
|
||
do { \
|
||
fprintf (STREAM, "\t.long\t"); \
|
||
ASM_OUTPUT_LABELREF (STREAM, NAME); \
|
||
fprintf (STREAM, "\n"); \
|
||
} while (0)
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
"fp", "sp"}
|
||
|
||
/* How to renumber registers for dbx and gdb.
|
||
NS32000 may need more change in the numeration. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#ifndef COLLECT
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
#else
|
||
#define ASM_OUTPUT_LABEL(STREAM,NAME) \
|
||
do { \
|
||
fprintf (STREAM, "%s:\n", NAME); \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#ifndef COLLECT
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
#else
|
||
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
|
||
do { \
|
||
fprintf (STREAM, "\t.globl\t%s\n", NAME); \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
fprintf (FILE, "_%s", NAME)
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to align the code that follows an unconditional branch.
|
||
Note that 0xa2 is a no-op. */
|
||
|
||
#define ASM_OUTPUT_ALIGN_CODE(FILE) \
|
||
fprintf (FILE, "\t.align 2,0xa2\n")
|
||
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
(The ns32k does not use such vectors,
|
||
but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t.long L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
/* ** Notice that the second element is LI format! */
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\t.word L%d-LI%d\n", VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
fprintf (FILE, "\t.align %d\n", (LOG))
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.space %u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs (".comm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs (".lcomm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print an instruction operand X on file FILE.
|
||
CODE is the code from the %-spec that requested printing this operand;
|
||
if `%z3' was used to print operand 3, then CODE is 'z'. */
|
||
|
||
/* %$ means print the prefix for an immediate operand. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '$' || (CODE) == '?')
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
|
||
|
||
/* Print a memory operand whose address is X, on file FILE. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
|
||
|
||
/* Define functions in ns32k.c and used in insn-output.c. */
|
||
|
||
extern char *output_move_double ();
|
||
extern char *output_shift_insn ();
|
||
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|