996a5f59fb
From-SVN: r7016
1817 lines
68 KiB
C
1817 lines
68 KiB
C
/* Definitions of target machine for GNU compiler, for Acorn RISC Machine.
|
||
Copyright (C) 1991, 1993, 1994 Free Software Foundation, Inc.
|
||
Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
|
||
and Martin Simmons (@harleqn.co.uk).
|
||
More major hacks by Richard Earnshaw (rwe11@cl.cam.ac.uk)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* Sometimes the directive `riscos' is checked. This does not imply that this
|
||
tm file can be used unchanged to build a GCC for RISC OS.
|
||
(Since in fact, it can't.) */
|
||
|
||
extern void output_prologue ();
|
||
extern void output_epilogue ();
|
||
extern char *arm_output_asm_insn ();
|
||
extern char *arm_output_llc ();
|
||
extern char *arithmetic_instr ();
|
||
extern char *output_add_immediate ();
|
||
extern char *output_call ();
|
||
extern char *output_call_mem ();
|
||
extern char *output_move_double ();
|
||
extern char *output_mov_double_fpu_from_arm ();
|
||
extern char *output_mov_double_arm_from_fpu ();
|
||
extern char *output_mov_long_double_fpu_from_arm ();
|
||
extern char *output_mov_long_double_arm_from_fpu ();
|
||
extern char *output_mov_long_double_arm_from_arm ();
|
||
extern char *output_mov_immediate ();
|
||
extern char *output_multi_immediate ();
|
||
extern char *output_shifted_move ();
|
||
extern char *output_shift_compare ();
|
||
extern char *output_arithmetic_with_immediate_multiply ();
|
||
extern char *output_arithmetic_with_shift ();
|
||
extern char *output_return_instruction ();
|
||
extern char *output_load_symbol ();
|
||
extern char *fp_immediate_constant ();
|
||
extern char *shift_instr ();
|
||
extern struct rtx_def *gen_compare_reg ();
|
||
extern struct rtx_def *arm_gen_store_multiple ();
|
||
extern struct rtx_def *arm_gen_load_multiple ();
|
||
|
||
extern char *arm_condition_codes[];
|
||
|
||
/* This is needed by the tail-calling peepholes */
|
||
extern int frame_pointer_needed;
|
||
|
||
|
||
#ifndef CPP_PREDEFINES
|
||
#define CPP_PREDEFINES "-Darm -Acpu(arm) -Amachine(arm)"
|
||
#endif
|
||
|
||
#ifndef CPP_SPEC
|
||
#define CPP_SPEC "%{m6:-D__arm6__}"
|
||
#endif
|
||
|
||
/* Run-time Target Specification. */
|
||
#ifndef TARGET_VERSION
|
||
#define TARGET_VERSION \
|
||
fputs (" (ARM/generic)", stderr);
|
||
#endif
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets.
|
||
On the ARM, misuse it in a different way. */
|
||
extern int target_flags;
|
||
|
||
/* Nonzero if the function prologue (and epilogue) should obey
|
||
the ARM Procedure Call Standard. */
|
||
#define TARGET_APCS (target_flags & 1)
|
||
|
||
/* Nonzero if the function prologue should output the function name to enable
|
||
the post mortem debugger to print a backtrace (very useful on RISCOS,
|
||
unused on RISCiX). Specifying this flag also enables -mapcs.
|
||
XXX Must still be implemented in the prologue. */
|
||
#define TARGET_POKE_FUNCTION_NAME (target_flags & 2)
|
||
|
||
/* Nonzero if floating point instructions are emulated by the FPE, in which
|
||
case instruction scheduling becomes very uninteresting. */
|
||
#define TARGET_FPE (target_flags & 4)
|
||
|
||
/* Nonzero if destined for an ARM6xx. Takes out bits that assume restoration
|
||
of condition flags when returning from a branch & link (ie. a function) */
|
||
#define TARGET_6 (target_flags & 8)
|
||
|
||
/* ARM_EXTRA_TARGET_SWITCHES is used in riscix.h to define some options which
|
||
are passed to the preprocessor and the assembler post-processor. They
|
||
aren't needed in the main pass of the compiler, but if we don't define
|
||
them in target switches cc1 complains about them. For the sake of
|
||
argument lets allocate bit 31 of target flags for such options. */
|
||
|
||
#ifndef ARM_EXTRA_TARGET_SWITCHES
|
||
#define ARM_EXTRA_TARGET_SWITCHES
|
||
#endif
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ \
|
||
{"apcs", 1}, \
|
||
{"poke-function-name", 2}, \
|
||
{"fpe", 4}, \
|
||
{"6", 8}, \
|
||
{"2", -8}, \
|
||
{"3", -8}, \
|
||
ARM_EXTRA_TARGET_SWITCHES \
|
||
{"", TARGET_DEFAULT } \
|
||
}
|
||
|
||
/* Which processor we are running on. Currently this is only used to
|
||
get the condition code clobbering attribute right when we are running on
|
||
an arm 6 */
|
||
|
||
enum processor_type
|
||
{
|
||
PROCESSOR_ARM2,
|
||
PROCESSOR_ARM3,
|
||
PROCESSOR_ARM6
|
||
};
|
||
|
||
/* Recast the cpu class to be the cpu attribute. */
|
||
|
||
/* Recast the cpu class to be the cpu attribute. */
|
||
#define arm_cpu_attr ((enum attr_cpu)arm_cpu)
|
||
|
||
extern enum processor_type arm_cpu;
|
||
|
||
#define TARGET_DEFAULT 0
|
||
|
||
#define TARGET_MEM_FUNCTIONS 1
|
||
|
||
/* OVERRIDE_OPTIONS takes care of the following:
|
||
- if -mpoke-function-name, then -mapcs.
|
||
- if doing debugging, then -mapcs; if RISCOS, then -mpoke-function-name.
|
||
- if floating point is done by emulation, forget about instruction
|
||
scheduling. Note that this only saves compilation time; it doesn't
|
||
matter for the final code. */
|
||
#ifndef TARGET_WHEN_DEBUGGING
|
||
#define TARGET_WHEN_DEBUGGING 1
|
||
#endif
|
||
|
||
#define OVERRIDE_OPTIONS \
|
||
{ \
|
||
if (write_symbols != NO_DEBUG && flag_omit_frame_pointer) \
|
||
warning ("-g without a frame pointer may not give sensible debugging");\
|
||
if (TARGET_POKE_FUNCTION_NAME) \
|
||
target_flags |= 1; \
|
||
if (TARGET_FPE) \
|
||
flag_schedule_insns = flag_schedule_insns_after_reload = 0; \
|
||
arm_cpu = TARGET_6 ? PROCESSOR_ARM6: PROCESSOR_ARM2; \
|
||
}
|
||
|
||
/* Target machine storage Layout. */
|
||
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
/* It is far faster to zero extend chars than to sign extend them */
|
||
|
||
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
{ \
|
||
if (MODE == QImode) \
|
||
UNSIGNEDP = 1; \
|
||
(MODE) = SImode; \
|
||
}
|
||
|
||
/* Define for XFmode extended real floating point support.
|
||
This will automatically cause REAL_ARITHMETIC to be defined. */
|
||
/* For the ARM:
|
||
I think I have added all the code to make this work. Unfortunately,
|
||
early releases of the floating point emulation code on RISCiX used a
|
||
different format for extended precision numbers. On my RISCiX box there
|
||
is a bug somewhere which causes the machine to lock up when running enquire
|
||
with long doubles. There is the additional aspect that Norcroft C
|
||
treats long doubles as doubles and we ought to remain compatible.
|
||
Perhaps someone with an FPA coprocessor and not running RISCiX would like
|
||
to try this someday. */
|
||
/* #define LONG_DOUBLE_TYPE_SIZE 96 */
|
||
|
||
/* Disable XFmode patterns in md file */
|
||
#define ENABLE_XF_PATTERNS 0
|
||
|
||
/* Define if you don't want extended real, but do want to use the
|
||
software floating point emulator for REAL_ARITHMETIC and
|
||
decimal <-> binary conversion. */
|
||
/* See comment above */
|
||
#define REAL_ARITHMETIC
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of doubles is the lowest numbered */
|
||
#define FLOAT_WORDS_BIG_ENDIAN 1
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
#define BITS_PER_WORD 32
|
||
|
||
#define UNITS_PER_WORD 4
|
||
|
||
#define POINTER_SIZE 32
|
||
|
||
#define PARM_BOUNDARY 32
|
||
|
||
#define STACK_BOUNDARY 32
|
||
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Make strings word-aligned so strcpy from constants will be faster. */
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
(TREE_CODE (EXP) == STRING_CST \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Every structures size must be a multiple of 32 bits. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 32
|
||
|
||
/* Non-zero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
|
||
/* Define number of bits in most basic integer type.
|
||
(If undefined, default is BITS_PER_WORD). */
|
||
/* #define INT_TYPE_SIZE */
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
|
||
(S - saved over call).
|
||
|
||
r0 * argument word/integer result
|
||
r1-r3 argument word
|
||
|
||
r4-r8 S register variable
|
||
r9 S (rfp) register variable (real frame pointer)
|
||
|
||
r10 F S (sl) stack limit (not currently used)
|
||
r11 F S (fp) argument pointer
|
||
r12 (ip) temp workspace
|
||
r13 F S (sp) lower end of current stack frame
|
||
r14 (lr) link address/workspace
|
||
r15 F (pc) program counter
|
||
|
||
f0 floating point result
|
||
f1-f3 floating point scratch
|
||
|
||
f4-f7 S floating point variable
|
||
|
||
cc This is NOT a real register, but is used internally
|
||
to represent things that use or set the condition
|
||
codes.
|
||
sfp This isn't either. It is used during rtl generation
|
||
since the offset between the frame pointer and the
|
||
auto's isn't known until after register allocation.
|
||
afp Nor this, we only need this because of non-local
|
||
goto. Without it fp appears to be used and the
|
||
elimination code won't get rid of sfp. It tracks
|
||
fp exactly at all times.
|
||
|
||
*: See CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/* The stack backtrace structure is as follows:
|
||
fp points to here: | save code pointer | [fp]
|
||
| return link value | [fp, #-4]
|
||
| return sp value | [fp, #-8]
|
||
| return fp value | [fp, #-12]
|
||
[| saved r10 value |]
|
||
[| saved r9 value |]
|
||
[| saved r8 value |]
|
||
[| saved r7 value |]
|
||
[| saved r6 value |]
|
||
[| saved r5 value |]
|
||
[| saved r4 value |]
|
||
[| saved r3 value |]
|
||
[| saved r2 value |]
|
||
[| saved r1 value |]
|
||
[| saved r0 value |]
|
||
[| saved f7 value |] three words
|
||
[| saved f6 value |] three words
|
||
[| saved f5 value |] three words
|
||
[| saved f4 value |] three words
|
||
r0-r3 are not normally saved in a C function. */
|
||
|
||
/* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
|
||
#define FIRST_PSEUDO_REGISTER 27
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
0,0,0,0,0,0,0,0, \
|
||
0,0,1,1,0,1,0,1, \
|
||
0,0,0,0,0,0,0,0, \
|
||
1,1,1 \
|
||
}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
The CC is not preserved over function calls on the ARM 6, so it is
|
||
easier to assume this for all. SFP is preserved, since FP is. */
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
1,1,1,1,0,0,0,0, \
|
||
0,0,1,1,1,1,1,1, \
|
||
1,1,1,1,0,0,0,0, \
|
||
1,1,1 \
|
||
}
|
||
|
||
/* If doing stupid life analysis, avoid a bug causing a return value r0 to be
|
||
trampled. This effectively reduces the number of available registers by 1.
|
||
XXX It is a hack, I know.
|
||
XXX Is this still needed? */
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
if (obey_regdecls) \
|
||
fixed_regs[0] = 1; \
|
||
}
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
|
||
mode. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(((REGNO) >= 16 && REGNO != FRAME_POINTER_REGNUM \
|
||
&& (REGNO) != ARG_POINTER_REGNUM) ? 1 \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
This is TRUE for ARM regs since they can hold anything, and TRUE for FPU
|
||
regs holding FP. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((GET_MODE_CLASS (MODE) == MODE_CC) ? (REGNO == CC_REGNUM) : \
|
||
((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
|
||
|| REGNO == ARG_POINTER_REGNUM \
|
||
|| GET_MODE_CLASS (MODE) == MODE_FLOAT))
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(((MODE1) == SFmode || (MODE1) == DFmode) \
|
||
== ((MODE2) == SFmode || (MODE2) == DFmode))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* Define this if the program counter is overloaded on a register. */
|
||
#define PC_REGNUM 15
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 13
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 25
|
||
|
||
/* Define this to be where the real frame pointer is if it is not possible to
|
||
work out the offset between the frame pointer and the automatic variables
|
||
until after register allocation has taken place. FRAME_POINTER_REGNUM
|
||
should point to a special register that we will make sure is eliminated. */
|
||
#define HARD_FRAME_POINTER_REGNUM 11
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms may be accessed
|
||
via the stack pointer) in functions that seem suitable.
|
||
If we have to have a frame pointer we might as well make use of it.
|
||
APCS says that the frame pointer does not need to be pushed in leaf
|
||
functions. */
|
||
#define FRAME_POINTER_REQUIRED (TARGET_APCS && !leaf_function_p ())
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 26
|
||
|
||
/* The native (Norcroft) Pascal compiler for the ARM passes the static chain
|
||
as an invisible last argument (possible since varargs don't exist in
|
||
Pascal), so the following is not true. */
|
||
#define STATIC_CHAIN_REGNUM 8
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 0
|
||
|
||
/* Internal, so that we don't need to refer to a raw number */
|
||
#define CC_REGNUM 24
|
||
|
||
/* The order in which register should be allocated. It is good to use ip
|
||
since no saving is required (though calls clobber it) and it never contains
|
||
function parameters. It is quite good to use lr since other calls may
|
||
clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
|
||
least likely to contain a function parameter; in addition results are
|
||
returned in r0.
|
||
*/
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
3, 2, 1, 0, 12, 14, 4, 5, \
|
||
6, 7, 8, 10, 9, 11, 13, 15, \
|
||
16, 17, 18, 19, 20, 21, 22, 23, \
|
||
24, 25 \
|
||
}
|
||
|
||
/* Register and constant classes. */
|
||
|
||
/* Register classes: all ARM regs or all FPU regs---simple! */
|
||
enum reg_class
|
||
{
|
||
NO_REGS,
|
||
FPU_REGS,
|
||
GENERAL_REGS,
|
||
ALL_REGS,
|
||
LIM_REG_CLASSES
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"FPU_REGS", \
|
||
"GENERAL_REGS", \
|
||
"ALL_REGS", \
|
||
}
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
0x0000000, /* NO_REGS */ \
|
||
0x0FF0000, /* FPU_REGS */ \
|
||
0x200FFFF, /* GENERAL_REGS */ \
|
||
0x2FFFFFF /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
(((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
|
||
|| REGNO == ARG_POINTER_REGNUM) \
|
||
? GENERAL_REGS : (REGNO) == CC_REGNUM \
|
||
? NO_REGS : FPU_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS). */
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C)=='f' ? FPU_REGS : NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
I: immediate arithmetic operand (i.e. 8 bits shifted as required).
|
||
J: valid indexing constants.
|
||
K: as I but also (not (value)) ok.
|
||
L: as I but also (neg (value)) ok.*/
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? const_ok_for_arm (VALUE) : \
|
||
(C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
|
||
(C) == 'K' ? (const_ok_for_arm (VALUE) || const_ok_for_arm (~(VALUE))) : \
|
||
(C) == 'L' ? (const_ok_for_arm (VALUE) || const_ok_for_arm (-(VALUE))) : 0)
|
||
|
||
/* For the ARM, `Q' means that this is a memory operand that is just
|
||
an offset from a register.
|
||
`S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
|
||
address. This means that the symbol is in the text segment and can be
|
||
accessed without using a load. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
|
||
: (C) == 'S' ? CONSTANT_ADDRESS_P (OP) : 0)
|
||
|
||
/* Constant letter 'G' for the FPU immediate constants.
|
||
'H' means the same constant negated. */
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(X,C) \
|
||
((C) == 'G' ? const_double_rtx_ok_for_fpu (X) \
|
||
: (C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
|
||
|
||
/* Return the register class of a scratch register needed to copy IN into
|
||
or out of a register in CLASS in MODE. If it can be done directly,
|
||
NO_REGS is returned. */
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
|
||
(((MODE) == DFmode && (CLASS) == GENERAL_REGS \
|
||
&& true_regnum (X) == -1) ? GENERAL_REGS \
|
||
: ((MODE) == HImode && true_regnum (X) == -1) ? GENERAL_REGS : NO_REGS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS.
|
||
ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS) == FPU_REGS ? 1 \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
|
||
((((CLASS1) == FPU_REGS && (CLASS2) != FPU_REGS) \
|
||
|| ((CLASS2) == FPU_REGS && (CLASS1) != FPU_REGS)) \
|
||
? 20 : 2)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD 1
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 4
|
||
|
||
/* Value is the number of byte of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the ARM, the caller does not pop any of its arguments that were passed
|
||
on the stack. */
|
||
#define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
(GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT \
|
||
? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
|
||
: gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
? gen_rtx (REG, MODE, 16) \
|
||
: gen_rtx (REG, MODE, 0))
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the ARM, only r0 and f0 can return results. */
|
||
#define FUNCTION_VALUE_REGNO_P(REGNO) \
|
||
((REGNO) == 0 || (REGNO) == 16)
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
|
||
On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
|
||
other arguments are passed on the stack. If (NAMED == 0) (which happens
|
||
only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
|
||
passed in the stack (function_prologue will indeed make it pass in the
|
||
stack if necessary). */
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
((NAMED) \
|
||
? ((CUM) >= 16 ? 0 : gen_rtx (REG, MODE, (CUM) / 4)) \
|
||
: 0)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) < 16 && 16 < (CUM) + ((MODE) != BLKmode \
|
||
? GET_MODE_SIZE (MODE) \
|
||
: int_size_in_bytes (TYPE)) \
|
||
? 4 - (CUM) / 4 : 0)
|
||
|
||
/* A C type for declaring a variable that is used as the first argument of
|
||
`FUNCTION_ARG' and other related values. For some target machines, the
|
||
type `int' suffices and can hold the number of bytes of argument so far.
|
||
|
||
On the ARM, this is the number of bytes of arguments scanned so far. */
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
On the ARM, the offset starts at 0. */
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
|
||
((CUM) = (((FNTYPE) && aggregate_value_p (TREE_TYPE ((FNTYPE)))) ? 4 : 0))
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
(CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3) \
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the ARM, r0-r3 are used to pass args. */
|
||
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
||
((REGNO) >= 0 && (REGNO) <= 3)
|
||
|
||
/* Perform any actions needed for a function that is receiving a variable
|
||
number of arguments. CUM is as above. MODE and TYPE are the mode and type
|
||
of the current parameter. PRETEND_SIZE is a variable that should be set to
|
||
the amount of stack that must be pushed by the prolog to pretend that our
|
||
caller pushed it.
|
||
|
||
Normally, this macro will push all remaining incoming registers on the
|
||
stack and set PRETEND_SIZE to the length of the registers pushed.
|
||
|
||
On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
|
||
named arg and all anonymous args onto the stack.
|
||
XXX I know the prologue shouldn't be pushing registers, but it is faster
|
||
that way. */
|
||
#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
|
||
{ \
|
||
extern int current_function_anonymous_args; \
|
||
current_function_anonymous_args = 1; \
|
||
if ((CUM) < 16) \
|
||
(PRETEND_SIZE) = 16 - (CUM); \
|
||
}
|
||
|
||
/* Generate assembly output for the start of a function. */
|
||
#define FUNCTION_PROLOGUE(STREAM, SIZE) \
|
||
output_prologue ((STREAM), (SIZE))
|
||
|
||
/* Call the function profiler with a given profile label. The Acorn compiler
|
||
puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
|
||
seems like a good idea to stick with cc convention. ``prof'' doesn't seem
|
||
to mind about this! */
|
||
#define FUNCTION_PROFILER(STREAM,LABELNO) \
|
||
{ \
|
||
fprintf(STREAM, "\tmov\tip, lr\n"); \
|
||
fprintf(STREAM, "\tbl\tmcount\n"); \
|
||
fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
|
||
arm_increase_location (12); \
|
||
}
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero.
|
||
|
||
On the ARM, the function epilogue recovers the stack pointer from the
|
||
frame. */
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* Generate the assembly code for function exit. */
|
||
#define FUNCTION_EPILOGUE(STREAM, SIZE) \
|
||
output_epilogue ((STREAM), (SIZE))
|
||
|
||
/* Determine if the epilogue should be output as RTL.
|
||
You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
|
||
#define USE_RETURN_INSN use_return_insn ()
|
||
|
||
/* Definitions for register eliminations.
|
||
|
||
This is an array of structures. Each structure initializes one pair
|
||
of eliminable registers. The "from" register number is given first,
|
||
followed by "to". Eliminations of the same "from" register are listed
|
||
in order of preference.
|
||
|
||
We have two registers that can be eliminated on the ARM. First, the
|
||
arg pointer register can often be eliminated in favor of the stack
|
||
pointer register. Secondly, the pseudo frame pointer register can always
|
||
be eliminated; it is replaced with either the stack or the real frame
|
||
pointer. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
|
||
|
||
/* Given FROM and TO register numbers, say whether this elimination is allowed.
|
||
Frame pointer elimination is automatically handled.
|
||
|
||
All eliminations are permissible. Note that ARG_POINTER_REGNUM and
|
||
HARD_FRAME_POINTER_REGNUM are infact the same thing. If we need a frame
|
||
pointer, we must eliminate FRAME_POINTER_REGNUM into
|
||
HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
(((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : 1)
|
||
|
||
/* Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
{ \
|
||
if ((FROM) == ARG_POINTER_REGNUM && (TO) == HARD_FRAME_POINTER_REGNUM)\
|
||
(OFFSET) = 0; \
|
||
else if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)\
|
||
(OFFSET) = (get_frame_size () + 3 & ~3); \
|
||
else \
|
||
{ \
|
||
int regno; \
|
||
int offset = 12; \
|
||
\
|
||
for (regno = 4; regno <= 10; regno++) \
|
||
if (regs_ever_live[regno]) \
|
||
offset += 4; \
|
||
for (regno = 20; regno <=23; regno++) \
|
||
if (regs_ever_live[regno]) \
|
||
offset += 12; \
|
||
if ((FROM) == FRAME_POINTER_REGNUM) \
|
||
(OFFSET) = -offset; \
|
||
else \
|
||
{ \
|
||
if (! regs_ever_live[HARD_FRAME_POINTER_REGNUM]) \
|
||
offset -= 16; \
|
||
if (regs_ever_live[14]) \
|
||
offset += 4; \
|
||
(OFFSET) = (get_frame_size () + 3 & ~3) + offset; \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
#if 0
|
||
/* Store in the variable DEPTH the initial difference between the frame
|
||
pointer reg contents and the stack pointer reg contents, as of the start of
|
||
the function body. This depends on the layout of the fixed parts of the
|
||
stack frame and on how registers are saved. */
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
|
||
{ \
|
||
int regno; \
|
||
int offset = 12; \
|
||
\
|
||
for (regno = 0; regno < FRAME_POINTER_REGNUM; regno++) \
|
||
if (regs_ever_live[regno]) \
|
||
offset += 4; \
|
||
for (regno = 20; regno < 24; regno++) \
|
||
if (regs_ever_live[regno]) \
|
||
offset += 12; \
|
||
(DEPTH) = offset + (get_frame_size () + 3 & ~3); \
|
||
}
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
|
||
(DEPTH) = (get_frame_size () + 3) & ~3;
|
||
#endif
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts.
|
||
|
||
On the ARM, (if r8 is the static chain regnum, and remembering that
|
||
referencing pc adds an offset of 8) the trampoline looks like:
|
||
ldr r8, [pc, #0]
|
||
ldr pc, [pc]
|
||
.word static chain value
|
||
.word function's address */
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
fprintf ((FILE), "\tldr\tr8, [pc, #0]\n"); \
|
||
fprintf ((FILE), "\tldr\tpc, [pc, #0]\n"); \
|
||
fprintf ((FILE), "\t.word\t0\n"); \
|
||
fprintf ((FILE), "\t.word\t0\n"); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
#define TRAMPOLINE_SIZE 16
|
||
|
||
/* Alignment required for a trampoline in units. */
|
||
#define TRAMPOLINE_ALIGN 4
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
|
||
(CXT)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
|
||
(FNADDR)); \
|
||
}
|
||
|
||
/* Call the function profiler with a given profile label. The Acorn compiler
|
||
puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
|
||
seems like a good idea to stick with cc convention. ``prof'' doesn't seem
|
||
to mind about this! */
|
||
#define FUNCTION_PROFILER(STREAM,LABELNO) \
|
||
{ \
|
||
fprintf(STREAM, "\tmov\tip, lr\n"); \
|
||
fprintf(STREAM, "\tbl\tmcount\n"); \
|
||
fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
|
||
arm_increase_location (12); \
|
||
}
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define HAVE_POST_INCREMENT 1
|
||
#define HAVE_PRE_INCREMENT 1
|
||
#define HAVE_POST_DECREMENT 1
|
||
#define HAVE_PRE_DECREMENT 1
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c.
|
||
|
||
On the ARM, don't allow the pc to be used. */
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < 15 || (REGNO) == FRAME_POINTER_REGNUM \
|
||
|| (REGNO) == ARG_POINTER_REGNUM \
|
||
|| (unsigned) reg_renumber[(REGNO)] < 15 \
|
||
|| (unsigned) reg_renumber[(REGNO)] == FRAME_POINTER_REGNUM \
|
||
|| (unsigned) reg_renumber[(REGNO)] == ARG_POINTER_REGNUM)
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
REGNO_OK_FOR_BASE_P(REGNO)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address.
|
||
Shifts in addresses can't be by a register. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
/* XXX We can address any constant, eventually... */
|
||
#if 0
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
( GET_CODE(X) == LABEL_REF \
|
||
|| GET_CODE(X) == SYMBOL_REF \
|
||
|| GET_CODE(X) == CONST_INT \
|
||
|| GET_CODE(X) == CONST )
|
||
#endif
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == SYMBOL_REF \
|
||
&& (CONSTANT_POOL_ADDRESS_P (X) || SYMBOL_REF_FLAG (X)))
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
||
|
||
On the ARM, allow any integer (invalid ones are removed later by insn
|
||
patterns), nice doubles and symbol_refs which refer to the function's
|
||
constant pool XXX. */
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) == CONST_INT \
|
||
|| (GET_CODE (X) == CONST_DOUBLE \
|
||
&& (const_double_rtx_ok_for_fpu (X) \
|
||
|| neg_const_double_rtx_ok_for_fpu (X))) \
|
||
|| CONSTANT_ADDRESS_P (X))
|
||
|
||
/* Symbols in the text segment can be accessed without indirecting via the
|
||
constant pool; it may take an extra binary operation, but this is still
|
||
faster than indirecting via memory. */
|
||
|
||
#define ENCODE_SECTION_INFO(decl) \
|
||
{ \
|
||
if (TREE_CONSTANT (decl) \
|
||
&& (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
|
||
{ \
|
||
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
|
||
? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
|
||
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
|
||
} \
|
||
}
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used. */
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) \
|
||
(REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) \
|
||
REG_OK_FOR_BASE_P(X)
|
||
|
||
#define REG_OK_FOR_PRE_POST_P(X) \
|
||
(REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
|
||
#define REG_OK_FOR_PRE_POST_P(X) \
|
||
(REGNO (X) < 16 || (unsigned) reg_renumber[REGNO (X)] < 16 \
|
||
|| REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM \
|
||
|| (unsigned) reg_renumber[REGNO (X)] == FRAME_POINTER_REGNUM \
|
||
|| (unsigned) reg_renumber[REGNO (X)] == ARG_POINTER_REGNUM)
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
|
||
#define BASE_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
|
||
|
||
#define INDEX_REGISTER_RTX_P(X) \
|
||
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
|
||
|
||
/* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
|
||
used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
|
||
only be small constants. */
|
||
#define GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
|
||
do \
|
||
{ \
|
||
int range; \
|
||
int code = GET_CODE (INDEX); \
|
||
\
|
||
if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
|
||
{ \
|
||
if (code == CONST_INT && INTVAL (INDEX) < 1024 \
|
||
&& INTVAL (INDEX) > -1024 \
|
||
&& (INTVAL (INDEX) & 3) == 0) \
|
||
goto LABEL; \
|
||
} \
|
||
else \
|
||
{ \
|
||
if (INDEX_REGISTER_RTX_P (INDEX) && GET_MODE_SIZE (MODE) <= 4) \
|
||
goto LABEL; \
|
||
if (GET_MODE_SIZE (MODE) <= 4 && code == MULT) \
|
||
{ \
|
||
rtx xiop0 = XEXP (INDEX, 0); \
|
||
rtx xiop1 = XEXP (INDEX, 1); \
|
||
if (INDEX_REGISTER_RTX_P (xiop0) \
|
||
&& power_of_two_operand (xiop1, SImode)) \
|
||
goto LABEL; \
|
||
if (INDEX_REGISTER_RTX_P (xiop1) \
|
||
&& power_of_two_operand (xiop0, SImode)) \
|
||
goto LABEL; \
|
||
} \
|
||
if (GET_MODE_SIZE (MODE) <= 4 \
|
||
&& (code == LSHIFTRT || code == ASHIFTRT \
|
||
|| code == ASHIFT || code == ROTATERT)) \
|
||
{ \
|
||
rtx op = XEXP (INDEX, 1); \
|
||
if (INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
|
||
&& GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
|
||
&& INTVAL (op) <= 31) \
|
||
goto LABEL; \
|
||
} \
|
||
range = (MODE) == HImode ? 4095 : 4096; \
|
||
if (code == CONST_INT && INTVAL (INDEX) < range \
|
||
&& INTVAL (INDEX) > -range) \
|
||
goto LABEL; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Jump to LABEL if X is a valid address RTX. This must also take
|
||
REG_OK_STRICT into account when deciding about valid registers, but it uses
|
||
the above macros so we are in luck. Allow REG, REG+REG, REG+INDEX,
|
||
INDEX+REG, REG-INDEX, and non floating SYMBOL_REF to the constant pool.
|
||
Allow REG-only and AUTINC-REG if handling TImode or HImode. Other symbol
|
||
refs must be forced though a static cell to ensure addressability. */
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
{ \
|
||
if (BASE_REGISTER_RTX_P (X)) \
|
||
goto LABEL; \
|
||
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
|
||
goto LABEL; \
|
||
else if ((MODE) == TImode) \
|
||
; \
|
||
else if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
rtx xop0 = XEXP(X,0); \
|
||
rtx xop1 = XEXP(X,1); \
|
||
\
|
||
if (BASE_REGISTER_RTX_P (xop0)) \
|
||
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
|
||
else if (BASE_REGISTER_RTX_P (xop1)) \
|
||
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
|
||
} \
|
||
else if (GET_CODE (X) == MINUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X,0); \
|
||
rtx xop1 = XEXP (X,1); \
|
||
\
|
||
if (BASE_REGISTER_RTX_P (xop0)) \
|
||
GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
|
||
} \
|
||
else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
|
||
&& GET_CODE (X) == SYMBOL_REF \
|
||
&& CONSTANT_POOL_ADDRESS_P (X)) \
|
||
goto LABEL; \
|
||
else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
On the ARM, try to convert [REG, #BIGCONST]
|
||
into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
|
||
where VALIDCONST == 0 in case of TImode. */
|
||
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
|
||
{ \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ \
|
||
rtx xop0 = XEXP (X, 0); \
|
||
rtx xop1 = XEXP (X, 1); \
|
||
\
|
||
if (BASE_REGISTER_RTX_P (xop0) && GET_CODE (xop1) == CONST_INT) \
|
||
{ \
|
||
int n = INTVAL (xop1); \
|
||
int low_n = ((MODE) == TImode ? 0 \
|
||
: n >= 0 ? (n & 0xFFF) : -((-n) & 0xFFF)); \
|
||
rtx base_reg = gen_reg_rtx (SImode); \
|
||
rtx val = force_operand (gen_rtx (PLUS, SImode, xop0, \
|
||
gen_rtx (CONST_INT, \
|
||
VOIDmode, n - low_n)), \
|
||
0); \
|
||
emit_move_insn (base_reg, val); \
|
||
(X) = (low_n == 0 ? base_reg \
|
||
: gen_rtx (PLUS, SImode, base_reg, \
|
||
gen_rtx (CONST_INT, VOIDmode, low_n))); \
|
||
} \
|
||
else if (BASE_REGISTER_RTX_P (xop1) && GET_CODE (xop0) == CONST_INT) \
|
||
{ \
|
||
int n = INTVAL (xop0); \
|
||
int low_n = ((MODE) == TImode ? 0 \
|
||
: n >= 0 ? (n & 0xFFF) : -((-n) & 0xFFF)); \
|
||
rtx base_reg = gen_reg_rtx (SImode); \
|
||
rtx val = force_operand (gen_rtx (PLUS, SImode, xop1, \
|
||
gen_rtx (CONST_INT, \
|
||
VOIDmode, n - low_n)), \
|
||
0); \
|
||
emit_move_insn (base_reg, val); \
|
||
(X) = (low_n == 0 ? base_reg \
|
||
: gen_rtx (PLUS, SImode, base_reg, \
|
||
gen_rtx (CONST_INT, VOIDmode, low_n))); \
|
||
} \
|
||
} \
|
||
if (memory_address_p (MODE, X)) \
|
||
goto win; \
|
||
}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ \
|
||
if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
|
||
|| GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* signed 'char' is most compatible, but RISC OS wants it unsigned.
|
||
unsigned is probably best, but may break some code. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
#endif
|
||
|
||
/* Don't cse the address of the function being compiled. */
|
||
#define NO_RECURSIVE_FUNCTION_CSE 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
||
will either zero-extend or sign-extend. The value of this macro should
|
||
be the code that says which one of the two operations is implicitly
|
||
done, NIL if none. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
((MODE) == QImode ? ZERO_EXTEND : NIL)
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction).
|
||
On the ARM, it is more than one instruction only if not fetching from
|
||
memory. */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Immediate shift counts are truncated by the output routines (or was it
|
||
the assembler?). Shift counts in a register are truncated by ARM. Note
|
||
that the native compiler puts too large (> 32) immediate shift counts
|
||
into a register and shifts by the register, letting the ARM decide what
|
||
to do instead of doing that itself. */
|
||
/* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
|
||
code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
|
||
On the arm, Y in a register is used modulo 256 for the shift. Only for
|
||
rotates is modulo 32 used. */
|
||
/* #define SHIFT_COUNT_TRUNCATED 1 */
|
||
|
||
/* XX This is not true, is it? */
|
||
/* All integers have the same format so truncation is easy. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
|
||
|
||
/* Calling from registers is a massive pain. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* Chars and shorts should be passed as ints. */
|
||
#define PROMOTE_PROTOTYPES 1
|
||
|
||
/* The machine modes of pointers and functions */
|
||
#define Pmode SImode
|
||
#define FUNCTION_MODE Pmode
|
||
|
||
/* The structure type of the machine dependent info field of insns
|
||
No uses for this yet. */
|
||
/* #define INSN_MACHINE_INFO struct machine_info */
|
||
|
||
/* The relative costs of various types of constants. Note that cse.c defines
|
||
REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
|
||
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (const_ok_for_arm (INTVAL (RTX))) \
|
||
return (OUTER_CODE) == SET ? 2 : -1; \
|
||
else if (OUTER_CODE == AND \
|
||
&& const_ok_for_arm (~INTVAL (RTX))) \
|
||
return -1; \
|
||
else if ((OUTER_CODE == COMPARE \
|
||
|| OUTER_CODE == PLUS || OUTER_CODE == MINUS) \
|
||
&& const_ok_for_arm (-INTVAL (RTX))) \
|
||
return -1; \
|
||
else \
|
||
return 5; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 6; \
|
||
case CONST_DOUBLE: \
|
||
if (const_double_rtx_ok_for_fpu (RTX)) \
|
||
return (OUTER_CODE) == SET ? 2 : -1; \
|
||
else if (((OUTER_CODE) == COMPARE || (OUTER_CODE) == PLUS) \
|
||
&& neg_const_double_rtx_ok_for_fpu (RTX)) \
|
||
return -1; \
|
||
return(7);
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MEM: \
|
||
{ \
|
||
int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1;\
|
||
return (COSTS_N_INSNS (10*num_words)); \
|
||
} \
|
||
case MULT: \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
|
||
return rtx_cost (XEXP (X, 0), GET_CODE (X))+1; \
|
||
return COSTS_N_INSNS (9); \
|
||
case ASHIFT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFTRT: \
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
return rtx_cost (XEXP (X, 0), GET_CODE (X))+1; \
|
||
break; \
|
||
case MINUS: \
|
||
{ \
|
||
enum rtx_code code = GET_CODE (XEXP (X, 1)); \
|
||
if (code == MULT) \
|
||
{ \
|
||
if (GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \
|
||
&& exact_log2 (INTVAL (XEXP (XEXP (X, 0), 1))) >= 0) \
|
||
return COSTS_N_INSNS (1); \
|
||
break; \
|
||
} \
|
||
else if (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT) \
|
||
return COSTS_N_INSNS (1); \
|
||
} /* fall through */ \
|
||
case PLUS: \
|
||
case IOR: \
|
||
case XOR: \
|
||
case AND: \
|
||
{ \
|
||
enum rtx_code code = GET_CODE (XEXP (X, 0)); \
|
||
if (code == MULT) \
|
||
{ \
|
||
if (GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
|
||
&& exact_log2 (INTVAL (XEXP (XEXP (X, 0), 1))) >= 0) \
|
||
return COSTS_N_INSNS (1); \
|
||
if (GET_CODE (X) == PLUS) \
|
||
return COSTS_N_INSNS (12); \
|
||
break; \
|
||
} \
|
||
else if (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT) \
|
||
return COSTS_N_INSNS (1); \
|
||
break; \
|
||
} \
|
||
case NOT: \
|
||
return rtx_cost (XEXP (X, 0), GET_CODE (XEXP (X, 0))); \
|
||
case IF_THEN_ELSE: \
|
||
{ \
|
||
if (GET_CODE (XEXP(X,1)) == PC || GET_CODE (XEXP(X,2)) == PC) \
|
||
return COSTS_N_INSNS (4); \
|
||
return COSTS_N_INSNS (1); \
|
||
} \
|
||
case SIGN_EXTEND: \
|
||
return COSTS_N_INSNS (2); \
|
||
case ZERO_EXTEND: \
|
||
if (GET_MODE (XEXP (X, 0)) == QImode) \
|
||
{ \
|
||
if (GET_CODE (XEXP (X, 0)) == MEM) \
|
||
return COSTS_N_INSNS (10); \
|
||
return COSTS_N_INSNS (1); \
|
||
} \
|
||
break; \
|
||
case COMPARE: \
|
||
if (GET_CODE (XEXP (X, 1)) == REG) \
|
||
return 4; \
|
||
case SMIN: \
|
||
case SMAX: \
|
||
case UMIN: \
|
||
case UMAX: \
|
||
return COSTS_N_INSNS (3); \
|
||
case ABS: \
|
||
if (GET_MODE (X) == SImode) \
|
||
return COSTS_N_INSNS (2); \
|
||
return COSTS_N_INSNS (1);
|
||
|
||
/* Moves to and from memory are quite expensive */
|
||
#define MEMORY_MOVE_COST(MODE) 10
|
||
|
||
/* All address computations that can be done are free */
|
||
#define ADDRESS_COST(x) 2
|
||
|
||
/* Try to generate sequences that don't involve branches, we can then use
|
||
conditional instructions */
|
||
#define BRANCH_COST 4
|
||
|
||
/* Condition code information. */
|
||
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison.
|
||
CCFPEmode should be used with floating inequalites,
|
||
CCFPmode should be used with floating equalities.
|
||
CC_NOOVmode should be used with SImode integer equalites
|
||
CCmode should be used otherwise. */
|
||
|
||
#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
|
||
|
||
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
|
||
|
||
#define SELECT_CC_MODE(OP,X,Y) \
|
||
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
||
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
|
||
: ((GET_MODE (X) == SImode) \
|
||
&& ((OP) == EQ || (OP) == NE) \
|
||
&& (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|
||
|| GET_CODE (X) == AND || GET_CODE (X) == IOR \
|
||
|| GET_CODE (X) == XOR || GET_CODE (X) == MULT \
|
||
|| GET_CODE (X) == NOT || GET_CODE (X) == NEG \
|
||
|| GET_CODE (X) == LSHIFTRT \
|
||
|| GET_CODE (X) == ASHIFT || GET_CODE (X) == ASHIFTRT \
|
||
|| GET_CODE (X) == ROTATERT || GET_CODE (X) == ZERO_EXTRACT) \
|
||
? CC_NOOVmode \
|
||
: GET_MODE (X) == QImode ? CC_NOOVmode : CCmode))
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* Define the information needed to generate branch insns. This is
|
||
stored from the compare operation. Note that we can't use "rtx" here
|
||
since it hasn't been defined! */
|
||
|
||
extern struct rtx_def *arm_compare_op0, *arm_compare_op1;
|
||
extern int arm_compare_fp;
|
||
|
||
/* Define the codes that are matched by predicates in arm.c */
|
||
#define PREDICATE_CODES \
|
||
{"s_register_operand", {SUBREG, REG}}, \
|
||
{"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
|
||
{"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
|
||
{"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
|
||
{"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, MULT}}, \
|
||
{"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
|
||
{"load_multiple_operation", {PARALLEL}}, \
|
||
{"store_multiple_operation", {PARALLEL}}, \
|
||
{"equality_operator", {EQ, NE}}, \
|
||
{"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
|
||
{"const_shift_operand", {CONST_INT}}, \
|
||
{"index_operand", {SUBREG, REG, CONST_INT}}, \
|
||
{"cc_register", {REG}},
|
||
|
||
|
||
/* Assembler output control */
|
||
|
||
#ifndef ARM_OS_NAME
|
||
#define ARM_OS_NAME "(generic)"
|
||
#endif
|
||
|
||
/* The text to go at the start of the assembler file */
|
||
#define ASM_FILE_START(STREAM) \
|
||
{ \
|
||
extern char *version_string; \
|
||
\
|
||
fprintf (STREAM,"@ Generated by gcc %s for ARM/%s\n", version_string, \
|
||
ARM_OS_NAME); \
|
||
fprintf (STREAM,"rfp\t.req\tr9\n"); \
|
||
fprintf (STREAM,"fp\t.req\tr11\n"); \
|
||
fprintf (STREAM,"ip\t.req\tr12\n"); \
|
||
fprintf (STREAM,"sp\t.req\tr13\n"); \
|
||
fprintf (STREAM,"lr\t.req\tr14\n"); \
|
||
fprintf (STREAM,"pc\t.req\tr15\n"); \
|
||
}
|
||
|
||
#define ASM_APP_ON ""
|
||
#define ASM_APP_OFF ""
|
||
|
||
/* Switch to the text or data segment. */
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* The assembler's names for the registers. RFP need not always be used as
|
||
the Real framepointer; it can also be used as a normal general register.
|
||
Note that the name `fp' is horribly misleading since `fp' is in fact only
|
||
the argument-and-return-context pointer. */
|
||
#define REGISTER_NAMES \
|
||
{ \
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"r8","rfp", "sl", "fp", "ip", "sp", "lr", "pc", \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
"cc", "sfp", "afp" \
|
||
}
|
||
|
||
/* Arm Assembler barfs on dollars */
|
||
#define DOLLARS_IN_IDENTIFIERS 0
|
||
|
||
#define NO_DOLLAR_IN_LABEL
|
||
|
||
/* DBX register number for a given compiler register number */
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* Generate DBX debugging information. riscix.h will undefine this because
|
||
the native assembler does not support stabs. */
|
||
#define DBX_DEBUGGING_INFO 1
|
||
|
||
/* Acorn dbx moans about continuation chars, so don't use any. */
|
||
#define DBX_CONTIN_LENGTH 0
|
||
|
||
/* Output a source filename for the debugger. RISCiX dbx insists that the
|
||
``desc'' field is set to compiler version number >= 315 (sic). */
|
||
#define DBX_OUTPUT_MAIN_SOURCE_FILENAME(STREAM,NAME) \
|
||
do { \
|
||
fprintf (STREAM, ".stabs \"%s\",%d,0,315,%s\n", (NAME), N_SO, \
|
||
<ext_label_name[1]); \
|
||
text_section (); \
|
||
ASM_OUTPUT_INTERNAL_LABEL (STREAM, "Ltext", 0); \
|
||
} while (0)
|
||
|
||
/* Output a label definition. */
|
||
#define ASM_OUTPUT_LABEL(STREAM,NAME) \
|
||
arm_asm_output_label ((STREAM), (NAME))
|
||
|
||
/* Output a function label definition. */
|
||
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
|
||
ASM_OUTPUT_LABEL(STREAM, NAME)
|
||
|
||
/* Output a globalising directive for a label. */
|
||
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
|
||
(fprintf (STREAM, "\t.global\t"), \
|
||
assemble_name (STREAM, NAME), \
|
||
fputc ('\n',STREAM)) \
|
||
|
||
/* Output a reference to a label. */
|
||
#define ASM_OUTPUT_LABELREF(STREAM,NAME) \
|
||
fprintf (STREAM, "_%s", NAME)
|
||
|
||
/* Make an internal label into a string. */
|
||
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
|
||
sprintf (STRING, "*%s%d", PREFIX, NUM)
|
||
|
||
/* Output an internal label definition. */
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
|
||
do \
|
||
{ \
|
||
char *s = (char *) alloca (11 + strlen (PREFIX)); \
|
||
extern int arm_target_label, arm_ccfsm_state; \
|
||
extern rtx arm_target_insn; \
|
||
\
|
||
if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
|
||
&& !strcmp (PREFIX, "L")) \
|
||
{ \
|
||
arm_ccfsm_state = 0; \
|
||
arm_target_insn = NULL; \
|
||
} \
|
||
strcpy (s, "*"); \
|
||
sprintf (&s[strlen (s)], "%s%d", (PREFIX), (NUM)); \
|
||
arm_asm_output_label (STREAM, s); \
|
||
} while (0)
|
||
|
||
/* Nothing special is done about jump tables */
|
||
/* #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) */
|
||
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
|
||
|
||
/* Construct a private name. */
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
|
||
((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
|
||
sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
|
||
|
||
/* Output a push or a pop instruction (only used when profiling). */
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
|
||
(arm_increase_location (4) \
|
||
, fprintf(STREAM,"\tstmfd\tsp!,{%s}\n", reg_names[REGNO]))
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
|
||
(arm_increase_location (4) \
|
||
, fprintf(STREAM,"\tldmfd\tsp!,{%s}\n", reg_names[REGNO]))
|
||
|
||
/* Output a relative address. Not needed since jump tables are absolute
|
||
but we must define it anyway. */
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
|
||
fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
|
||
|
||
/* Output an element of a dispatch table. */
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
|
||
(arm_increase_location (4) \
|
||
, fprintf (STREAM, "\t.word\tL%d\n", VALUE))
|
||
|
||
/* Output various types of constants. For real numbers we output hex, with
|
||
a comment containing the "human" value, this allows us to pass NaN's which
|
||
the riscix assembler doesn't understand (it also makes cross-assembling
|
||
less likely to fail). */
|
||
|
||
#define ASM_OUTPUT_LONG_DOUBLE(STREAM,VALUE) \
|
||
do { char dstr[30]; \
|
||
long l[3]; \
|
||
arm_increase_location (12); \
|
||
REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
|
||
REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
|
||
if (sizeof (int) == sizeof (long)) \
|
||
fprintf (STREAM, "\t.long 0x%x,0x%x,0x%x\t@ long double %s\n", \
|
||
l[2], l[1], l[0], dstr); \
|
||
else \
|
||
fprintf (STREAM, "\t.long 0x%lx,0x%lx,0x%lx\t@ long double %s\n",\
|
||
l[0], l[1], l[2], dstr); \
|
||
} while (0)
|
||
|
||
|
||
#define ASM_OUTPUT_DOUBLE(STREAM, VALUE) \
|
||
do { char dstr[30]; \
|
||
long l[2]; \
|
||
arm_increase_location (8); \
|
||
REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
|
||
REAL_VALUE_TO_DECIMAL (VALUE, "%.14g", dstr); \
|
||
if (sizeof (int) == sizeof (long)) \
|
||
fprintf (STREAM, "\t.long 0x%x, 0x%x\t@ double %s\n", l[0], l[1],\
|
||
dstr); \
|
||
else \
|
||
fprintf (STREAM, "\t.long 0x%lx, 0x%lx\t@ double %s\n", l[0], \
|
||
l[1], dstr); \
|
||
} while (0)
|
||
|
||
#define ASM_OUTPUT_FLOAT(STREAM, VALUE) \
|
||
do { char dstr[30]; \
|
||
long l; \
|
||
arm_increase_location (4); \
|
||
REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
|
||
REAL_VALUE_TO_DECIMAL (VALUE, "%.7g", dstr); \
|
||
if (sizeof (int) == sizeof (long)) \
|
||
fprintf (STREAM, "\t.word 0x%x\t@ float %s\n", l, dstr); \
|
||
else \
|
||
fprintf (STREAM, "\t.word 0x%lx\t@ float %s\n", l, dstr); \
|
||
} while (0);
|
||
|
||
#define ASM_OUTPUT_INT(STREAM, EXP) \
|
||
(fprintf (STREAM, "\t.word\t"), \
|
||
output_addr_const (STREAM, (EXP)), \
|
||
arm_increase_location (4), \
|
||
fputc ('\n', STREAM))
|
||
|
||
#define ASM_OUTPUT_SHORT(STREAM, EXP) \
|
||
(fprintf (STREAM, "\t.short\t"), \
|
||
output_addr_const (STREAM, (EXP)), \
|
||
arm_increase_location (2), \
|
||
fputc ('\n', STREAM))
|
||
|
||
#define ASM_OUTPUT_CHAR(STREAM, EXP) \
|
||
(fprintf (STREAM, "\t.byte\t"), \
|
||
output_addr_const (STREAM, (EXP)), \
|
||
arm_increase_location (1), \
|
||
fputc ('\n', STREAM))
|
||
|
||
#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
|
||
(fprintf (STREAM, "\t.byte\t%d\n", VALUE), \
|
||
arm_increase_location (1))
|
||
|
||
#define ASM_OUTPUT_ASCII(STREAM, PTR, LEN) \
|
||
output_ascii_pseudo_op ((STREAM), (unsigned char *)(PTR), (LEN))
|
||
|
||
/* Output a gap. In fact we fill it with nulls. */
|
||
#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
|
||
(arm_increase_location (NBYTES), \
|
||
fprintf (STREAM, "\t.space\t%d\n", NBYTES))
|
||
|
||
/* Align output to a power of two. Horrible /bin/as. */
|
||
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
|
||
do \
|
||
{ \
|
||
register int amount = 1 << (POWER); \
|
||
extern int arm_text_location; \
|
||
\
|
||
if (amount == 2) \
|
||
fprintf (STREAM, "\t.even\n"); \
|
||
else \
|
||
fprintf (STREAM, "\t.align\t%d\n", amount - 4); \
|
||
\
|
||
if (in_text_section ()) \
|
||
arm_text_location = ((arm_text_location + amount - 1) \
|
||
& ~(amount - 1)); \
|
||
} while (0)
|
||
|
||
/* Output a common block */
|
||
#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
|
||
(fprintf (STREAM, "\t.comm\t"), \
|
||
assemble_name ((STREAM), (NAME)), \
|
||
fprintf(STREAM, ", %d\t@%d\n", ROUNDED, SIZE))
|
||
|
||
/* Output a local common block. /bin/as can't do this, so hack a `.space' into
|
||
the bss segment. Note that this is *bad* practice. */
|
||
#define ASM_OUTPUT_LOCAL(STREAM,NAME,SIZE,ROUNDED) \
|
||
output_lcomm_directive (STREAM, NAME, SIZE, ROUNDED)
|
||
|
||
/* Output a source filename for the debugger. RISCiX dbx insists that the
|
||
``desc'' field is set to compiler version number >= 315 (sic). */
|
||
#if 0
|
||
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM,NAME) \
|
||
fprintf (STREAM, "\t.stabs\t\"%s\", %d, 0, 315, Ltext\n", (NAME), N_SOL)
|
||
#endif
|
||
|
||
/* Output a source line for the debugger. */
|
||
/* #define ASM_OUTPUT_SOURCE_LINE(STREAM,LINE) */
|
||
|
||
/* Output a #ident directive. */
|
||
#define ASM_OUTPUT_IDENT(STREAM,STRING) \
|
||
fprintf (STREAM,"- - - ident %s\n",STRING)
|
||
|
||
/* The assembler's parentheses characters. */
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Target characters. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* FINAL_PRESCAN_INSN is used to take a look at the insns, in order to delete
|
||
small-distance conditional branches and have ASM_OUTPUT_OPCODE make the
|
||
instructions conditional. Suffixes like s (affect flags) and b (bytewise
|
||
load/store) need to stay suffixes, so the possible condition code comes
|
||
before these suffixes. %d<n> or %D<n> may appear in the opcode if
|
||
it can take a condition; a null rtx will cause no condition to be added,
|
||
this is what we expect to happen if arm_ccfsm_state is non-zero. */
|
||
#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
|
||
{ \
|
||
extern int arm_ccfsm_state, arm_current_cc; \
|
||
extern char *arm_condition_codes[]; \
|
||
int i; \
|
||
\
|
||
fflush (STREAM); /* XXX for debugging only. */ \
|
||
if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4) \
|
||
{ \
|
||
for (i = 0; *(PTR) != ' ' && *(PTR) != '\t' && *(PTR) != '%' && i < 3;\
|
||
i++, (PTR)++) \
|
||
putc (*(PTR), STREAM); \
|
||
fprintf (STREAM, "%s", arm_condition_codes[arm_current_cc]); \
|
||
for (; *(PTR) != ' ' && *(PTR) != '\t' && *(PTR) != '%'; (PTR)++) \
|
||
putc (*(PTR), STREAM); \
|
||
} \
|
||
}
|
||
|
||
/* Only perform branch elimination (by making instructions conditional) if
|
||
we're optimising. Otherwise it's of no use anyway. */
|
||
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
if (optimize) \
|
||
final_prescan_insn (INSN, OPVEC, NOPERANDS)
|
||
|
||
/* Output an operand of an instruction. If X is a REG and CODE is `M', output
|
||
a ldm/stm style multi-reg. */
|
||
#define PRINT_OPERAND(STREAM, X, CODE) \
|
||
{ \
|
||
if ((CODE) == 'd') \
|
||
{ \
|
||
if (X) \
|
||
fputs (arm_condition_codes[get_arm_condition_code (X)], \
|
||
(STREAM)); \
|
||
} \
|
||
else if ((CODE) == 'D') \
|
||
{ \
|
||
if (X) \
|
||
fputs (arm_condition_codes[get_arm_condition_code (X) ^ 1], \
|
||
(STREAM)); \
|
||
} \
|
||
else if ((CODE) == 'R') \
|
||
fputs (reg_names[REGNO (X) + 1], (STREAM)); \
|
||
else if (GET_CODE (X) == REG) \
|
||
{ \
|
||
if ((CODE) != 'M') \
|
||
fputs (reg_names[REGNO (X)], (STREAM)); \
|
||
else \
|
||
fprintf ((STREAM), "{%s-%s}", \
|
||
reg_names[REGNO (X)], \
|
||
reg_names[REGNO (X) - 1 \
|
||
+ ((GET_MODE_SIZE (GET_MODE (X)) \
|
||
+ GET_MODE_SIZE (SImode) - 1) \
|
||
/ GET_MODE_SIZE (SImode))]); \
|
||
} \
|
||
else if (GET_CODE (X) == MEM) \
|
||
{ \
|
||
extern int output_memory_reference_mode; \
|
||
output_memory_reference_mode = GET_MODE (X); \
|
||
output_address (XEXP (X, 0)); \
|
||
} \
|
||
else if (GET_CODE(X) == CONST_DOUBLE) \
|
||
fprintf(STREAM,"#%s", fp_immediate_constant(X)); \
|
||
else if (GET_CODE (X) == NEG) \
|
||
{ \
|
||
fputc ('-', (STREAM)); \
|
||
output_operand ((X), 0); \
|
||
} \
|
||
else \
|
||
{ \
|
||
fputc('#', STREAM); \
|
||
output_addr_const(STREAM, X); \
|
||
} \
|
||
}
|
||
|
||
/* Output the address of an operand. */
|
||
#define PRINT_OPERAND_ADDRESS(STREAM,X) \
|
||
{ \
|
||
int is_minus = GET_CODE (X) == MINUS; \
|
||
\
|
||
if (GET_CODE (X) == REG) \
|
||
fprintf (STREAM, "[%s, #0]", reg_names[REGNO (X)]); \
|
||
else if (GET_CODE (X) == PLUS || is_minus) \
|
||
{ \
|
||
rtx base = XEXP (X, 0); \
|
||
rtx index = XEXP (X, 1); \
|
||
char *base_reg_name; \
|
||
int offset = 0; \
|
||
int shift; \
|
||
if (GET_CODE (base) != REG) \
|
||
{ \
|
||
/* Ensure that BASE is a register (one of them must be). */ \
|
||
rtx temp = base; \
|
||
base = index; \
|
||
index = temp; \
|
||
} \
|
||
base_reg_name = reg_names[REGNO (base)]; \
|
||
switch (GET_CODE (index)) \
|
||
{ \
|
||
case CONST_INT: \
|
||
offset = INTVAL (index); \
|
||
if (is_minus) \
|
||
offset = -offset; \
|
||
fprintf (STREAM, "[%s, #%d]", base_reg_name, offset); \
|
||
break; \
|
||
\
|
||
case REG: \
|
||
fprintf (STREAM, "[%s, %s%s]", base_reg_name, \
|
||
is_minus ? "-" : "", reg_names[REGNO (index)] ); \
|
||
break; \
|
||
\
|
||
case MULT: \
|
||
if (GET_CODE (XEXP (index,0)) == CONST_INT) \
|
||
{ \
|
||
shift = int_log2 (INTVAL (XEXP (index, 0))); \
|
||
index = XEXP (index, 1); \
|
||
} \
|
||
else if (GET_CODE(XEXP(index,1)) == CONST_INT) \
|
||
{ \
|
||
shift = int_log2 (INTVAL (XEXP (index, 1))); \
|
||
index = XEXP (index, 0); \
|
||
} \
|
||
else \
|
||
abort(); \
|
||
fprintf (STREAM, "[%s, %s%s, asl #%d]", base_reg_name, \
|
||
is_minus ? "-" : "", reg_names[REGNO (index)], \
|
||
shift); \
|
||
break; \
|
||
case ASHIFTRT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFT: \
|
||
case ROTATERT: \
|
||
{ \
|
||
char *shift_type = shift_instr (GET_CODE (index), \
|
||
&XEXP (index, 1)); \
|
||
shift = INTVAL (XEXP (index, 1)); \
|
||
index = XEXP (index, 0); \
|
||
fprintf (STREAM, "[%s, %s%s, %s #%d]", base_reg_name, \
|
||
is_minus ? "-" : "", reg_names[REGNO (index)], \
|
||
shift_type, shift); \
|
||
break; \
|
||
} \
|
||
\
|
||
default: \
|
||
abort(); \
|
||
} \
|
||
} \
|
||
else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
|
||
|| GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
|
||
{ \
|
||
extern int output_memory_reference_mode; \
|
||
\
|
||
if (GET_CODE (XEXP (X, 0)) != REG) \
|
||
abort (); \
|
||
\
|
||
if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
|
||
fprintf (STREAM, "[%s, #%s%d]!", reg_names[REGNO (XEXP (X, 0))],\
|
||
GET_CODE (X) == PRE_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode)); \
|
||
else \
|
||
fprintf (STREAM, "[%s], #%s%d", reg_names[REGNO (XEXP (X, 0))], \
|
||
GET_CODE (X) == POST_DEC ? "-" : "", \
|
||
GET_MODE_SIZE (output_memory_reference_mode)); \
|
||
} \
|
||
else output_addr_const(STREAM, X); \
|
||
}
|
||
|
||
/* EOF arm.h */
|