8sa1-gcc/gcc/config/spur/spur.c
Charles Hannum 581cc66cd5 entered into RCS
From-SVN: r24
1991-05-31 19:51:09 +00:00

327 lines
9.2 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for SPUR. Adapted from routines for
the Motorola 68000 family.
Copyright (C) 1988, 1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
static rtx find_addr_reg ();
char *
output_compare (operands, opcode, exchange_opcode,
neg_opcode, neg_exchange_opcode)
rtx *operands;
char *opcode;
char *exchange_opcode;
char *neg_opcode;
char *neg_exchange_opcode;
{
static char buf[100];
operands[2] = operands[0];
if (GET_CODE (cc_prev_status.value1) == CONST_INT)
{
operands[1] = cc_prev_status.value1;
operands[0] = cc_prev_status.value2;
opcode = exchange_opcode, neg_opcode = neg_exchange_opcode;
}
else
{
operands[0] = cc_prev_status.value1;
operands[1] = cc_prev_status.value2;
}
if (TARGET_LONG_JUMPS)
sprintf (buf,
"cmp_br_delayed %s,%%0,%%1,1f\n\tnop\n\tjump %%l2\n\tnop\n1:",
neg_opcode);
else
sprintf (buf, "cmp_br_delayed %s,%%0,%%1,%%l2\n\tnop", opcode);
return buf;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
if (GET_CODE (operands[0]) == MEM)
return "st_32 %r1,%0";
if (GET_CODE (operands[1]) == MEM)
return "ld_32 %0,%1\n\tnop";
if (GET_CODE (operands[1]) == REG)
return "add_nt %0,%1,$0";
return "add_nt %0,r0,%1";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
abort ();
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_HIGH (operands[1]));
operands[1] = gen_rtx (CONST_INT, VOIDmode,
CONST_DOUBLE_LOW (operands[1]));
}
else if (CONSTANT_P (operands[1]))
latehalf[1] = const0_rtx;
}
else
latehalf[1] = operands[1];
/* If the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
if (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add_nt %0,%0,$4", &addreg0);
if (addreg1)
output_asm_insn ("add_nt %0,%0,$4", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
if (addreg1)
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add_nt %0,%0,$4", &addreg0);
if (addreg1)
output_asm_insn ("add_nt %0,%0,$4", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("add_nt %0,%0,$-4", &addreg0);
if (addreg1)
output_asm_insn ("add_nt %0,%0,$-4", &addreg1);
return "";
}
static char *
output_fp_move_double (operands)
rtx *operands;
{
if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1]))
return "fmov %0,%1";
if (GET_CODE (operands[1]) == REG)
{
rtx xoperands[2];
int offset = - get_frame_size () - 8;
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
xoperands[0] = gen_rtx (CONST_INT, VOIDmode, offset + 4);
output_asm_insn ("st_32 %1,r25,%0", xoperands);
xoperands[1] = operands[1];
xoperands[0] = gen_rtx (CONST_INT, VOIDmode, offset);
output_asm_insn ("st_32 %1,r25,%0", xoperands);
xoperands[1] = operands[0];
output_asm_insn ("ld_dbl %1,r25,%0\n\tnop", xoperands);
return "";
}
return "ld_dbl %0,%1\n\tnop";
}
else if (FP_REG_P (operands[1]))
{
if (GET_CODE (operands[0]) == REG)
{
rtx xoperands[2];
int offset = - get_frame_size () - 8;
xoperands[0] = gen_rtx (CONST_INT, VOIDmode, offset);
xoperands[1] = operands[1];
output_asm_insn ("st_dbl %1,r25,%0", xoperands);
xoperands[1] = operands[0];
output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
xoperands[0] = gen_rtx (CONST_INT, VOIDmode, offset + 4);
output_asm_insn ("ld_32 %1,r25,%0\n\tnop", xoperands);
return "";
}
return "st_dbl %1,%0";
}
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
abort ();
}
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
/* Generate code to add a large integer constant to register, reg, storing
* the result in a register, target. Offset must be 27-bit signed quantity */
static char *
output_add_large_offset (target, reg, offset)
rtx target, reg;
int offset;
{
rtx operands[3];
int high, n, i;
operands[0] = target, operands[1] = reg;
for (high = offset, n = 0;
(unsigned) (high + 0x2000) >= 0x4000;
high >>= 1, n += 1)
;
operands[2] = gen_rtx (CONST_INT, VOIDmode, high);
output_asm_insn ("add_nt r2,r0,%2", operands);
i = n;
while (i >= 3)
output_asm_insn ("sll r2,r2,$3", operands), i -= 3;
if (i == 2)
output_asm_insn ("sll r2,r2,$2", operands);
else if (i == 1)
output_asm_insn ("sll r2,r2,$1", operands);
output_asm_insn ("add_nt %0,r2,%1", operands);
if (offset - (high << n) != 0)
{
operands[2] = gen_rtx (CONST_INT, VOIDmode, offset - (high << n));
output_asm_insn ("add_nt %0,%0,%2", operands);
}
return "";
}
/* Additional TESTFN for matching. Like immediate_operand, but matches big
* constants */
int
big_immediate_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == CONST_INT);
}