cb3874dcf8
gcc/ada/ChangeLog: * gcc-interface/trans.c (gigi): Set exact argument of a vector growth function to true. (Attribute_to_gnu): Likewise. gcc/ChangeLog: * alias.c (init_alias_analysis): Set exact argument of a vector growth function to true. * calls.c (internal_arg_pointer_based_exp_scan): Likewise. * cfgbuild.c (find_many_sub_basic_blocks): Likewise. * cfgexpand.c (expand_asm_stmt): Likewise. * cfgrtl.c (rtl_create_basic_block): Likewise. * combine.c (combine_split_insns): Likewise. (combine_instructions): Likewise. * config/aarch64/aarch64-sve-builtins.cc (function_expander::add_output_operand): Likewise. (function_expander::add_input_operand): Likewise. (function_expander::add_integer_operand): Likewise. (function_expander::add_address_operand): Likewise. (function_expander::add_fixed_operand): Likewise. * df-core.c (df_worklist_dataflow_doublequeue): Likewise. * dwarf2cfi.c (update_row_reg_save): Likewise. * early-remat.c (early_remat::init_block_info): Likewise. (early_remat::finalize_candidate_indices): Likewise. * except.c (sjlj_build_landing_pads): Likewise. * final.c (compute_alignments): Likewise. (grow_label_align): Likewise. * function.c (temp_slots_at_level): Likewise. * fwprop.c (build_single_def_use_links): Likewise. (update_uses): Likewise. * gcc.c (insert_wrapper): Likewise. * genautomata.c (create_state_ainsn_table): Likewise. (add_vect): Likewise. (output_dead_lock_vect): Likewise. * genmatch.c (capture_info::capture_info): Likewise. (parser::finish_match_operand): Likewise. * genrecog.c (optimize_subroutine_group): Likewise. (merge_pattern_info::merge_pattern_info): Likewise. (merge_into_decision): Likewise. (print_subroutine_start): Likewise. (main): Likewise. * gimple-loop-versioning.cc (loop_versioning::loop_versioning): Likewise. * gimple.c (gimple_set_bb): Likewise. * graphite-isl-ast-to-gimple.c (translate_isl_ast_node_user): Likewise. * haifa-sched.c (sched_extend_luids): Likewise. (extend_h_i_d): Likewise. * insn-addr.h (insn_addresses_new): Likewise. * ipa-cp.c (gather_context_independent_values): Likewise. (find_more_contexts_for_caller_subset): Likewise. * ipa-devirt.c (final_warning_record::grow_type_warnings): Likewise. (ipa_odr_read_section): Likewise. * ipa-fnsummary.c (evaluate_properties_for_edge): Likewise. (ipa_fn_summary_t::duplicate): Likewise. (analyze_function_body): Likewise. (ipa_merge_fn_summary_after_inlining): Likewise. (read_ipa_call_summary): Likewise. * ipa-icf.c (sem_function::bb_dict_test): Likewise. * ipa-prop.c (ipa_alloc_node_params): Likewise. (parm_bb_aa_status_for_bb): Likewise. (ipa_compute_jump_functions_for_edge): Likewise. (ipa_analyze_node): Likewise. (update_jump_functions_after_inlining): Likewise. (ipa_read_edge_info): Likewise. (read_ipcp_transformation_info): Likewise. (ipcp_transform_function): Likewise. * ipa-reference.c (ipa_reference_write_optimization_summary): Likewise. * ipa-split.c (execute_split_functions): Likewise. * ira.c (find_moveable_pseudos): Likewise. * lower-subreg.c (decompose_multiword_subregs): Likewise. * lto-streamer-in.c (input_eh_regions): Likewise. (input_cfg): Likewise. (input_struct_function_base): Likewise. (input_function): Likewise. * modulo-sched.c (set_node_sched_params): Likewise. (extend_node_sched_params): Likewise. (schedule_reg_moves): Likewise. * omp-general.c (omp_construct_simd_compare): Likewise. * passes.c (pass_manager::create_pass_tab): Likewise. (enable_disable_pass): Likewise. * predict.c (determine_unlikely_bbs): Likewise. * profile.c (compute_branch_probabilities): Likewise. * read-rtl-function.c (function_reader::parse_block): Likewise. * read-rtl.c (rtx_reader::read_rtx_code): Likewise. * reg-stack.c (stack_regs_mentioned): Likewise. * regrename.c (regrename_init): Likewise. * rtlanal.c (T>::add_single_to_queue): Likewise. * sched-deps.c (init_deps_data_vector): Likewise. * sel-sched-ir.c (sel_extend_global_bb_info): Likewise. (extend_region_bb_info): Likewise. (extend_insn_data): Likewise. * symtab.c (symtab_node::create_reference): Likewise. * tracer.c (tail_duplicate): Likewise. * trans-mem.c (tm_region_init): Likewise. (get_bb_regions_instrumented): Likewise. * tree-cfg.c (init_empty_tree_cfg_for_function): Likewise. (build_gimple_cfg): Likewise. (create_bb): Likewise. (move_block_to_fn): Likewise. * tree-complex.c (tree_lower_complex): Likewise. * tree-if-conv.c (predicate_rhs_code): Likewise. * tree-inline.c (copy_bb): Likewise. * tree-into-ssa.c (get_ssa_name_ann): Likewise. (mark_phi_for_rewrite): Likewise. * tree-object-size.c (compute_builtin_object_size): Likewise. (init_object_sizes): Likewise. * tree-predcom.c (initialize_root_vars_store_elim_1): Likewise. (initialize_root_vars_store_elim_2): Likewise. (prepare_initializers_chain_store_elim): Likewise. * tree-ssa-address.c (addr_for_mem_ref): Likewise. (multiplier_allowed_in_address_p): Likewise. * tree-ssa-coalesce.c (ssa_conflicts_new): Likewise. * tree-ssa-forwprop.c (simplify_vector_constructor): Likewise. * tree-ssa-loop-ivopts.c (addr_offset_valid_p): Likewise. (get_address_cost_ainc): Likewise. * tree-ssa-loop-niter.c (discover_iteration_bound_by_body_walk): Likewise. * tree-ssa-pre.c (add_to_value): Likewise. (phi_translate_1): Likewise. (do_pre_regular_insertion): Likewise. (do_pre_partial_partial_insertion): Likewise. (init_pre): Likewise. * tree-ssa-propagate.c (ssa_prop_init): Likewise. (update_call_from_tree): Likewise. * tree-ssa-reassoc.c (optimize_range_tests_cmp_bitwise): Likewise. * tree-ssa-sccvn.c (vn_reference_lookup_3): Likewise. (vn_reference_lookup_pieces): Likewise. (eliminate_dom_walker::eliminate_push_avail): Likewise. * tree-ssa-strlen.c (set_strinfo): Likewise. (get_stridx_plus_constant): Likewise. (zero_length_string): Likewise. (find_equal_ptrs): Likewise. (printf_strlen_execute): Likewise. * tree-ssa-threadedge.c (set_ssa_name_value): Likewise. * tree-ssanames.c (make_ssa_name_fn): Likewise. * tree-streamer-in.c (streamer_read_tree_bitfields): Likewise. * tree-vect-loop.c (vect_record_loop_mask): Likewise. (vect_get_loop_mask): Likewise. (vect_record_loop_len): Likewise. (vect_get_loop_len): Likewise. * tree-vect-patterns.c (vect_recog_mask_conversion_pattern): Likewise. * tree-vect-slp.c (vect_slp_convert_to_external): Likewise. (vect_bb_slp_scalar_cost): Likewise. (vect_bb_vectorization_profitable_p): Likewise. (vectorizable_slp_permutation): Likewise. * tree-vect-stmts.c (vectorizable_call): Likewise. (vectorizable_simd_clone_call): Likewise. (scan_store_can_perm_p): Likewise. (vectorizable_store): Likewise. * expr.c: Likewise. * vec.c (test_safe_grow_cleared): Likewise. * vec.h (vec_safe_grow): Likewise. (vec_safe_grow_cleared): Likewise. (vl_ptr>::safe_grow): Likewise. (vl_ptr>::safe_grow_cleared): Likewise. * config/c6x/c6x.c (insn_set_clock): Likewise. gcc/c/ChangeLog: * gimple-parser.c (c_parser_gimple_compound_statement): Set exact argument of a vector growth function to true. gcc/cp/ChangeLog: * class.c (build_vtbl_initializer): Set exact argument of a vector growth function to true. * constraint.cc (get_mapped_args): Likewise. * decl.c (cp_maybe_mangle_decomp): Likewise. (cp_finish_decomp): Likewise. * parser.c (cp_parser_omp_for_loop): Likewise. * pt.c (canonical_type_parameter): Likewise. * rtti.c (get_pseudo_ti_init): Likewise. gcc/fortran/ChangeLog: * trans-openmp.c (gfc_trans_omp_do): Set exact argument of a vector growth function to true. gcc/lto/ChangeLog: * lto-common.c (lto_file_finalize): Set exact argument of a vector growth function to true.
1553 lines
45 KiB
C
1553 lines
45 KiB
C
/* Generic SSA value propagation engine.
|
|
Copyright (C) 2004-2020 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "dumpfile.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "domwalk.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-cfgcleanup.h"
|
|
#include "cfganal.h"
|
|
|
|
/* This file implements a generic value propagation engine based on
|
|
the same propagation used by the SSA-CCP algorithm [1].
|
|
|
|
Propagation is performed by simulating the execution of every
|
|
statement that produces the value being propagated. Simulation
|
|
proceeds as follows:
|
|
|
|
1- Initially, all edges of the CFG are marked not executable and
|
|
the CFG worklist is seeded with all the statements in the entry
|
|
basic block (block 0).
|
|
|
|
2- Every statement S is simulated with a call to the call-back
|
|
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
|
|
results:
|
|
|
|
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
|
|
interest and does not affect any of the work lists.
|
|
The statement may be simulated again if any of its input
|
|
operands change in future iterations of the simulator.
|
|
|
|
SSA_PROP_VARYING: The value produced by S cannot be determined
|
|
at compile time. Further simulation of S is not required.
|
|
If S is a conditional jump, all the outgoing edges for the
|
|
block are considered executable and added to the work
|
|
list.
|
|
|
|
SSA_PROP_INTERESTING: S produces a value that can be computed
|
|
at compile time. Its result can be propagated into the
|
|
statements that feed from S. Furthermore, if S is a
|
|
conditional jump, only the edge known to be taken is added
|
|
to the work list. Edges that are known not to execute are
|
|
never simulated.
|
|
|
|
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
|
|
return value from SSA_PROP_VISIT_PHI has the same semantics as
|
|
described in #2.
|
|
|
|
4- Three work lists are kept. Statements are only added to these
|
|
lists if they produce one of SSA_PROP_INTERESTING or
|
|
SSA_PROP_VARYING.
|
|
|
|
CFG_BLOCKS contains the list of blocks to be simulated.
|
|
Blocks are added to this list if their incoming edges are
|
|
found executable.
|
|
|
|
SSA_EDGE_WORKLIST contains the list of statements that we
|
|
need to revisit.
|
|
|
|
5- Simulation terminates when all three work lists are drained.
|
|
|
|
Before calling ssa_propagate, it is important to clear
|
|
prop_simulate_again_p for all the statements in the program that
|
|
should be simulated. This initialization allows an implementation
|
|
to specify which statements should never be simulated.
|
|
|
|
It is also important to compute def-use information before calling
|
|
ssa_propagate.
|
|
|
|
References:
|
|
|
|
[1] Constant propagation with conditional branches,
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
|
|
|
[2] Building an Optimizing Compiler,
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
|
|
|
[3] Advanced Compiler Design and Implementation,
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
|
|
|
/* Worklists of control flow edge destinations. This contains
|
|
the CFG order number of the blocks so we can iterate in CFG
|
|
order by visiting in bit-order. We use two worklists to
|
|
first make forward progress before iterating. */
|
|
static bitmap cfg_blocks;
|
|
static bitmap cfg_blocks_back;
|
|
static int *bb_to_cfg_order;
|
|
static int *cfg_order_to_bb;
|
|
|
|
/* Worklists of SSA edges which will need reexamination as their
|
|
definition has changed. SSA edges are def-use edges in the SSA
|
|
web. For each D-U edge, we store the target statement or PHI node
|
|
UID in a bitmap. UIDs order stmts in execution order. We use
|
|
two worklists to first make forward progress before iterating. */
|
|
static bitmap ssa_edge_worklist;
|
|
static bitmap ssa_edge_worklist_back;
|
|
static vec<gimple *> uid_to_stmt;
|
|
|
|
/* Current RPO index in the iteration. */
|
|
static int curr_order;
|
|
|
|
|
|
/* We have just defined a new value for VAR. If IS_VARYING is true,
|
|
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
|
|
them to INTERESTING_SSA_EDGES. */
|
|
|
|
static void
|
|
add_ssa_edge (tree var)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (!prop_simulate_again_p (use_stmt))
|
|
continue;
|
|
|
|
/* If we did not yet simulate the block wait for this to happen
|
|
and do not add the stmt to the SSA edge worklist. */
|
|
basic_block use_bb = gimple_bb (use_stmt);
|
|
if (! (use_bb->flags & BB_VISITED))
|
|
continue;
|
|
|
|
/* If this is a use on a not yet executable edge do not bother to
|
|
queue it. */
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
|
&& !(EDGE_PRED (use_bb, PHI_ARG_INDEX_FROM_USE (use_p))->flags
|
|
& EDGE_EXECUTABLE))
|
|
continue;
|
|
|
|
bitmap worklist;
|
|
if (bb_to_cfg_order[gimple_bb (use_stmt)->index] < curr_order)
|
|
worklist = ssa_edge_worklist_back;
|
|
else
|
|
worklist = ssa_edge_worklist;
|
|
if (bitmap_set_bit (worklist, gimple_uid (use_stmt)))
|
|
{
|
|
uid_to_stmt[gimple_uid (use_stmt)] = use_stmt;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "ssa_edge_worklist: adding SSA use in ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add edge E to the control flow worklist. */
|
|
|
|
static void
|
|
add_control_edge (edge e)
|
|
{
|
|
basic_block bb = e->dest;
|
|
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
/* If the edge had already been executed, skip it. */
|
|
if (e->flags & EDGE_EXECUTABLE)
|
|
return;
|
|
|
|
e->flags |= EDGE_EXECUTABLE;
|
|
|
|
int bb_order = bb_to_cfg_order[bb->index];
|
|
if (bb_order < curr_order)
|
|
bitmap_set_bit (cfg_blocks_back, bb_order);
|
|
else
|
|
bitmap_set_bit (cfg_blocks, bb_order);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n",
|
|
e->src->index, e->dest->index);
|
|
}
|
|
|
|
|
|
/* Simulate the execution of STMT and update the work lists accordingly. */
|
|
|
|
void
|
|
ssa_propagation_engine::simulate_stmt (gimple *stmt)
|
|
{
|
|
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
|
|
edge taken_edge = NULL;
|
|
tree output_name = NULL_TREE;
|
|
|
|
/* Pull the stmt off the SSA edge worklist. */
|
|
bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt));
|
|
|
|
/* Don't bother visiting statements that are already
|
|
considered varying by the propagator. */
|
|
if (!prop_simulate_again_p (stmt))
|
|
return;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
val = visit_phi (as_a <gphi *> (stmt));
|
|
output_name = gimple_phi_result (stmt);
|
|
}
|
|
else
|
|
val = visit_stmt (stmt, &taken_edge, &output_name);
|
|
|
|
if (val == SSA_PROP_VARYING)
|
|
{
|
|
prop_set_simulate_again (stmt, false);
|
|
|
|
/* If the statement produced a new varying value, add the SSA
|
|
edges coming out of OUTPUT_NAME. */
|
|
if (output_name)
|
|
add_ssa_edge (output_name);
|
|
|
|
/* If STMT transfers control out of its basic block, add
|
|
all outgoing edges to the work list. */
|
|
if (stmt_ends_bb_p (stmt))
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
basic_block bb = gimple_bb (stmt);
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
add_control_edge (e);
|
|
}
|
|
return;
|
|
}
|
|
else if (val == SSA_PROP_INTERESTING)
|
|
{
|
|
/* If the statement produced new value, add the SSA edges coming
|
|
out of OUTPUT_NAME. */
|
|
if (output_name)
|
|
add_ssa_edge (output_name);
|
|
|
|
/* If we know which edge is going to be taken out of this block,
|
|
add it to the CFG work list. */
|
|
if (taken_edge)
|
|
add_control_edge (taken_edge);
|
|
}
|
|
|
|
/* If there are no SSA uses on the stmt whose defs are simulated
|
|
again then this stmt will be never visited again. */
|
|
bool has_simulate_again_uses = false;
|
|
use_operand_p use_p;
|
|
ssa_op_iter iter;
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
tree arg;
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
|
|
if (!(e->flags & EDGE_EXECUTABLE)
|
|
|| ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e))
|
|
&& TREE_CODE (arg) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg)
|
|
&& prop_simulate_again_p (SSA_NAME_DEF_STMT (arg))))
|
|
{
|
|
has_simulate_again_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& prop_simulate_again_p (def_stmt))
|
|
{
|
|
has_simulate_again_uses = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!has_simulate_again_uses)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "marking stmt to be not simulated again\n");
|
|
prop_set_simulate_again (stmt, false);
|
|
}
|
|
}
|
|
|
|
|
|
/* Simulate the execution of BLOCK. Evaluate the statement associated
|
|
with each variable reference inside the block. */
|
|
|
|
void
|
|
ssa_propagation_engine::simulate_block (basic_block block)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
/* There is nothing to do for the exit block. */
|
|
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nSimulating block %d\n", block->index);
|
|
|
|
/* Always simulate PHI nodes, even if we have simulated this block
|
|
before. */
|
|
for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
simulate_stmt (gsi_stmt (gsi));
|
|
|
|
/* If this is the first time we've simulated this block, then we
|
|
must simulate each of its statements. */
|
|
if (! (block->flags & BB_VISITED))
|
|
{
|
|
gimple_stmt_iterator j;
|
|
unsigned int normal_edge_count;
|
|
edge e, normal_edge;
|
|
edge_iterator ei;
|
|
|
|
for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
|
|
simulate_stmt (gsi_stmt (j));
|
|
|
|
/* Note that we have simulated this block. */
|
|
block->flags |= BB_VISITED;
|
|
|
|
/* We cannot predict when abnormal and EH edges will be executed, so
|
|
once a block is considered executable, we consider any
|
|
outgoing abnormal edges as executable.
|
|
|
|
TODO: This is not exactly true. Simplifying statement might
|
|
prove it non-throwing and also computed goto can be handled
|
|
when destination is known.
|
|
|
|
At the same time, if this block has only one successor that is
|
|
reached by non-abnormal edges, then add that successor to the
|
|
worklist. */
|
|
normal_edge_count = 0;
|
|
normal_edge = NULL;
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
{
|
|
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
|
|
add_control_edge (e);
|
|
else
|
|
{
|
|
normal_edge_count++;
|
|
normal_edge = e;
|
|
}
|
|
}
|
|
|
|
if (normal_edge_count == 1)
|
|
add_control_edge (normal_edge);
|
|
}
|
|
}
|
|
|
|
|
|
/* Initialize local data structures and work lists. */
|
|
|
|
static void
|
|
ssa_prop_init (void)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
basic_block bb;
|
|
|
|
/* Worklists of SSA edges. */
|
|
ssa_edge_worklist = BITMAP_ALLOC (NULL);
|
|
ssa_edge_worklist_back = BITMAP_ALLOC (NULL);
|
|
bitmap_tree_view (ssa_edge_worklist);
|
|
bitmap_tree_view (ssa_edge_worklist_back);
|
|
|
|
/* Worklist of basic-blocks. */
|
|
bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1);
|
|
cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
|
int n = pre_and_rev_post_order_compute_fn (cfun, NULL,
|
|
cfg_order_to_bb, false);
|
|
for (int i = 0; i < n; ++i)
|
|
bb_to_cfg_order[cfg_order_to_bb[i]] = i;
|
|
cfg_blocks = BITMAP_ALLOC (NULL);
|
|
cfg_blocks_back = BITMAP_ALLOC (NULL);
|
|
|
|
/* Initially assume that every edge in the CFG is not executable.
|
|
(including the edges coming out of the entry block). Mark blocks
|
|
as not visited, blocks not yet visited will have all their statements
|
|
simulated once an incoming edge gets executable. */
|
|
set_gimple_stmt_max_uid (cfun, 0);
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
gimple_stmt_iterator si;
|
|
bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]);
|
|
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
|
|
}
|
|
|
|
bb->flags &= ~BB_VISITED;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
}
|
|
uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun), true);
|
|
}
|
|
|
|
|
|
/* Free allocated storage. */
|
|
|
|
static void
|
|
ssa_prop_fini (void)
|
|
{
|
|
BITMAP_FREE (cfg_blocks);
|
|
BITMAP_FREE (cfg_blocks_back);
|
|
free (bb_to_cfg_order);
|
|
free (cfg_order_to_bb);
|
|
BITMAP_FREE (ssa_edge_worklist);
|
|
BITMAP_FREE (ssa_edge_worklist_back);
|
|
uid_to_stmt.release ();
|
|
}
|
|
|
|
|
|
/* Return true if EXPR is an acceptable right-hand-side for a
|
|
GIMPLE assignment. We validate the entire tree, not just
|
|
the root node, thus catching expressions that embed complex
|
|
operands that are not permitted in GIMPLE. This function
|
|
is needed because the folding routines in fold-const.c
|
|
may return such expressions in some cases, e.g., an array
|
|
access with an embedded index addition. It may make more
|
|
sense to have folding routines that are sensitive to the
|
|
constraints on GIMPLE operands, rather than abandoning any
|
|
any attempt to fold if the usual folding turns out to be too
|
|
aggressive. */
|
|
|
|
bool
|
|
valid_gimple_rhs_p (tree expr)
|
|
{
|
|
enum tree_code code = TREE_CODE (expr);
|
|
|
|
switch (TREE_CODE_CLASS (code))
|
|
{
|
|
case tcc_declaration:
|
|
if (!is_gimple_variable (expr))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_constant:
|
|
/* All constants are ok. */
|
|
break;
|
|
|
|
case tcc_comparison:
|
|
/* GENERIC allows comparisons with non-boolean types, reject
|
|
those for GIMPLE. Let vector-typed comparisons pass - rules
|
|
for GENERIC and GIMPLE are the same here. */
|
|
if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
|
|
&& (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
|
|
|| TYPE_PRECISION (TREE_TYPE (expr)) == 1))
|
|
&& ! VECTOR_TYPE_P (TREE_TYPE (expr)))
|
|
return false;
|
|
|
|
/* Fallthru. */
|
|
case tcc_binary:
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_unary:
|
|
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
|
|
return false;
|
|
break;
|
|
|
|
case tcc_expression:
|
|
switch (code)
|
|
{
|
|
case ADDR_EXPR:
|
|
{
|
|
tree t;
|
|
if (is_gimple_min_invariant (expr))
|
|
return true;
|
|
t = TREE_OPERAND (expr, 0);
|
|
while (handled_component_p (t))
|
|
{
|
|
/* ??? More checks needed, see the GIMPLE verifier. */
|
|
if ((TREE_CODE (t) == ARRAY_REF
|
|
|| TREE_CODE (t) == ARRAY_RANGE_REF)
|
|
&& !is_gimple_val (TREE_OPERAND (t, 1)))
|
|
return false;
|
|
t = TREE_OPERAND (t, 0);
|
|
}
|
|
if (!is_gimple_id (t))
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
|
|
{
|
|
if (((code == VEC_COND_EXPR || code == COND_EXPR)
|
|
? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
|
|
: !is_gimple_val (TREE_OPERAND (expr, 0)))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 1))
|
|
|| !is_gimple_val (TREE_OPERAND (expr, 2)))
|
|
return false;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case tcc_vl_exp:
|
|
return false;
|
|
|
|
case tcc_exceptional:
|
|
if (code == CONSTRUCTOR)
|
|
{
|
|
unsigned i;
|
|
tree elt;
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
|
|
if (!is_gimple_val (elt))
|
|
return false;
|
|
return true;
|
|
}
|
|
if (code != SSA_NAME)
|
|
return false;
|
|
break;
|
|
|
|
case tcc_reference:
|
|
if (code == BIT_FIELD_REF)
|
|
return is_gimple_val (TREE_OPERAND (expr, 0));
|
|
return false;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return true if EXPR is a CALL_EXPR suitable for representation
|
|
as a single GIMPLE_CALL statement. If the arguments require
|
|
further gimplification, return false. */
|
|
|
|
static bool
|
|
valid_gimple_call_p (tree expr)
|
|
{
|
|
unsigned i, nargs;
|
|
|
|
if (TREE_CODE (expr) != CALL_EXPR)
|
|
return false;
|
|
|
|
nargs = call_expr_nargs (expr);
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
tree arg = CALL_EXPR_ARG (expr, i);
|
|
if (is_gimple_reg_type (TREE_TYPE (arg)))
|
|
{
|
|
if (!is_gimple_val (arg))
|
|
return false;
|
|
}
|
|
else
|
|
if (!is_gimple_lvalue (arg))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Make SSA names defined by OLD_STMT point to NEW_STMT
|
|
as their defining statement. */
|
|
|
|
void
|
|
move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt)
|
|
{
|
|
tree var;
|
|
ssa_op_iter iter;
|
|
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
/* Make defined SSA_NAMEs point to the new
|
|
statement as their definition. */
|
|
FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
SSA_NAME_DEF_STMT (var) = new_stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper function for update_gimple_call and update_call_from_tree.
|
|
A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
|
|
|
|
static void
|
|
finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt,
|
|
gimple *stmt)
|
|
{
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
gimple_move_vops (new_stmt, stmt);
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
if (gimple_block (new_stmt) == NULL_TREE)
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
|
gsi_replace (si_p, new_stmt, false);
|
|
}
|
|
|
|
/* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
|
|
with number of arguments NARGS, where the arguments in GIMPLE form
|
|
follow NARGS argument. */
|
|
|
|
bool
|
|
update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
|
|
{
|
|
va_list ap;
|
|
gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p));
|
|
|
|
gcc_assert (is_gimple_call (stmt));
|
|
va_start (ap, nargs);
|
|
new_stmt = gimple_build_call_valist (fn, nargs, ap);
|
|
finish_update_gimple_call (si_p, new_stmt, stmt);
|
|
va_end (ap);
|
|
return true;
|
|
}
|
|
|
|
/* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
|
|
value of EXPR, which is expected to be the result of folding the
|
|
call. This can only be done if EXPR is a CALL_EXPR with valid
|
|
GIMPLE operands as arguments, or if it is a suitable RHS expression
|
|
for a GIMPLE_ASSIGN. More complex expressions will require
|
|
gimplification, which will introduce additional statements. In this
|
|
event, no update is performed, and the function returns false.
|
|
Note that we cannot mutate a GIMPLE_CALL in-place, so we always
|
|
replace the statement at *SI_P with an entirely new statement.
|
|
The new statement need not be a call, e.g., if the original call
|
|
folded to a constant. */
|
|
|
|
bool
|
|
update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
|
{
|
|
gimple *stmt = gsi_stmt (*si_p);
|
|
|
|
if (valid_gimple_call_p (expr))
|
|
{
|
|
/* The call has simplified to another call. */
|
|
tree fn = CALL_EXPR_FN (expr);
|
|
unsigned i;
|
|
unsigned nargs = call_expr_nargs (expr);
|
|
vec<tree> args = vNULL;
|
|
gcall *new_stmt;
|
|
|
|
if (nargs > 0)
|
|
{
|
|
args.create (nargs);
|
|
args.safe_grow_cleared (nargs, true);
|
|
|
|
for (i = 0; i < nargs; i++)
|
|
args[i] = CALL_EXPR_ARG (expr, i);
|
|
}
|
|
|
|
new_stmt = gimple_build_call_vec (fn, args);
|
|
finish_update_gimple_call (si_p, new_stmt, stmt);
|
|
args.release ();
|
|
|
|
return true;
|
|
}
|
|
else if (valid_gimple_rhs_p (expr))
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
gimple *new_stmt;
|
|
|
|
/* The call has simplified to an expression
|
|
that cannot be represented as a GIMPLE_CALL. */
|
|
if (lhs)
|
|
{
|
|
/* A value is expected.
|
|
Introduce a new GIMPLE_ASSIGN statement. */
|
|
STRIP_USELESS_TYPE_CONVERSION (expr);
|
|
new_stmt = gimple_build_assign (lhs, expr);
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
gimple_move_vops (new_stmt, stmt);
|
|
}
|
|
else if (!TREE_SIDE_EFFECTS (expr))
|
|
{
|
|
/* No value is expected, and EXPR has no effect.
|
|
Replace it with an empty statement. */
|
|
new_stmt = gimple_build_nop ();
|
|
if (gimple_in_ssa_p (cfun))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No value is expected, but EXPR has an effect,
|
|
e.g., it could be a reference to a volatile
|
|
variable. Create an assignment statement
|
|
with a dummy (unused) lhs variable. */
|
|
STRIP_USELESS_TYPE_CONVERSION (expr);
|
|
if (gimple_in_ssa_p (cfun))
|
|
lhs = make_ssa_name (TREE_TYPE (expr));
|
|
else
|
|
lhs = create_tmp_var (TREE_TYPE (expr));
|
|
new_stmt = gimple_build_assign (lhs, expr);
|
|
gimple_move_vops (new_stmt, stmt);
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
|
}
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
gsi_replace (si_p, new_stmt, false);
|
|
return true;
|
|
}
|
|
else
|
|
/* The call simplified to an expression that is
|
|
not a valid GIMPLE RHS. */
|
|
return false;
|
|
}
|
|
|
|
/* Entry point to the propagation engine.
|
|
|
|
The VISIT_STMT virtual function is called for every statement
|
|
visited and the VISIT_PHI virtual function is called for every PHI
|
|
node visited. */
|
|
|
|
void
|
|
ssa_propagation_engine::ssa_propagate (void)
|
|
{
|
|
ssa_prop_init ();
|
|
|
|
curr_order = 0;
|
|
|
|
/* Iterate until the worklists are empty. We iterate both blocks
|
|
and stmts in RPO order, using sets of two worklists to first
|
|
complete the current iteration before iterating over backedges.
|
|
Seed the algorithm by adding the successors of the entry block to the
|
|
edge worklist. */
|
|
edge e;
|
|
edge_iterator ei;
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
|
{
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
add_control_edge (e);
|
|
}
|
|
while (1)
|
|
{
|
|
int next_block_order = (bitmap_empty_p (cfg_blocks)
|
|
? -1 : bitmap_first_set_bit (cfg_blocks));
|
|
int next_stmt_uid = (bitmap_empty_p (ssa_edge_worklist)
|
|
? -1 : bitmap_first_set_bit (ssa_edge_worklist));
|
|
if (next_block_order == -1 && next_stmt_uid == -1)
|
|
{
|
|
if (bitmap_empty_p (cfg_blocks_back)
|
|
&& bitmap_empty_p (ssa_edge_worklist_back))
|
|
break;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Regular worklists empty, now processing "
|
|
"backedge destinations\n");
|
|
std::swap (cfg_blocks, cfg_blocks_back);
|
|
std::swap (ssa_edge_worklist, ssa_edge_worklist_back);
|
|
continue;
|
|
}
|
|
|
|
int next_stmt_bb_order = -1;
|
|
gimple *next_stmt = NULL;
|
|
if (next_stmt_uid != -1)
|
|
{
|
|
next_stmt = uid_to_stmt[next_stmt_uid];
|
|
next_stmt_bb_order = bb_to_cfg_order[gimple_bb (next_stmt)->index];
|
|
}
|
|
|
|
/* Pull the next block to simulate off the worklist if it comes first. */
|
|
if (next_block_order != -1
|
|
&& (next_stmt_bb_order == -1
|
|
|| next_block_order <= next_stmt_bb_order))
|
|
{
|
|
curr_order = next_block_order;
|
|
bitmap_clear_bit (cfg_blocks, next_block_order);
|
|
basic_block bb
|
|
= BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [next_block_order]);
|
|
simulate_block (bb);
|
|
}
|
|
/* Else simulate from the SSA edge worklist. */
|
|
else
|
|
{
|
|
curr_order = next_stmt_bb_order;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nSimulating statement: ");
|
|
print_gimple_stmt (dump_file, next_stmt, 0, dump_flags);
|
|
}
|
|
simulate_stmt (next_stmt);
|
|
}
|
|
}
|
|
|
|
ssa_prop_fini ();
|
|
}
|
|
|
|
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
|
|
is a non-volatile pointer dereference, a structure reference or a
|
|
reference to a single _DECL. Ignore volatile memory references
|
|
because they are not interesting for the optimizers. */
|
|
|
|
bool
|
|
stmt_makes_single_store (gimple *stmt)
|
|
{
|
|
tree lhs;
|
|
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
&& gimple_code (stmt) != GIMPLE_CALL)
|
|
return false;
|
|
|
|
if (!gimple_vdef (stmt))
|
|
return false;
|
|
|
|
lhs = gimple_get_lhs (stmt);
|
|
|
|
/* A call statement may have a null LHS. */
|
|
if (!lhs)
|
|
return false;
|
|
|
|
return (!TREE_THIS_VOLATILE (lhs)
|
|
&& (DECL_P (lhs)
|
|
|| REFERENCE_CLASS_P (lhs)));
|
|
}
|
|
|
|
|
|
/* Propagation statistics. */
|
|
struct prop_stats_d
|
|
{
|
|
long num_const_prop;
|
|
long num_copy_prop;
|
|
long num_stmts_folded;
|
|
long num_dce;
|
|
};
|
|
|
|
static struct prop_stats_d prop_stats;
|
|
|
|
/* Replace USE references in statement STMT with the values stored in
|
|
PROP_VALUE. Return true if at least one reference was replaced. */
|
|
|
|
bool
|
|
substitute_and_fold_engine::replace_uses_in (gimple *stmt)
|
|
{
|
|
bool replaced = false;
|
|
use_operand_p use;
|
|
ssa_op_iter iter;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree tuse = USE_FROM_PTR (use);
|
|
tree val = get_value (tuse, stmt);
|
|
|
|
if (val == tuse || val == NULL_TREE)
|
|
continue;
|
|
|
|
if (gimple_code (stmt) == GIMPLE_ASM
|
|
&& !may_propagate_copy_into_asm (tuse))
|
|
continue;
|
|
|
|
if (!may_propagate_copy (tuse, val))
|
|
continue;
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
prop_stats.num_const_prop++;
|
|
else
|
|
prop_stats.num_copy_prop++;
|
|
|
|
propagate_value (use, val);
|
|
|
|
replaced = true;
|
|
}
|
|
|
|
return replaced;
|
|
}
|
|
|
|
|
|
/* Replace propagated values into all the arguments for PHI using the
|
|
values from PROP_VALUE. */
|
|
|
|
bool
|
|
substitute_and_fold_engine::replace_phi_args_in (gphi *phi)
|
|
{
|
|
size_t i;
|
|
bool replaced = false;
|
|
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
|
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
tree val = get_value (arg, phi);
|
|
|
|
if (val && val != arg && may_propagate_copy (arg, val))
|
|
{
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
prop_stats.num_const_prop++;
|
|
else
|
|
prop_stats.num_copy_prop++;
|
|
|
|
propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
|
|
replaced = true;
|
|
|
|
/* If we propagated a copy and this argument flows
|
|
through an abnormal edge, update the replacement
|
|
accordingly. */
|
|
if (TREE_CODE (val) == SSA_NAME
|
|
&& e->flags & EDGE_ABNORMAL
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
|
|
{
|
|
/* This can only occur for virtual operands, since
|
|
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
|
|
would prevent replacement. */
|
|
gcc_checking_assert (virtual_operand_p (val));
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (!replaced)
|
|
fprintf (dump_file, "No folding possible\n");
|
|
else
|
|
{
|
|
fprintf (dump_file, "Folded into: ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
return replaced;
|
|
}
|
|
|
|
|
|
class substitute_and_fold_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
substitute_and_fold_dom_walker (cdi_direction direction,
|
|
class substitute_and_fold_engine *engine)
|
|
: dom_walker (direction),
|
|
something_changed (false),
|
|
substitute_and_fold_engine (engine)
|
|
{
|
|
stmts_to_remove.create (0);
|
|
stmts_to_fixup.create (0);
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
|
}
|
|
~substitute_and_fold_dom_walker ()
|
|
{
|
|
stmts_to_remove.release ();
|
|
stmts_to_fixup.release ();
|
|
BITMAP_FREE (need_eh_cleanup);
|
|
}
|
|
|
|
virtual edge before_dom_children (basic_block);
|
|
virtual void after_dom_children (basic_block bb)
|
|
{
|
|
substitute_and_fold_engine->post_fold_bb (bb);
|
|
}
|
|
|
|
bool something_changed;
|
|
vec<gimple *> stmts_to_remove;
|
|
vec<gimple *> stmts_to_fixup;
|
|
bitmap need_eh_cleanup;
|
|
|
|
class substitute_and_fold_engine *substitute_and_fold_engine;
|
|
|
|
private:
|
|
void foreach_new_stmt_in_bb (gimple_stmt_iterator old_gsi,
|
|
gimple_stmt_iterator new_gsi);
|
|
};
|
|
|
|
/* Call post_new_stmt for each each new statement that has been added
|
|
to the current BB. OLD_GSI is the statement iterator before the BB
|
|
changes ocurred. NEW_GSI is the iterator which may contain new
|
|
statements. */
|
|
|
|
void
|
|
substitute_and_fold_dom_walker::foreach_new_stmt_in_bb
|
|
(gimple_stmt_iterator old_gsi,
|
|
gimple_stmt_iterator new_gsi)
|
|
{
|
|
basic_block bb = gsi_bb (new_gsi);
|
|
if (gsi_end_p (old_gsi))
|
|
old_gsi = gsi_start_bb (bb);
|
|
else
|
|
gsi_next (&old_gsi);
|
|
while (gsi_stmt (old_gsi) != gsi_stmt (new_gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (old_gsi);
|
|
substitute_and_fold_engine->post_new_stmt (stmt);
|
|
gsi_next (&old_gsi);
|
|
}
|
|
}
|
|
|
|
bool
|
|
substitute_and_fold_engine::propagate_into_phi_args (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool propagated = false;
|
|
|
|
/* Visit BB successor PHI nodes and replace PHI args. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
for (gphi_iterator gpi = gsi_start_phis (e->dest);
|
|
!gsi_end_p (gpi); gsi_next (&gpi))
|
|
{
|
|
gphi *phi = gpi.phi ();
|
|
use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
|
|
tree arg = USE_FROM_PTR (use_p);
|
|
if (TREE_CODE (arg) != SSA_NAME
|
|
|| virtual_operand_p (arg))
|
|
continue;
|
|
tree val = get_value (arg, phi);
|
|
if (val
|
|
&& is_gimple_min_invariant (val)
|
|
&& may_propagate_copy (arg, val))
|
|
{
|
|
propagate_value (use_p, val);
|
|
propagated = true;
|
|
}
|
|
}
|
|
}
|
|
return propagated;
|
|
}
|
|
|
|
edge
|
|
substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
substitute_and_fold_engine->pre_fold_bb (bb);
|
|
|
|
/* Propagate known values into PHI nodes. */
|
|
for (gphi_iterator i = gsi_start_phis (bb);
|
|
!gsi_end_p (i);
|
|
gsi_next (&i))
|
|
{
|
|
gphi *phi = i.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res))
|
|
continue;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Folding PHI node: ");
|
|
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
|
|
}
|
|
if (res && TREE_CODE (res) == SSA_NAME)
|
|
{
|
|
tree sprime = substitute_and_fold_engine->get_value (res, phi);
|
|
if (sprime
|
|
&& sprime != res
|
|
&& may_propagate_copy (res, sprime))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Queued PHI for removal. Folds to: ");
|
|
print_generic_expr (dump_file, sprime);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
stmts_to_remove.safe_push (phi);
|
|
continue;
|
|
}
|
|
}
|
|
something_changed |= substitute_and_fold_engine->replace_phi_args_in (phi);
|
|
}
|
|
|
|
/* Propagate known values into stmts. In some case it exposes
|
|
more trivially deletable stmts to walk backward. */
|
|
for (gimple_stmt_iterator i = gsi_start_bb (bb);
|
|
!gsi_end_p (i);
|
|
gsi_next (&i))
|
|
{
|
|
bool did_replace;
|
|
gimple *stmt = gsi_stmt (i);
|
|
|
|
substitute_and_fold_engine->pre_fold_stmt (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Folding statement: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* No point propagating into a stmt we have a value for we
|
|
can propagate into all uses. Mark it for removal instead. */
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree sprime = substitute_and_fold_engine->get_value (lhs, stmt);
|
|
if (sprime
|
|
&& sprime != lhs
|
|
&& may_propagate_copy (lhs, sprime)
|
|
&& !stmt_could_throw_p (cfun, stmt)
|
|
&& !gimple_has_side_effects (stmt)
|
|
/* We have to leave ASSERT_EXPRs around for jump-threading. */
|
|
&& (!is_gimple_assign (stmt)
|
|
|| gimple_assign_rhs_code (stmt) != ASSERT_EXPR))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Queued stmt for removal. Folds to: ");
|
|
print_generic_expr (dump_file, sprime);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
stmts_to_remove.safe_push (stmt);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Replace the statement with its folded version and mark it
|
|
folded. */
|
|
did_replace = false;
|
|
gimple *old_stmt = stmt;
|
|
bool was_noreturn = (is_gimple_call (stmt)
|
|
&& gimple_call_noreturn_p (stmt));
|
|
|
|
/* Replace real uses in the statement. */
|
|
did_replace |= substitute_and_fold_engine->replace_uses_in (stmt);
|
|
|
|
gimple_stmt_iterator prev_gsi = i;
|
|
gsi_prev (&prev_gsi);
|
|
|
|
/* If we made a replacement, fold the statement. */
|
|
if (did_replace)
|
|
{
|
|
fold_stmt (&i, follow_single_use_edges);
|
|
stmt = gsi_stmt (i);
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
/* Also fold if we want to fold all statements. */
|
|
else if (substitute_and_fold_engine->fold_all_stmts
|
|
&& fold_stmt (&i, follow_single_use_edges))
|
|
{
|
|
did_replace = true;
|
|
stmt = gsi_stmt (i);
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
|
|
/* Some statements may be simplified using propagator
|
|
specific information. Do this before propagating
|
|
into the stmt to not disturb pass specific information. */
|
|
update_stmt_if_modified (stmt);
|
|
if (substitute_and_fold_engine->fold_stmt (&i))
|
|
{
|
|
did_replace = true;
|
|
prop_stats.num_stmts_folded++;
|
|
stmt = gsi_stmt (i);
|
|
gimple_set_modified (stmt, true);
|
|
}
|
|
|
|
/* If this is a control statement the propagator left edges
|
|
unexecuted on force the condition in a way consistent with
|
|
that. See PR66945 for cases where the propagator can end
|
|
up with a different idea of a taken edge than folding
|
|
(once undefined behavior is involved). */
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
|
{
|
|
if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE)
|
|
^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE))
|
|
{
|
|
if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0)
|
|
== ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0))
|
|
gimple_cond_make_true (as_a <gcond *> (stmt));
|
|
else
|
|
gimple_cond_make_false (as_a <gcond *> (stmt));
|
|
gimple_set_modified (stmt, true);
|
|
did_replace = true;
|
|
}
|
|
}
|
|
|
|
/* Now cleanup. */
|
|
if (did_replace)
|
|
{
|
|
foreach_new_stmt_in_bb (prev_gsi, i);
|
|
|
|
/* If we cleaned up EH information from the statement,
|
|
remove EH edges. */
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
|
|
|
/* If we turned a not noreturn call into a noreturn one
|
|
schedule it for fixup. */
|
|
if (!was_noreturn
|
|
&& is_gimple_call (stmt)
|
|
&& gimple_call_noreturn_p (stmt))
|
|
stmts_to_fixup.safe_push (stmt);
|
|
|
|
if (gimple_assign_single_p (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
|
}
|
|
|
|
/* Determine what needs to be done to update the SSA form. */
|
|
update_stmt_if_modified (stmt);
|
|
if (!is_gimple_debug (stmt))
|
|
something_changed = true;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (did_replace)
|
|
{
|
|
fprintf (dump_file, "Folded into: ");
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
else
|
|
fprintf (dump_file, "Not folded\n");
|
|
}
|
|
}
|
|
|
|
something_changed |= substitute_and_fold_engine->propagate_into_phi_args (bb);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
/* Perform final substitution and folding of propagated values.
|
|
Process the whole function if BLOCK is null, otherwise only
|
|
process the blocks that BLOCK dominates. In the latter case,
|
|
it is the caller's responsibility to ensure that dominator
|
|
information is available and up-to-date.
|
|
|
|
PROP_VALUE[I] contains the single value that should be substituted
|
|
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
|
|
substituted.
|
|
|
|
If FOLD_FN is non-NULL the function will be invoked on all statements
|
|
before propagating values for pass specific simplification.
|
|
|
|
DO_DCE is true if trivially dead stmts can be removed.
|
|
|
|
If DO_DCE is true, the statements within a BB are walked from
|
|
last to first element. Otherwise we scan from first to last element.
|
|
|
|
Return TRUE when something changed. */
|
|
|
|
bool
|
|
substitute_and_fold_engine::substitute_and_fold (basic_block block)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
|
|
|
|
memset (&prop_stats, 0, sizeof (prop_stats));
|
|
|
|
/* Don't call calculate_dominance_info when iterating over a subgraph.
|
|
Callers that are using the interface this way are likely to want to
|
|
iterate over several disjoint subgraphs, and it would be expensive
|
|
in enable-checking builds to revalidate the whole dominance tree
|
|
each time. */
|
|
if (block)
|
|
gcc_assert (dom_info_state (CDI_DOMINATORS));
|
|
else
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
substitute_and_fold_dom_walker walker (CDI_DOMINATORS, this);
|
|
walker.walk (block ? block : ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
/* We cannot remove stmts during the BB walk, especially not release
|
|
SSA names there as that destroys the lattice of our callers.
|
|
Remove stmts in reverse order to make debug stmt creation possible. */
|
|
while (!walker.stmts_to_remove.is_empty ())
|
|
{
|
|
gimple *stmt = walker.stmts_to_remove.pop ();
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Removing dead stmt ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
prop_stats.num_dce++;
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
remove_phi_node (&gsi, true);
|
|
else
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
}
|
|
|
|
if (!bitmap_empty_p (walker.need_eh_cleanup))
|
|
gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
|
|
|
|
/* Fixup stmts that became noreturn calls. This may require splitting
|
|
blocks and thus isn't possible during the dominator walk. Do this
|
|
in reverse order so we don't inadvertedly remove a stmt we want to
|
|
fixup by visiting a dominating now noreturn call first. */
|
|
while (!walker.stmts_to_fixup.is_empty ())
|
|
{
|
|
gimple *stmt = walker.stmts_to_fixup.pop ();
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Fixing up noreturn call ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
fixup_noreturn_call (stmt);
|
|
}
|
|
|
|
statistics_counter_event (cfun, "Constants propagated",
|
|
prop_stats.num_const_prop);
|
|
statistics_counter_event (cfun, "Copies propagated",
|
|
prop_stats.num_copy_prop);
|
|
statistics_counter_event (cfun, "Statements folded",
|
|
prop_stats.num_stmts_folded);
|
|
statistics_counter_event (cfun, "Statements deleted",
|
|
prop_stats.num_dce);
|
|
|
|
return walker.something_changed;
|
|
}
|
|
|
|
|
|
/* Return true if we may propagate ORIG into DEST, false otherwise. */
|
|
|
|
bool
|
|
may_propagate_copy (tree dest, tree orig)
|
|
{
|
|
tree type_d = TREE_TYPE (dest);
|
|
tree type_o = TREE_TYPE (orig);
|
|
|
|
/* If ORIG is a default definition which flows in from an abnormal edge
|
|
then the copy can be propagated. It is important that we do so to avoid
|
|
uninitialized copies. */
|
|
if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
|
|
&& SSA_NAME_IS_DEFAULT_DEF (orig)
|
|
&& (SSA_NAME_VAR (orig) == NULL_TREE
|
|
|| TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL))
|
|
;
|
|
/* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
|
|
be propagated. */
|
|
else if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
|
return false;
|
|
/* Similarly if DEST flows in from an abnormal edge then the copy cannot be
|
|
propagated. */
|
|
else if (TREE_CODE (dest) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
|
|
return false;
|
|
|
|
/* Do not copy between types for which we *do* need a conversion. */
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
|
return false;
|
|
|
|
/* Generally propagating virtual operands is not ok as that may
|
|
create overlapping life-ranges. */
|
|
if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
|
|
return false;
|
|
|
|
/* Anything else is OK. */
|
|
return true;
|
|
}
|
|
|
|
/* Like may_propagate_copy, but use as the destination expression
|
|
the principal expression (typically, the RHS) contained in
|
|
statement DEST. This is more efficient when working with the
|
|
gimple tuples representation. */
|
|
|
|
bool
|
|
may_propagate_copy_into_stmt (gimple *dest, tree orig)
|
|
{
|
|
tree type_d;
|
|
tree type_o;
|
|
|
|
/* If the statement is a switch or a single-rhs assignment,
|
|
then the expression to be replaced by the propagation may
|
|
be an SSA_NAME. Fortunately, there is an explicit tree
|
|
for the expression, so we delegate to may_propagate_copy. */
|
|
|
|
if (gimple_assign_single_p (dest))
|
|
return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
|
|
else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest))
|
|
return may_propagate_copy (gimple_switch_index (dest_swtch), orig);
|
|
|
|
/* In other cases, the expression is not materialized, so there
|
|
is no destination to pass to may_propagate_copy. On the other
|
|
hand, the expression cannot be an SSA_NAME, so the analysis
|
|
is much simpler. */
|
|
|
|
if (TREE_CODE (orig) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
|
return false;
|
|
|
|
if (is_gimple_assign (dest))
|
|
type_d = TREE_TYPE (gimple_assign_lhs (dest));
|
|
else if (gimple_code (dest) == GIMPLE_COND)
|
|
type_d = boolean_type_node;
|
|
else if (is_gimple_call (dest)
|
|
&& gimple_call_lhs (dest) != NULL_TREE)
|
|
type_d = TREE_TYPE (gimple_call_lhs (dest));
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
type_o = TREE_TYPE (orig);
|
|
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Similarly, but we know that we're propagating into an ASM_EXPR. */
|
|
|
|
bool
|
|
may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Common code for propagate_value and replace_exp.
|
|
|
|
Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
|
|
replacement is done to propagate a value or not. */
|
|
|
|
static void
|
|
replace_exp_1 (use_operand_p op_p, tree val,
|
|
bool for_propagation ATTRIBUTE_UNUSED)
|
|
{
|
|
if (flag_checking)
|
|
{
|
|
tree op = USE_FROM_PTR (op_p);
|
|
gcc_assert (!(for_propagation
|
|
&& TREE_CODE (op) == SSA_NAME
|
|
&& TREE_CODE (val) == SSA_NAME
|
|
&& !may_propagate_copy (op, val)));
|
|
}
|
|
|
|
if (TREE_CODE (val) == SSA_NAME)
|
|
SET_USE (op_p, val);
|
|
else
|
|
SET_USE (op_p, unshare_expr (val));
|
|
}
|
|
|
|
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
|
into the operand pointed to by OP_P.
|
|
|
|
Use this version for const/copy propagation as it will perform additional
|
|
checks to ensure validity of the const/copy propagation. */
|
|
|
|
void
|
|
propagate_value (use_operand_p op_p, tree val)
|
|
{
|
|
replace_exp_1 (op_p, val, true);
|
|
}
|
|
|
|
/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
|
|
|
|
Use this version when not const/copy propagating values. For example,
|
|
PRE uses this version when building expressions as they would appear
|
|
in specific blocks taking into account actions of PHI nodes.
|
|
|
|
The statement in which an expression has been replaced should be
|
|
folded using fold_stmt_inplace. */
|
|
|
|
void
|
|
replace_exp (use_operand_p op_p, tree val)
|
|
{
|
|
replace_exp_1 (op_p, val, false);
|
|
}
|
|
|
|
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
|
into the tree pointed to by OP_P.
|
|
|
|
Use this version for const/copy propagation when SSA operands are not
|
|
available. It will perform the additional checks to ensure validity of
|
|
the const/copy propagation, but will not update any operand information.
|
|
Be sure to mark the stmt as modified. */
|
|
|
|
void
|
|
propagate_tree_value (tree *op_p, tree val)
|
|
{
|
|
if (TREE_CODE (val) == SSA_NAME)
|
|
*op_p = val;
|
|
else
|
|
*op_p = unshare_expr (val);
|
|
}
|
|
|
|
|
|
/* Like propagate_tree_value, but use as the operand to replace
|
|
the principal expression (typically, the RHS) contained in the
|
|
statement referenced by iterator GSI. Note that it is not
|
|
always possible to update the statement in-place, so a new
|
|
statement may be created to replace the original. */
|
|
|
|
void
|
|
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
tree expr = NULL_TREE;
|
|
if (gimple_assign_single_p (stmt))
|
|
expr = gimple_assign_rhs1 (stmt);
|
|
propagate_tree_value (&expr, val);
|
|
gimple_assign_set_rhs_from_tree (gsi, expr);
|
|
}
|
|
else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
|
|
{
|
|
tree lhs = NULL_TREE;
|
|
tree rhs = build_zero_cst (TREE_TYPE (val));
|
|
propagate_tree_value (&lhs, val);
|
|
gimple_cond_set_code (cond_stmt, NE_EXPR);
|
|
gimple_cond_set_lhs (cond_stmt, lhs);
|
|
gimple_cond_set_rhs (cond_stmt, rhs);
|
|
}
|
|
else if (is_gimple_call (stmt)
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
|
{
|
|
tree expr = NULL_TREE;
|
|
bool res;
|
|
propagate_tree_value (&expr, val);
|
|
res = update_call_from_tree (gsi, expr);
|
|
gcc_assert (res);
|
|
}
|
|
else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
|
|
propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val);
|
|
else
|
|
gcc_unreachable ();
|
|
}
|