d02af17340
include: * ansidecl.h: All logic from gcc/gansidecl.h moved here. gcc: * gansidecl.h: Delete file. * configure.in: Change all refs to gansidecl.h to use ansidecl.h. Adjust *_file_list so they know where ansidecl.h lives. * configure: Regenerate. * Makefile.in (intl.o): Don't depend on gansidecl.h. * defaults.h: s/gansidecl.h/ansidecl.h/ in comment. * ggc.h, config/fr30/fr30.h, config/mcore/mcore.c: Don't include gansidecl.h. * intl.c, main.c, version.c, fixinc/fixlib.h, fixinc/procopen.c, fixinc/server.c: Include ansidecl.h not gansidecl.h. gcc/java: * Make-lang.in (buffer.o, check-init.o, class.o): Don't depend on gansidecl.h. * buffer.c, jvgenmain.c: Don't include gansidecl.h. libiberty: * make-temp-file.c (try): Inline. From-SVN: r41069 |
||
---|---|---|
.. | ||
tests/base | ||
check.tpl | ||
fixfixes.c | ||
fixinc.dgux | ||
fixinc.interix | ||
fixinc.ptx | ||
fixinc.svr4 | ||
fixinc.winnt | ||
fixinc.wrap | ||
fixincl.c | ||
fixincl.sh | ||
fixincl.tpl | ||
fixincl.x | ||
fixlib.c | ||
fixlib.h | ||
fixtests.c | ||
genfixes | ||
gnu-regex.c | ||
gnu-regex.h | ||
inclhack.def | ||
Makefile.in | ||
mkfixinc.sh | ||
procopen.c | ||
README | ||
server.c | ||
server.h |
FIXINCLUDES OPERATION ===================== See also: http://autogen.SourceForge.net/fixincludes The set of fixes required was distilled down to just the data required to specify what needed to happen for each fix. Those data were edited into a file named gcc/fixinc/inclhack.def. A program called AutoGen (http://autogen.SourceForge.net, ver 4.x) uses these definitions to instantiate several different templates (gcc/fixinc/*.tpl) that then produces a fixincludes replacement shell script (inclhack.sh), a replacement binary program (fixincl.x). If there is no special purpose script, then mkfixinc.sh will try to compile, link and execute the fixincl program. Otherwise, it will install and use the current fixinc.* for that system instead. Also, on certain platforms (viz. those that do not have functional bidirectional pipes), the fixincl program is split into two. This should only concern you on DOS and BeOS. Regards, Bruce <bkorb@gnu.org> GCC MAINTAINER INFORMATION ========================== If you are having some problem with a system header that is either broken by the manufacturer, or is broken by the fixinclude process, then you will need to alter or add information to the include fix definitions file, ``inclhack.def''. Please also send relevant information to gcc-bugs@gcc.gnu.org, gcc-patches@gcc.gnu.org and, please, to me: bkorb@gnu.org. Here are the rules for making fixes in the inclhack.def file: 1. Every fix must have a "hackname" that is compatible with C syntax for variable names and is unique without regard to alphabetic case. Please keep them alphabetical by this name. :-) 2. If the problem is known to exist only in certain files, then name each such file with a "files = " entry. 3. It is relatively expensive to fire off a process to fix a source file, therefore write apply tests to avoid unnecessary fix processes. The preferred apply tests are "select", "bypass" and "c_test" because they are performed internally. "test" sends a command to a server shell that actually fires off one or more processes to do the testing. Avoid it, if you can, but it is still more efficient than a fix process. Also available is "mach". If the target machine matches any of the named globbing-style patterns, then the machine name test will pass. It is desired, however, to limit the use of this test. These tests are required to: 1. Be positive for all header files that require the fix. It is desireable to: 2. Be negative as often as possible whenever the fix is not required, avoiding the process overhead. It is nice if: 3. The expression is as simple as possible to both process and understand by people. :-) Please take advantage of the fact AutoGen will glue together string fragments. It helps. Also take note that double quote strings and single quote strings have different formation rules. Double quote strings are a tiny superset of ANSI-C string syntax. Single quote strings follow shell single quote string formation rules, except that the backslash is processed before '\\', '\'' and '#' characters (using C character syntax). Examples of test specifications: hackname = broken_assert_stdio; files = assert.h; select = stderr; bypass = "include.*stdio.h"; The ``broken_assert_stdio'' fix will be applied only to a file named "assert.h" if it contains the string "stderr" _and_ it does _not_ contain the expression "include.*stdio.h". hackname = no_double_slash; c_test = "double_slash"; The ``no_double_slash'' fix will be applied if the ``double_slash_test()'' function says to. See ``fixtests.c'' for documentation on how to include new functions into that module. 4. There are currently four methods of fixing a file: 1. a series of sed expressions. Each will be an individual "-e" argument to a single invocation of sed. 2. a shell script. These scripts are _required_ to read all of stdin in order to avoid pipe stalls. They may choose to discard the input. 3. Replacement text. If the replacement is empty, then no fix is applied. Otherwise, the replacement text is written to the output file and no further fixes are applied. If you really want a no-op file, replace the file with a comment. Replacement text "fixes" must be first in this file!! 4. A C language subroutine method for both tests and fixes. See ``fixtests.c'' for instructions on writing C-language applicability tests and ``fixfixes.c'' for C-language fixing. These files also contain tables that describe the currently implemented fixes and tests. If at all possible, you should try to use one of the C language fixes as it is far more efficient. There are currently five such fixes, three of which are very special purpose: i) char_macro_def - This function repairs the definition of an ioctl macro that presumes CPP macro substitution within pairs of single quote characters. ii) char_macro_use - This function repairs the usage of ioctl macros that no longer can wrap an argument with single quotes. iii) machine_name - This function will look at "#if", "#ifdef", "#ifndef" and "#elif" directive lines and replace the first occurrence of a non-reserved name that is traditionally pre-defined by the native compiler. The next two are for general use: iv) wrap - wraps the entire file with "#ifndef", "#define" and "#endif" self-exclusionary text. It also, optionally, inserts a prolog after the "#define" and an epilog just before the "#endif". You can use this for a fix as follows: c_fix = wrap; c_fix_arg = "/* prolog text */"; c_fix_arg = "/* epilog text */"; If you want an epilog without a prolog, set the first "c_fix_arg" to the empty string. Both or the second "c_fix_arg"s may be omitted and the file will still be wrapped. THERE IS A SPECIAL EXCEPTION TO THIS, HOWEVER: If the regular expression '#if.*__need' is found, then it is assumed that the file needs to be read and interpreted more than once. However, the prolog and epilog text (if any) will be inserted. v) format - Replaces text selected with a regular expression with a specialized formating string. The formatting works as follows: The format text is copied to the output until a '%' character is found. If the character after the '%' is another '%', then one '%' is output and processing continues. If the following character is not a digit, then the '%' and that character are copied and processing continues. Finally, if the '%' *is* followed by a digit, that digit is used as an index into the regmatch_t array to replace the two characters with the matched text. i.e.: "%0" is replaced by the full matching text, "%1" is the first matching sub-expression, etc. This is used as follows: c_fix = format; c_fix_arg = "#ifndef %1\n%0\n#endif"; c_fix_arg = "#define[ \t]+([A-Z][A-Z0-9a-z_]*).*"; This would wrap a traditional #define inside of a "#ifndef"/"#endif" pair. The second "c_fix_arg" may be omitted *IF* there is a select clause and the first one matches the text you want replaced. You may delete text by supplying an empty string for the format (the first "c_fix_arg"). Note: In general, a format c_fix may be used in place of one sed expression. However, it will need to be rewritten by hand. For example: sed = 's@^#if __GNUC__ == 2 && __GNUC_MINOR__ >= 7$' '@& || __GNUC__ >= 3@'; may be rewritten using a format c_fix as: c_fix = format; c_fix_arg = '%0 || __GNUC__ >= 3'; c_fix_arg = '^#if __GNUC__ == 2 && __GNUC_MINOR__ >= 7$'; Multiple sed substitution expressions probably ought to remain sed expressions in order to maintain clarity. Also note that if the second sed expression is the same as the first select expression, then you may omit the second c_fix_arg. The select expression will be picked up and used in its absence. EXAMPLES OF FIXES: ================== hackname = AAA_ki_iface; replace; /* empty replacement -> no fixing the file */ When this ``fix'' is invoked, it will prevent any fixes from being applied. ------------------ hackname = AAB_svr4_no_varargs; replace = "/* This file was generated by fixincludes. */\n" "#ifndef _SYS_VARARGS_H\n" "#define _SYS_VARARGS_H\n\n" "#ifdef __STDC__\n" "#include <stdarg.h>\n" "#else\n" "#include <varargs.h>\n" "#endif\n\n" "#endif /* _SYS_VARARGS_H */\n"; When this ``fix'' is invoked, the replacement text will be emitted into the replacement include file. No further fixes will be applied. ------------------ hackname = hpux11_fabsf; files = math.h; select = "^[ \t]*#[ \t]*define[ \t]+fabsf\\(.*"; bypass = "__cplusplus"; c_fix = format; c_fix_arg = "#ifndef __cplusplus\n%0\n#endif"; test_text = "# define fabsf(x) ((float)fabs((double)(float)(x)))\n"; This fix will ensure that the #define for fabs is wrapped with C++ protection, providing the header is not already C++ aware. ------------------ 5. Testing fixes. The brute force method is, of course, to configure and build GCC. But you can also: cd ${top_builddir}/gcc rm -rf fixinc.sh include/ stmp-fixinc make stmp-fixinc I would really recommend, however: cd ${top_builddir}/gcc/fixinc make check To do this, you *must* have autogen installed on your system. The "check" step will proceed to construct a shell script that will exercize all the fixes, using the sample test_text provided with each fix. Once done, the changes made will be compared against the changes saved in the source directory. If you are changing the tests or fixes, the change will likely be highlighted.