e712ef9eee
gcc/ChangeLog: * tree-ssa-ccp.c (gsi_prev_dom_bb_nondebug): Use gsi_bb instead of gimple_stmt_iterator::bb. * tree-ssa-math-opts.c (insert_reciprocals): Likewise. * tree-vectorizer.h: Likewise.
3607 lines
102 KiB
C
3607 lines
102 KiB
C
/* Conditional constant propagation pass for the GNU compiler.
|
|
Copyright (C) 2000-2020 Free Software Foundation, Inc.
|
|
Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
|
|
Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Conditional constant propagation (CCP) is based on the SSA
|
|
propagation engine (tree-ssa-propagate.c). Constant assignments of
|
|
the form VAR = CST are propagated from the assignments into uses of
|
|
VAR, which in turn may generate new constants. The simulation uses
|
|
a four level lattice to keep track of constant values associated
|
|
with SSA names. Given an SSA name V_i, it may take one of the
|
|
following values:
|
|
|
|
UNINITIALIZED -> the initial state of the value. This value
|
|
is replaced with a correct initial value
|
|
the first time the value is used, so the
|
|
rest of the pass does not need to care about
|
|
it. Using this value simplifies initialization
|
|
of the pass, and prevents us from needlessly
|
|
scanning statements that are never reached.
|
|
|
|
UNDEFINED -> V_i is a local variable whose definition
|
|
has not been processed yet. Therefore we
|
|
don't yet know if its value is a constant
|
|
or not.
|
|
|
|
CONSTANT -> V_i has been found to hold a constant
|
|
value C.
|
|
|
|
VARYING -> V_i cannot take a constant value, or if it
|
|
does, it is not possible to determine it
|
|
at compile time.
|
|
|
|
The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
|
|
|
|
1- In ccp_visit_stmt, we are interested in assignments whose RHS
|
|
evaluates into a constant and conditional jumps whose predicate
|
|
evaluates into a boolean true or false. When an assignment of
|
|
the form V_i = CONST is found, V_i's lattice value is set to
|
|
CONSTANT and CONST is associated with it. This causes the
|
|
propagation engine to add all the SSA edges coming out the
|
|
assignment into the worklists, so that statements that use V_i
|
|
can be visited.
|
|
|
|
If the statement is a conditional with a constant predicate, we
|
|
mark the outgoing edges as executable or not executable
|
|
depending on the predicate's value. This is then used when
|
|
visiting PHI nodes to know when a PHI argument can be ignored.
|
|
|
|
|
|
2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
|
|
same constant C, then the LHS of the PHI is set to C. This
|
|
evaluation is known as the "meet operation". Since one of the
|
|
goals of this evaluation is to optimistically return constant
|
|
values as often as possible, it uses two main short cuts:
|
|
|
|
- If an argument is flowing in through a non-executable edge, it
|
|
is ignored. This is useful in cases like this:
|
|
|
|
if (PRED)
|
|
a_9 = 3;
|
|
else
|
|
a_10 = 100;
|
|
a_11 = PHI (a_9, a_10)
|
|
|
|
If PRED is known to always evaluate to false, then we can
|
|
assume that a_11 will always take its value from a_10, meaning
|
|
that instead of consider it VARYING (a_9 and a_10 have
|
|
different values), we can consider it CONSTANT 100.
|
|
|
|
- If an argument has an UNDEFINED value, then it does not affect
|
|
the outcome of the meet operation. If a variable V_i has an
|
|
UNDEFINED value, it means that either its defining statement
|
|
hasn't been visited yet or V_i has no defining statement, in
|
|
which case the original symbol 'V' is being used
|
|
uninitialized. Since 'V' is a local variable, the compiler
|
|
may assume any initial value for it.
|
|
|
|
|
|
After propagation, every variable V_i that ends up with a lattice
|
|
value of CONSTANT will have the associated constant value in the
|
|
array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
|
|
final substitution and folding.
|
|
|
|
This algorithm uses wide-ints at the max precision of the target.
|
|
This means that, with one uninteresting exception, variables with
|
|
UNSIGNED types never go to VARYING because the bits above the
|
|
precision of the type of the variable are always zero. The
|
|
uninteresting case is a variable of UNSIGNED type that has the
|
|
maximum precision of the target. Such variables can go to VARYING,
|
|
but this causes no loss of infomation since these variables will
|
|
never be extended.
|
|
|
|
References:
|
|
|
|
Constant propagation with conditional branches,
|
|
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
|
|
|
|
Building an Optimizing Compiler,
|
|
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
|
|
|
Advanced Compiler Design and Implementation,
|
|
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "fold-const.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "dbgcnt.h"
|
|
#include "builtins.h"
|
|
#include "cfgloop.h"
|
|
#include "stor-layout.h"
|
|
#include "optabs-query.h"
|
|
#include "tree-ssa-ccp.h"
|
|
#include "tree-dfa.h"
|
|
#include "diagnostic-core.h"
|
|
#include "stringpool.h"
|
|
#include "attribs.h"
|
|
#include "tree-vector-builder.h"
|
|
#include "cgraph.h"
|
|
#include "alloc-pool.h"
|
|
#include "symbol-summary.h"
|
|
#include "ipa-utils.h"
|
|
#include "ipa-prop.h"
|
|
|
|
/* Possible lattice values. */
|
|
typedef enum
|
|
{
|
|
UNINITIALIZED,
|
|
UNDEFINED,
|
|
CONSTANT,
|
|
VARYING
|
|
} ccp_lattice_t;
|
|
|
|
class ccp_prop_value_t {
|
|
public:
|
|
/* Lattice value. */
|
|
ccp_lattice_t lattice_val;
|
|
|
|
/* Propagated value. */
|
|
tree value;
|
|
|
|
/* Mask that applies to the propagated value during CCP. For X
|
|
with a CONSTANT lattice value X & ~mask == value & ~mask. The
|
|
zero bits in the mask cover constant values. The ones mean no
|
|
information. */
|
|
widest_int mask;
|
|
};
|
|
|
|
class ccp_propagate : public ssa_propagation_engine
|
|
{
|
|
public:
|
|
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
|
|
enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
|
|
};
|
|
|
|
/* Array of propagated constant values. After propagation,
|
|
CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
|
|
the constant is held in an SSA name representing a memory store
|
|
(i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
|
|
memory reference used to store (i.e., the LHS of the assignment
|
|
doing the store). */
|
|
static ccp_prop_value_t *const_val;
|
|
static unsigned n_const_val;
|
|
|
|
static void canonicalize_value (ccp_prop_value_t *);
|
|
static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
|
|
|
|
/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
|
|
|
|
static void
|
|
dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
|
|
{
|
|
switch (val.lattice_val)
|
|
{
|
|
case UNINITIALIZED:
|
|
fprintf (outf, "%sUNINITIALIZED", prefix);
|
|
break;
|
|
case UNDEFINED:
|
|
fprintf (outf, "%sUNDEFINED", prefix);
|
|
break;
|
|
case VARYING:
|
|
fprintf (outf, "%sVARYING", prefix);
|
|
break;
|
|
case CONSTANT:
|
|
if (TREE_CODE (val.value) != INTEGER_CST
|
|
|| val.mask == 0)
|
|
{
|
|
fprintf (outf, "%sCONSTANT ", prefix);
|
|
print_generic_expr (outf, val.value, dump_flags);
|
|
}
|
|
else
|
|
{
|
|
widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
|
|
val.mask);
|
|
fprintf (outf, "%sCONSTANT ", prefix);
|
|
print_hex (cval, outf);
|
|
fprintf (outf, " (");
|
|
print_hex (val.mask, outf);
|
|
fprintf (outf, ")");
|
|
}
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Print lattice value VAL to stderr. */
|
|
|
|
void debug_lattice_value (ccp_prop_value_t val);
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_lattice_value (ccp_prop_value_t val)
|
|
{
|
|
dump_lattice_value (stderr, "", val);
|
|
fprintf (stderr, "\n");
|
|
}
|
|
|
|
/* Extend NONZERO_BITS to a full mask, based on sgn. */
|
|
|
|
static widest_int
|
|
extend_mask (const wide_int &nonzero_bits, signop sgn)
|
|
{
|
|
return widest_int::from (nonzero_bits, sgn);
|
|
}
|
|
|
|
/* Compute a default value for variable VAR and store it in the
|
|
CONST_VAL array. The following rules are used to get default
|
|
values:
|
|
|
|
1- Global and static variables that are declared constant are
|
|
considered CONSTANT.
|
|
|
|
2- Any other value is considered UNDEFINED. This is useful when
|
|
considering PHI nodes. PHI arguments that are undefined do not
|
|
change the constant value of the PHI node, which allows for more
|
|
constants to be propagated.
|
|
|
|
3- Variables defined by statements other than assignments and PHI
|
|
nodes are considered VARYING.
|
|
|
|
4- Initial values of variables that are not GIMPLE registers are
|
|
considered VARYING. */
|
|
|
|
static ccp_prop_value_t
|
|
get_default_value (tree var)
|
|
{
|
|
ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
|
|
gimple *stmt;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
|
|
|
if (gimple_nop_p (stmt))
|
|
{
|
|
/* Variables defined by an empty statement are those used
|
|
before being initialized. If VAR is a local variable, we
|
|
can assume initially that it is UNDEFINED, otherwise we must
|
|
consider it VARYING. */
|
|
if (!virtual_operand_p (var)
|
|
&& SSA_NAME_VAR (var)
|
|
&& TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
|
|
val.lattice_val = UNDEFINED;
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = -1;
|
|
if (flag_tree_bit_ccp)
|
|
{
|
|
wide_int nonzero_bits = get_nonzero_bits (var);
|
|
tree value;
|
|
widest_int mask;
|
|
|
|
if (SSA_NAME_VAR (var)
|
|
&& TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
|
|
&& ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = value;
|
|
val.mask = mask;
|
|
if (nonzero_bits != -1)
|
|
val.mask &= extend_mask (nonzero_bits,
|
|
TYPE_SIGN (TREE_TYPE (var)));
|
|
}
|
|
else if (nonzero_bits != -1)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_zero_cst (TREE_TYPE (var));
|
|
val.mask = extend_mask (nonzero_bits,
|
|
TYPE_SIGN (TREE_TYPE (var)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (is_gimple_assign (stmt))
|
|
{
|
|
tree cst;
|
|
if (gimple_assign_single_p (stmt)
|
|
&& DECL_P (gimple_assign_rhs1 (stmt))
|
|
&& (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = cst;
|
|
}
|
|
else
|
|
{
|
|
/* Any other variable defined by an assignment is considered
|
|
UNDEFINED. */
|
|
val.lattice_val = UNDEFINED;
|
|
}
|
|
}
|
|
else if ((is_gimple_call (stmt)
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
|
|| gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
/* A variable defined by a call or a PHI node is considered
|
|
UNDEFINED. */
|
|
val.lattice_val = UNDEFINED;
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, VAR will never take on a constant value. */
|
|
val.lattice_val = VARYING;
|
|
val.mask = -1;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
/* Get the constant value associated with variable VAR. */
|
|
|
|
static inline ccp_prop_value_t *
|
|
get_value (tree var)
|
|
{
|
|
ccp_prop_value_t *val;
|
|
|
|
if (const_val == NULL
|
|
|| SSA_NAME_VERSION (var) >= n_const_val)
|
|
return NULL;
|
|
|
|
val = &const_val[SSA_NAME_VERSION (var)];
|
|
if (val->lattice_val == UNINITIALIZED)
|
|
*val = get_default_value (var);
|
|
|
|
canonicalize_value (val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Return the constant tree value associated with VAR. */
|
|
|
|
static inline tree
|
|
get_constant_value (tree var)
|
|
{
|
|
ccp_prop_value_t *val;
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
if (is_gimple_min_invariant (var))
|
|
return var;
|
|
return NULL_TREE;
|
|
}
|
|
val = get_value (var);
|
|
if (val
|
|
&& val->lattice_val == CONSTANT
|
|
&& (TREE_CODE (val->value) != INTEGER_CST
|
|
|| val->mask == 0))
|
|
return val->value;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Sets the value associated with VAR to VARYING. */
|
|
|
|
static inline void
|
|
set_value_varying (tree var)
|
|
{
|
|
ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
|
|
|
|
val->lattice_val = VARYING;
|
|
val->value = NULL_TREE;
|
|
val->mask = -1;
|
|
}
|
|
|
|
/* For integer constants, make sure to drop TREE_OVERFLOW. */
|
|
|
|
static void
|
|
canonicalize_value (ccp_prop_value_t *val)
|
|
{
|
|
if (val->lattice_val != CONSTANT)
|
|
return;
|
|
|
|
if (TREE_OVERFLOW_P (val->value))
|
|
val->value = drop_tree_overflow (val->value);
|
|
}
|
|
|
|
/* Return whether the lattice transition is valid. */
|
|
|
|
static bool
|
|
valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
|
|
{
|
|
/* Lattice transitions must always be monotonically increasing in
|
|
value. */
|
|
if (old_val.lattice_val < new_val.lattice_val)
|
|
return true;
|
|
|
|
if (old_val.lattice_val != new_val.lattice_val)
|
|
return false;
|
|
|
|
if (!old_val.value && !new_val.value)
|
|
return true;
|
|
|
|
/* Now both lattice values are CONSTANT. */
|
|
|
|
/* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
|
|
when only a single copy edge is executable. */
|
|
if (TREE_CODE (old_val.value) == SSA_NAME
|
|
&& TREE_CODE (new_val.value) == SSA_NAME)
|
|
return true;
|
|
|
|
/* Allow transitioning from a constant to a copy. */
|
|
if (is_gimple_min_invariant (old_val.value)
|
|
&& TREE_CODE (new_val.value) == SSA_NAME)
|
|
return true;
|
|
|
|
/* Allow transitioning from PHI <&x, not executable> == &x
|
|
to PHI <&x, &y> == common alignment. */
|
|
if (TREE_CODE (old_val.value) != INTEGER_CST
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST)
|
|
return true;
|
|
|
|
/* Bit-lattices have to agree in the still valid bits. */
|
|
if (TREE_CODE (old_val.value) == INTEGER_CST
|
|
&& TREE_CODE (new_val.value) == INTEGER_CST)
|
|
return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
|
|
== wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
|
|
|
|
/* Otherwise constant values have to agree. */
|
|
if (operand_equal_p (old_val.value, new_val.value, 0))
|
|
return true;
|
|
|
|
/* At least the kinds and types should agree now. */
|
|
if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
|
|
|| !types_compatible_p (TREE_TYPE (old_val.value),
|
|
TREE_TYPE (new_val.value)))
|
|
return false;
|
|
|
|
/* For floats and !HONOR_NANS allow transitions from (partial) NaN
|
|
to non-NaN. */
|
|
tree type = TREE_TYPE (new_val.value);
|
|
if (SCALAR_FLOAT_TYPE_P (type)
|
|
&& !HONOR_NANS (type))
|
|
{
|
|
if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
|
|
return true;
|
|
}
|
|
else if (VECTOR_FLOAT_TYPE_P (type)
|
|
&& !HONOR_NANS (type))
|
|
{
|
|
unsigned int count
|
|
= tree_vector_builder::binary_encoded_nelts (old_val.value,
|
|
new_val.value);
|
|
for (unsigned int i = 0; i < count; ++i)
|
|
if (!REAL_VALUE_ISNAN
|
|
(TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
|
|
&& !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
|
|
VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
|
|
return false;
|
|
return true;
|
|
}
|
|
else if (COMPLEX_FLOAT_TYPE_P (type)
|
|
&& !HONOR_NANS (type))
|
|
{
|
|
if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
|
|
&& !operand_equal_p (TREE_REALPART (old_val.value),
|
|
TREE_REALPART (new_val.value), 0))
|
|
return false;
|
|
if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
|
|
&& !operand_equal_p (TREE_IMAGPART (old_val.value),
|
|
TREE_IMAGPART (new_val.value), 0))
|
|
return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Set the value for variable VAR to NEW_VAL. Return true if the new
|
|
value is different from VAR's previous value. */
|
|
|
|
static bool
|
|
set_lattice_value (tree var, ccp_prop_value_t *new_val)
|
|
{
|
|
/* We can deal with old UNINITIALIZED values just fine here. */
|
|
ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
|
|
|
|
canonicalize_value (new_val);
|
|
|
|
/* We have to be careful to not go up the bitwise lattice
|
|
represented by the mask. Instead of dropping to VARYING
|
|
use the meet operator to retain a conservative value.
|
|
Missed optimizations like PR65851 makes this necessary.
|
|
It also ensures we converge to a stable lattice solution. */
|
|
if (old_val->lattice_val != UNINITIALIZED)
|
|
ccp_lattice_meet (new_val, old_val);
|
|
|
|
gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
|
|
|
|
/* If *OLD_VAL and NEW_VAL are the same, return false to inform the
|
|
caller that this was a non-transition. */
|
|
if (old_val->lattice_val != new_val->lattice_val
|
|
|| (new_val->lattice_val == CONSTANT
|
|
&& (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
|
|
|| (TREE_CODE (new_val->value) == INTEGER_CST
|
|
&& (new_val->mask != old_val->mask
|
|
|| (wi::bit_and_not (wi::to_widest (old_val->value),
|
|
new_val->mask)
|
|
!= wi::bit_and_not (wi::to_widest (new_val->value),
|
|
new_val->mask))))
|
|
|| (TREE_CODE (new_val->value) != INTEGER_CST
|
|
&& !operand_equal_p (new_val->value, old_val->value, 0)))))
|
|
{
|
|
/* ??? We would like to delay creation of INTEGER_CSTs from
|
|
partially constants here. */
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
|
|
fprintf (dump_file, ". Adding SSA edges to worklist.\n");
|
|
}
|
|
|
|
*old_val = *new_val;
|
|
|
|
gcc_assert (new_val->lattice_val != UNINITIALIZED);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static ccp_prop_value_t get_value_for_expr (tree, bool);
|
|
static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
|
|
void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
|
|
signop, int, const widest_int &, const widest_int &,
|
|
signop, int, const widest_int &, const widest_int &);
|
|
|
|
/* Return a widest_int that can be used for bitwise simplifications
|
|
from VAL. */
|
|
|
|
static widest_int
|
|
value_to_wide_int (ccp_prop_value_t val)
|
|
{
|
|
if (val.value
|
|
&& TREE_CODE (val.value) == INTEGER_CST)
|
|
return wi::to_widest (val.value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the value for the address expression EXPR based on alignment
|
|
information. */
|
|
|
|
static ccp_prop_value_t
|
|
get_value_from_alignment (tree expr)
|
|
{
|
|
tree type = TREE_TYPE (expr);
|
|
ccp_prop_value_t val;
|
|
unsigned HOST_WIDE_INT bitpos;
|
|
unsigned int align;
|
|
|
|
gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
|
|
|
|
get_pointer_alignment_1 (expr, &align, &bitpos);
|
|
val.mask = wi::bit_and_not
|
|
(POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
|
|
? wi::mask <widest_int> (TYPE_PRECISION (type), false)
|
|
: -1,
|
|
align / BITS_PER_UNIT - 1);
|
|
val.lattice_val
|
|
= wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
|
|
if (val.lattice_val == CONSTANT)
|
|
val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
|
|
else
|
|
val.value = NULL_TREE;
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Return the value for the tree operand EXPR. If FOR_BITS_P is true
|
|
return constant bits extracted from alignment information for
|
|
invariant addresses. */
|
|
|
|
static ccp_prop_value_t
|
|
get_value_for_expr (tree expr, bool for_bits_p)
|
|
{
|
|
ccp_prop_value_t val;
|
|
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
{
|
|
ccp_prop_value_t *val_ = get_value (expr);
|
|
if (val_)
|
|
val = *val_;
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
if (for_bits_p
|
|
&& val.lattice_val == CONSTANT)
|
|
{
|
|
if (TREE_CODE (val.value) == ADDR_EXPR)
|
|
val = get_value_from_alignment (val.value);
|
|
else if (TREE_CODE (val.value) != INTEGER_CST)
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
}
|
|
/* Fall back to a copy value. */
|
|
if (!for_bits_p
|
|
&& val.lattice_val == VARYING
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = expr;
|
|
val.mask = -1;
|
|
}
|
|
}
|
|
else if (is_gimple_min_invariant (expr)
|
|
&& (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = expr;
|
|
val.mask = 0;
|
|
canonicalize_value (&val);
|
|
}
|
|
else if (TREE_CODE (expr) == ADDR_EXPR)
|
|
val = get_value_from_alignment (expr);
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.mask = -1;
|
|
val.value = NULL_TREE;
|
|
}
|
|
|
|
if (val.lattice_val == VARYING
|
|
&& TYPE_UNSIGNED (TREE_TYPE (expr)))
|
|
val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
|
|
|
|
return val;
|
|
}
|
|
|
|
/* Return the likely CCP lattice value for STMT.
|
|
|
|
If STMT has no operands, then return CONSTANT.
|
|
|
|
Else if undefinedness of operands of STMT cause its value to be
|
|
undefined, then return UNDEFINED.
|
|
|
|
Else if any operands of STMT are constants, then return CONSTANT.
|
|
|
|
Else return VARYING. */
|
|
|
|
static ccp_lattice_t
|
|
likely_value (gimple *stmt)
|
|
{
|
|
bool has_constant_operand, has_undefined_operand, all_undefined_operands;
|
|
bool has_nsa_operand;
|
|
tree use;
|
|
ssa_op_iter iter;
|
|
unsigned i;
|
|
|
|
enum gimple_code code = gimple_code (stmt);
|
|
|
|
/* This function appears to be called only for assignments, calls,
|
|
conditionals, and switches, due to the logic in visit_stmt. */
|
|
gcc_assert (code == GIMPLE_ASSIGN
|
|
|| code == GIMPLE_CALL
|
|
|| code == GIMPLE_COND
|
|
|| code == GIMPLE_SWITCH);
|
|
|
|
/* If the statement has volatile operands, it won't fold to a
|
|
constant value. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return VARYING;
|
|
|
|
/* Arrive here for more complex cases. */
|
|
has_constant_operand = false;
|
|
has_undefined_operand = false;
|
|
all_undefined_operands = true;
|
|
has_nsa_operand = false;
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
{
|
|
ccp_prop_value_t *val = get_value (use);
|
|
|
|
if (val && val->lattice_val == UNDEFINED)
|
|
has_undefined_operand = true;
|
|
else
|
|
all_undefined_operands = false;
|
|
|
|
if (val && val->lattice_val == CONSTANT)
|
|
has_constant_operand = true;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (use)
|
|
|| !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
|
|
has_nsa_operand = true;
|
|
}
|
|
|
|
/* There may be constants in regular rhs operands. For calls we
|
|
have to ignore lhs, fndecl and static chain, otherwise only
|
|
the lhs. */
|
|
for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
|
|
i < gimple_num_ops (stmt); ++i)
|
|
{
|
|
tree op = gimple_op (stmt, i);
|
|
if (!op || TREE_CODE (op) == SSA_NAME)
|
|
continue;
|
|
if (is_gimple_min_invariant (op))
|
|
has_constant_operand = true;
|
|
}
|
|
|
|
if (has_constant_operand)
|
|
all_undefined_operands = false;
|
|
|
|
if (has_undefined_operand
|
|
&& code == GIMPLE_CALL
|
|
&& gimple_call_internal_p (stmt))
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
/* These 3 builtins use the first argument just as a magic
|
|
way how to find out a decl uid. */
|
|
case IFN_GOMP_SIMD_LANE:
|
|
case IFN_GOMP_SIMD_VF:
|
|
case IFN_GOMP_SIMD_LAST_LANE:
|
|
has_undefined_operand = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* If the operation combines operands like COMPLEX_EXPR make sure to
|
|
not mark the result UNDEFINED if only one part of the result is
|
|
undefined. */
|
|
if (has_undefined_operand && all_undefined_operands)
|
|
return UNDEFINED;
|
|
else if (code == GIMPLE_ASSIGN && has_undefined_operand)
|
|
{
|
|
switch (gimple_assign_rhs_code (stmt))
|
|
{
|
|
/* Unary operators are handled with all_undefined_operands. */
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
/* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
|
|
Not bitwise operators, one VARYING operand may specify the
|
|
result completely.
|
|
Not logical operators for the same reason, apart from XOR.
|
|
Not COMPLEX_EXPR as one VARYING operand makes the result partly
|
|
not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
|
|
the undefined operand may be promoted. */
|
|
return UNDEFINED;
|
|
|
|
case ADDR_EXPR:
|
|
/* If any part of an address is UNDEFINED, like the index
|
|
of an ARRAY_EXPR, then treat the result as UNDEFINED. */
|
|
return UNDEFINED;
|
|
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
/* If there was an UNDEFINED operand but the result may be not UNDEFINED
|
|
fall back to CONSTANT. During iteration UNDEFINED may still drop
|
|
to CONSTANT. */
|
|
if (has_undefined_operand)
|
|
return CONSTANT;
|
|
|
|
/* We do not consider virtual operands here -- load from read-only
|
|
memory may have only VARYING virtual operands, but still be
|
|
constant. Also we can combine the stmt with definitions from
|
|
operands whose definitions are not simulated again. */
|
|
if (has_constant_operand
|
|
|| has_nsa_operand
|
|
|| gimple_references_memory_p (stmt))
|
|
return CONSTANT;
|
|
|
|
return VARYING;
|
|
}
|
|
|
|
/* Returns true if STMT cannot be constant. */
|
|
|
|
static bool
|
|
surely_varying_stmt_p (gimple *stmt)
|
|
{
|
|
/* If the statement has operands that we cannot handle, it cannot be
|
|
constant. */
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return true;
|
|
|
|
/* If it is a call and does not return a value or is not a
|
|
builtin and not an indirect call or a call to function with
|
|
assume_aligned/alloc_align attribute, it is varying. */
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
tree fndecl, fntype = gimple_call_fntype (stmt);
|
|
if (!gimple_call_lhs (stmt)
|
|
|| ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
|
|
&& !fndecl_built_in_p (fndecl)
|
|
&& !lookup_attribute ("assume_aligned",
|
|
TYPE_ATTRIBUTES (fntype))
|
|
&& !lookup_attribute ("alloc_align",
|
|
TYPE_ATTRIBUTES (fntype))))
|
|
return true;
|
|
}
|
|
|
|
/* Any other store operation is not interesting. */
|
|
else if (gimple_vdef (stmt))
|
|
return true;
|
|
|
|
/* Anything other than assignments and conditional jumps are not
|
|
interesting for CCP. */
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH
|
|
&& gimple_code (stmt) != GIMPLE_CALL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Initialize local data structures for CCP. */
|
|
|
|
static void
|
|
ccp_initialize (void)
|
|
{
|
|
basic_block bb;
|
|
|
|
n_const_val = num_ssa_names;
|
|
const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
|
|
|
|
/* Initialize simulation flags for PHI nodes and statements. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gimple *stmt = gsi_stmt (i);
|
|
bool is_varying;
|
|
|
|
/* If the statement is a control insn, then we do not
|
|
want to avoid simulating the statement once. Failure
|
|
to do so means that those edges will never get added. */
|
|
if (stmt_ends_bb_p (stmt))
|
|
is_varying = false;
|
|
else
|
|
is_varying = surely_varying_stmt_p (stmt);
|
|
|
|
if (is_varying)
|
|
{
|
|
tree def;
|
|
ssa_op_iter iter;
|
|
|
|
/* If the statement will not produce a constant, mark
|
|
all its outputs VARYING. */
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
set_value_varying (def);
|
|
}
|
|
prop_set_simulate_again (stmt, !is_varying);
|
|
}
|
|
}
|
|
|
|
/* Now process PHI nodes. We never clear the simulate_again flag on
|
|
phi nodes, since we do not know which edges are executable yet,
|
|
except for phi nodes for virtual operands when we do not do store ccp. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gphi_iterator i;
|
|
|
|
for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
gphi *phi = i.phi ();
|
|
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
prop_set_simulate_again (phi, false);
|
|
else
|
|
prop_set_simulate_again (phi, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Debug count support. Reset the values of ssa names
|
|
VARYING when the total number ssa names analyzed is
|
|
beyond the debug count specified. */
|
|
|
|
static void
|
|
do_dbg_cnt (void)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < num_ssa_names; i++)
|
|
{
|
|
if (!dbg_cnt (ccp))
|
|
{
|
|
const_val[i].lattice_val = VARYING;
|
|
const_val[i].mask = -1;
|
|
const_val[i].value = NULL_TREE;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
|
|
class ccp_folder : public substitute_and_fold_engine
|
|
{
|
|
public:
|
|
tree get_value (tree, gimple *) FINAL OVERRIDE;
|
|
bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
|
|
};
|
|
|
|
/* This method just wraps GET_CONSTANT_VALUE for now. Over time
|
|
naked calls to GET_CONSTANT_VALUE should be eliminated in favor
|
|
of calling member functions. */
|
|
|
|
tree
|
|
ccp_folder::get_value (tree op, gimple *stmt ATTRIBUTE_UNUSED)
|
|
{
|
|
return get_constant_value (op);
|
|
}
|
|
|
|
/* Do final substitution of propagated values, cleanup the flowgraph and
|
|
free allocated storage. If NONZERO_P, record nonzero bits.
|
|
|
|
Return TRUE when something was optimized. */
|
|
|
|
static bool
|
|
ccp_finalize (bool nonzero_p)
|
|
{
|
|
bool something_changed;
|
|
unsigned i;
|
|
tree name;
|
|
|
|
do_dbg_cnt ();
|
|
|
|
/* Derive alignment and misalignment information from partially
|
|
constant pointers in the lattice or nonzero bits from partially
|
|
constant integers. */
|
|
FOR_EACH_SSA_NAME (i, name, cfun)
|
|
{
|
|
ccp_prop_value_t *val;
|
|
unsigned int tem, align;
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (name))
|
|
&& (!INTEGRAL_TYPE_P (TREE_TYPE (name))
|
|
/* Don't record nonzero bits before IPA to avoid
|
|
using too much memory. */
|
|
|| !nonzero_p))
|
|
continue;
|
|
|
|
val = get_value (name);
|
|
if (val->lattice_val != CONSTANT
|
|
|| TREE_CODE (val->value) != INTEGER_CST
|
|
|| val->mask == 0)
|
|
continue;
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
/* Trailing mask bits specify the alignment, trailing value
|
|
bits the misalignment. */
|
|
tem = val->mask.to_uhwi ();
|
|
align = least_bit_hwi (tem);
|
|
if (align > 1)
|
|
set_ptr_info_alignment (get_ptr_info (name), align,
|
|
(TREE_INT_CST_LOW (val->value)
|
|
& (align - 1)));
|
|
}
|
|
else
|
|
{
|
|
unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
|
|
wide_int nonzero_bits
|
|
= (wide_int::from (val->mask, precision, UNSIGNED)
|
|
| wi::to_wide (val->value));
|
|
nonzero_bits &= get_nonzero_bits (name);
|
|
set_nonzero_bits (name, nonzero_bits);
|
|
}
|
|
}
|
|
|
|
/* Perform substitutions based on the known constant values. */
|
|
class ccp_folder ccp_folder;
|
|
something_changed = ccp_folder.substitute_and_fold ();
|
|
|
|
free (const_val);
|
|
const_val = NULL;
|
|
return something_changed;
|
|
}
|
|
|
|
|
|
/* Compute the meet operator between *VAL1 and *VAL2. Store the result
|
|
in VAL1.
|
|
|
|
any M UNDEFINED = any
|
|
any M VARYING = VARYING
|
|
Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
*/
|
|
|
|
static void
|
|
ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
|
|
{
|
|
if (val1->lattice_val == UNDEFINED
|
|
/* For UNDEFINED M SSA we can't always SSA because its definition
|
|
may not dominate the PHI node. Doing optimistic copy propagation
|
|
also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
|
|
&& (val2->lattice_val != CONSTANT
|
|
|| TREE_CODE (val2->value) != SSA_NAME))
|
|
{
|
|
/* UNDEFINED M any = any */
|
|
*val1 = *val2;
|
|
}
|
|
else if (val2->lattice_val == UNDEFINED
|
|
/* See above. */
|
|
&& (val1->lattice_val != CONSTANT
|
|
|| TREE_CODE (val1->value) != SSA_NAME))
|
|
{
|
|
/* any M UNDEFINED = any
|
|
Nothing to do. VAL1 already contains the value we want. */
|
|
;
|
|
}
|
|
else if (val1->lattice_val == VARYING
|
|
|| val2->lattice_val == VARYING)
|
|
{
|
|
/* any M VARYING = VARYING. */
|
|
val1->lattice_val = VARYING;
|
|
val1->mask = -1;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& TREE_CODE (val1->value) == INTEGER_CST
|
|
&& TREE_CODE (val2->value) == INTEGER_CST)
|
|
{
|
|
/* Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
|
|
For INTEGER_CSTs mask unequal bits. If no equal bits remain,
|
|
drop to varying. */
|
|
val1->mask = (val1->mask | val2->mask
|
|
| (wi::to_widest (val1->value)
|
|
^ wi::to_widest (val2->value)));
|
|
if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
|
|
{
|
|
val1->lattice_val = VARYING;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& operand_equal_p (val1->value, val2->value, 0))
|
|
{
|
|
/* Ci M Cj = Ci if (i == j)
|
|
Ci M Cj = VARYING if (i != j)
|
|
|
|
VAL1 already contains the value we want for equivalent values. */
|
|
}
|
|
else if (val1->lattice_val == CONSTANT
|
|
&& val2->lattice_val == CONSTANT
|
|
&& (TREE_CODE (val1->value) == ADDR_EXPR
|
|
|| TREE_CODE (val2->value) == ADDR_EXPR))
|
|
{
|
|
/* When not equal addresses are involved try meeting for
|
|
alignment. */
|
|
ccp_prop_value_t tem = *val2;
|
|
if (TREE_CODE (val1->value) == ADDR_EXPR)
|
|
*val1 = get_value_for_expr (val1->value, true);
|
|
if (TREE_CODE (val2->value) == ADDR_EXPR)
|
|
tem = get_value_for_expr (val2->value, true);
|
|
ccp_lattice_meet (val1, &tem);
|
|
}
|
|
else
|
|
{
|
|
/* Any other combination is VARYING. */
|
|
val1->lattice_val = VARYING;
|
|
val1->mask = -1;
|
|
val1->value = NULL_TREE;
|
|
}
|
|
}
|
|
|
|
|
|
/* Loop through the PHI_NODE's parameters for BLOCK and compare their
|
|
lattice values to determine PHI_NODE's lattice value. The value of a
|
|
PHI node is determined calling ccp_lattice_meet with all the arguments
|
|
of the PHI node that are incoming via executable edges. */
|
|
|
|
enum ssa_prop_result
|
|
ccp_propagate::visit_phi (gphi *phi)
|
|
{
|
|
unsigned i;
|
|
ccp_prop_value_t new_val;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
|
}
|
|
|
|
new_val.lattice_val = UNDEFINED;
|
|
new_val.value = NULL_TREE;
|
|
new_val.mask = 0;
|
|
|
|
bool first = true;
|
|
bool non_exec_edge = false;
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
/* Compute the meet operator over all the PHI arguments flowing
|
|
through executable edges. */
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"\tArgument #%d (%d -> %d %sexecutable)\n",
|
|
i, e->src->index, e->dest->index,
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
|
}
|
|
|
|
/* If the incoming edge is executable, Compute the meet operator for
|
|
the existing value of the PHI node and the current PHI argument. */
|
|
if (e->flags & EDGE_EXECUTABLE)
|
|
{
|
|
tree arg = gimple_phi_arg (phi, i)->def;
|
|
ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
|
|
|
|
if (first)
|
|
{
|
|
new_val = arg_val;
|
|
first = false;
|
|
}
|
|
else
|
|
ccp_lattice_meet (&new_val, &arg_val);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\t");
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
|
dump_lattice_value (dump_file, "\tValue: ", arg_val);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (new_val.lattice_val == VARYING)
|
|
break;
|
|
}
|
|
else
|
|
non_exec_edge = true;
|
|
}
|
|
|
|
/* In case there were non-executable edges and the value is a copy
|
|
make sure its definition dominates the PHI node. */
|
|
if (non_exec_edge
|
|
&& new_val.lattice_val == CONSTANT
|
|
&& TREE_CODE (new_val.value) == SSA_NAME
|
|
&& ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
|
|
&& ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
|
|
gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
|
|
{
|
|
new_val.lattice_val = VARYING;
|
|
new_val.value = NULL_TREE;
|
|
new_val.mask = -1;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
|
|
/* Make the transition to the new value. */
|
|
if (set_lattice_value (gimple_phi_result (phi), &new_val))
|
|
{
|
|
if (new_val.lattice_val == VARYING)
|
|
return SSA_PROP_VARYING;
|
|
else
|
|
return SSA_PROP_INTERESTING;
|
|
}
|
|
else
|
|
return SSA_PROP_NOT_INTERESTING;
|
|
}
|
|
|
|
/* Return the constant value for OP or OP otherwise. */
|
|
|
|
static tree
|
|
valueize_op (tree op)
|
|
{
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
tree tem = get_constant_value (op);
|
|
if (tem)
|
|
return tem;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
/* Return the constant value for OP, but signal to not follow SSA
|
|
edges if the definition may be simulated again. */
|
|
|
|
static tree
|
|
valueize_op_1 (tree op)
|
|
{
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
/* If the definition may be simulated again we cannot follow
|
|
this SSA edge as the SSA propagator does not necessarily
|
|
re-visit the use. */
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (op);
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& prop_simulate_again_p (def_stmt))
|
|
return NULL_TREE;
|
|
tree tem = get_constant_value (op);
|
|
if (tem)
|
|
return tem;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
/* CCP specific front-end to the non-destructive constant folding
|
|
routines.
|
|
|
|
Attempt to simplify the RHS of STMT knowing that one or more
|
|
operands are constants.
|
|
|
|
If simplification is possible, return the simplified RHS,
|
|
otherwise return the original RHS or NULL_TREE. */
|
|
|
|
static tree
|
|
ccp_fold (gimple *stmt)
|
|
{
|
|
location_t loc = gimple_location (stmt);
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_COND:
|
|
{
|
|
/* Handle comparison operators that can appear in GIMPLE form. */
|
|
tree op0 = valueize_op (gimple_cond_lhs (stmt));
|
|
tree op1 = valueize_op (gimple_cond_rhs (stmt));
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
|
|
}
|
|
|
|
case GIMPLE_SWITCH:
|
|
{
|
|
/* Return the constant switch index. */
|
|
return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
|
|
}
|
|
|
|
case GIMPLE_ASSIGN:
|
|
case GIMPLE_CALL:
|
|
return gimple_fold_stmt_to_constant_1 (stmt,
|
|
valueize_op, valueize_op_1);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Apply the operation CODE in type TYPE to the value, mask pair
|
|
RVAL and RMASK representing a value of type RTYPE and set
|
|
the value, mask pair *VAL and *MASK to the result. */
|
|
|
|
void
|
|
bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
|
|
widest_int *val, widest_int *mask,
|
|
signop rtype_sgn, int rtype_precision,
|
|
const widest_int &rval, const widest_int &rmask)
|
|
{
|
|
switch (code)
|
|
{
|
|
case BIT_NOT_EXPR:
|
|
*mask = rmask;
|
|
*val = ~rval;
|
|
break;
|
|
|
|
case NEGATE_EXPR:
|
|
{
|
|
widest_int temv, temm;
|
|
/* Return ~rval + 1. */
|
|
bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
|
|
type_sgn, type_precision, rval, rmask);
|
|
bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
|
|
type_sgn, type_precision, temv, temm,
|
|
type_sgn, type_precision, 1, 0);
|
|
break;
|
|
}
|
|
|
|
CASE_CONVERT:
|
|
{
|
|
/* First extend mask and value according to the original type. */
|
|
*mask = wi::ext (rmask, rtype_precision, rtype_sgn);
|
|
*val = wi::ext (rval, rtype_precision, rtype_sgn);
|
|
|
|
/* Then extend mask and value according to the target type. */
|
|
*mask = wi::ext (*mask, type_precision, type_sgn);
|
|
*val = wi::ext (*val, type_precision, type_sgn);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
*mask = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Apply the operation CODE in type TYPE to the value, mask pairs
|
|
R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
|
|
and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
|
|
|
|
void
|
|
bit_value_binop (enum tree_code code, signop sgn, int width,
|
|
widest_int *val, widest_int *mask,
|
|
signop r1type_sgn, int r1type_precision,
|
|
const widest_int &r1val, const widest_int &r1mask,
|
|
signop r2type_sgn, int r2type_precision,
|
|
const widest_int &r2val, const widest_int &r2mask)
|
|
{
|
|
bool swap_p = false;
|
|
|
|
/* Assume we'll get a constant result. Use an initial non varying
|
|
value, we fall back to varying in the end if necessary. */
|
|
*mask = -1;
|
|
|
|
switch (code)
|
|
{
|
|
case BIT_AND_EXPR:
|
|
/* The mask is constant where there is a known not
|
|
set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
|
|
*mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
|
|
*val = r1val & r2val;
|
|
break;
|
|
|
|
case BIT_IOR_EXPR:
|
|
/* The mask is constant where there is a known
|
|
set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
|
|
*mask = wi::bit_and_not (r1mask | r2mask,
|
|
wi::bit_and_not (r1val, r1mask)
|
|
| wi::bit_and_not (r2val, r2mask));
|
|
*val = r1val | r2val;
|
|
break;
|
|
|
|
case BIT_XOR_EXPR:
|
|
/* m1 | m2 */
|
|
*mask = r1mask | r2mask;
|
|
*val = r1val ^ r2val;
|
|
break;
|
|
|
|
case LROTATE_EXPR:
|
|
case RROTATE_EXPR:
|
|
if (r2mask == 0)
|
|
{
|
|
widest_int shift = r2val;
|
|
if (shift == 0)
|
|
{
|
|
*mask = r1mask;
|
|
*val = r1val;
|
|
}
|
|
else
|
|
{
|
|
if (wi::neg_p (shift))
|
|
{
|
|
shift = -shift;
|
|
if (code == RROTATE_EXPR)
|
|
code = LROTATE_EXPR;
|
|
else
|
|
code = RROTATE_EXPR;
|
|
}
|
|
if (code == RROTATE_EXPR)
|
|
{
|
|
*mask = wi::rrotate (r1mask, shift, width);
|
|
*val = wi::rrotate (r1val, shift, width);
|
|
}
|
|
else
|
|
{
|
|
*mask = wi::lrotate (r1mask, shift, width);
|
|
*val = wi::lrotate (r1val, shift, width);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case LSHIFT_EXPR:
|
|
case RSHIFT_EXPR:
|
|
/* ??? We can handle partially known shift counts if we know
|
|
its sign. That way we can tell that (x << (y | 8)) & 255
|
|
is zero. */
|
|
if (r2mask == 0)
|
|
{
|
|
widest_int shift = r2val;
|
|
if (shift == 0)
|
|
{
|
|
*mask = r1mask;
|
|
*val = r1val;
|
|
}
|
|
else
|
|
{
|
|
if (wi::neg_p (shift))
|
|
{
|
|
shift = -shift;
|
|
if (code == RSHIFT_EXPR)
|
|
code = LSHIFT_EXPR;
|
|
else
|
|
code = RSHIFT_EXPR;
|
|
}
|
|
if (code == RSHIFT_EXPR)
|
|
{
|
|
*mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
|
|
*val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
|
|
}
|
|
else
|
|
{
|
|
*mask = wi::ext (r1mask << shift, width, sgn);
|
|
*val = wi::ext (r1val << shift, width, sgn);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PLUS_EXPR:
|
|
case POINTER_PLUS_EXPR:
|
|
{
|
|
/* Do the addition with unknown bits set to zero, to give carry-ins of
|
|
zero wherever possible. */
|
|
widest_int lo = (wi::bit_and_not (r1val, r1mask)
|
|
+ wi::bit_and_not (r2val, r2mask));
|
|
lo = wi::ext (lo, width, sgn);
|
|
/* Do the addition with unknown bits set to one, to give carry-ins of
|
|
one wherever possible. */
|
|
widest_int hi = (r1val | r1mask) + (r2val | r2mask);
|
|
hi = wi::ext (hi, width, sgn);
|
|
/* Each bit in the result is known if (a) the corresponding bits in
|
|
both inputs are known, and (b) the carry-in to that bit position
|
|
is known. We can check condition (b) by seeing if we got the same
|
|
result with minimised carries as with maximised carries. */
|
|
*mask = r1mask | r2mask | (lo ^ hi);
|
|
*mask = wi::ext (*mask, width, sgn);
|
|
/* It shouldn't matter whether we choose lo or hi here. */
|
|
*val = lo;
|
|
break;
|
|
}
|
|
|
|
case MINUS_EXPR:
|
|
{
|
|
widest_int temv, temm;
|
|
bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
|
|
r2type_sgn, r2type_precision, r2val, r2mask);
|
|
bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
|
|
r1type_sgn, r1type_precision, r1val, r1mask,
|
|
r2type_sgn, r2type_precision, temv, temm);
|
|
break;
|
|
}
|
|
|
|
case MULT_EXPR:
|
|
{
|
|
/* Just track trailing zeros in both operands and transfer
|
|
them to the other. */
|
|
int r1tz = wi::ctz (r1val | r1mask);
|
|
int r2tz = wi::ctz (r2val | r2mask);
|
|
if (r1tz + r2tz >= width)
|
|
{
|
|
*mask = 0;
|
|
*val = 0;
|
|
}
|
|
else if (r1tz + r2tz > 0)
|
|
{
|
|
*mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
|
|
width, sgn);
|
|
*val = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
{
|
|
widest_int m = r1mask | r2mask;
|
|
if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
|
|
{
|
|
*mask = 0;
|
|
*val = ((code == EQ_EXPR) ? 0 : 1);
|
|
}
|
|
else
|
|
{
|
|
/* We know the result of a comparison is always one or zero. */
|
|
*mask = 1;
|
|
*val = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GE_EXPR:
|
|
case GT_EXPR:
|
|
swap_p = true;
|
|
code = swap_tree_comparison (code);
|
|
/* Fall through. */
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
{
|
|
int minmax, maxmin;
|
|
|
|
const widest_int &o1val = swap_p ? r2val : r1val;
|
|
const widest_int &o1mask = swap_p ? r2mask : r1mask;
|
|
const widest_int &o2val = swap_p ? r1val : r2val;
|
|
const widest_int &o2mask = swap_p ? r1mask : r2mask;
|
|
|
|
/* If the most significant bits are not known we know nothing. */
|
|
if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
|
|
break;
|
|
|
|
/* For comparisons the signedness is in the comparison operands. */
|
|
sgn = r1type_sgn;
|
|
|
|
/* If we know the most significant bits we know the values
|
|
value ranges by means of treating varying bits as zero
|
|
or one. Do a cross comparison of the max/min pairs. */
|
|
maxmin = wi::cmp (o1val | o1mask,
|
|
wi::bit_and_not (o2val, o2mask), sgn);
|
|
minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
|
|
o2val | o2mask, sgn);
|
|
if (maxmin < 0) /* o1 is less than o2. */
|
|
{
|
|
*mask = 0;
|
|
*val = 1;
|
|
}
|
|
else if (minmax > 0) /* o1 is not less or equal to o2. */
|
|
{
|
|
*mask = 0;
|
|
*val = 0;
|
|
}
|
|
else if (maxmin == minmax) /* o1 and o2 are equal. */
|
|
{
|
|
/* This probably should never happen as we'd have
|
|
folded the thing during fully constant value folding. */
|
|
*mask = 0;
|
|
*val = (code == LE_EXPR ? 1 : 0);
|
|
}
|
|
else
|
|
{
|
|
/* We know the result of a comparison is always one or zero. */
|
|
*mask = 1;
|
|
*val = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:;
|
|
}
|
|
}
|
|
|
|
/* Return the propagation value when applying the operation CODE to
|
|
the value RHS yielding type TYPE. */
|
|
|
|
static ccp_prop_value_t
|
|
bit_value_unop (enum tree_code code, tree type, tree rhs)
|
|
{
|
|
ccp_prop_value_t rval = get_value_for_expr (rhs, true);
|
|
widest_int value, mask;
|
|
ccp_prop_value_t val;
|
|
|
|
if (rval.lattice_val == UNDEFINED)
|
|
return rval;
|
|
|
|
gcc_assert ((rval.lattice_val == CONSTANT
|
|
&& TREE_CODE (rval.value) == INTEGER_CST)
|
|
|| wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
|
|
bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
|
|
TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
|
|
value_to_wide_int (rval), rval.mask);
|
|
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.mask = mask;
|
|
/* ??? Delay building trees here. */
|
|
val.value = wide_int_to_tree (type, value);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Return the propagation value when applying the operation CODE to
|
|
the values RHS1 and RHS2 yielding type TYPE. */
|
|
|
|
static ccp_prop_value_t
|
|
bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
|
|
{
|
|
ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
|
|
ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
|
|
widest_int value, mask;
|
|
ccp_prop_value_t val;
|
|
|
|
if (r1val.lattice_val == UNDEFINED
|
|
|| r2val.lattice_val == UNDEFINED)
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
return val;
|
|
}
|
|
|
|
gcc_assert ((r1val.lattice_val == CONSTANT
|
|
&& TREE_CODE (r1val.value) == INTEGER_CST)
|
|
|| wi::sext (r1val.mask,
|
|
TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
|
|
gcc_assert ((r2val.lattice_val == CONSTANT
|
|
&& TREE_CODE (r2val.value) == INTEGER_CST)
|
|
|| wi::sext (r2val.mask,
|
|
TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
|
|
bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
|
|
TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
|
|
value_to_wide_int (r1val), r1val.mask,
|
|
TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
|
|
value_to_wide_int (r2val), r2val.mask);
|
|
|
|
/* (x * x) & 2 == 0. */
|
|
if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
|
|
{
|
|
widest_int m = 2;
|
|
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
|
|
value = wi::bit_and_not (value, m);
|
|
else
|
|
value = 0;
|
|
mask = wi::bit_and_not (mask, m);
|
|
}
|
|
|
|
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.mask = mask;
|
|
/* ??? Delay building trees here. */
|
|
val.value = wide_int_to_tree (type, value);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Return the propagation value for __builtin_assume_aligned
|
|
and functions with assume_aligned or alloc_aligned attribute.
|
|
For __builtin_assume_aligned, ATTR is NULL_TREE,
|
|
for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
|
|
is false, for alloc_aligned attribute ATTR is non-NULL and
|
|
ALLOC_ALIGNED is true. */
|
|
|
|
static ccp_prop_value_t
|
|
bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
|
|
bool alloc_aligned)
|
|
{
|
|
tree align, misalign = NULL_TREE, type;
|
|
unsigned HOST_WIDE_INT aligni, misaligni = 0;
|
|
ccp_prop_value_t alignval;
|
|
widest_int value, mask;
|
|
ccp_prop_value_t val;
|
|
|
|
if (attr == NULL_TREE)
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
type = TREE_TYPE (ptr);
|
|
ptrval = get_value_for_expr (ptr, true);
|
|
}
|
|
else
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
type = TREE_TYPE (lhs);
|
|
}
|
|
|
|
if (ptrval.lattice_val == UNDEFINED)
|
|
return ptrval;
|
|
gcc_assert ((ptrval.lattice_val == CONSTANT
|
|
&& TREE_CODE (ptrval.value) == INTEGER_CST)
|
|
|| wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
|
|
if (attr == NULL_TREE)
|
|
{
|
|
/* Get aligni and misaligni from __builtin_assume_aligned. */
|
|
align = gimple_call_arg (stmt, 1);
|
|
if (!tree_fits_uhwi_p (align))
|
|
return ptrval;
|
|
aligni = tree_to_uhwi (align);
|
|
if (gimple_call_num_args (stmt) > 2)
|
|
{
|
|
misalign = gimple_call_arg (stmt, 2);
|
|
if (!tree_fits_uhwi_p (misalign))
|
|
return ptrval;
|
|
misaligni = tree_to_uhwi (misalign);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get aligni and misaligni from assume_aligned or
|
|
alloc_align attributes. */
|
|
if (TREE_VALUE (attr) == NULL_TREE)
|
|
return ptrval;
|
|
attr = TREE_VALUE (attr);
|
|
align = TREE_VALUE (attr);
|
|
if (!tree_fits_uhwi_p (align))
|
|
return ptrval;
|
|
aligni = tree_to_uhwi (align);
|
|
if (alloc_aligned)
|
|
{
|
|
if (aligni == 0 || aligni > gimple_call_num_args (stmt))
|
|
return ptrval;
|
|
align = gimple_call_arg (stmt, aligni - 1);
|
|
if (!tree_fits_uhwi_p (align))
|
|
return ptrval;
|
|
aligni = tree_to_uhwi (align);
|
|
}
|
|
else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
|
|
{
|
|
misalign = TREE_VALUE (TREE_CHAIN (attr));
|
|
if (!tree_fits_uhwi_p (misalign))
|
|
return ptrval;
|
|
misaligni = tree_to_uhwi (misalign);
|
|
}
|
|
}
|
|
if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
|
|
return ptrval;
|
|
|
|
align = build_int_cst_type (type, -aligni);
|
|
alignval = get_value_for_expr (align, true);
|
|
bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
|
|
TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
|
|
TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
|
|
|
|
if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.mask = mask;
|
|
gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
|
|
gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
|
|
value |= misaligni;
|
|
/* ??? Delay building trees here. */
|
|
val.value = wide_int_to_tree (type, value);
|
|
}
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Evaluate statement STMT.
|
|
Valid only for assignments, calls, conditionals, and switches. */
|
|
|
|
static ccp_prop_value_t
|
|
evaluate_stmt (gimple *stmt)
|
|
{
|
|
ccp_prop_value_t val;
|
|
tree simplified = NULL_TREE;
|
|
ccp_lattice_t likelyvalue = likely_value (stmt);
|
|
bool is_constant = false;
|
|
unsigned int align;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "which is likely ");
|
|
switch (likelyvalue)
|
|
{
|
|
case CONSTANT:
|
|
fprintf (dump_file, "CONSTANT");
|
|
break;
|
|
case UNDEFINED:
|
|
fprintf (dump_file, "UNDEFINED");
|
|
break;
|
|
case VARYING:
|
|
fprintf (dump_file, "VARYING");
|
|
break;
|
|
default:;
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* If the statement is likely to have a CONSTANT result, then try
|
|
to fold the statement to determine the constant value. */
|
|
/* FIXME. This is the only place that we call ccp_fold.
|
|
Since likely_value never returns CONSTANT for calls, we will
|
|
not attempt to fold them, including builtins that may profit. */
|
|
if (likelyvalue == CONSTANT)
|
|
{
|
|
fold_defer_overflow_warnings ();
|
|
simplified = ccp_fold (stmt);
|
|
if (simplified
|
|
&& TREE_CODE (simplified) == SSA_NAME)
|
|
{
|
|
/* We may not use values of something that may be simulated again,
|
|
see valueize_op_1. */
|
|
if (SSA_NAME_IS_DEFAULT_DEF (simplified)
|
|
|| ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
|
|
{
|
|
ccp_prop_value_t *val = get_value (simplified);
|
|
if (val && val->lattice_val != VARYING)
|
|
{
|
|
fold_undefer_overflow_warnings (true, stmt, 0);
|
|
return *val;
|
|
}
|
|
}
|
|
else
|
|
/* We may also not place a non-valueized copy in the lattice
|
|
as that might become stale if we never re-visit this stmt. */
|
|
simplified = NULL_TREE;
|
|
}
|
|
is_constant = simplified && is_gimple_min_invariant (simplified);
|
|
fold_undefer_overflow_warnings (is_constant, stmt, 0);
|
|
if (is_constant)
|
|
{
|
|
/* The statement produced a constant value. */
|
|
val.lattice_val = CONSTANT;
|
|
val.value = simplified;
|
|
val.mask = 0;
|
|
return val;
|
|
}
|
|
}
|
|
/* If the statement is likely to have a VARYING result, then do not
|
|
bother folding the statement. */
|
|
else if (likelyvalue == VARYING)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
/* Other cases cannot satisfy is_gimple_min_invariant
|
|
without folding. */
|
|
if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
|
|
simplified = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else if (code == GIMPLE_SWITCH)
|
|
simplified = gimple_switch_index (as_a <gswitch *> (stmt));
|
|
else
|
|
/* These cannot satisfy is_gimple_min_invariant without folding. */
|
|
gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
|
|
is_constant = simplified && is_gimple_min_invariant (simplified);
|
|
if (is_constant)
|
|
{
|
|
/* The statement produced a constant value. */
|
|
val.lattice_val = CONSTANT;
|
|
val.value = simplified;
|
|
val.mask = 0;
|
|
}
|
|
}
|
|
/* If the statement result is likely UNDEFINED, make it so. */
|
|
else if (likelyvalue == UNDEFINED)
|
|
{
|
|
val.lattice_val = UNDEFINED;
|
|
val.value = NULL_TREE;
|
|
val.mask = 0;
|
|
return val;
|
|
}
|
|
|
|
/* Resort to simplification for bitwise tracking. */
|
|
if (flag_tree_bit_ccp
|
|
&& (likelyvalue == CONSTANT || is_gimple_call (stmt)
|
|
|| (gimple_assign_single_p (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR))
|
|
&& !is_constant)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1))))
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
val = get_value_for_expr (rhs1, true);
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
|
|
gimple_assign_rhs2 (stmt));
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
}
|
|
else if (code == GIMPLE_COND)
|
|
{
|
|
enum tree_code code = gimple_cond_code (stmt);
|
|
tree rhs1 = gimple_cond_lhs (stmt);
|
|
tree rhs2 = gimple_cond_rhs (stmt);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
|| POINTER_TYPE_P (TREE_TYPE (rhs1)))
|
|
val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
|
|
}
|
|
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
|
{
|
|
case BUILT_IN_MALLOC:
|
|
case BUILT_IN_REALLOC:
|
|
case BUILT_IN_CALLOC:
|
|
case BUILT_IN_STRDUP:
|
|
case BUILT_IN_STRNDUP:
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
|
|
val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
|
|
/ BITS_PER_UNIT - 1);
|
|
break;
|
|
|
|
CASE_BUILT_IN_ALLOCA:
|
|
align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
|
|
? BIGGEST_ALIGNMENT
|
|
: TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
|
|
val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
|
|
break;
|
|
|
|
/* These builtins return their first argument, unmodified. */
|
|
case BUILT_IN_MEMCPY:
|
|
case BUILT_IN_MEMMOVE:
|
|
case BUILT_IN_MEMSET:
|
|
case BUILT_IN_STRCPY:
|
|
case BUILT_IN_STRNCPY:
|
|
case BUILT_IN_MEMCPY_CHK:
|
|
case BUILT_IN_MEMMOVE_CHK:
|
|
case BUILT_IN_MEMSET_CHK:
|
|
case BUILT_IN_STRCPY_CHK:
|
|
case BUILT_IN_STRNCPY_CHK:
|
|
val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
|
|
break;
|
|
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
|
val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
|
|
break;
|
|
|
|
case BUILT_IN_ALIGNED_ALLOC:
|
|
{
|
|
tree align = get_constant_value (gimple_call_arg (stmt, 0));
|
|
if (align
|
|
&& tree_fits_uhwi_p (align))
|
|
{
|
|
unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
|
|
if (aligni > 1
|
|
/* align must be power-of-two */
|
|
&& (aligni & (aligni - 1)) == 0)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_int_cst (ptr_type_node, 0);
|
|
val.mask = -aligni;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BUILT_IN_BSWAP16:
|
|
case BUILT_IN_BSWAP32:
|
|
case BUILT_IN_BSWAP64:
|
|
case BUILT_IN_BSWAP128:
|
|
val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
|
|
if (val.lattice_val == UNDEFINED)
|
|
break;
|
|
else if (val.lattice_val == CONSTANT
|
|
&& val.value
|
|
&& TREE_CODE (val.value) == INTEGER_CST)
|
|
{
|
|
tree type = TREE_TYPE (gimple_call_lhs (stmt));
|
|
int prec = TYPE_PRECISION (type);
|
|
wide_int wval = wi::to_wide (val.value);
|
|
val.value
|
|
= wide_int_to_tree (type,
|
|
wide_int::from (wval, prec,
|
|
UNSIGNED).bswap ());
|
|
val.mask
|
|
= widest_int::from (wide_int::from (val.mask, prec,
|
|
UNSIGNED).bswap (),
|
|
UNSIGNED);
|
|
if (wi::sext (val.mask, prec) != -1)
|
|
break;
|
|
}
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
}
|
|
if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
|
|
{
|
|
tree fntype = gimple_call_fntype (stmt);
|
|
if (fntype)
|
|
{
|
|
tree attrs = lookup_attribute ("assume_aligned",
|
|
TYPE_ATTRIBUTES (fntype));
|
|
if (attrs)
|
|
val = bit_value_assume_aligned (stmt, attrs, val, false);
|
|
attrs = lookup_attribute ("alloc_align",
|
|
TYPE_ATTRIBUTES (fntype));
|
|
if (attrs)
|
|
val = bit_value_assume_aligned (stmt, attrs, val, true);
|
|
}
|
|
}
|
|
is_constant = (val.lattice_val == CONSTANT);
|
|
}
|
|
|
|
if (flag_tree_bit_ccp
|
|
&& ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
|
|
|| !is_constant)
|
|
&& gimple_get_lhs (stmt)
|
|
&& TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
|
|
{
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
wide_int nonzero_bits = get_nonzero_bits (lhs);
|
|
if (nonzero_bits != -1)
|
|
{
|
|
if (!is_constant)
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = build_zero_cst (TREE_TYPE (lhs));
|
|
val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
|
|
is_constant = true;
|
|
}
|
|
else
|
|
{
|
|
if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
|
|
val.value = wide_int_to_tree (TREE_TYPE (lhs),
|
|
nonzero_bits
|
|
& wi::to_wide (val.value));
|
|
if (nonzero_bits == 0)
|
|
val.mask = 0;
|
|
else
|
|
val.mask = val.mask & extend_mask (nonzero_bits,
|
|
TYPE_SIGN (TREE_TYPE (lhs)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The statement produced a nonconstant value. */
|
|
if (!is_constant)
|
|
{
|
|
/* The statement produced a copy. */
|
|
if (simplified && TREE_CODE (simplified) == SSA_NAME
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
|
|
{
|
|
val.lattice_val = CONSTANT;
|
|
val.value = simplified;
|
|
val.mask = -1;
|
|
}
|
|
/* The statement is VARYING. */
|
|
else
|
|
{
|
|
val.lattice_val = VARYING;
|
|
val.value = NULL_TREE;
|
|
val.mask = -1;
|
|
}
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
|
|
|
|
/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
|
|
each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
|
|
|
|
static void
|
|
insert_clobber_before_stack_restore (tree saved_val, tree var,
|
|
gimple_htab **visited)
|
|
{
|
|
gimple *stmt;
|
|
gassign *clobber_stmt;
|
|
tree clobber;
|
|
imm_use_iterator iter;
|
|
gimple_stmt_iterator i;
|
|
gimple **slot;
|
|
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
|
|
{
|
|
clobber = build_clobber (TREE_TYPE (var));
|
|
clobber_stmt = gimple_build_assign (var, clobber);
|
|
|
|
i = gsi_for_stmt (stmt);
|
|
gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
if (!*visited)
|
|
*visited = new gimple_htab (10);
|
|
|
|
slot = (*visited)->find_slot (stmt, INSERT);
|
|
if (*slot != NULL)
|
|
continue;
|
|
|
|
*slot = stmt;
|
|
insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
|
|
visited);
|
|
}
|
|
else if (gimple_assign_ssa_name_copy_p (stmt))
|
|
insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
|
|
visited);
|
|
}
|
|
|
|
/* Advance the iterator to the previous non-debug gimple statement in the same
|
|
or dominating basic block. */
|
|
|
|
static inline void
|
|
gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
|
|
{
|
|
basic_block dom;
|
|
|
|
gsi_prev_nondebug (i);
|
|
while (gsi_end_p (*i))
|
|
{
|
|
dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i));
|
|
if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
return;
|
|
|
|
*i = gsi_last_bb (dom);
|
|
}
|
|
}
|
|
|
|
/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
|
|
a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
|
|
|
|
It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
|
|
a previous pass (such as DOM) duplicated it along multiple paths to a BB.
|
|
In that case the function gives up without inserting the clobbers. */
|
|
|
|
static void
|
|
insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
|
|
{
|
|
gimple *stmt;
|
|
tree saved_val;
|
|
gimple_htab *visited = NULL;
|
|
|
|
for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
|
|
{
|
|
stmt = gsi_stmt (i);
|
|
|
|
if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
|
|
continue;
|
|
|
|
saved_val = gimple_call_lhs (stmt);
|
|
if (saved_val == NULL_TREE)
|
|
continue;
|
|
|
|
insert_clobber_before_stack_restore (saved_val, var, &visited);
|
|
break;
|
|
}
|
|
|
|
delete visited;
|
|
}
|
|
|
|
/* Detects a __builtin_alloca_with_align with constant size argument. Declares
|
|
fixed-size array and returns the address, if found, otherwise returns
|
|
NULL_TREE. */
|
|
|
|
static tree
|
|
fold_builtin_alloca_with_align (gimple *stmt)
|
|
{
|
|
unsigned HOST_WIDE_INT size, threshold, n_elem;
|
|
tree lhs, arg, block, var, elem_type, array_type;
|
|
|
|
/* Get lhs. */
|
|
lhs = gimple_call_lhs (stmt);
|
|
if (lhs == NULL_TREE)
|
|
return NULL_TREE;
|
|
|
|
/* Detect constant argument. */
|
|
arg = get_constant_value (gimple_call_arg (stmt, 0));
|
|
if (arg == NULL_TREE
|
|
|| TREE_CODE (arg) != INTEGER_CST
|
|
|| !tree_fits_uhwi_p (arg))
|
|
return NULL_TREE;
|
|
|
|
size = tree_to_uhwi (arg);
|
|
|
|
/* Heuristic: don't fold large allocas. */
|
|
threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
|
|
/* In case the alloca is located at function entry, it has the same lifetime
|
|
as a declared array, so we allow a larger size. */
|
|
block = gimple_block (stmt);
|
|
if (!(cfun->after_inlining
|
|
&& block
|
|
&& TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
|
|
threshold /= 10;
|
|
if (size > threshold)
|
|
return NULL_TREE;
|
|
|
|
/* We have to be able to move points-to info. We used to assert
|
|
that we can but IPA PTA might end up with two UIDs here
|
|
as it might need to handle more than one instance being
|
|
live at the same time. Instead of trying to detect this case
|
|
(using the first UID would be OK) just give up for now. */
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
|
|
unsigned uid = 0;
|
|
if (pi != NULL
|
|
&& !pi->pt.anything
|
|
&& !pt_solution_singleton_or_null_p (&pi->pt, &uid))
|
|
return NULL_TREE;
|
|
|
|
/* Declare array. */
|
|
elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
|
|
n_elem = size * 8 / BITS_PER_UNIT;
|
|
array_type = build_array_type_nelts (elem_type, n_elem);
|
|
|
|
if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
|
|
{
|
|
/* Give the temporary a name derived from the name of the VLA
|
|
declaration so it can be referenced in diagnostics. */
|
|
const char *name = IDENTIFIER_POINTER (ssa_name);
|
|
var = create_tmp_var (array_type, name);
|
|
}
|
|
else
|
|
var = create_tmp_var (array_type);
|
|
|
|
if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
|
|
{
|
|
/* Set the temporary's location to that of the VLA declaration
|
|
so it can be pointed to in diagnostics. */
|
|
location_t loc = gimple_location (lhsdef);
|
|
DECL_SOURCE_LOCATION (var) = loc;
|
|
}
|
|
|
|
SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
|
|
if (uid != 0)
|
|
SET_DECL_PT_UID (var, uid);
|
|
|
|
/* Fold alloca to the address of the array. */
|
|
return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
|
|
}
|
|
|
|
/* Fold the stmt at *GSI with CCP specific information that propagating
|
|
and regular folding does not catch. */
|
|
|
|
bool
|
|
ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_COND:
|
|
{
|
|
gcond *cond_stmt = as_a <gcond *> (stmt);
|
|
ccp_prop_value_t val;
|
|
/* Statement evaluation will handle type mismatches in constants
|
|
more gracefully than the final propagation. This allows us to
|
|
fold more conditionals here. */
|
|
val = evaluate_stmt (stmt);
|
|
if (val.lattice_val != CONSTANT
|
|
|| val.mask != 0)
|
|
return false;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Folding predicate ");
|
|
print_gimple_expr (dump_file, stmt, 0);
|
|
fprintf (dump_file, " to ");
|
|
print_generic_expr (dump_file, val.value);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (integer_zerop (val.value))
|
|
gimple_cond_make_false (cond_stmt);
|
|
else
|
|
gimple_cond_make_true (cond_stmt);
|
|
|
|
return true;
|
|
}
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
tree lhs = gimple_call_lhs (stmt);
|
|
int flags = gimple_call_flags (stmt);
|
|
tree val;
|
|
tree argt;
|
|
bool changed = false;
|
|
unsigned i;
|
|
|
|
/* If the call was folded into a constant make sure it goes
|
|
away even if we cannot propagate into all uses because of
|
|
type issues. */
|
|
if (lhs
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& (val = get_constant_value (lhs))
|
|
/* Don't optimize away calls that have side-effects. */
|
|
&& (flags & (ECF_CONST|ECF_PURE)) != 0
|
|
&& (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
|
|
{
|
|
tree new_rhs = unshare_expr (val);
|
|
bool res;
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs),
|
|
TREE_TYPE (new_rhs)))
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
|
res = update_call_from_tree (gsi, new_rhs);
|
|
gcc_assert (res);
|
|
return true;
|
|
}
|
|
|
|
/* Internal calls provide no argument types, so the extra laxity
|
|
for normal calls does not apply. */
|
|
if (gimple_call_internal_p (stmt))
|
|
return false;
|
|
|
|
/* The heuristic of fold_builtin_alloca_with_align differs before and
|
|
after inlining, so we don't require the arg to be changed into a
|
|
constant for folding, but just to be constant. */
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
|
|
|| gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
|
|
{
|
|
tree new_rhs = fold_builtin_alloca_with_align (stmt);
|
|
if (new_rhs)
|
|
{
|
|
bool res = update_call_from_tree (gsi, new_rhs);
|
|
tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
|
|
gcc_assert (res);
|
|
insert_clobbers_for_var (*gsi, var);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* If there's no extra info from an assume_aligned call,
|
|
drop it so it doesn't act as otherwise useless dataflow
|
|
barrier. */
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
|
|
{
|
|
tree ptr = gimple_call_arg (stmt, 0);
|
|
ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
|
|
if (ptrval.lattice_val == CONSTANT
|
|
&& TREE_CODE (ptrval.value) == INTEGER_CST
|
|
&& ptrval.mask != 0)
|
|
{
|
|
ccp_prop_value_t val
|
|
= bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
|
|
unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
|
|
unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
|
|
if (ptralign == align
|
|
&& ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
|
|
== (TREE_INT_CST_LOW (val.value) & (align - 1))))
|
|
{
|
|
bool res = update_call_from_tree (gsi, ptr);
|
|
gcc_assert (res);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Propagate into the call arguments. Compared to replace_uses_in
|
|
this can use the argument slot types for type verification
|
|
instead of the current argument type. We also can safely
|
|
drop qualifiers here as we are dealing with constants anyway. */
|
|
argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
|
|
for (i = 0; i < gimple_call_num_args (stmt) && argt;
|
|
++i, argt = TREE_CHAIN (argt))
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& (val = get_constant_value (arg))
|
|
&& useless_type_conversion_p
|
|
(TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
|
|
TYPE_MAIN_VARIANT (TREE_TYPE (val))))
|
|
{
|
|
gimple_call_set_arg (stmt, i, unshare_expr (val));
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree val;
|
|
|
|
/* If we have a load that turned out to be constant replace it
|
|
as we cannot propagate into all uses in all cases. */
|
|
if (gimple_assign_single_p (stmt)
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& (val = get_constant_value (lhs)))
|
|
{
|
|
tree rhs = unshare_expr (val);
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
|
rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
|
|
gimple_assign_set_rhs_from_tree (gsi, rhs);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Visit the assignment statement STMT. Set the value of its LHS to the
|
|
value computed by the RHS and store LHS in *OUTPUT_P. If STMT
|
|
creates virtual definitions, set the value of each new name to that
|
|
of the RHS (if we can derive a constant out of the RHS).
|
|
Value-returning call statements also perform an assignment, and
|
|
are handled here. */
|
|
|
|
static enum ssa_prop_result
|
|
visit_assignment (gimple *stmt, tree *output_p)
|
|
{
|
|
ccp_prop_value_t val;
|
|
enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
|
|
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
/* Evaluate the statement, which could be
|
|
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
|
|
val = evaluate_stmt (stmt);
|
|
|
|
/* If STMT is an assignment to an SSA_NAME, we only have one
|
|
value to set. */
|
|
if (set_lattice_value (lhs, &val))
|
|
{
|
|
*output_p = lhs;
|
|
if (val.lattice_val == VARYING)
|
|
retval = SSA_PROP_VARYING;
|
|
else
|
|
retval = SSA_PROP_INTERESTING;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
|
|
if it can determine which edge will be taken. Otherwise, return
|
|
SSA_PROP_VARYING. */
|
|
|
|
static enum ssa_prop_result
|
|
visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
|
|
{
|
|
ccp_prop_value_t val;
|
|
basic_block block;
|
|
|
|
block = gimple_bb (stmt);
|
|
val = evaluate_stmt (stmt);
|
|
if (val.lattice_val != CONSTANT
|
|
|| val.mask != 0)
|
|
return SSA_PROP_VARYING;
|
|
|
|
/* Find which edge out of the conditional block will be taken and add it
|
|
to the worklist. If no single edge can be determined statically,
|
|
return SSA_PROP_VARYING to feed all the outgoing edges to the
|
|
propagation engine. */
|
|
*taken_edge_p = find_taken_edge (block, val.value);
|
|
if (*taken_edge_p)
|
|
return SSA_PROP_INTERESTING;
|
|
else
|
|
return SSA_PROP_VARYING;
|
|
}
|
|
|
|
|
|
/* Evaluate statement STMT. If the statement produces an output value and
|
|
its evaluation changes the lattice value of its output, return
|
|
SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
|
|
output value.
|
|
|
|
If STMT is a conditional branch and we can determine its truth
|
|
value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
|
|
value, return SSA_PROP_VARYING. */
|
|
|
|
enum ssa_prop_result
|
|
ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
|
|
{
|
|
tree def;
|
|
ssa_op_iter iter;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
/* If the statement is an assignment that produces a single
|
|
output value, evaluate its RHS to see if the lattice value of
|
|
its output has changed. */
|
|
return visit_assignment (stmt, output_p);
|
|
|
|
case GIMPLE_CALL:
|
|
/* A value-returning call also performs an assignment. */
|
|
if (gimple_call_lhs (stmt) != NULL_TREE)
|
|
return visit_assignment (stmt, output_p);
|
|
break;
|
|
|
|
case GIMPLE_COND:
|
|
case GIMPLE_SWITCH:
|
|
/* If STMT is a conditional branch, see if we can determine
|
|
which branch will be taken. */
|
|
/* FIXME. It appears that we should be able to optimize
|
|
computed GOTOs here as well. */
|
|
return visit_cond_stmt (stmt, taken_edge_p);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Any other kind of statement is not interesting for constant
|
|
propagation and, therefore, not worth simulating. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
|
|
|
|
/* Definitions made by statements other than assignments to
|
|
SSA_NAMEs represent unknown modifications to their outputs.
|
|
Mark them VARYING. */
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
set_value_varying (def);
|
|
|
|
return SSA_PROP_VARYING;
|
|
}
|
|
|
|
|
|
/* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
|
|
record nonzero bits. */
|
|
|
|
static unsigned int
|
|
do_ssa_ccp (bool nonzero_p)
|
|
{
|
|
unsigned int todo = 0;
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
ccp_initialize ();
|
|
class ccp_propagate ccp_propagate;
|
|
ccp_propagate.ssa_propagate ();
|
|
if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
|
|
{
|
|
todo = (TODO_cleanup_cfg | TODO_update_ssa);
|
|
|
|
/* ccp_finalize does not preserve loop-closed ssa. */
|
|
loops_state_clear (LOOP_CLOSED_SSA);
|
|
}
|
|
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
return todo;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_ccp =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"ccp", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_CCP, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_update_address_taken, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_ccp : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_ccp (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_ccp (m_ctxt); }
|
|
void set_pass_param (unsigned int n, bool param)
|
|
{
|
|
gcc_assert (n == 0);
|
|
nonzero_p = param;
|
|
}
|
|
virtual bool gate (function *) { return flag_tree_ccp != 0; }
|
|
virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
|
|
|
|
private:
|
|
/* Determines whether the pass instance records nonzero bits. */
|
|
bool nonzero_p;
|
|
}; // class pass_ccp
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_ccp (gcc::context *ctxt)
|
|
{
|
|
return new pass_ccp (ctxt);
|
|
}
|
|
|
|
|
|
|
|
/* Try to optimize out __builtin_stack_restore. Optimize it out
|
|
if there is another __builtin_stack_restore in the same basic
|
|
block and no calls or ASM_EXPRs are in between, or if this block's
|
|
only outgoing edge is to EXIT_BLOCK and there are no calls or
|
|
ASM_EXPRs after this __builtin_stack_restore. */
|
|
|
|
static tree
|
|
optimize_stack_restore (gimple_stmt_iterator i)
|
|
{
|
|
tree callee;
|
|
gimple *stmt;
|
|
|
|
basic_block bb = gsi_bb (i);
|
|
gimple *call = gsi_stmt (i);
|
|
|
|
if (gimple_code (call) != GIMPLE_CALL
|
|
|| gimple_call_num_args (call) != 1
|
|
|| TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
|
|
|| !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
|
|
return NULL_TREE;
|
|
|
|
for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
|
|
{
|
|
stmt = gsi_stmt (i);
|
|
if (gimple_code (stmt) == GIMPLE_ASM)
|
|
return NULL_TREE;
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
continue;
|
|
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee
|
|
|| !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
|
|
/* All regular builtins are ok, just obviously not alloca. */
|
|
|| ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
|
|
return NULL_TREE;
|
|
|
|
if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
|
|
goto second_stack_restore;
|
|
}
|
|
|
|
if (!gsi_end_p (i))
|
|
return NULL_TREE;
|
|
|
|
/* Allow one successor of the exit block, or zero successors. */
|
|
switch (EDGE_COUNT (bb->succs))
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return NULL_TREE;
|
|
break;
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
second_stack_restore:
|
|
|
|
/* If there's exactly one use, then zap the call to __builtin_stack_save.
|
|
If there are multiple uses, then the last one should remove the call.
|
|
In any case, whether the call to __builtin_stack_save can be removed
|
|
or not is irrelevant to removing the call to __builtin_stack_restore. */
|
|
if (has_single_use (gimple_call_arg (call, 0)))
|
|
{
|
|
gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
|
|
if (is_gimple_call (stack_save))
|
|
{
|
|
callee = gimple_call_fndecl (stack_save);
|
|
if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
|
|
{
|
|
gimple_stmt_iterator stack_save_gsi;
|
|
tree rhs;
|
|
|
|
stack_save_gsi = gsi_for_stmt (stack_save);
|
|
rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
|
|
update_call_from_tree (&stack_save_gsi, rhs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No effect, so the statement will be deleted. */
|
|
return integer_zero_node;
|
|
}
|
|
|
|
/* If va_list type is a simple pointer and nothing special is needed,
|
|
optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
|
|
__builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
|
|
pointer assignment. */
|
|
|
|
static tree
|
|
optimize_stdarg_builtin (gimple *call)
|
|
{
|
|
tree callee, lhs, rhs, cfun_va_list;
|
|
bool va_list_simple_ptr;
|
|
location_t loc = gimple_location (call);
|
|
|
|
callee = gimple_call_fndecl (call);
|
|
|
|
cfun_va_list = targetm.fn_abi_va_list (callee);
|
|
va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
|
|
&& (TREE_TYPE (cfun_va_list) == void_type_node
|
|
|| TREE_TYPE (cfun_va_list) == char_type_node);
|
|
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_VA_START:
|
|
if (!va_list_simple_ptr
|
|
|| targetm.expand_builtin_va_start != NULL
|
|
|| !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
|
|
return NULL_TREE;
|
|
|
|
if (gimple_call_num_args (call) != 2)
|
|
return NULL_TREE;
|
|
|
|
lhs = gimple_call_arg (call, 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
|
rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
|
|
1, integer_zero_node);
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
|
|
|
case BUILT_IN_VA_COPY:
|
|
if (!va_list_simple_ptr)
|
|
return NULL_TREE;
|
|
|
|
if (gimple_call_num_args (call) != 2)
|
|
return NULL_TREE;
|
|
|
|
lhs = gimple_call_arg (call, 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (lhs))
|
|
|| TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
lhs = build_fold_indirect_ref_loc (loc, lhs);
|
|
rhs = gimple_call_arg (call, 1);
|
|
if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
|
|
!= TYPE_MAIN_VARIANT (cfun_va_list))
|
|
return NULL_TREE;
|
|
|
|
rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
|
|
return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
|
|
|
|
case BUILT_IN_VA_END:
|
|
/* No effect, so the statement will be deleted. */
|
|
return integer_zero_node;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Attemp to make the block of __builtin_unreachable I unreachable by changing
|
|
the incoming jumps. Return true if at least one jump was changed. */
|
|
|
|
static bool
|
|
optimize_unreachable (gimple_stmt_iterator i)
|
|
{
|
|
basic_block bb = gsi_bb (i);
|
|
gimple_stmt_iterator gsi;
|
|
gimple *stmt;
|
|
edge_iterator ei;
|
|
edge e;
|
|
bool ret;
|
|
|
|
if (flag_sanitize & SANITIZE_UNREACHABLE)
|
|
return false;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
|
|
{
|
|
/* Verify we do not need to preserve the label. */
|
|
if (FORCED_LABEL (gimple_label_label (label_stmt)))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Only handle the case that __builtin_unreachable is the first statement
|
|
in the block. We rely on DCE to remove stmts without side-effects
|
|
before __builtin_unreachable. */
|
|
if (gsi_stmt (gsi) != gsi_stmt (i))
|
|
return false;
|
|
}
|
|
|
|
ret = false;
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
gsi = gsi_last_bb (e->src);
|
|
if (gsi_end_p (gsi))
|
|
continue;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
|
|
{
|
|
if (e->flags & EDGE_TRUE_VALUE)
|
|
gimple_cond_make_false (cond_stmt);
|
|
else if (e->flags & EDGE_FALSE_VALUE)
|
|
gimple_cond_make_true (cond_stmt);
|
|
else
|
|
gcc_unreachable ();
|
|
update_stmt (cond_stmt);
|
|
}
|
|
else
|
|
{
|
|
/* Todo: handle other cases. Note that unreachable switch case
|
|
statements have already been removed. */
|
|
continue;
|
|
}
|
|
|
|
ret = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Optimize
|
|
mask_2 = 1 << cnt_1;
|
|
_4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
|
|
_5 = _4 & mask_2;
|
|
to
|
|
_4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
|
|
_5 = _4;
|
|
If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
|
|
is passed instead of 0, and the builtin just returns a zero
|
|
or 1 value instead of the actual bit.
|
|
Similarly for __sync_fetch_and_or_* (without the ", _3" part
|
|
in there), and/or if mask_2 is a power of 2 constant.
|
|
Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
|
|
in that case. And similarly for and instead of or, except that
|
|
the second argument to the builtin needs to be one's complement
|
|
of the mask instead of mask. */
|
|
|
|
static void
|
|
optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
|
|
enum internal_fn fn, bool has_model_arg,
|
|
bool after)
|
|
{
|
|
gimple *call = gsi_stmt (*gsip);
|
|
tree lhs = gimple_call_lhs (call);
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
tree mask, bit;
|
|
optab optab;
|
|
|
|
if (!flag_inline_atomics
|
|
|| optimize_debug
|
|
|| !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
|
|
|| !lhs
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
|
|
|| !single_imm_use (lhs, &use_p, &use_stmt)
|
|
|| !is_gimple_assign (use_stmt)
|
|
|| gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
|
|
|| !gimple_vdef (call))
|
|
return;
|
|
|
|
switch (fn)
|
|
{
|
|
case IFN_ATOMIC_BIT_TEST_AND_SET:
|
|
optab = atomic_bit_test_and_set_optab;
|
|
break;
|
|
case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
|
|
optab = atomic_bit_test_and_complement_optab;
|
|
break;
|
|
case IFN_ATOMIC_BIT_TEST_AND_RESET:
|
|
optab = atomic_bit_test_and_reset_optab;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
|
|
return;
|
|
|
|
mask = gimple_call_arg (call, 1);
|
|
tree use_lhs = gimple_assign_lhs (use_stmt);
|
|
if (!use_lhs)
|
|
return;
|
|
|
|
if (TREE_CODE (mask) == INTEGER_CST)
|
|
{
|
|
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
|
|
mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
|
|
mask = fold_convert (TREE_TYPE (lhs), mask);
|
|
int ibit = tree_log2 (mask);
|
|
if (ibit < 0)
|
|
return;
|
|
bit = build_int_cst (TREE_TYPE (lhs), ibit);
|
|
}
|
|
else if (TREE_CODE (mask) == SSA_NAME)
|
|
{
|
|
gimple *g = SSA_NAME_DEF_STMT (mask);
|
|
if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
|
|
{
|
|
if (!is_gimple_assign (g)
|
|
|| gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
|
|
return;
|
|
mask = gimple_assign_rhs1 (g);
|
|
if (TREE_CODE (mask) != SSA_NAME)
|
|
return;
|
|
g = SSA_NAME_DEF_STMT (mask);
|
|
}
|
|
if (!is_gimple_assign (g)
|
|
|| gimple_assign_rhs_code (g) != LSHIFT_EXPR
|
|
|| !integer_onep (gimple_assign_rhs1 (g)))
|
|
return;
|
|
bit = gimple_assign_rhs2 (g);
|
|
}
|
|
else
|
|
return;
|
|
|
|
if (gimple_assign_rhs1 (use_stmt) == lhs)
|
|
{
|
|
if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
|
|
return;
|
|
}
|
|
else if (gimple_assign_rhs2 (use_stmt) != lhs
|
|
|| !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
|
|
return;
|
|
|
|
bool use_bool = true;
|
|
bool has_debug_uses = false;
|
|
imm_use_iterator iter;
|
|
gimple *g;
|
|
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
|
|
use_bool = false;
|
|
FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
|
|
{
|
|
enum tree_code code = ERROR_MARK;
|
|
tree op0 = NULL_TREE, op1 = NULL_TREE;
|
|
if (is_gimple_debug (g))
|
|
{
|
|
has_debug_uses = true;
|
|
continue;
|
|
}
|
|
else if (is_gimple_assign (g))
|
|
switch (gimple_assign_rhs_code (g))
|
|
{
|
|
case COND_EXPR:
|
|
op1 = gimple_assign_rhs1 (g);
|
|
code = TREE_CODE (op1);
|
|
op0 = TREE_OPERAND (op1, 0);
|
|
op1 = TREE_OPERAND (op1, 1);
|
|
break;
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
code = gimple_assign_rhs_code (g);
|
|
op0 = gimple_assign_rhs1 (g);
|
|
op1 = gimple_assign_rhs2 (g);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
else if (gimple_code (g) == GIMPLE_COND)
|
|
{
|
|
code = gimple_cond_code (g);
|
|
op0 = gimple_cond_lhs (g);
|
|
op1 = gimple_cond_rhs (g);
|
|
}
|
|
|
|
if ((code == EQ_EXPR || code == NE_EXPR)
|
|
&& op0 == use_lhs
|
|
&& integer_zerop (op1))
|
|
{
|
|
use_operand_p use_p;
|
|
int n = 0;
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
n++;
|
|
if (n == 1)
|
|
continue;
|
|
}
|
|
|
|
use_bool = false;
|
|
BREAK_FROM_IMM_USE_STMT (iter);
|
|
}
|
|
|
|
tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
|
|
tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
|
|
if (has_model_arg)
|
|
g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
|
|
bit, flag, gimple_call_arg (call, 2));
|
|
else
|
|
g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
|
|
bit, flag);
|
|
gimple_call_set_lhs (g, new_lhs);
|
|
gimple_set_location (g, gimple_location (call));
|
|
gimple_move_vops (g, call);
|
|
bool throws = stmt_can_throw_internal (cfun, call);
|
|
gimple_call_set_nothrow (as_a <gcall *> (g),
|
|
gimple_call_nothrow_p (as_a <gcall *> (call)));
|
|
gimple_stmt_iterator gsi = *gsip;
|
|
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
|
|
edge e = NULL;
|
|
if (throws)
|
|
{
|
|
maybe_clean_or_replace_eh_stmt (call, g);
|
|
if (after || (use_bool && has_debug_uses))
|
|
e = find_fallthru_edge (gsi_bb (gsi)->succs);
|
|
}
|
|
if (after)
|
|
{
|
|
/* The internal function returns the value of the specified bit
|
|
before the atomic operation. If we are interested in the value
|
|
of the specified bit after the atomic operation (makes only sense
|
|
for xor, otherwise the bit content is compile time known),
|
|
we need to invert the bit. */
|
|
g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
|
|
BIT_XOR_EXPR, new_lhs,
|
|
use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
|
|
: mask);
|
|
new_lhs = gimple_assign_lhs (g);
|
|
if (throws)
|
|
{
|
|
gsi_insert_on_edge_immediate (e, g);
|
|
gsi = gsi_for_stmt (g);
|
|
}
|
|
else
|
|
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
|
|
}
|
|
if (use_bool && has_debug_uses)
|
|
{
|
|
tree temp = NULL_TREE;
|
|
if (!throws || after || single_pred_p (e->dest))
|
|
{
|
|
temp = make_node (DEBUG_EXPR_DECL);
|
|
DECL_ARTIFICIAL (temp) = 1;
|
|
TREE_TYPE (temp) = TREE_TYPE (lhs);
|
|
SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
|
|
tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
|
|
g = gimple_build_debug_bind (temp, t, g);
|
|
if (throws && !after)
|
|
{
|
|
gsi = gsi_after_labels (e->dest);
|
|
gsi_insert_before (&gsi, g, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
|
|
}
|
|
FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
|
|
if (is_gimple_debug (g))
|
|
{
|
|
use_operand_p use_p;
|
|
if (temp == NULL_TREE)
|
|
gimple_debug_bind_reset_value (g);
|
|
else
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
|
SET_USE (use_p, temp);
|
|
update_stmt (g);
|
|
}
|
|
}
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
|
|
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
|
|
replace_uses_by (use_lhs, new_lhs);
|
|
gsi = gsi_for_stmt (use_stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (use_stmt);
|
|
gsi_remove (gsip, true);
|
|
release_ssa_name (lhs);
|
|
}
|
|
|
|
/* Optimize
|
|
a = {};
|
|
b = a;
|
|
into
|
|
a = {};
|
|
b = {};
|
|
Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
|
|
and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
|
|
|
|
static void
|
|
optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
|
|
{
|
|
gimple *stmt = gsi_stmt (*gsip);
|
|
if (gimple_has_volatile_ops (stmt))
|
|
return;
|
|
|
|
tree vuse = gimple_vuse (stmt);
|
|
if (vuse == NULL)
|
|
return;
|
|
|
|
gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
|
|
tree src2 = NULL_TREE, len2 = NULL_TREE;
|
|
poly_int64 offset, offset2;
|
|
tree val = integer_zero_node;
|
|
if (gimple_store_p (defstmt)
|
|
&& gimple_assign_single_p (defstmt)
|
|
&& TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
|
|
&& !gimple_clobber_p (defstmt))
|
|
src2 = gimple_assign_lhs (defstmt);
|
|
else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
|
|
&& TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
|
|
&& TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
|
|
{
|
|
src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
|
|
len2 = gimple_call_arg (defstmt, 2);
|
|
val = gimple_call_arg (defstmt, 1);
|
|
/* For non-0 val, we'd have to transform stmt from assignment
|
|
into memset (only if dest is addressable). */
|
|
if (!integer_zerop (val) && is_gimple_assign (stmt))
|
|
src2 = NULL_TREE;
|
|
}
|
|
|
|
if (src2 == NULL_TREE)
|
|
return;
|
|
|
|
if (len == NULL_TREE)
|
|
len = (TREE_CODE (src) == COMPONENT_REF
|
|
? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
|
|
: TYPE_SIZE_UNIT (TREE_TYPE (src)));
|
|
if (len2 == NULL_TREE)
|
|
len2 = (TREE_CODE (src2) == COMPONENT_REF
|
|
? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
|
|
: TYPE_SIZE_UNIT (TREE_TYPE (src2)));
|
|
if (len == NULL_TREE
|
|
|| !poly_int_tree_p (len)
|
|
|| len2 == NULL_TREE
|
|
|| !poly_int_tree_p (len2))
|
|
return;
|
|
|
|
src = get_addr_base_and_unit_offset (src, &offset);
|
|
src2 = get_addr_base_and_unit_offset (src2, &offset2);
|
|
if (src == NULL_TREE
|
|
|| src2 == NULL_TREE
|
|
|| maybe_lt (offset, offset2))
|
|
return;
|
|
|
|
if (!operand_equal_p (src, src2, 0))
|
|
return;
|
|
|
|
/* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
|
|
Make sure that
|
|
[ src + offset, src + offset + len - 1 ] is a subset of that. */
|
|
if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
|
|
wi::to_poly_offset (len2)))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Simplified\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
fprintf (dump_file, "after previous\n ");
|
|
print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
|
|
}
|
|
|
|
/* For simplicity, don't change the kind of the stmt,
|
|
turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
|
|
into memset (&dest, val, len);
|
|
In theory we could change dest = src into memset if dest
|
|
is addressable (maybe beneficial if val is not 0), or
|
|
memcpy (&dest, &src, len) into dest = {} if len is the size
|
|
of dest, dest isn't volatile. */
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
tree ctor = build_constructor (TREE_TYPE (dest), NULL);
|
|
gimple_assign_set_rhs_from_tree (gsip, ctor);
|
|
update_stmt (stmt);
|
|
}
|
|
else /* If stmt is memcpy, transform it into memset. */
|
|
{
|
|
gcall *call = as_a <gcall *> (stmt);
|
|
tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
|
|
gimple_call_set_fndecl (call, fndecl);
|
|
gimple_call_set_fntype (call, TREE_TYPE (fndecl));
|
|
gimple_call_set_arg (call, 1, val);
|
|
update_stmt (stmt);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "into\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
}
|
|
|
|
/* A simple pass that attempts to fold all builtin functions. This pass
|
|
is run after we've propagated as many constants as we can. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_fold_builtins =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"fab", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_NONE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_update_ssa, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_fold_builtins : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_fold_builtins (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_fold_builtins, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_fold_builtins
|
|
|
|
unsigned int
|
|
pass_fold_builtins::execute (function *fun)
|
|
{
|
|
bool cfg_changed = false;
|
|
basic_block bb;
|
|
unsigned int todoflags = 0;
|
|
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
{
|
|
gimple_stmt_iterator i;
|
|
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
|
|
{
|
|
gimple *stmt, *old_stmt;
|
|
tree callee;
|
|
enum built_in_function fcode;
|
|
|
|
stmt = gsi_stmt (i);
|
|
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
{
|
|
/* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
|
|
after the last GIMPLE DSE they aren't needed and might
|
|
unnecessarily keep the SSA_NAMEs live. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
if (TREE_CODE (lhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&i, true);
|
|
release_defs (stmt);
|
|
continue;
|
|
}
|
|
}
|
|
else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
|
|
optimize_memcpy (&i, gimple_assign_lhs (stmt),
|
|
gimple_assign_rhs1 (stmt), NULL_TREE);
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
|
|
fcode = DECL_FUNCTION_CODE (callee);
|
|
if (fold_stmt (&i))
|
|
;
|
|
else
|
|
{
|
|
tree result = NULL_TREE;
|
|
switch (DECL_FUNCTION_CODE (callee))
|
|
{
|
|
case BUILT_IN_CONSTANT_P:
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
|
folded to integer_one_node by now, it's fairly
|
|
certain that the value simply isn't constant. */
|
|
result = integer_zero_node;
|
|
break;
|
|
|
|
case BUILT_IN_ASSUME_ALIGNED:
|
|
/* Remove __builtin_assume_aligned. */
|
|
result = gimple_call_arg (stmt, 0);
|
|
break;
|
|
|
|
case BUILT_IN_STACK_RESTORE:
|
|
result = optimize_stack_restore (i);
|
|
if (result)
|
|
break;
|
|
gsi_next (&i);
|
|
continue;
|
|
|
|
case BUILT_IN_UNREACHABLE:
|
|
if (optimize_unreachable (i))
|
|
cfg_changed = true;
|
|
break;
|
|
|
|
case BUILT_IN_ATOMIC_FETCH_OR_1:
|
|
case BUILT_IN_ATOMIC_FETCH_OR_2:
|
|
case BUILT_IN_ATOMIC_FETCH_OR_4:
|
|
case BUILT_IN_ATOMIC_FETCH_OR_8:
|
|
case BUILT_IN_ATOMIC_FETCH_OR_16:
|
|
optimize_atomic_bit_test_and (&i,
|
|
IFN_ATOMIC_BIT_TEST_AND_SET,
|
|
true, false);
|
|
break;
|
|
case BUILT_IN_SYNC_FETCH_AND_OR_1:
|
|
case BUILT_IN_SYNC_FETCH_AND_OR_2:
|
|
case BUILT_IN_SYNC_FETCH_AND_OR_4:
|
|
case BUILT_IN_SYNC_FETCH_AND_OR_8:
|
|
case BUILT_IN_SYNC_FETCH_AND_OR_16:
|
|
optimize_atomic_bit_test_and (&i,
|
|
IFN_ATOMIC_BIT_TEST_AND_SET,
|
|
false, false);
|
|
break;
|
|
|
|
case BUILT_IN_ATOMIC_FETCH_XOR_1:
|
|
case BUILT_IN_ATOMIC_FETCH_XOR_2:
|
|
case BUILT_IN_ATOMIC_FETCH_XOR_4:
|
|
case BUILT_IN_ATOMIC_FETCH_XOR_8:
|
|
case BUILT_IN_ATOMIC_FETCH_XOR_16:
|
|
optimize_atomic_bit_test_and
|
|
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
|
|
break;
|
|
case BUILT_IN_SYNC_FETCH_AND_XOR_1:
|
|
case BUILT_IN_SYNC_FETCH_AND_XOR_2:
|
|
case BUILT_IN_SYNC_FETCH_AND_XOR_4:
|
|
case BUILT_IN_SYNC_FETCH_AND_XOR_8:
|
|
case BUILT_IN_SYNC_FETCH_AND_XOR_16:
|
|
optimize_atomic_bit_test_and
|
|
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
|
|
break;
|
|
|
|
case BUILT_IN_ATOMIC_XOR_FETCH_1:
|
|
case BUILT_IN_ATOMIC_XOR_FETCH_2:
|
|
case BUILT_IN_ATOMIC_XOR_FETCH_4:
|
|
case BUILT_IN_ATOMIC_XOR_FETCH_8:
|
|
case BUILT_IN_ATOMIC_XOR_FETCH_16:
|
|
optimize_atomic_bit_test_and
|
|
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
|
|
break;
|
|
case BUILT_IN_SYNC_XOR_AND_FETCH_1:
|
|
case BUILT_IN_SYNC_XOR_AND_FETCH_2:
|
|
case BUILT_IN_SYNC_XOR_AND_FETCH_4:
|
|
case BUILT_IN_SYNC_XOR_AND_FETCH_8:
|
|
case BUILT_IN_SYNC_XOR_AND_FETCH_16:
|
|
optimize_atomic_bit_test_and
|
|
(&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
|
|
break;
|
|
|
|
case BUILT_IN_ATOMIC_FETCH_AND_1:
|
|
case BUILT_IN_ATOMIC_FETCH_AND_2:
|
|
case BUILT_IN_ATOMIC_FETCH_AND_4:
|
|
case BUILT_IN_ATOMIC_FETCH_AND_8:
|
|
case BUILT_IN_ATOMIC_FETCH_AND_16:
|
|
optimize_atomic_bit_test_and (&i,
|
|
IFN_ATOMIC_BIT_TEST_AND_RESET,
|
|
true, false);
|
|
break;
|
|
case BUILT_IN_SYNC_FETCH_AND_AND_1:
|
|
case BUILT_IN_SYNC_FETCH_AND_AND_2:
|
|
case BUILT_IN_SYNC_FETCH_AND_AND_4:
|
|
case BUILT_IN_SYNC_FETCH_AND_AND_8:
|
|
case BUILT_IN_SYNC_FETCH_AND_AND_16:
|
|
optimize_atomic_bit_test_and (&i,
|
|
IFN_ATOMIC_BIT_TEST_AND_RESET,
|
|
false, false);
|
|
break;
|
|
|
|
case BUILT_IN_MEMCPY:
|
|
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
|
|
&& TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
|
|
&& TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
|
|
&& TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
|
|
{
|
|
tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
|
|
tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
|
|
tree len = gimple_call_arg (stmt, 2);
|
|
optimize_memcpy (&i, dest, src, len);
|
|
}
|
|
break;
|
|
|
|
case BUILT_IN_VA_START:
|
|
case BUILT_IN_VA_END:
|
|
case BUILT_IN_VA_COPY:
|
|
/* These shouldn't be folded before pass_stdarg. */
|
|
result = optimize_stdarg_builtin (stmt);
|
|
break;
|
|
|
|
default:;
|
|
}
|
|
|
|
if (!result)
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
|
|
if (!update_call_from_tree (&i, result))
|
|
gimplify_and_update_call_from_tree (&i, result);
|
|
}
|
|
|
|
todoflags |= TODO_update_address_taken;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Simplified\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
old_stmt = stmt;
|
|
stmt = gsi_stmt (i);
|
|
update_stmt (stmt);
|
|
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
|
|
&& gimple_purge_dead_eh_edges (bb))
|
|
cfg_changed = true;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "to\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Retry the same statement if it changed into another
|
|
builtin, there might be new opportunities now. */
|
|
if (gimple_code (stmt) != GIMPLE_CALL)
|
|
{
|
|
gsi_next (&i);
|
|
continue;
|
|
}
|
|
callee = gimple_call_fndecl (stmt);
|
|
if (!callee
|
|
|| !fndecl_built_in_p (callee, fcode))
|
|
gsi_next (&i);
|
|
}
|
|
}
|
|
|
|
/* Delete unreachable blocks. */
|
|
if (cfg_changed)
|
|
todoflags |= TODO_cleanup_cfg;
|
|
|
|
return todoflags;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_fold_builtins (gcc::context *ctxt)
|
|
{
|
|
return new pass_fold_builtins (ctxt);
|
|
}
|
|
|
|
/* A simple pass that emits some warnings post IPA. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_post_ipa_warn =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"post_ipa_warn", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_NONE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_post_ipa_warn : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_post_ipa_warn (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
|
|
virtual bool gate (function *) { return warn_nonnull != 0; }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_fold_builtins
|
|
|
|
unsigned int
|
|
pass_post_ipa_warn::execute (function *fun)
|
|
{
|
|
basic_block bb;
|
|
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
|
|
continue;
|
|
|
|
tree fntype = gimple_call_fntype (stmt);
|
|
bitmap nonnullargs = get_nonnull_args (fntype);
|
|
if (!nonnullargs)
|
|
continue;
|
|
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
|
|
for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, i);
|
|
if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
|
|
continue;
|
|
if (!integer_zerop (arg))
|
|
continue;
|
|
if (!bitmap_empty_p (nonnullargs)
|
|
&& !bitmap_bit_p (nonnullargs, i))
|
|
continue;
|
|
|
|
/* In C++ non-static member functions argument 0 refers
|
|
to the implicit this pointer. Use the same one-based
|
|
numbering for ordinary arguments. */
|
|
unsigned argno = TREE_CODE (fntype) == METHOD_TYPE ? i : i + 1;
|
|
location_t loc = (EXPR_HAS_LOCATION (arg)
|
|
? EXPR_LOCATION (arg)
|
|
: gimple_location (stmt));
|
|
auto_diagnostic_group d;
|
|
if (argno == 0)
|
|
{
|
|
if (warning_at (loc, OPT_Wnonnull,
|
|
"%G%qs pointer null", stmt, "this")
|
|
&& fndecl)
|
|
inform (DECL_SOURCE_LOCATION (fndecl),
|
|
"in a call to non-static member function %qD",
|
|
fndecl);
|
|
continue;
|
|
}
|
|
|
|
if (!warning_at (loc, OPT_Wnonnull,
|
|
"%Gargument %u null where non-null "
|
|
"expected", stmt, argno))
|
|
continue;
|
|
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
if (fndecl && DECL_IS_BUILTIN (fndecl))
|
|
inform (loc, "in a call to built-in function %qD",
|
|
fndecl);
|
|
else if (fndecl)
|
|
inform (DECL_SOURCE_LOCATION (fndecl),
|
|
"in a call to function %qD declared %qs",
|
|
fndecl, "nonnull");
|
|
}
|
|
BITMAP_FREE (nonnullargs);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_post_ipa_warn (gcc::context *ctxt)
|
|
{
|
|
return new pass_post_ipa_warn (ctxt);
|
|
}
|