8sa1-gcc/gcc/config/sh/sh.h
1993-05-04 15:21:26 +00:00

1162 lines
38 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions of target machine for GNU compiler, for Hitachi Super-H.
Copyright (C) 1993 Free Software Foundation, Inc.
Contributed by Steve Chamberlain (sac@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Run-time Target Specification. */
#define TARGET_SH
#define TARGET_VERSION \
fputs (" (Hitachi SH)", stderr);
/* Generate SDB debugging information. */
#define SDB_DEBUGGING_INFO 1
#define SDB_DELIM ";"
#define CPP_PREDEFINES "-D__sh__"
/* Omitting the frame pointer is a very good idea on the SH */
#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
{ \
if (OPTIMIZE) \
flag_omit_frame_pointer = 1; \
if (OPTIMIZE==0)OPTIMIZE=1; \
}
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
#define ISIZE_BIT 1
#define FAST_BIT 2
#define MULSI3_BIT 4
#define MAC_BIT 8
#define RTL_BIT 16
#define DT_BIT 32
#define DALIGN_BIT 64
/* Nonzero if we should generate code using muls.l insn */
#define TARGET_HAS_MULSI3 (target_flags & MULSI3_BIT)
/* Nonzero if we should generate faster code rather than smaller code */
#define TARGET_FASTCODE (target_flags & FAST_BIT)
/* Nonzero if we should dump out instruction size info */
#define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
/* Nonzero if we should try to generate mac instructions */
#define TARGET_MAC (target_flags & MAC_BIT)
/* Nonzero if we should dump the rtl in the assembly file. */
#define TARGET_DUMP_RTL (target_flags & RTL_BIT)
/* Nonzero if the target has a decrement and test instruction .*/
#define TARGET_HAS_DT (target_flags & DT_BIT)
/* Nonzero to align doubles on 64 bit boundaries */
#define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
#define TARGET_SWITCHES \
{ {"isize", ( ISIZE_BIT) },\
{"space", (-FAST_BIT) },\
{"hasmulsi", ( MULSI3_BIT) },\
{"hasdt", ( DT_BIT) },\
{"ac", ( MAC_BIT) },\
{"dalign", ( DALIGN_BIT) },\
{"", TARGET_DEFAULT} \
}
#define TARGET_DEFAULT FAST_BIT
/* Target machine storage Layout. */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is the lowest
numbered. */
#define WORDS_BIG_ENDIAN 1
/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
#define MAX_BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
/* The best alignment to use in cases where we have a choice. */
#define FASTEST_ALIGNMENT 32
/* Every structures size must be a multiple of 32 bits. */
#define STRUCTURE_SIZE_BOUNDARY 32
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < FASTEST_ALIGNMENT) \
? FASTEST_ALIGNMENT : (ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Standard register usage. */
/* Register allocation for our first guess
r0-r3 scratch
r4-r7 args in and out
r8-r11 call saved
r12
r13 assembler temp
r14 frame pointer
r15 stack pointer
ap arg pointer (doesn't really exist, always eliminated)
pr subroutine return address
t t bit
mach multiply/accumulate result
macl
*/
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
SH has 16 integer registers and 4 control registers + the arg
pointer */
#define FIRST_PSEUDO_REGISTER 22
#define PR_REG 17
#define T_REG 18
#define GBR_REG 19
#define MACH_REG 20
#define MACL_REG 21
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
/* r0 r1 r2 r3 r4 r5 r6 r7 r8
r9 r10 r11 r12 r13 r14 r15 ap pr t gbr mh ml */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
/* r0 r1 r2 r3 r4 r5 r6 r7 r8
r9 r10 r11 r12 r13 r14 r15 ap pr t gbr mh ml */
#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, 1, 1, 1, 1, 0, \
0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the SH regs are UNITS_PER_WORD bits wide; */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
We may keep double values in even registers */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((TARGET_ALIGN_DOUBLE && GET_MODE_SIZE(MODE) > 4) ? (((REGNO)&1)==0) : 1)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Define this if the program counter is overloaded on a register. */
/* #define PC_REGNUM 15*/
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 15
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 14
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may be accessed
via the stack pointer) in functions that seem suitable. */
#define FRAME_POINTER_REQUIRED 0
/* Definitions for register eliminations.
We have two registers that can be eliminated on the m88k. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
/* Given FROM and TO register numbers, say whether this elimination
is allowed. */
#define CAN_ELIMINATE(FROM, TO) \
(!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
OFFSET = initial_elimination_offset (FROM, TO)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 16
/* Register in which the static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 13
/* If the structure value address is not passed in a register, define
this as an expression returning an RTX for the place
where the address is passed. If it returns 0, the address is
passed as an "invisible" first argument. */
#define STRUCT_VALUE 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The SH has two sorts of general registers, R0 and the rest. R0 can
be used as the destination of some of the arithmetic ops. There are
also some special purpose registers; the T bit register, the
Procedure Return Register and the Multipy Accumulate Registers */
enum reg_class
{
NO_REGS,
R0_REGS,
GENERAL_REGS,
PR_REGS,
T_REGS,
MAC_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R0_REGS", \
"GENERAL_REGS", \
"PR_REGS", \
"T_REGS", \
"MAC_REGS", \
"ALL_REGS", \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
0x000000, /* NO_REGS */ \
0x000001, /* R0_REGS */ \
0x01FFFF, /* GENERAL_REGS */ \
0x020000, /* PR_REGS */ \
0x040000, /* T_REGS */ \
0x300000, /* MAC_REGS */ \
0x37FFFF /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
extern int regno_reg_class[];
#define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
/* The order in which register should be allocated. */
#define REG_ALLOC_ORDER \
{ 1,2,3,0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21}
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS R0_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine
description. */
extern enum reg_class reg_class_from_letter[];
#define REG_CLASS_FROM_LETTER(C) \
( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
I: arithmetic operand -127..128, as used in add, sub, etc
L: logical operand 0..255, as used in add, or, etc.
M: constant 1
K: shift operand 1,2,8 or 16 */
#define CONST_OK_FOR_I(VALUE) ((VALUE)>= -128 && (VALUE) <= 127)
#define CONST_OK_FOR_L(VALUE) ((VALUE)>= 0 && (VALUE) <= 255)
#define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
#define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
: (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
: (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
: (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? CONST_OK_FOR_I (CONST_DOUBLE_HIGH (VALUE)) \
&& CONST_OK_FOR_I (CONST_DOUBLE_LOW (VALUE)) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) NO_REGS
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
On SH this is the size of MODE in words */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Stack layout; function entry, exit and calling. */
/* Define the number of register that can hold parameters.
These two macros are used only in other macro definitions below. */
#define NPARM_REGS 4
#define FIRST_PARM_REG 4
#define FIRST_RET_REG 4
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Value is the number of byte of arguments automatically
popped when returning from a subroutine call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the SH, the caller does not pop any of its arguments that were passed
on the stack. */
#define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), FIRST_RET_REG)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, FIRST_RET_REG)
/* 1 if N is a possible register number for a function value.
On the SH, only r4 can return results. */
#define FUNCTION_VALUE_REGNO_P(REGNO) \
((REGNO) == FIRST_RET_REG)
/* 1 if N is a possible register number for function argument passing.*/
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On SH, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus NARGREGS or more means all following args should go on the stack. */
#define CUMULATIVE_ARGS int
#define ROUND_ADVANCE(SIZE) \
((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Round a register number up to a proper boundary for an arg of mode
MODE.
We round to an even reg for things larger than a word */
#define ROUND_REG(X, MODE) \
((TARGET_ALIGN_DOUBLE \
&& GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
? ((X) + ((X) & 1)) : (X))
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On SH, the offset always starts at 0: the first parm reg is always
the same reg. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
((CUM) = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be
available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) = (ROUND_REG ((CUM), (MODE)) \
+ ((MODE) != BLKmode \
? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
: ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On SH the first args are normally in registers
and the rest are pushed. Any arg that starts within the first
NPARM_REGS words is at least partially passed in a register unless
its data type forbids. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(NAMED && ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
&& ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
&& ((TYPE)==0 || (MODE) != BLKmode \
|| (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
? gen_rtx (REG, (MODE), \
(FIRST_PARM_REG + ROUND_REG ((CUM), (MODE)))) \
: 0)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero.
Any arg that starts in the first NPARM_REGS regs but won't entirely
fit in them needs partial registers on the SH. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
&& ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
&& ((TYPE)==0 || (MODE) != BLKmode \
|| (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
&& (ROUND_REG ((CUM), (MODE)) \
+ ((MODE) == BLKmode \
? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
: ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
: 0)
extern int current_function_anonymous_args;
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments. */
#define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
current_function_anonymous_args = 1;
/* Generate assembly output for the start of a function. */
#define FUNCTION_PROLOGUE(STREAM, SIZE) \
output_prologue ((STREAM), (SIZE))
/* Call the function profiler with a given profile label. */
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
fprintf(STREAM, "\tsts.l pr,@-r15\n"); \
fprintf(STREAM, "\tjsr\tmcount\n"); \
fprintf(STREAM, "\tor r0,r0\n"); \
fprintf(STREAM, "\t.long\tLP%d\n", (LABELNO)); \
}
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 0
/* Generate the assembly code for function exit. */
#define FUNCTION_EPILOGUE(STREAM, SIZE) \
output_epilogue ((STREAM), (SIZE))
#define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
(get_attr_in_delay_slot(INSN) == IN_DELAY_SLOT_YES)
#define DELAY_SLOTS_FOR_EPILOGUE \
delay_slots_for_epilogue();
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts.
On the SH, the trapoline looks like
1 0000 D301 mov.l l1,r3
2 0002 DD02 mov.l l2,r13
3 0004 4D2B jmp @r13
4 0006 200B or r0,r0
5 0008 00000000 l1: .long function
6 000c 00000000 l2: .long area
*/
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf ((FILE), " .word 0xd301\n"); \
fprintf ((FILE), " .word 0xdd02\n"); \
fprintf ((FILE), " .word 0x4d2b\n"); \
fprintf ((FILE), " .word 0x200b\n"); \
fprintf ((FILE), " .long 0\n"); \
fprintf ((FILE), " .long 0\n"); \
}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 16
/* Alignment required for a trampoline in units. */
#define TRAMPOLINE_ALIGN 4
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
(FNADDR)); \
}
/* Addressing modes, and classification of registers for them. */
/*#define HAVE_POST_INCREMENT 1*/
/*#define HAVE_PRE_INCREMENT 1*/
/*#define HAVE_POST_DECREMENT 1*/
/*#define HAVE_PRE_DECREMENT 1*/
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c.
*/
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
#define REGNO_OK_FOR_INDEX_P(REGNO) ((REGNO)==0)
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 1
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF)
#if 0
|| GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT \
|| GET_CODE (X) == CONST)
#endif
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
On the SH, allow any thing but a double */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO(X) <= 16 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO(X)==0||REGNO(X)>=FIRST_PSEUDO_REGISTER)
#define REG_OK_FOR_PRE_POST_P(X) (REGNO(X) <= 16)
#else
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_PRE_POST_P(X) \
(REGNO (X) <= 16 || (unsigned) reg_renumber[REGNO (X)] <=16)
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
#define BASE_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
#define INDEX_REGISTER_RTX_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
/* Jump to LABEL if X is a valid address RTX. This must also take
REG_OK_STRICT into account when deciding about valid registers, but it uses
the above macros so we are in luck.
Allow REG
REG+disp
REG+r0
REG++
--REG
*/
/* A legitimate index for a QI or HI is 0, SI and above can be any
number 0..64 */
#define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL) \
do { \
if (GET_CODE (OP) == CONST_INT) \
{ \
if (GET_MODE_SIZE (MODE) < 4 && INTVAL(OP) == 0)\
goto LABEL; \
if (GET_MODE_SIZE (MODE) >=4 \
&& ((unsigned)INTVAL(OP)) < 64) \
goto LABEL; \
} \
} while(0)
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
{ \
if (BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
goto LABEL; \
else if (GET_CODE (X) == PLUS) \
{ \
rtx xop0 = XEXP(X,0); \
rtx xop1 = XEXP(X,1); \
if (BASE_REGISTER_RTX_P (xop0)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
else if (BASE_REGISTER_RTX_P (xop1)) \
GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
} \
else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
goto LABEL; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
On the SH we don't try anything */
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) ;
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ \
if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
|| GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
goto LABEL; \
}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* 'char' is signed by default */
#define DEFAULT_SIGNED_CHAR 1
/* The type of size_t unsigned int. */
#define SIZE_TYPE "unsigned int"
/* Don't cse the address of the function being compiled. */
#define NO_RECURSIVE_FUNCTION_CSE 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if normal loads of shorter-than-word items from sign extends
the rest of the bigs in the register. */
#define BYTE_LOADS_SIGN_EXTEND 1
/* Define this if zero-extension is slow (more than one real instruction).
On the SH, it's only one instruction */
/* #define SLOW_ZERO_EXTEND */
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Immediate shift counts are truncated by the output routines (or was it
the assembler?). Shift counts in a register are truncated by ARM. Note
that the native compiler puts too large (> 32) immediate shift counts
into a register and shifts by the register, letting the ARM decide what
to do instead of doing that itself. */
#define SHIFT_COUNT_TRUNCATED 1
/* We have the vprintf function. */
#define HAVE_VPRINTF 1
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
/*#define NO_FUNCTION_CSE 1*/
/* Chars and shorts should be passed as ints. */
#define PROMOTE_PROTOTYPES 1
/* The machine modes of pointers and functions */
#define Pmode SImode
#define FUNCTION_MODE Pmode
/* The structure type of the machine dependent info field of insns
No uses for this yet. */
/* #define INSN_MACHINE_INFO struct machine_info */
/* The relative costs of various types of constants. Note that cse.c defines
REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
#define CONST_COSTS(RTX, CODE, OUTER_CODE) \
case CONST_INT: \
if (CONST_OK_FOR_I (INTVAL(RTX))) \
return 1; \
else \
return 5; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 6; \
case CONST_DOUBLE: \
return 10;
#define RTX_COSTS(X, CODE, OUTER_CODE) \
case MULT: \
return COSTS_N_INSNS (TARGET_HAS_MULSI3 ? 2 : 20); \
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
return COSTS_N_INSNS (100); \
case FLOAT: \
case FIX: \
return 100;
/* Compute extra cost of moving data between one register class
and another.
On the SH it is hard to move into the T reg, but simple to load
from it.
*/
#define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
((DSTCLASS ==T_REGS) ? 10 : 2)
/* Assembler output control */
/* The text to go at the start of the assembler file */
#define ASM_FILE_START(STREAM) \
fprintf (STREAM,"! GCC for the Hitachi Super-H\n"); \
output_file_directive (STREAM, main_input_filename);
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define FILE_ASM_OP "\t.file\n"
#define IDENT_ASM_OP "\t.ident\n"
/* Switch to the text or data segment. */
#define TEXT_SECTION_ASM_OP ".text"
#define DATA_SECTION_ASM_OP ".data"
/* The assembler's names for the registers. RFP need not always be used as
the Real framepointer; it can also be used as a normal general register.
Note that the name `fp' is horribly misleading since `fp' is in fact only
the argument-and-return-context pointer. */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"ap", "pr", "t", "gbr", "mach","macl" \
}
/* DBX register number for a given compiler register number */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* Output a label definition. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", LOG)
/* Output a function label definition. */
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
ASM_OUTPUT_LABEL(STREAM, NAME)
/* Output a globalising directive for a label. */
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
(fprintf (STREAM, "\t.global\t"), \
assemble_name (STREAM, NAME), \
fputc ('\n',STREAM)) \
/* Output a reference to a label. */
#define ASM_OUTPUT_LABELREF(STREAM,NAME) \
fprintf (STREAM, "_%s", NAME)
/* Make an internal label into a string. */
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
sprintf (STRING, "*%s%d", PREFIX, NUM)
/* Output an internal label definition. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
/* Construct a private name. */
#define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
/* Jump tables must be 32 bit aligned. */
#define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
fprintf (STREAM, "\t.align 2\n%s%d:\n", PREFIX, NUM);
/* Output a relative address. Not needed since jump tables are absolute
but we must define it anyway. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
/* Output an element of a dispatch table. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
fprintf (STREAM, "\t.long\tL%d\n", VALUE)
/* Output various types of constants. */
/* This is how to output an assembler line defining a `double' */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
{ \
long t[2]; \
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
fprintf (FILE, "\t.long\t0x%lx\n\t.long\t0x%lx\n", \
t[0], t[1]); \
} \
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
{ \
long t; \
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
fprintf (FILE, "\t.long\t0x%lx\n", t); \
} \
#define ASM_OUTPUT_INT(STREAM, EXP) \
(fprintf (STREAM, "\t.long\t"), \
output_addr_const (STREAM, (EXP)), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_SHORT(STREAM, EXP) \
(fprintf (STREAM, "\t.short\t"), \
output_addr_const (STREAM, (EXP)), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_CHAR(STREAM, EXP) \
(fprintf (STREAM, "\t.byte\t"), \
output_addr_const (STREAM, (EXP)), \
fputc ('\n', STREAM))
#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
/* This is how to output an assembler line
that says to advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)))
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
( fputs ("\t.lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)))
/* The assembler's parentheses characters. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Target characters. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Only perform branch elimination (by making instructions conditional) if
we're optimising. Otherwise it's of no use anyway. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(STREAM, X, CODE) print_operand (STREAM, X, CODE)
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address (STREAM, X)
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '!')
/* Define the information needed to generate branch insns. This is stored
from the compare operation. Note that we can't use "rtx" here since it
hasn't been defined! */
extern struct rtx_def *sh_compare_op0;
extern struct rtx_def *sh_compare_op1;
extern struct rtx_def *prepare_scc_operands();
/* Declare functions defined in sh.c and used in templates. */
extern char *output_branch();
extern char *output_shift();
extern char *output_movedouble();
extern char *output_movepcrel();
#define ADJUST_INSN_LENGTH(insn, length) \
adjust_insn_length (insn, insn_lengths)