2014-10-10 Tobias Burnus <burnus@net-b.de> gcc/fortran/ * gfortran.h (gfc_set_implicit_none): Update prototype. * symbol.c (gfc_set_implicit_none): Take and use error location. Move diagnostic from here to ... * decl.c (gfc_match_implicit_none): ... here. And update call. Handle empty implicit-none-spec. (gfc_match_implicit): Handle statement-separator ";". gcc/testsuite/ * gfortran.dg/implicit_16.f90: New. From-SVN: r216057
4660 lines
110 KiB
C
4660 lines
110 KiB
C
/* Maintain binary trees of symbols.
|
|
Copyright (C) 2000-2014 Free Software Foundation, Inc.
|
|
Contributed by Andy Vaught
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "flags.h"
|
|
#include "gfortran.h"
|
|
#include "parse.h"
|
|
#include "match.h"
|
|
#include "constructor.h"
|
|
|
|
|
|
/* Strings for all symbol attributes. We use these for dumping the
|
|
parse tree, in error messages, and also when reading and writing
|
|
modules. */
|
|
|
|
const mstring flavors[] =
|
|
{
|
|
minit ("UNKNOWN-FL", FL_UNKNOWN), minit ("PROGRAM", FL_PROGRAM),
|
|
minit ("BLOCK-DATA", FL_BLOCK_DATA), minit ("MODULE", FL_MODULE),
|
|
minit ("VARIABLE", FL_VARIABLE), minit ("PARAMETER", FL_PARAMETER),
|
|
minit ("LABEL", FL_LABEL), minit ("PROCEDURE", FL_PROCEDURE),
|
|
minit ("DERIVED", FL_DERIVED), minit ("NAMELIST", FL_NAMELIST),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring procedures[] =
|
|
{
|
|
minit ("UNKNOWN-PROC", PROC_UNKNOWN),
|
|
minit ("MODULE-PROC", PROC_MODULE),
|
|
minit ("INTERNAL-PROC", PROC_INTERNAL),
|
|
minit ("DUMMY-PROC", PROC_DUMMY),
|
|
minit ("INTRINSIC-PROC", PROC_INTRINSIC),
|
|
minit ("EXTERNAL-PROC", PROC_EXTERNAL),
|
|
minit ("STATEMENT-PROC", PROC_ST_FUNCTION),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring intents[] =
|
|
{
|
|
minit ("UNKNOWN-INTENT", INTENT_UNKNOWN),
|
|
minit ("IN", INTENT_IN),
|
|
minit ("OUT", INTENT_OUT),
|
|
minit ("INOUT", INTENT_INOUT),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring access_types[] =
|
|
{
|
|
minit ("UNKNOWN-ACCESS", ACCESS_UNKNOWN),
|
|
minit ("PUBLIC", ACCESS_PUBLIC),
|
|
minit ("PRIVATE", ACCESS_PRIVATE),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring ifsrc_types[] =
|
|
{
|
|
minit ("UNKNOWN", IFSRC_UNKNOWN),
|
|
minit ("DECL", IFSRC_DECL),
|
|
minit ("BODY", IFSRC_IFBODY)
|
|
};
|
|
|
|
const mstring save_status[] =
|
|
{
|
|
minit ("UNKNOWN", SAVE_NONE),
|
|
minit ("EXPLICIT-SAVE", SAVE_EXPLICIT),
|
|
minit ("IMPLICIT-SAVE", SAVE_IMPLICIT),
|
|
};
|
|
|
|
/* This is to make sure the backend generates setup code in the correct
|
|
order. */
|
|
|
|
static int next_dummy_order = 1;
|
|
|
|
|
|
gfc_namespace *gfc_current_ns;
|
|
gfc_namespace *gfc_global_ns_list;
|
|
|
|
gfc_gsymbol *gfc_gsym_root = NULL;
|
|
|
|
gfc_dt_list *gfc_derived_types;
|
|
|
|
static gfc_undo_change_set default_undo_chgset_var = { vNULL, vNULL, NULL };
|
|
static gfc_undo_change_set *latest_undo_chgset = &default_undo_chgset_var;
|
|
|
|
|
|
/*********** IMPLICIT NONE and IMPLICIT statement handlers ***********/
|
|
|
|
/* The following static variable indicates whether a particular element has
|
|
been explicitly set or not. */
|
|
|
|
static int new_flag[GFC_LETTERS];
|
|
|
|
|
|
/* Handle a correctly parsed IMPLICIT NONE. */
|
|
|
|
void
|
|
gfc_set_implicit_none (bool type, bool external, locus *loc)
|
|
{
|
|
int i;
|
|
|
|
if (external)
|
|
gfc_current_ns->has_implicit_none_export = 1;
|
|
|
|
if (type)
|
|
{
|
|
gfc_current_ns->seen_implicit_none = 1;
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
if (gfc_current_ns->set_flag[i])
|
|
{
|
|
gfc_error_now ("IMPLICIT NONE (type) statement at %L following an "
|
|
"IMPLICIT statement", loc);
|
|
return;
|
|
}
|
|
gfc_clear_ts (&gfc_current_ns->default_type[i]);
|
|
gfc_current_ns->set_flag[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Reset the implicit range flags. */
|
|
|
|
void
|
|
gfc_clear_new_implicit (void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
new_flag[i] = 0;
|
|
}
|
|
|
|
|
|
/* Prepare for a new implicit range. Sets flags in new_flag[]. */
|
|
|
|
bool
|
|
gfc_add_new_implicit_range (int c1, int c2)
|
|
{
|
|
int i;
|
|
|
|
c1 -= 'a';
|
|
c2 -= 'a';
|
|
|
|
for (i = c1; i <= c2; i++)
|
|
{
|
|
if (new_flag[i])
|
|
{
|
|
gfc_error ("Letter '%c' already set in IMPLICIT statement at %C",
|
|
i + 'A');
|
|
return false;
|
|
}
|
|
|
|
new_flag[i] = 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add a matched implicit range for gfc_set_implicit(). Check if merging
|
|
the new implicit types back into the existing types will work. */
|
|
|
|
bool
|
|
gfc_merge_new_implicit (gfc_typespec *ts)
|
|
{
|
|
int i;
|
|
|
|
if (gfc_current_ns->seen_implicit_none)
|
|
{
|
|
gfc_error ("Cannot specify IMPLICIT at %C after IMPLICIT NONE");
|
|
return false;
|
|
}
|
|
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
if (new_flag[i])
|
|
{
|
|
if (gfc_current_ns->set_flag[i])
|
|
{
|
|
gfc_error ("Letter %c already has an IMPLICIT type at %C",
|
|
i + 'A');
|
|
return false;
|
|
}
|
|
|
|
gfc_current_ns->default_type[i] = *ts;
|
|
gfc_current_ns->implicit_loc[i] = gfc_current_locus;
|
|
gfc_current_ns->set_flag[i] = 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Given a symbol, return a pointer to the typespec for its default type. */
|
|
|
|
gfc_typespec *
|
|
gfc_get_default_type (const char *name, gfc_namespace *ns)
|
|
{
|
|
char letter;
|
|
|
|
letter = name[0];
|
|
|
|
if (gfc_option.flag_allow_leading_underscore && letter == '_')
|
|
gfc_internal_error ("Option -fallow-leading-underscore is for use only by "
|
|
"gfortran developers, and should not be used for "
|
|
"implicitly typed variables");
|
|
|
|
if (letter < 'a' || letter > 'z')
|
|
gfc_internal_error ("gfc_get_default_type(): Bad symbol '%s'", name);
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
return &ns->default_type[letter - 'a'];
|
|
}
|
|
|
|
|
|
/* Given a pointer to a symbol, set its type according to the first
|
|
letter of its name. Fails if the letter in question has no default
|
|
type. */
|
|
|
|
bool
|
|
gfc_set_default_type (gfc_symbol *sym, int error_flag, gfc_namespace *ns)
|
|
{
|
|
gfc_typespec *ts;
|
|
|
|
if (sym->ts.type != BT_UNKNOWN)
|
|
gfc_internal_error ("gfc_set_default_type(): symbol already has a type");
|
|
|
|
ts = gfc_get_default_type (sym->name, ns);
|
|
|
|
if (ts->type == BT_UNKNOWN)
|
|
{
|
|
if (error_flag && !sym->attr.untyped)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L has no IMPLICIT type",
|
|
sym->name, &sym->declared_at);
|
|
sym->attr.untyped = 1; /* Ensure we only give an error once. */
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
sym->ts = *ts;
|
|
sym->attr.implicit_type = 1;
|
|
|
|
if (ts->type == BT_CHARACTER && ts->u.cl)
|
|
sym->ts.u.cl = gfc_new_charlen (sym->ns, ts->u.cl);
|
|
else if (ts->type == BT_CLASS
|
|
&& !gfc_build_class_symbol (&sym->ts, &sym->attr, &sym->as))
|
|
return false;
|
|
|
|
if (sym->attr.is_bind_c == 1 && gfc_option.warn_c_binding_type)
|
|
{
|
|
/* BIND(C) variables should not be implicitly declared. */
|
|
gfc_warning_now ("Implicitly declared BIND(C) variable '%s' at %L may "
|
|
"not be C interoperable", sym->name, &sym->declared_at);
|
|
sym->ts.f90_type = sym->ts.type;
|
|
}
|
|
|
|
if (sym->attr.dummy != 0)
|
|
{
|
|
if (sym->ns->proc_name != NULL
|
|
&& (sym->ns->proc_name->attr.subroutine != 0
|
|
|| sym->ns->proc_name->attr.function != 0)
|
|
&& sym->ns->proc_name->attr.is_bind_c != 0
|
|
&& gfc_option.warn_c_binding_type)
|
|
{
|
|
/* Dummy args to a BIND(C) routine may not be interoperable if
|
|
they are implicitly typed. */
|
|
gfc_warning_now ("Implicitly declared variable '%s' at %L may not "
|
|
"be C interoperable but it is a dummy argument to "
|
|
"the BIND(C) procedure '%s' at %L", sym->name,
|
|
&(sym->declared_at), sym->ns->proc_name->name,
|
|
&(sym->ns->proc_name->declared_at));
|
|
sym->ts.f90_type = sym->ts.type;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* This function is called from parse.c(parse_progunit) to check the
|
|
type of the function is not implicitly typed in the host namespace
|
|
and to implicitly type the function result, if necessary. */
|
|
|
|
void
|
|
gfc_check_function_type (gfc_namespace *ns)
|
|
{
|
|
gfc_symbol *proc = ns->proc_name;
|
|
|
|
if (!proc->attr.contained || proc->result->attr.implicit_type)
|
|
return;
|
|
|
|
if (proc->result->ts.type == BT_UNKNOWN && proc->result->ts.interface == NULL)
|
|
{
|
|
if (gfc_set_default_type (proc->result, 0, gfc_current_ns))
|
|
{
|
|
if (proc->result != proc)
|
|
{
|
|
proc->ts = proc->result->ts;
|
|
proc->as = gfc_copy_array_spec (proc->result->as);
|
|
proc->attr.dimension = proc->result->attr.dimension;
|
|
proc->attr.pointer = proc->result->attr.pointer;
|
|
proc->attr.allocatable = proc->result->attr.allocatable;
|
|
}
|
|
}
|
|
else if (!proc->result->attr.proc_pointer)
|
|
{
|
|
gfc_error ("Function result '%s' at %L has no IMPLICIT type",
|
|
proc->result->name, &proc->result->declared_at);
|
|
proc->result->attr.untyped = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/******************** Symbol attribute stuff *********************/
|
|
|
|
/* This is a generic conflict-checker. We do this to avoid having a
|
|
single conflict in two places. */
|
|
|
|
#define conf(a, b) if (attr->a && attr->b) { a1 = a; a2 = b; goto conflict; }
|
|
#define conf2(a) if (attr->a) { a2 = a; goto conflict; }
|
|
#define conf_std(a, b, std) if (attr->a && attr->b)\
|
|
{\
|
|
a1 = a;\
|
|
a2 = b;\
|
|
standard = std;\
|
|
goto conflict_std;\
|
|
}
|
|
|
|
static bool
|
|
check_conflict (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
static const char *dummy = "DUMMY", *save = "SAVE", *pointer = "POINTER",
|
|
*target = "TARGET", *external = "EXTERNAL", *intent = "INTENT",
|
|
*intent_in = "INTENT(IN)", *intrinsic = "INTRINSIC",
|
|
*intent_out = "INTENT(OUT)", *intent_inout = "INTENT(INOUT)",
|
|
*allocatable = "ALLOCATABLE", *elemental = "ELEMENTAL",
|
|
*privat = "PRIVATE", *recursive = "RECURSIVE",
|
|
*in_common = "COMMON", *result = "RESULT", *in_namelist = "NAMELIST",
|
|
*publik = "PUBLIC", *optional = "OPTIONAL", *entry = "ENTRY",
|
|
*function = "FUNCTION", *subroutine = "SUBROUTINE",
|
|
*dimension = "DIMENSION", *in_equivalence = "EQUIVALENCE",
|
|
*use_assoc = "USE ASSOCIATED", *cray_pointer = "CRAY POINTER",
|
|
*cray_pointee = "CRAY POINTEE", *data = "DATA", *value = "VALUE",
|
|
*volatile_ = "VOLATILE", *is_protected = "PROTECTED",
|
|
*is_bind_c = "BIND(C)", *procedure = "PROCEDURE",
|
|
*proc_pointer = "PROCEDURE POINTER", *abstract = "ABSTRACT",
|
|
*asynchronous = "ASYNCHRONOUS", *codimension = "CODIMENSION",
|
|
*contiguous = "CONTIGUOUS", *generic = "GENERIC";
|
|
static const char *threadprivate = "THREADPRIVATE";
|
|
static const char *omp_declare_target = "OMP DECLARE TARGET";
|
|
|
|
const char *a1, *a2;
|
|
int standard;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (attr->pointer && attr->intent != INTENT_UNKNOWN)
|
|
{
|
|
a1 = pointer;
|
|
a2 = intent;
|
|
standard = GFC_STD_F2003;
|
|
goto conflict_std;
|
|
}
|
|
|
|
if (attr->in_namelist && (attr->allocatable || attr->pointer))
|
|
{
|
|
a1 = in_namelist;
|
|
a2 = attr->allocatable ? allocatable : pointer;
|
|
standard = GFC_STD_F2003;
|
|
goto conflict_std;
|
|
}
|
|
|
|
/* Check for attributes not allowed in a BLOCK DATA. */
|
|
if (gfc_current_state () == COMP_BLOCK_DATA)
|
|
{
|
|
a1 = NULL;
|
|
|
|
if (attr->in_namelist)
|
|
a1 = in_namelist;
|
|
if (attr->allocatable)
|
|
a1 = allocatable;
|
|
if (attr->external)
|
|
a1 = external;
|
|
if (attr->optional)
|
|
a1 = optional;
|
|
if (attr->access == ACCESS_PRIVATE)
|
|
a1 = privat;
|
|
if (attr->access == ACCESS_PUBLIC)
|
|
a1 = publik;
|
|
if (attr->intent != INTENT_UNKNOWN)
|
|
a1 = intent;
|
|
|
|
if (a1 != NULL)
|
|
{
|
|
gfc_error
|
|
("%s attribute not allowed in BLOCK DATA program unit at %L",
|
|
a1, where);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (attr->save == SAVE_EXPLICIT)
|
|
{
|
|
conf (dummy, save);
|
|
conf (in_common, save);
|
|
conf (result, save);
|
|
|
|
switch (attr->flavor)
|
|
{
|
|
case FL_PROGRAM:
|
|
case FL_BLOCK_DATA:
|
|
case FL_MODULE:
|
|
case FL_LABEL:
|
|
case FL_DERIVED:
|
|
case FL_PARAMETER:
|
|
a1 = gfc_code2string (flavors, attr->flavor);
|
|
a2 = save;
|
|
goto conflict;
|
|
case FL_NAMELIST:
|
|
gfc_error ("Namelist group name at %L cannot have the "
|
|
"SAVE attribute", where);
|
|
return false;
|
|
break;
|
|
case FL_PROCEDURE:
|
|
/* Conflicts between SAVE and PROCEDURE will be checked at
|
|
resolution stage, see "resolve_fl_procedure". */
|
|
case FL_VARIABLE:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
conf (dummy, entry);
|
|
conf (dummy, intrinsic);
|
|
conf (dummy, threadprivate);
|
|
conf (dummy, omp_declare_target);
|
|
conf (pointer, target);
|
|
conf (pointer, intrinsic);
|
|
conf (pointer, elemental);
|
|
conf (pointer, codimension);
|
|
conf (allocatable, elemental);
|
|
|
|
conf (target, external);
|
|
conf (target, intrinsic);
|
|
|
|
if (!attr->if_source)
|
|
conf (external, dimension); /* See Fortran 95's R504. */
|
|
|
|
conf (external, intrinsic);
|
|
conf (entry, intrinsic);
|
|
|
|
if ((attr->if_source == IFSRC_DECL && !attr->procedure) || attr->contained)
|
|
conf (external, subroutine);
|
|
|
|
if (attr->proc_pointer && !gfc_notify_std (GFC_STD_F2003,
|
|
"Procedure pointer at %C"))
|
|
return false;
|
|
|
|
conf (allocatable, pointer);
|
|
conf_std (allocatable, dummy, GFC_STD_F2003);
|
|
conf_std (allocatable, function, GFC_STD_F2003);
|
|
conf_std (allocatable, result, GFC_STD_F2003);
|
|
conf (elemental, recursive);
|
|
|
|
conf (in_common, dummy);
|
|
conf (in_common, allocatable);
|
|
conf (in_common, codimension);
|
|
conf (in_common, result);
|
|
|
|
conf (in_equivalence, use_assoc);
|
|
conf (in_equivalence, codimension);
|
|
conf (in_equivalence, dummy);
|
|
conf (in_equivalence, target);
|
|
conf (in_equivalence, pointer);
|
|
conf (in_equivalence, function);
|
|
conf (in_equivalence, result);
|
|
conf (in_equivalence, entry);
|
|
conf (in_equivalence, allocatable);
|
|
conf (in_equivalence, threadprivate);
|
|
conf (in_equivalence, omp_declare_target);
|
|
|
|
conf (dummy, result);
|
|
conf (entry, result);
|
|
conf (generic, result);
|
|
|
|
conf (function, subroutine);
|
|
|
|
if (!function && !subroutine)
|
|
conf (is_bind_c, dummy);
|
|
|
|
conf (is_bind_c, cray_pointer);
|
|
conf (is_bind_c, cray_pointee);
|
|
conf (is_bind_c, codimension);
|
|
conf (is_bind_c, allocatable);
|
|
conf (is_bind_c, elemental);
|
|
|
|
/* Need to also get volatile attr, according to 5.1 of F2003 draft.
|
|
Parameter conflict caught below. Also, value cannot be specified
|
|
for a dummy procedure. */
|
|
|
|
/* Cray pointer/pointee conflicts. */
|
|
conf (cray_pointer, cray_pointee);
|
|
conf (cray_pointer, dimension);
|
|
conf (cray_pointer, codimension);
|
|
conf (cray_pointer, contiguous);
|
|
conf (cray_pointer, pointer);
|
|
conf (cray_pointer, target);
|
|
conf (cray_pointer, allocatable);
|
|
conf (cray_pointer, external);
|
|
conf (cray_pointer, intrinsic);
|
|
conf (cray_pointer, in_namelist);
|
|
conf (cray_pointer, function);
|
|
conf (cray_pointer, subroutine);
|
|
conf (cray_pointer, entry);
|
|
|
|
conf (cray_pointee, allocatable);
|
|
conf (cray_pointee, contiguous);
|
|
conf (cray_pointee, codimension);
|
|
conf (cray_pointee, intent);
|
|
conf (cray_pointee, optional);
|
|
conf (cray_pointee, dummy);
|
|
conf (cray_pointee, target);
|
|
conf (cray_pointee, intrinsic);
|
|
conf (cray_pointee, pointer);
|
|
conf (cray_pointee, entry);
|
|
conf (cray_pointee, in_common);
|
|
conf (cray_pointee, in_equivalence);
|
|
conf (cray_pointee, threadprivate);
|
|
conf (cray_pointee, omp_declare_target);
|
|
|
|
conf (data, dummy);
|
|
conf (data, function);
|
|
conf (data, result);
|
|
conf (data, allocatable);
|
|
|
|
conf (value, pointer)
|
|
conf (value, allocatable)
|
|
conf (value, subroutine)
|
|
conf (value, function)
|
|
conf (value, volatile_)
|
|
conf (value, dimension)
|
|
conf (value, codimension)
|
|
conf (value, external)
|
|
|
|
conf (codimension, result)
|
|
|
|
if (attr->value
|
|
&& (attr->intent == INTENT_OUT || attr->intent == INTENT_INOUT))
|
|
{
|
|
a1 = value;
|
|
a2 = attr->intent == INTENT_OUT ? intent_out : intent_inout;
|
|
goto conflict;
|
|
}
|
|
|
|
conf (is_protected, intrinsic)
|
|
conf (is_protected, in_common)
|
|
|
|
conf (asynchronous, intrinsic)
|
|
conf (asynchronous, external)
|
|
|
|
conf (volatile_, intrinsic)
|
|
conf (volatile_, external)
|
|
|
|
if (attr->volatile_ && attr->intent == INTENT_IN)
|
|
{
|
|
a1 = volatile_;
|
|
a2 = intent_in;
|
|
goto conflict;
|
|
}
|
|
|
|
conf (procedure, allocatable)
|
|
conf (procedure, dimension)
|
|
conf (procedure, codimension)
|
|
conf (procedure, intrinsic)
|
|
conf (procedure, target)
|
|
conf (procedure, value)
|
|
conf (procedure, volatile_)
|
|
conf (procedure, asynchronous)
|
|
conf (procedure, entry)
|
|
|
|
conf (proc_pointer, abstract)
|
|
|
|
conf (entry, omp_declare_target)
|
|
|
|
a1 = gfc_code2string (flavors, attr->flavor);
|
|
|
|
if (attr->in_namelist
|
|
&& attr->flavor != FL_VARIABLE
|
|
&& attr->flavor != FL_PROCEDURE
|
|
&& attr->flavor != FL_UNKNOWN)
|
|
{
|
|
a2 = in_namelist;
|
|
goto conflict;
|
|
}
|
|
|
|
switch (attr->flavor)
|
|
{
|
|
case FL_PROGRAM:
|
|
case FL_BLOCK_DATA:
|
|
case FL_MODULE:
|
|
case FL_LABEL:
|
|
conf2 (codimension);
|
|
conf2 (dimension);
|
|
conf2 (dummy);
|
|
conf2 (volatile_);
|
|
conf2 (asynchronous);
|
|
conf2 (contiguous);
|
|
conf2 (pointer);
|
|
conf2 (is_protected);
|
|
conf2 (target);
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (allocatable);
|
|
conf2 (result);
|
|
conf2 (in_namelist);
|
|
conf2 (optional);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (threadprivate);
|
|
conf2 (omp_declare_target);
|
|
|
|
if (attr->access == ACCESS_PUBLIC || attr->access == ACCESS_PRIVATE)
|
|
{
|
|
a2 = attr->access == ACCESS_PUBLIC ? publik : privat;
|
|
gfc_error ("%s attribute applied to %s %s at %L", a2, a1,
|
|
name, where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->is_bind_c)
|
|
{
|
|
gfc_error_now ("BIND(C) applied to %s %s at %L", a1, name, where);
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
|
|
case FL_VARIABLE:
|
|
break;
|
|
|
|
case FL_NAMELIST:
|
|
conf2 (result);
|
|
break;
|
|
|
|
case FL_PROCEDURE:
|
|
/* Conflicts with INTENT, SAVE and RESULT will be checked
|
|
at resolution stage, see "resolve_fl_procedure". */
|
|
|
|
if (attr->subroutine)
|
|
{
|
|
a1 = subroutine;
|
|
conf2 (target);
|
|
conf2 (allocatable);
|
|
conf2 (volatile_);
|
|
conf2 (asynchronous);
|
|
conf2 (in_namelist);
|
|
conf2 (codimension);
|
|
conf2 (dimension);
|
|
conf2 (function);
|
|
if (!attr->proc_pointer)
|
|
conf2 (threadprivate);
|
|
}
|
|
|
|
if (!attr->proc_pointer)
|
|
conf2 (in_common);
|
|
|
|
switch (attr->proc)
|
|
{
|
|
case PROC_ST_FUNCTION:
|
|
conf2 (dummy);
|
|
conf2 (target);
|
|
break;
|
|
|
|
case PROC_MODULE:
|
|
conf2 (dummy);
|
|
break;
|
|
|
|
case PROC_DUMMY:
|
|
conf2 (result);
|
|
conf2 (threadprivate);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
case FL_DERIVED:
|
|
conf2 (dummy);
|
|
conf2 (pointer);
|
|
conf2 (target);
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (allocatable);
|
|
conf2 (optional);
|
|
conf2 (entry);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (threadprivate);
|
|
conf2 (result);
|
|
conf2 (omp_declare_target);
|
|
|
|
if (attr->intent != INTENT_UNKNOWN)
|
|
{
|
|
a2 = intent;
|
|
goto conflict;
|
|
}
|
|
break;
|
|
|
|
case FL_PARAMETER:
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (optional);
|
|
conf2 (allocatable);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (entry);
|
|
conf2 (contiguous);
|
|
conf2 (pointer);
|
|
conf2 (is_protected);
|
|
conf2 (target);
|
|
conf2 (dummy);
|
|
conf2 (in_common);
|
|
conf2 (value);
|
|
conf2 (volatile_);
|
|
conf2 (asynchronous);
|
|
conf2 (threadprivate);
|
|
conf2 (value);
|
|
conf2 (codimension);
|
|
conf2 (result);
|
|
if (!attr->is_iso_c)
|
|
conf2 (is_bind_c);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
|
|
conflict:
|
|
if (name == NULL)
|
|
gfc_error ("%s attribute conflicts with %s attribute at %L",
|
|
a1, a2, where);
|
|
else
|
|
gfc_error ("%s attribute conflicts with %s attribute in '%s' at %L",
|
|
a1, a2, name, where);
|
|
|
|
return false;
|
|
|
|
conflict_std:
|
|
if (name == NULL)
|
|
{
|
|
return gfc_notify_std (standard, "%s attribute "
|
|
"with %s attribute at %L", a1, a2,
|
|
where);
|
|
}
|
|
else
|
|
{
|
|
return gfc_notify_std (standard, "%s attribute "
|
|
"with %s attribute in '%s' at %L",
|
|
a1, a2, name, where);
|
|
}
|
|
}
|
|
|
|
#undef conf
|
|
#undef conf2
|
|
#undef conf_std
|
|
|
|
|
|
/* Mark a symbol as referenced. */
|
|
|
|
void
|
|
gfc_set_sym_referenced (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->attr.referenced)
|
|
return;
|
|
|
|
sym->attr.referenced = 1;
|
|
|
|
/* Remember which order dummy variables are accessed in. */
|
|
if (sym->attr.dummy)
|
|
sym->dummy_order = next_dummy_order++;
|
|
}
|
|
|
|
|
|
/* Common subroutine called by attribute changing subroutines in order
|
|
to prevent them from changing a symbol that has been
|
|
use-associated. Returns zero if it is OK to change the symbol,
|
|
nonzero if not. */
|
|
|
|
static int
|
|
check_used (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->use_assoc == 0)
|
|
return 0;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (name == NULL)
|
|
gfc_error ("Cannot change attributes of USE-associated symbol at %L",
|
|
where);
|
|
else
|
|
gfc_error ("Cannot change attributes of USE-associated symbol %s at %L",
|
|
name, where);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Generate an error because of a duplicate attribute. */
|
|
|
|
static void
|
|
duplicate_attr (const char *attr, locus *where)
|
|
{
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
gfc_error ("Duplicate %s attribute specified at %L", attr, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_ext_attribute (symbol_attribute *attr, ext_attr_id_t ext_attr,
|
|
locus *where ATTRIBUTE_UNUSED)
|
|
{
|
|
attr->ext_attr |= 1 << ext_attr;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Called from decl.c (attr_decl1) to check attributes, when declared
|
|
separately. */
|
|
|
|
bool
|
|
gfc_add_attribute (symbol_attribute *attr, locus *where)
|
|
{
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_allocatable (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->allocatable)
|
|
{
|
|
duplicate_attr ("ALLOCATABLE", where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY
|
|
&& !gfc_find_state (COMP_INTERFACE))
|
|
{
|
|
gfc_error ("ALLOCATABLE specified outside of INTERFACE body at %L",
|
|
where);
|
|
return false;
|
|
}
|
|
|
|
attr->allocatable = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_codimension (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->codimension)
|
|
{
|
|
duplicate_attr ("CODIMENSION", where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY
|
|
&& !gfc_find_state (COMP_INTERFACE))
|
|
{
|
|
gfc_error ("CODIMENSION specified for '%s' outside its INTERFACE body "
|
|
"at %L", name, where);
|
|
return false;
|
|
}
|
|
|
|
attr->codimension = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_dimension (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->dimension)
|
|
{
|
|
duplicate_attr ("DIMENSION", where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->flavor == FL_PROCEDURE && attr->if_source == IFSRC_IFBODY
|
|
&& !gfc_find_state (COMP_INTERFACE))
|
|
{
|
|
gfc_error ("DIMENSION specified for '%s' outside its INTERFACE body "
|
|
"at %L", name, where);
|
|
return false;
|
|
}
|
|
|
|
attr->dimension = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_contiguous (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
attr->contiguous = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_external (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->external)
|
|
{
|
|
duplicate_attr ("EXTERNAL", where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->pointer && attr->if_source != IFSRC_IFBODY)
|
|
{
|
|
attr->pointer = 0;
|
|
attr->proc_pointer = 1;
|
|
}
|
|
|
|
attr->external = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_intrinsic (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->intrinsic)
|
|
{
|
|
duplicate_attr ("INTRINSIC", where);
|
|
return false;
|
|
}
|
|
|
|
attr->intrinsic = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_optional (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->optional)
|
|
{
|
|
duplicate_attr ("OPTIONAL", where);
|
|
return false;
|
|
}
|
|
|
|
attr->optional = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_pointer (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->pointer && !(attr->if_source == IFSRC_IFBODY
|
|
&& !gfc_find_state (COMP_INTERFACE)))
|
|
{
|
|
duplicate_attr ("POINTER", where);
|
|
return false;
|
|
}
|
|
|
|
if (attr->procedure || (attr->external && attr->if_source != IFSRC_IFBODY)
|
|
|| (attr->if_source == IFSRC_IFBODY
|
|
&& !gfc_find_state (COMP_INTERFACE)))
|
|
attr->proc_pointer = 1;
|
|
else
|
|
attr->pointer = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_cray_pointer (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
attr->cray_pointer = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_cray_pointee (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->cray_pointee)
|
|
{
|
|
gfc_error ("Cray Pointee at %L appears in multiple pointer()"
|
|
" statements", where);
|
|
return false;
|
|
}
|
|
|
|
attr->cray_pointee = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_protected (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->is_protected)
|
|
{
|
|
if (!gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate PROTECTED attribute specified at %L",
|
|
where))
|
|
return false;
|
|
}
|
|
|
|
attr->is_protected = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_result (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
attr->result = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_save (symbol_attribute *attr, save_state s, const char *name,
|
|
locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (s == SAVE_EXPLICIT && gfc_pure (NULL))
|
|
{
|
|
gfc_error
|
|
("SAVE attribute at %L cannot be specified in a PURE procedure",
|
|
where);
|
|
return false;
|
|
}
|
|
|
|
if (s == SAVE_EXPLICIT)
|
|
gfc_unset_implicit_pure (NULL);
|
|
|
|
if (s == SAVE_EXPLICIT && attr->save == SAVE_EXPLICIT)
|
|
{
|
|
if (!gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate SAVE attribute specified at %L",
|
|
where))
|
|
return false;
|
|
}
|
|
|
|
attr->save = s;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_value (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->value)
|
|
{
|
|
if (!gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate VALUE attribute specified at %L",
|
|
where))
|
|
return false;
|
|
}
|
|
|
|
attr->value = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_volatile (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
/* No check_used needed as 11.2.1 of the F2003 standard allows
|
|
that the local identifier made accessible by a use statement can be
|
|
given a VOLATILE attribute - unless it is a coarray (F2008, C560). */
|
|
|
|
if (attr->volatile_ && attr->volatile_ns == gfc_current_ns)
|
|
if (!gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate VOLATILE attribute specified at %L",
|
|
where))
|
|
return false;
|
|
|
|
attr->volatile_ = 1;
|
|
attr->volatile_ns = gfc_current_ns;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_asynchronous (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
/* No check_used needed as 11.2.1 of the F2003 standard allows
|
|
that the local identifier made accessible by a use statement can be
|
|
given a ASYNCHRONOUS attribute. */
|
|
|
|
if (attr->asynchronous && attr->asynchronous_ns == gfc_current_ns)
|
|
if (!gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate ASYNCHRONOUS attribute specified at %L",
|
|
where))
|
|
return false;
|
|
|
|
attr->asynchronous = 1;
|
|
attr->asynchronous_ns = gfc_current_ns;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_threadprivate (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->threadprivate)
|
|
{
|
|
duplicate_attr ("THREADPRIVATE", where);
|
|
return false;
|
|
}
|
|
|
|
attr->threadprivate = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_omp_declare_target (symbol_attribute *attr, const char *name,
|
|
locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->omp_declare_target)
|
|
return true;
|
|
|
|
attr->omp_declare_target = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_target (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->target)
|
|
{
|
|
duplicate_attr ("TARGET", where);
|
|
return false;
|
|
}
|
|
|
|
attr->target = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_dummy (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
/* Duplicate dummy arguments are allowed due to ENTRY statements. */
|
|
attr->dummy = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_in_common (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
/* Duplicate attribute already checked for. */
|
|
attr->in_common = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_in_equivalence (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
/* Duplicate attribute already checked for. */
|
|
attr->in_equivalence = 1;
|
|
if (!check_conflict (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->flavor == FL_VARIABLE)
|
|
return true;
|
|
|
|
return gfc_add_flavor (attr, FL_VARIABLE, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_data (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
attr->data = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_in_namelist (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
attr->in_namelist = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_sequence (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
attr->sequence = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_elemental (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->elemental)
|
|
{
|
|
duplicate_attr ("ELEMENTAL", where);
|
|
return false;
|
|
}
|
|
|
|
attr->elemental = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_pure (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->pure)
|
|
{
|
|
duplicate_attr ("PURE", where);
|
|
return false;
|
|
}
|
|
|
|
attr->pure = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_recursive (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->recursive)
|
|
{
|
|
duplicate_attr ("RECURSIVE", where);
|
|
return false;
|
|
}
|
|
|
|
attr->recursive = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_entry (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->entry)
|
|
{
|
|
duplicate_attr ("ENTRY", where);
|
|
return false;
|
|
}
|
|
|
|
attr->entry = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_function (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& !gfc_add_flavor (attr, FL_PROCEDURE, name, where))
|
|
return false;
|
|
|
|
attr->function = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_subroutine (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& !gfc_add_flavor (attr, FL_PROCEDURE, name, where))
|
|
return false;
|
|
|
|
attr->subroutine = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_generic (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& !gfc_add_flavor (attr, FL_PROCEDURE, name, where))
|
|
return false;
|
|
|
|
attr->generic = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_proc (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& !gfc_add_flavor (attr, FL_PROCEDURE, name, where))
|
|
return false;
|
|
|
|
if (attr->procedure)
|
|
{
|
|
duplicate_attr ("PROCEDURE", where);
|
|
return false;
|
|
}
|
|
|
|
attr->procedure = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_abstract (symbol_attribute* attr, locus* where)
|
|
{
|
|
if (attr->abstract)
|
|
{
|
|
duplicate_attr ("ABSTRACT", where);
|
|
return false;
|
|
}
|
|
|
|
attr->abstract = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
/* Flavors are special because some flavors are not what Fortran
|
|
considers attributes and can be reaffirmed multiple times. */
|
|
|
|
bool
|
|
gfc_add_flavor (symbol_attribute *attr, sym_flavor f, const char *name,
|
|
locus *where)
|
|
{
|
|
|
|
if ((f == FL_PROGRAM || f == FL_BLOCK_DATA || f == FL_MODULE
|
|
|| f == FL_PARAMETER || f == FL_LABEL || f == FL_DERIVED
|
|
|| f == FL_NAMELIST) && check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->flavor == f && f == FL_VARIABLE)
|
|
return true;
|
|
|
|
if (attr->flavor != FL_UNKNOWN)
|
|
{
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (name)
|
|
gfc_error ("%s attribute of '%s' conflicts with %s attribute at %L",
|
|
gfc_code2string (flavors, attr->flavor), name,
|
|
gfc_code2string (flavors, f), where);
|
|
else
|
|
gfc_error ("%s attribute conflicts with %s attribute at %L",
|
|
gfc_code2string (flavors, attr->flavor),
|
|
gfc_code2string (flavors, f), where);
|
|
|
|
return false;
|
|
}
|
|
|
|
attr->flavor = f;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_procedure (symbol_attribute *attr, procedure_type t,
|
|
const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return false;
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& !gfc_add_flavor (attr, FL_PROCEDURE, name, where))
|
|
return false;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (attr->proc != PROC_UNKNOWN)
|
|
{
|
|
gfc_error ("%s procedure at %L is already declared as %s procedure",
|
|
gfc_code2string (procedures, t), where,
|
|
gfc_code2string (procedures, attr->proc));
|
|
|
|
return false;
|
|
}
|
|
|
|
attr->proc = t;
|
|
|
|
/* Statement functions are always scalar and functions. */
|
|
if (t == PROC_ST_FUNCTION
|
|
&& ((!attr->function && !gfc_add_function (attr, name, where))
|
|
|| attr->dimension))
|
|
return false;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_intent (symbol_attribute *attr, sym_intent intent, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return false;
|
|
|
|
if (attr->intent == INTENT_UNKNOWN)
|
|
{
|
|
attr->intent = intent;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
gfc_error ("INTENT (%s) conflicts with INTENT(%s) at %L",
|
|
gfc_intent_string (attr->intent),
|
|
gfc_intent_string (intent), where);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* No checks for use-association in public and private statements. */
|
|
|
|
bool
|
|
gfc_add_access (symbol_attribute *attr, gfc_access access,
|
|
const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->access == ACCESS_UNKNOWN
|
|
|| (attr->use_assoc && attr->access != ACCESS_PRIVATE))
|
|
{
|
|
attr->access = access;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
gfc_error ("ACCESS specification at %L was already specified", where);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Set the is_bind_c field for the given symbol_attribute. */
|
|
|
|
bool
|
|
gfc_add_is_bind_c (symbol_attribute *attr, const char *name, locus *where,
|
|
int is_proc_lang_bind_spec)
|
|
{
|
|
|
|
if (is_proc_lang_bind_spec == 0 && attr->flavor == FL_PROCEDURE)
|
|
gfc_error_now ("BIND(C) attribute at %L can only be used for "
|
|
"variables or common blocks", where);
|
|
else if (attr->is_bind_c)
|
|
gfc_error_now ("Duplicate BIND attribute specified at %L", where);
|
|
else
|
|
attr->is_bind_c = 1;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (!gfc_notify_std (GFC_STD_F2003, "BIND(C) at %L", where))
|
|
return false;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
/* Set the extension field for the given symbol_attribute. */
|
|
|
|
bool
|
|
gfc_add_extension (symbol_attribute *attr, locus *where)
|
|
{
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (attr->extension)
|
|
gfc_error_now ("Duplicate EXTENDS attribute specified at %L", where);
|
|
else
|
|
attr->extension = 1;
|
|
|
|
if (!gfc_notify_std (GFC_STD_F2003, "EXTENDS at %L", where))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_explicit_interface (gfc_symbol *sym, ifsrc source,
|
|
gfc_formal_arglist * formal, locus *where)
|
|
{
|
|
|
|
if (check_used (&sym->attr, sym->name, where))
|
|
return false;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (sym->attr.if_source != IFSRC_UNKNOWN
|
|
&& sym->attr.if_source != IFSRC_DECL)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L already has an explicit interface",
|
|
sym->name, where);
|
|
return false;
|
|
}
|
|
|
|
if (source == IFSRC_IFBODY && (sym->attr.dimension || sym->attr.allocatable))
|
|
{
|
|
gfc_error ("'%s' at %L has attributes specified outside its INTERFACE "
|
|
"body", sym->name, where);
|
|
return false;
|
|
}
|
|
|
|
sym->formal = formal;
|
|
sym->attr.if_source = source;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add a type to a symbol. */
|
|
|
|
bool
|
|
gfc_add_type (gfc_symbol *sym, gfc_typespec *ts, locus *where)
|
|
{
|
|
sym_flavor flavor;
|
|
bt type;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (sym->result)
|
|
type = sym->result->ts.type;
|
|
else
|
|
type = sym->ts.type;
|
|
|
|
if (sym->attr.result && type == BT_UNKNOWN && sym->ns->proc_name)
|
|
type = sym->ns->proc_name->ts.type;
|
|
|
|
if (type != BT_UNKNOWN && !(sym->attr.function && sym->attr.implicit_type))
|
|
{
|
|
if (sym->attr.use_assoc)
|
|
gfc_error ("Symbol '%s' at %L conflicts with symbol from module '%s', "
|
|
"use-associated at %L", sym->name, where, sym->module,
|
|
&sym->declared_at);
|
|
else
|
|
gfc_error ("Symbol '%s' at %L already has basic type of %s", sym->name,
|
|
where, gfc_basic_typename (type));
|
|
return false;
|
|
}
|
|
|
|
if (sym->attr.procedure && sym->ts.interface)
|
|
{
|
|
gfc_error ("Procedure '%s' at %L may not have basic type of %s",
|
|
sym->name, where, gfc_basic_typename (ts->type));
|
|
return false;
|
|
}
|
|
|
|
flavor = sym->attr.flavor;
|
|
|
|
if (flavor == FL_PROGRAM || flavor == FL_BLOCK_DATA || flavor == FL_MODULE
|
|
|| flavor == FL_LABEL
|
|
|| (flavor == FL_PROCEDURE && sym->attr.subroutine)
|
|
|| flavor == FL_DERIVED || flavor == FL_NAMELIST)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L cannot have a type", sym->name, where);
|
|
return false;
|
|
}
|
|
|
|
sym->ts = *ts;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Clears all attributes. */
|
|
|
|
void
|
|
gfc_clear_attr (symbol_attribute *attr)
|
|
{
|
|
memset (attr, 0, sizeof (symbol_attribute));
|
|
}
|
|
|
|
|
|
/* Check for missing attributes in the new symbol. Currently does
|
|
nothing, but it's not clear that it is unnecessary yet. */
|
|
|
|
bool
|
|
gfc_missing_attr (symbol_attribute *attr ATTRIBUTE_UNUSED,
|
|
locus *where ATTRIBUTE_UNUSED)
|
|
{
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Copy an attribute to a symbol attribute, bit by bit. Some
|
|
attributes have a lot of side-effects but cannot be present given
|
|
where we are called from, so we ignore some bits. */
|
|
|
|
bool
|
|
gfc_copy_attr (symbol_attribute *dest, symbol_attribute *src, locus *where)
|
|
{
|
|
int is_proc_lang_bind_spec;
|
|
|
|
/* In line with the other attributes, we only add bits but do not remove
|
|
them; cf. also PR 41034. */
|
|
dest->ext_attr |= src->ext_attr;
|
|
|
|
if (src->allocatable && !gfc_add_allocatable (dest, where))
|
|
goto fail;
|
|
|
|
if (src->dimension && !gfc_add_dimension (dest, NULL, where))
|
|
goto fail;
|
|
if (src->codimension && !gfc_add_codimension (dest, NULL, where))
|
|
goto fail;
|
|
if (src->contiguous && !gfc_add_contiguous (dest, NULL, where))
|
|
goto fail;
|
|
if (src->optional && !gfc_add_optional (dest, where))
|
|
goto fail;
|
|
if (src->pointer && !gfc_add_pointer (dest, where))
|
|
goto fail;
|
|
if (src->is_protected && !gfc_add_protected (dest, NULL, where))
|
|
goto fail;
|
|
if (src->save && !gfc_add_save (dest, src->save, NULL, where))
|
|
goto fail;
|
|
if (src->value && !gfc_add_value (dest, NULL, where))
|
|
goto fail;
|
|
if (src->volatile_ && !gfc_add_volatile (dest, NULL, where))
|
|
goto fail;
|
|
if (src->asynchronous && !gfc_add_asynchronous (dest, NULL, where))
|
|
goto fail;
|
|
if (src->threadprivate
|
|
&& !gfc_add_threadprivate (dest, NULL, where))
|
|
goto fail;
|
|
if (src->omp_declare_target
|
|
&& !gfc_add_omp_declare_target (dest, NULL, where))
|
|
goto fail;
|
|
if (src->target && !gfc_add_target (dest, where))
|
|
goto fail;
|
|
if (src->dummy && !gfc_add_dummy (dest, NULL, where))
|
|
goto fail;
|
|
if (src->result && !gfc_add_result (dest, NULL, where))
|
|
goto fail;
|
|
if (src->entry)
|
|
dest->entry = 1;
|
|
|
|
if (src->in_namelist && !gfc_add_in_namelist (dest, NULL, where))
|
|
goto fail;
|
|
|
|
if (src->in_common && !gfc_add_in_common (dest, NULL, where))
|
|
goto fail;
|
|
|
|
if (src->generic && !gfc_add_generic (dest, NULL, where))
|
|
goto fail;
|
|
if (src->function && !gfc_add_function (dest, NULL, where))
|
|
goto fail;
|
|
if (src->subroutine && !gfc_add_subroutine (dest, NULL, where))
|
|
goto fail;
|
|
|
|
if (src->sequence && !gfc_add_sequence (dest, NULL, where))
|
|
goto fail;
|
|
if (src->elemental && !gfc_add_elemental (dest, where))
|
|
goto fail;
|
|
if (src->pure && !gfc_add_pure (dest, where))
|
|
goto fail;
|
|
if (src->recursive && !gfc_add_recursive (dest, where))
|
|
goto fail;
|
|
|
|
if (src->flavor != FL_UNKNOWN
|
|
&& !gfc_add_flavor (dest, src->flavor, NULL, where))
|
|
goto fail;
|
|
|
|
if (src->intent != INTENT_UNKNOWN
|
|
&& !gfc_add_intent (dest, src->intent, where))
|
|
goto fail;
|
|
|
|
if (src->access != ACCESS_UNKNOWN
|
|
&& !gfc_add_access (dest, src->access, NULL, where))
|
|
goto fail;
|
|
|
|
if (!gfc_missing_attr (dest, where))
|
|
goto fail;
|
|
|
|
if (src->cray_pointer && !gfc_add_cray_pointer (dest, where))
|
|
goto fail;
|
|
if (src->cray_pointee && !gfc_add_cray_pointee (dest, where))
|
|
goto fail;
|
|
|
|
is_proc_lang_bind_spec = (src->flavor == FL_PROCEDURE ? 1 : 0);
|
|
if (src->is_bind_c
|
|
&& !gfc_add_is_bind_c (dest, NULL, where, is_proc_lang_bind_spec))
|
|
return false;
|
|
|
|
if (src->is_c_interop)
|
|
dest->is_c_interop = 1;
|
|
if (src->is_iso_c)
|
|
dest->is_iso_c = 1;
|
|
|
|
if (src->external && !gfc_add_external (dest, where))
|
|
goto fail;
|
|
if (src->intrinsic && !gfc_add_intrinsic (dest, where))
|
|
goto fail;
|
|
if (src->proc_pointer)
|
|
dest->proc_pointer = 1;
|
|
|
|
return true;
|
|
|
|
fail:
|
|
return false;
|
|
}
|
|
|
|
|
|
/************** Component name management ************/
|
|
|
|
/* Component names of a derived type form their own little namespaces
|
|
that are separate from all other spaces. The space is composed of
|
|
a singly linked list of gfc_component structures whose head is
|
|
located in the parent symbol. */
|
|
|
|
|
|
/* Add a component name to a symbol. The call fails if the name is
|
|
already present. On success, the component pointer is modified to
|
|
point to the additional component structure. */
|
|
|
|
bool
|
|
gfc_add_component (gfc_symbol *sym, const char *name,
|
|
gfc_component **component)
|
|
{
|
|
gfc_component *p, *tail;
|
|
|
|
tail = NULL;
|
|
|
|
for (p = sym->components; p; p = p->next)
|
|
{
|
|
if (strcmp (p->name, name) == 0)
|
|
{
|
|
gfc_error ("Component '%s' at %C already declared at %L",
|
|
name, &p->loc);
|
|
return false;
|
|
}
|
|
|
|
tail = p;
|
|
}
|
|
|
|
if (sym->attr.extension
|
|
&& gfc_find_component (sym->components->ts.u.derived, name, true, true))
|
|
{
|
|
gfc_error ("Component '%s' at %C already in the parent type "
|
|
"at %L", name, &sym->components->ts.u.derived->declared_at);
|
|
return false;
|
|
}
|
|
|
|
/* Allocate a new component. */
|
|
p = gfc_get_component ();
|
|
|
|
if (tail == NULL)
|
|
sym->components = p;
|
|
else
|
|
tail->next = p;
|
|
|
|
p->name = gfc_get_string (name);
|
|
p->loc = gfc_current_locus;
|
|
p->ts.type = BT_UNKNOWN;
|
|
|
|
*component = p;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Recursive function to switch derived types of all symbol in a
|
|
namespace. */
|
|
|
|
static void
|
|
switch_types (gfc_symtree *st, gfc_symbol *from, gfc_symbol *to)
|
|
{
|
|
gfc_symbol *sym;
|
|
|
|
if (st == NULL)
|
|
return;
|
|
|
|
sym = st->n.sym;
|
|
if (sym->ts.type == BT_DERIVED && sym->ts.u.derived == from)
|
|
sym->ts.u.derived = to;
|
|
|
|
switch_types (st->left, from, to);
|
|
switch_types (st->right, from, to);
|
|
}
|
|
|
|
|
|
/* This subroutine is called when a derived type is used in order to
|
|
make the final determination about which version to use. The
|
|
standard requires that a type be defined before it is 'used', but
|
|
such types can appear in IMPLICIT statements before the actual
|
|
definition. 'Using' in this context means declaring a variable to
|
|
be that type or using the type constructor.
|
|
|
|
If a type is used and the components haven't been defined, then we
|
|
have to have a derived type in a parent unit. We find the node in
|
|
the other namespace and point the symtree node in this namespace to
|
|
that node. Further reference to this name point to the correct
|
|
node. If we can't find the node in a parent namespace, then we have
|
|
an error.
|
|
|
|
This subroutine takes a pointer to a symbol node and returns a
|
|
pointer to the translated node or NULL for an error. Usually there
|
|
is no translation and we return the node we were passed. */
|
|
|
|
gfc_symbol *
|
|
gfc_use_derived (gfc_symbol *sym)
|
|
{
|
|
gfc_symbol *s;
|
|
gfc_typespec *t;
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
if (!sym)
|
|
return NULL;
|
|
|
|
if (sym->attr.unlimited_polymorphic)
|
|
return sym;
|
|
|
|
if (sym->attr.generic)
|
|
sym = gfc_find_dt_in_generic (sym);
|
|
|
|
if (sym->components != NULL || sym->attr.zero_comp)
|
|
return sym; /* Already defined. */
|
|
|
|
if (sym->ns->parent == NULL)
|
|
goto bad;
|
|
|
|
if (gfc_find_symbol (sym->name, sym->ns->parent, 1, &s))
|
|
{
|
|
gfc_error ("Symbol '%s' at %C is ambiguous", sym->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (s == NULL || s->attr.flavor != FL_DERIVED)
|
|
goto bad;
|
|
|
|
/* Get rid of symbol sym, translating all references to s. */
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
t = &sym->ns->default_type[i];
|
|
if (t->u.derived == sym)
|
|
t->u.derived = s;
|
|
}
|
|
|
|
st = gfc_find_symtree (sym->ns->sym_root, sym->name);
|
|
st->n.sym = s;
|
|
|
|
s->refs++;
|
|
|
|
/* Unlink from list of modified symbols. */
|
|
gfc_commit_symbol (sym);
|
|
|
|
switch_types (sym->ns->sym_root, sym, s);
|
|
|
|
/* TODO: Also have to replace sym -> s in other lists like
|
|
namelists, common lists and interface lists. */
|
|
gfc_free_symbol (sym);
|
|
|
|
return s;
|
|
|
|
bad:
|
|
gfc_error ("Derived type '%s' at %C is being used before it is defined",
|
|
sym->name);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Given a derived type node and a component name, try to locate the
|
|
component structure. Returns the NULL pointer if the component is
|
|
not found or the components are private. If noaccess is set, no access
|
|
checks are done. */
|
|
|
|
gfc_component *
|
|
gfc_find_component (gfc_symbol *sym, const char *name,
|
|
bool noaccess, bool silent)
|
|
{
|
|
gfc_component *p;
|
|
|
|
if (name == NULL || sym == NULL)
|
|
return NULL;
|
|
|
|
sym = gfc_use_derived (sym);
|
|
|
|
if (sym == NULL)
|
|
return NULL;
|
|
|
|
for (p = sym->components; p; p = p->next)
|
|
if (strcmp (p->name, name) == 0)
|
|
break;
|
|
|
|
if (p && sym->attr.use_assoc && !noaccess)
|
|
{
|
|
bool is_parent_comp = sym->attr.extension && (p == sym->components);
|
|
if (p->attr.access == ACCESS_PRIVATE ||
|
|
(p->attr.access != ACCESS_PUBLIC
|
|
&& sym->component_access == ACCESS_PRIVATE
|
|
&& !is_parent_comp))
|
|
{
|
|
if (!silent)
|
|
gfc_error ("Component '%s' at %C is a PRIVATE component of '%s'",
|
|
name, sym->name);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (p == NULL
|
|
&& sym->attr.extension
|
|
&& sym->components->ts.type == BT_DERIVED)
|
|
{
|
|
p = gfc_find_component (sym->components->ts.u.derived, name,
|
|
noaccess, silent);
|
|
/* Do not overwrite the error. */
|
|
if (p == NULL)
|
|
return p;
|
|
}
|
|
|
|
if (p == NULL && !silent)
|
|
gfc_error ("'%s' at %C is not a member of the '%s' structure",
|
|
name, sym->name);
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Given a symbol, free all of the component structures and everything
|
|
they point to. */
|
|
|
|
static void
|
|
free_components (gfc_component *p)
|
|
{
|
|
gfc_component *q;
|
|
|
|
for (; p; p = q)
|
|
{
|
|
q = p->next;
|
|
|
|
gfc_free_array_spec (p->as);
|
|
gfc_free_expr (p->initializer);
|
|
free (p->tb);
|
|
|
|
free (p);
|
|
}
|
|
}
|
|
|
|
|
|
/******************** Statement label management ********************/
|
|
|
|
/* Comparison function for statement labels, used for managing the
|
|
binary tree. */
|
|
|
|
static int
|
|
compare_st_labels (void *a1, void *b1)
|
|
{
|
|
int a = ((gfc_st_label *) a1)->value;
|
|
int b = ((gfc_st_label *) b1)->value;
|
|
|
|
return (b - a);
|
|
}
|
|
|
|
|
|
/* Free a single gfc_st_label structure, making sure the tree is not
|
|
messed up. This function is called only when some parse error
|
|
occurs. */
|
|
|
|
void
|
|
gfc_free_st_label (gfc_st_label *label)
|
|
{
|
|
|
|
if (label == NULL)
|
|
return;
|
|
|
|
gfc_delete_bbt (&gfc_current_ns->st_labels, label, compare_st_labels);
|
|
|
|
if (label->format != NULL)
|
|
gfc_free_expr (label->format);
|
|
|
|
free (label);
|
|
}
|
|
|
|
|
|
/* Free a whole tree of gfc_st_label structures. */
|
|
|
|
static void
|
|
free_st_labels (gfc_st_label *label)
|
|
{
|
|
|
|
if (label == NULL)
|
|
return;
|
|
|
|
free_st_labels (label->left);
|
|
free_st_labels (label->right);
|
|
|
|
if (label->format != NULL)
|
|
gfc_free_expr (label->format);
|
|
free (label);
|
|
}
|
|
|
|
|
|
/* Given a label number, search for and return a pointer to the label
|
|
structure, creating it if it does not exist. */
|
|
|
|
gfc_st_label *
|
|
gfc_get_st_label (int labelno)
|
|
{
|
|
gfc_st_label *lp;
|
|
gfc_namespace *ns;
|
|
|
|
if (gfc_current_state () == COMP_DERIVED)
|
|
ns = gfc_current_block ()->f2k_derived;
|
|
else
|
|
{
|
|
/* Find the namespace of the scoping unit:
|
|
If we're in a BLOCK construct, jump to the parent namespace. */
|
|
ns = gfc_current_ns;
|
|
while (ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL)
|
|
ns = ns->parent;
|
|
}
|
|
|
|
/* First see if the label is already in this namespace. */
|
|
lp = ns->st_labels;
|
|
while (lp)
|
|
{
|
|
if (lp->value == labelno)
|
|
return lp;
|
|
|
|
if (lp->value < labelno)
|
|
lp = lp->left;
|
|
else
|
|
lp = lp->right;
|
|
}
|
|
|
|
lp = XCNEW (gfc_st_label);
|
|
|
|
lp->value = labelno;
|
|
lp->defined = ST_LABEL_UNKNOWN;
|
|
lp->referenced = ST_LABEL_UNKNOWN;
|
|
|
|
gfc_insert_bbt (&ns->st_labels, lp, compare_st_labels);
|
|
|
|
return lp;
|
|
}
|
|
|
|
|
|
/* Called when a statement with a statement label is about to be
|
|
accepted. We add the label to the list of the current namespace,
|
|
making sure it hasn't been defined previously and referenced
|
|
correctly. */
|
|
|
|
void
|
|
gfc_define_st_label (gfc_st_label *lp, gfc_sl_type type, locus *label_locus)
|
|
{
|
|
int labelno;
|
|
|
|
labelno = lp->value;
|
|
|
|
if (lp->defined != ST_LABEL_UNKNOWN)
|
|
gfc_error ("Duplicate statement label %d at %L and %L", labelno,
|
|
&lp->where, label_locus);
|
|
else
|
|
{
|
|
lp->where = *label_locus;
|
|
|
|
switch (type)
|
|
{
|
|
case ST_LABEL_FORMAT:
|
|
if (lp->referenced == ST_LABEL_TARGET
|
|
|| lp->referenced == ST_LABEL_DO_TARGET)
|
|
gfc_error ("Label %d at %C already referenced as branch target",
|
|
labelno);
|
|
else
|
|
lp->defined = ST_LABEL_FORMAT;
|
|
|
|
break;
|
|
|
|
case ST_LABEL_TARGET:
|
|
case ST_LABEL_DO_TARGET:
|
|
if (lp->referenced == ST_LABEL_FORMAT)
|
|
gfc_error ("Label %d at %C already referenced as a format label",
|
|
labelno);
|
|
else
|
|
lp->defined = type;
|
|
|
|
if (lp->referenced == ST_LABEL_DO_TARGET && type != ST_LABEL_DO_TARGET
|
|
&& !gfc_notify_std (GFC_STD_F95_OBS, "DO termination statement "
|
|
"which is not END DO or CONTINUE with "
|
|
"label %d at %C", labelno))
|
|
return;
|
|
break;
|
|
|
|
default:
|
|
lp->defined = ST_LABEL_BAD_TARGET;
|
|
lp->referenced = ST_LABEL_BAD_TARGET;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Reference a label. Given a label and its type, see if that
|
|
reference is consistent with what is known about that label,
|
|
updating the unknown state. Returns false if something goes
|
|
wrong. */
|
|
|
|
bool
|
|
gfc_reference_st_label (gfc_st_label *lp, gfc_sl_type type)
|
|
{
|
|
gfc_sl_type label_type;
|
|
int labelno;
|
|
bool rc;
|
|
|
|
if (lp == NULL)
|
|
return true;
|
|
|
|
labelno = lp->value;
|
|
|
|
if (lp->defined != ST_LABEL_UNKNOWN)
|
|
label_type = lp->defined;
|
|
else
|
|
{
|
|
label_type = lp->referenced;
|
|
lp->where = gfc_current_locus;
|
|
}
|
|
|
|
if (label_type == ST_LABEL_FORMAT
|
|
&& (type == ST_LABEL_TARGET || type == ST_LABEL_DO_TARGET))
|
|
{
|
|
gfc_error ("Label %d at %C previously used as a FORMAT label", labelno);
|
|
rc = false;
|
|
goto done;
|
|
}
|
|
|
|
if ((label_type == ST_LABEL_TARGET || label_type == ST_LABEL_DO_TARGET
|
|
|| label_type == ST_LABEL_BAD_TARGET)
|
|
&& type == ST_LABEL_FORMAT)
|
|
{
|
|
gfc_error ("Label %d at %C previously used as branch target", labelno);
|
|
rc = false;
|
|
goto done;
|
|
}
|
|
|
|
if (lp->referenced == ST_LABEL_DO_TARGET && type == ST_LABEL_DO_TARGET
|
|
&& !gfc_notify_std (GFC_STD_F95_OBS, "Shared DO termination label %d "
|
|
"at %C", labelno))
|
|
return false;
|
|
|
|
if (lp->referenced != ST_LABEL_DO_TARGET)
|
|
lp->referenced = type;
|
|
rc = true;
|
|
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/************** Symbol table management subroutines ****************/
|
|
|
|
/* Basic details: Fortran 95 requires a potentially unlimited number
|
|
of distinct namespaces when compiling a program unit. This case
|
|
occurs during a compilation of internal subprograms because all of
|
|
the internal subprograms must be read before we can start
|
|
generating code for the host.
|
|
|
|
Given the tricky nature of the Fortran grammar, we must be able to
|
|
undo changes made to a symbol table if the current interpretation
|
|
of a statement is found to be incorrect. Whenever a symbol is
|
|
looked up, we make a copy of it and link to it. All of these
|
|
symbols are kept in a vector so that we can commit or
|
|
undo the changes at a later time.
|
|
|
|
A symtree may point to a symbol node outside of its namespace. In
|
|
this case, that symbol has been used as a host associated variable
|
|
at some previous time. */
|
|
|
|
/* Allocate a new namespace structure. Copies the implicit types from
|
|
PARENT if PARENT_TYPES is set. */
|
|
|
|
gfc_namespace *
|
|
gfc_get_namespace (gfc_namespace *parent, int parent_types)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_typespec *ts;
|
|
int in;
|
|
int i;
|
|
|
|
ns = XCNEW (gfc_namespace);
|
|
ns->sym_root = NULL;
|
|
ns->uop_root = NULL;
|
|
ns->tb_sym_root = NULL;
|
|
ns->finalizers = NULL;
|
|
ns->default_access = ACCESS_UNKNOWN;
|
|
ns->parent = parent;
|
|
|
|
for (in = GFC_INTRINSIC_BEGIN; in != GFC_INTRINSIC_END; in++)
|
|
{
|
|
ns->operator_access[in] = ACCESS_UNKNOWN;
|
|
ns->tb_op[in] = NULL;
|
|
}
|
|
|
|
/* Initialize default implicit types. */
|
|
for (i = 'a'; i <= 'z'; i++)
|
|
{
|
|
ns->set_flag[i - 'a'] = 0;
|
|
ts = &ns->default_type[i - 'a'];
|
|
|
|
if (parent_types && ns->parent != NULL)
|
|
{
|
|
/* Copy parent settings. */
|
|
*ts = ns->parent->default_type[i - 'a'];
|
|
continue;
|
|
}
|
|
|
|
if (gfc_option.flag_implicit_none != 0)
|
|
{
|
|
gfc_clear_ts (ts);
|
|
continue;
|
|
}
|
|
|
|
if ('i' <= i && i <= 'n')
|
|
{
|
|
ts->type = BT_INTEGER;
|
|
ts->kind = gfc_default_integer_kind;
|
|
}
|
|
else
|
|
{
|
|
ts->type = BT_REAL;
|
|
ts->kind = gfc_default_real_kind;
|
|
}
|
|
}
|
|
|
|
if (parent_types && ns->parent != NULL)
|
|
ns->has_implicit_none_export = ns->parent->has_implicit_none_export;
|
|
|
|
ns->refs = 1;
|
|
|
|
return ns;
|
|
}
|
|
|
|
|
|
/* Comparison function for symtree nodes. */
|
|
|
|
static int
|
|
compare_symtree (void *_st1, void *_st2)
|
|
{
|
|
gfc_symtree *st1, *st2;
|
|
|
|
st1 = (gfc_symtree *) _st1;
|
|
st2 = (gfc_symtree *) _st2;
|
|
|
|
return strcmp (st1->name, st2->name);
|
|
}
|
|
|
|
|
|
/* Allocate a new symtree node and associate it with the new symbol. */
|
|
|
|
gfc_symtree *
|
|
gfc_new_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
st = XCNEW (gfc_symtree);
|
|
st->name = gfc_get_string (name);
|
|
|
|
gfc_insert_bbt (root, st, compare_symtree);
|
|
return st;
|
|
}
|
|
|
|
|
|
/* Delete a symbol from the tree. Does not free the symbol itself! */
|
|
|
|
void
|
|
gfc_delete_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree st, *st0;
|
|
|
|
st0 = gfc_find_symtree (*root, name);
|
|
|
|
st.name = gfc_get_string (name);
|
|
gfc_delete_bbt (root, &st, compare_symtree);
|
|
|
|
free (st0);
|
|
}
|
|
|
|
|
|
/* Given a root symtree node and a name, try to find the symbol within
|
|
the namespace. Returns NULL if the symbol is not found. */
|
|
|
|
gfc_symtree *
|
|
gfc_find_symtree (gfc_symtree *st, const char *name)
|
|
{
|
|
int c;
|
|
|
|
while (st != NULL)
|
|
{
|
|
c = strcmp (name, st->name);
|
|
if (c == 0)
|
|
return st;
|
|
|
|
st = (c < 0) ? st->left : st->right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Return a symtree node with a name that is guaranteed to be unique
|
|
within the namespace and corresponds to an illegal fortran name. */
|
|
|
|
gfc_symtree *
|
|
gfc_get_unique_symtree (gfc_namespace *ns)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN + 1];
|
|
static int serial = 0;
|
|
|
|
sprintf (name, "@%d", serial++);
|
|
return gfc_new_symtree (&ns->sym_root, name);
|
|
}
|
|
|
|
|
|
/* Given a name find a user operator node, creating it if it doesn't
|
|
exist. These are much simpler than symbols because they can't be
|
|
ambiguous with one another. */
|
|
|
|
gfc_user_op *
|
|
gfc_get_uop (const char *name)
|
|
{
|
|
gfc_user_op *uop;
|
|
gfc_symtree *st;
|
|
gfc_namespace *ns = gfc_current_ns;
|
|
|
|
if (ns->omp_udr_ns)
|
|
ns = ns->parent;
|
|
st = gfc_find_symtree (ns->uop_root, name);
|
|
if (st != NULL)
|
|
return st->n.uop;
|
|
|
|
st = gfc_new_symtree (&ns->uop_root, name);
|
|
|
|
uop = st->n.uop = XCNEW (gfc_user_op);
|
|
uop->name = gfc_get_string (name);
|
|
uop->access = ACCESS_UNKNOWN;
|
|
uop->ns = ns;
|
|
|
|
return uop;
|
|
}
|
|
|
|
|
|
/* Given a name find the user operator node. Returns NULL if it does
|
|
not exist. */
|
|
|
|
gfc_user_op *
|
|
gfc_find_uop (const char *name, gfc_namespace *ns)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
st = gfc_find_symtree (ns->uop_root, name);
|
|
return (st == NULL) ? NULL : st->n.uop;
|
|
}
|
|
|
|
|
|
/* Remove a gfc_symbol structure and everything it points to. */
|
|
|
|
void
|
|
gfc_free_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym == NULL)
|
|
return;
|
|
|
|
gfc_free_array_spec (sym->as);
|
|
|
|
free_components (sym->components);
|
|
|
|
gfc_free_expr (sym->value);
|
|
|
|
gfc_free_namelist (sym->namelist);
|
|
|
|
if (sym->ns != sym->formal_ns)
|
|
gfc_free_namespace (sym->formal_ns);
|
|
|
|
if (!sym->attr.generic_copy)
|
|
gfc_free_interface (sym->generic);
|
|
|
|
gfc_free_formal_arglist (sym->formal);
|
|
|
|
gfc_free_namespace (sym->f2k_derived);
|
|
|
|
if (sym->common_block && sym->common_block->name[0] != '\0')
|
|
{
|
|
sym->common_block->refs--;
|
|
if (sym->common_block->refs == 0)
|
|
free (sym->common_block);
|
|
}
|
|
|
|
free (sym);
|
|
}
|
|
|
|
|
|
/* Decrease the reference counter and free memory when we reach zero. */
|
|
|
|
void
|
|
gfc_release_symbol (gfc_symbol *sym)
|
|
{
|
|
if (sym == NULL)
|
|
return;
|
|
|
|
if (sym->formal_ns != NULL && sym->refs == 2 && sym->formal_ns != sym->ns
|
|
&& (!sym->attr.entry || !sym->module))
|
|
{
|
|
/* As formal_ns contains a reference to sym, delete formal_ns just
|
|
before the deletion of sym. */
|
|
gfc_namespace *ns = sym->formal_ns;
|
|
sym->formal_ns = NULL;
|
|
gfc_free_namespace (ns);
|
|
}
|
|
|
|
sym->refs--;
|
|
if (sym->refs > 0)
|
|
return;
|
|
|
|
gcc_assert (sym->refs == 0);
|
|
gfc_free_symbol (sym);
|
|
}
|
|
|
|
|
|
/* Allocate and initialize a new symbol node. */
|
|
|
|
gfc_symbol *
|
|
gfc_new_symbol (const char *name, gfc_namespace *ns)
|
|
{
|
|
gfc_symbol *p;
|
|
|
|
p = XCNEW (gfc_symbol);
|
|
|
|
gfc_clear_ts (&p->ts);
|
|
gfc_clear_attr (&p->attr);
|
|
p->ns = ns;
|
|
|
|
p->declared_at = gfc_current_locus;
|
|
|
|
if (strlen (name) > GFC_MAX_SYMBOL_LEN)
|
|
gfc_internal_error ("new_symbol(): Symbol name too long");
|
|
|
|
p->name = gfc_get_string (name);
|
|
|
|
/* Make sure flags for symbol being C bound are clear initially. */
|
|
p->attr.is_bind_c = 0;
|
|
p->attr.is_iso_c = 0;
|
|
|
|
/* Clear the ptrs we may need. */
|
|
p->common_block = NULL;
|
|
p->f2k_derived = NULL;
|
|
p->assoc = NULL;
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Generate an error if a symbol is ambiguous. */
|
|
|
|
static void
|
|
ambiguous_symbol (const char *name, gfc_symtree *st)
|
|
{
|
|
|
|
if (st->n.sym->module)
|
|
gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
|
|
"from module '%s'", name, st->n.sym->name, st->n.sym->module);
|
|
else
|
|
gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
|
|
"from current program unit", name, st->n.sym->name);
|
|
}
|
|
|
|
|
|
/* If we're in a SELECT TYPE block, check if the variable 'st' matches any
|
|
selector on the stack. If yes, replace it by the corresponding temporary. */
|
|
|
|
static void
|
|
select_type_insert_tmp (gfc_symtree **st)
|
|
{
|
|
gfc_select_type_stack *stack = select_type_stack;
|
|
for (; stack; stack = stack->prev)
|
|
if ((*st)->n.sym == stack->selector && stack->tmp)
|
|
*st = stack->tmp;
|
|
}
|
|
|
|
|
|
/* Look for a symtree in the current procedure -- that is, go up to
|
|
parent namespaces but only if inside a BLOCK. Returns NULL if not found. */
|
|
|
|
gfc_symtree*
|
|
gfc_find_symtree_in_proc (const char* name, gfc_namespace* ns)
|
|
{
|
|
while (ns)
|
|
{
|
|
gfc_symtree* st = gfc_find_symtree (ns->sym_root, name);
|
|
if (st)
|
|
return st;
|
|
|
|
if (!ns->construct_entities)
|
|
break;
|
|
ns = ns->parent;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Search for a symtree starting in the current namespace, resorting to
|
|
any parent namespaces if requested by a nonzero parent_flag.
|
|
Returns nonzero if the name is ambiguous. */
|
|
|
|
int
|
|
gfc_find_sym_tree (const char *name, gfc_namespace *ns, int parent_flag,
|
|
gfc_symtree **result)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
do
|
|
{
|
|
st = gfc_find_symtree (ns->sym_root, name);
|
|
if (st != NULL)
|
|
{
|
|
select_type_insert_tmp (&st);
|
|
|
|
*result = st;
|
|
/* Ambiguous generic interfaces are permitted, as long
|
|
as the specific interfaces are different. */
|
|
if (st->ambiguous && !st->n.sym->attr.generic)
|
|
{
|
|
ambiguous_symbol (name, st);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!parent_flag)
|
|
break;
|
|
|
|
/* Don't escape an interface block. */
|
|
if (ns && !ns->has_import_set
|
|
&& ns->proc_name && ns->proc_name->attr.if_source == IFSRC_IFBODY)
|
|
break;
|
|
|
|
ns = ns->parent;
|
|
}
|
|
while (ns != NULL);
|
|
|
|
*result = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Same, but returns the symbol instead. */
|
|
|
|
int
|
|
gfc_find_symbol (const char *name, gfc_namespace *ns, int parent_flag,
|
|
gfc_symbol **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_find_sym_tree (name, ns, parent_flag, &st);
|
|
|
|
if (st == NULL)
|
|
*result = NULL;
|
|
else
|
|
*result = st->n.sym;
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Tells whether there is only one set of changes in the stack. */
|
|
|
|
static bool
|
|
single_undo_checkpoint_p (void)
|
|
{
|
|
if (latest_undo_chgset == &default_undo_chgset_var)
|
|
{
|
|
gcc_assert (latest_undo_chgset->previous == NULL);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (latest_undo_chgset->previous != NULL);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Save symbol with the information necessary to back it out. */
|
|
|
|
static void
|
|
save_symbol_data (gfc_symbol *sym)
|
|
{
|
|
gfc_symbol *s;
|
|
unsigned i;
|
|
|
|
if (!single_undo_checkpoint_p ())
|
|
{
|
|
/* If there is more than one change set, look for the symbol in the
|
|
current one. If it is found there, we can reuse it. */
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, s)
|
|
if (s == sym)
|
|
{
|
|
gcc_assert (sym->gfc_new || sym->old_symbol != NULL);
|
|
return;
|
|
}
|
|
}
|
|
else if (sym->gfc_new || sym->old_symbol != NULL)
|
|
return;
|
|
|
|
s = XCNEW (gfc_symbol);
|
|
*s = *sym;
|
|
sym->old_symbol = s;
|
|
sym->gfc_new = 0;
|
|
|
|
latest_undo_chgset->syms.safe_push (sym);
|
|
}
|
|
|
|
|
|
/* Given a name, find a symbol, or create it if it does not exist yet
|
|
in the current namespace. If the symbol is found we make sure that
|
|
it's OK.
|
|
|
|
The integer return code indicates
|
|
0 All OK
|
|
1 The symbol name was ambiguous
|
|
2 The name meant to be established was already host associated.
|
|
|
|
So if the return value is nonzero, then an error was issued. */
|
|
|
|
int
|
|
gfc_get_sym_tree (const char *name, gfc_namespace *ns, gfc_symtree **result,
|
|
bool allow_subroutine)
|
|
{
|
|
gfc_symtree *st;
|
|
gfc_symbol *p;
|
|
|
|
/* This doesn't usually happen during resolution. */
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
/* Try to find the symbol in ns. */
|
|
st = gfc_find_symtree (ns->sym_root, name);
|
|
|
|
if (st == NULL && ns->omp_udr_ns)
|
|
{
|
|
ns = ns->parent;
|
|
st = gfc_find_symtree (ns->sym_root, name);
|
|
}
|
|
|
|
if (st == NULL)
|
|
{
|
|
/* If not there, create a new symbol. */
|
|
p = gfc_new_symbol (name, ns);
|
|
|
|
/* Add to the list of tentative symbols. */
|
|
p->old_symbol = NULL;
|
|
p->mark = 1;
|
|
p->gfc_new = 1;
|
|
latest_undo_chgset->syms.safe_push (p);
|
|
|
|
st = gfc_new_symtree (&ns->sym_root, name);
|
|
st->n.sym = p;
|
|
p->refs++;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Make sure the existing symbol is OK. Ambiguous
|
|
generic interfaces are permitted, as long as the
|
|
specific interfaces are different. */
|
|
if (st->ambiguous && !st->n.sym->attr.generic)
|
|
{
|
|
ambiguous_symbol (name, st);
|
|
return 1;
|
|
}
|
|
|
|
p = st->n.sym;
|
|
if (p->ns != ns && (!p->attr.function || ns->proc_name != p)
|
|
&& !(allow_subroutine && p->attr.subroutine)
|
|
&& !(ns->proc_name && ns->proc_name->attr.if_source == IFSRC_IFBODY
|
|
&& (ns->has_import_set || p->attr.imported)))
|
|
{
|
|
/* Symbol is from another namespace. */
|
|
gfc_error ("Symbol '%s' at %C has already been host associated",
|
|
name);
|
|
return 2;
|
|
}
|
|
|
|
p->mark = 1;
|
|
|
|
/* Copy in case this symbol is changed. */
|
|
save_symbol_data (p);
|
|
}
|
|
|
|
*result = st;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
gfc_get_symbol (const char *name, gfc_namespace *ns, gfc_symbol **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_get_sym_tree (name, ns, &st, false);
|
|
if (i != 0)
|
|
return i;
|
|
|
|
if (st)
|
|
*result = st->n.sym;
|
|
else
|
|
*result = NULL;
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Subroutine that searches for a symbol, creating it if it doesn't
|
|
exist, but tries to host-associate the symbol if possible. */
|
|
|
|
int
|
|
gfc_get_ha_sym_tree (const char *name, gfc_symtree **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_find_sym_tree (name, gfc_current_ns, 0, &st);
|
|
|
|
if (st != NULL)
|
|
{
|
|
save_symbol_data (st->n.sym);
|
|
*result = st;
|
|
return i;
|
|
}
|
|
|
|
i = gfc_find_sym_tree (name, gfc_current_ns, 1, &st);
|
|
if (i)
|
|
return i;
|
|
|
|
if (st != NULL)
|
|
{
|
|
*result = st;
|
|
return 0;
|
|
}
|
|
|
|
return gfc_get_sym_tree (name, gfc_current_ns, result, false);
|
|
}
|
|
|
|
|
|
int
|
|
gfc_get_ha_symbol (const char *name, gfc_symbol **result)
|
|
{
|
|
int i;
|
|
gfc_symtree *st;
|
|
|
|
i = gfc_get_ha_sym_tree (name, &st);
|
|
|
|
if (st)
|
|
*result = st->n.sym;
|
|
else
|
|
*result = NULL;
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Search for the symtree belonging to a gfc_common_head; we cannot use
|
|
head->name as the common_root symtree's name might be mangled. */
|
|
|
|
static gfc_symtree *
|
|
find_common_symtree (gfc_symtree *st, gfc_common_head *head)
|
|
{
|
|
|
|
gfc_symtree *result;
|
|
|
|
if (st == NULL)
|
|
return NULL;
|
|
|
|
if (st->n.common == head)
|
|
return st;
|
|
|
|
result = find_common_symtree (st->left, head);
|
|
if (!result)
|
|
result = find_common_symtree (st->right, head);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Clear the given storage, and make it the current change set for registering
|
|
changed symbols. Its contents are freed after a call to
|
|
gfc_restore_last_undo_checkpoint or gfc_drop_last_undo_checkpoint, but
|
|
it is up to the caller to free the storage itself. It is usually a local
|
|
variable, so there is nothing to do anyway. */
|
|
|
|
void
|
|
gfc_new_undo_checkpoint (gfc_undo_change_set &chg_syms)
|
|
{
|
|
chg_syms.syms = vNULL;
|
|
chg_syms.tbps = vNULL;
|
|
chg_syms.previous = latest_undo_chgset;
|
|
latest_undo_chgset = &chg_syms;
|
|
}
|
|
|
|
|
|
/* Restore previous state of symbol. Just copy simple stuff. */
|
|
|
|
static void
|
|
restore_old_symbol (gfc_symbol *p)
|
|
{
|
|
gfc_symbol *old;
|
|
|
|
p->mark = 0;
|
|
old = p->old_symbol;
|
|
|
|
p->ts.type = old->ts.type;
|
|
p->ts.kind = old->ts.kind;
|
|
|
|
p->attr = old->attr;
|
|
|
|
if (p->value != old->value)
|
|
{
|
|
gcc_checking_assert (old->value == NULL);
|
|
gfc_free_expr (p->value);
|
|
p->value = NULL;
|
|
}
|
|
|
|
if (p->as != old->as)
|
|
{
|
|
if (p->as)
|
|
gfc_free_array_spec (p->as);
|
|
p->as = old->as;
|
|
}
|
|
|
|
p->generic = old->generic;
|
|
p->component_access = old->component_access;
|
|
|
|
if (p->namelist != NULL && old->namelist == NULL)
|
|
{
|
|
gfc_free_namelist (p->namelist);
|
|
p->namelist = NULL;
|
|
}
|
|
else
|
|
{
|
|
if (p->namelist_tail != old->namelist_tail)
|
|
{
|
|
gfc_free_namelist (old->namelist_tail->next);
|
|
old->namelist_tail->next = NULL;
|
|
}
|
|
}
|
|
|
|
p->namelist_tail = old->namelist_tail;
|
|
|
|
if (p->formal != old->formal)
|
|
{
|
|
gfc_free_formal_arglist (p->formal);
|
|
p->formal = old->formal;
|
|
}
|
|
|
|
p->old_symbol = old->old_symbol;
|
|
free (old);
|
|
}
|
|
|
|
|
|
/* Frees the internal data of a gfc_undo_change_set structure. Doesn't free
|
|
the structure itself. */
|
|
|
|
static void
|
|
free_undo_change_set_data (gfc_undo_change_set &cs)
|
|
{
|
|
cs.syms.release ();
|
|
cs.tbps.release ();
|
|
}
|
|
|
|
|
|
/* Given a change set pointer, free its target's contents and update it with
|
|
the address of the previous change set. Note that only the contents are
|
|
freed, not the target itself (the contents' container). It is not a problem
|
|
as the latter will be a local variable usually. */
|
|
|
|
static void
|
|
pop_undo_change_set (gfc_undo_change_set *&cs)
|
|
{
|
|
free_undo_change_set_data (*cs);
|
|
cs = cs->previous;
|
|
}
|
|
|
|
|
|
static void free_old_symbol (gfc_symbol *sym);
|
|
|
|
|
|
/* Merges the current change set into the previous one. The changes themselves
|
|
are left untouched; only one checkpoint is forgotten. */
|
|
|
|
void
|
|
gfc_drop_last_undo_checkpoint (void)
|
|
{
|
|
gfc_symbol *s, *t;
|
|
unsigned i, j;
|
|
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, s)
|
|
{
|
|
/* No need to loop in this case. */
|
|
if (s->old_symbol == NULL)
|
|
continue;
|
|
|
|
/* Remove the duplicate symbols. */
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->previous->syms, j, t)
|
|
if (t == s)
|
|
{
|
|
latest_undo_chgset->previous->syms.unordered_remove (j);
|
|
|
|
/* S->OLD_SYMBOL is the backup symbol for S as it was at the
|
|
last checkpoint. We drop that checkpoint, so S->OLD_SYMBOL
|
|
shall contain from now on the backup symbol for S as it was
|
|
at the checkpoint before. */
|
|
if (s->old_symbol->gfc_new)
|
|
{
|
|
gcc_assert (s->old_symbol->old_symbol == NULL);
|
|
s->gfc_new = s->old_symbol->gfc_new;
|
|
free_old_symbol (s);
|
|
}
|
|
else
|
|
restore_old_symbol (s->old_symbol);
|
|
break;
|
|
}
|
|
}
|
|
|
|
latest_undo_chgset->previous->syms.safe_splice (latest_undo_chgset->syms);
|
|
latest_undo_chgset->previous->tbps.safe_splice (latest_undo_chgset->tbps);
|
|
|
|
pop_undo_change_set (latest_undo_chgset);
|
|
}
|
|
|
|
|
|
/* Undoes all the changes made to symbols since the previous checkpoint.
|
|
This subroutine is made simpler due to the fact that attributes are
|
|
never removed once added. */
|
|
|
|
void
|
|
gfc_restore_last_undo_checkpoint (void)
|
|
{
|
|
gfc_symbol *p;
|
|
unsigned i;
|
|
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p)
|
|
{
|
|
if (p->gfc_new)
|
|
{
|
|
/* Symbol was new. */
|
|
if (p->attr.in_common && p->common_block && p->common_block->head)
|
|
{
|
|
/* If the symbol was added to any common block, it
|
|
needs to be removed to stop the resolver looking
|
|
for a (possibly) dead symbol. */
|
|
|
|
if (p->common_block->head == p && !p->common_next)
|
|
{
|
|
gfc_symtree st, *st0;
|
|
st0 = find_common_symtree (p->ns->common_root,
|
|
p->common_block);
|
|
if (st0)
|
|
{
|
|
st.name = st0->name;
|
|
gfc_delete_bbt (&p->ns->common_root, &st, compare_symtree);
|
|
free (st0);
|
|
}
|
|
}
|
|
|
|
if (p->common_block->head == p)
|
|
p->common_block->head = p->common_next;
|
|
else
|
|
{
|
|
gfc_symbol *cparent, *csym;
|
|
|
|
cparent = p->common_block->head;
|
|
csym = cparent->common_next;
|
|
|
|
while (csym != p)
|
|
{
|
|
cparent = csym;
|
|
csym = csym->common_next;
|
|
}
|
|
|
|
gcc_assert(cparent->common_next == p);
|
|
|
|
cparent->common_next = csym->common_next;
|
|
}
|
|
}
|
|
|
|
/* The derived type is saved in the symtree with the first
|
|
letter capitalized; the all lower-case version to the
|
|
derived type contains its associated generic function. */
|
|
if (p->attr.flavor == FL_DERIVED)
|
|
gfc_delete_symtree (&p->ns->sym_root, gfc_get_string ("%c%s",
|
|
(char) TOUPPER ((unsigned char) p->name[0]),
|
|
&p->name[1]));
|
|
else
|
|
gfc_delete_symtree (&p->ns->sym_root, p->name);
|
|
|
|
gfc_release_symbol (p);
|
|
}
|
|
else
|
|
restore_old_symbol (p);
|
|
}
|
|
|
|
latest_undo_chgset->syms.truncate (0);
|
|
latest_undo_chgset->tbps.truncate (0);
|
|
|
|
if (!single_undo_checkpoint_p ())
|
|
pop_undo_change_set (latest_undo_chgset);
|
|
}
|
|
|
|
|
|
/* Makes sure that there is only one set of changes; in other words we haven't
|
|
forgotten to pair a call to gfc_new_checkpoint with a call to either
|
|
gfc_drop_last_undo_checkpoint or gfc_restore_last_undo_checkpoint. */
|
|
|
|
static void
|
|
enforce_single_undo_checkpoint (void)
|
|
{
|
|
gcc_checking_assert (single_undo_checkpoint_p ());
|
|
}
|
|
|
|
|
|
/* Undoes all the changes made to symbols in the current statement. */
|
|
|
|
void
|
|
gfc_undo_symbols (void)
|
|
{
|
|
enforce_single_undo_checkpoint ();
|
|
gfc_restore_last_undo_checkpoint ();
|
|
}
|
|
|
|
|
|
/* Free sym->old_symbol. sym->old_symbol is mostly a shallow copy of sym; the
|
|
components of old_symbol that might need deallocation are the "allocatables"
|
|
that are restored in gfc_undo_symbols(), with two exceptions: namelist and
|
|
namelist_tail. In case these differ between old_symbol and sym, it's just
|
|
because sym->namelist has gotten a few more items. */
|
|
|
|
static void
|
|
free_old_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->old_symbol == NULL)
|
|
return;
|
|
|
|
if (sym->old_symbol->as != sym->as)
|
|
gfc_free_array_spec (sym->old_symbol->as);
|
|
|
|
if (sym->old_symbol->value != sym->value)
|
|
gfc_free_expr (sym->old_symbol->value);
|
|
|
|
if (sym->old_symbol->formal != sym->formal)
|
|
gfc_free_formal_arglist (sym->old_symbol->formal);
|
|
|
|
free (sym->old_symbol);
|
|
sym->old_symbol = NULL;
|
|
}
|
|
|
|
|
|
/* Makes the changes made in the current statement permanent-- gets
|
|
rid of undo information. */
|
|
|
|
void
|
|
gfc_commit_symbols (void)
|
|
{
|
|
gfc_symbol *p;
|
|
gfc_typebound_proc *tbp;
|
|
unsigned i;
|
|
|
|
enforce_single_undo_checkpoint ();
|
|
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p)
|
|
{
|
|
p->mark = 0;
|
|
p->gfc_new = 0;
|
|
free_old_symbol (p);
|
|
}
|
|
latest_undo_chgset->syms.truncate (0);
|
|
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->tbps, i, tbp)
|
|
tbp->error = 0;
|
|
latest_undo_chgset->tbps.truncate (0);
|
|
}
|
|
|
|
|
|
/* Makes the changes made in one symbol permanent -- gets rid of undo
|
|
information. */
|
|
|
|
void
|
|
gfc_commit_symbol (gfc_symbol *sym)
|
|
{
|
|
gfc_symbol *p;
|
|
unsigned i;
|
|
|
|
enforce_single_undo_checkpoint ();
|
|
|
|
FOR_EACH_VEC_ELT (latest_undo_chgset->syms, i, p)
|
|
if (p == sym)
|
|
{
|
|
latest_undo_chgset->syms.unordered_remove (i);
|
|
break;
|
|
}
|
|
|
|
sym->mark = 0;
|
|
sym->gfc_new = 0;
|
|
|
|
free_old_symbol (sym);
|
|
}
|
|
|
|
|
|
/* Recursively free trees containing type-bound procedures. */
|
|
|
|
static void
|
|
free_tb_tree (gfc_symtree *t)
|
|
{
|
|
if (t == NULL)
|
|
return;
|
|
|
|
free_tb_tree (t->left);
|
|
free_tb_tree (t->right);
|
|
|
|
/* TODO: Free type-bound procedure structs themselves; probably needs some
|
|
sort of ref-counting mechanism. */
|
|
|
|
free (t);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the common
|
|
head structures it points to. */
|
|
|
|
static void
|
|
free_common_tree (gfc_symtree * common_tree)
|
|
{
|
|
if (common_tree == NULL)
|
|
return;
|
|
|
|
free_common_tree (common_tree->left);
|
|
free_common_tree (common_tree->right);
|
|
|
|
free (common_tree);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the common
|
|
head structures it points to. */
|
|
|
|
static void
|
|
free_omp_udr_tree (gfc_symtree * omp_udr_tree)
|
|
{
|
|
if (omp_udr_tree == NULL)
|
|
return;
|
|
|
|
free_omp_udr_tree (omp_udr_tree->left);
|
|
free_omp_udr_tree (omp_udr_tree->right);
|
|
|
|
gfc_free_omp_udr (omp_udr_tree->n.omp_udr);
|
|
free (omp_udr_tree);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the user
|
|
operator nodes that it contains. */
|
|
|
|
static void
|
|
free_uop_tree (gfc_symtree *uop_tree)
|
|
{
|
|
if (uop_tree == NULL)
|
|
return;
|
|
|
|
free_uop_tree (uop_tree->left);
|
|
free_uop_tree (uop_tree->right);
|
|
|
|
gfc_free_interface (uop_tree->n.uop->op);
|
|
free (uop_tree->n.uop);
|
|
free (uop_tree);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the symbols
|
|
that it contains. */
|
|
|
|
static void
|
|
free_sym_tree (gfc_symtree *sym_tree)
|
|
{
|
|
if (sym_tree == NULL)
|
|
return;
|
|
|
|
free_sym_tree (sym_tree->left);
|
|
free_sym_tree (sym_tree->right);
|
|
|
|
gfc_release_symbol (sym_tree->n.sym);
|
|
free (sym_tree);
|
|
}
|
|
|
|
|
|
/* Free the derived type list. */
|
|
|
|
void
|
|
gfc_free_dt_list (void)
|
|
{
|
|
gfc_dt_list *dt, *n;
|
|
|
|
for (dt = gfc_derived_types; dt; dt = n)
|
|
{
|
|
n = dt->next;
|
|
free (dt);
|
|
}
|
|
|
|
gfc_derived_types = NULL;
|
|
}
|
|
|
|
|
|
/* Free the gfc_equiv_info's. */
|
|
|
|
static void
|
|
gfc_free_equiv_infos (gfc_equiv_info *s)
|
|
{
|
|
if (s == NULL)
|
|
return;
|
|
gfc_free_equiv_infos (s->next);
|
|
free (s);
|
|
}
|
|
|
|
|
|
/* Free the gfc_equiv_lists. */
|
|
|
|
static void
|
|
gfc_free_equiv_lists (gfc_equiv_list *l)
|
|
{
|
|
if (l == NULL)
|
|
return;
|
|
gfc_free_equiv_lists (l->next);
|
|
gfc_free_equiv_infos (l->equiv);
|
|
free (l);
|
|
}
|
|
|
|
|
|
/* Free a finalizer procedure list. */
|
|
|
|
void
|
|
gfc_free_finalizer (gfc_finalizer* el)
|
|
{
|
|
if (el)
|
|
{
|
|
gfc_release_symbol (el->proc_sym);
|
|
free (el);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gfc_free_finalizer_list (gfc_finalizer* list)
|
|
{
|
|
while (list)
|
|
{
|
|
gfc_finalizer* current = list;
|
|
list = list->next;
|
|
gfc_free_finalizer (current);
|
|
}
|
|
}
|
|
|
|
|
|
/* Create a new gfc_charlen structure and add it to a namespace.
|
|
If 'old_cl' is given, the newly created charlen will be a copy of it. */
|
|
|
|
gfc_charlen*
|
|
gfc_new_charlen (gfc_namespace *ns, gfc_charlen *old_cl)
|
|
{
|
|
gfc_charlen *cl;
|
|
cl = gfc_get_charlen ();
|
|
|
|
/* Copy old_cl. */
|
|
if (old_cl)
|
|
{
|
|
/* Put into namespace, but don't allow reject_statement
|
|
to free it if old_cl is given. */
|
|
gfc_charlen **prev = &ns->cl_list;
|
|
cl->next = ns->old_cl_list;
|
|
while (*prev != ns->old_cl_list)
|
|
prev = &(*prev)->next;
|
|
*prev = cl;
|
|
ns->old_cl_list = cl;
|
|
cl->length = gfc_copy_expr (old_cl->length);
|
|
cl->length_from_typespec = old_cl->length_from_typespec;
|
|
cl->backend_decl = old_cl->backend_decl;
|
|
cl->passed_length = old_cl->passed_length;
|
|
cl->resolved = old_cl->resolved;
|
|
}
|
|
else
|
|
{
|
|
/* Put into namespace. */
|
|
cl->next = ns->cl_list;
|
|
ns->cl_list = cl;
|
|
}
|
|
|
|
return cl;
|
|
}
|
|
|
|
|
|
/* Free the charlen list from cl to end (end is not freed).
|
|
Free the whole list if end is NULL. */
|
|
|
|
void
|
|
gfc_free_charlen (gfc_charlen *cl, gfc_charlen *end)
|
|
{
|
|
gfc_charlen *cl2;
|
|
|
|
for (; cl != end; cl = cl2)
|
|
{
|
|
gcc_assert (cl);
|
|
|
|
cl2 = cl->next;
|
|
gfc_free_expr (cl->length);
|
|
free (cl);
|
|
}
|
|
}
|
|
|
|
|
|
/* Free entry list structs. */
|
|
|
|
static void
|
|
free_entry_list (gfc_entry_list *el)
|
|
{
|
|
gfc_entry_list *next;
|
|
|
|
if (el == NULL)
|
|
return;
|
|
|
|
next = el->next;
|
|
free (el);
|
|
free_entry_list (next);
|
|
}
|
|
|
|
|
|
/* Free a namespace structure and everything below it. Interface
|
|
lists associated with intrinsic operators are not freed. These are
|
|
taken care of when a specific name is freed. */
|
|
|
|
void
|
|
gfc_free_namespace (gfc_namespace *ns)
|
|
{
|
|
gfc_namespace *p, *q;
|
|
int i;
|
|
|
|
if (ns == NULL)
|
|
return;
|
|
|
|
ns->refs--;
|
|
if (ns->refs > 0)
|
|
return;
|
|
gcc_assert (ns->refs == 0);
|
|
|
|
gfc_free_statements (ns->code);
|
|
|
|
free_sym_tree (ns->sym_root);
|
|
free_uop_tree (ns->uop_root);
|
|
free_common_tree (ns->common_root);
|
|
free_omp_udr_tree (ns->omp_udr_root);
|
|
free_tb_tree (ns->tb_sym_root);
|
|
free_tb_tree (ns->tb_uop_root);
|
|
gfc_free_finalizer_list (ns->finalizers);
|
|
gfc_free_omp_declare_simd_list (ns->omp_declare_simd);
|
|
gfc_free_charlen (ns->cl_list, NULL);
|
|
free_st_labels (ns->st_labels);
|
|
|
|
free_entry_list (ns->entries);
|
|
gfc_free_equiv (ns->equiv);
|
|
gfc_free_equiv_lists (ns->equiv_lists);
|
|
gfc_free_use_stmts (ns->use_stmts);
|
|
|
|
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
|
|
gfc_free_interface (ns->op[i]);
|
|
|
|
gfc_free_data (ns->data);
|
|
p = ns->contained;
|
|
free (ns);
|
|
|
|
/* Recursively free any contained namespaces. */
|
|
while (p != NULL)
|
|
{
|
|
q = p;
|
|
p = p->sibling;
|
|
gfc_free_namespace (q);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
gfc_symbol_init_2 (void)
|
|
{
|
|
|
|
gfc_current_ns = gfc_get_namespace (NULL, 0);
|
|
}
|
|
|
|
|
|
void
|
|
gfc_symbol_done_2 (void)
|
|
{
|
|
gfc_free_namespace (gfc_current_ns);
|
|
gfc_current_ns = NULL;
|
|
gfc_free_dt_list ();
|
|
|
|
enforce_single_undo_checkpoint ();
|
|
free_undo_change_set_data (*latest_undo_chgset);
|
|
}
|
|
|
|
|
|
/* Count how many nodes a symtree has. */
|
|
|
|
static unsigned
|
|
count_st_nodes (const gfc_symtree *st)
|
|
{
|
|
unsigned nodes;
|
|
if (!st)
|
|
return 0;
|
|
|
|
nodes = count_st_nodes (st->left);
|
|
nodes++;
|
|
nodes += count_st_nodes (st->right);
|
|
|
|
return nodes;
|
|
}
|
|
|
|
|
|
/* Convert symtree tree into symtree vector. */
|
|
|
|
static unsigned
|
|
fill_st_vector (gfc_symtree *st, gfc_symtree **st_vec, unsigned node_cntr)
|
|
{
|
|
if (!st)
|
|
return node_cntr;
|
|
|
|
node_cntr = fill_st_vector (st->left, st_vec, node_cntr);
|
|
st_vec[node_cntr++] = st;
|
|
node_cntr = fill_st_vector (st->right, st_vec, node_cntr);
|
|
|
|
return node_cntr;
|
|
}
|
|
|
|
|
|
/* Traverse namespace. As the functions might modify the symtree, we store the
|
|
symtree as a vector and operate on this vector. Note: We assume that
|
|
sym_func or st_func never deletes nodes from the symtree - only adding is
|
|
allowed. Additionally, newly added nodes are not traversed. */
|
|
|
|
static void
|
|
do_traverse_symtree (gfc_symtree *st, void (*st_func) (gfc_symtree *),
|
|
void (*sym_func) (gfc_symbol *))
|
|
{
|
|
gfc_symtree **st_vec;
|
|
unsigned nodes, i, node_cntr;
|
|
|
|
gcc_assert ((st_func && !sym_func) || (!st_func && sym_func));
|
|
nodes = count_st_nodes (st);
|
|
st_vec = XALLOCAVEC (gfc_symtree *, nodes);
|
|
node_cntr = 0;
|
|
fill_st_vector (st, st_vec, node_cntr);
|
|
|
|
if (sym_func)
|
|
{
|
|
/* Clear marks. */
|
|
for (i = 0; i < nodes; i++)
|
|
st_vec[i]->n.sym->mark = 0;
|
|
for (i = 0; i < nodes; i++)
|
|
if (!st_vec[i]->n.sym->mark)
|
|
{
|
|
(*sym_func) (st_vec[i]->n.sym);
|
|
st_vec[i]->n.sym->mark = 1;
|
|
}
|
|
}
|
|
else
|
|
for (i = 0; i < nodes; i++)
|
|
(*st_func) (st_vec[i]);
|
|
}
|
|
|
|
|
|
/* Recursively traverse the symtree nodes. */
|
|
|
|
void
|
|
gfc_traverse_symtree (gfc_symtree *st, void (*st_func) (gfc_symtree *))
|
|
{
|
|
do_traverse_symtree (st, st_func, NULL);
|
|
}
|
|
|
|
|
|
/* Call a given function for all symbols in the namespace. We take
|
|
care that each gfc_symbol node is called exactly once. */
|
|
|
|
void
|
|
gfc_traverse_ns (gfc_namespace *ns, void (*sym_func) (gfc_symbol *))
|
|
{
|
|
do_traverse_symtree (ns->sym_root, NULL, sym_func);
|
|
}
|
|
|
|
|
|
/* Return TRUE when name is the name of an intrinsic type. */
|
|
|
|
bool
|
|
gfc_is_intrinsic_typename (const char *name)
|
|
{
|
|
if (strcmp (name, "integer") == 0
|
|
|| strcmp (name, "real") == 0
|
|
|| strcmp (name, "character") == 0
|
|
|| strcmp (name, "logical") == 0
|
|
|| strcmp (name, "complex") == 0
|
|
|| strcmp (name, "doubleprecision") == 0
|
|
|| strcmp (name, "doublecomplex") == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return TRUE if the symbol is an automatic variable. */
|
|
|
|
static bool
|
|
gfc_is_var_automatic (gfc_symbol *sym)
|
|
{
|
|
/* Pointer and allocatable variables are never automatic. */
|
|
if (sym->attr.pointer || sym->attr.allocatable)
|
|
return false;
|
|
/* Check for arrays with non-constant size. */
|
|
if (sym->attr.dimension && sym->as
|
|
&& !gfc_is_compile_time_shape (sym->as))
|
|
return true;
|
|
/* Check for non-constant length character variables. */
|
|
if (sym->ts.type == BT_CHARACTER
|
|
&& sym->ts.u.cl
|
|
&& !gfc_is_constant_expr (sym->ts.u.cl->length))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Given a symbol, mark it as SAVEd if it is allowed. */
|
|
|
|
static void
|
|
save_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->attr.use_assoc)
|
|
return;
|
|
|
|
if (sym->attr.in_common
|
|
|| sym->attr.dummy
|
|
|| sym->attr.result
|
|
|| sym->attr.flavor != FL_VARIABLE)
|
|
return;
|
|
/* Automatic objects are not saved. */
|
|
if (gfc_is_var_automatic (sym))
|
|
return;
|
|
gfc_add_save (&sym->attr, SAVE_EXPLICIT, sym->name, &sym->declared_at);
|
|
}
|
|
|
|
|
|
/* Mark those symbols which can be SAVEd as such. */
|
|
|
|
void
|
|
gfc_save_all (gfc_namespace *ns)
|
|
{
|
|
gfc_traverse_ns (ns, save_symbol);
|
|
}
|
|
|
|
|
|
/* Make sure that no changes to symbols are pending. */
|
|
|
|
void
|
|
gfc_enforce_clean_symbol_state(void)
|
|
{
|
|
enforce_single_undo_checkpoint ();
|
|
gcc_assert (latest_undo_chgset->syms.is_empty ());
|
|
}
|
|
|
|
|
|
/************** Global symbol handling ************/
|
|
|
|
|
|
/* Search a tree for the global symbol. */
|
|
|
|
gfc_gsymbol *
|
|
gfc_find_gsymbol (gfc_gsymbol *symbol, const char *name)
|
|
{
|
|
int c;
|
|
|
|
if (symbol == NULL)
|
|
return NULL;
|
|
|
|
while (symbol)
|
|
{
|
|
c = strcmp (name, symbol->name);
|
|
if (!c)
|
|
return symbol;
|
|
|
|
symbol = (c < 0) ? symbol->left : symbol->right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Compare two global symbols. Used for managing the BB tree. */
|
|
|
|
static int
|
|
gsym_compare (void *_s1, void *_s2)
|
|
{
|
|
gfc_gsymbol *s1, *s2;
|
|
|
|
s1 = (gfc_gsymbol *) _s1;
|
|
s2 = (gfc_gsymbol *) _s2;
|
|
return strcmp (s1->name, s2->name);
|
|
}
|
|
|
|
|
|
/* Get a global symbol, creating it if it doesn't exist. */
|
|
|
|
gfc_gsymbol *
|
|
gfc_get_gsymbol (const char *name)
|
|
{
|
|
gfc_gsymbol *s;
|
|
|
|
s = gfc_find_gsymbol (gfc_gsym_root, name);
|
|
if (s != NULL)
|
|
return s;
|
|
|
|
s = XCNEW (gfc_gsymbol);
|
|
s->type = GSYM_UNKNOWN;
|
|
s->name = gfc_get_string (name);
|
|
|
|
gfc_insert_bbt (&gfc_gsym_root, s, gsym_compare);
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
static gfc_symbol *
|
|
get_iso_c_binding_dt (int sym_id)
|
|
{
|
|
gfc_dt_list *dt_list;
|
|
|
|
dt_list = gfc_derived_types;
|
|
|
|
/* Loop through the derived types in the name list, searching for
|
|
the desired symbol from iso_c_binding. Search the parent namespaces
|
|
if necessary and requested to (parent_flag). */
|
|
while (dt_list != NULL)
|
|
{
|
|
if (dt_list->derived->from_intmod != INTMOD_NONE
|
|
&& dt_list->derived->intmod_sym_id == sym_id)
|
|
return dt_list->derived;
|
|
|
|
dt_list = dt_list->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Verifies that the given derived type symbol, derived_sym, is interoperable
|
|
with C. This is necessary for any derived type that is BIND(C) and for
|
|
derived types that are parameters to functions that are BIND(C). All
|
|
fields of the derived type are required to be interoperable, and are tested
|
|
for such. If an error occurs, the errors are reported here, allowing for
|
|
multiple errors to be handled for a single derived type. */
|
|
|
|
bool
|
|
verify_bind_c_derived_type (gfc_symbol *derived_sym)
|
|
{
|
|
gfc_component *curr_comp = NULL;
|
|
bool is_c_interop = false;
|
|
bool retval = true;
|
|
|
|
if (derived_sym == NULL)
|
|
gfc_internal_error ("verify_bind_c_derived_type(): Given symbol is "
|
|
"unexpectedly NULL");
|
|
|
|
/* If we've already looked at this derived symbol, do not look at it again
|
|
so we don't repeat warnings/errors. */
|
|
if (derived_sym->ts.is_c_interop)
|
|
return true;
|
|
|
|
/* The derived type must have the BIND attribute to be interoperable
|
|
J3/04-007, Section 15.2.3. */
|
|
if (derived_sym->attr.is_bind_c != 1)
|
|
{
|
|
derived_sym->ts.is_c_interop = 0;
|
|
gfc_error_now ("Derived type '%s' declared at %L must have the BIND "
|
|
"attribute to be C interoperable", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = false;
|
|
}
|
|
|
|
curr_comp = derived_sym->components;
|
|
|
|
/* Fortran 2003 allows an empty derived type. C99 appears to disallow an
|
|
empty struct. Section 15.2 in Fortran 2003 states: "The following
|
|
subclauses define the conditions under which a Fortran entity is
|
|
interoperable. If a Fortran entity is interoperable, an equivalent
|
|
entity may be defined by means of C and the Fortran entity is said
|
|
to be interoperable with the C entity. There does not have to be such
|
|
an interoperating C entity."
|
|
*/
|
|
if (curr_comp == NULL)
|
|
{
|
|
gfc_warning ("Derived type '%s' with BIND(C) attribute at %L is empty, "
|
|
"and may be inaccessible by the C companion processor",
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
derived_sym->ts.is_c_interop = 1;
|
|
derived_sym->attr.is_bind_c = 1;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Initialize the derived type as being C interoperable.
|
|
If we find an error in the components, this will be set false. */
|
|
derived_sym->ts.is_c_interop = 1;
|
|
|
|
/* Loop through the list of components to verify that the kind of
|
|
each is a C interoperable type. */
|
|
do
|
|
{
|
|
/* The components cannot be pointers (fortran sense).
|
|
J3/04-007, Section 15.2.3, C1505. */
|
|
if (curr_comp->attr.pointer != 0)
|
|
{
|
|
gfc_error ("Component '%s' at %L cannot have the "
|
|
"POINTER attribute because it is a member "
|
|
"of the BIND(C) derived type '%s' at %L",
|
|
curr_comp->name, &(curr_comp->loc),
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
retval = false;
|
|
}
|
|
|
|
if (curr_comp->attr.proc_pointer != 0)
|
|
{
|
|
gfc_error ("Procedure pointer component '%s' at %L cannot be a member"
|
|
" of the BIND(C) derived type '%s' at %L", curr_comp->name,
|
|
&curr_comp->loc, derived_sym->name,
|
|
&derived_sym->declared_at);
|
|
retval = false;
|
|
}
|
|
|
|
/* The components cannot be allocatable.
|
|
J3/04-007, Section 15.2.3, C1505. */
|
|
if (curr_comp->attr.allocatable != 0)
|
|
{
|
|
gfc_error ("Component '%s' at %L cannot have the "
|
|
"ALLOCATABLE attribute because it is a member "
|
|
"of the BIND(C) derived type '%s' at %L",
|
|
curr_comp->name, &(curr_comp->loc),
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
retval = false;
|
|
}
|
|
|
|
/* BIND(C) derived types must have interoperable components. */
|
|
if (curr_comp->ts.type == BT_DERIVED
|
|
&& curr_comp->ts.u.derived->ts.is_iso_c != 1
|
|
&& curr_comp->ts.u.derived != derived_sym)
|
|
{
|
|
/* This should be allowed; the draft says a derived-type can not
|
|
have type parameters if it is has the BIND attribute. Type
|
|
parameters seem to be for making parameterized derived types.
|
|
There's no need to verify the type if it is c_ptr/c_funptr. */
|
|
retval = verify_bind_c_derived_type (curr_comp->ts.u.derived);
|
|
}
|
|
else
|
|
{
|
|
/* Grab the typespec for the given component and test the kind. */
|
|
is_c_interop = gfc_verify_c_interop (&(curr_comp->ts));
|
|
|
|
if (!is_c_interop)
|
|
{
|
|
/* Report warning and continue since not fatal. The
|
|
draft does specify a constraint that requires all fields
|
|
to interoperate, but if the user says real(4), etc., it
|
|
may interoperate with *something* in C, but the compiler
|
|
most likely won't know exactly what. Further, it may not
|
|
interoperate with the same data type(s) in C if the user
|
|
recompiles with different flags (e.g., -m32 and -m64 on
|
|
x86_64 and using integer(4) to claim interop with a
|
|
C_LONG). */
|
|
if (derived_sym->attr.is_bind_c == 1
|
|
&& gfc_option.warn_c_binding_type)
|
|
/* If the derived type is bind(c), all fields must be
|
|
interop. */
|
|
gfc_warning ("Component '%s' in derived type '%s' at %L "
|
|
"may not be C interoperable, even though "
|
|
"derived type '%s' is BIND(C)",
|
|
curr_comp->name, derived_sym->name,
|
|
&(curr_comp->loc), derived_sym->name);
|
|
else if (gfc_option.warn_c_binding_type)
|
|
/* If derived type is param to bind(c) routine, or to one
|
|
of the iso_c_binding procs, it must be interoperable, so
|
|
all fields must interop too. */
|
|
gfc_warning ("Component '%s' in derived type '%s' at %L "
|
|
"may not be C interoperable",
|
|
curr_comp->name, derived_sym->name,
|
|
&(curr_comp->loc));
|
|
}
|
|
}
|
|
|
|
curr_comp = curr_comp->next;
|
|
} while (curr_comp != NULL);
|
|
|
|
|
|
/* Make sure we don't have conflicts with the attributes. */
|
|
if (derived_sym->attr.access == ACCESS_PRIVATE)
|
|
{
|
|
gfc_error ("Derived type '%s' at %L cannot be declared with both "
|
|
"PRIVATE and BIND(C) attributes", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = false;
|
|
}
|
|
|
|
if (derived_sym->attr.sequence != 0)
|
|
{
|
|
gfc_error ("Derived type '%s' at %L cannot have the SEQUENCE "
|
|
"attribute because it is BIND(C)", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = false;
|
|
}
|
|
|
|
/* Mark the derived type as not being C interoperable if we found an
|
|
error. If there were only warnings, proceed with the assumption
|
|
it's interoperable. */
|
|
if (!retval)
|
|
derived_sym->ts.is_c_interop = 0;
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Generate symbols for the named constants c_null_ptr and c_null_funptr. */
|
|
|
|
static bool
|
|
gen_special_c_interop_ptr (gfc_symbol *tmp_sym, gfc_symtree *dt_symtree)
|
|
{
|
|
gfc_constructor *c;
|
|
|
|
gcc_assert (tmp_sym && dt_symtree && dt_symtree->n.sym);
|
|
dt_symtree->n.sym->attr.referenced = 1;
|
|
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
tmp_sym->attr.is_bind_c = 1;
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
tmp_sym->ts.type = BT_DERIVED;
|
|
tmp_sym->ts.f90_type = BT_VOID;
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
tmp_sym->ts.u.derived = dt_symtree->n.sym;
|
|
|
|
/* Set the c_address field of c_null_ptr and c_null_funptr to
|
|
the value of NULL. */
|
|
tmp_sym->value = gfc_get_expr ();
|
|
tmp_sym->value->expr_type = EXPR_STRUCTURE;
|
|
tmp_sym->value->ts.type = BT_DERIVED;
|
|
tmp_sym->value->ts.f90_type = BT_VOID;
|
|
tmp_sym->value->ts.u.derived = tmp_sym->ts.u.derived;
|
|
gfc_constructor_append_expr (&tmp_sym->value->value.constructor, NULL, NULL);
|
|
c = gfc_constructor_first (tmp_sym->value->value.constructor);
|
|
c->expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
c->expr->ts.is_iso_c = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add a formal argument, gfc_formal_arglist, to the
|
|
end of the given list of arguments. Set the reference to the
|
|
provided symbol, param_sym, in the argument. */
|
|
|
|
static void
|
|
add_formal_arg (gfc_formal_arglist **head,
|
|
gfc_formal_arglist **tail,
|
|
gfc_formal_arglist *formal_arg,
|
|
gfc_symbol *param_sym)
|
|
{
|
|
/* Put in list, either as first arg or at the tail (curr arg). */
|
|
if (*head == NULL)
|
|
*head = *tail = formal_arg;
|
|
else
|
|
{
|
|
(*tail)->next = formal_arg;
|
|
(*tail) = formal_arg;
|
|
}
|
|
|
|
(*tail)->sym = param_sym;
|
|
(*tail)->next = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Add a procedure interface to the given symbol (i.e., store a
|
|
reference to the list of formal arguments). */
|
|
|
|
static void
|
|
add_proc_interface (gfc_symbol *sym, ifsrc source, gfc_formal_arglist *formal)
|
|
{
|
|
|
|
sym->formal = formal;
|
|
sym->attr.if_source = source;
|
|
}
|
|
|
|
|
|
/* Copy the formal args from an existing symbol, src, into a new
|
|
symbol, dest. New formal args are created, and the description of
|
|
each arg is set according to the existing ones. This function is
|
|
used when creating procedure declaration variables from a procedure
|
|
declaration statement (see match_proc_decl()) to create the formal
|
|
args based on the args of a given named interface.
|
|
|
|
When an actual argument list is provided, skip the absent arguments.
|
|
To be used together with gfc_se->ignore_optional. */
|
|
|
|
void
|
|
gfc_copy_formal_args_intr (gfc_symbol *dest, gfc_intrinsic_sym *src,
|
|
gfc_actual_arglist *actual)
|
|
{
|
|
gfc_formal_arglist *head = NULL;
|
|
gfc_formal_arglist *tail = NULL;
|
|
gfc_formal_arglist *formal_arg = NULL;
|
|
gfc_intrinsic_arg *curr_arg = NULL;
|
|
gfc_formal_arglist *formal_prev = NULL;
|
|
gfc_actual_arglist *act_arg = actual;
|
|
/* Save current namespace so we can change it for formal args. */
|
|
gfc_namespace *parent_ns = gfc_current_ns;
|
|
|
|
/* Create a new namespace, which will be the formal ns (namespace
|
|
of the formal args). */
|
|
gfc_current_ns = gfc_get_namespace (parent_ns, 0);
|
|
gfc_current_ns->proc_name = dest;
|
|
|
|
for (curr_arg = src->formal; curr_arg; curr_arg = curr_arg->next)
|
|
{
|
|
/* Skip absent arguments. */
|
|
if (actual)
|
|
{
|
|
gcc_assert (act_arg != NULL);
|
|
if (act_arg->expr == NULL)
|
|
{
|
|
act_arg = act_arg->next;
|
|
continue;
|
|
}
|
|
act_arg = act_arg->next;
|
|
}
|
|
formal_arg = gfc_get_formal_arglist ();
|
|
gfc_get_symbol (curr_arg->name, gfc_current_ns, &(formal_arg->sym));
|
|
|
|
/* May need to copy more info for the symbol. */
|
|
formal_arg->sym->ts = curr_arg->ts;
|
|
formal_arg->sym->attr.optional = curr_arg->optional;
|
|
formal_arg->sym->attr.value = curr_arg->value;
|
|
formal_arg->sym->attr.intent = curr_arg->intent;
|
|
formal_arg->sym->attr.flavor = FL_VARIABLE;
|
|
formal_arg->sym->attr.dummy = 1;
|
|
|
|
if (formal_arg->sym->ts.type == BT_CHARACTER)
|
|
formal_arg->sym->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
|
|
|
|
/* If this isn't the first arg, set up the next ptr. For the
|
|
last arg built, the formal_arg->next will never get set to
|
|
anything other than NULL. */
|
|
if (formal_prev != NULL)
|
|
formal_prev->next = formal_arg;
|
|
else
|
|
formal_arg->next = NULL;
|
|
|
|
formal_prev = formal_arg;
|
|
|
|
/* Add arg to list of formal args. */
|
|
add_formal_arg (&head, &tail, formal_arg, formal_arg->sym);
|
|
|
|
/* Validate changes. */
|
|
gfc_commit_symbol (formal_arg->sym);
|
|
}
|
|
|
|
/* Add the interface to the symbol. */
|
|
add_proc_interface (dest, IFSRC_DECL, head);
|
|
|
|
/* Store the formal namespace information. */
|
|
if (dest->formal != NULL)
|
|
/* The current ns should be that for the dest proc. */
|
|
dest->formal_ns = gfc_current_ns;
|
|
/* Restore the current namespace to what it was on entry. */
|
|
gfc_current_ns = parent_ns;
|
|
}
|
|
|
|
|
|
static int
|
|
std_for_isocbinding_symbol (int id)
|
|
{
|
|
switch (id)
|
|
{
|
|
#define NAMED_INTCST(a,b,c,d) \
|
|
case a:\
|
|
return d;
|
|
#include "iso-c-binding.def"
|
|
#undef NAMED_INTCST
|
|
|
|
#define NAMED_FUNCTION(a,b,c,d) \
|
|
case a:\
|
|
return d;
|
|
#define NAMED_SUBROUTINE(a,b,c,d) \
|
|
case a:\
|
|
return d;
|
|
#include "iso-c-binding.def"
|
|
#undef NAMED_FUNCTION
|
|
#undef NAMED_SUBROUTINE
|
|
|
|
default:
|
|
return GFC_STD_F2003;
|
|
}
|
|
}
|
|
|
|
/* Generate the given set of C interoperable kind objects, or all
|
|
interoperable kinds. This function will only be given kind objects
|
|
for valid iso_c_binding defined types because this is verified when
|
|
the 'use' statement is parsed. If the user gives an 'only' clause,
|
|
the specific kinds are looked up; if they don't exist, an error is
|
|
reported. If the user does not give an 'only' clause, all
|
|
iso_c_binding symbols are generated. If a list of specific kinds
|
|
is given, it must have a NULL in the first empty spot to mark the
|
|
end of the list. For C_null_(fun)ptr, dt_symtree has to be set and
|
|
point to the symtree for c_(fun)ptr. */
|
|
|
|
gfc_symtree *
|
|
generate_isocbinding_symbol (const char *mod_name, iso_c_binding_symbol s,
|
|
const char *local_name, gfc_symtree *dt_symtree,
|
|
bool hidden)
|
|
{
|
|
const char *const name = (local_name && local_name[0])
|
|
? local_name : c_interop_kinds_table[s].name;
|
|
gfc_symtree *tmp_symtree;
|
|
gfc_symbol *tmp_sym = NULL;
|
|
int index;
|
|
|
|
if (gfc_notification_std (std_for_isocbinding_symbol (s)) == ERROR)
|
|
return NULL;
|
|
|
|
tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
|
|
if (hidden
|
|
&& (!tmp_symtree || !tmp_symtree->n.sym
|
|
|| tmp_symtree->n.sym->from_intmod != INTMOD_ISO_C_BINDING
|
|
|| tmp_symtree->n.sym->intmod_sym_id != s))
|
|
tmp_symtree = NULL;
|
|
|
|
/* Already exists in this scope so don't re-add it. */
|
|
if (tmp_symtree != NULL && (tmp_sym = tmp_symtree->n.sym) != NULL
|
|
&& (!tmp_sym->attr.generic
|
|
|| (tmp_sym = gfc_find_dt_in_generic (tmp_sym)) != NULL)
|
|
&& tmp_sym->from_intmod == INTMOD_ISO_C_BINDING)
|
|
{
|
|
if (tmp_sym->attr.flavor == FL_DERIVED
|
|
&& !get_iso_c_binding_dt (tmp_sym->intmod_sym_id))
|
|
{
|
|
gfc_dt_list *dt_list;
|
|
dt_list = gfc_get_dt_list ();
|
|
dt_list->derived = tmp_sym;
|
|
dt_list->next = gfc_derived_types;
|
|
gfc_derived_types = dt_list;
|
|
}
|
|
|
|
return tmp_symtree;
|
|
}
|
|
|
|
/* Create the sym tree in the current ns. */
|
|
if (hidden)
|
|
{
|
|
tmp_symtree = gfc_get_unique_symtree (gfc_current_ns);
|
|
tmp_sym = gfc_new_symbol (name, gfc_current_ns);
|
|
|
|
/* Add to the list of tentative symbols. */
|
|
latest_undo_chgset->syms.safe_push (tmp_sym);
|
|
tmp_sym->old_symbol = NULL;
|
|
tmp_sym->mark = 1;
|
|
tmp_sym->gfc_new = 1;
|
|
|
|
tmp_symtree->n.sym = tmp_sym;
|
|
tmp_sym->refs++;
|
|
}
|
|
else
|
|
{
|
|
gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
|
|
gcc_assert (tmp_symtree);
|
|
tmp_sym = tmp_symtree->n.sym;
|
|
}
|
|
|
|
/* Say what module this symbol belongs to. */
|
|
tmp_sym->module = gfc_get_string (mod_name);
|
|
tmp_sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
tmp_sym->intmod_sym_id = s;
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
tmp_sym->attr.use_assoc = 1;
|
|
|
|
gcc_assert (dt_symtree == NULL || s == ISOCBINDING_NULL_FUNPTR
|
|
|| s == ISOCBINDING_NULL_PTR);
|
|
|
|
switch (s)
|
|
{
|
|
|
|
#define NAMED_INTCST(a,b,c,d) case a :
|
|
#define NAMED_REALCST(a,b,c,d) case a :
|
|
#define NAMED_CMPXCST(a,b,c,d) case a :
|
|
#define NAMED_LOGCST(a,b,c) case a :
|
|
#define NAMED_CHARKNDCST(a,b,c) case a :
|
|
#include "iso-c-binding.def"
|
|
|
|
tmp_sym->value = gfc_get_int_expr (gfc_default_integer_kind, NULL,
|
|
c_interop_kinds_table[s].value);
|
|
|
|
/* Initialize an integer constant expression node. */
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
tmp_sym->ts.type = BT_INTEGER;
|
|
tmp_sym->ts.kind = gfc_default_integer_kind;
|
|
|
|
/* Mark this type as a C interoperable one. */
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
tmp_sym->value->ts.is_c_interop = 1;
|
|
tmp_sym->value->ts.is_iso_c = 1;
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
|
|
/* Tell what f90 type this c interop kind is valid. */
|
|
tmp_sym->ts.f90_type = c_interop_kinds_table[s].f90_type;
|
|
|
|
break;
|
|
|
|
|
|
#define NAMED_CHARCST(a,b,c) case a :
|
|
#include "iso-c-binding.def"
|
|
|
|
/* Initialize an integer constant expression node for the
|
|
length of the character. */
|
|
tmp_sym->value = gfc_get_character_expr (gfc_default_character_kind,
|
|
&gfc_current_locus, NULL, 1);
|
|
tmp_sym->value->ts.is_c_interop = 1;
|
|
tmp_sym->value->ts.is_iso_c = 1;
|
|
tmp_sym->value->value.character.length = 1;
|
|
tmp_sym->value->value.character.string[0]
|
|
= (gfc_char_t) c_interop_kinds_table[s].value;
|
|
tmp_sym->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
|
|
tmp_sym->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, 1);
|
|
|
|
/* May not need this in both attr and ts, but do need in
|
|
attr for writing module file. */
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
tmp_sym->ts.type = BT_CHARACTER;
|
|
|
|
/* Need to set it to the C_CHAR kind. */
|
|
tmp_sym->ts.kind = gfc_default_character_kind;
|
|
|
|
/* Mark this type as a C interoperable one. */
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
|
|
/* Tell what f90 type this c interop kind is valid. */
|
|
tmp_sym->ts.f90_type = BT_CHARACTER;
|
|
|
|
break;
|
|
|
|
case ISOCBINDING_PTR:
|
|
case ISOCBINDING_FUNPTR:
|
|
{
|
|
gfc_symbol *dt_sym;
|
|
gfc_dt_list **dt_list_ptr = NULL;
|
|
gfc_component *tmp_comp = NULL;
|
|
|
|
/* Generate real derived type. */
|
|
if (hidden)
|
|
dt_sym = tmp_sym;
|
|
else
|
|
{
|
|
const char *hidden_name;
|
|
gfc_interface *intr, *head;
|
|
|
|
hidden_name = gfc_get_string ("%c%s",
|
|
(char) TOUPPER ((unsigned char)
|
|
tmp_sym->name[0]),
|
|
&tmp_sym->name[1]);
|
|
tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
|
|
hidden_name);
|
|
gcc_assert (tmp_symtree == NULL);
|
|
gfc_get_sym_tree (hidden_name, gfc_current_ns, &tmp_symtree, false);
|
|
dt_sym = tmp_symtree->n.sym;
|
|
dt_sym->name = gfc_get_string (s == ISOCBINDING_PTR
|
|
? "c_ptr" : "c_funptr");
|
|
|
|
/* Generate an artificial generic function. */
|
|
head = tmp_sym->generic;
|
|
intr = gfc_get_interface ();
|
|
intr->sym = dt_sym;
|
|
intr->where = gfc_current_locus;
|
|
intr->next = head;
|
|
tmp_sym->generic = intr;
|
|
|
|
if (!tmp_sym->attr.generic
|
|
&& !gfc_add_generic (&tmp_sym->attr, tmp_sym->name, NULL))
|
|
return NULL;
|
|
|
|
if (!tmp_sym->attr.function
|
|
&& !gfc_add_function (&tmp_sym->attr, tmp_sym->name, NULL))
|
|
return NULL;
|
|
}
|
|
|
|
/* Say what module this symbol belongs to. */
|
|
dt_sym->module = gfc_get_string (mod_name);
|
|
dt_sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
dt_sym->intmod_sym_id = s;
|
|
dt_sym->attr.use_assoc = 1;
|
|
|
|
/* Initialize an integer constant expression node. */
|
|
dt_sym->attr.flavor = FL_DERIVED;
|
|
dt_sym->ts.is_c_interop = 1;
|
|
dt_sym->attr.is_c_interop = 1;
|
|
dt_sym->attr.private_comp = 1;
|
|
dt_sym->component_access = ACCESS_PRIVATE;
|
|
dt_sym->ts.is_iso_c = 1;
|
|
dt_sym->ts.type = BT_DERIVED;
|
|
dt_sym->ts.f90_type = BT_VOID;
|
|
|
|
/* A derived type must have the bind attribute to be
|
|
interoperable (J3/04-007, Section 15.2.3), even though
|
|
the binding label is not used. */
|
|
dt_sym->attr.is_bind_c = 1;
|
|
|
|
dt_sym->attr.referenced = 1;
|
|
dt_sym->ts.u.derived = dt_sym;
|
|
|
|
/* Add the symbol created for the derived type to the current ns. */
|
|
dt_list_ptr = &(gfc_derived_types);
|
|
while (*dt_list_ptr != NULL && (*dt_list_ptr)->next != NULL)
|
|
dt_list_ptr = &((*dt_list_ptr)->next);
|
|
|
|
/* There is already at least one derived type in the list, so append
|
|
the one we're currently building for c_ptr or c_funptr. */
|
|
if (*dt_list_ptr != NULL)
|
|
dt_list_ptr = &((*dt_list_ptr)->next);
|
|
(*dt_list_ptr) = gfc_get_dt_list ();
|
|
(*dt_list_ptr)->derived = dt_sym;
|
|
(*dt_list_ptr)->next = NULL;
|
|
|
|
gfc_add_component (dt_sym, "c_address", &tmp_comp);
|
|
if (tmp_comp == NULL)
|
|
gcc_unreachable ();
|
|
|
|
tmp_comp->ts.type = BT_INTEGER;
|
|
|
|
/* Set this because the module will need to read/write this field. */
|
|
tmp_comp->ts.f90_type = BT_INTEGER;
|
|
|
|
/* The kinds for c_ptr and c_funptr are the same. */
|
|
index = get_c_kind ("c_ptr", c_interop_kinds_table);
|
|
tmp_comp->ts.kind = c_interop_kinds_table[index].value;
|
|
tmp_comp->attr.access = ACCESS_PRIVATE;
|
|
|
|
/* Mark the component as C interoperable. */
|
|
tmp_comp->ts.is_c_interop = 1;
|
|
}
|
|
|
|
break;
|
|
|
|
case ISOCBINDING_NULL_PTR:
|
|
case ISOCBINDING_NULL_FUNPTR:
|
|
gen_special_c_interop_ptr (tmp_sym, dt_symtree);
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
gfc_commit_symbol (tmp_sym);
|
|
return tmp_symtree;
|
|
}
|
|
|
|
|
|
/* Check that a symbol is already typed. If strict is not set, an untyped
|
|
symbol is acceptable for non-standard-conforming mode. */
|
|
|
|
bool
|
|
gfc_check_symbol_typed (gfc_symbol* sym, gfc_namespace* ns,
|
|
bool strict, locus where)
|
|
{
|
|
gcc_assert (sym);
|
|
|
|
if (gfc_matching_prefix)
|
|
return true;
|
|
|
|
/* Check for the type and try to give it an implicit one. */
|
|
if (sym->ts.type == BT_UNKNOWN
|
|
&& !gfc_set_default_type (sym, 0, ns))
|
|
{
|
|
if (strict)
|
|
{
|
|
gfc_error ("Symbol '%s' is used before it is typed at %L",
|
|
sym->name, &where);
|
|
return false;
|
|
}
|
|
|
|
if (!gfc_notify_std (GFC_STD_GNU, "Symbol '%s' is used before"
|
|
" it is typed at %L", sym->name, &where))
|
|
return false;
|
|
}
|
|
|
|
/* Everything is ok. */
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Construct a typebound-procedure structure. Those are stored in a tentative
|
|
list and marked `error' until symbols are committed. */
|
|
|
|
gfc_typebound_proc*
|
|
gfc_get_typebound_proc (gfc_typebound_proc *tb0)
|
|
{
|
|
gfc_typebound_proc *result;
|
|
|
|
result = XCNEW (gfc_typebound_proc);
|
|
if (tb0)
|
|
*result = *tb0;
|
|
result->error = 1;
|
|
|
|
latest_undo_chgset->tbps.safe_push (result);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Get the super-type of a given derived type. */
|
|
|
|
gfc_symbol*
|
|
gfc_get_derived_super_type (gfc_symbol* derived)
|
|
{
|
|
gcc_assert (derived);
|
|
|
|
if (derived->attr.generic)
|
|
derived = gfc_find_dt_in_generic (derived);
|
|
|
|
if (!derived->attr.extension)
|
|
return NULL;
|
|
|
|
gcc_assert (derived->components);
|
|
gcc_assert (derived->components->ts.type == BT_DERIVED);
|
|
gcc_assert (derived->components->ts.u.derived);
|
|
|
|
if (derived->components->ts.u.derived->attr.generic)
|
|
return gfc_find_dt_in_generic (derived->components->ts.u.derived);
|
|
|
|
return derived->components->ts.u.derived;
|
|
}
|
|
|
|
|
|
/* Get the ultimate super-type of a given derived type. */
|
|
|
|
gfc_symbol*
|
|
gfc_get_ultimate_derived_super_type (gfc_symbol* derived)
|
|
{
|
|
if (!derived->attr.extension)
|
|
return NULL;
|
|
|
|
derived = gfc_get_derived_super_type (derived);
|
|
|
|
if (derived->attr.extension)
|
|
return gfc_get_ultimate_derived_super_type (derived);
|
|
else
|
|
return derived;
|
|
}
|
|
|
|
|
|
/* Check if a derived type t2 is an extension of (or equal to) a type t1. */
|
|
|
|
bool
|
|
gfc_type_is_extension_of (gfc_symbol *t1, gfc_symbol *t2)
|
|
{
|
|
while (!gfc_compare_derived_types (t1, t2) && t2->attr.extension)
|
|
t2 = gfc_get_derived_super_type (t2);
|
|
return gfc_compare_derived_types (t1, t2);
|
|
}
|
|
|
|
|
|
/* Check if two typespecs are type compatible (F03:5.1.1.2):
|
|
If ts1 is nonpolymorphic, ts2 must be the same type.
|
|
If ts1 is polymorphic (CLASS), ts2 must be an extension of ts1. */
|
|
|
|
bool
|
|
gfc_type_compatible (gfc_typespec *ts1, gfc_typespec *ts2)
|
|
{
|
|
bool is_class1 = (ts1->type == BT_CLASS);
|
|
bool is_class2 = (ts2->type == BT_CLASS);
|
|
bool is_derived1 = (ts1->type == BT_DERIVED);
|
|
bool is_derived2 = (ts2->type == BT_DERIVED);
|
|
|
|
if (is_class1
|
|
&& ts1->u.derived->components
|
|
&& ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
|
|
return 1;
|
|
|
|
if (!is_derived1 && !is_derived2 && !is_class1 && !is_class2)
|
|
return (ts1->type == ts2->type);
|
|
|
|
if (is_derived1 && is_derived2)
|
|
return gfc_compare_derived_types (ts1->u.derived, ts2->u.derived);
|
|
|
|
if (is_derived1 && is_class2)
|
|
return gfc_compare_derived_types (ts1->u.derived,
|
|
ts2->u.derived->components->ts.u.derived);
|
|
if (is_class1 && is_derived2)
|
|
return gfc_type_is_extension_of (ts1->u.derived->components->ts.u.derived,
|
|
ts2->u.derived);
|
|
else if (is_class1 && is_class2)
|
|
return gfc_type_is_extension_of (ts1->u.derived->components->ts.u.derived,
|
|
ts2->u.derived->components->ts.u.derived);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Find the parent-namespace of the current function. If we're inside
|
|
BLOCK constructs, it may not be the current one. */
|
|
|
|
gfc_namespace*
|
|
gfc_find_proc_namespace (gfc_namespace* ns)
|
|
{
|
|
while (ns->construct_entities)
|
|
{
|
|
ns = ns->parent;
|
|
gcc_assert (ns);
|
|
}
|
|
|
|
return ns;
|
|
}
|
|
|
|
|
|
/* Check if an associate-variable should be translated as an `implicit' pointer
|
|
internally (if it is associated to a variable and not an array with
|
|
descriptor). */
|
|
|
|
bool
|
|
gfc_is_associate_pointer (gfc_symbol* sym)
|
|
{
|
|
if (!sym->assoc)
|
|
return false;
|
|
|
|
if (sym->ts.type == BT_CLASS)
|
|
return true;
|
|
|
|
if (!sym->assoc->variable)
|
|
return false;
|
|
|
|
if (sym->attr.dimension && sym->as->type != AS_EXPLICIT)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
gfc_symbol *
|
|
gfc_find_dt_in_generic (gfc_symbol *sym)
|
|
{
|
|
gfc_interface *intr = NULL;
|
|
|
|
if (!sym || sym->attr.flavor == FL_DERIVED)
|
|
return sym;
|
|
|
|
if (sym->attr.generic)
|
|
for (intr = sym->generic; intr; intr = intr->next)
|
|
if (intr->sym->attr.flavor == FL_DERIVED)
|
|
break;
|
|
return intr ? intr->sym : NULL;
|
|
}
|
|
|
|
|
|
/* Get the dummy arguments from a procedure symbol. If it has been declared
|
|
via a PROCEDURE statement with a named interface, ts.interface will be set
|
|
and the arguments need to be taken from there. */
|
|
|
|
gfc_formal_arglist *
|
|
gfc_sym_get_dummy_args (gfc_symbol *sym)
|
|
{
|
|
gfc_formal_arglist *dummies;
|
|
|
|
dummies = sym->formal;
|
|
if (dummies == NULL && sym->ts.interface != NULL)
|
|
dummies = sym->ts.interface->formal;
|
|
|
|
return dummies;
|
|
}
|