8sa1-gcc/gcc/config/pa/milli32.S
Alan Modra 48bd775831 mill32.S: New file.
* config/pa/mill32.S: New file.
	* config/pa/mill64.S: New file.
	* config/pa/t-linux (LIBGCC1, CROSS_LIBGCC1, LIB1ASMFUNCS,
	LIB1ASMSRC, CRTSTUFF_T_CFLAGS_S, TARGET_LIBGCC2_CFLAGS): Define.
	* config/pa/t-linux64: New file.
	* config/pa/t-pa64 (CROSS_LIBGCC1): Change to libgcc1-asm.a
	(LIB1ASMFUNCS, LIB1ASMSRC): Define.
	(TARGET_LIBGCC2_CFLAGS): Add -Dpa64=1 -DELF=1.

From-SVN: r41324
2001-04-13 14:49:02 +09:30

1135 lines
23 KiB
ArmAsm

; Low level integer divide, multiply, remainder, etc routines for the HPPA.
; Copyright 1995, 2000, 2001 Free Software Foundation, Inc.
; This file is part of GNU CC.
; GNU CC is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2, or (at your option)
; any later version.
; In addition to the permissions in the GNU General Public License, the
; Free Software Foundation gives you unlimited permission to link the
; compiled version of this file with other programs, and to distribute
; those programs without any restriction coming from the use of this
; file. (The General Public License restrictions do apply in other
; respects; for example, they cover modification of the file, and
; distribution when not linked into another program.)
; GNU CC is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
; You should have received a copy of the GNU General Public License
; along with GNU CC; see the file COPYING. If not, write to
; the Free Software Foundation, 59 Temple Place - Suite 330,
; Boston, MA 02111-1307, USA.
#ifdef __STDC__
#define CAT(a,b) a##b
#else
#define CAT(a,b) a/**/b
#endif
#ifdef ELF
#define SPACE \
! .text! .align 4
#define GSYM(sym) \
! .export sym,millicode!sym:
#define LSYM(sym) \
!CAT(.L,sym:)
#define LREF(sym) CAT(.L,sym)
#else
#define SPACE \
! .space $TEXT$! .subspa $MILLICODE$,quad=0,align=8,access=0x2c,sort=8! .align 4
#define GSYM(sym) \
! .export sym,millicode!sym
#define LSYM(sym) \
!CAT(L$,sym)
#define LREF(sym) CAT(L$,sym)
#endif
#ifdef L_dyncall
SPACE
GSYM($$dyncall)
.proc
.callinfo frame=0,no_calls
.entry
bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
depi 0,31,2,%r22 ; clear the two least significant bits
ldw 4(%r22),%r19 ; load new LTP value
ldw 0(%r22),%r22 ; load address of target
LSYM(1)
#ifdef LINUX
bv %r0(%r22) ; branch to the real target
#else
ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22
mtsp %r1,%sr0 ; move that space identifier into sr0
be 0(%sr0,%r22) ; branch to the real target
#endif
stw %r2,-24(%r30) ; save return address into frame marker
.exit
.procend
#endif
#ifdef L_multiply
#define op0 %r26
#define op1 %r25
#define res %r29
#define ret %r31
#define tmp %r1
SPACE
GSYM($$mulU)
GSYM($$mulI)
.proc
.callinfo frame=0,no_calls
.entry
addi,tr 0,%r0,res ; clear out res, skip next insn
LSYM(loop)
zdep op1,26,27,op1 ; shift up op1 by 5
LSYM(lo)
zdep op0,30,5,tmp ; extract next 5 bits and shift up
blr tmp,%r0
extru op0,26,27,op0 ; shift down op0 by 5
LSYM(0)
comib,<> 0,op0,LREF(lo)
zdep op1,26,27,op1 ; shift up op1 by 5
bv %r0(ret)
nop
LSYM(1)
b LREF(loop)
addl op1,res,res
nop
nop
LSYM(2)
b LREF(loop)
sh1addl op1,res,res
nop
nop
LSYM(3)
sh1addl op1,op1,tmp ; 3x
b LREF(loop)
addl tmp,res,res
nop
LSYM(4)
b LREF(loop)
sh2addl op1,res,res
nop
nop
LSYM(5)
sh2addl op1,op1,tmp ; 5x
b LREF(loop)
addl tmp,res,res
nop
LSYM(6)
sh1addl op1,op1,tmp ; 3x
b LREF(loop)
sh1addl tmp,res,res
nop
LSYM(7)
zdep op1,28,29,tmp ; 8x
sub tmp,op1,tmp ; 7x
b LREF(loop)
addl tmp,res,res
LSYM(8)
b LREF(loop)
sh3addl op1,res,res
nop
nop
LSYM(9)
sh3addl op1,op1,tmp ; 9x
b LREF(loop)
addl tmp,res,res
nop
LSYM(10)
sh2addl op1,op1,tmp ; 5x
b LREF(loop)
sh1addl tmp,res,res
nop
LSYM(11)
sh2addl op1,op1,tmp ; 5x
sh1addl tmp,op1,tmp ; 11x
b LREF(loop)
addl tmp,res,res
LSYM(12)
sh1addl op1,op1,tmp ; 3x
b LREF(loop)
sh2addl tmp,res,res
nop
LSYM(13)
sh1addl op1,op1,tmp ; 3x
sh2addl tmp,op1,tmp ; 13x
b LREF(loop)
addl tmp,res,res
LSYM(14)
zdep op1,28,29,tmp ; 8x
sub tmp,op1,tmp ; 7x
b LREF(loop)
sh1addl tmp,res,res
LSYM(15)
zdep op1,27,28,tmp ; 16x
sub tmp,op1,tmp ; 15x
b LREF(loop)
addl tmp,res,res
LSYM(16)
zdep op1,27,28,tmp ; 16x
b LREF(loop)
addl tmp,res,res
nop
LSYM(17)
zdep op1,27,28,tmp ; 16x
addl tmp,op1,tmp ; 17x
b LREF(loop)
addl tmp,res,res
LSYM(18)
sh3addl op1,op1,tmp ; 9x
b LREF(loop)
sh1addl tmp,res,res
nop
LSYM(19)
sh3addl op1,op1,tmp ; 9x
sh1addl tmp,op1,tmp ; 19x
b LREF(loop)
addl tmp,res,res
LSYM(20)
sh2addl op1,op1,tmp ; 5x
b LREF(loop)
sh2addl tmp,res,res
nop
LSYM(21)
sh2addl op1,op1,tmp ; 5x
sh2addl tmp,op1,tmp ; 21x
b LREF(loop)
addl tmp,res,res
LSYM(22)
sh2addl op1,op1,tmp ; 5x
sh1addl tmp,op1,tmp ; 11x
b LREF(loop)
sh1addl tmp,res,res
LSYM(23)
sh1addl op1,op1,tmp ; 3x
sh3addl tmp,res,res ; += 8x3
b LREF(loop)
sub res,op1,res ; -= x
LSYM(24)
sh1addl op1,op1,tmp ; 3x
b LREF(loop)
sh3addl tmp,res,res ; += 8x3
nop
LSYM(25)
sh2addl op1,op1,tmp ; 5x
sh2addl tmp,tmp,tmp ; 25x
b LREF(loop)
addl tmp,res,res
LSYM(26)
sh1addl op1,op1,tmp ; 3x
sh2addl tmp,op1,tmp ; 13x
b LREF(loop)
sh1addl tmp,res,res ; += 2x13
LSYM(27)
sh1addl op1,op1,tmp ; 3x
sh3addl tmp,tmp,tmp ; 27x
b LREF(loop)
addl tmp,res,res
LSYM(28)
zdep op1,28,29,tmp ; 8x
sub tmp,op1,tmp ; 7x
b LREF(loop)
sh2addl tmp,res,res ; += 4x7
LSYM(29)
sh1addl op1,op1,tmp ; 3x
sub res,tmp,res ; -= 3x
b LREF(foo)
zdep op1,26,27,tmp ; 32x
LSYM(30)
zdep op1,27,28,tmp ; 16x
sub tmp,op1,tmp ; 15x
b LREF(loop)
sh1addl tmp,res,res ; += 2x15
LSYM(31)
zdep op1,26,27,tmp ; 32x
sub tmp,op1,tmp ; 31x
LSYM(foo)
b LREF(loop)
addl tmp,res,res
.exit
.procend
#endif
#ifdef L_divU
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define quotient %r29
#define ret %r31
SPACE
GSYM($$divU)
.proc
.callinfo frame=0,no_calls
.entry
comb,< divisor,0,LREF(largedivisor)
sub %r0,divisor,%r1 ; clear cy as side-effect
ds %r0,%r1,%r0
addc dividend,dividend,dividend
ds %r0,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,quotient
ds %r1,divisor,%r1
bv %r0(ret)
addc quotient,quotient,quotient
LSYM(largedivisor)
comclr,<< dividend,divisor,quotient
ldi 1,quotient
bv,n %r0(ret)
.exit
.procend
#endif
#ifdef L_remU
#define dividend %r26
#define divisor %r25
#define quotient %r29
#define tmp %r1
#define ret %r31
SPACE
GSYM($$remU)
.proc
.callinfo frame=0,no_calls
.entry
comb,< divisor,0,LREF(largedivisor)
sub %r0,divisor,%r1 ; clear cy as side-effect
ds %r0,%r1,%r0
addc dividend,dividend,dividend
ds %r0,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,quotient
ds %r1,divisor,%r1
comclr,>= %r1,%r0,%r0
addl %r1,divisor,%r1
bv %r0(ret)
copy %r1,quotient
LSYM(largedivisor)
sub,>>= dividend,divisor,quotient
copy dividend,quotient
bv,n %r0(ret)
.exit
.procend
#endif
#ifdef L_divI
#define dividend %r26
#define divisor %r25
#define quotient %r29
#define tmp %r1
#define ret %r31
SPACE
GSYM($$divI)
.proc
.callinfo frame=0,no_calls
.entry
xor dividend,divisor,quotient ; result sign
comclr,>= divisor,%r0,%r0 ; get absolute values
sub %r0,divisor,divisor
comclr,>= dividend,%r0,%r0
sub %r0,dividend,dividend
comb,< divisor,0,LREF(largedivisor)
sub %r0,divisor,%r1 ; clear cy as side-effect
ds %r0,%r1,%r0
addc dividend,dividend,dividend
ds %r0,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
comclr,>= %r1,%r0,%r0
addl %r1,divisor,%r1
comclr,>= quotient,%r0,%r0 ; skip of no need to negate
sub %r0,dividend,dividend
bv %r0(ret)
copy dividend,quotient
LSYM(largedivisor)
comclr,<< dividend,divisor,quotient
ldi 1,quotient
bv,n %r0(ret)
.exit
.procend
#endif
#ifdef L_remI
#define dividend %r26
#define divisor %r25
#define quotient %r29
#define tmp %r1
#define ret %r31
SPACE
GSYM($$remI)
.proc
.callinfo frame=0,no_calls
.entry
xor dividend,%r0,quotient ; result sign
comclr,>= divisor,%r0,%r0 ; get absolute values
sub %r0,divisor,divisor
comclr,>= dividend,%r0,%r0
sub %r0,dividend,dividend
comb,< divisor,0,LREF(largedivisor)
sub %r0,divisor,%r1 ; clear cy as side-effect
ds %r0,%r1,%r0
addc dividend,dividend,dividend
ds %r0,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
ds %r1,divisor,%r1
addc dividend,dividend,dividend
comclr,>= %r1,%r0,%r0
addl %r1,divisor,%r1
comclr,>= quotient,%r0,%r0 ; skip of no need to negate
sub %r0,%r1,%r1
bv %r0(ret)
copy %r1,quotient
LSYM(largedivisor)
sub,>>= dividend,divisor,quotient
copy dividend,quotient
bv,n %r0(ret)
.exit
.procend
#endif
#if defined (L_divU_3) && !defined (SMALL_LIB)
#undef L_divU_3
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_3)
.proc
.callinfo frame=0,no_calls
.entry
sh2add %r26,%r26,%r29 ; r29 = lo(101 x r)
shd %r0,%r26,30,%r1 ; r1 = hi(100 x r)
addc %r1,%r0,%r1 ; r1 = hi(101 x r)
; r in r1,,r29
zdep %r29,27,28,%r25 ; r25 = lo(10000 x r)
add %r25,%r29,%r25 ; r25 = lo(10001 x r)
shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r)
addc %r29,%r1,%r29 ; r29 = hi(10001 x r)
; r in r29,,r25
zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r)
add %r1,%r25,%r1 ; r1 = lo(100000001 x r)
shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r)
addc %r25,%r29,%r25 ; r25 = hi(100000001 x r)
; r in r25,,r1
zdep %r1,15,16,%r29
add %r29,%r1,%r29
shd %r25,%r1,16,%r1
addc %r1,%r25,%r1
; r in r1,,r29
sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend
shd %r1,%r29,31,%r29 ; r29 = hi(10 x r)
addc %r29,%r0,%r29
bv %r0(ret)
extru %r29,30,31,result
.exit
.procend
#endif
#if defined (L_divU_5) && !defined (SMALL_LIB)
#undef L_divU_5
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_5)
.proc
.callinfo frame=0,no_calls
.entry
sh1add %r26,%r26,%r29 ; r29 = lo(11 x r)
shd %r0,%r26,31,%r1 ; r1 = hi(10 x r)
addc %r1,%r0,%r1 ; r1 = hi(11 x r)
; r in r1,,r29
zdep %r29,27,28,%r25 ; r25 = lo(10000 x r)
add %r25,%r29,%r25 ; r25 = lo(10001 x r)
shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r)
addc %r29,%r1,%r29 ; r29 = hi(10001 x r)
; r in r29,,r25
zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r)
add %r1,%r25,%r1 ; r1 = lo(100000001 x r)
shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r)
addc %r25,%r29,%r25 ; r25 = hi(100000001 x r)
; r in r25,,r1
zdep %r1,15,16,%r29
add %r29,%r1,%r29
shd %r25,%r1,16,%r1
addc %r1,%r25,%r1
; r in r1,,r29
sh2add %r29,%r26,%r0 ; r0 = lo(1000 x r) + dividend
shd %r1,%r29,30,%r29 ; r29 = hi(1000 x r)
addc %r29,%r0,%r29
bv %r0(ret)
extru %r29,29,30,result
.exit
.procend
#endif
#if defined (L_divU_6) && !defined (SMALL_LIB)
#undef L_divU_6
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_6)
.proc
.callinfo frame=0,no_calls
.entry
sh2add %r26,%r26,%r29 ; r29 = lo(101 x r)
shd %r0,%r26,30,%r1 ; r1 = hi(100 x r)
addc %r1,%r0,%r1 ; r1 = hi(101 x r)
; r in r1,,r29
zdep %r29,27,28,%r25 ; r25 = lo(10000 x r)
add %r25,%r29,%r25 ; r25 = lo(10001 x r)
shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r)
addc %r29,%r1,%r29 ; r29 = hi(10001 x r)
; r in r29,,r25
zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r)
add %r1,%r25,%r1 ; r1 = lo(100000001 x r)
shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r)
addc %r25,%r29,%r25 ; r25 = hi(100000001 x r)
; r in r25,,r1
zdep %r1,15,16,%r29
add %r29,%r1,%r29
shd %r25,%r1,16,%r1
addc %r1,%r25,%r1
; r in r1,,r29
sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend
shd %r1,%r29,31,%r29 ; r29 = hi(10 x r)
addc %r29,%r0,%r29
bv %r0(ret)
extru %r29,29,30,result
.exit
.procend
#endif
#if defined (L_divU_9) && !defined (SMALL_LIB)
#undef L_divU_9
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_9)
.proc
.callinfo frame=0,no_calls
.entry
zdep %r26,28,29,%r29
sub %r29,%r26,%r29
shd 0,%r26,29,%r1
subb %r1,0,%r1 /* 111 */
zdep %r29,25,26,%r25
add %r25,%r29,%r25
shd %r1,%r29,26,%r29
addc %r29,%r1,%r29 /* 111000111 */
sh3add %r25,%r26,%r1
shd %r29,%r25,29,%r25
addc %r25,0,%r25 /* 111000111001 */
zdep %r1,16,17,%r29
sub %r29,%r1,%r29
shd %r25,%r1,17,%r1
subb %r1,%r25,%r1 /* 111000111000111000111000111 */
sh3add %r29,%r26,%r0
shd %r1,%r29,29,%r29
addc %r29,0,%r29 /* 111000111000111000111000111001 */
bv %r0(ret)
extru %r29,30,31,result
.exit
.procend
#endif
#if defined (L_divU_10) && !defined (SMALL_LIB)
#undef L_divU_10
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_10)
.proc
.callinfo frame=0,no_calls
.entry
sh1add %r26,%r26,%r29 ; r29 = lo(11 x r)
shd %r0,%r26,31,%r1 ; r1 = hi(10 x r)
addc %r1,%r0,%r1 ; r1 = hi(11 x r)
; r in r1,,r29
zdep %r29,27,28,%r25 ; r25 = lo(10000 x r)
add %r25,%r29,%r25 ; r25 = lo(10001 x r)
shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r)
addc %r29,%r1,%r29 ; r29 = hi(10001 x r)
; r in r29,,r25
zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r)
add %r1,%r25,%r1 ; r1 = lo(100000001 x r)
shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r)
addc %r25,%r29,%r25 ; r25 = hi(100000001 x r)
; r in r25,,r1
zdep %r1,15,16,%r29
add %r29,%r1,%r29
shd %r25,%r1,16,%r1
addc %r1,%r25,%r1
; r in r1,,r29
sh2add %r29,%r26,%r0 ; r0 = lo(1000 x r) + dividend
shd %r1,%r29,30,%r29 ; r29 = hi(1000 x r)
addc %r29,%r0,%r29
bv %r0(ret)
extru %r29,28,29,result
.exit
.procend
#endif
#if defined (L_divU_12) && !defined (SMALL_LIB)
#undef L_divU_12
#define dividend %r26
#define divisor %r25
#define tmp %r1
#define result %r29
#define ret %r31
SPACE
GSYM($$divU_12)
.proc
.callinfo frame=0,no_calls
.entry
sh2add %r26,%r26,%r29 ; r29 = lo(101 x r)
shd %r0,%r26,30,%r1 ; r1 = hi(100 x r)
addc %r1,%r0,%r1 ; r1 = hi(101 x r)
; r in r1,,r29
zdep %r29,27,28,%r25 ; r25 = lo(10000 x r)
add %r25,%r29,%r25 ; r25 = lo(10001 x r)
shd %r1,%r29,28,%r29 ; r29 = hi(10000 x r)
addc %r29,%r1,%r29 ; r29 = hi(10001 x r)
; r in r29,,r25
zdep %r25,23,24,%r1 ; r1 = lo(100000000 x r)
add %r1,%r25,%r1 ; r1 = lo(100000001 x r)
shd %r29,%r25,24,%r25 ; r25 = hi(100000000 x r)
addc %r25,%r29,%r25 ; r25 = hi(100000001 x r)
; r in r25,,r1
zdep %r1,15,16,%r29
add %r29,%r1,%r29
shd %r25,%r1,16,%r1
addc %r1,%r25,%r1
; r in r1,,r29
sh1add %r29,%r26,%r0 ; r0 = lo(10 x r) + dividend
shd %r1,%r29,31,%r29 ; r29 = hi(10 x r)
addc %r29,%r0,%r29
bv %r0(ret)
extru %r29,28,29,result
.exit
.procend
#endif
#ifdef L_divU_3
SPACE
GSYM($$divU_3)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 3,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_5
SPACE
GSYM($$divU_5)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 5,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_6
SPACE
GSYM($$divU_6)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 6,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_7
SPACE
GSYM($$divU_7)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 7,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_9
SPACE
GSYM($$divU_9)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 9,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_10
SPACE
GSYM($$divU_10)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 10,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_12
SPACE
GSYM($$divU_12)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 12,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_14
SPACE
GSYM($$divU_14)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 14,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divU_15
SPACE
GSYM($$divU_15)
.proc
.callinfo frame=0,no_calls
.entry
b $$divU
ldi 15,%r25
.exit
.procend
.import $$divU,MILLICODE
#endif
#ifdef L_divI_3
SPACE
GSYM($$divI_3)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 3,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_5
SPACE
GSYM($$divI_5)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 5,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_6
SPACE
GSYM($$divI_6)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 6,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_7
SPACE
GSYM($$divI_7)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 7,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_9
SPACE
GSYM($$divI_9)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 9,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_10
SPACE
GSYM($$divI_10)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 10,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_12
SPACE
GSYM($$divI_12)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 12,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_14
SPACE
GSYM($$divI_14)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 14,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif
#ifdef L_divI_15
SPACE
GSYM($$divI_15)
.proc
.callinfo frame=0,no_calls
.entry
b $$divI
ldi 15,%r25
.exit
.procend
.import $$divI,MILLICODE
#endif