33a7a93218
gfc_call_malloc should malloc an area of size 1 if no size given. gcc/fortran/ChangeLog: PR fortran/86470 * trans.c (gfc_call_malloc): Allocate area of size 1 if passed size is NULL (as documented). gcc/testsuite/ChangeLog: PR fortran/86470 * gfortran.dg/gomp/pr86470.f90: New test.
2440 lines
65 KiB
C
2440 lines
65 KiB
C
/* Code translation -- generate GCC trees from gfc_code.
|
|
Copyright (C) 2002-2021 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "options.h"
|
|
#include "tree.h"
|
|
#include "gfortran.h"
|
|
#include "gimple-expr.h" /* For create_tmp_var_raw. */
|
|
#include "trans.h"
|
|
#include "stringpool.h"
|
|
#include "fold-const.h"
|
|
#include "tree-iterator.h"
|
|
#include "trans-stmt.h"
|
|
#include "trans-array.h"
|
|
#include "trans-types.h"
|
|
#include "trans-const.h"
|
|
|
|
/* Naming convention for backend interface code:
|
|
|
|
gfc_trans_* translate gfc_code into STMT trees.
|
|
|
|
gfc_conv_* expression conversion
|
|
|
|
gfc_get_* get a backend tree representation of a decl or type */
|
|
|
|
static gfc_file *gfc_current_backend_file;
|
|
|
|
const char gfc_msg_fault[] = N_("Array reference out of bounds");
|
|
const char gfc_msg_wrong_return[] = N_("Incorrect function return value");
|
|
|
|
|
|
/* Return a location_t suitable for 'tree' for a gfortran locus. The way the
|
|
parser works in gfortran, loc->lb->location contains only the line number
|
|
and LOCATION_COLUMN is 0; hence, the column has to be added when generating
|
|
locations for 'tree'. Cf. error.c's gfc_format_decoder. */
|
|
|
|
location_t
|
|
gfc_get_location (locus *loc)
|
|
{
|
|
return linemap_position_for_loc_and_offset (line_table, loc->lb->location,
|
|
loc->nextc - loc->lb->line);
|
|
}
|
|
|
|
/* Advance along TREE_CHAIN n times. */
|
|
|
|
tree
|
|
gfc_advance_chain (tree t, int n)
|
|
{
|
|
for (; n > 0; n--)
|
|
{
|
|
gcc_assert (t != NULL_TREE);
|
|
t = DECL_CHAIN (t);
|
|
}
|
|
return t;
|
|
}
|
|
|
|
static int num_var;
|
|
|
|
#define MAX_PREFIX_LEN 20
|
|
|
|
static tree
|
|
create_var_debug_raw (tree type, const char *prefix)
|
|
{
|
|
/* Space for prefix + "_" + 10-digit-number + \0. */
|
|
char name_buf[MAX_PREFIX_LEN + 1 + 10 + 1];
|
|
tree t;
|
|
int i;
|
|
|
|
if (prefix == NULL)
|
|
prefix = "gfc";
|
|
else
|
|
gcc_assert (strlen (prefix) <= MAX_PREFIX_LEN);
|
|
|
|
for (i = 0; prefix[i] != 0; i++)
|
|
name_buf[i] = gfc_wide_toupper (prefix[i]);
|
|
|
|
snprintf (name_buf + i, sizeof (name_buf) - i, "_%d", num_var++);
|
|
|
|
t = build_decl (input_location, VAR_DECL, get_identifier (name_buf), type);
|
|
|
|
/* Not setting this causes some regressions. */
|
|
DECL_ARTIFICIAL (t) = 1;
|
|
|
|
/* We want debug info for it. */
|
|
DECL_IGNORED_P (t) = 0;
|
|
/* It should not be nameless. */
|
|
DECL_NAMELESS (t) = 0;
|
|
|
|
/* Make the variable writable. */
|
|
TREE_READONLY (t) = 0;
|
|
|
|
DECL_EXTERNAL (t) = 0;
|
|
TREE_STATIC (t) = 0;
|
|
TREE_USED (t) = 1;
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Creates a variable declaration with a given TYPE. */
|
|
|
|
tree
|
|
gfc_create_var_np (tree type, const char *prefix)
|
|
{
|
|
tree t;
|
|
|
|
if (flag_debug_aux_vars)
|
|
return create_var_debug_raw (type, prefix);
|
|
|
|
t = create_tmp_var_raw (type, prefix);
|
|
|
|
/* No warnings for anonymous variables. */
|
|
if (prefix == NULL)
|
|
TREE_NO_WARNING (t) = 1;
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
/* Like above, but also adds it to the current scope. */
|
|
|
|
tree
|
|
gfc_create_var (tree type, const char *prefix)
|
|
{
|
|
tree tmp;
|
|
|
|
tmp = gfc_create_var_np (type, prefix);
|
|
|
|
pushdecl (tmp);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
|
|
/* If the expression is not constant, evaluate it now. We assign the
|
|
result of the expression to an artificially created variable VAR, and
|
|
return a pointer to the VAR_DECL node for this variable. */
|
|
|
|
tree
|
|
gfc_evaluate_now_loc (location_t loc, tree expr, stmtblock_t * pblock)
|
|
{
|
|
tree var;
|
|
|
|
if (CONSTANT_CLASS_P (expr))
|
|
return expr;
|
|
|
|
var = gfc_create_var (TREE_TYPE (expr), NULL);
|
|
gfc_add_modify_loc (loc, pblock, var, expr);
|
|
|
|
return var;
|
|
}
|
|
|
|
|
|
tree
|
|
gfc_evaluate_now (tree expr, stmtblock_t * pblock)
|
|
{
|
|
return gfc_evaluate_now_loc (input_location, expr, pblock);
|
|
}
|
|
|
|
/* Like gfc_evaluate_now, but add the created variable to the
|
|
function scope. */
|
|
|
|
tree
|
|
gfc_evaluate_now_function_scope (tree expr, stmtblock_t * pblock)
|
|
{
|
|
tree var;
|
|
var = gfc_create_var_np (TREE_TYPE (expr), NULL);
|
|
gfc_add_decl_to_function (var);
|
|
gfc_add_modify (pblock, var, expr);
|
|
|
|
return var;
|
|
}
|
|
|
|
/* Build a MODIFY_EXPR node and add it to a given statement block PBLOCK.
|
|
A MODIFY_EXPR is an assignment:
|
|
LHS <- RHS. */
|
|
|
|
void
|
|
gfc_add_modify_loc (location_t loc, stmtblock_t * pblock, tree lhs, tree rhs)
|
|
{
|
|
tree tmp;
|
|
|
|
tree t1, t2;
|
|
t1 = TREE_TYPE (rhs);
|
|
t2 = TREE_TYPE (lhs);
|
|
/* Make sure that the types of the rhs and the lhs are compatible
|
|
for scalar assignments. We should probably have something
|
|
similar for aggregates, but right now removing that check just
|
|
breaks everything. */
|
|
gcc_checking_assert (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)
|
|
|| AGGREGATE_TYPE_P (TREE_TYPE (lhs)));
|
|
|
|
tmp = fold_build2_loc (loc, MODIFY_EXPR, void_type_node, lhs,
|
|
rhs);
|
|
gfc_add_expr_to_block (pblock, tmp);
|
|
}
|
|
|
|
|
|
void
|
|
gfc_add_modify (stmtblock_t * pblock, tree lhs, tree rhs)
|
|
{
|
|
gfc_add_modify_loc (input_location, pblock, lhs, rhs);
|
|
}
|
|
|
|
|
|
/* Create a new scope/binding level and initialize a block. Care must be
|
|
taken when translating expressions as any temporaries will be placed in
|
|
the innermost scope. */
|
|
|
|
void
|
|
gfc_start_block (stmtblock_t * block)
|
|
{
|
|
/* Start a new binding level. */
|
|
pushlevel ();
|
|
block->has_scope = 1;
|
|
|
|
/* The block is empty. */
|
|
block->head = NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Initialize a block without creating a new scope. */
|
|
|
|
void
|
|
gfc_init_block (stmtblock_t * block)
|
|
{
|
|
block->head = NULL_TREE;
|
|
block->has_scope = 0;
|
|
}
|
|
|
|
|
|
/* Sometimes we create a scope but it turns out that we don't actually
|
|
need it. This function merges the scope of BLOCK with its parent.
|
|
Only variable decls will be merged, you still need to add the code. */
|
|
|
|
void
|
|
gfc_merge_block_scope (stmtblock_t * block)
|
|
{
|
|
tree decl;
|
|
tree next;
|
|
|
|
gcc_assert (block->has_scope);
|
|
block->has_scope = 0;
|
|
|
|
/* Remember the decls in this scope. */
|
|
decl = getdecls ();
|
|
poplevel (0, 0);
|
|
|
|
/* Add them to the parent scope. */
|
|
while (decl != NULL_TREE)
|
|
{
|
|
next = DECL_CHAIN (decl);
|
|
DECL_CHAIN (decl) = NULL_TREE;
|
|
|
|
pushdecl (decl);
|
|
decl = next;
|
|
}
|
|
}
|
|
|
|
|
|
/* Finish a scope containing a block of statements. */
|
|
|
|
tree
|
|
gfc_finish_block (stmtblock_t * stmtblock)
|
|
{
|
|
tree decl;
|
|
tree expr;
|
|
tree block;
|
|
|
|
expr = stmtblock->head;
|
|
if (!expr)
|
|
expr = build_empty_stmt (input_location);
|
|
|
|
stmtblock->head = NULL_TREE;
|
|
|
|
if (stmtblock->has_scope)
|
|
{
|
|
decl = getdecls ();
|
|
|
|
if (decl)
|
|
{
|
|
block = poplevel (1, 0);
|
|
expr = build3_v (BIND_EXPR, decl, expr, block);
|
|
}
|
|
else
|
|
poplevel (0, 0);
|
|
}
|
|
|
|
return expr;
|
|
}
|
|
|
|
|
|
/* Build an ADDR_EXPR and cast the result to TYPE. If TYPE is NULL, the
|
|
natural type is used. */
|
|
|
|
tree
|
|
gfc_build_addr_expr (tree type, tree t)
|
|
{
|
|
tree base_type = TREE_TYPE (t);
|
|
tree natural_type;
|
|
|
|
if (type && POINTER_TYPE_P (type)
|
|
&& TREE_CODE (base_type) == ARRAY_TYPE
|
|
&& TYPE_MAIN_VARIANT (TREE_TYPE (type))
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (base_type)))
|
|
{
|
|
tree min_val = size_zero_node;
|
|
tree type_domain = TYPE_DOMAIN (base_type);
|
|
if (type_domain && TYPE_MIN_VALUE (type_domain))
|
|
min_val = TYPE_MIN_VALUE (type_domain);
|
|
t = fold (build4_loc (input_location, ARRAY_REF, TREE_TYPE (type),
|
|
t, min_val, NULL_TREE, NULL_TREE));
|
|
natural_type = type;
|
|
}
|
|
else
|
|
natural_type = build_pointer_type (base_type);
|
|
|
|
if (TREE_CODE (t) == INDIRECT_REF)
|
|
{
|
|
if (!type)
|
|
type = natural_type;
|
|
t = TREE_OPERAND (t, 0);
|
|
natural_type = TREE_TYPE (t);
|
|
}
|
|
else
|
|
{
|
|
tree base = get_base_address (t);
|
|
if (base && DECL_P (base))
|
|
TREE_ADDRESSABLE (base) = 1;
|
|
t = fold_build1_loc (input_location, ADDR_EXPR, natural_type, t);
|
|
}
|
|
|
|
if (type && natural_type != type)
|
|
t = convert (type, t);
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
static tree
|
|
get_array_span (tree type, tree decl)
|
|
{
|
|
tree span;
|
|
|
|
/* Component references are guaranteed to have a reliable value for
|
|
'span'. Likewise indirect references since they emerge from the
|
|
conversion of a CFI descriptor or the hidden dummy descriptor. */
|
|
if (TREE_CODE (decl) == COMPONENT_REF
|
|
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
|
|
return gfc_conv_descriptor_span_get (decl);
|
|
else if (TREE_CODE (decl) == INDIRECT_REF
|
|
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
|
|
return gfc_conv_descriptor_span_get (decl);
|
|
|
|
/* Return the span for deferred character length array references. */
|
|
if (type && TREE_CODE (type) == ARRAY_TYPE
|
|
&& TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
|
|
&& (VAR_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
|
|
|| TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) == INDIRECT_REF)
|
|
&& (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) == INDIRECT_REF
|
|
|| TREE_CODE (decl) == FUNCTION_DECL
|
|
|| DECL_CONTEXT (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
|
|
== DECL_CONTEXT (decl)))
|
|
{
|
|
span = fold_convert (gfc_array_index_type,
|
|
TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
|
|
span = fold_build2 (MULT_EXPR, gfc_array_index_type,
|
|
fold_convert (gfc_array_index_type,
|
|
TYPE_SIZE_UNIT (TREE_TYPE (type))),
|
|
span);
|
|
}
|
|
else if (type && TREE_CODE (type) == ARRAY_TYPE
|
|
&& TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
|
|
&& integer_zerop (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
|
|
{
|
|
if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl)))
|
|
span = gfc_conv_descriptor_span_get (decl);
|
|
else
|
|
span = NULL_TREE;
|
|
}
|
|
/* Likewise for class array or pointer array references. */
|
|
else if (TREE_CODE (decl) == FIELD_DECL
|
|
|| VAR_OR_FUNCTION_DECL_P (decl)
|
|
|| TREE_CODE (decl) == PARM_DECL)
|
|
{
|
|
if (GFC_DECL_CLASS (decl))
|
|
{
|
|
/* When a temporary is in place for the class array, then the
|
|
original class' declaration is stored in the saved
|
|
descriptor. */
|
|
if (DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl))
|
|
decl = GFC_DECL_SAVED_DESCRIPTOR (decl);
|
|
else
|
|
{
|
|
/* Allow for dummy arguments and other good things. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (decl)))
|
|
decl = build_fold_indirect_ref_loc (input_location, decl);
|
|
|
|
/* Check if '_data' is an array descriptor. If it is not,
|
|
the array must be one of the components of the class
|
|
object, so return a null span. */
|
|
if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (
|
|
gfc_class_data_get (decl))))
|
|
return NULL_TREE;
|
|
}
|
|
span = gfc_class_vtab_size_get (decl);
|
|
}
|
|
else if (GFC_DECL_PTR_ARRAY_P (decl))
|
|
{
|
|
if (TREE_CODE (decl) == PARM_DECL)
|
|
decl = build_fold_indirect_ref_loc (input_location, decl);
|
|
span = gfc_conv_descriptor_span_get (decl);
|
|
}
|
|
else
|
|
span = NULL_TREE;
|
|
}
|
|
else
|
|
span = NULL_TREE;
|
|
|
|
return span;
|
|
}
|
|
|
|
|
|
/* Build an ARRAY_REF with its natural type. */
|
|
|
|
tree
|
|
gfc_build_array_ref (tree base, tree offset, tree decl, tree vptr)
|
|
{
|
|
tree type = TREE_TYPE (base);
|
|
tree tmp;
|
|
tree span = NULL_TREE;
|
|
|
|
if (GFC_ARRAY_TYPE_P (type) && GFC_TYPE_ARRAY_RANK (type) == 0)
|
|
{
|
|
gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
|
|
|
|
return fold_convert (TYPE_MAIN_VARIANT (type), base);
|
|
}
|
|
|
|
/* Scalar coarray, there is nothing to do. */
|
|
if (TREE_CODE (type) != ARRAY_TYPE)
|
|
{
|
|
gcc_assert (decl == NULL_TREE);
|
|
gcc_assert (integer_zerop (offset));
|
|
return base;
|
|
}
|
|
|
|
type = TREE_TYPE (type);
|
|
|
|
if (DECL_P (base))
|
|
TREE_ADDRESSABLE (base) = 1;
|
|
|
|
/* Strip NON_LVALUE_EXPR nodes. */
|
|
STRIP_TYPE_NOPS (offset);
|
|
|
|
/* If decl or vptr are non-null, pointer arithmetic for the array reference
|
|
is likely. Generate the 'span' for the array reference. */
|
|
if (vptr)
|
|
{
|
|
span = gfc_vptr_size_get (vptr);
|
|
|
|
/* Check if this is an unlimited polymorphic object carrying a character
|
|
payload. In this case, the 'len' field is non-zero. */
|
|
if (decl && GFC_CLASS_TYPE_P (TREE_TYPE (decl)))
|
|
span = gfc_resize_class_size_with_len (NULL, decl, span);
|
|
}
|
|
else if (decl)
|
|
span = get_array_span (type, decl);
|
|
|
|
/* If a non-null span has been generated reference the element with
|
|
pointer arithmetic. */
|
|
if (span != NULL_TREE)
|
|
{
|
|
offset = fold_build2_loc (input_location, MULT_EXPR,
|
|
gfc_array_index_type,
|
|
offset, span);
|
|
tmp = gfc_build_addr_expr (pvoid_type_node, base);
|
|
tmp = fold_build_pointer_plus_loc (input_location, tmp, offset);
|
|
tmp = fold_convert (build_pointer_type (type), tmp);
|
|
if ((TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != ARRAY_TYPE)
|
|
|| !TYPE_STRING_FLAG (type))
|
|
tmp = build_fold_indirect_ref_loc (input_location, tmp);
|
|
return tmp;
|
|
}
|
|
/* Otherwise use a straightforward array reference. */
|
|
else
|
|
return build4_loc (input_location, ARRAY_REF, type, base, offset,
|
|
NULL_TREE, NULL_TREE);
|
|
}
|
|
|
|
|
|
/* Generate a call to print a runtime error possibly including multiple
|
|
arguments and a locus. */
|
|
|
|
static tree
|
|
trans_runtime_error_vararg (tree errorfunc, locus* where, const char* msgid,
|
|
va_list ap)
|
|
{
|
|
stmtblock_t block;
|
|
tree tmp;
|
|
tree arg, arg2;
|
|
tree *argarray;
|
|
tree fntype;
|
|
char *message;
|
|
const char *p;
|
|
int line, nargs, i;
|
|
location_t loc;
|
|
|
|
/* Compute the number of extra arguments from the format string. */
|
|
for (p = msgid, nargs = 0; *p; p++)
|
|
if (*p == '%')
|
|
{
|
|
p++;
|
|
if (*p != '%')
|
|
nargs++;
|
|
}
|
|
|
|
/* The code to generate the error. */
|
|
gfc_start_block (&block);
|
|
|
|
if (where)
|
|
{
|
|
line = LOCATION_LINE (where->lb->location);
|
|
message = xasprintf ("At line %d of file %s", line,
|
|
where->lb->file->filename);
|
|
}
|
|
else
|
|
message = xasprintf ("In file '%s', around line %d",
|
|
gfc_source_file, LOCATION_LINE (input_location) + 1);
|
|
|
|
arg = gfc_build_addr_expr (pchar_type_node,
|
|
gfc_build_localized_cstring_const (message));
|
|
free (message);
|
|
|
|
message = xasprintf ("%s", _(msgid));
|
|
arg2 = gfc_build_addr_expr (pchar_type_node,
|
|
gfc_build_localized_cstring_const (message));
|
|
free (message);
|
|
|
|
/* Build the argument array. */
|
|
argarray = XALLOCAVEC (tree, nargs + 2);
|
|
argarray[0] = arg;
|
|
argarray[1] = arg2;
|
|
for (i = 0; i < nargs; i++)
|
|
argarray[2 + i] = va_arg (ap, tree);
|
|
|
|
/* Build the function call to runtime_(warning,error)_at; because of the
|
|
variable number of arguments, we can't use build_call_expr_loc dinput_location,
|
|
irectly. */
|
|
fntype = TREE_TYPE (errorfunc);
|
|
|
|
loc = where ? gfc_get_location (where) : input_location;
|
|
tmp = fold_build_call_array_loc (loc, TREE_TYPE (fntype),
|
|
fold_build1_loc (loc, ADDR_EXPR,
|
|
build_pointer_type (fntype),
|
|
errorfunc),
|
|
nargs + 2, argarray);
|
|
gfc_add_expr_to_block (&block, tmp);
|
|
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
|
|
tree
|
|
gfc_trans_runtime_error (bool error, locus* where, const char* msgid, ...)
|
|
{
|
|
va_list ap;
|
|
tree result;
|
|
|
|
va_start (ap, msgid);
|
|
result = trans_runtime_error_vararg (error
|
|
? gfor_fndecl_runtime_error_at
|
|
: gfor_fndecl_runtime_warning_at,
|
|
where, msgid, ap);
|
|
va_end (ap);
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Generate a runtime error if COND is true. */
|
|
|
|
void
|
|
gfc_trans_runtime_check (bool error, bool once, tree cond, stmtblock_t * pblock,
|
|
locus * where, const char * msgid, ...)
|
|
{
|
|
va_list ap;
|
|
stmtblock_t block;
|
|
tree body;
|
|
tree tmp;
|
|
tree tmpvar = NULL;
|
|
|
|
if (integer_zerop (cond))
|
|
return;
|
|
|
|
if (once)
|
|
{
|
|
tmpvar = gfc_create_var (logical_type_node, "print_warning");
|
|
TREE_STATIC (tmpvar) = 1;
|
|
DECL_INITIAL (tmpvar) = logical_true_node;
|
|
gfc_add_expr_to_block (pblock, tmpvar);
|
|
}
|
|
|
|
gfc_start_block (&block);
|
|
|
|
/* For error, runtime_error_at already implies PRED_NORETURN. */
|
|
if (!error && once)
|
|
gfc_add_expr_to_block (&block, build_predict_expr (PRED_FORTRAN_WARN_ONCE,
|
|
NOT_TAKEN));
|
|
|
|
/* The code to generate the error. */
|
|
va_start (ap, msgid);
|
|
gfc_add_expr_to_block (&block,
|
|
trans_runtime_error_vararg
|
|
(error ? gfor_fndecl_runtime_error_at
|
|
: gfor_fndecl_runtime_warning_at,
|
|
where, msgid, ap));
|
|
va_end (ap);
|
|
|
|
if (once)
|
|
gfc_add_modify (&block, tmpvar, logical_false_node);
|
|
|
|
body = gfc_finish_block (&block);
|
|
|
|
if (integer_onep (cond))
|
|
{
|
|
gfc_add_expr_to_block (pblock, body);
|
|
}
|
|
else
|
|
{
|
|
if (once)
|
|
cond = fold_build2_loc (gfc_get_location (where), TRUTH_AND_EXPR,
|
|
long_integer_type_node, tmpvar, cond);
|
|
else
|
|
cond = fold_convert (long_integer_type_node, cond);
|
|
|
|
tmp = fold_build3_loc (gfc_get_location (where), COND_EXPR, void_type_node,
|
|
cond, body,
|
|
build_empty_stmt (gfc_get_location (where)));
|
|
gfc_add_expr_to_block (pblock, tmp);
|
|
}
|
|
}
|
|
|
|
|
|
static tree
|
|
trans_os_error_at (locus* where, const char* msgid, ...)
|
|
{
|
|
va_list ap;
|
|
tree result;
|
|
|
|
va_start (ap, msgid);
|
|
result = trans_runtime_error_vararg (gfor_fndecl_os_error_at,
|
|
where, msgid, ap);
|
|
va_end (ap);
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/* Call malloc to allocate size bytes of memory, with special conditions:
|
|
+ if size == 0, return a malloced area of size 1,
|
|
+ if malloc returns NULL, issue a runtime error. */
|
|
tree
|
|
gfc_call_malloc (stmtblock_t * block, tree type, tree size)
|
|
{
|
|
tree tmp, malloc_result, null_result, res, malloc_tree;
|
|
stmtblock_t block2;
|
|
|
|
/* Create a variable to hold the result. */
|
|
res = gfc_create_var (prvoid_type_node, NULL);
|
|
|
|
/* Call malloc. */
|
|
gfc_start_block (&block2);
|
|
|
|
if (size == NULL_TREE)
|
|
size = build_int_cst (size_type_node, 1);
|
|
|
|
size = fold_convert (size_type_node, size);
|
|
size = fold_build2_loc (input_location, MAX_EXPR, size_type_node, size,
|
|
build_int_cst (size_type_node, 1));
|
|
|
|
malloc_tree = builtin_decl_explicit (BUILT_IN_MALLOC);
|
|
gfc_add_modify (&block2, res,
|
|
fold_convert (prvoid_type_node,
|
|
build_call_expr_loc (input_location,
|
|
malloc_tree, 1, size)));
|
|
|
|
/* Optionally check whether malloc was successful. */
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_MEM)
|
|
{
|
|
null_result = fold_build2_loc (input_location, EQ_EXPR,
|
|
logical_type_node, res,
|
|
build_int_cst (pvoid_type_node, 0));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
null_result,
|
|
trans_os_error_at (NULL,
|
|
"Error allocating %lu bytes",
|
|
fold_convert
|
|
(long_unsigned_type_node,
|
|
size)),
|
|
build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (&block2, tmp);
|
|
}
|
|
|
|
malloc_result = gfc_finish_block (&block2);
|
|
gfc_add_expr_to_block (block, malloc_result);
|
|
|
|
if (type != NULL)
|
|
res = fold_convert (type, res);
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Allocate memory, using an optional status argument.
|
|
|
|
This function follows the following pseudo-code:
|
|
|
|
void *
|
|
allocate (size_t size, integer_type stat)
|
|
{
|
|
void *newmem;
|
|
|
|
if (stat requested)
|
|
stat = 0;
|
|
|
|
newmem = malloc (MAX (size, 1));
|
|
if (newmem == NULL)
|
|
{
|
|
if (stat)
|
|
*stat = LIBERROR_ALLOCATION;
|
|
else
|
|
runtime_error ("Allocation would exceed memory limit");
|
|
}
|
|
return newmem;
|
|
} */
|
|
void
|
|
gfc_allocate_using_malloc (stmtblock_t * block, tree pointer,
|
|
tree size, tree status)
|
|
{
|
|
tree tmp, error_cond;
|
|
stmtblock_t on_error;
|
|
tree status_type = status ? TREE_TYPE (status) : NULL_TREE;
|
|
|
|
/* If successful and stat= is given, set status to 0. */
|
|
if (status != NULL_TREE)
|
|
gfc_add_expr_to_block (block,
|
|
fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
status, build_int_cst (status_type, 0)));
|
|
|
|
/* The allocation itself. */
|
|
size = fold_convert (size_type_node, size);
|
|
gfc_add_modify (block, pointer,
|
|
fold_convert (TREE_TYPE (pointer),
|
|
build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_MALLOC), 1,
|
|
fold_build2_loc (input_location,
|
|
MAX_EXPR, size_type_node, size,
|
|
build_int_cst (size_type_node, 1)))));
|
|
|
|
/* What to do in case of error. */
|
|
gfc_start_block (&on_error);
|
|
if (status != NULL_TREE)
|
|
{
|
|
tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, status,
|
|
build_int_cst (status_type, LIBERROR_ALLOCATION));
|
|
gfc_add_expr_to_block (&on_error, tmp);
|
|
}
|
|
else
|
|
{
|
|
/* Here, os_error_at already implies PRED_NORETURN. */
|
|
tree lusize = fold_convert (long_unsigned_type_node, size);
|
|
tmp = trans_os_error_at (NULL, "Error allocating %lu bytes", lusize);
|
|
gfc_add_expr_to_block (&on_error, tmp);
|
|
}
|
|
|
|
error_cond = fold_build2_loc (input_location, EQ_EXPR,
|
|
logical_type_node, pointer,
|
|
build_int_cst (prvoid_type_node, 0));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
gfc_unlikely (error_cond, PRED_FORTRAN_FAIL_ALLOC),
|
|
gfc_finish_block (&on_error),
|
|
build_empty_stmt (input_location));
|
|
|
|
gfc_add_expr_to_block (block, tmp);
|
|
}
|
|
|
|
|
|
/* Allocate memory, using an optional status argument.
|
|
|
|
This function follows the following pseudo-code:
|
|
|
|
void *
|
|
allocate (size_t size, void** token, int *stat, char* errmsg, int errlen)
|
|
{
|
|
void *newmem;
|
|
|
|
newmem = _caf_register (size, regtype, token, &stat, errmsg, errlen);
|
|
return newmem;
|
|
} */
|
|
void
|
|
gfc_allocate_using_caf_lib (stmtblock_t * block, tree pointer, tree size,
|
|
tree token, tree status, tree errmsg, tree errlen,
|
|
gfc_coarray_regtype alloc_type)
|
|
{
|
|
tree tmp, pstat;
|
|
|
|
gcc_assert (token != NULL_TREE);
|
|
|
|
/* The allocation itself. */
|
|
if (status == NULL_TREE)
|
|
pstat = null_pointer_node;
|
|
else
|
|
pstat = gfc_build_addr_expr (NULL_TREE, status);
|
|
|
|
if (errmsg == NULL_TREE)
|
|
{
|
|
gcc_assert(errlen == NULL_TREE);
|
|
errmsg = null_pointer_node;
|
|
errlen = build_int_cst (integer_type_node, 0);
|
|
}
|
|
|
|
size = fold_convert (size_type_node, size);
|
|
tmp = build_call_expr_loc (input_location,
|
|
gfor_fndecl_caf_register, 7,
|
|
fold_build2_loc (input_location,
|
|
MAX_EXPR, size_type_node, size, size_one_node),
|
|
build_int_cst (integer_type_node, alloc_type),
|
|
token, gfc_build_addr_expr (pvoid_type_node, pointer),
|
|
pstat, errmsg, errlen);
|
|
|
|
gfc_add_expr_to_block (block, tmp);
|
|
|
|
/* It guarantees memory consistency within the same segment */
|
|
tmp = gfc_build_string_const (strlen ("memory")+1, "memory"),
|
|
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
|
|
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
|
|
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
|
|
ASM_VOLATILE_P (tmp) = 1;
|
|
gfc_add_expr_to_block (block, tmp);
|
|
}
|
|
|
|
|
|
/* Generate code for an ALLOCATE statement when the argument is an
|
|
allocatable variable. If the variable is currently allocated, it is an
|
|
error to allocate it again.
|
|
|
|
This function follows the following pseudo-code:
|
|
|
|
void *
|
|
allocate_allocatable (void *mem, size_t size, integer_type stat)
|
|
{
|
|
if (mem == NULL)
|
|
return allocate (size, stat);
|
|
else
|
|
{
|
|
if (stat)
|
|
stat = LIBERROR_ALLOCATION;
|
|
else
|
|
runtime_error ("Attempting to allocate already allocated variable");
|
|
}
|
|
}
|
|
|
|
expr must be set to the original expression being allocated for its locus
|
|
and variable name in case a runtime error has to be printed. */
|
|
void
|
|
gfc_allocate_allocatable (stmtblock_t * block, tree mem, tree size,
|
|
tree token, tree status, tree errmsg, tree errlen,
|
|
tree label_finish, gfc_expr* expr, int corank)
|
|
{
|
|
stmtblock_t alloc_block;
|
|
tree tmp, null_mem, alloc, error;
|
|
tree type = TREE_TYPE (mem);
|
|
symbol_attribute caf_attr;
|
|
bool need_assign = false, refs_comp = false;
|
|
gfc_coarray_regtype caf_alloc_type = GFC_CAF_COARRAY_ALLOC;
|
|
|
|
size = fold_convert (size_type_node, size);
|
|
null_mem = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR,
|
|
logical_type_node, mem,
|
|
build_int_cst (type, 0)),
|
|
PRED_FORTRAN_REALLOC);
|
|
|
|
/* If mem is NULL, we call gfc_allocate_using_malloc or
|
|
gfc_allocate_using_lib. */
|
|
gfc_start_block (&alloc_block);
|
|
|
|
if (flag_coarray == GFC_FCOARRAY_LIB)
|
|
caf_attr = gfc_caf_attr (expr, true, &refs_comp);
|
|
|
|
if (flag_coarray == GFC_FCOARRAY_LIB
|
|
&& (corank > 0 || caf_attr.codimension))
|
|
{
|
|
tree cond, sub_caf_tree;
|
|
gfc_se se;
|
|
bool compute_special_caf_types_size = false;
|
|
|
|
if (expr->ts.type == BT_DERIVED
|
|
&& expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
|
|
&& expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
|
|
{
|
|
compute_special_caf_types_size = true;
|
|
caf_alloc_type = GFC_CAF_LOCK_ALLOC;
|
|
}
|
|
else if (expr->ts.type == BT_DERIVED
|
|
&& expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
|
|
&& expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
|
|
{
|
|
compute_special_caf_types_size = true;
|
|
caf_alloc_type = GFC_CAF_EVENT_ALLOC;
|
|
}
|
|
else if (!caf_attr.coarray_comp && refs_comp)
|
|
/* Only allocatable components in a derived type coarray can be
|
|
allocate only. */
|
|
caf_alloc_type = GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY;
|
|
|
|
gfc_init_se (&se, NULL);
|
|
sub_caf_tree = gfc_get_ultimate_alloc_ptr_comps_caf_token (&se, expr);
|
|
if (sub_caf_tree == NULL_TREE)
|
|
sub_caf_tree = token;
|
|
|
|
/* When mem is an array ref, then strip the .data-ref. */
|
|
if (TREE_CODE (mem) == COMPONENT_REF
|
|
&& !(GFC_ARRAY_TYPE_P (TREE_TYPE (mem))))
|
|
tmp = TREE_OPERAND (mem, 0);
|
|
else
|
|
tmp = mem;
|
|
|
|
if (!(GFC_ARRAY_TYPE_P (TREE_TYPE (tmp))
|
|
&& TYPE_LANG_SPECIFIC (TREE_TYPE (tmp))->corank == 0)
|
|
&& !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp)))
|
|
{
|
|
symbol_attribute attr;
|
|
|
|
gfc_clear_attr (&attr);
|
|
tmp = gfc_conv_scalar_to_descriptor (&se, mem, attr);
|
|
need_assign = true;
|
|
}
|
|
gfc_add_block_to_block (&alloc_block, &se.pre);
|
|
|
|
/* In the front end, we represent the lock variable as pointer. However,
|
|
the FE only passes the pointer around and leaves the actual
|
|
representation to the library. Hence, we have to convert back to the
|
|
number of elements. */
|
|
if (compute_special_caf_types_size)
|
|
size = fold_build2_loc (input_location, TRUNC_DIV_EXPR, size_type_node,
|
|
size, TYPE_SIZE_UNIT (ptr_type_node));
|
|
|
|
gfc_allocate_using_caf_lib (&alloc_block, tmp, size, sub_caf_tree,
|
|
status, errmsg, errlen, caf_alloc_type);
|
|
if (need_assign)
|
|
gfc_add_modify (&alloc_block, mem, fold_convert (TREE_TYPE (mem),
|
|
gfc_conv_descriptor_data_get (tmp)));
|
|
if (status != NULL_TREE)
|
|
{
|
|
TREE_USED (label_finish) = 1;
|
|
tmp = build1_v (GOTO_EXPR, label_finish);
|
|
cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
status, build_zero_cst (TREE_TYPE (status)));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
gfc_unlikely (cond, PRED_FORTRAN_FAIL_ALLOC),
|
|
tmp, build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (&alloc_block, tmp);
|
|
}
|
|
}
|
|
else
|
|
gfc_allocate_using_malloc (&alloc_block, mem, size, status);
|
|
|
|
alloc = gfc_finish_block (&alloc_block);
|
|
|
|
/* If mem is not NULL, we issue a runtime error or set the
|
|
status variable. */
|
|
if (expr)
|
|
{
|
|
tree varname;
|
|
|
|
gcc_assert (expr->expr_type == EXPR_VARIABLE && expr->symtree);
|
|
varname = gfc_build_cstring_const (expr->symtree->name);
|
|
varname = gfc_build_addr_expr (pchar_type_node, varname);
|
|
|
|
error = gfc_trans_runtime_error (true, &expr->where,
|
|
"Attempting to allocate already"
|
|
" allocated variable '%s'",
|
|
varname);
|
|
}
|
|
else
|
|
error = gfc_trans_runtime_error (true, NULL,
|
|
"Attempting to allocate already allocated"
|
|
" variable");
|
|
|
|
if (status != NULL_TREE)
|
|
{
|
|
tree status_type = TREE_TYPE (status);
|
|
|
|
error = fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
status, build_int_cst (status_type, LIBERROR_ALLOCATION));
|
|
}
|
|
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, null_mem,
|
|
error, alloc);
|
|
gfc_add_expr_to_block (block, tmp);
|
|
}
|
|
|
|
|
|
/* Free a given variable. */
|
|
|
|
tree
|
|
gfc_call_free (tree var)
|
|
{
|
|
return build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_FREE),
|
|
1, fold_convert (pvoid_type_node, var));
|
|
}
|
|
|
|
|
|
/* Build a call to a FINAL procedure, which finalizes "var". */
|
|
|
|
static tree
|
|
gfc_build_final_call (gfc_typespec ts, gfc_expr *final_wrapper, gfc_expr *var,
|
|
bool fini_coarray, gfc_expr *class_size)
|
|
{
|
|
stmtblock_t block;
|
|
gfc_se se;
|
|
tree final_fndecl, array, size, tmp;
|
|
symbol_attribute attr;
|
|
|
|
gcc_assert (final_wrapper->expr_type == EXPR_VARIABLE);
|
|
gcc_assert (var);
|
|
|
|
gfc_start_block (&block);
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_expr (&se, final_wrapper);
|
|
final_fndecl = se.expr;
|
|
if (POINTER_TYPE_P (TREE_TYPE (final_fndecl)))
|
|
final_fndecl = build_fold_indirect_ref_loc (input_location, final_fndecl);
|
|
|
|
if (ts.type == BT_DERIVED)
|
|
{
|
|
tree elem_size;
|
|
|
|
gcc_assert (!class_size);
|
|
elem_size = gfc_typenode_for_spec (&ts);
|
|
elem_size = TYPE_SIZE_UNIT (elem_size);
|
|
size = fold_convert (gfc_array_index_type, elem_size);
|
|
|
|
gfc_init_se (&se, NULL);
|
|
se.want_pointer = 1;
|
|
if (var->rank)
|
|
{
|
|
se.descriptor_only = 1;
|
|
gfc_conv_expr_descriptor (&se, var);
|
|
array = se.expr;
|
|
}
|
|
else
|
|
{
|
|
gfc_conv_expr (&se, var);
|
|
gcc_assert (se.pre.head == NULL_TREE && se.post.head == NULL_TREE);
|
|
array = se.expr;
|
|
|
|
/* No copy back needed, hence set attr's allocatable/pointer
|
|
to zero. */
|
|
gfc_clear_attr (&attr);
|
|
gfc_init_se (&se, NULL);
|
|
array = gfc_conv_scalar_to_descriptor (&se, array, attr);
|
|
gcc_assert (se.post.head == NULL_TREE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gfc_expr *array_expr;
|
|
gcc_assert (class_size);
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_expr (&se, class_size);
|
|
gfc_add_block_to_block (&block, &se.pre);
|
|
gcc_assert (se.post.head == NULL_TREE);
|
|
size = se.expr;
|
|
|
|
array_expr = gfc_copy_expr (var);
|
|
gfc_init_se (&se, NULL);
|
|
se.want_pointer = 1;
|
|
if (array_expr->rank)
|
|
{
|
|
gfc_add_class_array_ref (array_expr);
|
|
se.descriptor_only = 1;
|
|
gfc_conv_expr_descriptor (&se, array_expr);
|
|
array = se.expr;
|
|
}
|
|
else
|
|
{
|
|
gfc_add_data_component (array_expr);
|
|
gfc_conv_expr (&se, array_expr);
|
|
gfc_add_block_to_block (&block, &se.pre);
|
|
gcc_assert (se.post.head == NULL_TREE);
|
|
array = se.expr;
|
|
|
|
if (!gfc_is_coarray (array_expr))
|
|
{
|
|
/* No copy back needed, hence set attr's allocatable/pointer
|
|
to zero. */
|
|
gfc_clear_attr (&attr);
|
|
gfc_init_se (&se, NULL);
|
|
array = gfc_conv_scalar_to_descriptor (&se, array, attr);
|
|
}
|
|
gcc_assert (se.post.head == NULL_TREE);
|
|
}
|
|
gfc_free_expr (array_expr);
|
|
}
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (array)))
|
|
array = gfc_build_addr_expr (NULL, array);
|
|
|
|
gfc_add_block_to_block (&block, &se.pre);
|
|
tmp = build_call_expr_loc (input_location,
|
|
final_fndecl, 3, array,
|
|
size, fini_coarray ? boolean_true_node
|
|
: boolean_false_node);
|
|
gfc_add_block_to_block (&block, &se.post);
|
|
gfc_add_expr_to_block (&block, tmp);
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
|
|
bool
|
|
gfc_add_comp_finalizer_call (stmtblock_t *block, tree decl, gfc_component *comp,
|
|
bool fini_coarray)
|
|
{
|
|
gfc_se se;
|
|
stmtblock_t block2;
|
|
tree final_fndecl, size, array, tmp, cond;
|
|
symbol_attribute attr;
|
|
gfc_expr *final_expr = NULL;
|
|
|
|
if (comp->ts.type != BT_DERIVED && comp->ts.type != BT_CLASS)
|
|
return false;
|
|
|
|
gfc_init_block (&block2);
|
|
|
|
if (comp->ts.type == BT_DERIVED)
|
|
{
|
|
if (comp->attr.pointer)
|
|
return false;
|
|
|
|
gfc_is_finalizable (comp->ts.u.derived, &final_expr);
|
|
if (!final_expr)
|
|
return false;
|
|
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_expr (&se, final_expr);
|
|
final_fndecl = se.expr;
|
|
size = gfc_typenode_for_spec (&comp->ts);
|
|
size = TYPE_SIZE_UNIT (size);
|
|
size = fold_convert (gfc_array_index_type, size);
|
|
|
|
array = decl;
|
|
}
|
|
else /* comp->ts.type == BT_CLASS. */
|
|
{
|
|
if (CLASS_DATA (comp)->attr.class_pointer)
|
|
return false;
|
|
|
|
gfc_is_finalizable (CLASS_DATA (comp)->ts.u.derived, &final_expr);
|
|
final_fndecl = gfc_class_vtab_final_get (decl);
|
|
size = gfc_class_vtab_size_get (decl);
|
|
array = gfc_class_data_get (decl);
|
|
}
|
|
|
|
if (comp->attr.allocatable
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
|
|
{
|
|
tmp = GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (array))
|
|
? gfc_conv_descriptor_data_get (array) : array;
|
|
cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
tmp, fold_convert (TREE_TYPE (tmp),
|
|
null_pointer_node));
|
|
}
|
|
else
|
|
cond = logical_true_node;
|
|
|
|
if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (array)))
|
|
{
|
|
gfc_clear_attr (&attr);
|
|
gfc_init_se (&se, NULL);
|
|
array = gfc_conv_scalar_to_descriptor (&se, array, attr);
|
|
gfc_add_block_to_block (&block2, &se.pre);
|
|
gcc_assert (se.post.head == NULL_TREE);
|
|
}
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (array)))
|
|
array = gfc_build_addr_expr (NULL, array);
|
|
|
|
if (!final_expr)
|
|
{
|
|
tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
final_fndecl,
|
|
fold_convert (TREE_TYPE (final_fndecl),
|
|
null_pointer_node));
|
|
cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR,
|
|
logical_type_node, cond, tmp);
|
|
}
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (final_fndecl)))
|
|
final_fndecl = build_fold_indirect_ref_loc (input_location, final_fndecl);
|
|
|
|
tmp = build_call_expr_loc (input_location,
|
|
final_fndecl, 3, array,
|
|
size, fini_coarray ? boolean_true_node
|
|
: boolean_false_node);
|
|
gfc_add_expr_to_block (&block2, tmp);
|
|
tmp = gfc_finish_block (&block2);
|
|
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp,
|
|
build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (block, tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add a call to the finalizer, using the passed *expr. Returns
|
|
true when a finalizer call has been inserted. */
|
|
|
|
bool
|
|
gfc_add_finalizer_call (stmtblock_t *block, gfc_expr *expr2)
|
|
{
|
|
tree tmp;
|
|
gfc_ref *ref;
|
|
gfc_expr *expr;
|
|
gfc_expr *final_expr = NULL;
|
|
gfc_expr *elem_size = NULL;
|
|
bool has_finalizer = false;
|
|
|
|
if (!expr2 || (expr2->ts.type != BT_DERIVED && expr2->ts.type != BT_CLASS))
|
|
return false;
|
|
|
|
if (expr2->ts.type == BT_DERIVED)
|
|
{
|
|
gfc_is_finalizable (expr2->ts.u.derived, &final_expr);
|
|
if (!final_expr)
|
|
return false;
|
|
}
|
|
|
|
/* If we have a class array, we need go back to the class
|
|
container. */
|
|
expr = gfc_copy_expr (expr2);
|
|
|
|
if (expr->ref && expr->ref->next && !expr->ref->next->next
|
|
&& expr->ref->next->type == REF_ARRAY
|
|
&& expr->ref->type == REF_COMPONENT
|
|
&& strcmp (expr->ref->u.c.component->name, "_data") == 0)
|
|
{
|
|
gfc_free_ref_list (expr->ref);
|
|
expr->ref = NULL;
|
|
}
|
|
else
|
|
for (ref = expr->ref; ref; ref = ref->next)
|
|
if (ref->next && ref->next->next && !ref->next->next->next
|
|
&& ref->next->next->type == REF_ARRAY
|
|
&& ref->next->type == REF_COMPONENT
|
|
&& strcmp (ref->next->u.c.component->name, "_data") == 0)
|
|
{
|
|
gfc_free_ref_list (ref->next);
|
|
ref->next = NULL;
|
|
}
|
|
|
|
if (expr->ts.type == BT_CLASS)
|
|
{
|
|
has_finalizer = gfc_is_finalizable (expr->ts.u.derived, NULL);
|
|
|
|
if (!expr2->rank && !expr2->ref && CLASS_DATA (expr2->symtree->n.sym)->as)
|
|
expr->rank = CLASS_DATA (expr2->symtree->n.sym)->as->rank;
|
|
|
|
final_expr = gfc_copy_expr (expr);
|
|
gfc_add_vptr_component (final_expr);
|
|
gfc_add_final_component (final_expr);
|
|
|
|
elem_size = gfc_copy_expr (expr);
|
|
gfc_add_vptr_component (elem_size);
|
|
gfc_add_size_component (elem_size);
|
|
}
|
|
|
|
gcc_assert (final_expr->expr_type == EXPR_VARIABLE);
|
|
|
|
tmp = gfc_build_final_call (expr->ts, final_expr, expr,
|
|
false, elem_size);
|
|
|
|
if (expr->ts.type == BT_CLASS && !has_finalizer)
|
|
{
|
|
tree cond;
|
|
gfc_se se;
|
|
|
|
gfc_init_se (&se, NULL);
|
|
se.want_pointer = 1;
|
|
gfc_conv_expr (&se, final_expr);
|
|
cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
se.expr, build_int_cst (TREE_TYPE (se.expr), 0));
|
|
|
|
/* For CLASS(*) not only sym->_vtab->_final can be NULL
|
|
but already sym->_vtab itself. */
|
|
if (UNLIMITED_POLY (expr))
|
|
{
|
|
tree cond2;
|
|
gfc_expr *vptr_expr;
|
|
|
|
vptr_expr = gfc_copy_expr (expr);
|
|
gfc_add_vptr_component (vptr_expr);
|
|
|
|
gfc_init_se (&se, NULL);
|
|
se.want_pointer = 1;
|
|
gfc_conv_expr (&se, vptr_expr);
|
|
gfc_free_expr (vptr_expr);
|
|
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
se.expr,
|
|
build_int_cst (TREE_TYPE (se.expr), 0));
|
|
cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR,
|
|
logical_type_node, cond2, cond);
|
|
}
|
|
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
cond, tmp, build_empty_stmt (input_location));
|
|
}
|
|
|
|
gfc_add_expr_to_block (block, tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* User-deallocate; we emit the code directly from the front-end, and the
|
|
logic is the same as the previous library function:
|
|
|
|
void
|
|
deallocate (void *pointer, GFC_INTEGER_4 * stat)
|
|
{
|
|
if (!pointer)
|
|
{
|
|
if (stat)
|
|
*stat = 1;
|
|
else
|
|
runtime_error ("Attempt to DEALLOCATE unallocated memory.");
|
|
}
|
|
else
|
|
{
|
|
free (pointer);
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
}
|
|
|
|
In this front-end version, status doesn't have to be GFC_INTEGER_4.
|
|
Moreover, if CAN_FAIL is true, then we will not emit a runtime error,
|
|
even when no status variable is passed to us (this is used for
|
|
unconditional deallocation generated by the front-end at end of
|
|
each procedure).
|
|
|
|
If a runtime-message is possible, `expr' must point to the original
|
|
expression being deallocated for its locus and variable name.
|
|
|
|
For coarrays, "pointer" must be the array descriptor and not its
|
|
"data" component.
|
|
|
|
COARRAY_DEALLOC_MODE gives the mode unregister coarrays. Available modes are
|
|
the ones of GFC_CAF_DEREGTYPE, -1 when the mode for deregistration is to be
|
|
analyzed and set by this routine, and -2 to indicate that a non-coarray is to
|
|
be deallocated. */
|
|
tree
|
|
gfc_deallocate_with_status (tree pointer, tree status, tree errmsg,
|
|
tree errlen, tree label_finish,
|
|
bool can_fail, gfc_expr* expr,
|
|
int coarray_dealloc_mode, tree add_when_allocated,
|
|
tree caf_token)
|
|
{
|
|
stmtblock_t null, non_null;
|
|
tree cond, tmp, error;
|
|
tree status_type = NULL_TREE;
|
|
tree token = NULL_TREE;
|
|
gfc_coarray_deregtype caf_dereg_type = GFC_CAF_COARRAY_DEREGISTER;
|
|
|
|
if (coarray_dealloc_mode >= GFC_CAF_COARRAY_ANALYZE)
|
|
{
|
|
if (flag_coarray == GFC_FCOARRAY_LIB)
|
|
{
|
|
if (caf_token)
|
|
token = caf_token;
|
|
else
|
|
{
|
|
tree caf_type, caf_decl = pointer;
|
|
pointer = gfc_conv_descriptor_data_get (caf_decl);
|
|
caf_type = TREE_TYPE (caf_decl);
|
|
STRIP_NOPS (pointer);
|
|
if (GFC_DESCRIPTOR_TYPE_P (caf_type))
|
|
token = gfc_conv_descriptor_token (caf_decl);
|
|
else if (DECL_LANG_SPECIFIC (caf_decl)
|
|
&& GFC_DECL_TOKEN (caf_decl) != NULL_TREE)
|
|
token = GFC_DECL_TOKEN (caf_decl);
|
|
else
|
|
{
|
|
gcc_assert (GFC_ARRAY_TYPE_P (caf_type)
|
|
&& GFC_TYPE_ARRAY_CAF_TOKEN (caf_type)
|
|
!= NULL_TREE);
|
|
token = GFC_TYPE_ARRAY_CAF_TOKEN (caf_type);
|
|
}
|
|
}
|
|
|
|
if (coarray_dealloc_mode == GFC_CAF_COARRAY_ANALYZE)
|
|
{
|
|
bool comp_ref;
|
|
if (expr && !gfc_caf_attr (expr, false, &comp_ref).coarray_comp
|
|
&& comp_ref)
|
|
caf_dereg_type = GFC_CAF_COARRAY_DEALLOCATE_ONLY;
|
|
// else do a deregister as set by default.
|
|
}
|
|
else
|
|
caf_dereg_type = (enum gfc_coarray_deregtype) coarray_dealloc_mode;
|
|
}
|
|
else if (flag_coarray == GFC_FCOARRAY_SINGLE)
|
|
pointer = gfc_conv_descriptor_data_get (pointer);
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer)))
|
|
pointer = gfc_conv_descriptor_data_get (pointer);
|
|
|
|
cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, pointer,
|
|
build_int_cst (TREE_TYPE (pointer), 0));
|
|
|
|
/* When POINTER is NULL, we set STATUS to 1 if it's present, otherwise
|
|
we emit a runtime error. */
|
|
gfc_start_block (&null);
|
|
if (!can_fail)
|
|
{
|
|
tree varname;
|
|
|
|
gcc_assert (expr && expr->expr_type == EXPR_VARIABLE && expr->symtree);
|
|
|
|
varname = gfc_build_cstring_const (expr->symtree->name);
|
|
varname = gfc_build_addr_expr (pchar_type_node, varname);
|
|
|
|
error = gfc_trans_runtime_error (true, &expr->where,
|
|
"Attempt to DEALLOCATE unallocated '%s'",
|
|
varname);
|
|
}
|
|
else
|
|
error = build_empty_stmt (input_location);
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
tree cond2;
|
|
|
|
status_type = TREE_TYPE (TREE_TYPE (status));
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
status, build_int_cst (TREE_TYPE (status), 0));
|
|
tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
fold_build1_loc (input_location, INDIRECT_REF,
|
|
status_type, status),
|
|
build_int_cst (status_type, 1));
|
|
error = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
cond2, tmp, error);
|
|
}
|
|
|
|
gfc_add_expr_to_block (&null, error);
|
|
|
|
/* When POINTER is not NULL, we free it. */
|
|
gfc_start_block (&non_null);
|
|
if (add_when_allocated)
|
|
gfc_add_expr_to_block (&non_null, add_when_allocated);
|
|
gfc_add_finalizer_call (&non_null, expr);
|
|
if (coarray_dealloc_mode == GFC_CAF_COARRAY_NOCOARRAY
|
|
|| flag_coarray != GFC_FCOARRAY_LIB)
|
|
{
|
|
tmp = build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_FREE), 1,
|
|
fold_convert (pvoid_type_node, pointer));
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
gfc_add_modify (&non_null, pointer, build_int_cst (TREE_TYPE (pointer),
|
|
0));
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
/* We set STATUS to zero if it is present. */
|
|
tree status_type = TREE_TYPE (TREE_TYPE (status));
|
|
tree cond2;
|
|
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
status,
|
|
build_int_cst (TREE_TYPE (status), 0));
|
|
tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
fold_build1_loc (input_location, INDIRECT_REF,
|
|
status_type, status),
|
|
build_int_cst (status_type, 0));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
gfc_unlikely (cond2, PRED_FORTRAN_FAIL_ALLOC),
|
|
tmp, build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree cond2, pstat = null_pointer_node;
|
|
|
|
if (errmsg == NULL_TREE)
|
|
{
|
|
gcc_assert (errlen == NULL_TREE);
|
|
errmsg = null_pointer_node;
|
|
errlen = build_zero_cst (integer_type_node);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (errlen != NULL_TREE);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (errmsg)))
|
|
errmsg = gfc_build_addr_expr (NULL_TREE, errmsg);
|
|
}
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
gcc_assert (status_type == integer_type_node);
|
|
pstat = status;
|
|
}
|
|
|
|
token = gfc_build_addr_expr (NULL_TREE, token);
|
|
gcc_assert (caf_dereg_type > GFC_CAF_COARRAY_ANALYZE);
|
|
tmp = build_call_expr_loc (input_location,
|
|
gfor_fndecl_caf_deregister, 5,
|
|
token, build_int_cst (integer_type_node,
|
|
caf_dereg_type),
|
|
pstat, errmsg, errlen);
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
|
|
/* It guarantees memory consistency within the same segment */
|
|
tmp = gfc_build_string_const (strlen ("memory")+1, "memory"),
|
|
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
|
|
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
|
|
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
|
|
ASM_VOLATILE_P (tmp) = 1;
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
|
|
if (status != NULL_TREE)
|
|
{
|
|
tree stat = build_fold_indirect_ref_loc (input_location, status);
|
|
tree nullify = fold_build2_loc (input_location, MODIFY_EXPR,
|
|
void_type_node, pointer,
|
|
build_int_cst (TREE_TYPE (pointer),
|
|
0));
|
|
|
|
TREE_USED (label_finish) = 1;
|
|
tmp = build1_v (GOTO_EXPR, label_finish);
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
stat, build_zero_cst (TREE_TYPE (stat)));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
gfc_unlikely (cond2, PRED_FORTRAN_REALLOC),
|
|
tmp, nullify);
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
}
|
|
else
|
|
gfc_add_modify (&non_null, pointer, build_int_cst (TREE_TYPE (pointer),
|
|
0));
|
|
}
|
|
|
|
return fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
|
|
gfc_finish_block (&null),
|
|
gfc_finish_block (&non_null));
|
|
}
|
|
|
|
|
|
/* Generate code for deallocation of allocatable scalars (variables or
|
|
components). Before the object itself is freed, any allocatable
|
|
subcomponents are being deallocated. */
|
|
|
|
tree
|
|
gfc_deallocate_scalar_with_status (tree pointer, tree status, tree label_finish,
|
|
bool can_fail, gfc_expr* expr,
|
|
gfc_typespec ts, bool coarray)
|
|
{
|
|
stmtblock_t null, non_null;
|
|
tree cond, tmp, error;
|
|
bool finalizable, comp_ref;
|
|
gfc_coarray_deregtype caf_dereg_type = GFC_CAF_COARRAY_DEREGISTER;
|
|
|
|
if (coarray && expr && !gfc_caf_attr (expr, false, &comp_ref).coarray_comp
|
|
&& comp_ref)
|
|
caf_dereg_type = GFC_CAF_COARRAY_DEALLOCATE_ONLY;
|
|
|
|
cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, pointer,
|
|
build_int_cst (TREE_TYPE (pointer), 0));
|
|
|
|
/* When POINTER is NULL, we set STATUS to 1 if it's present, otherwise
|
|
we emit a runtime error. */
|
|
gfc_start_block (&null);
|
|
if (!can_fail)
|
|
{
|
|
tree varname;
|
|
|
|
gcc_assert (expr && expr->expr_type == EXPR_VARIABLE && expr->symtree);
|
|
|
|
varname = gfc_build_cstring_const (expr->symtree->name);
|
|
varname = gfc_build_addr_expr (pchar_type_node, varname);
|
|
|
|
error = gfc_trans_runtime_error (true, &expr->where,
|
|
"Attempt to DEALLOCATE unallocated '%s'",
|
|
varname);
|
|
}
|
|
else
|
|
error = build_empty_stmt (input_location);
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
tree status_type = TREE_TYPE (TREE_TYPE (status));
|
|
tree cond2;
|
|
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
status, build_int_cst (TREE_TYPE (status), 0));
|
|
tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
fold_build1_loc (input_location, INDIRECT_REF,
|
|
status_type, status),
|
|
build_int_cst (status_type, 1));
|
|
error = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
cond2, tmp, error);
|
|
}
|
|
gfc_add_expr_to_block (&null, error);
|
|
|
|
/* When POINTER is not NULL, we free it. */
|
|
gfc_start_block (&non_null);
|
|
|
|
/* Free allocatable components. */
|
|
finalizable = gfc_add_finalizer_call (&non_null, expr);
|
|
if (!finalizable && ts.type == BT_DERIVED && ts.u.derived->attr.alloc_comp)
|
|
{
|
|
int caf_mode = coarray
|
|
? ((caf_dereg_type == GFC_CAF_COARRAY_DEALLOCATE_ONLY
|
|
? GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY : 0)
|
|
| GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
|
|
| GFC_STRUCTURE_CAF_MODE_IN_COARRAY)
|
|
: 0;
|
|
if (coarray && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer)))
|
|
tmp = gfc_conv_descriptor_data_get (pointer);
|
|
else
|
|
tmp = build_fold_indirect_ref_loc (input_location, pointer);
|
|
tmp = gfc_deallocate_alloc_comp (ts.u.derived, tmp, 0, caf_mode);
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
}
|
|
|
|
if (!coarray || flag_coarray == GFC_FCOARRAY_SINGLE)
|
|
{
|
|
tmp = build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_FREE), 1,
|
|
fold_convert (pvoid_type_node, pointer));
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
/* We set STATUS to zero if it is present. */
|
|
tree status_type = TREE_TYPE (TREE_TYPE (status));
|
|
tree cond2;
|
|
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
status,
|
|
build_int_cst (TREE_TYPE (status), 0));
|
|
tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type,
|
|
fold_build1_loc (input_location, INDIRECT_REF,
|
|
status_type, status),
|
|
build_int_cst (status_type, 0));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
cond2, tmp, build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree token;
|
|
tree pstat = null_pointer_node;
|
|
gfc_se se;
|
|
|
|
gfc_init_se (&se, NULL);
|
|
token = gfc_get_ultimate_alloc_ptr_comps_caf_token (&se, expr);
|
|
gcc_assert (token != NULL_TREE);
|
|
|
|
if (status != NULL_TREE && !integer_zerop (status))
|
|
{
|
|
gcc_assert (TREE_TYPE (TREE_TYPE (status)) == integer_type_node);
|
|
pstat = status;
|
|
}
|
|
|
|
tmp = build_call_expr_loc (input_location,
|
|
gfor_fndecl_caf_deregister, 5,
|
|
token, build_int_cst (integer_type_node,
|
|
caf_dereg_type),
|
|
pstat, null_pointer_node, integer_zero_node);
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
|
|
/* It guarantees memory consistency within the same segment. */
|
|
tmp = gfc_build_string_const (strlen ("memory")+1, "memory");
|
|
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
|
|
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
|
|
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
|
|
ASM_VOLATILE_P (tmp) = 1;
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
|
|
if (status != NULL_TREE)
|
|
{
|
|
tree stat = build_fold_indirect_ref_loc (input_location, status);
|
|
tree cond2;
|
|
|
|
TREE_USED (label_finish) = 1;
|
|
tmp = build1_v (GOTO_EXPR, label_finish);
|
|
cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
|
|
stat, build_zero_cst (TREE_TYPE (stat)));
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
gfc_unlikely (cond2, PRED_FORTRAN_REALLOC),
|
|
tmp, build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (&non_null, tmp);
|
|
}
|
|
}
|
|
|
|
return fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
|
|
gfc_finish_block (&null),
|
|
gfc_finish_block (&non_null));
|
|
}
|
|
|
|
/* Reallocate MEM so it has SIZE bytes of data. This behaves like the
|
|
following pseudo-code:
|
|
|
|
void *
|
|
internal_realloc (void *mem, size_t size)
|
|
{
|
|
res = realloc (mem, size);
|
|
if (!res && size != 0)
|
|
_gfortran_os_error ("Allocation would exceed memory limit");
|
|
|
|
return res;
|
|
} */
|
|
tree
|
|
gfc_call_realloc (stmtblock_t * block, tree mem, tree size)
|
|
{
|
|
tree res, nonzero, null_result, tmp;
|
|
tree type = TREE_TYPE (mem);
|
|
|
|
/* Only evaluate the size once. */
|
|
size = save_expr (fold_convert (size_type_node, size));
|
|
|
|
/* Create a variable to hold the result. */
|
|
res = gfc_create_var (type, NULL);
|
|
|
|
/* Call realloc and check the result. */
|
|
tmp = build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_REALLOC), 2,
|
|
fold_convert (pvoid_type_node, mem), size);
|
|
gfc_add_modify (block, res, fold_convert (type, tmp));
|
|
null_result = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
|
|
res, build_int_cst (pvoid_type_node, 0));
|
|
nonzero = fold_build2_loc (input_location, NE_EXPR, logical_type_node, size,
|
|
build_int_cst (size_type_node, 0));
|
|
null_result = fold_build2_loc (input_location, TRUTH_AND_EXPR, logical_type_node,
|
|
null_result, nonzero);
|
|
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
|
|
null_result,
|
|
trans_os_error_at (NULL,
|
|
"Error reallocating to %lu bytes",
|
|
fold_convert
|
|
(long_unsigned_type_node, size)),
|
|
build_empty_stmt (input_location));
|
|
gfc_add_expr_to_block (block, tmp);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Add an expression to another one, either at the front or the back. */
|
|
|
|
static void
|
|
add_expr_to_chain (tree* chain, tree expr, bool front)
|
|
{
|
|
if (expr == NULL_TREE || IS_EMPTY_STMT (expr))
|
|
return;
|
|
|
|
if (*chain)
|
|
{
|
|
if (TREE_CODE (*chain) != STATEMENT_LIST)
|
|
{
|
|
tree tmp;
|
|
|
|
tmp = *chain;
|
|
*chain = NULL_TREE;
|
|
append_to_statement_list (tmp, chain);
|
|
}
|
|
|
|
if (front)
|
|
{
|
|
tree_stmt_iterator i;
|
|
|
|
i = tsi_start (*chain);
|
|
tsi_link_before (&i, expr, TSI_CONTINUE_LINKING);
|
|
}
|
|
else
|
|
append_to_statement_list (expr, chain);
|
|
}
|
|
else
|
|
*chain = expr;
|
|
}
|
|
|
|
|
|
/* Add a statement at the end of a block. */
|
|
|
|
void
|
|
gfc_add_expr_to_block (stmtblock_t * block, tree expr)
|
|
{
|
|
gcc_assert (block);
|
|
add_expr_to_chain (&block->head, expr, false);
|
|
}
|
|
|
|
|
|
/* Add a statement at the beginning of a block. */
|
|
|
|
void
|
|
gfc_prepend_expr_to_block (stmtblock_t * block, tree expr)
|
|
{
|
|
gcc_assert (block);
|
|
add_expr_to_chain (&block->head, expr, true);
|
|
}
|
|
|
|
|
|
/* Add a block the end of a block. */
|
|
|
|
void
|
|
gfc_add_block_to_block (stmtblock_t * block, stmtblock_t * append)
|
|
{
|
|
gcc_assert (append);
|
|
gcc_assert (!append->has_scope);
|
|
|
|
gfc_add_expr_to_block (block, append->head);
|
|
append->head = NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Save the current locus. The structure may not be complete, and should
|
|
only be used with gfc_restore_backend_locus. */
|
|
|
|
void
|
|
gfc_save_backend_locus (locus * loc)
|
|
{
|
|
loc->lb = XCNEW (gfc_linebuf);
|
|
loc->lb->location = input_location;
|
|
loc->lb->file = gfc_current_backend_file;
|
|
}
|
|
|
|
|
|
/* Set the current locus. */
|
|
|
|
void
|
|
gfc_set_backend_locus (locus * loc)
|
|
{
|
|
gfc_current_backend_file = loc->lb->file;
|
|
input_location = gfc_get_location (loc);
|
|
}
|
|
|
|
|
|
/* Restore the saved locus. Only used in conjunction with
|
|
gfc_save_backend_locus, to free the memory when we are done. */
|
|
|
|
void
|
|
gfc_restore_backend_locus (locus * loc)
|
|
{
|
|
/* This only restores the information captured by gfc_save_backend_locus,
|
|
intentionally does not use gfc_get_location. */
|
|
input_location = loc->lb->location;
|
|
gfc_current_backend_file = loc->lb->file;
|
|
free (loc->lb);
|
|
}
|
|
|
|
|
|
/* Translate an executable statement. The tree cond is used by gfc_trans_do.
|
|
This static function is wrapped by gfc_trans_code_cond and
|
|
gfc_trans_code. */
|
|
|
|
static tree
|
|
trans_code (gfc_code * code, tree cond)
|
|
{
|
|
stmtblock_t block;
|
|
tree res;
|
|
|
|
if (!code)
|
|
return build_empty_stmt (input_location);
|
|
|
|
gfc_start_block (&block);
|
|
|
|
/* Translate statements one by one into GENERIC trees until we reach
|
|
the end of this gfc_code branch. */
|
|
for (; code; code = code->next)
|
|
{
|
|
if (code->here != 0)
|
|
{
|
|
res = gfc_trans_label_here (code);
|
|
gfc_add_expr_to_block (&block, res);
|
|
}
|
|
|
|
gfc_current_locus = code->loc;
|
|
gfc_set_backend_locus (&code->loc);
|
|
|
|
switch (code->op)
|
|
{
|
|
case EXEC_NOP:
|
|
case EXEC_END_BLOCK:
|
|
case EXEC_END_NESTED_BLOCK:
|
|
case EXEC_END_PROCEDURE:
|
|
res = NULL_TREE;
|
|
break;
|
|
|
|
case EXEC_ASSIGN:
|
|
res = gfc_trans_assign (code);
|
|
break;
|
|
|
|
case EXEC_LABEL_ASSIGN:
|
|
res = gfc_trans_label_assign (code);
|
|
break;
|
|
|
|
case EXEC_POINTER_ASSIGN:
|
|
res = gfc_trans_pointer_assign (code);
|
|
break;
|
|
|
|
case EXEC_INIT_ASSIGN:
|
|
if (code->expr1->ts.type == BT_CLASS)
|
|
res = gfc_trans_class_init_assign (code);
|
|
else
|
|
res = gfc_trans_init_assign (code);
|
|
break;
|
|
|
|
case EXEC_CONTINUE:
|
|
res = NULL_TREE;
|
|
break;
|
|
|
|
case EXEC_CRITICAL:
|
|
res = gfc_trans_critical (code);
|
|
break;
|
|
|
|
case EXEC_CYCLE:
|
|
res = gfc_trans_cycle (code);
|
|
break;
|
|
|
|
case EXEC_EXIT:
|
|
res = gfc_trans_exit (code);
|
|
break;
|
|
|
|
case EXEC_GOTO:
|
|
res = gfc_trans_goto (code);
|
|
break;
|
|
|
|
case EXEC_ENTRY:
|
|
res = gfc_trans_entry (code);
|
|
break;
|
|
|
|
case EXEC_PAUSE:
|
|
res = gfc_trans_pause (code);
|
|
break;
|
|
|
|
case EXEC_STOP:
|
|
case EXEC_ERROR_STOP:
|
|
res = gfc_trans_stop (code, code->op == EXEC_ERROR_STOP);
|
|
break;
|
|
|
|
case EXEC_CALL:
|
|
/* For MVBITS we've got the special exception that we need a
|
|
dependency check, too. */
|
|
{
|
|
bool is_mvbits = false;
|
|
|
|
if (code->resolved_isym)
|
|
{
|
|
res = gfc_conv_intrinsic_subroutine (code);
|
|
if (res != NULL_TREE)
|
|
break;
|
|
}
|
|
|
|
if (code->resolved_isym
|
|
&& code->resolved_isym->id == GFC_ISYM_MVBITS)
|
|
is_mvbits = true;
|
|
|
|
res = gfc_trans_call (code, is_mvbits, NULL_TREE,
|
|
NULL_TREE, false);
|
|
}
|
|
break;
|
|
|
|
case EXEC_CALL_PPC:
|
|
res = gfc_trans_call (code, false, NULL_TREE,
|
|
NULL_TREE, false);
|
|
break;
|
|
|
|
case EXEC_ASSIGN_CALL:
|
|
res = gfc_trans_call (code, true, NULL_TREE,
|
|
NULL_TREE, false);
|
|
break;
|
|
|
|
case EXEC_RETURN:
|
|
res = gfc_trans_return (code);
|
|
break;
|
|
|
|
case EXEC_IF:
|
|
res = gfc_trans_if (code);
|
|
break;
|
|
|
|
case EXEC_ARITHMETIC_IF:
|
|
res = gfc_trans_arithmetic_if (code);
|
|
break;
|
|
|
|
case EXEC_BLOCK:
|
|
res = gfc_trans_block_construct (code);
|
|
break;
|
|
|
|
case EXEC_DO:
|
|
res = gfc_trans_do (code, cond);
|
|
break;
|
|
|
|
case EXEC_DO_CONCURRENT:
|
|
res = gfc_trans_do_concurrent (code);
|
|
break;
|
|
|
|
case EXEC_DO_WHILE:
|
|
res = gfc_trans_do_while (code);
|
|
break;
|
|
|
|
case EXEC_SELECT:
|
|
res = gfc_trans_select (code);
|
|
break;
|
|
|
|
case EXEC_SELECT_TYPE:
|
|
res = gfc_trans_select_type (code);
|
|
break;
|
|
|
|
case EXEC_SELECT_RANK:
|
|
res = gfc_trans_select_rank (code);
|
|
break;
|
|
|
|
case EXEC_FLUSH:
|
|
res = gfc_trans_flush (code);
|
|
break;
|
|
|
|
case EXEC_SYNC_ALL:
|
|
case EXEC_SYNC_IMAGES:
|
|
case EXEC_SYNC_MEMORY:
|
|
res = gfc_trans_sync (code, code->op);
|
|
break;
|
|
|
|
case EXEC_LOCK:
|
|
case EXEC_UNLOCK:
|
|
res = gfc_trans_lock_unlock (code, code->op);
|
|
break;
|
|
|
|
case EXEC_EVENT_POST:
|
|
case EXEC_EVENT_WAIT:
|
|
res = gfc_trans_event_post_wait (code, code->op);
|
|
break;
|
|
|
|
case EXEC_FAIL_IMAGE:
|
|
res = gfc_trans_fail_image (code);
|
|
break;
|
|
|
|
case EXEC_FORALL:
|
|
res = gfc_trans_forall (code);
|
|
break;
|
|
|
|
case EXEC_FORM_TEAM:
|
|
res = gfc_trans_form_team (code);
|
|
break;
|
|
|
|
case EXEC_CHANGE_TEAM:
|
|
res = gfc_trans_change_team (code);
|
|
break;
|
|
|
|
case EXEC_END_TEAM:
|
|
res = gfc_trans_end_team (code);
|
|
break;
|
|
|
|
case EXEC_SYNC_TEAM:
|
|
res = gfc_trans_sync_team (code);
|
|
break;
|
|
|
|
case EXEC_WHERE:
|
|
res = gfc_trans_where (code);
|
|
break;
|
|
|
|
case EXEC_ALLOCATE:
|
|
res = gfc_trans_allocate (code);
|
|
break;
|
|
|
|
case EXEC_DEALLOCATE:
|
|
res = gfc_trans_deallocate (code);
|
|
break;
|
|
|
|
case EXEC_OPEN:
|
|
res = gfc_trans_open (code);
|
|
break;
|
|
|
|
case EXEC_CLOSE:
|
|
res = gfc_trans_close (code);
|
|
break;
|
|
|
|
case EXEC_READ:
|
|
res = gfc_trans_read (code);
|
|
break;
|
|
|
|
case EXEC_WRITE:
|
|
res = gfc_trans_write (code);
|
|
break;
|
|
|
|
case EXEC_IOLENGTH:
|
|
res = gfc_trans_iolength (code);
|
|
break;
|
|
|
|
case EXEC_BACKSPACE:
|
|
res = gfc_trans_backspace (code);
|
|
break;
|
|
|
|
case EXEC_ENDFILE:
|
|
res = gfc_trans_endfile (code);
|
|
break;
|
|
|
|
case EXEC_INQUIRE:
|
|
res = gfc_trans_inquire (code);
|
|
break;
|
|
|
|
case EXEC_WAIT:
|
|
res = gfc_trans_wait (code);
|
|
break;
|
|
|
|
case EXEC_REWIND:
|
|
res = gfc_trans_rewind (code);
|
|
break;
|
|
|
|
case EXEC_TRANSFER:
|
|
res = gfc_trans_transfer (code);
|
|
break;
|
|
|
|
case EXEC_DT_END:
|
|
res = gfc_trans_dt_end (code);
|
|
break;
|
|
|
|
case EXEC_OMP_ATOMIC:
|
|
case EXEC_OMP_BARRIER:
|
|
case EXEC_OMP_CANCEL:
|
|
case EXEC_OMP_CANCELLATION_POINT:
|
|
case EXEC_OMP_CRITICAL:
|
|
case EXEC_OMP_DISTRIBUTE:
|
|
case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
|
|
case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
|
|
case EXEC_OMP_DISTRIBUTE_SIMD:
|
|
case EXEC_OMP_DO:
|
|
case EXEC_OMP_DO_SIMD:
|
|
case EXEC_OMP_FLUSH:
|
|
case EXEC_OMP_MASTER:
|
|
case EXEC_OMP_ORDERED:
|
|
case EXEC_OMP_PARALLEL:
|
|
case EXEC_OMP_PARALLEL_DO:
|
|
case EXEC_OMP_PARALLEL_DO_SIMD:
|
|
case EXEC_OMP_PARALLEL_SECTIONS:
|
|
case EXEC_OMP_PARALLEL_WORKSHARE:
|
|
case EXEC_OMP_SECTIONS:
|
|
case EXEC_OMP_SIMD:
|
|
case EXEC_OMP_SINGLE:
|
|
case EXEC_OMP_TARGET:
|
|
case EXEC_OMP_TARGET_DATA:
|
|
case EXEC_OMP_TARGET_ENTER_DATA:
|
|
case EXEC_OMP_TARGET_EXIT_DATA:
|
|
case EXEC_OMP_TARGET_PARALLEL:
|
|
case EXEC_OMP_TARGET_PARALLEL_DO:
|
|
case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
|
|
case EXEC_OMP_TARGET_SIMD:
|
|
case EXEC_OMP_TARGET_TEAMS:
|
|
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
|
|
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
|
|
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
|
|
case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
|
|
case EXEC_OMP_TARGET_UPDATE:
|
|
case EXEC_OMP_TASK:
|
|
case EXEC_OMP_TASKGROUP:
|
|
case EXEC_OMP_TASKLOOP:
|
|
case EXEC_OMP_TASKLOOP_SIMD:
|
|
case EXEC_OMP_TASKWAIT:
|
|
case EXEC_OMP_TASKYIELD:
|
|
case EXEC_OMP_TEAMS:
|
|
case EXEC_OMP_TEAMS_DISTRIBUTE:
|
|
case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
|
|
case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
|
|
case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
|
|
case EXEC_OMP_WORKSHARE:
|
|
res = gfc_trans_omp_directive (code);
|
|
break;
|
|
|
|
case EXEC_OACC_CACHE:
|
|
case EXEC_OACC_WAIT:
|
|
case EXEC_OACC_UPDATE:
|
|
case EXEC_OACC_LOOP:
|
|
case EXEC_OACC_HOST_DATA:
|
|
case EXEC_OACC_DATA:
|
|
case EXEC_OACC_KERNELS:
|
|
case EXEC_OACC_KERNELS_LOOP:
|
|
case EXEC_OACC_PARALLEL:
|
|
case EXEC_OACC_PARALLEL_LOOP:
|
|
case EXEC_OACC_SERIAL:
|
|
case EXEC_OACC_SERIAL_LOOP:
|
|
case EXEC_OACC_ENTER_DATA:
|
|
case EXEC_OACC_EXIT_DATA:
|
|
case EXEC_OACC_ATOMIC:
|
|
case EXEC_OACC_DECLARE:
|
|
res = gfc_trans_oacc_directive (code);
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("gfc_trans_code(): Bad statement code");
|
|
}
|
|
|
|
gfc_set_backend_locus (&code->loc);
|
|
|
|
if (res != NULL_TREE && ! IS_EMPTY_STMT (res))
|
|
{
|
|
if (TREE_CODE (res) != STATEMENT_LIST)
|
|
SET_EXPR_LOCATION (res, input_location);
|
|
|
|
/* Add the new statement to the block. */
|
|
gfc_add_expr_to_block (&block, res);
|
|
}
|
|
}
|
|
|
|
/* Return the finished block. */
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
|
|
/* Translate an executable statement with condition, cond. The condition is
|
|
used by gfc_trans_do to test for IO result conditions inside implied
|
|
DO loops of READ and WRITE statements. See build_dt in trans-io.c. */
|
|
|
|
tree
|
|
gfc_trans_code_cond (gfc_code * code, tree cond)
|
|
{
|
|
return trans_code (code, cond);
|
|
}
|
|
|
|
/* Translate an executable statement without condition. */
|
|
|
|
tree
|
|
gfc_trans_code (gfc_code * code)
|
|
{
|
|
return trans_code (code, NULL_TREE);
|
|
}
|
|
|
|
|
|
/* This function is called after a complete program unit has been parsed
|
|
and resolved. */
|
|
|
|
void
|
|
gfc_generate_code (gfc_namespace * ns)
|
|
{
|
|
ompws_flags = 0;
|
|
if (ns->is_block_data)
|
|
{
|
|
gfc_generate_block_data (ns);
|
|
return;
|
|
}
|
|
|
|
gfc_generate_function_code (ns);
|
|
}
|
|
|
|
|
|
/* This function is called after a complete module has been parsed
|
|
and resolved. */
|
|
|
|
void
|
|
gfc_generate_module_code (gfc_namespace * ns)
|
|
{
|
|
gfc_namespace *n;
|
|
struct module_htab_entry *entry;
|
|
|
|
gcc_assert (ns->proc_name->backend_decl == NULL);
|
|
ns->proc_name->backend_decl
|
|
= build_decl (gfc_get_location (&ns->proc_name->declared_at),
|
|
NAMESPACE_DECL, get_identifier (ns->proc_name->name),
|
|
void_type_node);
|
|
entry = gfc_find_module (ns->proc_name->name);
|
|
if (entry->namespace_decl)
|
|
/* Buggy sourcecode, using a module before defining it? */
|
|
entry->decls->empty ();
|
|
entry->namespace_decl = ns->proc_name->backend_decl;
|
|
|
|
gfc_generate_module_vars (ns);
|
|
|
|
/* We need to generate all module function prototypes first, to allow
|
|
sibling calls. */
|
|
for (n = ns->contained; n; n = n->sibling)
|
|
{
|
|
gfc_entry_list *el;
|
|
|
|
if (!n->proc_name)
|
|
continue;
|
|
|
|
gfc_create_function_decl (n, false);
|
|
DECL_CONTEXT (n->proc_name->backend_decl) = ns->proc_name->backend_decl;
|
|
gfc_module_add_decl (entry, n->proc_name->backend_decl);
|
|
for (el = ns->entries; el; el = el->next)
|
|
{
|
|
DECL_CONTEXT (el->sym->backend_decl) = ns->proc_name->backend_decl;
|
|
gfc_module_add_decl (entry, el->sym->backend_decl);
|
|
}
|
|
}
|
|
|
|
for (n = ns->contained; n; n = n->sibling)
|
|
{
|
|
if (!n->proc_name)
|
|
continue;
|
|
|
|
gfc_generate_function_code (n);
|
|
}
|
|
}
|
|
|
|
|
|
/* Initialize an init/cleanup block with existing code. */
|
|
|
|
void
|
|
gfc_start_wrapped_block (gfc_wrapped_block* block, tree code)
|
|
{
|
|
gcc_assert (block);
|
|
|
|
block->init = NULL_TREE;
|
|
block->code = code;
|
|
block->cleanup = NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Add a new pair of initializers/clean-up code. */
|
|
|
|
void
|
|
gfc_add_init_cleanup (gfc_wrapped_block* block, tree init, tree cleanup)
|
|
{
|
|
gcc_assert (block);
|
|
|
|
/* The new pair of init/cleanup should be "wrapped around" the existing
|
|
block of code, thus the initialization is added to the front and the
|
|
cleanup to the back. */
|
|
add_expr_to_chain (&block->init, init, true);
|
|
add_expr_to_chain (&block->cleanup, cleanup, false);
|
|
}
|
|
|
|
|
|
/* Finish up a wrapped block by building a corresponding try-finally expr. */
|
|
|
|
tree
|
|
gfc_finish_wrapped_block (gfc_wrapped_block* block)
|
|
{
|
|
tree result;
|
|
|
|
gcc_assert (block);
|
|
|
|
/* Build the final expression. For this, just add init and body together,
|
|
and put clean-up with that into a TRY_FINALLY_EXPR. */
|
|
result = block->init;
|
|
add_expr_to_chain (&result, block->code, false);
|
|
if (block->cleanup)
|
|
result = build2_loc (input_location, TRY_FINALLY_EXPR, void_type_node,
|
|
result, block->cleanup);
|
|
|
|
/* Clear the block. */
|
|
block->init = NULL_TREE;
|
|
block->code = NULL_TREE;
|
|
block->cleanup = NULL_TREE;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Helper function for marking a boolean expression tree as unlikely. */
|
|
|
|
tree
|
|
gfc_unlikely (tree cond, enum br_predictor predictor)
|
|
{
|
|
tree tmp;
|
|
|
|
if (optimize)
|
|
{
|
|
cond = fold_convert (long_integer_type_node, cond);
|
|
tmp = build_zero_cst (long_integer_type_node);
|
|
cond = build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_EXPECT),
|
|
3, cond, tmp,
|
|
build_int_cst (integer_type_node,
|
|
predictor));
|
|
}
|
|
return cond;
|
|
}
|
|
|
|
|
|
/* Helper function for marking a boolean expression tree as likely. */
|
|
|
|
tree
|
|
gfc_likely (tree cond, enum br_predictor predictor)
|
|
{
|
|
tree tmp;
|
|
|
|
if (optimize)
|
|
{
|
|
cond = fold_convert (long_integer_type_node, cond);
|
|
tmp = build_one_cst (long_integer_type_node);
|
|
cond = build_call_expr_loc (input_location,
|
|
builtin_decl_explicit (BUILT_IN_EXPECT),
|
|
3, cond, tmp,
|
|
build_int_cst (integer_type_node,
|
|
predictor));
|
|
}
|
|
return cond;
|
|
}
|
|
|
|
|
|
/* Get the string length for a deferred character length component. */
|
|
|
|
bool
|
|
gfc_deferred_strlen (gfc_component *c, tree *decl)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN+9];
|
|
gfc_component *strlen;
|
|
if (!(c->ts.type == BT_CHARACTER
|
|
&& (c->ts.deferred || c->attr.pdt_string)))
|
|
return false;
|
|
sprintf (name, "_%s_length", c->name);
|
|
for (strlen = c; strlen; strlen = strlen->next)
|
|
if (strcmp (strlen->name, name) == 0)
|
|
break;
|
|
*decl = strlen ? strlen->backend_decl : NULL_TREE;
|
|
return strlen != NULL;
|
|
}
|