8sa1-gcc/gcc/config/pa/pa.h
Richard Kenner eabd32629b Initial revision
From-SVN: r792
1992-04-19 10:53:17 -04:00

1657 lines
60 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Definitions of target machine for GNU compiler, for the HP Spectrum.
Copyright (C) 1992 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@mcc.com)
and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
Software Science at the University of Utah.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
enum cmp_type /* comparison type */
{
CMP_SI, /* compare integers */
CMP_SF, /* compare single precision floats */
CMP_DF, /* compare double precision floats */
CMP_MAX /* max comparison type */
};
#define DBX_DEBUGGING_INFO
#define DEFAULT_GDB_EXTENSIONS 0
/* Defines for a K&R CC */
#ifdef OLD_CC
#define CPP_SPEC "%{!gnu:-nostdinc %{!nostinc:-I/usr/include}} \
%{gnu:%{nostdinc}} %{!gnu:-traditional} -Dvolatile=__volatile"
#define CC1_SPEC "%{!gnu:-traditional -fwritable-strings -fno-defer-pop} \
%{pg:} %{p:}"
#else
#define CC1_SPEC "%{pg:} %{p:}"
#endif
/* Brain-dead loader */
#ifdef hpux8
#define LINK_SPEC "-u main -a archive"
#else
#define LINK_SPEC "-u main"
#endif
/* Omit frame pointer at high optimization levels. */
#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
{ \
if (OPTIMIZE >= 2) \
flag_omit_frame_pointer = 1; \
}
/* These compiler options take an argument. We ignore -target for now. */
#define WORD_SWITCH_TAKES_ARG(STR) \
(!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
|| !strcmp (STR, "imacros") || !strcmp (STR, "target")\
|| !strcmp (STR, "aux-info"))
/* Names to predefine in the preprocessor for this target machine. */
#ifdef hpux
#define CPP_PREDEFINES "-Dhp9000s800 -D__hp9000s800 -Dhp9k8 -DPWB -Dhpux -Dunix -D_HPUX_SOURCE"
#else
#define CPP_PREDEFINES "-Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -D_HPUX_SOURCE -Dhp9000 -Dhp800 -Dspectrum -DREVARGV"
#endif
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (hp9000s800)");
/* Run-time compilation parameters selecting different hardware subsets.
On the the hp9k800, we don't yet need any. But ... */
extern int target_flags;
/* compile code for PA-RISC 1.1 ("Snake") */
#define TARGET_SNAKE (target_flags & 1)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{{"snake", 1}, \
{ "", TARGET_DEFAULT}}
#define TARGET_DEFAULT 0
/* target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on the hp9k8. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is lowest
numbered. */
/* For the hp9k800 we can decide arbitrarily
since there are no machine instructions for them. */
#define WORDS_BIG_ENDIAN 1
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Largest alignment required for any stack parameter, in bits.
Don't define this if it is equal to PARM_BOUNDARY */
#define MAX_PARM_BOUNDARY 64
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY (TARGET_SNAKE ? 512 : 64)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 64
/* Get around hp-ux assembler bug, and make strcpy of constants fast. */
#define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Generate calls to memcpy, memcmp and memset. */
#define TARGET_MEM_FUNCTIONS
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
The hp9k800 has 32 fullword registers and 16 floating point
registers. The floating point registers hold either word or double
word values.
16 additional registers are reserved.
PA-RISC 1.1 has 32 fullword registers and 32 floating point
registers. However, the floating point registers behave
differently: the left and right halves of registers are addressable
as 32 bit registers. So, we will set things up like the 68k which
has different fp units: define separate register sets for the 1.0
and 1.1 fp units. */
#define FIRST_PSEUDO_REGISTER 113 /* 32 + 16 1.0 regs + 64 1.1 regs + */
/* 1 shift reg */
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the hp9k800, these are:
Reg 0 = 0 (hardware). However, 0 is used for condition code,
so is not fixed.
Reg 1 = ADDIL target/Temporary (hardware).
Reg 2 = Return Pointer
Reg 3 = Unused
Reg 4 = Frame Pointer (Gnu)
Reg 5-18 = Preserved Registers
Reg 19-22 = Temporary Registers
Reg 23-26 = Temporary/Parameter Registers
Reg 27 = Global Data Pointer (hp)
Reg 28 = Temporary/???/Return Value register
Reg 29 = Temporary/Static Chain/Return Value register
Reg 30 = stack pointer
Reg 31 = Temporary/Millicode Return Pointer (hp)
Freg 0-3 = Status Registers
Freg 4-7 = Arguments/Return Value
Freg 8-11 = Temporary Registers
Freg 12-15 = Preserved Registers
Freg 16-31 = Reserved
On the Snake, fp regs are
Freg 0-3 = Status Registers
Freg 4L-7R = Arguments/Return Value
Freg 8L-11R = Temporary Registers
Freg 12L-15R = Preserved Registers
Freg 16L-31R = ?? Some partition of temporary and preserved; assume
preserved for now.
*/
#define FIXED_REGISTERS \
{0, 0, 1, 1, 1, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 1, 1, \
/* 1.0 fp registers */ \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
/* 1.1 fp registers */ \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
/* 1.0 fp registers */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
/* 1.1 fp registers */ \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1}
/* Make sure everything's fine if we *don't* have a given processor.
This assumes that putting a register in fixed_regs will keep the
compiler's mitts completely off it. We don't bother to zero it out
of register classes.
Make register 27 global for now. We'll undo this kludge after 2.1. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
int i; \
HARD_REG_SET x; \
global_regs[27] = 1; \
if (!TARGET_SNAKE) \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
else \
{ \
COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
if (TEST_HARD_REG_BIT (x, i)) \
fixed_regs[i] = call_used_regs[i] = 1; \
} \
}
/* Allocated the call used registers first. This should minimize
the number of registers that need to be saved (as call used
registers will generally not be allocated across a call).
It is possible that it would be wise to allocate the floating point
registers before the regular ones, but I doubt it matters. Same
comment for parameters versus normal. */
#define REG_ALLOC_ORDER \
{19, 20, 21, 22, 23, 24, 25, 26, \
27, 28, 29, 30, 31, 40, 41, 42, \
43, 36, 37, 38, 39, \
56, 57, 58, 59, 60, 61, 62, 63, \
64, 65, 66, 67, 68, 69, 70, 71, \
72, 73, 74, 75, 76, 77, 78, 79, \
80, 81, 82, 83, 84, 85, 86, 87, \
88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, 100, 101, 102, 103, \
104, 105, 106, 107, 108, 109, 110, 111,\
5, 6, 7, \
8, 9, 10, 11, 12, 13, 14, 15, \
16, 17, 18, 44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, \
1, \
2, 3, 4, 32, 33, 34, 35, 0, \
112}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the hp9k800, ordinary registers hold 32 bits worth;
The floating point registers are 64 bits wide. Snake fp regs are 32
bits wide */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((REGNO) < 32 || (REGNO) >= 48) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the hp9k800, the cpu registers can hold any mode. We
force this to be an even register is it cannot hold the full mode. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
: (REGNO) < 32 ? ((GET_MODE_SIZE (MODE) <= 4) ? 1 : ((REGNO) & 1) == 0)\
: (REGNO) < 48 ? (GET_MODE_SIZE (MODE) >= 4) \
: (GET_MODE_SIZE (MODE) > 4 ? ((REGNO) & 1) == 0 \
: GET_MODE_SIZE (MODE) == 4))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* the hp9k800 pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 30
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 4
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
extern int leaf_function;
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* C statement to store the difference between the frame pointer
and the stack pointer values immediately after the function prologue.
Note, we always pretend that this is a leaf function because if
it's not, there's no point in trying to eliminate the
frame pointer. If it is a leaf function, we guessed right! */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
do { int __fsize = compute_frame_size (get_frame_size (), 1) + 32; \
(VAR) = -(TARGET_SNAKE ? (__fsize + 63) & ~63 : __fsize); } while (0)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 4
/* Register in which static-chain is passed to a function. */
/* ??? */
#define STATIC_CHAIN_REGNUM 29
/* Register which holds offset table for position-independent
data references. */
#define PIC_OFFSET_TABLE_REGNUM 18
#define INITIALIZE_PIC initialize_pic ()
#define FINALIZE_PIC finalize_pic ()
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 28
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The hp9k800 has four kinds of registers: general regs, 1.0 fp regs,
1.1 fp regs, and the high 1.1 fp regs, to which the operands of
fmpyadd and fmpysub are restricted. */
enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FP_REGS, HI_SNAKE_FP_REGS,
SNAKE_FP_REGS, FP_OR_SNAKE_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", "HI_SNAKE_FP_REGS",\
"SNAKE_FP_REGS", "FP_OR_SNAKE_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. Register 0, the "condition code" register,
is in no class. */
#define REG_CLASS_CONTENTS \
{ {0, 0, 0, 0}, /* NO_REGS */ \
{0x2, 0, 0, 0}, /* R1_REGS */ \
{-2, 0, 0, 0}, /* GENERAL_REGS */ \
{0, 0xffff, 0, 0}, /* FP_REGS */ \
{0, 0, 0xffff0000, 0xffff}, /* HI_SNAKE_FP_REGS */ \
{0, 0xffff0000, ~0, 0xffff}, /* SNAKE_FP_REGS */ \
{0, ~0, ~0, 0xffff}, /* FP_OR_SNAKE_FP_REGS */\
{0, 0, 0, 0x10000}, /* SHIFT_REGS */ \
{-2, ~0, ~0, 0x1ffff}} /* ALL_REGS */
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == 0 ? NO_REGS \
: (REGNO) == 1 ? R1_REGS \
: (REGNO) < 32 ? GENERAL_REGS \
: (REGNO) < 48 ? FP_REGS \
: (REGNO) < 80 ? SNAKE_FP_REGS \
: (REGNO) < 112 ? HI_SNAKE_FP_REGS \
: SHIFT_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'r' ? GENERAL_REGS : \
((C) == 'f' ? (!TARGET_SNAKE ? FP_REGS : NO_REGS) : \
((C) == 'x' ? (TARGET_SNAKE ? SNAKE_FP_REGS : NO_REGS) : \
((C) == 'y' ? (TARGET_SNAKE ? HI_SNAKE_FP_REGS : NO_REGS) :\
((C) == 'q' ? SHIFT_REGS : \
((C) == 'a' ? R1_REGS : NO_REGS))))))
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
HP9000/800 immediate field sizes:
5 bits: scalar/floating short loads + stores; deposit; conditional branch
11 bits: arithmetic immediate, compare immediate
14 bits: loads and stores; load offset
21 bits: load and add immediate long (but this isn't really used)
(there are also 13-bit and 26-bit immediates but only in system instructions)
`I' is used for the 11 bit constants.
`J' is used for the 14 bit constants.
`K' is used for unsigned 5 bit constants (extract/deposit operands).
`L' is used for the 5 bit constants.
`M' is used for 0. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (unsigned) ((VALUE) + 0x400) < 0x800 \
: (C) == 'J' ? (unsigned) ((VALUE) + 0x2000) < 0x4000 \
: (C) == 'K' ? (unsigned) (VALUE) < 0x20 \
: (C) == 'L' ? (unsigned) ((VALUE) + 0x10) < 0x20 \
: (C) == 'M' ? (VALUE) == 0 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((CLASS) == FP_REGS ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD */
/* Believe it or not. */
#define ARGS_GROW_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 8
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the hp9k800, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Offset of first parameter from the argument pointer register value.
This value will be negated because the arguments grow down.
Also note that on STACK_GROWS_UPWARD machines (such as this one)
this is the distance from the frame pointer to the end of the first
argument, not it's beginning. To get the real offset of the first
argument, the size of the argument must be added.
??? Have to check on this.*/
/* #define FIRST_PARM_OFFSET(FNDECL) 36 */
#define FIRST_PARM_OFFSET(FNDECL) -32
/* Absolute value of offset from top-of-stack address to location to store the
function parameter if it can't go in a register.
Addresses for following parameters are computed relative to this one. */
/* #define FIRST_PARM_CALLER_OFFSET(FNDECL) 36 */
#define FIRST_PARM_CALLER_OFFSET(FNDECL) -32
/* When a parameter is passed in a register, stack space is still
allocated for it. */
#define REG_PARM_STACK_SPACE(DECL) 16
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* Keep the stack pointer constant throughout the function.
This is both an optimization and a necessity: longjmp
doesn't behave itself when the stack pointer moves within
the function! */
#define ACCUMULATE_OUTGOING_ARGS
/* The weird HPPA calling conventions require a minimum of 48 bytes on
the stack: 16 bytes for register saves, and 32 bytes for magic.
This is the difference between the logical top of stack and the
actual sp. */
#define STACK_POINTER_OFFSET -32
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
/* Value is 1 if returning from a function call automatically
pops the arguments described by the number-of-args field in the call.
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name. */
#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
/* On the hp9k800 the value is found in register(s) 28(-29), unless
the mode is SF or DF. Then the value is returned in fr4 (36, ) */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, TYPE_MODE (VALTYPE), ((TYPE_MODE (VALTYPE) == SFmode ||\
TYPE_MODE (VALTYPE) == DFmode) ? \
(TARGET_SNAKE ? 56 : 36) : 28))
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
FUNCTION_VALUE(VALTYPE, FUNC)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx (REG, MODE, (MODE == SFmode || MODE == DFmode ?\
(TARGET_SNAKE ? 56 : 36) : 28))
/* 1 if N is a possible register number for a function value
as seen by the caller. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 28 || (N) == 36 || (N) == 56)
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) (((N) >= 23 && (N) <= 26) || \
((N) >= 36 && (N) <= 39) || \
((N) >= 56 && (N) <= 63))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the hp9k800, this is a single integer, which is a number of words
of arguments scanned so far (including the invisible argument,
if any, which holds the structure-value-address).
Thus 4 or more means all following args should go on the stack. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
*/
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
/* Figure out the size in words of the function argument. */
#define FUNCTION_ARG_SIZE(MODE, TYPE) \
((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(((((CUM) & 01) && (TYPE) != 0 && TYPE_ALIGN (TYPE) > BITS_PER_WORD)\
&& (CUM)++), (CUM) += FUNCTION_ARG_SIZE(MODE, TYPE))
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the hp9k800 the first four words of args are normally in registers
and the rest are pushed. But any arg that won't entirely fit in regs
is pushed. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(4 >= ((CUM) + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
? gen_rtx (REG, \
(MODE), \
((MODE) == SFmode ? \
(TARGET_SNAKE ? 56 + 2 * (CUM) : 36 + (CUM)) : \
((MODE) == DFmode ? ((CUM) ? \
(TARGET_SNAKE ? 62 : 39) : \
(TARGET_SNAKE ? 58 : 37)) : \
(27 - (CUM) - FUNCTION_ARG_SIZE ((MODE), (TYPE)))))) \
: 0)
/* Define where a function finds its arguments.
This would be different from FUNCTION_ARG if we had register windows. */
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
/* If defined, a C expression that gives the alignment boundary, in
bits, of an argument with the specified mode and type. If it is
not defined, `PARM_BOUNDARY' is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN(TYPE)) \
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT(MODE)))
/* Arguments larger than eight bytes are passed by invisible reference */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) ? int_size_in_bytes (TYPE) > 8 : GET_MODE_SIZE (MODE) > 8)
extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
extern enum cmp_type hppa_branch_type;
/* Output the label for a function definition. */
#ifdef HP_FP_ARG_DESCRIPTOR_REVERSED
#define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \
fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0)
#else
#define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \
fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0)
#endif
#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
do { tree fntype = DECL_RESULT (DECL); \
tree tree_type = TREE_TYPE (DECL); \
tree parm; \
int i; \
if (TREE_PUBLIC (DECL)) \
{ \
fputs ("\t.EXPORT ", FILE); assemble_name (FILE, NAME); \
fputs (",PRIV_LEV=3", FILE); \
for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \
parm = TREE_CHAIN (parm), i++) \
{ \
if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode) \
fprintf (FILE, ",ARGW%d=FR", i); \
else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode) \
{ \
if (i == 0 || i == 2) \
{ \
ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i); \
} \
else if (i == 1) \
{ \
ASM_DOUBLE_ARG_DESCRIPTORS (FILE, ++i, ++i); \
} \
} \
else \
fprintf (FILE, ",ARGW%d=GR", i); \
} \
/* anonymous args */ \
if (TYPE_ARG_TYPES (tree_type) != 0 \
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\
!= void_type_node)) \
{ \
for (; i < 4; i++) \
fprintf (FILE, ",ARGW%d=GR", i); \
} \
if (TYPE_MODE (fntype) == DFmode) \
fprintf (FILE, ",RTNVAL=FR"); \
else if (TYPE_MODE (fntype) == SFmode) \
fprintf (FILE, ",RTNVAL=FU"); \
else if (fntype != void_type_node) \
fprintf (FILE, ",RTNVAL=GR"); \
fputs ("\n", FILE); \
} \
ASM_OUTPUT_LABEL (FILE, NAME);} while (0)
/* Two views of the size of the current frame. */
extern int actual_fsize;
extern int apparent_fsize;
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
/* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
of memory. If any fpu reg is used in the function, we allocate
such a block here, at the bottom of the frame, just in case it's needed.
If this function is a leaf procedure, then we may choose not
to do a "save" insn. The decision about whether or not
to do this is made in regclass.c. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
output_function_prologue (FILE, SIZE, leaf_function)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry.
Because HPUX _mcount is so different, we actually emit the
profiling code in function_prologue. This just stores LABELNO for
that. */
#ifdef hp800 /* Don't have the proper libraries yet */
#define FUNCTION_PROFILER(FILE, LABELNO) {}
#else
#define PROFILE_BEFORE_PROLOGUE
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
#endif
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
extern int may_call_alloca;
extern int current_function_pretend_args_size;
#define EXIT_IGNORE_STACK \
(get_frame_size () != 0 \
|| current_function_calls_alloca || current_function_outgoing_args_size)
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
/* This declaration is needed due to traditional/ANSI
incompatibilities which cannot be #ifdefed away
because they occur inside of macros. Sigh. */
extern union tree_node *current_function_decl;
#define FUNCTION_EPILOGUE(FILE, SIZE) \
output_function_epilogue (FILE, SIZE, leaf_function)
#define DELAY_SLOTS_FOR_EPILOGUE 1
#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
eligible_for_epilogue_delay (trial, slots_filled)
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
#define TRAMPOLINE_TEMPLATE(FILE) {}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 0
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function.
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
(to store insns). This is a bit excessive. Perhaps a different
mechanism would be better here. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) {}
/* Emit code for a call to builtin_saveregs. We must emit USE insns which
reference the 4 integer arg registers and 4 fp arg registers.
Ordinarily they are not call used registers, but they are for
_builtin_saveregs, so we must make this explicit. */
#if 0
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
(emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 23))), \
(TARGET_SNAKE ? \
(emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 56))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 58))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 60))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 62)))) : \
(emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 36))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 37))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 38))), \
emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DFmode, 39))))))
#endif
#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) (rtx)hppa_builtin_saveregs (ARGLIST)
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT
#define HAVE_POST_DECREMENT
#define HAVE_PRE_DECREMENT
#define HAVE_PRE_INCREMENT
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
#define REGNO_OK_FOR_FP_P(REGNO) \
(((REGNO) >= 32 || reg_renumber[REGNO] >= 32)\
&& ((REGNO) <= 111 || reg_renumber[REGNO] <= 111))
/* Now macros that check whether X is a register and also,
strictly, whether it is in a specified class.
These macros are specific to the the hp9k800, and may be used only
in code for printing assembler insns and in conditions for
define_optimization. */
/* 1 if X is an fp register. */
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
/*#define LEGITIMATE_CONSTANT_P(X) (1)*/
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) != CONST_DOUBLE)
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
/* Optional extra constraints for this machine. Borrowed from sparc.h.
For the HPPA, `Q' means that this is a memory operand but not a
symbolic memory operand. Note that an unassigned pseudo register
is such a memory operand. Needed because reload will generate
these things in insns and then not re-recognize the insns, causing
constrain_operands to fail.
`R' handles the LO_SUM which can be an address for `Q'.
`S' handles constraints for calls.
`T' is for fp load and store addresses.*/
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) > FIRST_PSEUDO_REGISTER))
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) && (REGNO (X) < 32 || REGNO (X) > FIRST_PSEUDO_REGISTER))
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? \
((GET_CODE (OP) == MEM \
&& memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
&& ! symbolic_memory_operand (OP, VOIDmode))) \
: ((C) == 'R' ? \
(GET_CODE (OP) == LO_SUM \
&& GET_CODE (XEXP (OP, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
: ((C) == 'S' \
? CONSTANT_P (OP) || memory_address_p (Pmode, OP)\
: ((C) == 'T' ? short_memory_operand (OP, VOIDmode) : 0))))\
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define EXTRA_CONSTRAINT(OP, C) \
(((C) == 'Q' || (C) == 'T') ? \
(GET_CODE (OP) == REG ? \
(REGNO (OP) >= FIRST_PSEUDO_REGISTER \
&& reg_renumber[REGNO (OP)] < 0) \
: GET_CODE (OP) == MEM) \
: ((C) == 'R' ? \
(GET_CODE (OP) == LO_SUM \
&& GET_CODE (XEXP (OP, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
: (CONSTANT_P (OP) \
|| (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
|| strict_memory_address_p (Pmode, OP))))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On the hp9k800, the actual legitimate addresses must be
REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
But we can treat a SYMBOL_REF as legitimate if it is part of this
function's constant-pool, because such addresses can actually
be output as REG+SMALLINT. */
#define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
#define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
#define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
#define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
#define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
#define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
#define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
#define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
#define FITS_14_BITS(X) \
(GET_CODE (X) == CONST_INT && INT_14_BITS (X))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
|| GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
&& REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
goto ADDR; \
else if (GET_CODE (X) == PLUS) \
{ \
rtx base = 0, index; \
if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
{ \
if (GET_CODE (XEXP (X, 1)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
goto ADDR; \
else if (flag_pic == 1 \
&& GET_CODE (XEXP (X, 1)) != REG \
&& GET_CODE (XEXP (X, 1)) != LO_SUM \
&& GET_CODE (XEXP (X, 1)) != MEM) \
goto ADDR; \
} \
else if (REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
base = XEXP (X, 0), index = XEXP (X, 1); \
else if (REG_P (XEXP (X, 1)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
base = XEXP (X, 1), index = XEXP (X, 0); \
if (base != 0) \
if (GET_CODE (index) == CONST_INT \
&& ((INT_14_BITS (index) && (MODE) != SFmode && (MODE) != DFmode) \
|| INT_5_BITS (index))) \
goto ADDR; \
} \
else if (GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_P (XEXP (X, 1)) \
&& (MODE) != SFmode \
&& (MODE) != DFmode) \
goto ADDR; \
else if (GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == SUBREG \
&& GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
&& REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
&& CONSTANT_P (XEXP (X, 1)) \
&& (MODE) != SFmode \
&& (MODE) != DFmode) \
goto ADDR; \
else if (GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST_INT \
&& INT_14_BITS (X))) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output. */
/* On the hp9k800, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
(X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
copy_to_mode_reg (SImode, XEXP (X, 1))); \
if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
(X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
copy_to_mode_reg (SImode, XEXP (X, 0))); \
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
(X) = gen_rtx (PLUS, SImode, XEXP (X, 1), \
force_operand (XEXP (X, 0), 0)); \
if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
(X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
force_operand (XEXP (X, 1), 0)); \
if (memory_address_p (MODE, X)) \
goto WIN; \
if (flag_pic) (X) = legitimize_pic_address (X, MODE, gen_reg_rtx (Pmode));\
else if ((GET_CODE (X) == SYMBOL_REF & read_only_operand (X)) \
|| GET_CODE (X) == LABEL_REF) \
(X) = gen_rtx (LO_SUM, Pmode, \
copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
else if (GET_CODE (X) == SYMBOL_REF) \
(X) = gen_rtx (LO_SUM, Pmode, \
copy_to_mode_reg (Pmode, \
gen_rtx (PLUS, Pmode, \
copy_to_mode_reg (Pmode,\
gen_rtx (HIGH, Pmode, X)),\
gen_rtx (REG, Pmode, 27))),\
X); \
if (memory_address_p (MODE, X)) \
goto WIN;}
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
if (GET_CODE (ADDR) == PRE_DEC \
|| GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC \
|| GET_CODE (ADDR) == POST_INC) \
goto LABEL
/* Define this macro if references to a symbol must be treated
differently depending on something about the variable or
function named by the symbol (such as what section it is in).
The macro definition, if any, is executed immediately after the
rtl for DECL or other node is created.
The value of the rtl will be a `mem' whose address is a
`symbol_ref'.
The usual thing for this macro to do is to a flag in the
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
name string in the `symbol_ref' (if one bit is not enough
information).
On the PA-RISC we use this to indicate if a symbol is in text or
data space. */
#define ENCODE_SECTION_INFO(DECL)\
do \
{ \
if (TREE_CODE (DECL) == FUNCTION_DECL) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
else \
{ \
rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
if (RTX_UNCHANGING_P (rtl) && !MEM_VOLATILE_P (rtl) \
&& !flag_pic) \
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
} \
} \
while (0)
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
/* #define CASE_VECTOR_PC_RELATIVE */
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 8
/* Define if normal loads of shorter-than-word items from memory clears
the rest of the bigs in the register. */
#define BYTE_LOADS_ZERO_EXTEND
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 1
/* Do not break .stabs pseudos into continuations. */
#define DBX_CONTIN_LENGTH 0
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* When a prototype says `char' or `short', really pass an `int'. */
#define PROMOTE_PROTOTYPES
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* Add any extra modes needed to represent the condition code.
HPPA floating comparisons produce condition codes. */
#define EXTRA_CC_MODES CCFPmode
/* Define the names for the modes specified above. */
#define EXTRA_CC_NAMES "CCFP"
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point, CCFPmode
should be used. CC_NOOVmode should be used when the first operand is a
PLUS, MINUS, or NEG. CCmode should be used when no special processing is
needed. */
#define SELECT_CC_MODE(OP,X) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE SImode
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (INTVAL (RTX) == 0) return 0; \
if (INT_14_BITS (RTX)) return 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 2; \
case CONST_DOUBLE: \
return 4;
#define ADDRESS_COST(RTX) \
(GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
/* Compute extra cost of moving data between one register class
and another. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
(((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
|| (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. The purpose for the cost of MULT is to encourage
`synth_mult' to find a synthetic multiply when reasonable. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case MULT: \
return COSTS_N_INSNS (20); \
case DIV: \
case UDIV: \
case MOD: \
case UMOD: \
return COSTS_N_INSNS (60); \
case PLUS: /* this includes shNadd insns */ \
return COSTS_N_INSNS (1) + 2;
/* Conditional branches with empty delay slots have a length of two. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
if (GET_CODE (INSN) == CALL_INSN \
|| (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
LENGTH += 1;
/* Control the assembler format that we output. */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) \
do { fprintf (FILE, "\t.SPACE $PRIVATE$\n\
\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\
\t.SPACE $TEXT$\n\
\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\
\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\
\t.IMPORT $global$,DATA\n\
\t.IMPORT $$dyncall,MILLICODE\n");\
if (profile_flag)\
fprintf (FILE, "\t.IMPORT __gcc_mcount, CODE\n");\
} while (0)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* We don't yet know how to identify GCC to HP series 800. */
#define ASM_IDENTIFY_GCC(FILE) fprintf (FILE, "; gcc_compiled.:\n")
/* Output before code. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n"
/* Output before writable data. */
/* Supposedly the assembler rejects the command if there is no tab! */
#define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
"%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
"%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
"%fr0", "%fr1", "%fr2", "%fr3", "%fr4", "%fr5", "%fr6", "%fr7", \
"%fr8", "%fr9", "%fr10", "%fr11", "%fr12", "%fr13", "%fr14", "%fr15", \
"%fr0", "%fr0R", "%fr1", "%fr1R", "%fr2", "%fr2R", "%fr3", "%fr3R", \
"%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
"%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R",\
"%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R",\
"%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R",\
"%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R",\
"%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R",\
"%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R",\
"SAR"}
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); fputc ('\n', FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
do { fputs ("\t.IMPORT ", FILE); \
assemble_name (FILE, NAME); \
if (TREE_CODE (DECL) == VAR_DECL && ! TREE_READONLY (DECL)) \
fputs (",DATA\n", FILE); \
else \
fputs (",CODE\n", FILE); \
} while (0)
/* hpux ld doesn't output the object file name, or anything useful at
all, to indicate the start of an object file's symbols. This screws
up gdb, so we'll output this magic cookie at the end of an object
file with debugging symbols */
#define ASM_FILE_END(FILE) \
do { if (write_symbols == DBX_DEBUG)\
{ fputs (TEXT_SECTION_ASM_OP, FILE);\
fputs (".stabs \"end_file.\",4,0,0,Ltext_end\nLtext_end:\n",\
(FILE));\
}\
} while (0)
/* The bogus HP assembler requires ALL external references to be
"imported", even library calls. They look a bit different, so
here's this macro. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \
do { fputs ("\t.IMPORT ", FILE); \
assemble_name (FILE, XSTR ((RTL), 0)); \
fputs (",CODE\n", FILE); \
} while (0)
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do { fputs ("\t.EXPORT ", FILE); assemble_name (FILE, NAME); \
fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fprintf (FILE, "%s", NAME)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s$%04d\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s$%04d", PREFIX, NUM)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { union { double d; int i[2];} __u; \
__u.d = (VALUE); \
fprintf (FILE, "\t; .double %.20e\n\t.word %d ; = 0x%x\n\t.word %d ; = 0x%x\n", \
__u.d, __u.i[0], __u.i[0], __u.i[1], __u.i[1]); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { union { float f; int i;} __u; \
__u.f = (VALUE); \
fprintf (FILE, "\t; .float %.12e\n\t.word %d ; = 0x%x\n", __u.f, __u.i, __u.i); \
} while (0)
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fprintf (FILE, "\t.word "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* Likewise for `short' and `char' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fprintf (FILE, "\t.half "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fprintf (FILE, "\t.byte "), \
output_addr_const (FILE, (VALUE)), \
fprintf (FILE, "\n"))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
output_ascii ((FILE), (P), (SIZE))
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tstws,mb %s,4(0,30)\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tldws,ma -4(0,30),%s\n", reg_names[REGNO])
/* This is how to output an element of a case-vector that is absolute.
Note that this method makes filling these branch delay slots
virtually impossible. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
/* This is how to output an element of a case-vector that is relative.
(the hp9k800 does not use such vectors,
but we must define this macro anyway.) */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
fprintf (FILE, "\tword L%d-L%d\n", VALUE, REL)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.blockz %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( data_section (), \
assemble_name ((FILE), (NAME)), \
fputs ("\t.comm ", (FILE)), \
fprintf ((FILE), "%d\n", (ROUNDED)))
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( data_section (), \
fprintf ((FILE), "\t.align %d\n", (SIZE) <= 4 ? 4 : 8), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), "\n\t.blockz %d\n", (ROUNDED)))
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null.
On the hp9k800, the CODE can be `r', meaning this is a register-only operand
and an immediate zero should be represented as `r0'.
Several % codes are defined:
O an operation
C compare conditions
N extract conditions
M modifier to handle preincrement addressing for memory refs.
F modifier to handle preincrement addressing for fp memory refs */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
{ register rtx addr = ADDR; \
register rtx base; \
int offset; \
switch (GET_CODE (addr)) \
{ \
case REG: \
fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \
break; \
case PLUS: \
if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
else \
abort (); \
fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \
break; \
case LO_SUM: \
fputs ("R'", FILE); \
output_global_address (FILE, XEXP (addr, 1)); \
fputs ("(", FILE); \
output_operand (XEXP (addr, 0), 0); \
fputs (")", FILE); \
break; \
default: \
output_addr_const (FILE, addr); \
}}
#define SMALL_INT(OP) INT_14_BITS (OP)
/* Define functions in hppa.c and used in insn-output.c. */
extern char *output_move_double ();
extern char *output_fp_move_double ();
extern char *output_block_move ();
extern char *output_scc_insn ();
extern char *output_cbranch ();
extern char *output_return ();
extern char *output_floatsisf2 ();
extern char *output_floatsidf2 ();
extern char *output_mul_insn ();
extern char *output_div_insn ();
extern char *output_mod_insn ();
extern void output_arg_descriptor ();
extern void output_global_address ();
extern struct rtx_def *legitimize_pic_address ();