b0106b2463
* pdp11-protos.h: New file. * pdp11.c: Include tm_p.h. Add static prototypes. Fix compile time warnings. * pdp11.h: Move prototypes to pdp11-protos.h. Fix compile time warnings. * pdp11.md: Likewise. * 2bsd.h: Likewise. From-SVN: r31429
1402 lines
46 KiB
C++
1402 lines
46 KiB
C++
/* Definitions of target machine for GNU compiler, for the pdp-11
|
||
Copyright (C) 1994, 95, 96, 98, 99, 2000 Free Software Foundation, Inc.
|
||
Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* check whether load_fpu_reg or not */
|
||
#define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
|
||
#define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
|
||
#define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
|
||
#define CPU_REG_P(x) ((x)<8)
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dpdp11"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
#define TARGET_VERSION fprintf (stderr, " (pdp11)");
|
||
|
||
|
||
/* Generate DBX debugging information. */
|
||
|
||
/* #define DBX_DEBUGGING_INFO */
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets.
|
||
*/
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of triplets in braces,
|
||
each triplet being { "NAME", VALUE, DOC }
|
||
where VALUE is the bits to set or minus the bits to clear and DOC
|
||
is the documentation for --help (NULL if intentionally undocumented).
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "fpu", 1, "Use hardware floating point" }, \
|
||
{ "soft-float", -1, "Do not use hardware floating point" }, \
|
||
/* return float result in ac0 */ \
|
||
{ "ac0", 2, "Return floating point results in ac0" }, \
|
||
{ "no-ac0", -2, "Return floating point results in memory" },\
|
||
/* is 11/40 */ \
|
||
{ "40", 4, "Generate code for an 11/40" }, \
|
||
{ "no-40", -4, "" }, \
|
||
/* is 11/45 */ \
|
||
{ "45", 8, "Generate code for an 11/45" }, \
|
||
{ "no-45", -8, "" }, \
|
||
/* is 11/10 */ \
|
||
{ "10", -12, "Generate code for an 11/10" }, \
|
||
/* use movstrhi for bcopy */ \
|
||
{ "bcopy", 16, NULL }, \
|
||
{ "bcopy-builtin", -16, NULL }, \
|
||
/* use 32 bit for int */ \
|
||
{ "int32", 32, "Use 32 bit int" }, \
|
||
{ "no-int16", 32, "Use 32 bit int" }, \
|
||
{ "int16", -32, "Use 16 bit int" }, \
|
||
{ "no-int32", -32, "Use 16 bit int" }, \
|
||
/* use 32 bit for float */ \
|
||
{ "float32", 64, "Use 32 bit float" }, \
|
||
{ "no-float64", 64, "Use 32 bit float" }, \
|
||
{ "float64", -64, "Use 64 bit float" }, \
|
||
{ "no-float32", -64, "Use 64 bit float" }, \
|
||
/* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
|
||
{ "abshi", 128, NULL }, \
|
||
{ "no-abshi", -128, NULL }, \
|
||
/* is branching expensive - on a PDP, it's actually really cheap */ \
|
||
/* this is just to play around and check what code gcc generates */ \
|
||
{ "branch-expensive", 256, NULL }, \
|
||
{ "branch-cheap", -256, NULL }, \
|
||
/* split instruction and data memory? */ \
|
||
{ "split", 1024, "Target has split I&D" }, \
|
||
{ "no-split", -1024, "Target does not have split I&D" }, \
|
||
/* UNIX assembler syntax? */ \
|
||
{ "unix-asm", 2048, "Use UNIX assembler syntax" }, \
|
||
{ "dec-asm", -2048, "Use DEC assembler syntax" }, \
|
||
/* default */ \
|
||
{ "", TARGET_DEFAULT, NULL} \
|
||
}
|
||
|
||
#define TARGET_DEFAULT (1 | 8 | 128 | TARGET_UNIX_ASM_DEFAULT)
|
||
|
||
#define TARGET_FPU (target_flags & 1)
|
||
#define TARGET_SOFT_FLOAT (!TARGET_FPU)
|
||
|
||
#define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
|
||
#define TARGET_NO_AC0 (! TARGET_AC0)
|
||
|
||
#define TARGET_45 (target_flags & 8)
|
||
#define TARGET_40_PLUS ((target_flags & 4) || (target_flags & 8))
|
||
#define TARGET_10 (! TARGET_40_PLUS)
|
||
|
||
#define TARGET_BCOPY_BUILTIN (! (target_flags & 16))
|
||
|
||
#define TARGET_INT16 (! TARGET_INT32)
|
||
#define TARGET_INT32 (target_flags & 32)
|
||
|
||
#define TARGET_FLOAT32 (target_flags & 64)
|
||
#define TARGET_FLOAT64 (! TARGET_FLOAT32)
|
||
|
||
#define TARGET_ABSHI_BUILTIN (target_flags & 128)
|
||
|
||
#define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
|
||
#define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)
|
||
|
||
#define TARGET_SPLIT (target_flags & 1024)
|
||
#define TARGET_NOSPLIT (! TARGET_SPLIT)
|
||
|
||
#define TARGET_UNIX_ASM (target_flags & 2048)
|
||
#define TARGET_UNIX_ASM_DEFAULT 0
|
||
|
||
#define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
|
||
|
||
|
||
|
||
/* TYPE SIZES */
|
||
#define CHAR_TYPE_SIZE 8
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
|
||
#define LONG_TYPE_SIZE 32
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
/* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
|
||
of saving core for huge arrays - the definitions are
|
||
already in md - but floats can never reside in
|
||
an FPU register - we keep the FPU in double float mode
|
||
all the time !! */
|
||
#define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
#define LONG_DOUBLE_TYPE_SIZE 64
|
||
|
||
/* machine types from ansi */
|
||
#define SIZE_TYPE "unsigned int" /* definition of size_t */
|
||
|
||
/* is used in cexp.y - we don't have target_flags there,
|
||
so just give default definition
|
||
|
||
hope it does not come back to haunt us! */
|
||
#define WCHAR_TYPE "int" /* or long int???? */
|
||
#define WCHAR_TYPE_SIZE 16
|
||
|
||
#define PTRDIFF_TYPE "int"
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is numbered. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
/* This is a machine with 16-bit registers */
|
||
#define BITS_PER_WORD 16
|
||
|
||
/* Width of a word, in units (bytes).
|
||
|
||
UNITS OR BYTES - seems like units */
|
||
#define UNITS_PER_WORD 2
|
||
|
||
/* Maximum sized of reasonable data type
|
||
DImode or Dfmode ...*/
|
||
#define MAX_FIXED_MODE_SIZE 64
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 16
|
||
|
||
/* Allocation boundary (in *bits*) for storing pointers in memory. */
|
||
#define POINTER_BOUNDARY 16
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 16
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 16
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 16
|
||
|
||
/* Define this if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
we have 8 integer registers, plus 6 float
|
||
(don't use scratch float !) */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 14
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
|
||
On the pdp, these are:
|
||
Reg 7 = pc;
|
||
reg 6 = sp;
|
||
reg 5 = fp; not necessarily!
|
||
*/
|
||
|
||
/* don't let them touch fp regs for the time being !*/
|
||
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 0, 1, 1, \
|
||
0, 0, 0, 0, 0, 0 }
|
||
|
||
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
|
||
/* don't know about fp */
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 0, 0, 0, 0, 1, 1, \
|
||
0, 0, 0, 0, 0, 0 }
|
||
|
||
|
||
/* Make sure everything's fine if we *don't* have an FPU.
|
||
This assumes that putting a register in fixed_regs will keep the
|
||
compiler's mitts completely off it. We don't bother to zero it out
|
||
of register classes. Also fix incompatible register naming with
|
||
the UNIX assembler.
|
||
*/
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
{ \
|
||
int i; \
|
||
HARD_REG_SET x; \
|
||
if (!TARGET_FPU) \
|
||
{ \
|
||
COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
|
||
if (TEST_HARD_REG_BIT (x, i)) \
|
||
fixed_regs[i] = call_used_regs[i] = 1; \
|
||
} \
|
||
\
|
||
if (TARGET_AC0) \
|
||
call_used_regs[8] = 1; \
|
||
if (TARGET_UNIX_ASM) \
|
||
{ \
|
||
/* Change names of FPU registers for the UNIX assembler. */ \
|
||
reg_names[8] = "fr0"; \
|
||
reg_names[9] = "fr1"; \
|
||
reg_names[10] = "fr2"; \
|
||
reg_names[11] = "fr3"; \
|
||
reg_names[12] = "fr4"; \
|
||
reg_names[13] = "fr5"; \
|
||
} \
|
||
}
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
*/
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((REGNO < 8)? \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
|
||
:1)
|
||
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On the pdp, the cpu registers can hold any mode - check alignment
|
||
|
||
FPU can only hold DF - simplifies life!
|
||
*/
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
(((REGNO) < 8)? \
|
||
((GET_MODE_BITSIZE(MODE) <= 16) \
|
||
|| (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
|
||
:(MODE) == DFmode)
|
||
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) 0
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* the pdp11 pc overloaded on a register that the compiler knows about. */
|
||
#define PC_REGNUM 7
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 6
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 5
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c.
|
||
*/
|
||
|
||
#define FRAME_POINTER_REQUIRED 0
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 5
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
/* ??? - i don't want to give up a reg for this! */
|
||
#define STATIC_CHAIN_REGNUM 4
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function.
|
||
let's make it an invisible first argument!!! */
|
||
|
||
#define STRUCT_VALUE 0
|
||
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The pdp has a couple of classes:
|
||
|
||
MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
|
||
(even numbered do 32 bit multiply)
|
||
LMUL_REGS long multiply registers (even numbered regs )
|
||
(don't need them, all 32 bit regs are even numbered!)
|
||
GENERAL_REGS is all cpu
|
||
LOAD_FPU_REGS is the first four cpu regs, they are easier to load
|
||
NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
|
||
FPU_REGS is all fpu regs
|
||
*/
|
||
|
||
enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* have to allow this till cmpsi/tstsi are fixed in a better way !! */
|
||
#define SMALL_REGISTER_CLASSES 1
|
||
|
||
/* Since GENERAL_REGS is the same class as ALL_REGS,
|
||
don't give it a different class number; just make it an alias. */
|
||
|
||
/* #define GENERAL_REGS ALL_REGS */
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
|
||
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'f' ? FPU_REGS : \
|
||
((C) == 'd' ? MUL_REGS : \
|
||
((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
|
||
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
I bits 31-16 0000
|
||
J bits 15-00 0000
|
||
K completely random 32 bit
|
||
L,M,N -1,1,0 respectively
|
||
O where doing shifts in sequence is faster than
|
||
one big shift
|
||
*/
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
|
||
: (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
|
||
: (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
|
||
&& ((VALUE) & 0x0000ffff) != 0) \
|
||
: (C) == 'L' ? ((VALUE) == 1) \
|
||
: (C) == 'M' ? ((VALUE) == -1) \
|
||
: (C) == 'N' ? ((VALUE) == 0) \
|
||
: (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
|
||
|
||
|
||
/* Letters in the range `Q' through `U' may be defined in a
|
||
machine-dependent fashion to stand for arbitrary operand types.
|
||
The machine description macro `EXTRA_CONSTRAINT' is passed the
|
||
operand as its first argument and the constraint letter as its
|
||
second operand.
|
||
|
||
`Q' is for memory references using take more than 1 instruction.
|
||
`R' is for memory references which take 1 word for the instruction. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP,CODE) \
|
||
((GET_CODE (OP) != MEM) ? 0 \
|
||
: !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
|
||
: ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
|
||
: ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class.
|
||
|
||
loading is easier into LOAD_FPU_REGS than FPU_REGS! */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
(((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
|
||
|
||
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
|
||
(((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
|
||
1 \
|
||
)
|
||
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame.
|
||
*/
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the pdp11, the stack is on an even boundary */
|
||
#define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
|
||
|
||
/* current_first_parm_offset stores the # of registers pushed on the
|
||
stack */
|
||
extern int current_first_parm_offset;
|
||
|
||
/* Offset of first parameter from the argument pointer register value.
|
||
For the pdp11, this is non-zero to account for the return address.
|
||
1 - return address
|
||
2 - frame pointer (always saved, even when not used!!!!)
|
||
-- chnage some day !!!:q!
|
||
|
||
*/
|
||
#define FIRST_PARM_OFFSET(FNDECL) 4
|
||
|
||
/* Value is 1 if returning from a function call automatically
|
||
pops the arguments described by the number-of-args field in the call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
#define BASE_RETURN_VALUE_REG(MODE) \
|
||
((MODE) == DFmode ? 8 : 0)
|
||
|
||
/* On the pdp11 the value is found in R0 (or ac0???
|
||
not without FPU!!!! ) */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
|
||
|
||
/* and the called function leaves it in the first register.
|
||
Difference only on machines with register windows. */
|
||
|
||
#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, BASE_RETURN_VALUE_REG(MODE))
|
||
|
||
/* 1 if N is a possible register number for a function value
|
||
as seen by the caller.
|
||
On the pdp, the first "output" reg is the only register thus used.
|
||
|
||
maybe ac0 ? - as option someday! */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
|
||
|
||
/* should probably return DImode and DFmode in memory,lest
|
||
we fill up all regs!
|
||
|
||
have to, else we crash - exception: maybe return result in
|
||
ac0 if DFmode and FPU present - compatibility problem with
|
||
libraries for non-floating point ...
|
||
*/
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
(TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))
|
||
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
- not used on pdp */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
*/
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
...., the offset normally starts at 0, but starts at 1 word
|
||
when the function gets a structure-value-address as an
|
||
invisible first argument. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.)
|
||
|
||
*/
|
||
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE)) \
|
||
: (int_size_in_bytes (TYPE))))
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* Define where a function finds its arguments.
|
||
This would be different from FUNCTION_ARG if we had register windows. */
|
||
/*
|
||
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
|
||
FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
|
||
*/
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* This macro generates the assembly code for function entry. */
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
output_function_prologue(FILE, SIZE);
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
abort ();
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
extern int may_call_alloca;
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
*/
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
output_function_epilogue(FILE, SIZE);
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
|
||
{ \
|
||
int offset, regno; \
|
||
offset = get_frame_size(); \
|
||
for (regno = 0; regno < 8; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 2; \
|
||
for (regno = 8; regno < 14; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 8; \
|
||
/* offset -= 2; no fp on stack frame */ \
|
||
(DEPTH_VAR) = offset; \
|
||
}
|
||
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define HAVE_POST_INCREMENT 1
|
||
/* #define HAVE_POST_DECREMENT 0 */
|
||
|
||
#define HAVE_PRE_DECREMENT 1
|
||
/* #define HAVE_PRE_INCREMENT 0 */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
*/
|
||
|
||
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) (1)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) (1)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) (1)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
*/
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
|
||
{ \
|
||
rtx xfoob; \
|
||
\
|
||
/* accept (R0) */ \
|
||
if (GET_CODE (operand) == REG \
|
||
&& REG_OK_FOR_BASE_P(operand)) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept @#address */ \
|
||
if (CONSTANT_ADDRESS_P (operand)) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept X(R0) */ \
|
||
if (GET_CODE (operand) == PLUS \
|
||
&& GET_CODE (XEXP (operand, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept -(R0) */ \
|
||
if (GET_CODE (operand) == PRE_DEC \
|
||
&& GET_CODE (XEXP (operand, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept (R0)+ */ \
|
||
if (GET_CODE (operand) == POST_INC \
|
||
&& GET_CODE (XEXP (operand, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
|
||
goto ADDR; \
|
||
\
|
||
/* handle another level of indirection ! */ \
|
||
if (GET_CODE(operand) != MEM) \
|
||
goto fail; \
|
||
\
|
||
xfoob = XEXP (operand, 0); \
|
||
\
|
||
/* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
|
||
/* also forbidden for float, because we have to handle this */ \
|
||
/* in output_move_double and/or output_move_quad() - we could */ \
|
||
/* do it, but currently it's not worth it!!! */ \
|
||
/* now that DFmode cannot go into CPU register file, */ \
|
||
/* maybe I should allow float ... */ \
|
||
/* but then I have to handle memory-to-memory moves in movdf ?? */ \
|
||
\
|
||
if (GET_MODE_BITSIZE(mode) > 16) \
|
||
goto fail; \
|
||
\
|
||
/* accept @(R0) - which is @0(R0) */ \
|
||
if (GET_CODE (xfoob) == REG \
|
||
&& REG_OK_FOR_BASE_P(xfoob)) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept @address */ \
|
||
if (CONSTANT_ADDRESS_P (xfoob)) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept @X(R0) */ \
|
||
if (GET_CODE (xfoob) == PLUS \
|
||
&& GET_CODE (XEXP (xfoob, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept @-(R0) */ \
|
||
if (GET_CODE (xfoob) == PRE_DEC \
|
||
&& GET_CODE (XEXP (xfoob, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
|
||
goto ADDR; \
|
||
\
|
||
/* accept @(R0)+ */ \
|
||
if (GET_CODE (xfoob) == POST_INC \
|
||
&& GET_CODE (XEXP (xfoob, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
|
||
goto ADDR; \
|
||
\
|
||
/* anything else is invalid */ \
|
||
fail: ; \
|
||
}
|
||
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
|
||
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the pdp this is for predec/postinc */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE HImode
|
||
|
||
/* Define this if a raw index is all that is needed for a
|
||
`tablejump' insn. */
|
||
#define CASE_TAKES_INDEX_RAW
|
||
|
||
/* Define as C expression which evaluates to nonzero if the tablejump
|
||
instruction expects the table to contain offsets from the address of the
|
||
table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE 1 */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction.
|
||
*/
|
||
|
||
#define MOVE_MAX 2
|
||
|
||
/* Zero extension is faster if the target is known to be zero */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by byte is slow and undesirable. -
|
||
*/
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Do not break .stabs pseudos into continuations. */
|
||
#define DBX_CONTIN_LENGTH 0
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
|
||
/* Add any extra modes needed to represent the condition code.
|
||
|
||
CCFPmode is used for FPU, but should we use a separate reg? */
|
||
#define EXTRA_CC_MODES CC(CCFPmode, "CCFP")
|
||
|
||
/* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
|
||
return the mode to be used for the comparison. For floating-point, CCFPmode
|
||
should be used. */
|
||
|
||
#define SELECT_CC_MODE(OP,X,Y) \
|
||
(GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
/* #define STORE_FLAG_VALUE 1 */
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode HImode
|
||
|
||
/* A function address in a call instruction
|
||
is a word address (for indexing purposes)
|
||
so give the MEM rtx a word's mode. */
|
||
#define FUNCTION_MODE HImode
|
||
|
||
/* Define this if addresses of constant functions
|
||
shouldn't be put through pseudo regs where they can be cse'd.
|
||
Desirable on machines where ordinary constants are expensive
|
||
but a CALL with constant address is cheap. */
|
||
/* #define NO_FUNCTION_CSE */
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch.
|
||
|
||
-1, 0, 1 are cheaper for add, sub ...
|
||
*/
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL(RTX) == 0 \
|
||
|| INTVAL(RTX) == -1 \
|
||
|| INTVAL(RTX) == 1) \
|
||
return 0; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
/* twice as expensive as REG */ \
|
||
return 2; \
|
||
case CONST_DOUBLE: \
|
||
/* twice (or 4 times) as expensive as 16 bit */ \
|
||
return 4;
|
||
|
||
/* cost of moving one register class to another */
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) register_move_cost(CLASS1, CLASS2)
|
||
|
||
/* Tell emit-rtl.c how to initialize special values on a per-function base. */
|
||
extern int optimize;
|
||
extern struct rtx_def *cc0_reg_rtx;
|
||
|
||
#define CC_STATUS_MDEP rtx
|
||
|
||
#define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
#define CC_IN_FPU 04000
|
||
|
||
/* Do UPDATE_CC if EXP is a set, used in
|
||
NOTICE_UPDATE_CC
|
||
|
||
floats only do compare correctly, else nullify ...
|
||
|
||
get cc0 out soon ...
|
||
*/
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
{ if (GET_CODE (EXP) == SET) \
|
||
{ \
|
||
notice_update_cc_on_set(EXP, INSN); \
|
||
} \
|
||
else if (GET_CODE (EXP) == PARALLEL \
|
||
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
|
||
{ \
|
||
notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
|
||
} \
|
||
else if (GET_CODE (EXP) == CALL) \
|
||
{ /* all bets are off */ CC_STATUS_INIT; } \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
|
||
&& cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
|
||
{ \
|
||
printf ("here!\n"); \
|
||
cc_status.value2 = 0; \
|
||
} \
|
||
}
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#if 0
|
||
#define ASM_FILE_START(FILE) \
|
||
( \
|
||
fprintf (FILE, "\t.data\n"), \
|
||
fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
|
||
/* do we need reg def's R0 = %0 etc ??? */ \
|
||
)
|
||
#else
|
||
#define ASM_FILE_START(FILE)
|
||
#endif
|
||
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON ""
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF ""
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP "\t.text\n"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP "\t.data\n"
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
|
||
"ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs("\n", FILE); } while (0)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX "_"
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s_%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s_%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
fprintf (FILE, "\tdouble %.20e\n", (VALUE))
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
fprintf (FILE, "\tfloat %.12e\n", (VALUE))
|
||
|
||
/* Likewise for `short' and `char' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, TARGET_UNIX_ASM ? "\t" : "\t.word "), \
|
||
output_addr_const_pdp11 (FILE, (VALUE)), \
|
||
fprintf (FILE, " /*short*/\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.byte "), \
|
||
output_addr_const_pdp11 (FILE, (VALUE)), \
|
||
fprintf (FILE, " /* char */\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte.
|
||
This won't actually be used since we define ASM_OUTPUT_CHAR.
|
||
*/
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte %o\n", (VALUE))
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
|
||
output_ascii (FILE, P, SIZE)
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
Don't define this if it is not supported. */
|
||
|
||
/* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes.
|
||
|
||
who needs this????
|
||
*/
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
switch (LOG) \
|
||
{ \
|
||
case 0: \
|
||
break; \
|
||
case 1: \
|
||
fprintf (FILE, "\t.even\n"); \
|
||
break; \
|
||
default: \
|
||
abort (); \
|
||
}
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.=.+ %o\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fprintf ((FILE), ".globl "), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), "\n"), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ": .=.+ %o\n", (ROUNDED)) \
|
||
)
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ":\t.=.+ %o\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "["
|
||
#define ASM_CLOSE_PAREN "]"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null.
|
||
|
||
*/
|
||
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ if (CODE == '#') fprintf (FILE, "#"); \
|
||
else if (GET_CODE (X) == REG) \
|
||
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
|
||
else if (GET_CODE (X) == MEM) \
|
||
output_address (XEXP (X, 0)); \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
|
||
{ union { double d; int i[2]; } u; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
fprintf (FILE, "#%.20e", u.d); } \
|
||
else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
|
||
|
||
/* Print a memory address as an operand to reference that memory location. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
print_operand_address (FILE, ADDR)
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
( \
|
||
fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
|
||
)
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
( \
|
||
fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
|
||
)
|
||
|
||
|
||
#define ASM_IDENTIFY_GCC(FILE) \
|
||
fprintf(FILE, "gcc_compiled:\n")
|
||
|
||
/* trampoline - how should i do it in separate i+d ?
|
||
have some allocate_trampoline magic???
|
||
|
||
the following should work for shared I/D: */
|
||
|
||
/* lets see whether this works as trampoline:
|
||
MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
|
||
JMP FUNCTION 0x0058 0x0000 <- FUNCTION
|
||
*/
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
if (TARGET_SPLIT) \
|
||
abort(); \
|
||
\
|
||
ASM_OUTPUT_SHORT (FILE, GEN_INT (0x9400+STATIC_CHAIN_REGNUM)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, GEN_INT(0x0058)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
}
|
||
|
||
#define TRAMPOLINE_SIZE 8
|
||
#define TRAMPOLINE_ALIGN 16
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
|
||
{ \
|
||
if (TARGET_SPLIT) \
|
||
abort(); \
|
||
\
|
||
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 2)), CXT); \
|
||
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), FNADDR); \
|
||
}
|
||
|
||
|
||
/* Some machines may desire to change what optimizations are
|
||
performed for various optimization levels. This macro, if
|
||
defined, is executed once just after the optimization level is
|
||
determined and before the remainder of the command options have
|
||
been parsed. Values set in this macro are used as the default
|
||
values for the other command line options.
|
||
|
||
LEVEL is the optimization level specified; 2 if -O2 is
|
||
specified, 1 if -O is specified, and 0 if neither is specified. */
|
||
|
||
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
|
||
{ \
|
||
if (LEVEL >= 3) \
|
||
{ \
|
||
if (! SIZE) \
|
||
flag_inline_functions = 1; \
|
||
flag_omit_frame_pointer = 1; \
|
||
/* flag_unroll_loops = 1; */ \
|
||
} \
|
||
}
|
||
|
||
|
||
/* Provide the costs of a rtl expression. This is in the body of a
|
||
switch on CODE.
|
||
|
||
we don't say how expensive SImode is - pretty expensive!!!
|
||
|
||
there is something wrong in MULT because MULT is not
|
||
as cheap as total = 2 even if we can shift!
|
||
|
||
if optimizing for size make mult etc cheap, but not 1, so when
|
||
in doubt the faster insn is chosen.
|
||
*/
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MULT: \
|
||
if (optimize_size) \
|
||
total = COSTS_N_INSNS(2); \
|
||
else \
|
||
total = COSTS_N_INSNS (11); \
|
||
break; \
|
||
case DIV: \
|
||
if (optimize_size) \
|
||
total = COSTS_N_INSNS(2); \
|
||
else \
|
||
total = COSTS_N_INSNS (25); \
|
||
break; \
|
||
case MOD: \
|
||
if (optimize_size) \
|
||
total = COSTS_N_INSNS(2); \
|
||
else \
|
||
total = COSTS_N_INSNS (26); \
|
||
break; \
|
||
case ABS: \
|
||
/* equivalent to length, so same for optimize_size */ \
|
||
total = COSTS_N_INSNS (3); \
|
||
break; \
|
||
case ZERO_EXTEND: \
|
||
/* only used for: qi->hi */ \
|
||
total = COSTS_N_INSNS(1); \
|
||
break; \
|
||
case SIGN_EXTEND: \
|
||
if (GET_MODE(X) == HImode) \
|
||
total = COSTS_N_INSNS(1); \
|
||
else if (GET_MODE(X) == SImode) \
|
||
total = COSTS_N_INSNS(6); \
|
||
else \
|
||
total = COSTS_N_INSNS(2); \
|
||
break; \
|
||
/* case LSHIFT: */ \
|
||
case ASHIFT: \
|
||
case LSHIFTRT: \
|
||
case ASHIFTRT: \
|
||
if (optimize_size) \
|
||
total = COSTS_N_INSNS(1); \
|
||
else if (GET_MODE(X) == QImode) \
|
||
{ \
|
||
if (GET_CODE(XEXP (X,1)) != CONST_INT) \
|
||
total = COSTS_N_INSNS(8); /* worst case */ \
|
||
else \
|
||
total = COSTS_N_INSNS(INTVAL(XEXP (X,1))); \
|
||
} \
|
||
else if (GET_MODE(X) == HImode) \
|
||
{ \
|
||
if (GET_CODE(XEXP (X,1)) == CONST_INT) \
|
||
{ \
|
||
if (abs (INTVAL (XEXP (X, 1))) == 1) \
|
||
total = COSTS_N_INSNS(1); \
|
||
else \
|
||
total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
|
||
} \
|
||
else /* worst case */ \
|
||
total = COSTS_N_INSNS (10); \
|
||
} \
|
||
else if (GET_MODE(X) == SImode) \
|
||
{ \
|
||
if (GET_CODE(XEXP (X,1)) == CONST_INT) \
|
||
total = COSTS_N_INSNS(2.5 + 0.5 *INTVAL(XEXP(X,1))); \
|
||
else /* worst case */ \
|
||
total = COSTS_N_INSNS(18); \
|
||
} \
|
||
break;
|
||
|
||
|
||
/* there is no point in avoiding branches on a pdp,
|
||
since branches are really cheap - I just want to find out
|
||
how much difference the BRANCH_COST macro makes in code */
|
||
#define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
|
||
|
||
|
||
#define COMPARE_FLAG_MODE HImode
|
||
|