1825 lines
47 KiB
C
1825 lines
47 KiB
C
/* Tail merging for gimple.
|
|
Copyright (C) 2011-2021 Free Software Foundation, Inc.
|
|
Contributed by Tom de Vries (tom@codesourcery.com)
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Pass overview.
|
|
|
|
|
|
MOTIVATIONAL EXAMPLE
|
|
|
|
gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
|
|
|
|
hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
|
|
{
|
|
struct FILED.1638 * fpD.2605;
|
|
charD.1 fileNameD.2604[1000];
|
|
intD.0 D.3915;
|
|
const charD.1 * restrict outputFileName.0D.3914;
|
|
|
|
# BLOCK 2 freq:10000
|
|
# PRED: ENTRY [100.0%] (fallthru,exec)
|
|
# PT = nonlocal { D.3926 } (restr)
|
|
outputFileName.0D.3914_3
|
|
= (const charD.1 * restrict) outputFileNameD.2600_2(D);
|
|
# .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
|
|
# .MEMD.3923_14 = VDEF <.MEMD.3923_13>
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
|
|
if (D.3915_4 == 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
# SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
|
|
|
|
# BLOCK 3 freq:1000
|
|
# PRED: 2 [10.0%] (true,exec)
|
|
# .MEMD.3923_15 = VDEF <.MEMD.3923_14>
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
freeD.898 (ctxD.2601_5(D));
|
|
goto <bb 7>;
|
|
# SUCC: 7 [100.0%] (fallthru,exec)
|
|
|
|
# BLOCK 4 freq:9000
|
|
# PRED: 2 [90.0%] (false,exec)
|
|
# .MEMD.3923_16 = VDEF <.MEMD.3923_14>
|
|
# PT = nonlocal escaped
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
|
|
if (fpD.2605_8 == 0B)
|
|
goto <bb 5>;
|
|
else
|
|
goto <bb 6>;
|
|
# SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
|
|
|
|
# BLOCK 5 freq:173
|
|
# PRED: 4 [1.9%] (true,exec)
|
|
# .MEMD.3923_17 = VDEF <.MEMD.3923_16>
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
freeD.898 (ctxD.2601_5(D));
|
|
goto <bb 7>;
|
|
# SUCC: 7 [100.0%] (fallthru,exec)
|
|
|
|
# BLOCK 6 freq:8827
|
|
# PRED: 4 [98.1%] (false,exec)
|
|
# .MEMD.3923_18 = VDEF <.MEMD.3923_16>
|
|
# USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
# CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
|
|
fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
|
|
# SUCC: 7 [100.0%] (fallthru,exec)
|
|
|
|
# BLOCK 7 freq:10000
|
|
# PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
|
|
6 [100.0%] (fallthru,exec)
|
|
# PT = nonlocal null
|
|
|
|
# ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
|
|
# .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
|
|
.MEMD.3923_18(6)>
|
|
# VUSE <.MEMD.3923_11>
|
|
return ctxD.2601_1;
|
|
# SUCC: EXIT [100.0%]
|
|
}
|
|
|
|
bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
|
|
same successors, and the same operations.
|
|
|
|
|
|
CONTEXT
|
|
|
|
A technique called tail merging (or cross jumping) can fix the example
|
|
above. For a block, we look for common code at the end (the tail) of the
|
|
predecessor blocks, and insert jumps from one block to the other.
|
|
The example is a special case for tail merging, in that 2 whole blocks
|
|
can be merged, rather than just the end parts of it.
|
|
We currently only focus on whole block merging, so in that sense
|
|
calling this pass tail merge is a bit of a misnomer.
|
|
|
|
We distinguish 2 kinds of situations in which blocks can be merged:
|
|
- same operations, same predecessors. The successor edges coming from one
|
|
block are redirected to come from the other block.
|
|
- same operations, same successors. The predecessor edges entering one block
|
|
are redirected to enter the other block. Note that this operation might
|
|
involve introducing phi operations.
|
|
|
|
For efficient implementation, we would like to value numbers the blocks, and
|
|
have a comparison operator that tells us whether the blocks are equal.
|
|
Besides being runtime efficient, block value numbering should also abstract
|
|
from irrelevant differences in order of operations, much like normal value
|
|
numbering abstracts from irrelevant order of operations.
|
|
|
|
For the first situation (same_operations, same predecessors), normal value
|
|
numbering fits well. We can calculate a block value number based on the
|
|
value numbers of the defs and vdefs.
|
|
|
|
For the second situation (same operations, same successors), this approach
|
|
doesn't work so well. We can illustrate this using the example. The calls
|
|
to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
|
|
remain different in value numbering, since they represent different memory
|
|
states. So the resulting vdefs of the frees will be different in value
|
|
numbering, so the block value numbers will be different.
|
|
|
|
The reason why we call the blocks equal is not because they define the same
|
|
values, but because uses in the blocks use (possibly different) defs in the
|
|
same way. To be able to detect this efficiently, we need to do some kind of
|
|
reverse value numbering, meaning number the uses rather than the defs, and
|
|
calculate a block value number based on the value number of the uses.
|
|
Ideally, a block comparison operator will also indicate which phis are needed
|
|
to merge the blocks.
|
|
|
|
For the moment, we don't do block value numbering, but we do insn-by-insn
|
|
matching, using scc value numbers to match operations with results, and
|
|
structural comparison otherwise, while ignoring vop mismatches.
|
|
|
|
|
|
IMPLEMENTATION
|
|
|
|
1. The pass first determines all groups of blocks with the same successor
|
|
blocks.
|
|
2. Within each group, it tries to determine clusters of equal basic blocks.
|
|
3. The clusters are applied.
|
|
4. The same successor groups are updated.
|
|
5. This process is repeated from 2 onwards, until no more changes.
|
|
|
|
|
|
LIMITATIONS/TODO
|
|
|
|
- block only
|
|
- handles only 'same operations, same successors'.
|
|
It handles same predecessors as a special subcase though.
|
|
- does not implement the reverse value numbering and block value numbering.
|
|
- improve memory allocation: use garbage collected memory, obstacks,
|
|
allocpools where appropriate.
|
|
- no insertion of gimple_reg phis, We only introduce vop-phis.
|
|
- handle blocks with gimple_reg phi_nodes.
|
|
|
|
|
|
PASS PLACEMENT
|
|
This 'pass' is not a stand-alone gimple pass, but runs as part of
|
|
pass_pre, in order to share the value numbering.
|
|
|
|
|
|
SWITCHES
|
|
|
|
- ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "fold-const.h"
|
|
#include "trans-mem.h"
|
|
#include "cfganal.h"
|
|
#include "cfgcleanup.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-ssa-sccvn.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-eh.h"
|
|
#include "tree-cfgcleanup.h"
|
|
|
|
const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE;
|
|
|
|
/* Describes a group of bbs with the same successors. The successor bbs are
|
|
cached in succs, and the successor edge flags are cached in succ_flags.
|
|
If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
|
|
it's marked in inverse.
|
|
Additionally, the hash value for the struct is cached in hashval, and
|
|
in_worklist indicates whether it's currently part of worklist. */
|
|
|
|
struct same_succ : pointer_hash <same_succ>
|
|
{
|
|
/* The bbs that have the same successor bbs. */
|
|
bitmap bbs;
|
|
/* The successor bbs. */
|
|
bitmap succs;
|
|
/* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
|
|
bb. */
|
|
bitmap inverse;
|
|
/* The edge flags for each of the successor bbs. */
|
|
vec<int> succ_flags;
|
|
/* Indicates whether the struct is currently in the worklist. */
|
|
bool in_worklist;
|
|
/* The hash value of the struct. */
|
|
hashval_t hashval;
|
|
|
|
/* hash_table support. */
|
|
static inline hashval_t hash (const same_succ *);
|
|
static int equal (const same_succ *, const same_succ *);
|
|
static void remove (same_succ *);
|
|
};
|
|
|
|
/* hash routine for hash_table support, returns hashval of E. */
|
|
|
|
inline hashval_t
|
|
same_succ::hash (const same_succ *e)
|
|
{
|
|
return e->hashval;
|
|
}
|
|
|
|
/* A group of bbs where 1 bb from bbs can replace the other bbs. */
|
|
|
|
struct bb_cluster
|
|
{
|
|
/* The bbs in the cluster. */
|
|
bitmap bbs;
|
|
/* The preds of the bbs in the cluster. */
|
|
bitmap preds;
|
|
/* Index in all_clusters vector. */
|
|
int index;
|
|
/* The bb to replace the cluster with. */
|
|
basic_block rep_bb;
|
|
};
|
|
|
|
/* Per bb-info. */
|
|
|
|
struct aux_bb_info
|
|
{
|
|
/* The number of non-debug statements in the bb. */
|
|
int size;
|
|
/* The same_succ that this bb is a member of. */
|
|
same_succ *bb_same_succ;
|
|
/* The cluster that this bb is a member of. */
|
|
bb_cluster *cluster;
|
|
/* The vop state at the exit of a bb. This is shortlived data, used to
|
|
communicate data between update_block_by and update_vuses. */
|
|
tree vop_at_exit;
|
|
/* The bb that either contains or is dominated by the dependencies of the
|
|
bb. */
|
|
basic_block dep_bb;
|
|
};
|
|
|
|
/* Macros to access the fields of struct aux_bb_info. */
|
|
|
|
#define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
|
|
#define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
|
|
#define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
|
|
#define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
|
|
#define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
|
|
|
|
/* Valueization helper querying the VN lattice. */
|
|
|
|
static tree
|
|
tail_merge_valueize (tree name)
|
|
{
|
|
if (TREE_CODE (name) == SSA_NAME
|
|
&& has_VN_INFO (name))
|
|
{
|
|
tree tem = VN_INFO (name)->valnum;
|
|
if (tem != VN_TOP)
|
|
return tem;
|
|
}
|
|
return name;
|
|
}
|
|
|
|
/* Returns true if the only effect a statement STMT has, is to define locally
|
|
used SSA_NAMEs. */
|
|
|
|
static bool
|
|
stmt_local_def (gimple *stmt)
|
|
{
|
|
basic_block bb, def_bb;
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
tree val;
|
|
def_operand_p def_p;
|
|
|
|
if (gimple_vdef (stmt) != NULL_TREE
|
|
|| gimple_has_side_effects (stmt)
|
|
|| gimple_could_trap_p_1 (stmt, false, false)
|
|
|| gimple_vuse (stmt) != NULL_TREE
|
|
/* Copied from tree-ssa-ifcombine.c:bb_no_side_effects_p():
|
|
const calls don't match any of the above, yet they could
|
|
still have some side-effects - they could contain
|
|
gimple_could_trap_p statements, like floating point
|
|
exceptions or integer division by zero. See PR70586.
|
|
FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
|
|
should handle this. */
|
|
|| is_gimple_call (stmt))
|
|
return false;
|
|
|
|
def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
|
|
if (def_p == NULL)
|
|
return false;
|
|
|
|
val = DEF_FROM_PTR (def_p);
|
|
if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
|
|
return false;
|
|
|
|
def_bb = gimple_bb (stmt);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, val)
|
|
{
|
|
if (is_gimple_debug (USE_STMT (use_p)))
|
|
continue;
|
|
bb = gimple_bb (USE_STMT (use_p));
|
|
if (bb == def_bb)
|
|
continue;
|
|
|
|
if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
|
|
&& EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Let GSI skip forwards over local defs. */
|
|
|
|
static void
|
|
gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
|
|
{
|
|
gimple *stmt;
|
|
|
|
while (true)
|
|
{
|
|
if (gsi_end_p (*gsi))
|
|
return;
|
|
stmt = gsi_stmt (*gsi);
|
|
if (!stmt_local_def (stmt))
|
|
return;
|
|
gsi_next_nondebug (gsi);
|
|
}
|
|
}
|
|
|
|
/* VAL1 and VAL2 are either:
|
|
- uses in BB1 and BB2, or
|
|
- phi alternatives for BB1 and BB2.
|
|
Return true if the uses have the same gvn value. */
|
|
|
|
static bool
|
|
gvn_uses_equal (tree val1, tree val2)
|
|
{
|
|
gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
|
|
|
|
if (val1 == val2)
|
|
return true;
|
|
|
|
if (tail_merge_valueize (val1) != tail_merge_valueize (val2))
|
|
return false;
|
|
|
|
return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
|
|
&& (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
|
|
}
|
|
|
|
/* Prints E to FILE. */
|
|
|
|
static void
|
|
same_succ_print (FILE *file, const same_succ *e)
|
|
{
|
|
unsigned int i;
|
|
bitmap_print (file, e->bbs, "bbs:", "\n");
|
|
bitmap_print (file, e->succs, "succs:", "\n");
|
|
bitmap_print (file, e->inverse, "inverse:", "\n");
|
|
fprintf (file, "flags:");
|
|
for (i = 0; i < e->succ_flags.length (); ++i)
|
|
fprintf (file, " %x", e->succ_flags[i]);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
/* Prints same_succ VE to VFILE. */
|
|
|
|
inline int
|
|
ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
|
|
{
|
|
const same_succ *e = *pe;
|
|
same_succ_print (file, e);
|
|
return 1;
|
|
}
|
|
|
|
/* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
|
|
|
|
static void
|
|
update_dep_bb (basic_block use_bb, tree val)
|
|
{
|
|
basic_block dep_bb;
|
|
|
|
/* Not a dep. */
|
|
if (TREE_CODE (val) != SSA_NAME)
|
|
return;
|
|
|
|
/* Skip use of global def. */
|
|
if (SSA_NAME_IS_DEFAULT_DEF (val))
|
|
return;
|
|
|
|
/* Skip use of local def. */
|
|
dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
|
|
if (dep_bb == use_bb)
|
|
return;
|
|
|
|
if (BB_DEP_BB (use_bb) == NULL
|
|
|| dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
|
|
BB_DEP_BB (use_bb) = dep_bb;
|
|
}
|
|
|
|
/* Update BB_DEP_BB, given the dependencies in STMT. */
|
|
|
|
static void
|
|
stmt_update_dep_bb (gimple *stmt)
|
|
{
|
|
ssa_op_iter iter;
|
|
use_operand_p use;
|
|
|
|
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
|
update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
|
|
}
|
|
|
|
/* Calculates hash value for same_succ VE. */
|
|
|
|
static hashval_t
|
|
same_succ_hash (const same_succ *e)
|
|
{
|
|
inchash::hash hstate (bitmap_hash (e->succs));
|
|
int flags;
|
|
unsigned int i;
|
|
unsigned int first = bitmap_first_set_bit (e->bbs);
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
|
|
int size = 0;
|
|
gimple *stmt;
|
|
tree arg;
|
|
unsigned int s;
|
|
bitmap_iterator bs;
|
|
|
|
for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
|
|
!gsi_end_p (gsi); gsi_next_nondebug (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
stmt_update_dep_bb (stmt);
|
|
if (stmt_local_def (stmt))
|
|
continue;
|
|
size++;
|
|
|
|
hstate.add_int (gimple_code (stmt));
|
|
if (is_gimple_assign (stmt))
|
|
hstate.add_int (gimple_assign_rhs_code (stmt));
|
|
if (!is_gimple_call (stmt))
|
|
continue;
|
|
if (gimple_call_internal_p (stmt))
|
|
hstate.add_int (gimple_call_internal_fn (stmt));
|
|
else
|
|
{
|
|
inchash::add_expr (gimple_call_fn (stmt), hstate);
|
|
if (gimple_call_chain (stmt))
|
|
inchash::add_expr (gimple_call_chain (stmt), hstate);
|
|
}
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
|
{
|
|
arg = gimple_call_arg (stmt, i);
|
|
arg = tail_merge_valueize (arg);
|
|
inchash::add_expr (arg, hstate);
|
|
}
|
|
}
|
|
|
|
hstate.add_int (size);
|
|
BB_SIZE (bb) = size;
|
|
|
|
hstate.add_int (bb->loop_father->num);
|
|
|
|
for (i = 0; i < e->succ_flags.length (); ++i)
|
|
{
|
|
flags = e->succ_flags[i];
|
|
flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
|
hstate.add_int (flags);
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
|
|
{
|
|
int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
|
|
for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
|
|
!gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree lhs = gimple_phi_result (phi);
|
|
tree val = gimple_phi_arg_def (phi, n);
|
|
|
|
if (virtual_operand_p (lhs))
|
|
continue;
|
|
update_dep_bb (bb, val);
|
|
}
|
|
}
|
|
|
|
return hstate.end ();
|
|
}
|
|
|
|
/* Returns true if E1 and E2 have 2 successors, and if the successor flags
|
|
are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
|
|
the other edge flags. */
|
|
|
|
static bool
|
|
inverse_flags (const same_succ *e1, const same_succ *e2)
|
|
{
|
|
int f1a, f1b, f2a, f2b;
|
|
int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
|
|
|
if (e1->succ_flags.length () != 2)
|
|
return false;
|
|
|
|
f1a = e1->succ_flags[0];
|
|
f1b = e1->succ_flags[1];
|
|
f2a = e2->succ_flags[0];
|
|
f2b = e2->succ_flags[1];
|
|
|
|
if (f1a == f2a && f1b == f2b)
|
|
return false;
|
|
|
|
return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
|
|
}
|
|
|
|
/* Compares SAME_SUCCs E1 and E2. */
|
|
|
|
int
|
|
same_succ::equal (const same_succ *e1, const same_succ *e2)
|
|
{
|
|
unsigned int i, first1, first2;
|
|
gimple_stmt_iterator gsi1, gsi2;
|
|
gimple *s1, *s2;
|
|
basic_block bb1, bb2;
|
|
|
|
if (e1 == e2)
|
|
return 1;
|
|
|
|
if (e1->hashval != e2->hashval)
|
|
return 0;
|
|
|
|
if (e1->succ_flags.length () != e2->succ_flags.length ())
|
|
return 0;
|
|
|
|
if (!bitmap_equal_p (e1->succs, e2->succs))
|
|
return 0;
|
|
|
|
if (!inverse_flags (e1, e2))
|
|
{
|
|
for (i = 0; i < e1->succ_flags.length (); ++i)
|
|
if (e1->succ_flags[i] != e2->succ_flags[i])
|
|
return 0;
|
|
}
|
|
|
|
first1 = bitmap_first_set_bit (e1->bbs);
|
|
first2 = bitmap_first_set_bit (e2->bbs);
|
|
|
|
bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
|
|
bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
|
|
|
|
if (BB_SIZE (bb1) != BB_SIZE (bb2))
|
|
return 0;
|
|
|
|
if (bb1->loop_father != bb2->loop_father)
|
|
return 0;
|
|
|
|
gsi1 = gsi_start_nondebug_bb (bb1);
|
|
gsi2 = gsi_start_nondebug_bb (bb2);
|
|
gsi_advance_fw_nondebug_nonlocal (&gsi1);
|
|
gsi_advance_fw_nondebug_nonlocal (&gsi2);
|
|
while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
|
|
{
|
|
s1 = gsi_stmt (gsi1);
|
|
s2 = gsi_stmt (gsi2);
|
|
if (gimple_code (s1) != gimple_code (s2))
|
|
return 0;
|
|
if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
|
|
return 0;
|
|
gsi_next_nondebug (&gsi1);
|
|
gsi_next_nondebug (&gsi2);
|
|
gsi_advance_fw_nondebug_nonlocal (&gsi1);
|
|
gsi_advance_fw_nondebug_nonlocal (&gsi2);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Alloc and init a new SAME_SUCC. */
|
|
|
|
static same_succ *
|
|
same_succ_alloc (void)
|
|
{
|
|
same_succ *same = XNEW (struct same_succ);
|
|
|
|
same->bbs = BITMAP_ALLOC (NULL);
|
|
same->succs = BITMAP_ALLOC (NULL);
|
|
same->inverse = BITMAP_ALLOC (NULL);
|
|
same->succ_flags.create (10);
|
|
same->in_worklist = false;
|
|
|
|
return same;
|
|
}
|
|
|
|
/* Delete same_succ E. */
|
|
|
|
void
|
|
same_succ::remove (same_succ *e)
|
|
{
|
|
BITMAP_FREE (e->bbs);
|
|
BITMAP_FREE (e->succs);
|
|
BITMAP_FREE (e->inverse);
|
|
e->succ_flags.release ();
|
|
|
|
XDELETE (e);
|
|
}
|
|
|
|
/* Reset same_succ SAME. */
|
|
|
|
static void
|
|
same_succ_reset (same_succ *same)
|
|
{
|
|
bitmap_clear (same->bbs);
|
|
bitmap_clear (same->succs);
|
|
bitmap_clear (same->inverse);
|
|
same->succ_flags.truncate (0);
|
|
}
|
|
|
|
static hash_table<same_succ> *same_succ_htab;
|
|
|
|
/* Array that is used to store the edge flags for a successor. */
|
|
|
|
static int *same_succ_edge_flags;
|
|
|
|
/* Bitmap that is used to mark bbs that are recently deleted. */
|
|
|
|
static bitmap deleted_bbs;
|
|
|
|
/* Bitmap that is used to mark predecessors of bbs that are
|
|
deleted. */
|
|
|
|
static bitmap deleted_bb_preds;
|
|
|
|
/* Prints same_succ_htab to stderr. */
|
|
|
|
extern void debug_same_succ (void);
|
|
DEBUG_FUNCTION void
|
|
debug_same_succ ( void)
|
|
{
|
|
same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
|
|
}
|
|
|
|
|
|
/* Vector of bbs to process. */
|
|
|
|
static vec<same_succ *> worklist;
|
|
|
|
/* Prints worklist to FILE. */
|
|
|
|
static void
|
|
print_worklist (FILE *file)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < worklist.length (); ++i)
|
|
same_succ_print (file, worklist[i]);
|
|
}
|
|
|
|
/* Adds SAME to worklist. */
|
|
|
|
static void
|
|
add_to_worklist (same_succ *same)
|
|
{
|
|
if (same->in_worklist)
|
|
return;
|
|
|
|
if (bitmap_count_bits (same->bbs) < 2)
|
|
return;
|
|
|
|
same->in_worklist = true;
|
|
worklist.safe_push (same);
|
|
}
|
|
|
|
/* Add BB to same_succ_htab. */
|
|
|
|
static void
|
|
find_same_succ_bb (basic_block bb, same_succ **same_p)
|
|
{
|
|
unsigned int j;
|
|
bitmap_iterator bj;
|
|
same_succ *same = *same_p;
|
|
same_succ **slot;
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
if (bb == NULL)
|
|
return;
|
|
bitmap_set_bit (same->bbs, bb->index);
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
int index = e->dest->index;
|
|
bitmap_set_bit (same->succs, index);
|
|
same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags);
|
|
}
|
|
EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
|
|
same->succ_flags.safe_push (same_succ_edge_flags[j]);
|
|
|
|
same->hashval = same_succ_hash (same);
|
|
|
|
slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
|
|
if (*slot == NULL)
|
|
{
|
|
*slot = same;
|
|
BB_SAME_SUCC (bb) = same;
|
|
add_to_worklist (same);
|
|
*same_p = NULL;
|
|
}
|
|
else
|
|
{
|
|
bitmap_set_bit ((*slot)->bbs, bb->index);
|
|
BB_SAME_SUCC (bb) = *slot;
|
|
add_to_worklist (*slot);
|
|
if (inverse_flags (same, *slot))
|
|
bitmap_set_bit ((*slot)->inverse, bb->index);
|
|
same_succ_reset (same);
|
|
}
|
|
}
|
|
|
|
/* Find bbs with same successors. */
|
|
|
|
static void
|
|
find_same_succ (void)
|
|
{
|
|
same_succ *same = same_succ_alloc ();
|
|
basic_block bb;
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
find_same_succ_bb (bb, &same);
|
|
if (same == NULL)
|
|
same = same_succ_alloc ();
|
|
}
|
|
|
|
same_succ::remove (same);
|
|
}
|
|
|
|
/* Initializes worklist administration. */
|
|
|
|
static void
|
|
init_worklist (void)
|
|
{
|
|
alloc_aux_for_blocks (sizeof (struct aux_bb_info));
|
|
same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
|
|
same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
|
deleted_bbs = BITMAP_ALLOC (NULL);
|
|
deleted_bb_preds = BITMAP_ALLOC (NULL);
|
|
worklist.create (n_basic_blocks_for_fn (cfun));
|
|
find_same_succ ();
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "initial worklist:\n");
|
|
print_worklist (dump_file);
|
|
}
|
|
}
|
|
|
|
/* Deletes worklist administration. */
|
|
|
|
static void
|
|
delete_worklist (void)
|
|
{
|
|
free_aux_for_blocks ();
|
|
delete same_succ_htab;
|
|
same_succ_htab = NULL;
|
|
XDELETEVEC (same_succ_edge_flags);
|
|
same_succ_edge_flags = NULL;
|
|
BITMAP_FREE (deleted_bbs);
|
|
BITMAP_FREE (deleted_bb_preds);
|
|
worklist.release ();
|
|
}
|
|
|
|
/* Mark BB as deleted, and mark its predecessors. */
|
|
|
|
static void
|
|
mark_basic_block_deleted (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
bitmap_set_bit (deleted_bbs, bb->index);
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
bitmap_set_bit (deleted_bb_preds, e->src->index);
|
|
}
|
|
|
|
/* Removes BB from its corresponding same_succ. */
|
|
|
|
static void
|
|
same_succ_flush_bb (basic_block bb)
|
|
{
|
|
same_succ *same = BB_SAME_SUCC (bb);
|
|
if (! same)
|
|
return;
|
|
|
|
BB_SAME_SUCC (bb) = NULL;
|
|
if (bitmap_single_bit_set_p (same->bbs))
|
|
same_succ_htab->remove_elt_with_hash (same, same->hashval);
|
|
else
|
|
bitmap_clear_bit (same->bbs, bb->index);
|
|
}
|
|
|
|
/* Removes all bbs in BBS from their corresponding same_succ. */
|
|
|
|
static void
|
|
same_succ_flush_bbs (bitmap bbs)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
|
|
same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
|
|
}
|
|
|
|
/* Release the last vdef in BB, either normal or phi result. */
|
|
|
|
static void
|
|
release_last_vdef (basic_block bb)
|
|
{
|
|
for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
|
|
gsi_prev_nondebug (&i))
|
|
{
|
|
gimple *stmt = gsi_stmt (i);
|
|
if (gimple_vdef (stmt) == NULL_TREE)
|
|
continue;
|
|
|
|
mark_virtual_operand_for_renaming (gimple_vdef (stmt));
|
|
return;
|
|
}
|
|
|
|
for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
|
|
gsi_next (&i))
|
|
{
|
|
gphi *phi = i.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
|
|
if (!virtual_operand_p (res))
|
|
continue;
|
|
|
|
mark_virtual_phi_result_for_renaming (phi);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* For deleted_bb_preds, find bbs with same successors. */
|
|
|
|
static void
|
|
update_worklist (void)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
basic_block bb;
|
|
same_succ *same;
|
|
|
|
bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
|
|
bitmap_clear (deleted_bbs);
|
|
|
|
bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
|
|
same_succ_flush_bbs (deleted_bb_preds);
|
|
|
|
same = same_succ_alloc ();
|
|
EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
|
|
{
|
|
bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
gcc_assert (bb != NULL);
|
|
find_same_succ_bb (bb, &same);
|
|
if (same == NULL)
|
|
same = same_succ_alloc ();
|
|
}
|
|
same_succ::remove (same);
|
|
bitmap_clear (deleted_bb_preds);
|
|
}
|
|
|
|
/* Prints cluster C to FILE. */
|
|
|
|
static void
|
|
print_cluster (FILE *file, bb_cluster *c)
|
|
{
|
|
if (c == NULL)
|
|
return;
|
|
bitmap_print (file, c->bbs, "bbs:", "\n");
|
|
bitmap_print (file, c->preds, "preds:", "\n");
|
|
}
|
|
|
|
/* Prints cluster C to stderr. */
|
|
|
|
extern void debug_cluster (bb_cluster *);
|
|
DEBUG_FUNCTION void
|
|
debug_cluster (bb_cluster *c)
|
|
{
|
|
print_cluster (stderr, c);
|
|
}
|
|
|
|
/* Update C->rep_bb, given that BB is added to the cluster. */
|
|
|
|
static void
|
|
update_rep_bb (bb_cluster *c, basic_block bb)
|
|
{
|
|
/* Initial. */
|
|
if (c->rep_bb == NULL)
|
|
{
|
|
c->rep_bb = bb;
|
|
return;
|
|
}
|
|
|
|
/* Current needs no deps, keep it. */
|
|
if (BB_DEP_BB (c->rep_bb) == NULL)
|
|
return;
|
|
|
|
/* Bb needs no deps, change rep_bb. */
|
|
if (BB_DEP_BB (bb) == NULL)
|
|
{
|
|
c->rep_bb = bb;
|
|
return;
|
|
}
|
|
|
|
/* Bb needs last deps earlier than current, change rep_bb. A potential
|
|
problem with this, is that the first deps might also be earlier, which
|
|
would mean we prefer longer lifetimes for the deps. To be able to check
|
|
for this, we would have to trace BB_FIRST_DEP_BB as well, besides
|
|
BB_DEP_BB, which is really BB_LAST_DEP_BB.
|
|
The benefit of choosing the bb with last deps earlier, is that it can
|
|
potentially be used as replacement for more bbs. */
|
|
if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
|
|
c->rep_bb = bb;
|
|
}
|
|
|
|
/* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
|
|
|
|
static void
|
|
add_bb_to_cluster (bb_cluster *c, basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
bitmap_set_bit (c->bbs, bb->index);
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
bitmap_set_bit (c->preds, e->src->index);
|
|
|
|
update_rep_bb (c, bb);
|
|
}
|
|
|
|
/* Allocate and init new cluster. */
|
|
|
|
static bb_cluster *
|
|
new_cluster (void)
|
|
{
|
|
bb_cluster *c;
|
|
c = XCNEW (bb_cluster);
|
|
c->bbs = BITMAP_ALLOC (NULL);
|
|
c->preds = BITMAP_ALLOC (NULL);
|
|
c->rep_bb = NULL;
|
|
return c;
|
|
}
|
|
|
|
/* Delete clusters. */
|
|
|
|
static void
|
|
delete_cluster (bb_cluster *c)
|
|
{
|
|
if (c == NULL)
|
|
return;
|
|
BITMAP_FREE (c->bbs);
|
|
BITMAP_FREE (c->preds);
|
|
XDELETE (c);
|
|
}
|
|
|
|
|
|
/* Array that contains all clusters. */
|
|
|
|
static vec<bb_cluster *> all_clusters;
|
|
|
|
/* Allocate all cluster vectors. */
|
|
|
|
static void
|
|
alloc_cluster_vectors (void)
|
|
{
|
|
all_clusters.create (n_basic_blocks_for_fn (cfun));
|
|
}
|
|
|
|
/* Reset all cluster vectors. */
|
|
|
|
static void
|
|
reset_cluster_vectors (void)
|
|
{
|
|
unsigned int i;
|
|
basic_block bb;
|
|
for (i = 0; i < all_clusters.length (); ++i)
|
|
delete_cluster (all_clusters[i]);
|
|
all_clusters.truncate (0);
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
BB_CLUSTER (bb) = NULL;
|
|
}
|
|
|
|
/* Delete all cluster vectors. */
|
|
|
|
static void
|
|
delete_cluster_vectors (void)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < all_clusters.length (); ++i)
|
|
delete_cluster (all_clusters[i]);
|
|
all_clusters.release ();
|
|
}
|
|
|
|
/* Merge cluster C2 into C1. */
|
|
|
|
static void
|
|
merge_clusters (bb_cluster *c1, bb_cluster *c2)
|
|
{
|
|
bitmap_ior_into (c1->bbs, c2->bbs);
|
|
bitmap_ior_into (c1->preds, c2->preds);
|
|
}
|
|
|
|
/* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
|
|
all_clusters, or merge c with existing cluster. */
|
|
|
|
static void
|
|
set_cluster (basic_block bb1, basic_block bb2)
|
|
{
|
|
basic_block merge_bb, other_bb;
|
|
bb_cluster *merge, *old, *c;
|
|
|
|
if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
|
|
{
|
|
c = new_cluster ();
|
|
add_bb_to_cluster (c, bb1);
|
|
add_bb_to_cluster (c, bb2);
|
|
BB_CLUSTER (bb1) = c;
|
|
BB_CLUSTER (bb2) = c;
|
|
c->index = all_clusters.length ();
|
|
all_clusters.safe_push (c);
|
|
}
|
|
else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
|
|
{
|
|
merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
|
|
other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
|
|
merge = BB_CLUSTER (merge_bb);
|
|
add_bb_to_cluster (merge, other_bb);
|
|
BB_CLUSTER (other_bb) = merge;
|
|
}
|
|
else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
old = BB_CLUSTER (bb2);
|
|
merge = BB_CLUSTER (bb1);
|
|
merge_clusters (merge, old);
|
|
EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
|
|
BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
|
|
all_clusters[old->index] = NULL;
|
|
update_rep_bb (merge, old->rep_bb);
|
|
delete_cluster (old);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return true if gimple operands T1 and T2 have the same value. */
|
|
|
|
static bool
|
|
gimple_operand_equal_value_p (tree t1, tree t2)
|
|
{
|
|
if (t1 == t2)
|
|
return true;
|
|
|
|
if (t1 == NULL_TREE
|
|
|| t2 == NULL_TREE)
|
|
return false;
|
|
|
|
if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
|
|
return true;
|
|
|
|
return gvn_uses_equal (t1, t2);
|
|
}
|
|
|
|
/* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
|
|
gimple_bb (s2) are members of SAME_SUCC. */
|
|
|
|
static bool
|
|
gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
|
|
{
|
|
unsigned int i;
|
|
tree lhs1, lhs2;
|
|
basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
|
|
tree t1, t2;
|
|
bool inv_cond;
|
|
enum tree_code code1, code2;
|
|
|
|
if (gimple_code (s1) != gimple_code (s2))
|
|
return false;
|
|
|
|
switch (gimple_code (s1))
|
|
{
|
|
case GIMPLE_CALL:
|
|
if (!gimple_call_same_target_p (s1, s2))
|
|
return false;
|
|
|
|
t1 = gimple_call_chain (s1);
|
|
t2 = gimple_call_chain (s2);
|
|
if (!gimple_operand_equal_value_p (t1, t2))
|
|
return false;
|
|
|
|
if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
|
|
return false;
|
|
|
|
for (i = 0; i < gimple_call_num_args (s1); ++i)
|
|
{
|
|
t1 = gimple_call_arg (s1, i);
|
|
t2 = gimple_call_arg (s2, i);
|
|
if (!gimple_operand_equal_value_p (t1, t2))
|
|
return false;
|
|
}
|
|
|
|
lhs1 = gimple_get_lhs (s1);
|
|
lhs2 = gimple_get_lhs (s2);
|
|
if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
|
|
return true;
|
|
if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
|
|
return false;
|
|
if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
|
|
return tail_merge_valueize (lhs1) == tail_merge_valueize (lhs2);
|
|
return operand_equal_p (lhs1, lhs2, 0);
|
|
|
|
case GIMPLE_ASSIGN:
|
|
lhs1 = gimple_get_lhs (s1);
|
|
lhs2 = gimple_get_lhs (s2);
|
|
if (TREE_CODE (lhs1) != SSA_NAME
|
|
&& TREE_CODE (lhs2) != SSA_NAME)
|
|
return (operand_equal_p (lhs1, lhs2, 0)
|
|
&& gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
|
|
gimple_assign_rhs1 (s2)));
|
|
else if (TREE_CODE (lhs1) == SSA_NAME
|
|
&& TREE_CODE (lhs2) == SSA_NAME)
|
|
return operand_equal_p (gimple_assign_rhs1 (s1),
|
|
gimple_assign_rhs1 (s2), 0);
|
|
return false;
|
|
|
|
case GIMPLE_COND:
|
|
t1 = gimple_cond_lhs (s1);
|
|
t2 = gimple_cond_lhs (s2);
|
|
if (!gimple_operand_equal_value_p (t1, t2))
|
|
return false;
|
|
|
|
t1 = gimple_cond_rhs (s1);
|
|
t2 = gimple_cond_rhs (s2);
|
|
if (!gimple_operand_equal_value_p (t1, t2))
|
|
return false;
|
|
|
|
code1 = gimple_cond_code (s1);
|
|
code2 = gimple_cond_code (s2);
|
|
inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
|
|
!= bitmap_bit_p (same_succ->inverse, bb2->index));
|
|
if (inv_cond)
|
|
{
|
|
bool honor_nans = HONOR_NANS (t1);
|
|
code2 = invert_tree_comparison (code2, honor_nans);
|
|
}
|
|
return code1 == code2;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
|
|
Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
|
|
processed statements. */
|
|
|
|
static void
|
|
gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
|
|
bool *vuse_escaped)
|
|
{
|
|
gimple *stmt;
|
|
tree lvuse;
|
|
|
|
while (true)
|
|
{
|
|
if (gsi_end_p (*gsi))
|
|
return;
|
|
stmt = gsi_stmt (*gsi);
|
|
|
|
lvuse = gimple_vuse (stmt);
|
|
if (lvuse != NULL_TREE)
|
|
{
|
|
*vuse = lvuse;
|
|
if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
|
|
*vuse_escaped = true;
|
|
}
|
|
|
|
if (!stmt_local_def (stmt))
|
|
return;
|
|
gsi_prev_nondebug (gsi);
|
|
}
|
|
}
|
|
|
|
/* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
|
|
STMT2 are allowed to be merged. */
|
|
|
|
static bool
|
|
merge_stmts_p (gimple *stmt1, gimple *stmt2)
|
|
{
|
|
/* What could be better than this here is to blacklist the bb
|
|
containing the stmt, when encountering the stmt f.i. in
|
|
same_succ_hash. */
|
|
if (is_tm_ending (stmt1))
|
|
return false;
|
|
|
|
/* Verify EH landing pads. */
|
|
if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2))
|
|
return false;
|
|
|
|
if (is_gimple_call (stmt1)
|
|
&& gimple_call_internal_p (stmt1))
|
|
switch (gimple_call_internal_fn (stmt1))
|
|
{
|
|
case IFN_UBSAN_NULL:
|
|
case IFN_UBSAN_BOUNDS:
|
|
case IFN_UBSAN_VPTR:
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
case IFN_UBSAN_OBJECT_SIZE:
|
|
case IFN_UBSAN_PTR:
|
|
case IFN_ASAN_CHECK:
|
|
/* For these internal functions, gimple_location is an implicit
|
|
parameter, which will be used explicitly after expansion.
|
|
Merging these statements may cause confusing line numbers in
|
|
sanitizer messages. */
|
|
return gimple_location (stmt1) == gimple_location (stmt2);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
|
|
clusters them. */
|
|
|
|
static void
|
|
find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
|
|
{
|
|
gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
|
|
gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
|
|
tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
|
|
bool vuse_escaped = false;
|
|
|
|
gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
|
|
gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
|
|
|
|
while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
|
|
{
|
|
gimple *stmt1 = gsi_stmt (gsi1);
|
|
gimple *stmt2 = gsi_stmt (gsi2);
|
|
|
|
if (gimple_code (stmt1) == GIMPLE_LABEL
|
|
&& gimple_code (stmt2) == GIMPLE_LABEL)
|
|
break;
|
|
|
|
if (!gimple_equal_p (same_succ, stmt1, stmt2))
|
|
return;
|
|
|
|
if (!merge_stmts_p (stmt1, stmt2))
|
|
return;
|
|
|
|
gsi_prev_nondebug (&gsi1);
|
|
gsi_prev_nondebug (&gsi2);
|
|
gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
|
|
gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
|
|
}
|
|
|
|
while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
|
|
{
|
|
tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
|
|
if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
|
|
return;
|
|
gsi_prev (&gsi1);
|
|
}
|
|
while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL)
|
|
{
|
|
tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)));
|
|
if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
|
|
return;
|
|
gsi_prev (&gsi2);
|
|
}
|
|
if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
|
|
return;
|
|
|
|
/* If the incoming vuses are not the same, and the vuse escaped into an
|
|
SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
|
|
which potentially means the semantics of one of the blocks will be changed.
|
|
TODO: make this check more precise. */
|
|
if (vuse_escaped && vuse1 != vuse2)
|
|
return;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
|
|
bb1->index, bb2->index);
|
|
|
|
set_cluster (bb1, bb2);
|
|
}
|
|
|
|
/* Returns whether for all phis in DEST the phi alternatives for E1 and
|
|
E2 are equal. */
|
|
|
|
static bool
|
|
same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
|
|
{
|
|
int n1 = e1->dest_idx, n2 = e2->dest_idx;
|
|
gphi_iterator gsi;
|
|
|
|
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree lhs = gimple_phi_result (phi);
|
|
tree val1 = gimple_phi_arg_def (phi, n1);
|
|
tree val2 = gimple_phi_arg_def (phi, n2);
|
|
|
|
if (virtual_operand_p (lhs))
|
|
continue;
|
|
|
|
if (operand_equal_for_phi_arg_p (val1, val2))
|
|
continue;
|
|
if (gvn_uses_equal (val1, val2))
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
|
|
phi alternatives for BB1 and BB2 are equal. */
|
|
|
|
static bool
|
|
same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
|
|
{
|
|
unsigned int s;
|
|
bitmap_iterator bs;
|
|
edge e1, e2;
|
|
basic_block succ;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
|
|
{
|
|
succ = BASIC_BLOCK_FOR_FN (cfun, s);
|
|
e1 = find_edge (bb1, succ);
|
|
e2 = find_edge (bb2, succ);
|
|
if (e1->flags & EDGE_COMPLEX
|
|
|| e2->flags & EDGE_COMPLEX)
|
|
return false;
|
|
|
|
/* For all phis in bb, the phi alternatives for e1 and e2 need to have
|
|
the same value. */
|
|
if (!same_phi_alternatives_1 (succ, e1, e2))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if BB has non-vop phis. */
|
|
|
|
static bool
|
|
bb_has_non_vop_phi (basic_block bb)
|
|
{
|
|
gimple_seq phis = phi_nodes (bb);
|
|
gimple *phi;
|
|
|
|
if (phis == NULL)
|
|
return false;
|
|
|
|
if (!gimple_seq_singleton_p (phis))
|
|
return true;
|
|
|
|
phi = gimple_seq_first_stmt (phis);
|
|
return !virtual_operand_p (gimple_phi_result (phi));
|
|
}
|
|
|
|
/* Returns true if redirecting the incoming edges of FROM to TO maintains the
|
|
invariant that uses in FROM are dominates by their defs. */
|
|
|
|
static bool
|
|
deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
|
|
{
|
|
basic_block cd, dep_bb = BB_DEP_BB (to);
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
if (dep_bb == NULL)
|
|
return true;
|
|
|
|
bitmap from_preds = BITMAP_ALLOC (NULL);
|
|
FOR_EACH_EDGE (e, ei, from->preds)
|
|
bitmap_set_bit (from_preds, e->src->index);
|
|
cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
|
|
BITMAP_FREE (from_preds);
|
|
|
|
return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
|
|
}
|
|
|
|
/* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
|
|
replacement bb) and vice versa maintains the invariant that uses in the
|
|
replacement are dominates by their defs. */
|
|
|
|
static bool
|
|
deps_ok_for_redirect (basic_block bb1, basic_block bb2)
|
|
{
|
|
if (BB_CLUSTER (bb1) != NULL)
|
|
bb1 = BB_CLUSTER (bb1)->rep_bb;
|
|
|
|
if (BB_CLUSTER (bb2) != NULL)
|
|
bb2 = BB_CLUSTER (bb2)->rep_bb;
|
|
|
|
return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
|
|
&& deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
|
|
}
|
|
|
|
/* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
|
|
|
|
static void
|
|
find_clusters_1 (same_succ *same_succ)
|
|
{
|
|
basic_block bb1, bb2;
|
|
unsigned int i, j;
|
|
bitmap_iterator bi, bj;
|
|
int nr_comparisons;
|
|
int max_comparisons = param_max_tail_merge_comparisons;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
|
|
{
|
|
bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
|
|
/* TODO: handle blocks with phi-nodes. We'll have to find corresponding
|
|
phi-nodes in bb1 and bb2, with the same alternatives for the same
|
|
preds. */
|
|
if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1)
|
|
|| bb_has_abnormal_pred (bb1))
|
|
continue;
|
|
|
|
nr_comparisons = 0;
|
|
EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
|
|
{
|
|
bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
|
|
|
|
if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2)
|
|
|| bb_has_abnormal_pred (bb2))
|
|
continue;
|
|
|
|
if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
|
|
continue;
|
|
|
|
/* Limit quadratic behavior. */
|
|
nr_comparisons++;
|
|
if (nr_comparisons > max_comparisons)
|
|
break;
|
|
|
|
/* This is a conservative dependency check. We could test more
|
|
precise for allowed replacement direction. */
|
|
if (!deps_ok_for_redirect (bb1, bb2))
|
|
continue;
|
|
|
|
if (!(same_phi_alternatives (same_succ, bb1, bb2)))
|
|
continue;
|
|
|
|
find_duplicate (same_succ, bb1, bb2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find clusters of bbs which can be merged. */
|
|
|
|
static void
|
|
find_clusters (void)
|
|
{
|
|
same_succ *same;
|
|
|
|
while (!worklist.is_empty ())
|
|
{
|
|
same = worklist.pop ();
|
|
same->in_worklist = false;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "processing worklist entry\n");
|
|
same_succ_print (dump_file, same);
|
|
}
|
|
find_clusters_1 (same);
|
|
}
|
|
}
|
|
|
|
/* Returns the vop phi of BB, if any. */
|
|
|
|
static gphi *
|
|
vop_phi (basic_block bb)
|
|
{
|
|
gphi *stmt;
|
|
gphi_iterator gsi;
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi.phi ();
|
|
if (! virtual_operand_p (gimple_phi_result (stmt)))
|
|
continue;
|
|
return stmt;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
|
|
|
|
static void
|
|
replace_block_by (basic_block bb1, basic_block bb2)
|
|
{
|
|
edge pred_edge;
|
|
unsigned int i;
|
|
gphi *bb2_phi;
|
|
|
|
bb2_phi = vop_phi (bb2);
|
|
|
|
/* Mark the basic block as deleted. */
|
|
mark_basic_block_deleted (bb1);
|
|
|
|
/* Redirect the incoming edges of bb1 to bb2. */
|
|
for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
|
|
{
|
|
pred_edge = EDGE_PRED (bb1, i - 1);
|
|
pred_edge = redirect_edge_and_branch (pred_edge, bb2);
|
|
gcc_assert (pred_edge != NULL);
|
|
|
|
if (bb2_phi == NULL)
|
|
continue;
|
|
|
|
/* The phi might have run out of capacity when the redirect added an
|
|
argument, which means it could have been replaced. Refresh it. */
|
|
bb2_phi = vop_phi (bb2);
|
|
|
|
add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
|
|
pred_edge, UNKNOWN_LOCATION);
|
|
}
|
|
|
|
|
|
/* Merge the outgoing edge counts from bb1 onto bb2. */
|
|
edge e1, e2;
|
|
edge_iterator ei;
|
|
|
|
if (bb2->count.initialized_p ())
|
|
FOR_EACH_EDGE (e1, ei, bb1->succs)
|
|
{
|
|
e2 = find_edge (bb2, e1->dest);
|
|
gcc_assert (e2);
|
|
|
|
/* If probabilities are same, we are done.
|
|
If counts are nonzero we can distribute accordingly. In remaining
|
|
cases just avreage the values and hope for the best. */
|
|
e2->probability = e1->probability.combine_with_count
|
|
(bb1->count, e2->probability, bb2->count);
|
|
}
|
|
bb2->count += bb1->count;
|
|
|
|
/* Move over any user labels from bb1 after the bb2 labels. */
|
|
gimple_stmt_iterator gsi1 = gsi_start_bb (bb1);
|
|
if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
|
|
{
|
|
gimple_stmt_iterator gsi2 = gsi_after_labels (bb2);
|
|
while (!gsi_end_p (gsi1)
|
|
&& gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
|
|
{
|
|
tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
|
|
gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
|
|
if (DECL_ARTIFICIAL (label))
|
|
gsi_next (&gsi1);
|
|
else
|
|
gsi_move_before (&gsi1, &gsi2);
|
|
}
|
|
}
|
|
|
|
/* Clear range info from all stmts in BB2 -- this transformation
|
|
could make them out of date. */
|
|
reset_flow_sensitive_info_in_bb (bb2);
|
|
|
|
/* Do updates that use bb1, before deleting bb1. */
|
|
release_last_vdef (bb1);
|
|
same_succ_flush_bb (bb1);
|
|
|
|
delete_basic_block (bb1);
|
|
}
|
|
|
|
/* Bbs for which update_debug_stmt need to be called. */
|
|
|
|
static bitmap update_bbs;
|
|
|
|
/* For each cluster in all_clusters, merge all cluster->bbs. Returns
|
|
number of bbs removed. */
|
|
|
|
static int
|
|
apply_clusters (void)
|
|
{
|
|
basic_block bb1, bb2;
|
|
bb_cluster *c;
|
|
unsigned int i, j;
|
|
bitmap_iterator bj;
|
|
int nr_bbs_removed = 0;
|
|
|
|
for (i = 0; i < all_clusters.length (); ++i)
|
|
{
|
|
c = all_clusters[i];
|
|
if (c == NULL)
|
|
continue;
|
|
|
|
bb2 = c->rep_bb;
|
|
bitmap_set_bit (update_bbs, bb2->index);
|
|
|
|
bitmap_clear_bit (c->bbs, bb2->index);
|
|
EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
|
|
{
|
|
bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
|
|
bitmap_clear_bit (update_bbs, bb1->index);
|
|
|
|
replace_block_by (bb1, bb2);
|
|
nr_bbs_removed++;
|
|
}
|
|
}
|
|
|
|
return nr_bbs_removed;
|
|
}
|
|
|
|
/* Resets debug statement STMT if it has uses that are not dominated by their
|
|
defs. */
|
|
|
|
static void
|
|
update_debug_stmt (gimple *stmt)
|
|
{
|
|
use_operand_p use_p;
|
|
ssa_op_iter oi;
|
|
basic_block bbuse;
|
|
|
|
if (!gimple_debug_bind_p (stmt))
|
|
return;
|
|
|
|
bbuse = gimple_bb (stmt);
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
|
|
{
|
|
tree name = USE_FROM_PTR (use_p);
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
|
|
basic_block bbdef = gimple_bb (def_stmt);
|
|
if (bbdef == NULL || bbuse == bbdef
|
|
|| dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
|
|
continue;
|
|
|
|
gimple_debug_bind_reset_value (stmt);
|
|
update_stmt (stmt);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Resets all debug statements that have uses that are not
|
|
dominated by their defs. */
|
|
|
|
static void
|
|
update_debug_stmts (void)
|
|
{
|
|
basic_block bb;
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
|
|
{
|
|
gimple *stmt;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (!is_gimple_debug (stmt))
|
|
continue;
|
|
update_debug_stmt (stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Runs tail merge optimization. */
|
|
|
|
unsigned int
|
|
tail_merge_optimize (unsigned int todo)
|
|
{
|
|
int nr_bbs_removed_total = 0;
|
|
int nr_bbs_removed;
|
|
bool loop_entered = false;
|
|
int iteration_nr = 0;
|
|
int max_iterations = param_max_tail_merge_iterations;
|
|
|
|
if (!flag_tree_tail_merge
|
|
|| max_iterations == 0)
|
|
return 0;
|
|
|
|
timevar_push (TV_TREE_TAIL_MERGE);
|
|
|
|
/* We enter from PRE which has critical edges split. Elimination
|
|
does not process trivially dead code so cleanup the CFG if we
|
|
are told so. And re-split critical edges then. */
|
|
if (todo & TODO_cleanup_cfg)
|
|
{
|
|
cleanup_tree_cfg ();
|
|
todo &= ~TODO_cleanup_cfg;
|
|
split_edges_for_insertion ();
|
|
}
|
|
|
|
if (!dom_info_available_p (CDI_DOMINATORS))
|
|
{
|
|
/* PRE can leave us with unreachable blocks, remove them now. */
|
|
delete_unreachable_blocks ();
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
}
|
|
init_worklist ();
|
|
|
|
while (!worklist.is_empty ())
|
|
{
|
|
if (!loop_entered)
|
|
{
|
|
loop_entered = true;
|
|
alloc_cluster_vectors ();
|
|
update_bbs = BITMAP_ALLOC (NULL);
|
|
}
|
|
else
|
|
reset_cluster_vectors ();
|
|
|
|
iteration_nr++;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
|
|
|
|
find_clusters ();
|
|
gcc_assert (worklist.is_empty ());
|
|
if (all_clusters.is_empty ())
|
|
break;
|
|
|
|
nr_bbs_removed = apply_clusters ();
|
|
nr_bbs_removed_total += nr_bbs_removed;
|
|
if (nr_bbs_removed == 0)
|
|
break;
|
|
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
|
|
if (iteration_nr == max_iterations)
|
|
break;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
update_worklist ();
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "htab collision / search: %f\n",
|
|
same_succ_htab->collisions ());
|
|
|
|
if (nr_bbs_removed_total > 0)
|
|
{
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS)
|
|
{
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
update_debug_stmts ();
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Before TODOs.\n");
|
|
dump_function_to_file (current_function_decl, dump_file, dump_flags);
|
|
}
|
|
|
|
mark_virtual_operands_for_renaming (cfun);
|
|
}
|
|
|
|
delete_worklist ();
|
|
if (loop_entered)
|
|
{
|
|
delete_cluster_vectors ();
|
|
BITMAP_FREE (update_bbs);
|
|
}
|
|
|
|
timevar_pop (TV_TREE_TAIL_MERGE);
|
|
|
|
return todo;
|
|
}
|