* gnat_rm.texi: Fix minor typos. Found while reading the section regarding "Bit_Order Clauses" that was sent to a customer. Very interesting documentation! * sem_case.adb (Choice_Image): Avoid creating improper character literal names by using the routine Set_Character_Literal_Name. This fixes bombs in certain error message cases. * a-reatim.adb: Minor reformatting. * sem_ch12.adb (Validate_Derived_Type_Instance): Handle properly the case where the formal is an extension of another formal in the current unit or in a parent generic unit. * s-tposen.adb: Update comments. Minor reformatting. Minor code clean up. * s-tarest.adb: Update comments. Minor code reorganization. * exp_attr.adb (Attribute_Tag): Suppress expansion of <type_name>'Tag when Java_VM. * exp_attr.adb: Minor reformatting * sem_ch3.adb (Build_Derived_Private_Type): Refine check to handle derivations nested within a child unit: verify that the parent type is declared in an outer scope. * sem_ch12.adb: Minor reformatting * sem_warn.adb (Check_One_Unit): In No_Run_Time mode, do not post warning if current unit is a predefined one, from which bodies may have been deleted. * eval_fat.ads: Add comment that Round_Even is referenced in Ada code Fix header format. Add 2001 to copyright date. * exp_dbug.adb (Get_Encoded_Name): Fix out of bounds reference, which caused CE during compilation if checks were enabled. From-SVN: r48136
12198 lines
432 KiB
Ada
12198 lines
432 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- S E M _ C H 3 --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- $Revision$
|
|
-- --
|
|
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
|
|
-- MA 02111-1307, USA. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Checks; use Checks;
|
|
with Elists; use Elists;
|
|
with Einfo; use Einfo;
|
|
with Errout; use Errout;
|
|
with Eval_Fat; use Eval_Fat;
|
|
with Exp_Ch3; use Exp_Ch3;
|
|
with Exp_Dist; use Exp_Dist;
|
|
with Exp_Util; use Exp_Util;
|
|
with Freeze; use Freeze;
|
|
with Itypes; use Itypes;
|
|
with Layout; use Layout;
|
|
with Lib; use Lib;
|
|
with Lib.Xref; use Lib.Xref;
|
|
with Namet; use Namet;
|
|
with Nmake; use Nmake;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Rtsfind; use Rtsfind;
|
|
with Sem; use Sem;
|
|
with Sem_Case; use Sem_Case;
|
|
with Sem_Cat; use Sem_Cat;
|
|
with Sem_Ch6; use Sem_Ch6;
|
|
with Sem_Ch7; use Sem_Ch7;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Ch13; use Sem_Ch13;
|
|
with Sem_Disp; use Sem_Disp;
|
|
with Sem_Dist; use Sem_Dist;
|
|
with Sem_Elim; use Sem_Elim;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Mech; use Sem_Mech;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Smem; use Sem_Smem;
|
|
with Sem_Type; use Sem_Type;
|
|
with Sem_Util; use Sem_Util;
|
|
with Stand; use Stand;
|
|
with Sinfo; use Sinfo;
|
|
with Snames; use Snames;
|
|
with Tbuild; use Tbuild;
|
|
with Ttypes; use Ttypes;
|
|
with Uintp; use Uintp;
|
|
with Urealp; use Urealp;
|
|
|
|
package body Sem_Ch3 is
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Build_Derived_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Is_Completion : Boolean;
|
|
Derive_Subps : Boolean := True);
|
|
-- Create and decorate a Derived_Type given the Parent_Type entity.
|
|
-- N is the N_Full_Type_Declaration node containing the derived type
|
|
-- definition. Parent_Type is the entity for the parent type in the derived
|
|
-- type definition and Derived_Type the actual derived type. Is_Completion
|
|
-- must be set to False if Derived_Type is the N_Defining_Identifier node
|
|
-- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
|
|
-- the completion of a private type declaration. If Is_Completion is
|
|
-- set to True, N is the completion of a private type declaration and
|
|
-- Derived_Type is different from the defining identifier inside N (i.e.
|
|
-- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
|
|
-- the parent subprograms should be derived. The only case where this
|
|
-- parameter is False is when Build_Derived_Type is recursively called to
|
|
-- process an implicit derived full type for a type derived from a private
|
|
-- type (in that case the subprograms must only be derived for the private
|
|
-- view of the type).
|
|
-- ??? These flags need a bit of re-examination and re-documentation:
|
|
-- ??? are they both necessary (both seem related to the recursion)?
|
|
|
|
procedure Build_Derived_Access_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived access type,
|
|
-- create an implicit base if the parent type is constrained or if the
|
|
-- subtype indication has a constraint.
|
|
|
|
procedure Build_Derived_Array_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived array type,
|
|
-- create an implicit base if the parent type is constrained or if the
|
|
-- subtype indication has a constraint.
|
|
|
|
procedure Build_Derived_Concurrent_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
|
|
-- tected type, inherit entries and protected subprograms, check legality
|
|
-- of discriminant constraints if any.
|
|
|
|
procedure Build_Derived_Enumeration_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
|
|
-- type, we must create a new list of literals. Types derived from
|
|
-- Character and Wide_Character are special-cased.
|
|
|
|
procedure Build_Derived_Numeric_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Type. For numeric types, create
|
|
-- an anonymous base type, and propagate constraint to subtype if needed.
|
|
|
|
procedure Build_Derived_Private_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Is_Completion : Boolean;
|
|
Derive_Subps : Boolean := True);
|
|
-- Substidiary procedure to Build_Derived_Type. This procedure is complex
|
|
-- because the parent may or may not have a completion, and the derivation
|
|
-- may itself be a completion.
|
|
|
|
procedure Build_Derived_Record_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Derive_Subps : Boolean := True);
|
|
-- Subsidiary procedure to Build_Derived_Type and
|
|
-- Analyze_Private_Extension_Declaration used for tagged and untagged
|
|
-- record types. All parameters are as in Build_Derived_Type except that
|
|
-- N, in addition to being an N_Full_Type_Declaration node, can also be an
|
|
-- N_Private_Extension_Declaration node. See the definition of this routine
|
|
-- for much more info. Derive_Subps indicates whether subprograms should
|
|
-- be derived from the parent type. The only case where Derive_Subps is
|
|
-- False is for an implicit derived full type for a type derived from a
|
|
-- private type (see Build_Derived_Type).
|
|
|
|
function Inherit_Components
|
|
(N : Node_Id;
|
|
Parent_Base : Entity_Id;
|
|
Derived_Base : Entity_Id;
|
|
Is_Tagged : Boolean;
|
|
Inherit_Discr : Boolean;
|
|
Discs : Elist_Id)
|
|
return Elist_Id;
|
|
-- Called from Build_Derived_Record_Type to inherit the components of
|
|
-- Parent_Base (a base type) into the Derived_Base (the derived base type).
|
|
-- For more information on derived types and component inheritance please
|
|
-- consult the comment above the body of Build_Derived_Record_Type.
|
|
--
|
|
-- N is the original derived type declaration.
|
|
-- Is_Tagged is set if we are dealing with tagged types.
|
|
-- If Inherit_Discr is set, Derived_Base inherits its discriminants from
|
|
-- Parent_Base, otherwise no discriminants are inherited.
|
|
-- Discs gives the list of constraints that apply to Parent_Base in the
|
|
-- derived type declaration. If Discs is set to No_Elist, then we have the
|
|
-- following situation:
|
|
--
|
|
-- type Parent (D1..Dn : ..) is [tagged] record ...;
|
|
-- type Derived is new Parent [with ...];
|
|
--
|
|
-- which gets treated as
|
|
--
|
|
-- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
|
|
--
|
|
-- For untagged types the returned value is an association list:
|
|
-- (Old_Component => New_Component), where Old_Component is the Entity_Id
|
|
-- of a component in Parent_Base and New_Component is the Entity_Id of the
|
|
-- corresponding component in Derived_Base. For untagged records, this
|
|
-- association list is needed when copying the record declaration for the
|
|
-- derived base. In the tagged case the value returned is irrelevant.
|
|
|
|
procedure Build_Discriminal (Discrim : Entity_Id);
|
|
-- Create the discriminal corresponding to discriminant Discrim, that is
|
|
-- the parameter corresponding to Discrim to be used in initialization
|
|
-- procedures for the type where Discrim is a discriminant. Discriminals
|
|
-- are not used during semantic analysis, and are not fully defined
|
|
-- entities until expansion. Thus they are not given a scope until
|
|
-- initialization procedures are built.
|
|
|
|
function Build_Discriminant_Constraints
|
|
(T : Entity_Id;
|
|
Def : Node_Id;
|
|
Derived_Def : Boolean := False)
|
|
return Elist_Id;
|
|
-- Validate discriminant constraints, and return the list of the
|
|
-- constraints in order of discriminant declarations. T is the
|
|
-- discriminated unconstrained type. Def is the N_Subtype_Indication
|
|
-- node where the discriminants constraints for T are specified.
|
|
-- Derived_Def is True if we are building the discriminant constraints
|
|
-- in a derived type definition of the form "type D (...) is new T (xxx)".
|
|
-- In this case T is the parent type and Def is the constraint "(xxx)" on
|
|
-- T and this routine sets the Corresponding_Discriminant field of the
|
|
-- discriminants in the derived type D to point to the corresponding
|
|
-- discriminants in the parent type T.
|
|
|
|
procedure Build_Discriminated_Subtype
|
|
(T : Entity_Id;
|
|
Def_Id : Entity_Id;
|
|
Elist : Elist_Id;
|
|
Related_Nod : Node_Id;
|
|
For_Access : Boolean := False);
|
|
-- Subsidiary procedure to Constrain_Discriminated_Type and to
|
|
-- Process_Incomplete_Dependents. Given
|
|
--
|
|
-- T (a possibly discriminated base type)
|
|
-- Def_Id (a very partially built subtype for T),
|
|
--
|
|
-- the call completes Def_Id to be the appropriate E_*_Subtype.
|
|
--
|
|
-- The Elist is the list of discriminant constraints if any (it is set to
|
|
-- No_Elist if T is not a discriminated type, and to an empty list if
|
|
-- T has discriminants but there are no discriminant constraints). The
|
|
-- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
|
|
-- The For_Access says whether or not this subtype is really constraining
|
|
-- an access type. That is its sole purpose is the designated type of an
|
|
-- access type -- in which case a Private_Subtype Is_For_Access_Subtype
|
|
-- is built to avoid freezing T when the access subtype is frozen.
|
|
|
|
function Build_Scalar_Bound
|
|
(Bound : Node_Id;
|
|
Par_T : Entity_Id;
|
|
Der_T : Entity_Id;
|
|
Loc : Source_Ptr)
|
|
return Node_Id;
|
|
-- The bounds of a derived scalar type are conversions of the bounds of
|
|
-- the parent type. Optimize the representation if the bounds are literals.
|
|
-- Needs a more complete spec--what are the parameters exactly, and what
|
|
-- exactly is the returned value, and how is Bound affected???
|
|
|
|
procedure Build_Underlying_Full_View
|
|
(N : Node_Id;
|
|
Typ : Entity_Id;
|
|
Par : Entity_Id);
|
|
-- If the completion of a private type is itself derived from a private
|
|
-- type, or if the full view of a private subtype is itself private, the
|
|
-- back-end has no way to compute the actual size of this type. We build
|
|
-- an internal subtype declaration of the proper parent type to convey
|
|
-- this information. This extra mechanism is needed because a full
|
|
-- view cannot itself have a full view (it would get clobbered during
|
|
-- view exchanges).
|
|
|
|
procedure Check_Access_Discriminant_Requires_Limited
|
|
(D : Node_Id;
|
|
Loc : Node_Id);
|
|
-- Check the restriction that the type to which an access discriminant
|
|
-- belongs must be a concurrent type or a descendant of a type with
|
|
-- the reserved word 'limited' in its declaration.
|
|
|
|
procedure Check_Delta_Expression (E : Node_Id);
|
|
-- Check that the expression represented by E is suitable for use as
|
|
-- a delta expression, i.e. it is of real type and is static.
|
|
|
|
procedure Check_Digits_Expression (E : Node_Id);
|
|
-- Check that the expression represented by E is suitable for use as
|
|
-- a digits expression, i.e. it is of integer type, positive and static.
|
|
|
|
procedure Check_Incomplete (T : Entity_Id);
|
|
-- Called to verify that an incomplete type is not used prematurely
|
|
|
|
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
|
|
-- Validate the initialization of an object declaration. T is the
|
|
-- required type, and Exp is the initialization expression.
|
|
|
|
procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id);
|
|
-- If T is the full declaration of an incomplete or private type, check
|
|
-- the conformance of the discriminants, otherwise process them.
|
|
|
|
procedure Check_Real_Bound (Bound : Node_Id);
|
|
-- Check given bound for being of real type and static. If not, post an
|
|
-- appropriate message, and rewrite the bound with the real literal zero.
|
|
|
|
procedure Constant_Redeclaration
|
|
(Id : Entity_Id;
|
|
N : Node_Id;
|
|
T : out Entity_Id);
|
|
-- Various checks on legality of full declaration of deferred constant.
|
|
-- Id is the entity for the redeclaration, N is the N_Object_Declaration,
|
|
-- node. The caller has not yet set any attributes of this entity.
|
|
|
|
procedure Convert_Scalar_Bounds
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Loc : Source_Ptr);
|
|
-- For derived scalar types, convert the bounds in the type definition
|
|
-- to the derived type, and complete their analysis.
|
|
|
|
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
|
|
-- Copies attributes from array base type T2 to array base type T1.
|
|
-- Copies only attributes that apply to base types, but not subtypes.
|
|
|
|
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
|
|
-- Copies attributes from array subtype T2 to array subtype T1. Copies
|
|
-- attributes that apply to both subtypes and base types.
|
|
|
|
procedure Create_Constrained_Components
|
|
(Subt : Entity_Id;
|
|
Decl_Node : Node_Id;
|
|
Typ : Entity_Id;
|
|
Constraints : Elist_Id);
|
|
-- Build the list of entities for a constrained discriminated record
|
|
-- subtype. If a component depends on a discriminant, replace its subtype
|
|
-- using the discriminant values in the discriminant constraint.
|
|
-- Subt is the defining identifier for the subtype whose list of
|
|
-- constrained entities we will create. Decl_Node is the type declaration
|
|
-- node where we will attach all the itypes created. Typ is the base
|
|
-- discriminated type for the subtype Subt. Constraints is the list of
|
|
-- discriminant constraints for Typ.
|
|
|
|
function Constrain_Component_Type
|
|
(Compon_Type : Entity_Id;
|
|
Constrained_Typ : Entity_Id;
|
|
Related_Node : Node_Id;
|
|
Typ : Entity_Id;
|
|
Constraints : Elist_Id)
|
|
return Entity_Id;
|
|
-- Given a discriminated base type Typ, a list of discriminant constraint
|
|
-- Constraints for Typ and the type of a component of Typ, Compon_Type,
|
|
-- create and return the type corresponding to Compon_type where all
|
|
-- discriminant references are replaced with the corresponding
|
|
-- constraint. If no discriminant references occurr in Compon_Typ then
|
|
-- return it as is. Constrained_Typ is the final constrained subtype to
|
|
-- which the constrained Compon_Type belongs. Related_Node is the node
|
|
-- where we will attach all the itypes created.
|
|
|
|
procedure Constrain_Access
|
|
(Def_Id : in out Entity_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Apply a list of constraints to an access type. If Def_Id is empty,
|
|
-- it is an anonymous type created for a subtype indication. In that
|
|
-- case it is created in the procedure and attached to Related_Nod.
|
|
|
|
procedure Constrain_Array
|
|
(Def_Id : in out Entity_Id;
|
|
SI : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character);
|
|
-- Apply a list of index constraints to an unconstrained array type. The
|
|
-- first parameter is the entity for the resulting subtype. A value of
|
|
-- Empty for Def_Id indicates that an implicit type must be created, but
|
|
-- creation is delayed (and must be done by this procedure) because other
|
|
-- subsidiary implicit types must be created first (which is why Def_Id
|
|
-- is an in/out parameter). Related_Nod gives the place where this type has
|
|
-- to be inserted in the tree. The Related_Id and Suffix parameters are
|
|
-- used to build the associated Implicit type name.
|
|
|
|
procedure Constrain_Concurrent
|
|
(Def_Id : in out Entity_Id;
|
|
SI : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character);
|
|
-- Apply list of discriminant constraints to an unconstrained concurrent
|
|
-- type.
|
|
--
|
|
-- SI is the N_Subtype_Indication node containing the constraint and
|
|
-- the unconstrained type to constrain.
|
|
--
|
|
-- Def_Id is the entity for the resulting constrained subtype. A
|
|
-- value of Empty for Def_Id indicates that an implicit type must be
|
|
-- created, but creation is delayed (and must be done by this procedure)
|
|
-- because other subsidiary implicit types must be created first (which
|
|
-- is why Def_Id is an in/out parameter).
|
|
--
|
|
-- Related_Nod gives the place where this type has to be inserted
|
|
-- in the tree
|
|
--
|
|
-- The last two arguments are used to create its external name if needed.
|
|
|
|
function Constrain_Corresponding_Record
|
|
(Prot_Subt : Entity_Id;
|
|
Corr_Rec : Entity_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id)
|
|
return Entity_Id;
|
|
-- When constraining a protected type or task type with discriminants,
|
|
-- constrain the corresponding record with the same discriminant values.
|
|
|
|
procedure Constrain_Decimal
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Constrain a decimal fixed point type with a digits constraint and/or a
|
|
-- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
|
|
|
|
procedure Constrain_Discriminated_Type
|
|
(Def_Id : Entity_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
For_Access : Boolean := False);
|
|
-- Process discriminant constraints of composite type. Verify that values
|
|
-- have been provided for all discriminants, that the original type is
|
|
-- unconstrained, and that the types of the supplied expressions match
|
|
-- the discriminant types. The first three parameters are like in routine
|
|
-- Constrain_Concurrent. See Build_Discrimated_Subtype for an explanation
|
|
-- of For_Access.
|
|
|
|
procedure Constrain_Enumeration
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Constrain an enumeration type with a range constraint. This is
|
|
-- identical to Constrain_Integer, but for the Ekind of the
|
|
-- resulting subtype.
|
|
|
|
procedure Constrain_Float
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Constrain a floating point type with either a digits constraint
|
|
-- and/or a range constraint, building a E_Floating_Point_Subtype.
|
|
|
|
procedure Constrain_Index
|
|
(Index : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character;
|
|
Suffix_Index : Nat);
|
|
-- Process an index constraint in a constrained array declaration.
|
|
-- The constraint can be a subtype name, or a range with or without
|
|
-- an explicit subtype mark. The index is the corresponding index of the
|
|
-- unconstrained array. The Related_Id and Suffix parameters are used to
|
|
-- build the associated Implicit type name.
|
|
|
|
procedure Constrain_Integer
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Build subtype of a signed or modular integer type.
|
|
|
|
procedure Constrain_Ordinary_Fixed
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Constrain an ordinary fixed point type with a range constraint, and
|
|
-- build an E_Ordinary_Fixed_Point_Subtype entity.
|
|
|
|
procedure Copy_And_Swap (Privat, Full : Entity_Id);
|
|
-- Copy the Privat entity into the entity of its full declaration
|
|
-- then swap the two entities in such a manner that the former private
|
|
-- type is now seen as a full type.
|
|
|
|
procedure Copy_Private_To_Full (Priv, Full : Entity_Id);
|
|
-- Initialize the full view declaration with the relevant fields
|
|
-- from the private view.
|
|
|
|
procedure Decimal_Fixed_Point_Type_Declaration
|
|
(T : Entity_Id;
|
|
Def : Node_Id);
|
|
-- Create a new decimal fixed point type, and apply the constraint to
|
|
-- obtain a subtype of this new type.
|
|
|
|
procedure Complete_Private_Subtype
|
|
(Priv : Entity_Id;
|
|
Full : Entity_Id;
|
|
Full_Base : Entity_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Complete the implicit full view of a private subtype by setting
|
|
-- the appropriate semantic fields. If the full view of the parent is
|
|
-- a record type, build constrained components of subtype.
|
|
|
|
procedure Derived_Standard_Character
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id);
|
|
-- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
|
|
-- derivations from types Standard.Character and Standard.Wide_Character.
|
|
|
|
procedure Derived_Type_Declaration
|
|
(T : Entity_Id;
|
|
N : Node_Id;
|
|
Is_Completion : Boolean);
|
|
-- Process a derived type declaration. This routine will invoke
|
|
-- Build_Derived_Type to process the actual derived type definition.
|
|
-- Parameters N and Is_Completion have the same meaning as in
|
|
-- Build_Derived_Type. T is the N_Defining_Identifier for the entity
|
|
-- defined in the N_Full_Type_Declaration node N, that is T is the
|
|
-- derived type.
|
|
|
|
function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
|
|
-- Given a subtype indication S (which is really an N_Subtype_Indication
|
|
-- node or a plain N_Identifier), find the type of the subtype mark.
|
|
|
|
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
|
-- Insert each literal in symbol table, as an overloadable identifier
|
|
-- Each enumeration type is mapped into a sequence of integers, and
|
|
-- each literal is defined as a constant with integer value. If any
|
|
-- of the literals are character literals, the type is a character
|
|
-- type, which means that strings are legal aggregates for arrays of
|
|
-- components of the type.
|
|
|
|
procedure Expand_Others_Choice
|
|
(Case_Table : Choice_Table_Type;
|
|
Others_Choice : Node_Id;
|
|
Choice_Type : Entity_Id);
|
|
-- In the case of a variant part of a record type that has an OTHERS
|
|
-- choice, this procedure expands the OTHERS into the actual choices
|
|
-- that it represents. This new list of choice nodes is attached to
|
|
-- the OTHERS node via the Others_Discrete_Choices field. The Case_Table
|
|
-- contains all choices that have been given explicitly in the variant.
|
|
|
|
function Find_Type_Of_Object
|
|
(Obj_Def : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
return Entity_Id;
|
|
-- Get type entity for object referenced by Obj_Def, attaching the
|
|
-- implicit types generated to Related_Nod
|
|
|
|
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
|
-- Create a new float, and apply the constraint to obtain subtype of it
|
|
|
|
function Has_Range_Constraint (N : Node_Id) return Boolean;
|
|
-- Given an N_Subtype_Indication node N, return True if a range constraint
|
|
-- is present, either directly, or as part of a digits or delta constraint.
|
|
-- In addition, a digits constraint in the decimal case returns True, since
|
|
-- it establishes a default range if no explicit range is present.
|
|
|
|
function Is_Valid_Constraint_Kind
|
|
(T_Kind : Type_Kind;
|
|
Constraint_Kind : Node_Kind)
|
|
return Boolean;
|
|
-- Returns True if it is legal to apply the given kind of constraint
|
|
-- to the given kind of type (index constraint to an array type,
|
|
-- for example).
|
|
|
|
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
|
-- Create new modular type. Verify that modulus is in bounds and is
|
|
-- a power of two (implementation restriction).
|
|
|
|
procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id);
|
|
-- Create an abbreviated declaration for an operator in order to
|
|
-- materialize minimally operators on derived types.
|
|
|
|
procedure Ordinary_Fixed_Point_Type_Declaration
|
|
(T : Entity_Id;
|
|
Def : Node_Id);
|
|
-- Create a new ordinary fixed point type, and apply the constraint
|
|
-- to obtain subtype of it.
|
|
|
|
procedure Prepare_Private_Subtype_Completion
|
|
(Id : Entity_Id;
|
|
Related_Nod : Node_Id);
|
|
-- Id is a subtype of some private type. Creates the full declaration
|
|
-- associated with Id whenever possible, i.e. when the full declaration
|
|
-- of the base type is already known. Records each subtype into
|
|
-- Private_Dependents of the base type.
|
|
|
|
procedure Process_Incomplete_Dependents
|
|
(N : Node_Id;
|
|
Full_T : Entity_Id;
|
|
Inc_T : Entity_Id);
|
|
-- Process all entities that depend on an incomplete type. There include
|
|
-- subtypes, subprogram types that mention the incomplete type in their
|
|
-- profiles, and subprogram with access parameters that designate the
|
|
-- incomplete type.
|
|
|
|
-- Inc_T is the defining identifier of an incomplete type declaration, its
|
|
-- Ekind is E_Incomplete_Type.
|
|
--
|
|
-- N is the corresponding N_Full_Type_Declaration for Inc_T.
|
|
--
|
|
-- Full_T is N's defining identifier.
|
|
--
|
|
-- Subtypes of incomplete types with discriminants are completed when the
|
|
-- parent type is. This is simpler than private subtypes, because they can
|
|
-- only appear in the same scope, and there is no need to exchange views.
|
|
-- Similarly, access_to_subprogram types may have a parameter or a return
|
|
-- type that is an incomplete type, and that must be replaced with the
|
|
-- full type.
|
|
|
|
-- If the full type is tagged, subprogram with access parameters that
|
|
-- designated the incomplete may be primitive operations of the full type,
|
|
-- and have to be processed accordingly.
|
|
|
|
procedure Process_Real_Range_Specification (Def : Node_Id);
|
|
-- Given the type definition for a real type, this procedure processes
|
|
-- and checks the real range specification of this type definition if
|
|
-- one is present. If errors are found, error messages are posted, and
|
|
-- the Real_Range_Specification of Def is reset to Empty.
|
|
|
|
procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id);
|
|
-- Process a record type declaration (for both untagged and tagged
|
|
-- records). Parameters T and N are exactly like in procedure
|
|
-- Derived_Type_Declaration, except that no flag Is_Completion is
|
|
-- needed for this routine.
|
|
|
|
procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id);
|
|
-- This routine is used to process the actual record type definition
|
|
-- (both for untagged and tagged records). Def is a record type
|
|
-- definition node. This procedure analyzes the components in this
|
|
-- record type definition. T is the entity for the enclosing record
|
|
-- type. It is provided so that its Has_Task flag can be set if any of
|
|
-- the component have Has_Task set.
|
|
|
|
procedure Set_Fixed_Range
|
|
(E : Entity_Id;
|
|
Loc : Source_Ptr;
|
|
Lo : Ureal;
|
|
Hi : Ureal);
|
|
-- Build a range node with the given bounds and set it as the Scalar_Range
|
|
-- of the given fixed-point type entity. Loc is the source location used
|
|
-- for the constructed range. See body for further details.
|
|
|
|
procedure Set_Scalar_Range_For_Subtype
|
|
(Def_Id : Entity_Id;
|
|
R : Node_Id;
|
|
Subt : Entity_Id;
|
|
Related_Nod : Node_Id);
|
|
-- This routine is used to set the scalar range field for a subtype
|
|
-- given Def_Id, the entity for the subtype, and R, the range expression
|
|
-- for the scalar range. Subt provides the parent subtype to be used
|
|
-- to analyze, resolve, and check the given range.
|
|
|
|
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
|
|
-- Create a new signed integer entity, and apply the constraint to obtain
|
|
-- the required first named subtype of this type.
|
|
|
|
-----------------------
|
|
-- Access_Definition --
|
|
-----------------------
|
|
|
|
function Access_Definition
|
|
(Related_Nod : Node_Id;
|
|
N : Node_Id)
|
|
return Entity_Id
|
|
is
|
|
Anon_Type : constant Entity_Id :=
|
|
Create_Itype (E_Anonymous_Access_Type, Related_Nod,
|
|
Scope_Id => Scope (Current_Scope));
|
|
Desig_Type : Entity_Id;
|
|
|
|
begin
|
|
if Is_Entry (Current_Scope)
|
|
and then Is_Task_Type (Etype (Scope (Current_Scope)))
|
|
then
|
|
Error_Msg_N ("task entries cannot have access parameters", N);
|
|
end if;
|
|
|
|
Find_Type (Subtype_Mark (N));
|
|
Desig_Type := Entity (Subtype_Mark (N));
|
|
|
|
Set_Directly_Designated_Type
|
|
(Anon_Type, Desig_Type);
|
|
Set_Etype (Anon_Type, Anon_Type);
|
|
Init_Size_Align (Anon_Type);
|
|
Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
|
|
|
|
-- The anonymous access type is as public as the discriminated type or
|
|
-- subprogram that defines it. It is imported (for back-end purposes)
|
|
-- if the designated type is.
|
|
|
|
Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
|
|
Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
|
|
|
|
-- The context is either a subprogram declaration or an access
|
|
-- discriminant, in a private or a full type declaration. In
|
|
-- the case of a subprogram, If the designated type is incomplete,
|
|
-- the operation will be a primitive operation of the full type, to
|
|
-- be updated subsequently.
|
|
|
|
if Ekind (Desig_Type) = E_Incomplete_Type
|
|
and then Is_Overloadable (Current_Scope)
|
|
then
|
|
Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
|
|
Set_Has_Delayed_Freeze (Current_Scope);
|
|
end if;
|
|
|
|
return Anon_Type;
|
|
end Access_Definition;
|
|
|
|
-----------------------------------
|
|
-- Access_Subprogram_Declaration --
|
|
-----------------------------------
|
|
|
|
procedure Access_Subprogram_Declaration
|
|
(T_Name : Entity_Id;
|
|
T_Def : Node_Id)
|
|
is
|
|
Formals : constant List_Id := Parameter_Specifications (T_Def);
|
|
Formal : Entity_Id;
|
|
Desig_Type : constant Entity_Id :=
|
|
Create_Itype (E_Subprogram_Type, Parent (T_Def));
|
|
|
|
begin
|
|
if Nkind (T_Def) = N_Access_Function_Definition then
|
|
Analyze (Subtype_Mark (T_Def));
|
|
Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
|
|
else
|
|
Set_Etype (Desig_Type, Standard_Void_Type);
|
|
end if;
|
|
|
|
if Present (Formals) then
|
|
New_Scope (Desig_Type);
|
|
Process_Formals (Desig_Type, Formals, Parent (T_Def));
|
|
|
|
-- A bit of a kludge here, End_Scope requires that the parent
|
|
-- pointer be set to something reasonable, but Itypes don't
|
|
-- have parent pointers. So we set it and then unset it ???
|
|
-- If and when Itypes have proper parent pointers to their
|
|
-- declarations, this kludge can be removed.
|
|
|
|
Set_Parent (Desig_Type, T_Name);
|
|
End_Scope;
|
|
Set_Parent (Desig_Type, Empty);
|
|
end if;
|
|
|
|
-- The return type and/or any parameter type may be incomplete. Mark
|
|
-- the subprogram_type as depending on the incomplete type, so that
|
|
-- it can be updated when the full type declaration is seen.
|
|
|
|
if Present (Formals) then
|
|
Formal := First_Formal (Desig_Type);
|
|
|
|
while Present (Formal) loop
|
|
|
|
if Ekind (Formal) /= E_In_Parameter
|
|
and then Nkind (T_Def) = N_Access_Function_Definition
|
|
then
|
|
Error_Msg_N ("functions can only have IN parameters", Formal);
|
|
end if;
|
|
|
|
if Ekind (Etype (Formal)) = E_Incomplete_Type then
|
|
Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
|
|
Set_Has_Delayed_Freeze (Desig_Type);
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
end if;
|
|
|
|
if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
|
|
and then not Has_Delayed_Freeze (Desig_Type)
|
|
then
|
|
Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
|
|
Set_Has_Delayed_Freeze (Desig_Type);
|
|
end if;
|
|
|
|
Check_Delayed_Subprogram (Desig_Type);
|
|
|
|
if Protected_Present (T_Def) then
|
|
Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
|
|
Set_Convention (Desig_Type, Convention_Protected);
|
|
else
|
|
Set_Ekind (T_Name, E_Access_Subprogram_Type);
|
|
end if;
|
|
|
|
Set_Etype (T_Name, T_Name);
|
|
Init_Size_Align (T_Name);
|
|
Set_Directly_Designated_Type (T_Name, Desig_Type);
|
|
|
|
Check_Restriction (No_Access_Subprograms, T_Def);
|
|
end Access_Subprogram_Declaration;
|
|
|
|
----------------------------
|
|
-- Access_Type_Declaration --
|
|
----------------------------
|
|
|
|
procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
|
S : constant Node_Id := Subtype_Indication (Def);
|
|
P : constant Node_Id := Parent (Def);
|
|
|
|
begin
|
|
-- Check for permissible use of incomplete type
|
|
|
|
if Nkind (S) /= N_Subtype_Indication then
|
|
Analyze (S);
|
|
|
|
if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
|
|
Set_Directly_Designated_Type (T, Entity (S));
|
|
else
|
|
Set_Directly_Designated_Type (T,
|
|
Process_Subtype (S, P, T, 'P'));
|
|
end if;
|
|
|
|
else
|
|
Set_Directly_Designated_Type (T,
|
|
Process_Subtype (S, P, T, 'P'));
|
|
end if;
|
|
|
|
if All_Present (Def) or Constant_Present (Def) then
|
|
Set_Ekind (T, E_General_Access_Type);
|
|
else
|
|
Set_Ekind (T, E_Access_Type);
|
|
end if;
|
|
|
|
if Base_Type (Designated_Type (T)) = T then
|
|
Error_Msg_N ("access type cannot designate itself", S);
|
|
end if;
|
|
|
|
Set_Etype (T, T);
|
|
|
|
-- If the type has appeared already in a with_type clause, it is
|
|
-- frozen and the pointer size is already set. Else, initialize.
|
|
|
|
if not From_With_Type (T) then
|
|
Init_Size_Align (T);
|
|
end if;
|
|
|
|
Set_Is_Access_Constant (T, Constant_Present (Def));
|
|
|
|
-- If designated type is an imported tagged type, indicate that the
|
|
-- access type is also imported, and therefore restricted in its use.
|
|
-- The access type may already be imported, so keep setting otherwise.
|
|
|
|
if From_With_Type (Designated_Type (T)) then
|
|
Set_From_With_Type (T);
|
|
end if;
|
|
|
|
-- Note that Has_Task is always false, since the access type itself
|
|
-- is not a task type. See Einfo for more description on this point.
|
|
-- Exactly the same consideration applies to Has_Controlled_Component.
|
|
|
|
Set_Has_Task (T, False);
|
|
Set_Has_Controlled_Component (T, False);
|
|
end Access_Type_Declaration;
|
|
|
|
-----------------------------------
|
|
-- Analyze_Component_Declaration --
|
|
-----------------------------------
|
|
|
|
procedure Analyze_Component_Declaration (N : Node_Id) is
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
|
T : Entity_Id;
|
|
P : Entity_Id;
|
|
|
|
begin
|
|
Generate_Definition (Id);
|
|
Enter_Name (Id);
|
|
T := Find_Type_Of_Object (Subtype_Indication (N), N);
|
|
|
|
-- If the component declaration includes a default expression, then we
|
|
-- check that the component is not of a limited type (RM 3.7(5)),
|
|
-- and do the special preanalysis of the expression (see section on
|
|
-- "Handling of Default Expressions" in the spec of package Sem).
|
|
|
|
if Present (Expression (N)) then
|
|
Analyze_Default_Expression (Expression (N), T);
|
|
Check_Initialization (T, Expression (N));
|
|
end if;
|
|
|
|
-- The parent type may be a private view with unknown discriminants,
|
|
-- and thus unconstrained. Regular components must be constrained.
|
|
|
|
if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
|
|
Error_Msg_N
|
|
("unconstrained subtype in component declaration",
|
|
Subtype_Indication (N));
|
|
|
|
-- Components cannot be abstract, except for the special case of
|
|
-- the _Parent field (case of extending an abstract tagged type)
|
|
|
|
elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
|
|
Error_Msg_N ("type of a component cannot be abstract", N);
|
|
end if;
|
|
|
|
Set_Etype (Id, T);
|
|
Set_Is_Aliased (Id, Aliased_Present (N));
|
|
|
|
-- If the this component is private (or depends on a private type),
|
|
-- flag the record type to indicate that some operations are not
|
|
-- available.
|
|
|
|
P := Private_Component (T);
|
|
|
|
if Present (P) then
|
|
-- Check for circular definitions.
|
|
|
|
if P = Any_Type then
|
|
Set_Etype (Id, Any_Type);
|
|
|
|
-- There is a gap in the visibility of operations only if the
|
|
-- component type is not defined in the scope of the record type.
|
|
|
|
elsif Scope (P) = Scope (Current_Scope) then
|
|
null;
|
|
|
|
elsif Is_Limited_Type (P) then
|
|
Set_Is_Limited_Composite (Current_Scope);
|
|
|
|
else
|
|
Set_Is_Private_Composite (Current_Scope);
|
|
end if;
|
|
end if;
|
|
|
|
if P /= Any_Type
|
|
and then Is_Limited_Type (T)
|
|
and then Chars (Id) /= Name_uParent
|
|
and then Is_Tagged_Type (Current_Scope)
|
|
then
|
|
if Is_Derived_Type (Current_Scope)
|
|
and then not Is_Limited_Record (Root_Type (Current_Scope))
|
|
then
|
|
Error_Msg_N
|
|
("extension of nonlimited type cannot have limited components",
|
|
N);
|
|
Set_Etype (Id, Any_Type);
|
|
Set_Is_Limited_Composite (Current_Scope, False);
|
|
|
|
elsif not Is_Derived_Type (Current_Scope)
|
|
and then not Is_Limited_Record (Current_Scope)
|
|
then
|
|
Error_Msg_N ("nonlimited type cannot have limited components", N);
|
|
Set_Etype (Id, Any_Type);
|
|
Set_Is_Limited_Composite (Current_Scope, False);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Original_Record_Component (Id, Id);
|
|
end Analyze_Component_Declaration;
|
|
|
|
--------------------------
|
|
-- Analyze_Declarations --
|
|
--------------------------
|
|
|
|
procedure Analyze_Declarations (L : List_Id) is
|
|
D : Node_Id;
|
|
Next_Node : Node_Id;
|
|
Freeze_From : Entity_Id := Empty;
|
|
|
|
procedure Adjust_D;
|
|
-- Adjust D not to include implicit label declarations, since these
|
|
-- have strange Sloc values that result in elaboration check problems.
|
|
|
|
procedure Adjust_D is
|
|
begin
|
|
while Present (Prev (D))
|
|
and then Nkind (D) = N_Implicit_Label_Declaration
|
|
loop
|
|
Prev (D);
|
|
end loop;
|
|
end Adjust_D;
|
|
|
|
-- Start of processing for Analyze_Declarations
|
|
|
|
begin
|
|
D := First (L);
|
|
while Present (D) loop
|
|
|
|
-- Complete analysis of declaration
|
|
|
|
Analyze (D);
|
|
Next_Node := Next (D);
|
|
|
|
if No (Freeze_From) then
|
|
Freeze_From := First_Entity (Current_Scope);
|
|
end if;
|
|
|
|
-- At the end of a declarative part, freeze remaining entities
|
|
-- declared in it. The end of the visible declarations of a
|
|
-- package specification is not the end of a declarative part
|
|
-- if private declarations are present. The end of a package
|
|
-- declaration is a freezing point only if it a library package.
|
|
-- A task definition or protected type definition is not a freeze
|
|
-- point either. Finally, we do not freeze entities in generic
|
|
-- scopes, because there is no code generated for them and freeze
|
|
-- nodes will be generated for the instance.
|
|
|
|
-- The end of a package instantiation is not a freeze point, but
|
|
-- for now we make it one, because the generic body is inserted
|
|
-- (currently) immediately after. Generic instantiations will not
|
|
-- be a freeze point once delayed freezing of bodies is implemented.
|
|
-- (This is needed in any case for early instantiations ???).
|
|
|
|
if No (Next_Node) then
|
|
if Nkind (Parent (L)) = N_Component_List
|
|
or else Nkind (Parent (L)) = N_Task_Definition
|
|
or else Nkind (Parent (L)) = N_Protected_Definition
|
|
then
|
|
null;
|
|
|
|
elsif Nkind (Parent (L)) /= N_Package_Specification then
|
|
|
|
if Nkind (Parent (L)) = N_Package_Body then
|
|
Freeze_From := First_Entity (Current_Scope);
|
|
end if;
|
|
|
|
Adjust_D;
|
|
Freeze_All (Freeze_From, D);
|
|
Freeze_From := Last_Entity (Current_Scope);
|
|
|
|
elsif Scope (Current_Scope) /= Standard_Standard
|
|
and then not Is_Child_Unit (Current_Scope)
|
|
and then No (Generic_Parent (Parent (L)))
|
|
then
|
|
null;
|
|
|
|
elsif L /= Visible_Declarations (Parent (L))
|
|
or else No (Private_Declarations (Parent (L)))
|
|
or else Is_Empty_List (Private_Declarations (Parent (L)))
|
|
then
|
|
Adjust_D;
|
|
Freeze_All (Freeze_From, D);
|
|
Freeze_From := Last_Entity (Current_Scope);
|
|
end if;
|
|
|
|
-- If next node is a body then freeze all types before the body.
|
|
-- An exception occurs for expander generated bodies, which can
|
|
-- be recognized by their already being analyzed. The expander
|
|
-- ensures that all types needed by these bodies have been frozen
|
|
-- but it is not necessary to freeze all types (and would be wrong
|
|
-- since it would not correspond to an RM defined freeze point).
|
|
|
|
elsif not Analyzed (Next_Node)
|
|
and then (Nkind (Next_Node) = N_Subprogram_Body
|
|
or else Nkind (Next_Node) = N_Entry_Body
|
|
or else Nkind (Next_Node) = N_Package_Body
|
|
or else Nkind (Next_Node) = N_Protected_Body
|
|
or else Nkind (Next_Node) = N_Task_Body
|
|
or else Nkind (Next_Node) in N_Body_Stub)
|
|
then
|
|
Adjust_D;
|
|
Freeze_All (Freeze_From, D);
|
|
Freeze_From := Last_Entity (Current_Scope);
|
|
end if;
|
|
|
|
D := Next_Node;
|
|
end loop;
|
|
|
|
end Analyze_Declarations;
|
|
|
|
--------------------------------
|
|
-- Analyze_Default_Expression --
|
|
--------------------------------
|
|
|
|
procedure Analyze_Default_Expression (N : Node_Id; T : Entity_Id) is
|
|
Save_In_Default_Expression : constant Boolean := In_Default_Expression;
|
|
|
|
begin
|
|
In_Default_Expression := True;
|
|
Pre_Analyze_And_Resolve (N, T);
|
|
In_Default_Expression := Save_In_Default_Expression;
|
|
end Analyze_Default_Expression;
|
|
|
|
----------------------------------
|
|
-- Analyze_Incomplete_Type_Decl --
|
|
----------------------------------
|
|
|
|
procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
|
|
F : constant Boolean := Is_Pure (Current_Scope);
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
Generate_Definition (Defining_Identifier (N));
|
|
|
|
-- Process an incomplete declaration. The identifier must not have been
|
|
-- declared already in the scope. However, an incomplete declaration may
|
|
-- appear in the private part of a package, for a private type that has
|
|
-- already been declared.
|
|
|
|
-- In this case, the discriminants (if any) must match.
|
|
|
|
T := Find_Type_Name (N);
|
|
|
|
Set_Ekind (T, E_Incomplete_Type);
|
|
Init_Size_Align (T);
|
|
Set_Is_First_Subtype (T, True);
|
|
Set_Etype (T, T);
|
|
New_Scope (T);
|
|
|
|
Set_Girder_Constraint (T, No_Elist);
|
|
|
|
if Present (Discriminant_Specifications (N)) then
|
|
Process_Discriminants (N);
|
|
end if;
|
|
|
|
End_Scope;
|
|
|
|
-- If the type has discriminants, non-trivial subtypes may be
|
|
-- be declared before the full view of the type. The full views
|
|
-- of those subtypes will be built after the full view of the type.
|
|
|
|
Set_Private_Dependents (T, New_Elmt_List);
|
|
Set_Is_Pure (T, F);
|
|
end Analyze_Incomplete_Type_Decl;
|
|
|
|
-----------------------------
|
|
-- Analyze_Itype_Reference --
|
|
-----------------------------
|
|
|
|
-- Nothing to do. This node is placed in the tree only for the benefit
|
|
-- of Gigi processing, and has no effect on the semantic processing.
|
|
|
|
procedure Analyze_Itype_Reference (N : Node_Id) is
|
|
begin
|
|
pragma Assert (Is_Itype (Itype (N)));
|
|
null;
|
|
end Analyze_Itype_Reference;
|
|
|
|
--------------------------------
|
|
-- Analyze_Number_Declaration --
|
|
--------------------------------
|
|
|
|
procedure Analyze_Number_Declaration (N : Node_Id) is
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
|
E : constant Node_Id := Expression (N);
|
|
T : Entity_Id;
|
|
Index : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
Generate_Definition (Id);
|
|
Enter_Name (Id);
|
|
|
|
-- This is an optimization of a common case of an integer literal
|
|
|
|
if Nkind (E) = N_Integer_Literal then
|
|
Set_Is_Static_Expression (E, True);
|
|
Set_Etype (E, Universal_Integer);
|
|
|
|
Set_Etype (Id, Universal_Integer);
|
|
Set_Ekind (Id, E_Named_Integer);
|
|
Set_Is_Frozen (Id, True);
|
|
return;
|
|
end if;
|
|
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
|
|
|
-- Process expression, replacing error by integer zero, to avoid
|
|
-- cascaded errors or aborts further along in the processing
|
|
|
|
-- Replace Error by integer zero, which seems least likely to
|
|
-- cause cascaded errors.
|
|
|
|
if E = Error then
|
|
Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
|
|
Set_Error_Posted (E);
|
|
end if;
|
|
|
|
Analyze (E);
|
|
|
|
-- Verify that the expression is static and numeric. If
|
|
-- the expression is overloaded, we apply the preference
|
|
-- rule that favors root numeric types.
|
|
|
|
if not Is_Overloaded (E) then
|
|
T := Etype (E);
|
|
|
|
else
|
|
T := Any_Type;
|
|
Get_First_Interp (E, Index, It);
|
|
|
|
while Present (It.Typ) loop
|
|
if (Is_Integer_Type (It.Typ)
|
|
or else Is_Real_Type (It.Typ))
|
|
and then (Scope (Base_Type (It.Typ))) = Standard_Standard
|
|
then
|
|
if T = Any_Type then
|
|
T := It.Typ;
|
|
|
|
elsif It.Typ = Universal_Real
|
|
or else It.Typ = Universal_Integer
|
|
then
|
|
-- Choose universal interpretation over any other.
|
|
|
|
T := It.Typ;
|
|
exit;
|
|
end if;
|
|
end if;
|
|
|
|
Get_Next_Interp (Index, It);
|
|
end loop;
|
|
end if;
|
|
|
|
if Is_Integer_Type (T) then
|
|
Resolve (E, T);
|
|
Set_Etype (Id, Universal_Integer);
|
|
Set_Ekind (Id, E_Named_Integer);
|
|
|
|
elsif Is_Real_Type (T) then
|
|
|
|
-- Because the real value is converted to universal_real, this
|
|
-- is a legal context for a universal fixed expression.
|
|
|
|
if T = Universal_Fixed then
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Conv : constant Node_Id := Make_Type_Conversion (Loc,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (Universal_Real, Loc),
|
|
Expression => Relocate_Node (E));
|
|
|
|
begin
|
|
Rewrite (E, Conv);
|
|
Analyze (E);
|
|
end;
|
|
|
|
elsif T = Any_Fixed then
|
|
Error_Msg_N ("illegal context for mixed mode operation", E);
|
|
|
|
-- Expression is of the form : universal_fixed * integer.
|
|
-- Try to resolve as universal_real.
|
|
|
|
T := Universal_Real;
|
|
Set_Etype (E, T);
|
|
end if;
|
|
|
|
Resolve (E, T);
|
|
Set_Etype (Id, Universal_Real);
|
|
Set_Ekind (Id, E_Named_Real);
|
|
|
|
else
|
|
Wrong_Type (E, Any_Numeric);
|
|
Resolve (E, T);
|
|
Set_Etype (Id, T);
|
|
Set_Ekind (Id, E_Constant);
|
|
Set_Not_Source_Assigned (Id, True);
|
|
Set_Is_True_Constant (Id, True);
|
|
return;
|
|
end if;
|
|
|
|
if Nkind (E) = N_Integer_Literal
|
|
or else Nkind (E) = N_Real_Literal
|
|
then
|
|
Set_Etype (E, Etype (Id));
|
|
end if;
|
|
|
|
if not Is_OK_Static_Expression (E) then
|
|
Error_Msg_N ("non-static expression used in number declaration", E);
|
|
Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
|
|
Set_Etype (E, Any_Type);
|
|
end if;
|
|
|
|
end Analyze_Number_Declaration;
|
|
|
|
--------------------------------
|
|
-- Analyze_Object_Declaration --
|
|
--------------------------------
|
|
|
|
procedure Analyze_Object_Declaration (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
|
T : Entity_Id;
|
|
Act_T : Entity_Id;
|
|
|
|
E : Node_Id := Expression (N);
|
|
-- E is set to Expression (N) throughout this routine. When
|
|
-- Expression (N) is modified, E is changed accordingly.
|
|
|
|
Prev_Entity : Entity_Id := Empty;
|
|
|
|
function Build_Default_Subtype return Entity_Id;
|
|
-- If the object is limited or aliased, and if the type is unconstrained
|
|
-- and there is no expression, the discriminants cannot be modified and
|
|
-- the subtype of the object is constrained by the defaults, so it is
|
|
-- worthile building the corresponding subtype.
|
|
|
|
---------------------------
|
|
-- Build_Default_Subtype --
|
|
---------------------------
|
|
|
|
function Build_Default_Subtype return Entity_Id is
|
|
Act : Entity_Id;
|
|
Constraints : List_Id := New_List;
|
|
Decl : Node_Id;
|
|
Disc : Entity_Id;
|
|
|
|
begin
|
|
Disc := First_Discriminant (T);
|
|
|
|
if No (Discriminant_Default_Value (Disc)) then
|
|
return T; -- previous error.
|
|
end if;
|
|
|
|
Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
|
while Present (Disc) loop
|
|
Append (
|
|
New_Copy_Tree (
|
|
Discriminant_Default_Value (Disc)), Constraints);
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Act,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (T, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint
|
|
(Loc, Constraints)));
|
|
|
|
Insert_Before (N, Decl);
|
|
Analyze (Decl);
|
|
return Act;
|
|
end Build_Default_Subtype;
|
|
|
|
-- Start of processing for Analyze_Object_Declaration
|
|
|
|
begin
|
|
-- There are three kinds of implicit types generated by an
|
|
-- object declaration:
|
|
|
|
-- 1. Those for generated by the original Object Definition
|
|
|
|
-- 2. Those generated by the Expression
|
|
|
|
-- 3. Those used to constrained the Object Definition with the
|
|
-- expression constraints when it is unconstrained
|
|
|
|
-- They must be generated in this order to avoid order of elaboration
|
|
-- issues. Thus the first step (after entering the name) is to analyze
|
|
-- the object definition.
|
|
|
|
if Constant_Present (N) then
|
|
Prev_Entity := Current_Entity_In_Scope (Id);
|
|
|
|
-- If homograph is an implicit subprogram, it is overridden by the
|
|
-- current declaration.
|
|
|
|
if Present (Prev_Entity)
|
|
and then Is_Overloadable (Prev_Entity)
|
|
and then Is_Inherited_Operation (Prev_Entity)
|
|
then
|
|
Prev_Entity := Empty;
|
|
end if;
|
|
end if;
|
|
|
|
if Present (Prev_Entity) then
|
|
Constant_Redeclaration (Id, N, T);
|
|
|
|
Generate_Reference (Prev_Entity, Id, 'c');
|
|
|
|
-- If in main unit, set as referenced, so we do not complain about
|
|
-- the full declaration being an unreferenced entity.
|
|
|
|
if In_Extended_Main_Source_Unit (Id) then
|
|
Set_Referenced (Id);
|
|
end if;
|
|
|
|
if Error_Posted (N) then
|
|
-- Type mismatch or illegal redeclaration, Do not analyze
|
|
-- expression to avoid cascaded errors.
|
|
|
|
T := Find_Type_Of_Object (Object_Definition (N), N);
|
|
Set_Etype (Id, T);
|
|
Set_Ekind (Id, E_Variable);
|
|
return;
|
|
end if;
|
|
|
|
-- In the normal case, enter identifier at the start to catch
|
|
-- premature usage in the initialization expression.
|
|
|
|
else
|
|
Generate_Definition (Id);
|
|
Enter_Name (Id);
|
|
|
|
T := Find_Type_Of_Object (Object_Definition (N), N);
|
|
|
|
if Error_Posted (Id) then
|
|
Set_Etype (Id, T);
|
|
Set_Ekind (Id, E_Variable);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
|
|
|
-- If deferred constant, make sure context is appropriate. We detect
|
|
-- a deferred constant as a constant declaration with no expression.
|
|
|
|
if Constant_Present (N)
|
|
and then No (E)
|
|
then
|
|
if not Is_Package (Current_Scope)
|
|
or else In_Private_Part (Current_Scope)
|
|
then
|
|
Error_Msg_N
|
|
("invalid context for deferred constant declaration", N);
|
|
Set_Constant_Present (N, False);
|
|
|
|
-- In Ada 83, deferred constant must be of private type
|
|
|
|
elsif not Is_Private_Type (T) then
|
|
if Ada_83 and then Comes_From_Source (N) then
|
|
Error_Msg_N
|
|
("(Ada 83) deferred constant must be private type", N);
|
|
end if;
|
|
end if;
|
|
|
|
-- If not a deferred constant, then object declaration freezes its type
|
|
|
|
else
|
|
Check_Fully_Declared (T, N);
|
|
Freeze_Before (N, T);
|
|
end if;
|
|
|
|
-- If the object was created by a constrained array definition, then
|
|
-- set the link in both the anonymous base type and anonymous subtype
|
|
-- that are built to represent the array type to point to the object.
|
|
|
|
if Nkind (Object_Definition (Declaration_Node (Id))) =
|
|
N_Constrained_Array_Definition
|
|
then
|
|
Set_Related_Array_Object (T, Id);
|
|
Set_Related_Array_Object (Base_Type (T), Id);
|
|
end if;
|
|
|
|
-- Special checks for protected objects not at library level
|
|
|
|
if Is_Protected_Type (T)
|
|
and then not Is_Library_Level_Entity (Id)
|
|
then
|
|
Check_Restriction (No_Local_Protected_Objects, Id);
|
|
|
|
-- Protected objects with interrupt handlers must be at library level
|
|
|
|
if Has_Interrupt_Handler (T) then
|
|
Error_Msg_N
|
|
("interrupt object can only be declared at library level", Id);
|
|
end if;
|
|
end if;
|
|
|
|
-- The actual subtype of the object is the nominal subtype, unless
|
|
-- the nominal one is unconstrained and obtained from the expression.
|
|
|
|
Act_T := T;
|
|
|
|
-- Process initialization expression if present and not in error
|
|
|
|
if Present (E) and then E /= Error then
|
|
Analyze (E);
|
|
|
|
if not Assignment_OK (N) then
|
|
Check_Initialization (T, E);
|
|
end if;
|
|
|
|
Resolve (E, T);
|
|
|
|
-- Check for library level object that will require implicit
|
|
-- heap allocation.
|
|
|
|
if Is_Array_Type (T)
|
|
and then not Size_Known_At_Compile_Time (T)
|
|
and then Is_Library_Level_Entity (Id)
|
|
then
|
|
-- String literals are always allowed
|
|
|
|
if T = Standard_String
|
|
and then Nkind (E) = N_String_Literal
|
|
then
|
|
null;
|
|
|
|
-- Otherwise we do not allow this since it may cause an
|
|
-- implicit heap allocation.
|
|
|
|
else
|
|
Check_Restriction
|
|
(No_Implicit_Heap_Allocations, Object_Definition (N));
|
|
end if;
|
|
end if;
|
|
|
|
-- Check incorrect use of dynamically tagged expressions. Note
|
|
-- the use of Is_Tagged_Type (T) which seems redundant but is in
|
|
-- fact important to avoid spurious errors due to expanded code
|
|
-- for dispatching functions over an anonymous access type
|
|
|
|
if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
|
|
and then Is_Tagged_Type (T)
|
|
and then not Is_Class_Wide_Type (T)
|
|
then
|
|
Error_Msg_N ("dynamically tagged expression not allowed!", E);
|
|
end if;
|
|
|
|
Apply_Scalar_Range_Check (E, T);
|
|
Apply_Static_Length_Check (E, T);
|
|
end if;
|
|
|
|
-- Abstract type is never permitted for a variable or constant.
|
|
-- Note: we inhibit this check for objects that do not come from
|
|
-- source because there is at least one case (the expansion of
|
|
-- x'class'input where x is abstract) where we legitimately
|
|
-- generate an abstract object.
|
|
|
|
if Is_Abstract (T) and then Comes_From_Source (N) then
|
|
Error_Msg_N ("type of object cannot be abstract",
|
|
Object_Definition (N));
|
|
if Is_CPP_Class (T) then
|
|
Error_Msg_NE ("\} may need a cpp_constructor",
|
|
Object_Definition (N), T);
|
|
end if;
|
|
|
|
-- Case of unconstrained type
|
|
|
|
elsif Is_Indefinite_Subtype (T) then
|
|
|
|
-- Nothing to do in deferred constant case
|
|
|
|
if Constant_Present (N) and then No (E) then
|
|
null;
|
|
|
|
-- Case of no initialization present
|
|
|
|
elsif No (E) then
|
|
if No_Initialization (N) then
|
|
null;
|
|
|
|
elsif Is_Class_Wide_Type (T) then
|
|
Error_Msg_N
|
|
("initialization required in class-wide declaration ", N);
|
|
|
|
else
|
|
Error_Msg_N
|
|
("unconstrained subtype not allowed (need initialization)",
|
|
Object_Definition (N));
|
|
end if;
|
|
|
|
-- Case of initialization present but in error. Set initial
|
|
-- expression as absent (but do not make above complaints)
|
|
|
|
elsif E = Error then
|
|
Set_Expression (N, Empty);
|
|
E := Empty;
|
|
|
|
-- Case of initialization present
|
|
|
|
else
|
|
-- Not allowed in Ada 83
|
|
|
|
if not Constant_Present (N) then
|
|
if Ada_83
|
|
and then Comes_From_Source (Object_Definition (N))
|
|
then
|
|
Error_Msg_N
|
|
("(Ada 83) unconstrained variable not allowed",
|
|
Object_Definition (N));
|
|
end if;
|
|
end if;
|
|
|
|
-- Now we constrain the variable from the initializing expression
|
|
|
|
-- If the expression is an aggregate, it has been expanded into
|
|
-- individual assignments. Retrieve the actual type from the
|
|
-- expanded construct.
|
|
|
|
if Is_Array_Type (T)
|
|
and then No_Initialization (N)
|
|
and then Nkind (Original_Node (E)) = N_Aggregate
|
|
then
|
|
Act_T := Etype (E);
|
|
|
|
else
|
|
Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
|
|
Act_T := Find_Type_Of_Object (Object_Definition (N), N);
|
|
end if;
|
|
|
|
Set_Is_Constr_Subt_For_U_Nominal (Act_T);
|
|
|
|
if Aliased_Present (N) then
|
|
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
|
|
end if;
|
|
|
|
Freeze_Before (N, Act_T);
|
|
Freeze_Before (N, T);
|
|
end if;
|
|
|
|
elsif Is_Array_Type (T)
|
|
and then No_Initialization (N)
|
|
and then Nkind (Original_Node (E)) = N_Aggregate
|
|
then
|
|
if not Is_Entity_Name (Object_Definition (N)) then
|
|
Act_T := Etype (E);
|
|
|
|
if Aliased_Present (N) then
|
|
Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
|
|
end if;
|
|
end if;
|
|
|
|
-- When the given object definition and the aggregate are specified
|
|
-- independently, and their lengths might differ do a length check.
|
|
-- This cannot happen if the aggregate is of the form (others =>...)
|
|
|
|
if not Is_Constrained (T) then
|
|
null;
|
|
|
|
elsif Nkind (E) = N_Raise_Constraint_Error then
|
|
|
|
-- Aggregate is statically illegal. Place back in declaration
|
|
|
|
Set_Expression (N, E);
|
|
Set_No_Initialization (N, False);
|
|
|
|
elsif T = Etype (E) then
|
|
null;
|
|
|
|
elsif Nkind (E) = N_Aggregate
|
|
and then Present (Component_Associations (E))
|
|
and then Present (Choices (First (Component_Associations (E))))
|
|
and then Nkind (First
|
|
(Choices (First (Component_Associations (E))))) = N_Others_Choice
|
|
then
|
|
null;
|
|
|
|
else
|
|
Apply_Length_Check (E, T);
|
|
end if;
|
|
|
|
elsif (Is_Limited_Record (T)
|
|
or else Is_Concurrent_Type (T))
|
|
and then not Is_Constrained (T)
|
|
and then Has_Discriminants (T)
|
|
then
|
|
Act_T := Build_Default_Subtype;
|
|
Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
|
|
|
|
elsif not Is_Constrained (T)
|
|
and then Has_Discriminants (T)
|
|
and then Constant_Present (N)
|
|
and then Nkind (E) = N_Function_Call
|
|
then
|
|
-- The back-end has problems with constants of a discriminated type
|
|
-- with defaults, if the initial value is a function call. We
|
|
-- generate an intermediate temporary for the result of the call.
|
|
-- It is unclear why this should make it acceptable to gcc. ???
|
|
|
|
Remove_Side_Effects (E);
|
|
end if;
|
|
|
|
if T = Standard_Wide_Character
|
|
or else Root_Type (T) = Standard_Wide_String
|
|
then
|
|
Check_Restriction (No_Wide_Characters, Object_Definition (N));
|
|
end if;
|
|
|
|
-- Now establish the proper kind and type of the object
|
|
|
|
if Constant_Present (N) then
|
|
Set_Ekind (Id, E_Constant);
|
|
Set_Not_Source_Assigned (Id, True);
|
|
Set_Is_True_Constant (Id, True);
|
|
|
|
else
|
|
Set_Ekind (Id, E_Variable);
|
|
|
|
-- A variable is set as shared passive if it appears in a shared
|
|
-- passive package, and is at the outer level. This is not done
|
|
-- for entities generated during expansion, because those are
|
|
-- always manipulated locally.
|
|
|
|
if Is_Shared_Passive (Current_Scope)
|
|
and then Is_Library_Level_Entity (Id)
|
|
and then Comes_From_Source (Id)
|
|
then
|
|
Set_Is_Shared_Passive (Id);
|
|
Check_Shared_Var (Id, T, N);
|
|
end if;
|
|
|
|
-- If an initializing expression is present, then the variable
|
|
-- is potentially a true constant if no further assignments are
|
|
-- present. The code generator can use this for optimization.
|
|
-- The flag will be reset if there are any assignments. We only
|
|
-- set this flag for non library level entities, since for any
|
|
-- library level entities, assignments could exist in other units.
|
|
|
|
if Present (E) then
|
|
if not Is_Library_Level_Entity (Id) then
|
|
|
|
-- For now we omit this, because it seems to cause some
|
|
-- problems. In particular, if you uncomment this out, then
|
|
-- test case 4427-002 will fail for unclear reasons ???
|
|
|
|
if False then
|
|
Set_Is_True_Constant (Id);
|
|
end if;
|
|
end if;
|
|
|
|
-- Case of no initializing expression present. If the type is not
|
|
-- fully initialized, then we set Not_Source_Assigned, since this
|
|
-- is a case of a potentially uninitialized object. Note that we
|
|
-- do not consider access variables to be fully initialized for
|
|
-- this purpose, since it still seems dubious if someone declares
|
|
-- an access variable and never assigns to it.
|
|
|
|
else
|
|
if Is_Access_Type (T)
|
|
or else not Is_Fully_Initialized_Type (T)
|
|
then
|
|
Set_Not_Source_Assigned (Id);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Init_Alignment (Id);
|
|
Init_Esize (Id);
|
|
|
|
if Aliased_Present (N) then
|
|
Set_Is_Aliased (Id);
|
|
|
|
if No (E)
|
|
and then Is_Record_Type (T)
|
|
and then not Is_Constrained (T)
|
|
and then Has_Discriminants (T)
|
|
then
|
|
Set_Actual_Subtype (Id, Build_Default_Subtype);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Etype (Id, Act_T);
|
|
|
|
if Has_Controlled_Component (Etype (Id))
|
|
or else Is_Controlled (Etype (Id))
|
|
then
|
|
if not Is_Library_Level_Entity (Id) then
|
|
Check_Restriction (No_Nested_Finalization, N);
|
|
|
|
else
|
|
Validate_Controlled_Object (Id);
|
|
end if;
|
|
|
|
-- Generate a warning when an initialization causes an obvious
|
|
-- ABE violation. If the init expression is a simple aggregate
|
|
-- there shouldn't be any initialize/adjust call generated. This
|
|
-- will be true as soon as aggregates are built in place when
|
|
-- possible. ??? at the moment we do not generate warnings for
|
|
-- temporaries created for those aggregates although a
|
|
-- Program_Error might be generated if compiled with -gnato
|
|
|
|
if Is_Controlled (Etype (Id))
|
|
and then Comes_From_Source (Id)
|
|
then
|
|
declare
|
|
BT : constant Entity_Id := Base_Type (Etype (Id));
|
|
Implicit_Call : Entity_Id;
|
|
|
|
function Is_Aggr (N : Node_Id) return Boolean;
|
|
-- Check that N is an aggregate
|
|
|
|
function Is_Aggr (N : Node_Id) return Boolean is
|
|
begin
|
|
case Nkind (Original_Node (N)) is
|
|
when N_Aggregate | N_Extension_Aggregate =>
|
|
return True;
|
|
|
|
when N_Qualified_Expression |
|
|
N_Type_Conversion |
|
|
N_Unchecked_Type_Conversion =>
|
|
return Is_Aggr (Expression (Original_Node (N)));
|
|
|
|
when others =>
|
|
return False;
|
|
end case;
|
|
end Is_Aggr;
|
|
|
|
begin
|
|
-- If no underlying type, we already are in an error situation
|
|
-- don't try to add a warning since we do not have access
|
|
-- prim-op list.
|
|
|
|
if No (Underlying_Type (BT)) then
|
|
Implicit_Call := Empty;
|
|
|
|
-- A generic type does not have usable primitive operators.
|
|
-- Initialization calls are built for instances.
|
|
|
|
elsif Is_Generic_Type (BT) then
|
|
Implicit_Call := Empty;
|
|
|
|
-- if the init expression is not an aggregate, an adjust
|
|
-- call will be generated
|
|
|
|
elsif Present (E) and then not Is_Aggr (E) then
|
|
Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
|
|
|
|
-- if no init expression and we are not in the deferred
|
|
-- constant case, an Initialize call will be generated
|
|
|
|
elsif No (E) and then not Constant_Present (N) then
|
|
Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
|
|
|
|
else
|
|
Implicit_Call := Empty;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
if Has_Task (Etype (Id)) then
|
|
if not Is_Library_Level_Entity (Id) then
|
|
Check_Restriction (No_Task_Hierarchy, N);
|
|
Check_Potentially_Blocking_Operation (N);
|
|
end if;
|
|
end if;
|
|
|
|
-- Some simple constant-propagation: if the expression is a constant
|
|
-- string initialized with a literal, share the literal. This avoids
|
|
-- a run-time copy.
|
|
|
|
if Present (E)
|
|
and then Is_Entity_Name (E)
|
|
and then Ekind (Entity (E)) = E_Constant
|
|
and then Base_Type (Etype (E)) = Standard_String
|
|
then
|
|
declare
|
|
Val : constant Node_Id := Constant_Value (Entity (E));
|
|
|
|
begin
|
|
if Present (Val)
|
|
and then Nkind (Val) = N_String_Literal
|
|
then
|
|
Rewrite (E, New_Copy (Val));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Another optimization: if the nominal subtype is unconstrained and
|
|
-- the expression is a function call that returns and unconstrained
|
|
-- type, rewrite the declararation as a renaming of the result of the
|
|
-- call. The exceptions below are cases where the copy is expected,
|
|
-- either by the back end (Aliased case) or by the semantics, as for
|
|
-- initializing controlled types or copying tags for classwide types.
|
|
|
|
if Present (E)
|
|
and then Nkind (E) = N_Explicit_Dereference
|
|
and then Nkind (Original_Node (E)) = N_Function_Call
|
|
and then not Is_Library_Level_Entity (Id)
|
|
and then not Is_Constrained (T)
|
|
and then not Is_Aliased (Id)
|
|
and then not Is_Class_Wide_Type (T)
|
|
and then not Is_Controlled (T)
|
|
and then not Has_Controlled_Component (Base_Type (T))
|
|
and then Expander_Active
|
|
then
|
|
Rewrite (N,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Id,
|
|
Subtype_Mark => New_Occurrence_Of
|
|
(Base_Type (Etype (Id)), Loc),
|
|
Name => E));
|
|
|
|
Set_Renamed_Object (Id, E);
|
|
end if;
|
|
|
|
if Present (Prev_Entity)
|
|
and then Is_Frozen (Prev_Entity)
|
|
and then not Error_Posted (Id)
|
|
then
|
|
Error_Msg_N ("full constant declaration appears too late", N);
|
|
end if;
|
|
|
|
Check_Eliminated (Id);
|
|
end Analyze_Object_Declaration;
|
|
|
|
---------------------------
|
|
-- Analyze_Others_Choice --
|
|
---------------------------
|
|
|
|
-- Nothing to do for the others choice node itself, the semantic analysis
|
|
-- of the others choice will occur as part of the processing of the parent
|
|
|
|
procedure Analyze_Others_Choice (N : Node_Id) is
|
|
begin
|
|
null;
|
|
end Analyze_Others_Choice;
|
|
|
|
-------------------------------------------
|
|
-- Analyze_Private_Extension_Declaration --
|
|
-------------------------------------------
|
|
|
|
procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
|
|
T : Entity_Id := Defining_Identifier (N);
|
|
Indic : constant Node_Id := Subtype_Indication (N);
|
|
Parent_Type : Entity_Id;
|
|
Parent_Base : Entity_Id;
|
|
|
|
begin
|
|
Generate_Definition (T);
|
|
Enter_Name (T);
|
|
|
|
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
|
|
Parent_Base := Base_Type (Parent_Type);
|
|
|
|
if Parent_Type = Any_Type
|
|
or else Etype (Parent_Type) = Any_Type
|
|
then
|
|
Set_Ekind (T, Ekind (Parent_Type));
|
|
Set_Etype (T, Any_Type);
|
|
return;
|
|
|
|
elsif not Is_Tagged_Type (Parent_Type) then
|
|
Error_Msg_N
|
|
("parent of type extension must be a tagged type ", Indic);
|
|
return;
|
|
|
|
elsif Ekind (Parent_Type) = E_Void
|
|
or else Ekind (Parent_Type) = E_Incomplete_Type
|
|
then
|
|
Error_Msg_N ("premature derivation of incomplete type", Indic);
|
|
return;
|
|
end if;
|
|
|
|
-- Perhaps the parent type should be changed to the class-wide type's
|
|
-- specific type in this case to prevent cascading errors ???
|
|
|
|
if Is_Class_Wide_Type (Parent_Type) then
|
|
Error_Msg_N
|
|
("parent of type extension must not be a class-wide type", Indic);
|
|
return;
|
|
end if;
|
|
|
|
if (not Is_Package (Current_Scope)
|
|
and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
|
|
or else In_Private_Part (Current_Scope)
|
|
|
|
then
|
|
Error_Msg_N ("invalid context for private extension", N);
|
|
end if;
|
|
|
|
-- Set common attributes
|
|
|
|
Set_Is_Pure (T, Is_Pure (Current_Scope));
|
|
Set_Scope (T, Current_Scope);
|
|
Set_Ekind (T, E_Record_Type_With_Private);
|
|
Init_Size_Align (T);
|
|
|
|
Set_Etype (T, Parent_Base);
|
|
Set_Has_Task (T, Has_Task (Parent_Base));
|
|
|
|
Set_Convention (T, Convention (Parent_Type));
|
|
Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
|
|
Set_Is_First_Subtype (T);
|
|
Make_Class_Wide_Type (T);
|
|
|
|
Build_Derived_Record_Type (N, Parent_Type, T);
|
|
end Analyze_Private_Extension_Declaration;
|
|
|
|
---------------------------------
|
|
-- Analyze_Subtype_Declaration --
|
|
---------------------------------
|
|
|
|
procedure Analyze_Subtype_Declaration (N : Node_Id) is
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
|
T : Entity_Id;
|
|
R_Checks : Check_Result;
|
|
|
|
begin
|
|
Generate_Definition (Id);
|
|
Set_Is_Pure (Id, Is_Pure (Current_Scope));
|
|
Init_Size_Align (Id);
|
|
|
|
-- The following guard condition on Enter_Name is to handle cases
|
|
-- where the defining identifier has already been entered into the
|
|
-- scope but the declaration as a whole needs to be analyzed.
|
|
|
|
-- This case in particular happens for derived enumeration types.
|
|
-- The derived enumeration type is processed as an inserted enumeration
|
|
-- type declaration followed by a rewritten subtype declaration. The
|
|
-- defining identifier, however, is entered into the name scope very
|
|
-- early in the processing of the original type declaration and
|
|
-- therefore needs to be avoided here, when the created subtype
|
|
-- declaration is analyzed. (See Build_Derived_Types)
|
|
|
|
-- This also happens when the full view of a private type is a
|
|
-- derived type with constraints. In this case the entity has been
|
|
-- introduced in the private declaration.
|
|
|
|
if Present (Etype (Id))
|
|
and then (Is_Private_Type (Etype (Id))
|
|
or else Is_Task_Type (Etype (Id))
|
|
or else Is_Rewrite_Substitution (N))
|
|
then
|
|
null;
|
|
|
|
else
|
|
Enter_Name (Id);
|
|
end if;
|
|
|
|
T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
|
|
|
|
-- Inherit common attributes
|
|
|
|
Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
|
|
Set_Is_Volatile (Id, Is_Volatile (T));
|
|
Set_Is_Atomic (Id, Is_Atomic (T));
|
|
|
|
-- In the case where there is no constraint given in the subtype
|
|
-- indication, Process_Subtype just returns the Subtype_Mark,
|
|
-- so its semantic attributes must be established here.
|
|
|
|
if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
|
|
Set_Etype (Id, Base_Type (T));
|
|
|
|
case Ekind (T) is
|
|
when Array_Kind =>
|
|
Set_Ekind (Id, E_Array_Subtype);
|
|
|
|
-- Shouldn't we call Copy_Array_Subtype_Attributes here???
|
|
|
|
Set_First_Index (Id, First_Index (T));
|
|
Set_Is_Aliased (Id, Is_Aliased (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
|
|
when Decimal_Fixed_Point_Kind =>
|
|
Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
|
|
Set_Digits_Value (Id, Digits_Value (T));
|
|
Set_Delta_Value (Id, Delta_Value (T));
|
|
Set_Scale_Value (Id, Scale_Value (T));
|
|
Set_Small_Value (Id, Small_Value (T));
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_RM_Size (Id, RM_Size (T));
|
|
|
|
when Enumeration_Kind =>
|
|
Set_Ekind (Id, E_Enumeration_Subtype);
|
|
Set_First_Literal (Id, First_Literal (Base_Type (T)));
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Is_Character_Type (Id, Is_Character_Type (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_RM_Size (Id, RM_Size (T));
|
|
|
|
when Ordinary_Fixed_Point_Kind =>
|
|
Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Small_Value (Id, Small_Value (T));
|
|
Set_Delta_Value (Id, Delta_Value (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_RM_Size (Id, RM_Size (T));
|
|
|
|
when Float_Kind =>
|
|
Set_Ekind (Id, E_Floating_Point_Subtype);
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Digits_Value (Id, Digits_Value (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
|
|
when Signed_Integer_Kind =>
|
|
Set_Ekind (Id, E_Signed_Integer_Subtype);
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_RM_Size (Id, RM_Size (T));
|
|
|
|
when Modular_Integer_Kind =>
|
|
Set_Ekind (Id, E_Modular_Integer_Subtype);
|
|
Set_Scalar_Range (Id, Scalar_Range (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_RM_Size (Id, RM_Size (T));
|
|
|
|
when Class_Wide_Kind =>
|
|
Set_Ekind (Id, E_Class_Wide_Subtype);
|
|
Set_First_Entity (Id, First_Entity (T));
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
|
Set_Cloned_Subtype (Id, T);
|
|
Set_Is_Tagged_Type (Id, True);
|
|
Set_Has_Unknown_Discriminants
|
|
(Id, True);
|
|
|
|
if Ekind (T) = E_Class_Wide_Subtype then
|
|
Set_Equivalent_Type (Id, Equivalent_Type (T));
|
|
end if;
|
|
|
|
when E_Record_Type | E_Record_Subtype =>
|
|
Set_Ekind (Id, E_Record_Subtype);
|
|
|
|
if Ekind (T) = E_Record_Subtype
|
|
and then Present (Cloned_Subtype (T))
|
|
then
|
|
Set_Cloned_Subtype (Id, Cloned_Subtype (T));
|
|
else
|
|
Set_Cloned_Subtype (Id, T);
|
|
end if;
|
|
|
|
Set_First_Entity (Id, First_Entity (T));
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
|
|
Set_Has_Unknown_Discriminants
|
|
(Id, Has_Unknown_Discriminants (T));
|
|
|
|
if Has_Discriminants (T) then
|
|
Set_Discriminant_Constraint
|
|
(Id, Discriminant_Constraint (T));
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
|
|
|
|
elsif Has_Unknown_Discriminants (Id) then
|
|
Set_Discriminant_Constraint (Id, No_Elist);
|
|
end if;
|
|
|
|
if Is_Tagged_Type (T) then
|
|
Set_Is_Tagged_Type (Id);
|
|
Set_Is_Abstract (Id, Is_Abstract (T));
|
|
Set_Primitive_Operations
|
|
(Id, Primitive_Operations (T));
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
|
end if;
|
|
|
|
when Private_Kind =>
|
|
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_First_Entity (Id, First_Entity (T));
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
|
Set_Private_Dependents (Id, New_Elmt_List);
|
|
Set_Is_Limited_Record (Id, Is_Limited_Record (T));
|
|
Set_Has_Unknown_Discriminants
|
|
(Id, Has_Unknown_Discriminants (T));
|
|
|
|
if Is_Tagged_Type (T) then
|
|
Set_Is_Tagged_Type (Id);
|
|
Set_Is_Abstract (Id, Is_Abstract (T));
|
|
Set_Class_Wide_Type (Id, Class_Wide_Type (T));
|
|
end if;
|
|
|
|
-- In general the attributes of the subtype of a private
|
|
-- type are the attributes of the partial view of parent.
|
|
-- However, the full view may be a discriminated type,
|
|
-- and the subtype must share the discriminant constraint
|
|
-- to generate correct calls to initialization procedures.
|
|
|
|
if Has_Discriminants (T) then
|
|
Set_Discriminant_Constraint
|
|
(Id, Discriminant_Constraint (T));
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
|
|
|
|
elsif Present (Full_View (T))
|
|
and then Has_Discriminants (Full_View (T))
|
|
then
|
|
Set_Discriminant_Constraint
|
|
(Id, Discriminant_Constraint (Full_View (T)));
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
|
|
|
|
-- This would seem semantically correct, but apparently
|
|
-- confuses the back-end (4412-009). To be explained ???
|
|
|
|
-- Set_Has_Discriminants (Id);
|
|
end if;
|
|
|
|
Prepare_Private_Subtype_Completion (Id, N);
|
|
|
|
when Access_Kind =>
|
|
Set_Ekind (Id, E_Access_Subtype);
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_Is_Access_Constant
|
|
(Id, Is_Access_Constant (T));
|
|
Set_Directly_Designated_Type
|
|
(Id, Designated_Type (T));
|
|
|
|
-- A Pure library_item must not contain the declaration of a
|
|
-- named access type, except within a subprogram, generic
|
|
-- subprogram, task unit, or protected unit (RM 10.2.1(16)).
|
|
|
|
if Comes_From_Source (Id)
|
|
and then In_Pure_Unit
|
|
and then not In_Subprogram_Task_Protected_Unit
|
|
then
|
|
Error_Msg_N
|
|
("named access types not allowed in pure unit", N);
|
|
end if;
|
|
|
|
when Concurrent_Kind =>
|
|
|
|
Set_Ekind (Id, Subtype_Kind (Ekind (T)));
|
|
Set_Corresponding_Record_Type (Id,
|
|
Corresponding_Record_Type (T));
|
|
Set_First_Entity (Id, First_Entity (T));
|
|
Set_First_Private_Entity (Id, First_Private_Entity (T));
|
|
Set_Has_Discriminants (Id, Has_Discriminants (T));
|
|
Set_Is_Constrained (Id, Is_Constrained (T));
|
|
Set_Last_Entity (Id, Last_Entity (T));
|
|
|
|
if Has_Discriminants (T) then
|
|
Set_Discriminant_Constraint (Id,
|
|
Discriminant_Constraint (T));
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Id);
|
|
end if;
|
|
|
|
-- If the subtype name denotes an incomplete type
|
|
-- an error was already reported by Process_Subtype.
|
|
|
|
when E_Incomplete_Type =>
|
|
Set_Etype (Id, Any_Type);
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
end if;
|
|
|
|
if Etype (Id) = Any_Type then
|
|
return;
|
|
end if;
|
|
|
|
-- Some common processing on all types
|
|
|
|
Set_Size_Info (Id, T);
|
|
Set_First_Rep_Item (Id, First_Rep_Item (T));
|
|
|
|
T := Etype (Id);
|
|
|
|
Set_Is_Immediately_Visible (Id, True);
|
|
Set_Depends_On_Private (Id, Has_Private_Component (T));
|
|
|
|
if Present (Generic_Parent_Type (N))
|
|
and then
|
|
(Nkind
|
|
(Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
|
|
or else Nkind
|
|
(Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
|
|
/= N_Formal_Private_Type_Definition)
|
|
then
|
|
if Is_Tagged_Type (Id) then
|
|
if Is_Class_Wide_Type (Id) then
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
|
|
else
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id, T);
|
|
end if;
|
|
|
|
elsif Scope (Etype (Id)) /= Standard_Standard then
|
|
Derive_Subprograms (Generic_Parent_Type (N), Id);
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Private_Type (T)
|
|
and then Present (Full_View (T))
|
|
then
|
|
Conditional_Delay (Id, Full_View (T));
|
|
|
|
-- The subtypes of components or subcomponents of protected types
|
|
-- do not need freeze nodes, which would otherwise appear in the
|
|
-- wrong scope (before the freeze node for the protected type). The
|
|
-- proper subtypes are those of the subcomponents of the corresponding
|
|
-- record.
|
|
|
|
elsif Ekind (Scope (Id)) /= E_Protected_Type
|
|
and then Present (Scope (Scope (Id))) -- error defense!
|
|
and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
|
|
then
|
|
Conditional_Delay (Id, T);
|
|
end if;
|
|
|
|
-- Check that constraint_error is raised for a scalar subtype
|
|
-- indication when the lower or upper bound of a non-null range
|
|
-- lies outside the range of the type mark.
|
|
|
|
if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
|
|
if Is_Scalar_Type (Etype (Id))
|
|
and then Scalar_Range (Id) /=
|
|
Scalar_Range (Etype (Subtype_Mark
|
|
(Subtype_Indication (N))))
|
|
then
|
|
Apply_Range_Check
|
|
(Scalar_Range (Id),
|
|
Etype (Subtype_Mark (Subtype_Indication (N))));
|
|
|
|
elsif Is_Array_Type (Etype (Id))
|
|
and then Present (First_Index (Id))
|
|
then
|
|
-- This really should be a subprogram that finds the indications
|
|
-- to check???
|
|
|
|
if ((Nkind (First_Index (Id)) = N_Identifier
|
|
and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
|
|
or else Nkind (First_Index (Id)) = N_Subtype_Indication)
|
|
and then
|
|
Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
|
|
then
|
|
declare
|
|
Target_Typ : Entity_Id :=
|
|
Etype
|
|
(First_Index
|
|
(Etype (Subtype_Mark (Subtype_Indication (N)))));
|
|
begin
|
|
R_Checks :=
|
|
Range_Check
|
|
(Scalar_Range (Etype (First_Index (Id))),
|
|
Target_Typ,
|
|
Etype (First_Index (Id)),
|
|
Defining_Identifier (N));
|
|
|
|
Insert_Range_Checks
|
|
(R_Checks,
|
|
N,
|
|
Target_Typ,
|
|
Sloc (Defining_Identifier (N)));
|
|
end;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Check_Eliminated (Id);
|
|
end Analyze_Subtype_Declaration;
|
|
|
|
--------------------------------
|
|
-- Analyze_Subtype_Indication --
|
|
--------------------------------
|
|
|
|
procedure Analyze_Subtype_Indication (N : Node_Id) is
|
|
T : constant Entity_Id := Subtype_Mark (N);
|
|
R : constant Node_Id := Range_Expression (Constraint (N));
|
|
|
|
begin
|
|
Analyze (T);
|
|
|
|
if R /= Error then
|
|
Analyze (R);
|
|
Set_Etype (N, Etype (R));
|
|
else
|
|
Set_Error_Posted (R);
|
|
Set_Error_Posted (T);
|
|
end if;
|
|
end Analyze_Subtype_Indication;
|
|
|
|
------------------------------
|
|
-- Analyze_Type_Declaration --
|
|
------------------------------
|
|
|
|
procedure Analyze_Type_Declaration (N : Node_Id) is
|
|
Def : constant Node_Id := Type_Definition (N);
|
|
Def_Id : constant Entity_Id := Defining_Identifier (N);
|
|
T : Entity_Id;
|
|
Prev : Entity_Id;
|
|
|
|
begin
|
|
Prev := Find_Type_Name (N);
|
|
|
|
if Ekind (Prev) = E_Incomplete_Type then
|
|
T := Full_View (Prev);
|
|
else
|
|
T := Prev;
|
|
end if;
|
|
|
|
Set_Is_Pure (T, Is_Pure (Current_Scope));
|
|
|
|
-- We set the flag Is_First_Subtype here. It is needed to set the
|
|
-- corresponding flag for the Implicit class-wide-type created
|
|
-- during tagged types processing.
|
|
|
|
Set_Is_First_Subtype (T, True);
|
|
|
|
-- Only composite types other than array types are allowed to have
|
|
-- discriminants.
|
|
|
|
case Nkind (Def) is
|
|
|
|
-- For derived types, the rule will be checked once we've figured
|
|
-- out the parent type.
|
|
|
|
when N_Derived_Type_Definition =>
|
|
null;
|
|
|
|
-- For record types, discriminants are allowed.
|
|
|
|
when N_Record_Definition =>
|
|
null;
|
|
|
|
when others =>
|
|
if Present (Discriminant_Specifications (N)) then
|
|
Error_Msg_N
|
|
("elementary or array type cannot have discriminants",
|
|
Defining_Identifier
|
|
(First (Discriminant_Specifications (N))));
|
|
end if;
|
|
end case;
|
|
|
|
-- Elaborate the type definition according to kind, and generate
|
|
-- susbsidiary (implicit) subtypes where needed. We skip this if
|
|
-- it was already done (this happens during the reanalysis that
|
|
-- follows a call to the high level optimizer).
|
|
|
|
if not Analyzed (T) then
|
|
Set_Analyzed (T);
|
|
|
|
case Nkind (Def) is
|
|
|
|
when N_Access_To_Subprogram_Definition =>
|
|
Access_Subprogram_Declaration (T, Def);
|
|
|
|
-- If this is a remote access to subprogram, we must create
|
|
-- the equivalent fat pointer type, and related subprograms.
|
|
|
|
if Is_Remote_Types (Current_Scope)
|
|
or else Is_Remote_Call_Interface (Current_Scope)
|
|
then
|
|
Validate_Remote_Access_To_Subprogram_Type (N);
|
|
Process_Remote_AST_Declaration (N);
|
|
end if;
|
|
|
|
-- Validate categorization rule against access type declaration
|
|
-- usually a violation in Pure unit, Shared_Passive unit.
|
|
|
|
Validate_Access_Type_Declaration (T, N);
|
|
|
|
when N_Access_To_Object_Definition =>
|
|
Access_Type_Declaration (T, Def);
|
|
|
|
-- Validate categorization rule against access type declaration
|
|
-- usually a violation in Pure unit, Shared_Passive unit.
|
|
|
|
Validate_Access_Type_Declaration (T, N);
|
|
|
|
-- If we are in a Remote_Call_Interface package and define
|
|
-- a RACW, Read and Write attribute must be added.
|
|
|
|
if (Is_Remote_Call_Interface (Current_Scope)
|
|
or else Is_Remote_Types (Current_Scope))
|
|
and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
|
|
then
|
|
Add_RACW_Features (Def_Id);
|
|
end if;
|
|
|
|
when N_Array_Type_Definition =>
|
|
Array_Type_Declaration (T, Def);
|
|
|
|
when N_Derived_Type_Definition =>
|
|
Derived_Type_Declaration (T, N, T /= Def_Id);
|
|
|
|
when N_Enumeration_Type_Definition =>
|
|
Enumeration_Type_Declaration (T, Def);
|
|
|
|
when N_Floating_Point_Definition =>
|
|
Floating_Point_Type_Declaration (T, Def);
|
|
|
|
when N_Decimal_Fixed_Point_Definition =>
|
|
Decimal_Fixed_Point_Type_Declaration (T, Def);
|
|
|
|
when N_Ordinary_Fixed_Point_Definition =>
|
|
Ordinary_Fixed_Point_Type_Declaration (T, Def);
|
|
|
|
when N_Signed_Integer_Type_Definition =>
|
|
Signed_Integer_Type_Declaration (T, Def);
|
|
|
|
when N_Modular_Type_Definition =>
|
|
Modular_Type_Declaration (T, Def);
|
|
|
|
when N_Record_Definition =>
|
|
Record_Type_Declaration (T, N);
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
|
|
end case;
|
|
end if;
|
|
|
|
if Etype (T) = Any_Type then
|
|
return;
|
|
end if;
|
|
|
|
-- Some common processing for all types
|
|
|
|
Set_Depends_On_Private (T, Has_Private_Component (T));
|
|
|
|
-- Both the declared entity, and its anonymous base type if one
|
|
-- was created, need freeze nodes allocated.
|
|
|
|
declare
|
|
B : constant Entity_Id := Base_Type (T);
|
|
|
|
begin
|
|
-- In the case where the base type is different from the first
|
|
-- subtype, we pre-allocate a freeze node, and set the proper
|
|
-- link to the first subtype. Freeze_Entity will use this
|
|
-- preallocated freeze node when it freezes the entity.
|
|
|
|
if B /= T then
|
|
Ensure_Freeze_Node (B);
|
|
Set_First_Subtype_Link (Freeze_Node (B), T);
|
|
end if;
|
|
|
|
if not From_With_Type (T) then
|
|
Set_Has_Delayed_Freeze (T);
|
|
end if;
|
|
end;
|
|
|
|
-- Case of T is the full declaration of some private type which has
|
|
-- been swapped in Defining_Identifier (N).
|
|
|
|
if T /= Def_Id and then Is_Private_Type (Def_Id) then
|
|
Process_Full_View (N, T, Def_Id);
|
|
|
|
-- Record the reference. The form of this is a little strange,
|
|
-- since the full declaration has been swapped in. So the first
|
|
-- parameter here represents the entity to which a reference is
|
|
-- made which is the "real" entity, i.e. the one swapped in,
|
|
-- and the second parameter provides the reference location.
|
|
|
|
Generate_Reference (T, T, 'c');
|
|
|
|
-- If in main unit, set as referenced, so we do not complain about
|
|
-- the full declaration being an unreferenced entity.
|
|
|
|
if In_Extended_Main_Source_Unit (Def_Id) then
|
|
Set_Referenced (Def_Id);
|
|
end if;
|
|
|
|
-- For completion of incomplete type, process incomplete dependents
|
|
-- and always mark the full type as referenced (it is the incomplete
|
|
-- type that we get for any real reference).
|
|
|
|
elsif Ekind (Prev) = E_Incomplete_Type then
|
|
Process_Incomplete_Dependents (N, T, Prev);
|
|
Generate_Reference (Prev, Def_Id, 'c');
|
|
|
|
-- If in main unit, set as referenced, so we do not complain about
|
|
-- the full declaration being an unreferenced entity.
|
|
|
|
if In_Extended_Main_Source_Unit (Def_Id) then
|
|
Set_Referenced (Def_Id);
|
|
end if;
|
|
|
|
-- If not private type or incomplete type completion, this is a real
|
|
-- definition of a new entity, so record it.
|
|
|
|
else
|
|
Generate_Definition (Def_Id);
|
|
end if;
|
|
|
|
Check_Eliminated (Def_Id);
|
|
end Analyze_Type_Declaration;
|
|
|
|
--------------------------
|
|
-- Analyze_Variant_Part --
|
|
--------------------------
|
|
|
|
procedure Analyze_Variant_Part (N : Node_Id) is
|
|
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id);
|
|
-- Error routine invoked by the generic instantiation below when
|
|
-- the variant part has a non static choice.
|
|
|
|
procedure Process_Declarations (Variant : Node_Id);
|
|
-- Analyzes all the declarations associated with a Variant.
|
|
-- Needed by the generic instantiation below.
|
|
|
|
package Variant_Choices_Processing is new
|
|
Generic_Choices_Processing
|
|
(Get_Alternatives => Variants,
|
|
Get_Choices => Discrete_Choices,
|
|
Process_Empty_Choice => No_OP,
|
|
Process_Non_Static_Choice => Non_Static_Choice_Error,
|
|
Process_Associated_Node => Process_Declarations);
|
|
use Variant_Choices_Processing;
|
|
-- Instantiation of the generic choice processing package.
|
|
|
|
-----------------------------
|
|
-- Non_Static_Choice_Error --
|
|
-----------------------------
|
|
|
|
procedure Non_Static_Choice_Error (Choice : Node_Id) is
|
|
begin
|
|
Error_Msg_N ("choice given in variant part is not static", Choice);
|
|
end Non_Static_Choice_Error;
|
|
|
|
--------------------------
|
|
-- Process_Declarations --
|
|
--------------------------
|
|
|
|
procedure Process_Declarations (Variant : Node_Id) is
|
|
begin
|
|
if not Null_Present (Component_List (Variant)) then
|
|
Analyze_Declarations (Component_Items (Component_List (Variant)));
|
|
|
|
if Present (Variant_Part (Component_List (Variant))) then
|
|
Analyze (Variant_Part (Component_List (Variant)));
|
|
end if;
|
|
end if;
|
|
end Process_Declarations;
|
|
|
|
-- Variables local to Analyze_Case_Statement.
|
|
|
|
Others_Choice : Node_Id;
|
|
|
|
Discr_Name : Node_Id;
|
|
Discr_Type : Entity_Id;
|
|
|
|
Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
|
|
Last_Choice : Nat;
|
|
Dont_Care : Boolean;
|
|
Others_Present : Boolean := False;
|
|
|
|
-- Start of processing for Analyze_Variant_Part
|
|
|
|
begin
|
|
Discr_Name := Name (N);
|
|
Analyze (Discr_Name);
|
|
|
|
if Ekind (Entity (Discr_Name)) /= E_Discriminant then
|
|
Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
|
|
end if;
|
|
|
|
Discr_Type := Etype (Entity (Discr_Name));
|
|
|
|
if not Is_Discrete_Type (Discr_Type) then
|
|
Error_Msg_N
|
|
("discriminant in a variant part must be of a discrete type",
|
|
Name (N));
|
|
return;
|
|
end if;
|
|
|
|
-- Call the instantiated Analyze_Choices which does the rest of the work
|
|
|
|
Analyze_Choices
|
|
(N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
|
|
|
|
if Others_Present then
|
|
-- Fill in Others_Discrete_Choices field of the OTHERS choice
|
|
|
|
Others_Choice := First (Discrete_Choices (Last (Variants (N))));
|
|
Expand_Others_Choice
|
|
(Case_Table (1 .. Last_Choice), Others_Choice, Discr_Type);
|
|
end if;
|
|
|
|
end Analyze_Variant_Part;
|
|
|
|
----------------------------
|
|
-- Array_Type_Declaration --
|
|
----------------------------
|
|
|
|
procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
|
|
Component_Def : constant Node_Id := Subtype_Indication (Def);
|
|
Element_Type : Entity_Id;
|
|
Implicit_Base : Entity_Id;
|
|
Index : Node_Id;
|
|
Related_Id : Entity_Id := Empty;
|
|
Nb_Index : Nat;
|
|
P : constant Node_Id := Parent (Def);
|
|
Priv : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Def) = N_Constrained_Array_Definition then
|
|
|
|
Index := First (Discrete_Subtype_Definitions (Def));
|
|
|
|
-- Find proper names for the implicit types which may be public.
|
|
-- in case of anonymous arrays we use the name of the first object
|
|
-- of that type as prefix.
|
|
|
|
if No (T) then
|
|
Related_Id := Defining_Identifier (P);
|
|
else
|
|
Related_Id := T;
|
|
end if;
|
|
|
|
else
|
|
Index := First (Subtype_Marks (Def));
|
|
end if;
|
|
|
|
Nb_Index := 1;
|
|
|
|
while Present (Index) loop
|
|
Analyze (Index);
|
|
Make_Index (Index, P, Related_Id, Nb_Index);
|
|
Next_Index (Index);
|
|
Nb_Index := Nb_Index + 1;
|
|
end loop;
|
|
|
|
Element_Type := Process_Subtype (Component_Def, P, Related_Id, 'C');
|
|
|
|
-- Constrained array case
|
|
|
|
if No (T) then
|
|
T := Create_Itype (E_Void, P, Related_Id, 'T');
|
|
end if;
|
|
|
|
if Nkind (Def) = N_Constrained_Array_Definition then
|
|
|
|
-- Establish Implicit_Base as unconstrained base type
|
|
|
|
Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
|
|
|
|
Init_Size_Align (Implicit_Base);
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
|
Set_Scope (Implicit_Base, Current_Scope);
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
|
|
|
-- The constrained array type is a subtype of the unconstrained one
|
|
|
|
Set_Ekind (T, E_Array_Subtype);
|
|
Init_Size_Align (T);
|
|
Set_Etype (T, Implicit_Base);
|
|
Set_Scope (T, Current_Scope);
|
|
Set_Is_Constrained (T, True);
|
|
Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
|
|
Set_Has_Delayed_Freeze (T);
|
|
|
|
-- Complete setup of implicit base type
|
|
|
|
Set_First_Index (Implicit_Base, First_Index (T));
|
|
Set_Component_Type (Implicit_Base, Element_Type);
|
|
Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
|
|
Set_Component_Size (Implicit_Base, Uint_0);
|
|
Set_Has_Controlled_Component (Implicit_Base,
|
|
Has_Controlled_Component (Element_Type)
|
|
or else Is_Controlled (Element_Type));
|
|
Set_Finalize_Storage_Only (Implicit_Base,
|
|
Finalize_Storage_Only (Element_Type));
|
|
|
|
-- Unconstrained array case
|
|
|
|
else
|
|
Set_Ekind (T, E_Array_Type);
|
|
Init_Size_Align (T);
|
|
Set_Etype (T, T);
|
|
Set_Scope (T, Current_Scope);
|
|
Set_Component_Size (T, Uint_0);
|
|
Set_Is_Constrained (T, False);
|
|
Set_First_Index (T, First (Subtype_Marks (Def)));
|
|
Set_Has_Delayed_Freeze (T, True);
|
|
Set_Has_Task (T, Has_Task (Element_Type));
|
|
Set_Has_Controlled_Component (T,
|
|
Has_Controlled_Component (Element_Type)
|
|
or else Is_Controlled (Element_Type));
|
|
Set_Finalize_Storage_Only (T,
|
|
Finalize_Storage_Only (Element_Type));
|
|
end if;
|
|
|
|
Set_Component_Type (T, Element_Type);
|
|
|
|
if Aliased_Present (Def) then
|
|
Set_Has_Aliased_Components (Etype (T));
|
|
end if;
|
|
|
|
Priv := Private_Component (Element_Type);
|
|
|
|
if Present (Priv) then
|
|
-- Check for circular definitions.
|
|
|
|
if Priv = Any_Type then
|
|
Set_Component_Type (T, Any_Type);
|
|
Set_Component_Type (Etype (T), Any_Type);
|
|
|
|
-- There is a gap in the visiblity of operations on the composite
|
|
-- type only if the component type is defined in a different scope.
|
|
|
|
elsif Scope (Priv) = Current_Scope then
|
|
null;
|
|
|
|
elsif Is_Limited_Type (Priv) then
|
|
Set_Is_Limited_Composite (Etype (T));
|
|
Set_Is_Limited_Composite (T);
|
|
else
|
|
Set_Is_Private_Composite (Etype (T));
|
|
Set_Is_Private_Composite (T);
|
|
end if;
|
|
end if;
|
|
|
|
-- Create a concatenation operator for the new type. Internal
|
|
-- array types created for packed entities do not need such, they
|
|
-- are compatible with the user-defined type.
|
|
|
|
if Number_Dimensions (T) = 1
|
|
and then not Is_Packed_Array_Type (T)
|
|
then
|
|
New_Binary_Operator (Name_Op_Concat, T);
|
|
end if;
|
|
|
|
-- In the case of an unconstrained array the parser has already
|
|
-- verified that all the indices are unconstrained but we still
|
|
-- need to make sure that the element type is constrained.
|
|
|
|
if Is_Indefinite_Subtype (Element_Type) then
|
|
Error_Msg_N
|
|
("unconstrained element type in array declaration ",
|
|
Component_Def);
|
|
|
|
elsif Is_Abstract (Element_Type) then
|
|
Error_Msg_N ("The type of a component cannot be abstract ",
|
|
Component_Def);
|
|
end if;
|
|
|
|
end Array_Type_Declaration;
|
|
|
|
-------------------------------
|
|
-- Build_Derived_Access_Type --
|
|
-------------------------------
|
|
|
|
procedure Build_Derived_Access_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
S : constant Node_Id := Subtype_Indication (Type_Definition (N));
|
|
|
|
Desig_Type : Entity_Id;
|
|
Discr : Entity_Id;
|
|
Discr_Con_Elist : Elist_Id;
|
|
Discr_Con_El : Elmt_Id;
|
|
|
|
Subt : Entity_Id;
|
|
|
|
begin
|
|
-- Set the designated type so it is available in case this is
|
|
-- an access to a self-referential type, e.g. a standard list
|
|
-- type with a next pointer. Will be reset after subtype is built.
|
|
|
|
Set_Directly_Designated_Type (Derived_Type,
|
|
Designated_Type (Parent_Type));
|
|
|
|
Subt := Process_Subtype (S, N);
|
|
|
|
if Nkind (S) /= N_Subtype_Indication
|
|
and then Subt /= Base_Type (Subt)
|
|
then
|
|
Set_Ekind (Derived_Type, E_Access_Subtype);
|
|
end if;
|
|
|
|
if Ekind (Derived_Type) = E_Access_Subtype then
|
|
declare
|
|
Pbase : constant Entity_Id := Base_Type (Parent_Type);
|
|
Ibase : constant Entity_Id :=
|
|
Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
|
|
Svg_Chars : constant Name_Id := Chars (Ibase);
|
|
Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
|
|
|
|
begin
|
|
Copy_Node (Pbase, Ibase);
|
|
|
|
Set_Chars (Ibase, Svg_Chars);
|
|
Set_Next_Entity (Ibase, Svg_Next_E);
|
|
Set_Sloc (Ibase, Sloc (Derived_Type));
|
|
Set_Scope (Ibase, Scope (Derived_Type));
|
|
Set_Freeze_Node (Ibase, Empty);
|
|
Set_Is_Frozen (Ibase, False);
|
|
|
|
Set_Etype (Ibase, Pbase);
|
|
Set_Etype (Derived_Type, Ibase);
|
|
end;
|
|
end if;
|
|
|
|
Set_Directly_Designated_Type
|
|
(Derived_Type, Designated_Type (Subt));
|
|
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
|
|
Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
|
Set_Depends_On_Private (Derived_Type,
|
|
Has_Private_Component (Derived_Type));
|
|
Conditional_Delay (Derived_Type, Subt);
|
|
|
|
-- Note: we do not copy the Storage_Size_Variable, since
|
|
-- we always go to the root type for this information.
|
|
|
|
-- Apply range checks to discriminants for derived record case
|
|
-- ??? THIS CODE SHOULD NOT BE HERE REALLY.
|
|
|
|
Desig_Type := Designated_Type (Derived_Type);
|
|
if Is_Composite_Type (Desig_Type)
|
|
and then (not Is_Array_Type (Desig_Type))
|
|
and then Has_Discriminants (Desig_Type)
|
|
and then Base_Type (Desig_Type) /= Desig_Type
|
|
then
|
|
Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
|
|
Discr_Con_El := First_Elmt (Discr_Con_Elist);
|
|
|
|
Discr := First_Discriminant (Base_Type (Desig_Type));
|
|
while Present (Discr_Con_El) loop
|
|
Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
|
|
Next_Elmt (Discr_Con_El);
|
|
Next_Discriminant (Discr);
|
|
end loop;
|
|
end if;
|
|
end Build_Derived_Access_Type;
|
|
|
|
------------------------------
|
|
-- Build_Derived_Array_Type --
|
|
------------------------------
|
|
|
|
procedure Build_Derived_Array_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Tdef : constant Node_Id := Type_Definition (N);
|
|
Indic : constant Node_Id := Subtype_Indication (Tdef);
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
|
Implicit_Base : Entity_Id;
|
|
New_Indic : Node_Id;
|
|
|
|
procedure Make_Implicit_Base;
|
|
-- If the parent subtype is constrained, the derived type is a
|
|
-- subtype of an implicit base type derived from the parent base.
|
|
|
|
------------------------
|
|
-- Make_Implicit_Base --
|
|
------------------------
|
|
|
|
procedure Make_Implicit_Base is
|
|
begin
|
|
Implicit_Base :=
|
|
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
|
|
|
|
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
|
|
|
Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
|
|
Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
|
|
|
|
Set_Has_Delayed_Freeze (Implicit_Base, True);
|
|
end Make_Implicit_Base;
|
|
|
|
-- Start of processing for Build_Derived_Array_Type
|
|
|
|
begin
|
|
if not Is_Constrained (Parent_Type) then
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
|
Set_Ekind (Derived_Type, E_Array_Type);
|
|
|
|
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
|
|
Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
|
|
|
|
Set_Has_Delayed_Freeze (Derived_Type, True);
|
|
|
|
else
|
|
Make_Implicit_Base;
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
|
|
|
New_Indic :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Derived_Type,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
|
|
Constraint => Constraint (Indic)));
|
|
|
|
Rewrite (N, New_Indic);
|
|
Analyze (N);
|
|
end if;
|
|
|
|
else
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
|
Make_Implicit_Base;
|
|
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Type));
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
|
Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
|
|
|
|
else
|
|
Error_Msg_N ("illegal constraint on constrained type", Indic);
|
|
end if;
|
|
end if;
|
|
|
|
-- If the parent type is not a derived type itself, and is
|
|
-- declared in a closed scope (e.g., a subprogram), then we
|
|
-- need to explicitly introduce the new type's concatenation
|
|
-- operator since Derive_Subprograms will not inherit the
|
|
-- parent's operator.
|
|
|
|
if Number_Dimensions (Parent_Type) = 1
|
|
and then not Is_Limited_Type (Parent_Type)
|
|
and then not Is_Derived_Type (Parent_Type)
|
|
and then not Is_Package (Scope (Base_Type (Parent_Type)))
|
|
then
|
|
New_Binary_Operator (Name_Op_Concat, Derived_Type);
|
|
end if;
|
|
end Build_Derived_Array_Type;
|
|
|
|
-----------------------------------
|
|
-- Build_Derived_Concurrent_Type --
|
|
-----------------------------------
|
|
|
|
procedure Build_Derived_Concurrent_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
D_Constraint : Node_Id;
|
|
Disc_Spec : Node_Id;
|
|
Old_Disc : Entity_Id;
|
|
New_Disc : Entity_Id;
|
|
|
|
Constraint_Present : constant Boolean :=
|
|
Nkind (Subtype_Indication (Type_Definition (N)))
|
|
= N_Subtype_Indication;
|
|
|
|
begin
|
|
Set_Girder_Constraint (Derived_Type, No_Elist);
|
|
|
|
if Is_Task_Type (Parent_Type) then
|
|
Set_Storage_Size_Variable (Derived_Type,
|
|
Storage_Size_Variable (Parent_Type));
|
|
end if;
|
|
|
|
if Present (Discriminant_Specifications (N)) then
|
|
New_Scope (Derived_Type);
|
|
Check_Or_Process_Discriminants (N, Derived_Type);
|
|
End_Scope;
|
|
|
|
elsif Constraint_Present then
|
|
|
|
-- Build constrained subtype and derive from it
|
|
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Anon : Entity_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
New_External_Name (Chars (Derived_Type), 'T'));
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Anon,
|
|
Subtype_Indication =>
|
|
New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
|
|
Insert_Before (N, Decl);
|
|
Rewrite (Subtype_Indication (Type_Definition (N)),
|
|
New_Occurrence_Of (Anon, Loc));
|
|
Analyze (Decl);
|
|
Set_Analyzed (Derived_Type, False);
|
|
Analyze (N);
|
|
return;
|
|
end;
|
|
end if;
|
|
|
|
-- All attributes are inherited from parent. In particular,
|
|
-- entries and the corresponding record type are the same.
|
|
-- Discriminants may be renamed, and must be treated separately.
|
|
|
|
Set_Has_Discriminants
|
|
(Derived_Type, Has_Discriminants (Parent_Type));
|
|
Set_Corresponding_Record_Type
|
|
(Derived_Type, Corresponding_Record_Type (Parent_Type));
|
|
|
|
if Constraint_Present then
|
|
|
|
if not Has_Discriminants (Parent_Type) then
|
|
Error_Msg_N ("untagged parent must have discriminants", N);
|
|
|
|
elsif Present (Discriminant_Specifications (N)) then
|
|
|
|
-- Verify that new discriminants are used to constrain
|
|
-- the old ones.
|
|
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
|
New_Disc := First_Discriminant (Derived_Type);
|
|
Disc_Spec := First (Discriminant_Specifications (N));
|
|
D_Constraint :=
|
|
First
|
|
(Constraints
|
|
(Constraint (Subtype_Indication (Type_Definition (N)))));
|
|
|
|
while Present (Old_Disc) and then Present (Disc_Spec) loop
|
|
|
|
if Nkind (Discriminant_Type (Disc_Spec)) /=
|
|
N_Access_Definition
|
|
then
|
|
Analyze (Discriminant_Type (Disc_Spec));
|
|
|
|
if not Subtypes_Statically_Compatible (
|
|
Etype (Discriminant_Type (Disc_Spec)),
|
|
Etype (Old_Disc))
|
|
then
|
|
Error_Msg_N
|
|
("not statically compatible with parent discriminant",
|
|
Discriminant_Type (Disc_Spec));
|
|
end if;
|
|
end if;
|
|
|
|
if Nkind (D_Constraint) = N_Identifier
|
|
and then Chars (D_Constraint) /=
|
|
Chars (Defining_Identifier (Disc_Spec))
|
|
then
|
|
Error_Msg_N ("new discriminants must constrain old ones",
|
|
D_Constraint);
|
|
else
|
|
Set_Corresponding_Discriminant (New_Disc, Old_Disc);
|
|
end if;
|
|
|
|
Next_Discriminant (Old_Disc);
|
|
Next_Discriminant (New_Disc);
|
|
Next (Disc_Spec);
|
|
end loop;
|
|
|
|
if Present (Old_Disc) or else Present (Disc_Spec) then
|
|
Error_Msg_N ("discriminant mismatch in derivation", N);
|
|
end if;
|
|
|
|
end if;
|
|
|
|
elsif Present (Discriminant_Specifications (N)) then
|
|
Error_Msg_N
|
|
("missing discriminant constraint in untagged derivation",
|
|
N);
|
|
end if;
|
|
|
|
if Present (Discriminant_Specifications (N)) then
|
|
|
|
Old_Disc := First_Discriminant (Parent_Type);
|
|
|
|
while Present (Old_Disc) loop
|
|
|
|
if No (Next_Entity (Old_Disc))
|
|
or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
|
|
then
|
|
Set_Next_Entity (Last_Entity (Derived_Type),
|
|
Next_Entity (Old_Disc));
|
|
exit;
|
|
end if;
|
|
|
|
Next_Discriminant (Old_Disc);
|
|
end loop;
|
|
|
|
else
|
|
Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
|
|
if Has_Discriminants (Parent_Type) then
|
|
Set_Discriminant_Constraint (
|
|
Derived_Type, Discriminant_Constraint (Parent_Type));
|
|
end if;
|
|
end if;
|
|
|
|
Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
|
|
|
|
Set_Has_Completion (Derived_Type);
|
|
end Build_Derived_Concurrent_Type;
|
|
|
|
------------------------------------
|
|
-- Build_Derived_Enumeration_Type --
|
|
------------------------------------
|
|
|
|
procedure Build_Derived_Enumeration_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Def : constant Node_Id := Type_Definition (N);
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
|
Implicit_Base : Entity_Id;
|
|
Literal : Entity_Id;
|
|
New_Lit : Entity_Id;
|
|
Literals_List : List_Id;
|
|
Type_Decl : Node_Id;
|
|
Hi, Lo : Node_Id;
|
|
Rang_Expr : Node_Id;
|
|
|
|
begin
|
|
-- Since types Standard.Character and Standard.Wide_Character do
|
|
-- not have explicit literals lists we need to process types derived
|
|
-- from them specially. This is handled by Derived_Standard_Character.
|
|
-- If the parent type is a generic type, there are no literals either,
|
|
-- and we construct the same skeletal representation as for the generic
|
|
-- parent type.
|
|
|
|
if Root_Type (Parent_Type) = Standard_Character
|
|
or else Root_Type (Parent_Type) = Standard_Wide_Character
|
|
then
|
|
Derived_Standard_Character (N, Parent_Type, Derived_Type);
|
|
|
|
elsif Is_Generic_Type (Root_Type (Parent_Type)) then
|
|
declare
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
|
|
begin
|
|
Lo :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_First,
|
|
Prefix => New_Reference_To (Derived_Type, Loc));
|
|
Set_Etype (Lo, Derived_Type);
|
|
|
|
Hi :=
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Last,
|
|
Prefix => New_Reference_To (Derived_Type, Loc));
|
|
Set_Etype (Hi, Derived_Type);
|
|
|
|
Set_Scalar_Range (Derived_Type,
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi));
|
|
end;
|
|
|
|
else
|
|
-- If a constraint is present, analyze the bounds to catch
|
|
-- premature usage of the derived literals.
|
|
|
|
if Nkind (Indic) = N_Subtype_Indication
|
|
and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
|
|
then
|
|
Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
|
|
Analyze (High_Bound (Range_Expression (Constraint (Indic))));
|
|
end if;
|
|
|
|
-- Introduce an implicit base type for the derived type even
|
|
-- if there is no constraint attached to it, since this seems
|
|
-- closer to the Ada semantics. Build a full type declaration
|
|
-- tree for the derived type using the implicit base type as
|
|
-- the defining identifier. The build a subtype declaration
|
|
-- tree which applies the constraint (if any) have it replace
|
|
-- the derived type declaration.
|
|
|
|
Literal := First_Literal (Parent_Type);
|
|
Literals_List := New_List;
|
|
|
|
while Present (Literal)
|
|
and then Ekind (Literal) = E_Enumeration_Literal
|
|
loop
|
|
-- Literals of the derived type have the same representation as
|
|
-- those of the parent type, but this representation can be
|
|
-- overridden by an explicit representation clause. Indicate
|
|
-- that there is no explicit representation given yet. These
|
|
-- derived literals are implicit operations of the new type,
|
|
-- and can be overriden by explicit ones.
|
|
|
|
if Nkind (Literal) = N_Defining_Character_Literal then
|
|
New_Lit :=
|
|
Make_Defining_Character_Literal (Loc, Chars (Literal));
|
|
else
|
|
New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
|
|
end if;
|
|
|
|
Set_Ekind (New_Lit, E_Enumeration_Literal);
|
|
Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
|
|
Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
|
|
Set_Enumeration_Rep_Expr (New_Lit, Empty);
|
|
Set_Alias (New_Lit, Literal);
|
|
Set_Is_Known_Valid (New_Lit, True);
|
|
|
|
Append (New_Lit, Literals_List);
|
|
Next_Literal (Literal);
|
|
end loop;
|
|
|
|
Implicit_Base :=
|
|
Make_Defining_Identifier (Sloc (Derived_Type),
|
|
New_External_Name (Chars (Derived_Type), 'B'));
|
|
|
|
-- Indicate the proper nature of the derived type. This must
|
|
-- be done before analysis of the literals, to recognize cases
|
|
-- when a literal may be hidden by a previous explicit function
|
|
-- definition (cf. c83031a).
|
|
|
|
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
|
|
|
Type_Decl :=
|
|
Make_Full_Type_Declaration (Loc,
|
|
Defining_Identifier => Implicit_Base,
|
|
Discriminant_Specifications => No_List,
|
|
Type_Definition =>
|
|
Make_Enumeration_Type_Definition (Loc, Literals_List));
|
|
|
|
Mark_Rewrite_Insertion (Type_Decl);
|
|
Insert_Before (N, Type_Decl);
|
|
Analyze (Type_Decl);
|
|
|
|
-- After the implicit base is analyzed its Etype needs to be
|
|
-- changed to reflect the fact that it is derived from the
|
|
-- parent type which was ignored during analysis. We also set
|
|
-- the size at this point.
|
|
|
|
Set_Etype (Implicit_Base, Parent_Type);
|
|
|
|
Set_Size_Info (Implicit_Base, Parent_Type);
|
|
Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
|
|
|
|
Set_Has_Non_Standard_Rep
|
|
(Implicit_Base, Has_Non_Standard_Rep
|
|
(Parent_Type));
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
|
|
|
-- Process the subtype indication including a validation check
|
|
-- on the constraint, if any. If a constraint is given, its bounds
|
|
-- must be implicitly converted to the new type.
|
|
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
|
|
|
declare
|
|
R : constant Node_Id :=
|
|
Range_Expression (Constraint (Indic));
|
|
|
|
begin
|
|
if Nkind (R) = N_Range then
|
|
Hi := Build_Scalar_Bound
|
|
(High_Bound (R), Parent_Type, Implicit_Base, Loc);
|
|
Lo := Build_Scalar_Bound
|
|
(Low_Bound (R), Parent_Type, Implicit_Base, Loc);
|
|
|
|
else
|
|
-- Constraint is a Range attribute. Replace with the
|
|
-- explicit mention of the bounds of the prefix, which
|
|
-- must be a subtype.
|
|
|
|
Analyze (Prefix (R));
|
|
Hi :=
|
|
Convert_To (Implicit_Base,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Last,
|
|
Prefix =>
|
|
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
|
|
|
|
Lo :=
|
|
Convert_To (Implicit_Base,
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_First,
|
|
Prefix =>
|
|
New_Occurrence_Of (Entity (Prefix (R)), Loc)));
|
|
end if;
|
|
|
|
end;
|
|
|
|
else
|
|
Hi :=
|
|
Build_Scalar_Bound
|
|
(Type_High_Bound (Parent_Type),
|
|
Parent_Type, Implicit_Base, Loc);
|
|
Lo :=
|
|
Build_Scalar_Bound
|
|
(Type_Low_Bound (Parent_Type),
|
|
Parent_Type, Implicit_Base, Loc);
|
|
end if;
|
|
|
|
Rang_Expr :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi);
|
|
|
|
-- If we constructed a default range for the case where no range
|
|
-- was given, then the expressions in the range must not freeze
|
|
-- since they do not correspond to expressions in the source.
|
|
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
|
Set_Must_Not_Freeze (Lo);
|
|
Set_Must_Not_Freeze (Hi);
|
|
Set_Must_Not_Freeze (Rang_Expr);
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Derived_Type,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
|
|
Constraint =>
|
|
Make_Range_Constraint (Loc,
|
|
Range_Expression => Rang_Expr))));
|
|
|
|
Analyze (N);
|
|
|
|
-- If pragma Discard_Names applies on the first subtype
|
|
-- of the parent type, then it must be applied on this
|
|
-- subtype as well.
|
|
|
|
if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
|
|
Set_Discard_Names (Derived_Type);
|
|
end if;
|
|
|
|
-- Apply a range check. Since this range expression doesn't
|
|
-- have an Etype, we have to specifically pass the Source_Typ
|
|
-- parameter. Is this right???
|
|
|
|
if Nkind (Indic) = N_Subtype_Indication then
|
|
Apply_Range_Check (Range_Expression (Constraint (Indic)),
|
|
Parent_Type,
|
|
Source_Typ => Entity (Subtype_Mark (Indic)));
|
|
end if;
|
|
end if;
|
|
|
|
end Build_Derived_Enumeration_Type;
|
|
|
|
--------------------------------
|
|
-- Build_Derived_Numeric_Type --
|
|
--------------------------------
|
|
|
|
procedure Build_Derived_Numeric_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Tdef : constant Node_Id := Type_Definition (N);
|
|
Indic : constant Node_Id := Subtype_Indication (Tdef);
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
|
No_Constraint : constant Boolean := Nkind (Indic) /=
|
|
N_Subtype_Indication;
|
|
Implicit_Base : Entity_Id;
|
|
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
-- Process the subtype indication including a validation check on
|
|
-- the constraint if any.
|
|
|
|
T := Process_Subtype (Indic, N);
|
|
|
|
-- Introduce an implicit base type for the derived type even if
|
|
-- there is no constraint attached to it, since this seems closer
|
|
-- to the Ada semantics.
|
|
|
|
Implicit_Base :=
|
|
Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
|
|
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
|
Set_Ekind (Implicit_Base, Ekind (Parent_Base));
|
|
Set_Size_Info (Implicit_Base, Parent_Base);
|
|
Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
|
|
Set_Parent (Implicit_Base, Parent (Derived_Type));
|
|
|
|
if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
|
|
Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
|
|
end if;
|
|
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
|
|
|
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
|
|
Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
|
|
|
|
Set_Scalar_Range (Implicit_Base,
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi));
|
|
|
|
if Has_Infinities (Parent_Base) then
|
|
Set_Includes_Infinities (Scalar_Range (Implicit_Base));
|
|
end if;
|
|
|
|
-- The Derived_Type, which is the entity of the declaration, is
|
|
-- a subtype of the implicit base. Its Ekind is a subtype, even
|
|
-- in the absence of an explicit constraint.
|
|
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
|
|
|
-- If we did not have a constraint, then the Ekind is set from the
|
|
-- parent type (otherwise Process_Subtype has set the bounds)
|
|
|
|
if No_Constraint then
|
|
Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
|
|
end if;
|
|
|
|
-- If we did not have a range constraint, then set the range
|
|
-- from the parent type. Otherwise, the call to Process_Subtype
|
|
-- has set the bounds.
|
|
|
|
if No_Constraint
|
|
or else not Has_Range_Constraint (Indic)
|
|
then
|
|
Set_Scalar_Range (Derived_Type,
|
|
Make_Range (Loc,
|
|
Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
|
|
High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
|
|
|
|
if Has_Infinities (Parent_Type) then
|
|
Set_Includes_Infinities (Scalar_Range (Derived_Type));
|
|
end if;
|
|
end if;
|
|
|
|
-- Set remaining type-specific fields, depending on numeric type
|
|
|
|
if Is_Modular_Integer_Type (Parent_Type) then
|
|
Set_Modulus (Implicit_Base, Modulus (Parent_Base));
|
|
|
|
Set_Non_Binary_Modulus
|
|
(Implicit_Base, Non_Binary_Modulus (Parent_Base));
|
|
|
|
elsif Is_Floating_Point_Type (Parent_Type) then
|
|
|
|
-- Digits of base type is always copied from the digits value of
|
|
-- the parent base type, but the digits of the derived type will
|
|
-- already have been set if there was a constraint present.
|
|
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
|
|
Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
|
|
|
|
if No_Constraint then
|
|
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
|
|
end if;
|
|
|
|
elsif Is_Fixed_Point_Type (Parent_Type) then
|
|
|
|
-- Small of base type and derived type are always copied from
|
|
-- the parent base type, since smalls never change. The delta
|
|
-- of the base type is also copied from the parent base type.
|
|
-- However the delta of the derived type will have been set
|
|
-- already if a constraint was present.
|
|
|
|
Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
|
|
Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
|
|
Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
|
|
|
|
if No_Constraint then
|
|
Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
|
|
end if;
|
|
|
|
-- The scale and machine radix in the decimal case are always
|
|
-- copied from the parent base type.
|
|
|
|
if Is_Decimal_Fixed_Point_Type (Parent_Type) then
|
|
Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
|
|
Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
|
|
|
|
Set_Machine_Radix_10
|
|
(Derived_Type, Machine_Radix_10 (Parent_Base));
|
|
Set_Machine_Radix_10
|
|
(Implicit_Base, Machine_Radix_10 (Parent_Base));
|
|
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
|
|
|
|
if No_Constraint then
|
|
Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
|
|
|
|
else
|
|
-- the analysis of the subtype_indication sets the
|
|
-- digits value of the derived type.
|
|
|
|
null;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- The type of the bounds is that of the parent type, and they
|
|
-- must be converted to the derived type.
|
|
|
|
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
|
|
|
|
-- The implicit_base should be frozen when the derived type is frozen,
|
|
-- but note that it is used in the conversions of the bounds. For
|
|
-- fixed types we delay the determination of the bounds until the proper
|
|
-- freezing point. For other numeric types this is rejected by GCC, for
|
|
-- reasons that are currently unclear (???), so we choose to freeze the
|
|
-- implicit base now. In the case of integers and floating point types
|
|
-- this is harmless because subsequent representation clauses cannot
|
|
-- affect anything, but it is still baffling that we cannot use the
|
|
-- same mechanism for all derived numeric types.
|
|
|
|
if Is_Fixed_Point_Type (Parent_Type) then
|
|
Conditional_Delay (Implicit_Base, Parent_Type);
|
|
else
|
|
Freeze_Before (N, Implicit_Base);
|
|
end if;
|
|
|
|
end Build_Derived_Numeric_Type;
|
|
|
|
--------------------------------
|
|
-- Build_Derived_Private_Type --
|
|
--------------------------------
|
|
|
|
procedure Build_Derived_Private_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Is_Completion : Boolean;
|
|
Derive_Subps : Boolean := True)
|
|
is
|
|
Der_Base : Entity_Id;
|
|
Discr : Entity_Id;
|
|
Full_Decl : Node_Id := Empty;
|
|
Full_Der : Entity_Id;
|
|
Full_P : Entity_Id;
|
|
Last_Discr : Entity_Id;
|
|
Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
|
|
Swapped : Boolean := False;
|
|
|
|
procedure Copy_And_Build;
|
|
-- Copy derived type declaration, replace parent with its full view,
|
|
-- and analyze new declaration.
|
|
|
|
procedure Copy_And_Build is
|
|
Full_N : Node_Id;
|
|
|
|
begin
|
|
if Ekind (Parent_Type) in Record_Kind
|
|
or else (Ekind (Parent_Type) in Enumeration_Kind
|
|
and then Root_Type (Parent_Type) /= Standard_Character
|
|
and then Root_Type (Parent_Type) /= Standard_Wide_Character
|
|
and then not Is_Generic_Type (Root_Type (Parent_Type)))
|
|
then
|
|
Full_N := New_Copy_Tree (N);
|
|
Insert_After (N, Full_N);
|
|
Build_Derived_Type (
|
|
Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
|
|
|
|
else
|
|
Build_Derived_Type (
|
|
N, Parent_Type, Full_Der, True, Derive_Subps => False);
|
|
end if;
|
|
end Copy_And_Build;
|
|
|
|
-- Start of processing for Build_Derived_Private_Type
|
|
|
|
begin
|
|
if Is_Tagged_Type (Parent_Type) then
|
|
Build_Derived_Record_Type
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
|
return;
|
|
|
|
elsif Has_Discriminants (Parent_Type) then
|
|
|
|
if Present (Full_View (Parent_Type)) then
|
|
if not Is_Completion then
|
|
|
|
-- Copy declaration for subsequent analysis.
|
|
|
|
Full_Decl := New_Copy_Tree (N);
|
|
Full_Der := New_Copy (Derived_Type);
|
|
Insert_After (N, Full_Decl);
|
|
|
|
else
|
|
-- If this is a completion, the full view being built is
|
|
-- itself private. We build a subtype of the parent with
|
|
-- the same constraints as this full view, to convey to the
|
|
-- back end the constrained components and the size of this
|
|
-- subtype. If the parent is constrained, its full view can
|
|
-- serve as the underlying full view of the derived type.
|
|
|
|
if No (Discriminant_Specifications (N)) then
|
|
|
|
if Nkind (Subtype_Indication (Type_Definition (N)))
|
|
= N_Subtype_Indication
|
|
then
|
|
Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
|
|
|
|
elsif Is_Constrained (Full_View (Parent_Type)) then
|
|
Set_Underlying_Full_View (Derived_Type,
|
|
Full_View (Parent_Type));
|
|
end if;
|
|
|
|
else
|
|
-- If there are new discriminants, the parent subtype is
|
|
-- constrained by them, but it is not clear how to build
|
|
-- the underlying_full_view in this case ???
|
|
|
|
null;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Build_Derived_Record_Type
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
|
|
|
if Present (Full_View (Parent_Type))
|
|
and then not Is_Completion
|
|
then
|
|
if not In_Open_Scopes (Par_Scope)
|
|
or else not In_Same_Source_Unit (N, Parent_Type)
|
|
then
|
|
-- Swap partial and full views temporarily
|
|
|
|
Install_Private_Declarations (Par_Scope);
|
|
Install_Visible_Declarations (Par_Scope);
|
|
Swapped := True;
|
|
end if;
|
|
|
|
-- Subprograms have been derived on the private view,
|
|
-- the completion does not derive them anew.
|
|
|
|
Build_Derived_Record_Type
|
|
(Full_Decl, Parent_Type, Full_Der, False);
|
|
|
|
if Swapped then
|
|
Uninstall_Declarations (Par_Scope);
|
|
|
|
if In_Open_Scopes (Par_Scope) then
|
|
Install_Visible_Declarations (Par_Scope);
|
|
end if;
|
|
end if;
|
|
|
|
Der_Base := Base_Type (Derived_Type);
|
|
Set_Full_View (Derived_Type, Full_Der);
|
|
Set_Full_View (Der_Base, Base_Type (Full_Der));
|
|
|
|
-- Copy the discriminant list from full view to
|
|
-- the partial views (base type and its subtype).
|
|
-- Gigi requires that the partial and full views
|
|
-- have the same discriminants.
|
|
-- ??? Note that since the partial view is pointing
|
|
-- to discriminants in the full view, their scope
|
|
-- will be that of the full view. This might
|
|
-- cause some front end problems and need
|
|
-- adustment?
|
|
|
|
Discr := First_Discriminant (Base_Type (Full_Der));
|
|
Set_First_Entity (Der_Base, Discr);
|
|
|
|
loop
|
|
Last_Discr := Discr;
|
|
Next_Discriminant (Discr);
|
|
exit when No (Discr);
|
|
end loop;
|
|
|
|
Set_Last_Entity (Der_Base, Last_Discr);
|
|
|
|
Set_First_Entity (Derived_Type, First_Entity (Der_Base));
|
|
Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
|
|
|
|
else
|
|
-- If this is a completion, the derived type stays private
|
|
-- and there is no need to create a further full view, except
|
|
-- in the unusual case when the derivation is nested within a
|
|
-- child unit, see below.
|
|
|
|
null;
|
|
end if;
|
|
|
|
elsif Present (Full_View (Parent_Type))
|
|
and then Has_Discriminants (Full_View (Parent_Type))
|
|
then
|
|
if Has_Unknown_Discriminants (Parent_Type)
|
|
and then Nkind (Subtype_Indication (Type_Definition (N)))
|
|
= N_Subtype_Indication
|
|
then
|
|
Error_Msg_N
|
|
("cannot constrain type with unknown discriminants",
|
|
Subtype_Indication (Type_Definition (N)));
|
|
return;
|
|
end if;
|
|
|
|
-- Inherit the discriminants of the full view, but
|
|
-- keep the proper parent type.
|
|
|
|
-- ??? this looks wrong, we are replacing (and thus,
|
|
-- erasing) the partial view!
|
|
|
|
-- In any case, the primitive operations are inherited from
|
|
-- the parent type, not from the internal full view.
|
|
|
|
Build_Derived_Record_Type
|
|
(N, Full_View (Parent_Type), Derived_Type,
|
|
Derive_Subps => False);
|
|
Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
|
|
|
|
if Derive_Subps then
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
|
end if;
|
|
|
|
else
|
|
|
|
-- Untagged type, No discriminants on either view.
|
|
|
|
if Nkind (Subtype_Indication (Type_Definition (N)))
|
|
= N_Subtype_Indication
|
|
then
|
|
Error_Msg_N
|
|
("illegal constraint on type without discriminants", N);
|
|
end if;
|
|
|
|
if Present (Discriminant_Specifications (N))
|
|
and then Present (Full_View (Parent_Type))
|
|
and then not Is_Tagged_Type (Full_View (Parent_Type))
|
|
then
|
|
Error_Msg_N
|
|
("cannot add discriminants to untagged type", N);
|
|
end if;
|
|
|
|
Set_Girder_Constraint (Derived_Type, No_Elist);
|
|
Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
|
|
Set_Has_Controlled_Component (Derived_Type,
|
|
Has_Controlled_Component (Parent_Type));
|
|
|
|
-- Direct controlled types do not inherit the Finalize_Storage_Only
|
|
-- flag.
|
|
|
|
if not Is_Controlled (Parent_Type) then
|
|
Set_Finalize_Storage_Only (Derived_Type,
|
|
Finalize_Storage_Only (Parent_Type));
|
|
end if;
|
|
|
|
-- Construct the implicit full view by deriving from full
|
|
-- view of the parent type. In order to get proper visiblity,
|
|
-- we install the parent scope and its declarations.
|
|
|
|
-- ??? if the parent is untagged private and its
|
|
-- completion is tagged, this mechanism will not
|
|
-- work because we cannot derive from the tagged
|
|
-- full view unless we have an extension
|
|
|
|
if Present (Full_View (Parent_Type))
|
|
and then not Is_Tagged_Type (Full_View (Parent_Type))
|
|
and then not Is_Completion
|
|
then
|
|
Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
|
|
Chars (Derived_Type));
|
|
Set_Is_Itype (Full_Der);
|
|
Set_Has_Private_Declaration (Full_Der);
|
|
Set_Has_Private_Declaration (Derived_Type);
|
|
Set_Associated_Node_For_Itype (Full_Der, N);
|
|
Set_Parent (Full_Der, Parent (Derived_Type));
|
|
Set_Full_View (Derived_Type, Full_Der);
|
|
|
|
if not In_Open_Scopes (Par_Scope) then
|
|
Install_Private_Declarations (Par_Scope);
|
|
Install_Visible_Declarations (Par_Scope);
|
|
Copy_And_Build;
|
|
Uninstall_Declarations (Par_Scope);
|
|
|
|
-- If parent scope is open and in another unit, and
|
|
-- parent has a completion, then the derivation is taking
|
|
-- place in the visible part of a child unit. In that
|
|
-- case retrieve the full view of the parent momentarily.
|
|
|
|
elsif not In_Same_Source_Unit (N, Parent_Type) then
|
|
Full_P := Full_View (Parent_Type);
|
|
Exchange_Declarations (Parent_Type);
|
|
Copy_And_Build;
|
|
Exchange_Declarations (Full_P);
|
|
|
|
-- Otherwise it is a local derivation.
|
|
|
|
else
|
|
Copy_And_Build;
|
|
end if;
|
|
|
|
Set_Scope (Full_Der, Current_Scope);
|
|
Set_Is_First_Subtype (Full_Der,
|
|
Is_First_Subtype (Derived_Type));
|
|
Set_Has_Size_Clause (Full_Der, False);
|
|
Set_Has_Alignment_Clause (Full_Der, False);
|
|
Set_Next_Entity (Full_Der, Empty);
|
|
Set_Has_Delayed_Freeze (Full_Der);
|
|
Set_Is_Frozen (Full_Der, False);
|
|
Set_Freeze_Node (Full_Der, Empty);
|
|
Set_Depends_On_Private (Full_Der,
|
|
Has_Private_Component (Full_Der));
|
|
Set_Public_Status (Full_Der);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Has_Unknown_Discriminants (Derived_Type,
|
|
Has_Unknown_Discriminants (Parent_Type));
|
|
|
|
if Is_Private_Type (Derived_Type) then
|
|
Set_Private_Dependents (Derived_Type, New_Elmt_List);
|
|
end if;
|
|
|
|
if Is_Private_Type (Parent_Type)
|
|
and then Base_Type (Parent_Type) = Parent_Type
|
|
and then In_Open_Scopes (Scope (Parent_Type))
|
|
then
|
|
Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
|
|
|
|
if Is_Child_Unit (Scope (Current_Scope))
|
|
and then Is_Completion
|
|
and then In_Private_Part (Current_Scope)
|
|
and then Scope (Parent_Type) /= Current_Scope
|
|
then
|
|
-- This is the unusual case where a type completed by a private
|
|
-- derivation occurs within a package nested in a child unit,
|
|
-- and the parent is declared in an ancestor. In this case, the
|
|
-- full view of the parent type will become visible in the body
|
|
-- of the enclosing child, and only then will the current type
|
|
-- be possibly non-private. We build a underlying full view that
|
|
-- will be installed when the enclosing child body is compiled.
|
|
|
|
declare
|
|
IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
|
|
|
|
begin
|
|
Full_Der :=
|
|
Make_Defining_Identifier (Sloc (Derived_Type),
|
|
Chars (Derived_Type));
|
|
Set_Is_Itype (Full_Der);
|
|
Set_Itype (IR, Full_Der);
|
|
Insert_After (N, IR);
|
|
|
|
-- The full view will be used to swap entities on entry/exit
|
|
-- to the body, and must appear in the entity list for the
|
|
-- package.
|
|
|
|
Append_Entity (Full_Der, Scope (Derived_Type));
|
|
Set_Has_Private_Declaration (Full_Der);
|
|
Set_Has_Private_Declaration (Derived_Type);
|
|
Set_Associated_Node_For_Itype (Full_Der, N);
|
|
Set_Parent (Full_Der, Parent (Derived_Type));
|
|
Full_P := Full_View (Parent_Type);
|
|
Exchange_Declarations (Parent_Type);
|
|
Copy_And_Build;
|
|
Exchange_Declarations (Full_P);
|
|
Set_Underlying_Full_View (Derived_Type, Full_Der);
|
|
end;
|
|
end if;
|
|
end if;
|
|
end Build_Derived_Private_Type;
|
|
|
|
-------------------------------
|
|
-- Build_Derived_Record_Type --
|
|
-------------------------------
|
|
|
|
-- 1. INTRODUCTION.
|
|
|
|
-- Ideally we would like to use the same model of type derivation for
|
|
-- tagged and untagged record types. Unfortunately this is not quite
|
|
-- possible because the semantics of representation clauses is different
|
|
-- for tagged and untagged records under inheritance. Consider the
|
|
-- following:
|
|
|
|
-- type R (...) is [tagged] record ... end record;
|
|
-- type T (...) is new R (...) [with ...];
|
|
|
|
-- The representation clauses of T can specify a completely different
|
|
-- record layout from R's. Hence a same component can be placed in two very
|
|
-- different positions in objects of type T and R. If R and T are tagged
|
|
-- types, representation clauses for T can only specify the layout of non
|
|
-- inherited components, thus components that are common in R and T have
|
|
-- the same position in objects of type R or T.
|
|
|
|
-- This has two implications. The first is that the entire tree for R's
|
|
-- declaration needs to be copied for T in the untagged case, so that
|
|
-- T can be viewd as a record type of its own with its own derivation
|
|
-- clauses. The second implication is the way we handle discriminants.
|
|
-- Specifically, in the untagged case we need a way to communicate to Gigi
|
|
-- what are the real discriminants in the record, while for the semantics
|
|
-- we need to consider those introduced by the user to rename the
|
|
-- discriminants in the parent type. This is handled by introducing the
|
|
-- notion of girder discriminants. See below for more.
|
|
|
|
-- Fortunately the way regular components are inherited can be handled in
|
|
-- the same way in tagged and untagged types.
|
|
|
|
-- To complicate things a bit more the private view of a private extension
|
|
-- cannot be handled in the same way as the full view (for one thing the
|
|
-- semantic rules are somewhat different). We will explain what differs
|
|
-- below.
|
|
|
|
-- 2. DISCRIMINANTS UNDER INHERITANCE.
|
|
|
|
-- The semantic rules governing the discriminants of derived types are
|
|
-- quite subtle.
|
|
|
|
-- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
|
|
-- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
|
|
|
|
-- If parent type has discriminants, then the discriminants that are
|
|
-- declared in the derived type are [3.4 (11)]:
|
|
|
|
-- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
|
|
-- there is one;
|
|
|
|
-- o Otherwise, each discriminant of the parent type (implicitly
|
|
-- declared in the same order with the same specifications). In this
|
|
-- case, the discriminants are said to be "inherited", or if unknown in
|
|
-- the parent are also unknown in the derived type.
|
|
|
|
-- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
|
|
|
|
-- o The parent subtype shall be constrained;
|
|
|
|
-- o If the parent type is not a tagged type, then each discriminant of
|
|
-- the derived type shall be used in the constraint defining a parent
|
|
-- subtype [Implementation note: this ensures that the new discriminant
|
|
-- can share storage with an existing discriminant.].
|
|
|
|
-- For the derived type each discriminant of the parent type is either
|
|
-- inherited, constrained to equal some new discriminant of the derived
|
|
-- type, or constrained to the value of an expression.
|
|
|
|
-- When inherited or constrained to equal some new discriminant, the
|
|
-- parent discriminant and the discriminant of the derived type are said
|
|
-- to "correspond".
|
|
|
|
-- If a discriminant of the parent type is constrained to a specific value
|
|
-- in the derived type definition, then the discriminant is said to be
|
|
-- "specified" by that derived type definition.
|
|
|
|
-- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES.
|
|
|
|
-- We have spoken about girder discriminants in the point 1 (introduction)
|
|
-- above. There are two sort of girder discriminants: implicit and
|
|
-- explicit. As long as the derived type inherits the same discriminants as
|
|
-- the root record type, girder discriminants are the same as regular
|
|
-- discriminants, and are said to be implicit. However, if any discriminant
|
|
-- in the root type was renamed in the derived type, then the derived
|
|
-- type will contain explicit girder discriminants. Explicit girder
|
|
-- discriminants are discriminants in addition to the semantically visible
|
|
-- discriminants defined for the derived type. Girder discriminants are
|
|
-- used by Gigi to figure out what are the physical discriminants in
|
|
-- objects of the derived type (see precise definition in einfo.ads).
|
|
-- As an example, consider the following:
|
|
|
|
-- type R (D1, D2, D3 : Int) is record ... end record;
|
|
-- type T1 is new R;
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
|
|
-- type T3 is new T2;
|
|
-- type T4 (Y : Int) is new T3 (Y, 99);
|
|
|
|
-- The following table summarizes the discriminants and girder
|
|
-- discriminants in R and T1 through T4.
|
|
|
|
-- Type Discrim Girder Discrim Comment
|
|
-- R (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in R
|
|
-- T1 (D1, D2, D3) (D1, D2, D3) Gider discrims are implicit in T1
|
|
-- T2 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T2
|
|
-- T3 (X1, X2) (D1, D2, D3) Gider discrims are EXPLICIT in T3
|
|
-- T4 (Y) (D1, D2, D3) Gider discrims are EXPLICIT in T4
|
|
|
|
-- Field Corresponding_Discriminant (abbreviated CD below) allows to find
|
|
-- the corresponding discriminant in the parent type, while
|
|
-- Original_Record_Component (abbreviated ORC below), the actual physical
|
|
-- component that is renamed. Finally the field Is_Completely_Hidden
|
|
-- (abbreaviated ICH below) is set for all explicit girder discriminants
|
|
-- (see einfo.ads for more info). For the above example this gives:
|
|
|
|
-- Discrim CD ORC ICH
|
|
-- ^^^^^^^ ^^ ^^^ ^^^
|
|
-- D1 in R empty itself no
|
|
-- D2 in R empty itself no
|
|
-- D3 in R empty itself no
|
|
|
|
-- D1 in T1 D1 in R itself no
|
|
-- D2 in T1 D2 in R itself no
|
|
-- D3 in T1 D3 in R itself no
|
|
|
|
-- X1 in T2 D3 in T1 D3 in T2 no
|
|
-- X2 in T2 D1 in T1 D1 in T2 no
|
|
-- D1 in T2 empty itself yes
|
|
-- D2 in T2 empty itself yes
|
|
-- D3 in T2 empty itself yes
|
|
|
|
-- X1 in T3 X1 in T2 D3 in T3 no
|
|
-- X2 in T3 X2 in T2 D1 in T3 no
|
|
-- D1 in T3 empty itself yes
|
|
-- D2 in T3 empty itself yes
|
|
-- D3 in T3 empty itself yes
|
|
|
|
-- Y in T4 X1 in T3 D3 in T3 no
|
|
-- D1 in T3 empty itself yes
|
|
-- D2 in T3 empty itself yes
|
|
-- D3 in T3 empty itself yes
|
|
|
|
-- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES.
|
|
|
|
-- Type derivation for tagged types is fairly straightforward. if no
|
|
-- discriminants are specified by the derived type, these are inherited
|
|
-- from the parent. No explicit girder discriminants are ever necessary.
|
|
-- The only manipulation that is done to the tree is that of adding a
|
|
-- _parent field with parent type and constrained to the same constraint
|
|
-- specified for the parent in the derived type definition. For instance:
|
|
|
|
-- type R (D1, D2, D3 : Int) is tagged record ... end record;
|
|
-- type T1 is new R with null record;
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
|
|
|
|
-- are changed into :
|
|
|
|
-- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
|
|
-- _parent : R (D1, D2, D3);
|
|
-- end record;
|
|
|
|
-- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
|
|
-- _parent : T1 (X2, 88, X1);
|
|
-- end record;
|
|
|
|
-- The discriminants actually present in R, T1 and T2 as well as their CD,
|
|
-- ORC and ICH fields are:
|
|
|
|
-- Discrim CD ORC ICH
|
|
-- ^^^^^^^ ^^ ^^^ ^^^
|
|
-- D1 in R empty itself no
|
|
-- D2 in R empty itself no
|
|
-- D3 in R empty itself no
|
|
|
|
-- D1 in T1 D1 in R D1 in R no
|
|
-- D2 in T1 D2 in R D2 in R no
|
|
-- D3 in T1 D3 in R D3 in R no
|
|
|
|
-- X1 in T2 D3 in T1 D3 in R no
|
|
-- X2 in T2 D1 in T1 D1 in R no
|
|
|
|
-- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS.
|
|
--
|
|
-- Regardless of whether we dealing with a tagged or untagged type
|
|
-- we will transform all derived type declarations of the form
|
|
--
|
|
-- type T is new R (...) [with ...];
|
|
-- or
|
|
-- subtype S is R (...);
|
|
-- type T is new S [with ...];
|
|
-- into
|
|
-- type BT is new R [with ...];
|
|
-- subtype T is BT (...);
|
|
--
|
|
-- That is, the base derived type is constrained only if it has no
|
|
-- discriminants. The reason for doing this is that GNAT's semantic model
|
|
-- assumes that a base type with discriminants is unconstrained.
|
|
--
|
|
-- Note that, strictly speaking, the above transformation is not always
|
|
-- correct. Consider for instance the following exercpt from ACVC b34011a:
|
|
--
|
|
-- procedure B34011A is
|
|
-- type REC (D : integer := 0) is record
|
|
-- I : Integer;
|
|
-- end record;
|
|
|
|
-- package P is
|
|
-- type T6 is new Rec;
|
|
-- function F return T6;
|
|
-- end P;
|
|
|
|
-- use P;
|
|
-- package Q6 is
|
|
-- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
|
|
-- end Q6;
|
|
--
|
|
-- The definition of Q6.U is illegal. However transforming Q6.U into
|
|
|
|
-- type BaseU is new T6;
|
|
-- subtype U is BaseU (Q6.F.I)
|
|
|
|
-- turns U into a legal subtype, which is incorrect. To avoid this problem
|
|
-- we always analyze the constraint (in this case (Q6.F.I)) before applying
|
|
-- the transformation described above.
|
|
|
|
-- There is another instance where the above transformation is incorrect.
|
|
-- Consider:
|
|
|
|
-- package Pack is
|
|
-- type Base (D : Integer) is tagged null record;
|
|
-- procedure P (X : Base);
|
|
|
|
-- type Der is new Base (2) with null record;
|
|
-- procedure P (X : Der);
|
|
-- end Pack;
|
|
|
|
-- Then the above transformation turns this into
|
|
|
|
-- type Der_Base is new Base with null record;
|
|
-- -- procedure P (X : Base) is implicitly inherited here
|
|
-- -- as procedure P (X : Der_Base).
|
|
|
|
-- subtype Der is Der_Base (2);
|
|
-- procedure P (X : Der);
|
|
-- -- The overriding of P (X : Der_Base) is illegal since we
|
|
-- -- have a parameter conformance problem.
|
|
|
|
-- To get around this problem, after having semantically processed Der_Base
|
|
-- and the rewritten subtype declaration for Der, we copy Der_Base field
|
|
-- Discriminant_Constraint from Der so that when parameter conformance is
|
|
-- checked when P is overridden, no sematic errors are flagged.
|
|
|
|
-- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS.
|
|
|
|
-- Regardless of the fact that we dealing with a tagged or untagged type
|
|
-- we will transform all derived type declarations of the form
|
|
|
|
-- type R (D1, .., Dn : ...) is [tagged] record ...;
|
|
-- type T is new R [with ...];
|
|
-- into
|
|
-- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
|
|
|
|
-- The reason for such transformation is that it allows us to implement a
|
|
-- very clean form of component inheritance as explained below.
|
|
|
|
-- Note that this transformation is not achieved by direct tree rewriting
|
|
-- and manipulation, but rather by redoing the semantic actions that the
|
|
-- above transformation will entail. This is done directly in routine
|
|
-- Inherit_Components.
|
|
|
|
-- 7. TYPE DERIVATION AND COMPONENT INHERITANCE.
|
|
|
|
-- In both tagged and untagged derived types, regular non discriminant
|
|
-- components are inherited in the derived type from the parent type. In
|
|
-- the absence of discriminants component, inheritance is straightforward
|
|
-- as components can simply be copied from the parent.
|
|
-- If the parent has discriminants, inheriting components constrained with
|
|
-- these discriminants requires caution. Consider the following example:
|
|
|
|
-- type R (D1, D2 : Positive) is [tagged] record
|
|
-- S : String (D1 .. D2);
|
|
-- end record;
|
|
|
|
-- type T1 is new R [with null record];
|
|
-- type T2 (X : positive) is new R (1, X) [with null record];
|
|
|
|
-- As explained in 6. above, T1 is rewritten as
|
|
|
|
-- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
|
|
|
|
-- which makes the treatment for T1 and T2 identical.
|
|
|
|
-- What we want when inheriting S, is that references to D1 and D2 in R are
|
|
-- replaced with references to their correct constraints, ie D1 and D2 in
|
|
-- T1 and 1 and X in T2. So all R's discriminant references are replaced
|
|
-- with either discriminant references in the derived type or expressions.
|
|
-- This replacement is acheived as follows: before inheriting R's
|
|
-- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
|
|
-- created in the scope of T1 (resp. scope of T2) so that discriminants D1
|
|
-- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
|
|
-- For T2, for instance, this has the effect of replacing String (D1 .. D2)
|
|
-- by String (1 .. X).
|
|
|
|
-- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS.
|
|
|
|
-- We explain here the rules governing private type extensions relevant to
|
|
-- type derivation. These rules are explained on the following example:
|
|
|
|
-- type D [(...)] is new A [(...)] with private; <-- partial view
|
|
-- type D [(...)] is new P [(...)] with null record; <-- full view
|
|
|
|
-- Type A is called the ancestor subtype of the private extension.
|
|
-- Type P is the parent type of the full view of the private extension. It
|
|
-- must be A or a type derived from A.
|
|
|
|
-- The rules concerning the discriminants of private type extensions are
|
|
-- [7.3(10-13)]:
|
|
|
|
-- o If a private extension inherits known discriminants from the ancestor
|
|
-- subtype, then the full view shall also inherit its discriminants from
|
|
-- the ancestor subtype and the parent subtype of the full view shall be
|
|
-- constrained if and only if the ancestor subtype is constrained.
|
|
|
|
-- o If a partial view has unknown discriminants, then the full view may
|
|
-- define a definite or an indefinite subtype, with or without
|
|
-- discriminants.
|
|
|
|
-- o If a partial view has neither known nor unknown discriminants, then
|
|
-- the full view shall define a definite subtype.
|
|
|
|
-- o If the ancestor subtype of a private extension has constrained
|
|
-- discrimiants, then the parent subtype of the full view shall impose a
|
|
-- statically matching constraint on those discriminants.
|
|
|
|
-- This means that only the following forms of private extensions are
|
|
-- allowed:
|
|
|
|
-- type D is new A with private; <-- partial view
|
|
-- type D is new P with null record; <-- full view
|
|
|
|
-- If A has no discriminants than P has no discriminants, otherwise P must
|
|
-- inherit A's discriminants.
|
|
|
|
-- type D is new A (...) with private; <-- partial view
|
|
-- type D is new P (:::) with null record; <-- full view
|
|
|
|
-- P must inherit A's discriminants and (...) and (:::) must statically
|
|
-- match.
|
|
|
|
-- subtype A is R (...);
|
|
-- type D is new A with private; <-- partial view
|
|
-- type D is new P with null record; <-- full view
|
|
|
|
-- P must have inherited R's discriminants and must be derived from A or
|
|
-- any of its subtypes.
|
|
|
|
-- type D (..) is new A with private; <-- partial view
|
|
-- type D (..) is new P [(:::)] with null record; <-- full view
|
|
|
|
-- No specific constraints on P's discriminants or constraint (:::).
|
|
-- Note that A can be unconstrained, but the parent subtype P must either
|
|
-- be constrained or (:::) must be present.
|
|
|
|
-- type D (..) is new A [(...)] with private; <-- partial view
|
|
-- type D (..) is new P [(:::)] with null record; <-- full view
|
|
|
|
-- P's constraints on A's discriminants must statically match those
|
|
-- imposed by (...).
|
|
|
|
-- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS.
|
|
|
|
-- The full view of a private extension is handled exactly as described
|
|
-- above. The model chose for the private view of a private extension
|
|
-- is the same for what concerns discriminants (ie they receive the same
|
|
-- treatment as in the tagged case). However, the private view of the
|
|
-- private extension always inherits the components of the parent base,
|
|
-- without replacing any discriminant reference. Strictly speacking this
|
|
-- is incorrect. However, Gigi never uses this view to generate code so
|
|
-- this is a purely semantic issue. In theory, a set of transformations
|
|
-- similar to those given in 5. and 6. above could be applied to private
|
|
-- views of private extensions to have the same model of component
|
|
-- inheritance as for non private extensions. However, this is not done
|
|
-- because it would further complicate private type processing.
|
|
-- Semantically speaking, this leaves us in an uncomfortable
|
|
-- situation. As an example consider:
|
|
|
|
-- package Pack is
|
|
-- type R (D : integer) is tagged record
|
|
-- S : String (1 .. D);
|
|
-- end record;
|
|
-- procedure P (X : R);
|
|
-- type T is new R (1) with private;
|
|
-- private
|
|
-- type T is new R (1) with null record;
|
|
-- end;
|
|
|
|
-- This is transformed into:
|
|
|
|
-- package Pack is
|
|
-- type R (D : integer) is tagged record
|
|
-- S : String (1 .. D);
|
|
-- end record;
|
|
-- procedure P (X : R);
|
|
-- type T is new R (1) with private;
|
|
-- private
|
|
-- type BaseT is new R with null record;
|
|
-- subtype T is BaseT (1);
|
|
-- end;
|
|
|
|
-- (strictly speaking the above is incorrect Ada).
|
|
|
|
-- From the semantic standpoint the private view of private extension T
|
|
-- should be flagged as constrained since one can clearly have
|
|
--
|
|
-- Obj : T;
|
|
--
|
|
-- in a unit withing Pack. However, when deriving subprograms for the
|
|
-- private view of private extension T, T must be seen as unconstrained
|
|
-- since T has discriminants (this is a constraint of the current
|
|
-- subprogram derivation model). Thus, when processing the private view of
|
|
-- a private extension such as T, we first mark T as unconstrained, we
|
|
-- process it, we perform program derivation and just before returning from
|
|
-- Build_Derived_Record_Type we mark T as constrained.
|
|
-- ??? Are there are other unconfortable cases that we will have to
|
|
-- deal with.
|
|
|
|
-- 10. RECORD_TYPE_WITH_PRIVATE complications.
|
|
|
|
-- Types that are derived from a visible record type and have a private
|
|
-- extension present other peculiarities. They behave mostly like private
|
|
-- types, but if they have primitive operations defined, these will not
|
|
-- have the proper signatures for further inheritance, because other
|
|
-- primitive operations will use the implicit base that we define for
|
|
-- private derivations below. This affect subprogram inheritance (see
|
|
-- Derive_Subprograms for details). We also derive the implicit base from
|
|
-- the base type of the full view, so that the implicit base is a record
|
|
-- type and not another private type, This avoids infinite loops.
|
|
|
|
procedure Build_Derived_Record_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Derive_Subps : Boolean := True)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Parent_Base : Entity_Id;
|
|
|
|
Type_Def : Node_Id;
|
|
Indic : Node_Id;
|
|
|
|
Discrim : Entity_Id;
|
|
Last_Discrim : Entity_Id;
|
|
Constrs : Elist_Id;
|
|
Discs : Elist_Id := New_Elmt_List;
|
|
-- An empty Discs list means that there were no constraints in the
|
|
-- subtype indication or that there was an error processing it.
|
|
|
|
Assoc_List : Elist_Id;
|
|
New_Discrs : Elist_Id;
|
|
|
|
New_Base : Entity_Id;
|
|
New_Decl : Node_Id;
|
|
New_Indic : Node_Id;
|
|
|
|
Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
|
|
Discriminant_Specs : constant Boolean
|
|
:= Present (Discriminant_Specifications (N));
|
|
Private_Extension : constant Boolean
|
|
:= (Nkind (N) = N_Private_Extension_Declaration);
|
|
|
|
Constraint_Present : Boolean;
|
|
Inherit_Discrims : Boolean := False;
|
|
|
|
Save_Etype : Entity_Id;
|
|
Save_Discr_Constr : Elist_Id;
|
|
Save_Next_Entity : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Parent_Type) = E_Record_Type_With_Private
|
|
and then Present (Full_View (Parent_Type))
|
|
and then Has_Discriminants (Parent_Type)
|
|
then
|
|
Parent_Base := Base_Type (Full_View (Parent_Type));
|
|
else
|
|
Parent_Base := Base_Type (Parent_Type);
|
|
end if;
|
|
|
|
-- Before we start the previously documented transformations, here is
|
|
-- a little fix for size and alignment of tagged types. Normally when
|
|
-- we derive type D from type P, we copy the size and alignment of P
|
|
-- as the default for D, and in the absence of explicit representation
|
|
-- clauses for D, the size and alignment are indeed the same as the
|
|
-- parent.
|
|
|
|
-- But this is wrong for tagged types, since fields may be added,
|
|
-- and the default size may need to be larger, and the default
|
|
-- alignment may need to be larger.
|
|
|
|
-- We therefore reset the size and alignment fields in the tagged
|
|
-- case. Note that the size and alignment will in any case be at
|
|
-- least as large as the parent type (since the derived type has
|
|
-- a copy of the parent type in the _parent field)
|
|
|
|
if Is_Tagged then
|
|
Init_Size_Align (Derived_Type);
|
|
end if;
|
|
|
|
-- STEP 0a: figure out what kind of derived type declaration we have.
|
|
|
|
if Private_Extension then
|
|
Type_Def := N;
|
|
Set_Ekind (Derived_Type, E_Record_Type_With_Private);
|
|
|
|
else
|
|
Type_Def := Type_Definition (N);
|
|
|
|
-- Ekind (Parent_Base) in not necessarily E_Record_Type since
|
|
-- Parent_Base can be a private type or private extension. However,
|
|
-- for tagged types with an extension the newly added fields are
|
|
-- visible and hence the Derived_Type is always an E_Record_Type.
|
|
-- (except that the parent may have its own private fields).
|
|
-- For untagged types we preserve the Ekind of the Parent_Base.
|
|
|
|
if Present (Record_Extension_Part (Type_Def)) then
|
|
Set_Ekind (Derived_Type, E_Record_Type);
|
|
else
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Base));
|
|
end if;
|
|
end if;
|
|
|
|
-- Indic can either be an N_Identifier if the subtype indication
|
|
-- contains no constraint or an N_Subtype_Indication if the subtype
|
|
-- indication has a constraint.
|
|
|
|
Indic := Subtype_Indication (Type_Def);
|
|
Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
|
|
|
|
if Constraint_Present then
|
|
if not Has_Discriminants (Parent_Base) then
|
|
Error_Msg_N
|
|
("invalid constraint: type has no discriminant",
|
|
Constraint (Indic));
|
|
|
|
Constraint_Present := False;
|
|
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
|
|
|
|
elsif Is_Constrained (Parent_Type) then
|
|
Error_Msg_N
|
|
("invalid constraint: parent type is already constrained",
|
|
Constraint (Indic));
|
|
|
|
Constraint_Present := False;
|
|
Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
|
|
end if;
|
|
end if;
|
|
|
|
-- STEP 0b: If needed, apply transformation given in point 5. above.
|
|
|
|
if not Private_Extension
|
|
and then Has_Discriminants (Parent_Type)
|
|
and then not Discriminant_Specs
|
|
and then (Is_Constrained (Parent_Type) or else Constraint_Present)
|
|
then
|
|
-- First, we must analyze the constraint (see comment in point 5.).
|
|
|
|
if Constraint_Present then
|
|
New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
|
|
|
|
if Has_Discriminants (Derived_Type)
|
|
and then Has_Private_Declaration (Derived_Type)
|
|
and then Present (Discriminant_Constraint (Derived_Type))
|
|
then
|
|
-- Verify that constraints of the full view conform to those
|
|
-- given in partial view.
|
|
|
|
declare
|
|
C1, C2 : Elmt_Id;
|
|
|
|
begin
|
|
C1 := First_Elmt (New_Discrs);
|
|
C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
|
|
|
|
while Present (C1) and then Present (C2) loop
|
|
if not
|
|
Fully_Conformant_Expressions (Node (C1), Node (C2))
|
|
then
|
|
Error_Msg_N (
|
|
"constraint not conformant to previous declaration",
|
|
Node (C1));
|
|
end if;
|
|
Next_Elmt (C1);
|
|
Next_Elmt (C2);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
-- Insert and analyze the declaration for the unconstrained base type
|
|
|
|
New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
|
|
|
|
New_Decl :=
|
|
Make_Full_Type_Declaration (Loc,
|
|
Defining_Identifier => New_Base,
|
|
Type_Definition =>
|
|
Make_Derived_Type_Definition (Loc,
|
|
Abstract_Present => Abstract_Present (Type_Def),
|
|
Subtype_Indication =>
|
|
New_Occurrence_Of (Parent_Base, Loc),
|
|
Record_Extension_Part =>
|
|
Relocate_Node (Record_Extension_Part (Type_Def))));
|
|
|
|
Set_Parent (New_Decl, Parent (N));
|
|
Mark_Rewrite_Insertion (New_Decl);
|
|
Insert_Before (N, New_Decl);
|
|
|
|
-- Note that this call passes False for the Derive_Subps
|
|
-- parameter because subprogram derivation is deferred until
|
|
-- after creating the subtype (see below).
|
|
|
|
Build_Derived_Type
|
|
(New_Decl, Parent_Base, New_Base,
|
|
Is_Completion => True, Derive_Subps => False);
|
|
|
|
-- ??? This needs re-examination to determine whether the
|
|
-- above call can simply be replaced by a call to Analyze.
|
|
|
|
Set_Analyzed (New_Decl);
|
|
|
|
-- Insert and analyze the declaration for the constrained subtype
|
|
|
|
if Constraint_Present then
|
|
New_Indic :=
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
|
|
Constraint => Relocate_Node (Constraint (Indic)));
|
|
|
|
else
|
|
declare
|
|
Expr : Node_Id;
|
|
Constr_List : List_Id := New_List;
|
|
C : Elmt_Id;
|
|
|
|
begin
|
|
C := First_Elmt (Discriminant_Constraint (Parent_Type));
|
|
while Present (C) loop
|
|
Expr := Node (C);
|
|
|
|
-- It is safe here to call New_Copy_Tree since
|
|
-- Force_Evaluation was called on each constraint in
|
|
-- Build_Discriminant_Constraints.
|
|
|
|
Append (New_Copy_Tree (Expr), To => Constr_List);
|
|
|
|
Next_Elmt (C);
|
|
end loop;
|
|
|
|
New_Indic :=
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
|
|
end;
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Derived_Type,
|
|
Subtype_Indication => New_Indic));
|
|
|
|
Analyze (N);
|
|
|
|
-- Derivation of subprograms must be delayed until the
|
|
-- full subtype has been established to ensure proper
|
|
-- overriding of subprograms inherited by full types.
|
|
-- If the derivations occurred as part of the call to
|
|
-- Build_Derived_Type above, then the check for type
|
|
-- conformance would fail because earlier primitive
|
|
-- subprograms could still refer to the full type prior
|
|
-- the change to the new subtype and hence wouldn't
|
|
-- match the new base type created here.
|
|
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
|
|
|
-- For tagged types the Discriminant_Constraint of the new base itype
|
|
-- is inherited from the first subtype so that no subtype conformance
|
|
-- problem arise when the first subtype overrides primitive
|
|
-- operations inherited by the implicit base type.
|
|
|
|
if Is_Tagged then
|
|
Set_Discriminant_Constraint
|
|
(New_Base, Discriminant_Constraint (Derived_Type));
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- If we get here Derived_Type will have no discriminants or it will be
|
|
-- a discriminated unconstrained base type.
|
|
|
|
-- STEP 1a: perform preliminary actions/checks for derived tagged types
|
|
|
|
if Is_Tagged then
|
|
-- The parent type is frozen for non-private extensions (RM 13.14(7))
|
|
|
|
if not Private_Extension then
|
|
Freeze_Before (N, Parent_Type);
|
|
end if;
|
|
|
|
if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
|
|
and then not Is_Generic_Type (Derived_Type)
|
|
then
|
|
if Is_Controlled (Parent_Type) then
|
|
Error_Msg_N
|
|
("controlled type must be declared at the library level",
|
|
Indic);
|
|
else
|
|
Error_Msg_N
|
|
("type extension at deeper accessibility level than parent",
|
|
Indic);
|
|
end if;
|
|
|
|
else
|
|
declare
|
|
GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
|
|
|
|
begin
|
|
if Present (GB)
|
|
and then GB /= Enclosing_Generic_Body (Parent_Base)
|
|
then
|
|
Error_Msg_N
|
|
("parent type must not be outside generic body",
|
|
Indic);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
-- STEP 1b : preliminary cleanup of the full view of private types
|
|
|
|
-- If the type is already marked as having discriminants, then it's the
|
|
-- completion of a private type or private extension and we need to
|
|
-- retain the discriminants from the partial view if the current
|
|
-- declaration has Discriminant_Specifications so that we can verify
|
|
-- conformance. However, we must remove any existing components that
|
|
-- were inherited from the parent (and attached in Copy_Private_To_Full)
|
|
-- because the full type inherits all appropriate components anyway, and
|
|
-- we don't want the partial view's components interfering.
|
|
|
|
if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
|
|
Discrim := First_Discriminant (Derived_Type);
|
|
loop
|
|
Last_Discrim := Discrim;
|
|
Next_Discriminant (Discrim);
|
|
exit when No (Discrim);
|
|
end loop;
|
|
|
|
Set_Last_Entity (Derived_Type, Last_Discrim);
|
|
|
|
-- In all other cases wipe out the list of inherited components (even
|
|
-- inherited discriminants), it will be properly rebuilt here.
|
|
|
|
else
|
|
Set_First_Entity (Derived_Type, Empty);
|
|
Set_Last_Entity (Derived_Type, Empty);
|
|
end if;
|
|
|
|
-- STEP 1c: Initialize some flags for the Derived_Type
|
|
|
|
-- The following flags must be initialized here so that
|
|
-- Process_Discriminants can check that discriminants of tagged types
|
|
-- do not have a default initial value and that access discriminants
|
|
-- are only specified for limited records. For completeness, these
|
|
-- flags are also initialized along with all the other flags below.
|
|
|
|
Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
|
|
Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
|
|
|
|
-- STEP 2a: process discriminants of derived type if any.
|
|
|
|
New_Scope (Derived_Type);
|
|
|
|
if Discriminant_Specs then
|
|
Set_Has_Unknown_Discriminants (Derived_Type, False);
|
|
|
|
-- The following call initializes fields Has_Discriminants and
|
|
-- Discriminant_Constraint, unless we are processing the completion
|
|
-- of a private type declaration.
|
|
|
|
Check_Or_Process_Discriminants (N, Derived_Type);
|
|
|
|
-- For non-tagged types the constraint on the Parent_Type must be
|
|
-- present and is used to rename the discriminants.
|
|
|
|
if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
|
|
Error_Msg_N ("untagged parent must have discriminants", Indic);
|
|
|
|
elsif not Is_Tagged and then not Constraint_Present then
|
|
Error_Msg_N
|
|
("discriminant constraint needed for derived untagged records",
|
|
Indic);
|
|
|
|
-- Otherwise the parent subtype must be constrained unless we have a
|
|
-- private extension.
|
|
|
|
elsif not Constraint_Present
|
|
and then not Private_Extension
|
|
and then not Is_Constrained (Parent_Type)
|
|
then
|
|
Error_Msg_N
|
|
("unconstrained type not allowed in this context", Indic);
|
|
|
|
elsif Constraint_Present then
|
|
-- The following call sets the field Corresponding_Discriminant
|
|
-- for the discriminants in the Derived_Type.
|
|
|
|
Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
|
|
|
|
-- For untagged types all new discriminants must rename
|
|
-- discriminants in the parent. For private extensions new
|
|
-- discriminants cannot rename old ones (implied by [7.3(13)]).
|
|
|
|
Discrim := First_Discriminant (Derived_Type);
|
|
|
|
while Present (Discrim) loop
|
|
if not Is_Tagged
|
|
and then not Present (Corresponding_Discriminant (Discrim))
|
|
then
|
|
Error_Msg_N
|
|
("new discriminants must constrain old ones", Discrim);
|
|
|
|
elsif Private_Extension
|
|
and then Present (Corresponding_Discriminant (Discrim))
|
|
then
|
|
Error_Msg_N
|
|
("Only static constraints allowed for parent"
|
|
& " discriminants in the partial view", Indic);
|
|
|
|
exit;
|
|
end if;
|
|
|
|
-- If a new discriminant is used in the constraint,
|
|
-- then its subtype must be statically compatible
|
|
-- with the parent discriminant's subtype (3.7(15)).
|
|
|
|
if Present (Corresponding_Discriminant (Discrim))
|
|
and then
|
|
not Subtypes_Statically_Compatible
|
|
(Etype (Discrim),
|
|
Etype (Corresponding_Discriminant (Discrim)))
|
|
then
|
|
Error_Msg_N
|
|
("subtype must be compatible with parent discriminant",
|
|
Discrim);
|
|
end if;
|
|
|
|
Next_Discriminant (Discrim);
|
|
end loop;
|
|
end if;
|
|
|
|
-- STEP 2b: No new discriminants, inherit discriminants if any
|
|
|
|
else
|
|
if Private_Extension then
|
|
Set_Has_Unknown_Discriminants
|
|
(Derived_Type, Has_Unknown_Discriminants (Parent_Type)
|
|
or else Unknown_Discriminants_Present (N));
|
|
else
|
|
Set_Has_Unknown_Discriminants
|
|
(Derived_Type, Has_Unknown_Discriminants (Parent_Type));
|
|
end if;
|
|
|
|
if not Has_Unknown_Discriminants (Derived_Type)
|
|
and then Has_Discriminants (Parent_Type)
|
|
then
|
|
Inherit_Discrims := True;
|
|
Set_Has_Discriminants
|
|
(Derived_Type, True);
|
|
Set_Discriminant_Constraint
|
|
(Derived_Type, Discriminant_Constraint (Parent_Base));
|
|
end if;
|
|
|
|
-- The following test is true for private types (remember
|
|
-- transformation 5. is not applied to those) and in an error
|
|
-- situation.
|
|
|
|
if Constraint_Present then
|
|
Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
|
|
end if;
|
|
|
|
-- For now mark a new derived type as cosntrained only if it has no
|
|
-- discriminants. At the end of Build_Derived_Record_Type we properly
|
|
-- set this flag in the case of private extensions. See comments in
|
|
-- point 9. just before body of Build_Derived_Record_Type.
|
|
|
|
Set_Is_Constrained
|
|
(Derived_Type,
|
|
not (Inherit_Discrims
|
|
or else Has_Unknown_Discriminants (Derived_Type)));
|
|
end if;
|
|
|
|
-- STEP 3: initialize fields of derived type.
|
|
|
|
Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
|
|
Set_Girder_Constraint (Derived_Type, No_Elist);
|
|
|
|
-- Fields inherited from the Parent_Type
|
|
|
|
Set_Discard_Names
|
|
(Derived_Type, Einfo.Discard_Names (Parent_Type));
|
|
Set_Has_Specified_Layout
|
|
(Derived_Type, Has_Specified_Layout (Parent_Type));
|
|
Set_Is_Limited_Composite
|
|
(Derived_Type, Is_Limited_Composite (Parent_Type));
|
|
Set_Is_Limited_Record
|
|
(Derived_Type, Is_Limited_Record (Parent_Type));
|
|
Set_Is_Private_Composite
|
|
(Derived_Type, Is_Private_Composite (Parent_Type));
|
|
|
|
-- Fields inherited from the Parent_Base
|
|
|
|
Set_Has_Controlled_Component
|
|
(Derived_Type, Has_Controlled_Component (Parent_Base));
|
|
Set_Has_Non_Standard_Rep
|
|
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
|
|
Set_Has_Primitive_Operations
|
|
(Derived_Type, Has_Primitive_Operations (Parent_Base));
|
|
|
|
-- Direct controlled types do not inherit the Finalize_Storage_Only
|
|
-- flag.
|
|
|
|
if not Is_Controlled (Parent_Type) then
|
|
Set_Finalize_Storage_Only (Derived_Type,
|
|
Finalize_Storage_Only (Parent_Type));
|
|
end if;
|
|
|
|
-- Set fields for private derived types.
|
|
|
|
if Is_Private_Type (Derived_Type) then
|
|
Set_Depends_On_Private (Derived_Type, True);
|
|
Set_Private_Dependents (Derived_Type, New_Elmt_List);
|
|
|
|
-- Inherit fields from non private record types. If this is the
|
|
-- completion of a derivation from a private type, the parent itself
|
|
-- is private, and the attributes come from its full view, which must
|
|
-- be present.
|
|
|
|
else
|
|
if Is_Private_Type (Parent_Base)
|
|
and then not Is_Record_Type (Parent_Base)
|
|
then
|
|
Set_Component_Alignment
|
|
(Derived_Type, Component_Alignment (Full_View (Parent_Base)));
|
|
Set_C_Pass_By_Copy
|
|
(Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
|
|
else
|
|
Set_Component_Alignment
|
|
(Derived_Type, Component_Alignment (Parent_Base));
|
|
|
|
Set_C_Pass_By_Copy
|
|
(Derived_Type, C_Pass_By_Copy (Parent_Base));
|
|
end if;
|
|
end if;
|
|
|
|
-- Set fields for tagged types.
|
|
|
|
if Is_Tagged then
|
|
Set_Primitive_Operations (Derived_Type, New_Elmt_List);
|
|
|
|
-- All tagged types defined in Ada.Finalization are controlled
|
|
|
|
if Chars (Scope (Derived_Type)) = Name_Finalization
|
|
and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
|
|
and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
|
|
then
|
|
Set_Is_Controlled (Derived_Type);
|
|
else
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
|
|
end if;
|
|
|
|
Make_Class_Wide_Type (Derived_Type);
|
|
Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
|
|
|
|
if Has_Discriminants (Derived_Type)
|
|
and then Constraint_Present
|
|
then
|
|
Set_Girder_Constraint
|
|
(Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
|
|
end if;
|
|
|
|
else
|
|
Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
|
|
Set_Has_Non_Standard_Rep
|
|
(Derived_Type, Has_Non_Standard_Rep (Parent_Base));
|
|
end if;
|
|
|
|
-- STEP 4: Inherit components from the parent base and constrain them.
|
|
-- Apply the second transformation described in point 6. above.
|
|
|
|
if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
|
|
or else not Has_Discriminants (Parent_Type)
|
|
or else not Is_Constrained (Parent_Type)
|
|
then
|
|
Constrs := Discs;
|
|
else
|
|
Constrs := Discriminant_Constraint (Parent_Type);
|
|
end if;
|
|
|
|
Assoc_List := Inherit_Components (N,
|
|
Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
|
|
|
|
-- STEP 5a: Copy the parent record declaration for untagged types
|
|
|
|
if not Is_Tagged then
|
|
|
|
-- Discriminant_Constraint (Derived_Type) has been properly
|
|
-- constructed. Save it and temporarily set it to Empty because we do
|
|
-- not want the call to New_Copy_Tree below to mess this list.
|
|
|
|
if Has_Discriminants (Derived_Type) then
|
|
Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
|
|
Set_Discriminant_Constraint (Derived_Type, No_Elist);
|
|
else
|
|
Save_Discr_Constr := No_Elist;
|
|
end if;
|
|
|
|
-- Save the Etype field of Derived_Type. It is correctly set now, but
|
|
-- the call to New_Copy tree may remap it to point to itself, which
|
|
-- is not what we want. Ditto for the Next_Entity field.
|
|
|
|
Save_Etype := Etype (Derived_Type);
|
|
Save_Next_Entity := Next_Entity (Derived_Type);
|
|
|
|
-- Assoc_List maps all girder discriminants in the Parent_Base to
|
|
-- girder discriminants in the Derived_Type. It is fundamental that
|
|
-- no types or itypes with discriminants other than the girder
|
|
-- discriminants appear in the entities declared inside
|
|
-- Derived_Type. Gigi won't like it.
|
|
|
|
New_Decl :=
|
|
New_Copy_Tree
|
|
(Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
|
|
|
|
-- Restore the fields saved prior to the New_Copy_Tree call
|
|
-- and compute the girder constraint.
|
|
|
|
Set_Etype (Derived_Type, Save_Etype);
|
|
Set_Next_Entity (Derived_Type, Save_Next_Entity);
|
|
|
|
if Has_Discriminants (Derived_Type) then
|
|
Set_Discriminant_Constraint
|
|
(Derived_Type, Save_Discr_Constr);
|
|
Set_Girder_Constraint
|
|
(Derived_Type, Expand_To_Girder_Constraint (Parent_Base, Discs));
|
|
end if;
|
|
|
|
-- Insert the new derived type declaration
|
|
|
|
Rewrite (N, New_Decl);
|
|
|
|
-- STEP 5b: Complete the processing for record extensions in generics
|
|
|
|
-- There is no completion for record extensions declared in the
|
|
-- parameter part of a generic, so we need to complete processing for
|
|
-- these generic record extensions here. The call to
|
|
-- Record_Type_Definition will change the Ekind of the components
|
|
-- from E_Void to E_Component.
|
|
|
|
elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
|
|
Record_Type_Definition (Empty, Derived_Type);
|
|
|
|
-- STEP 5c: Process the record extension for non private tagged types.
|
|
|
|
elsif not Private_Extension then
|
|
-- Add the _parent field in the derived type.
|
|
|
|
Expand_Derived_Record (Derived_Type, Type_Def);
|
|
|
|
-- Analyze the record extension
|
|
|
|
Record_Type_Definition
|
|
(Record_Extension_Part (Type_Def), Derived_Type);
|
|
end if;
|
|
|
|
End_Scope;
|
|
|
|
if Etype (Derived_Type) = Any_Type then
|
|
return;
|
|
end if;
|
|
|
|
-- Set delayed freeze and then derive subprograms, we need to do
|
|
-- this in this order so that derived subprograms inherit the
|
|
-- derived freeze if necessary.
|
|
|
|
Set_Has_Delayed_Freeze (Derived_Type);
|
|
if Derive_Subps then
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
|
end if;
|
|
|
|
-- If we have a private extension which defines a constrained derived
|
|
-- type mark as constrained here after we have derived subprograms. See
|
|
-- comment on point 9. just above the body of Build_Derived_Record_Type.
|
|
|
|
if Private_Extension and then Inherit_Discrims then
|
|
if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
|
|
Set_Is_Constrained (Derived_Type, True);
|
|
Set_Discriminant_Constraint (Derived_Type, Discs);
|
|
|
|
elsif Is_Constrained (Parent_Type) then
|
|
Set_Is_Constrained
|
|
(Derived_Type, True);
|
|
Set_Discriminant_Constraint
|
|
(Derived_Type, Discriminant_Constraint (Parent_Type));
|
|
end if;
|
|
end if;
|
|
|
|
end Build_Derived_Record_Type;
|
|
|
|
------------------------
|
|
-- Build_Derived_Type --
|
|
------------------------
|
|
|
|
procedure Build_Derived_Type
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Is_Completion : Boolean;
|
|
Derive_Subps : Boolean := True)
|
|
is
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
|
|
|
begin
|
|
-- Set common attributes
|
|
|
|
Set_Scope (Derived_Type, Current_Scope);
|
|
|
|
Set_Ekind (Derived_Type, Ekind (Parent_Base));
|
|
Set_Etype (Derived_Type, Parent_Base);
|
|
Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
|
|
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
|
Set_Convention (Derived_Type, Convention (Parent_Type));
|
|
Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
|
|
Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
|
|
|
|
case Ekind (Parent_Type) is
|
|
when Numeric_Kind =>
|
|
Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
|
|
|
|
when Array_Kind =>
|
|
Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
|
|
|
|
when E_Record_Type
|
|
| E_Record_Subtype
|
|
| Class_Wide_Kind =>
|
|
Build_Derived_Record_Type
|
|
(N, Parent_Type, Derived_Type, Derive_Subps);
|
|
return;
|
|
|
|
when Enumeration_Kind =>
|
|
Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
|
|
|
|
when Access_Kind =>
|
|
Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
|
|
|
|
when Incomplete_Or_Private_Kind =>
|
|
Build_Derived_Private_Type
|
|
(N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
|
|
|
|
-- For discriminated types, the derivation includes deriving
|
|
-- primitive operations. For others it is done below.
|
|
|
|
if Is_Tagged_Type (Parent_Type)
|
|
or else Has_Discriminants (Parent_Type)
|
|
or else (Present (Full_View (Parent_Type))
|
|
and then Has_Discriminants (Full_View (Parent_Type)))
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
when Concurrent_Kind =>
|
|
Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
|
|
|
|
when others =>
|
|
raise Program_Error;
|
|
end case;
|
|
|
|
if Etype (Derived_Type) = Any_Type then
|
|
return;
|
|
end if;
|
|
|
|
-- Set delayed freeze and then derive subprograms, we need to do
|
|
-- this in this order so that derived subprograms inherit the
|
|
-- derived freeze if necessary.
|
|
|
|
Set_Has_Delayed_Freeze (Derived_Type);
|
|
if Derive_Subps then
|
|
Derive_Subprograms (Parent_Type, Derived_Type);
|
|
end if;
|
|
|
|
Set_Has_Primitive_Operations
|
|
(Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
|
|
end Build_Derived_Type;
|
|
|
|
-----------------------
|
|
-- Build_Discriminal --
|
|
-----------------------
|
|
|
|
procedure Build_Discriminal (Discrim : Entity_Id) is
|
|
D_Minal : Entity_Id;
|
|
CR_Disc : Entity_Id;
|
|
|
|
begin
|
|
-- A discriminal has the same names as the discriminant.
|
|
|
|
D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
|
|
|
|
Set_Ekind (D_Minal, E_In_Parameter);
|
|
Set_Mechanism (D_Minal, Default_Mechanism);
|
|
Set_Etype (D_Minal, Etype (Discrim));
|
|
|
|
Set_Discriminal (Discrim, D_Minal);
|
|
Set_Discriminal_Link (D_Minal, Discrim);
|
|
|
|
-- For task types, build at once the discriminants of the corresponding
|
|
-- record, which are needed if discriminants are used in entry defaults
|
|
-- and in family bounds.
|
|
|
|
if Is_Concurrent_Type (Current_Scope)
|
|
or else Is_Limited_Type (Current_Scope)
|
|
then
|
|
CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
|
|
|
|
Set_Ekind (CR_Disc, E_In_Parameter);
|
|
Set_Mechanism (CR_Disc, Default_Mechanism);
|
|
Set_Etype (CR_Disc, Etype (Discrim));
|
|
Set_CR_Discriminant (Discrim, CR_Disc);
|
|
end if;
|
|
end Build_Discriminal;
|
|
|
|
------------------------------------
|
|
-- Build_Discriminant_Constraints --
|
|
------------------------------------
|
|
|
|
function Build_Discriminant_Constraints
|
|
(T : Entity_Id;
|
|
Def : Node_Id;
|
|
Derived_Def : Boolean := False)
|
|
return Elist_Id
|
|
is
|
|
C : constant Node_Id := Constraint (Def);
|
|
Nb_Discr : constant Nat := Number_Discriminants (T);
|
|
Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
|
|
-- Saves the expression corresponding to a given discriminant in T.
|
|
|
|
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
|
|
-- Return the Position number within array Discr_Expr of a discriminant
|
|
-- D within the discriminant list of the discriminated type T.
|
|
|
|
------------------
|
|
-- Pos_Of_Discr --
|
|
------------------
|
|
|
|
function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
|
|
Disc : Entity_Id;
|
|
|
|
begin
|
|
Disc := First_Discriminant (T);
|
|
for J in Discr_Expr'Range loop
|
|
if Disc = D then
|
|
return J;
|
|
end if;
|
|
|
|
Next_Discriminant (Disc);
|
|
end loop;
|
|
|
|
-- Note: Since this function is called on discriminants that are
|
|
-- known to belong to the discriminated type, falling through the
|
|
-- loop with no match signals an internal compiler error.
|
|
|
|
raise Program_Error;
|
|
end Pos_Of_Discr;
|
|
|
|
-- Variables local to Build_Discriminant_Constraints
|
|
|
|
Discr : Entity_Id;
|
|
E : Entity_Id;
|
|
Elist : Elist_Id := New_Elmt_List;
|
|
|
|
Constr : Node_Id;
|
|
Expr : Node_Id;
|
|
Id : Node_Id;
|
|
Position : Nat;
|
|
Found : Boolean;
|
|
|
|
Discrim_Present : Boolean := False;
|
|
|
|
-- Start of processing for Build_Discriminant_Constraints
|
|
|
|
begin
|
|
-- The following loop will process positional associations only.
|
|
-- For a positional association, the (single) discriminant is
|
|
-- implicitly specified by position, in textual order (RM 3.7.2).
|
|
|
|
Discr := First_Discriminant (T);
|
|
Constr := First (Constraints (C));
|
|
|
|
for D in Discr_Expr'Range loop
|
|
exit when Nkind (Constr) = N_Discriminant_Association;
|
|
|
|
if No (Constr) then
|
|
Error_Msg_N ("too few discriminants given in constraint", C);
|
|
return New_Elmt_List;
|
|
|
|
elsif Nkind (Constr) = N_Range
|
|
or else (Nkind (Constr) = N_Attribute_Reference
|
|
and then
|
|
Attribute_Name (Constr) = Name_Range)
|
|
then
|
|
Error_Msg_N
|
|
("a range is not a valid discriminant constraint", Constr);
|
|
Discr_Expr (D) := Error;
|
|
|
|
else
|
|
Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
|
|
Discr_Expr (D) := Constr;
|
|
end if;
|
|
|
|
Next_Discriminant (Discr);
|
|
Next (Constr);
|
|
end loop;
|
|
|
|
if No (Discr) and then Present (Constr) then
|
|
Error_Msg_N ("too many discriminants given in constraint", Constr);
|
|
return New_Elmt_List;
|
|
end if;
|
|
|
|
-- Named associations can be given in any order, but if both positional
|
|
-- and named associations are used in the same discriminant constraint,
|
|
-- then positional associations must occur first, at their normal
|
|
-- position. Hence once a named association is used, the rest of the
|
|
-- discriminant constraint must use only named associations.
|
|
|
|
while Present (Constr) loop
|
|
|
|
-- Positional association forbidden after a named association.
|
|
|
|
if Nkind (Constr) /= N_Discriminant_Association then
|
|
Error_Msg_N ("positional association follows named one", Constr);
|
|
return New_Elmt_List;
|
|
|
|
-- Otherwise it is a named association
|
|
|
|
else
|
|
-- E records the type of the discriminants in the named
|
|
-- association. All the discriminants specified in the same name
|
|
-- association must have the same type.
|
|
|
|
E := Empty;
|
|
|
|
-- Search the list of discriminants in T to see if the simple name
|
|
-- given in the constraint matches any of them.
|
|
|
|
Id := First (Selector_Names (Constr));
|
|
while Present (Id) loop
|
|
Found := False;
|
|
|
|
-- If Original_Discriminant is present, we are processing a
|
|
-- generic instantiation and this is an instance node. We need
|
|
-- to find the name of the corresponding discriminant in the
|
|
-- actual record type T and not the name of the discriminant in
|
|
-- the generic formal. Example:
|
|
--
|
|
-- generic
|
|
-- type G (D : int) is private;
|
|
-- package P is
|
|
-- subtype W is G (D => 1);
|
|
-- end package;
|
|
-- type Rec (X : int) is record ... end record;
|
|
-- package Q is new P (G => Rec);
|
|
--
|
|
-- At the point of the instantiation, formal type G is Rec
|
|
-- and therefore when reanalyzing "subtype W is G (D => 1);"
|
|
-- which really looks like "subtype W is Rec (D => 1);" at
|
|
-- the point of instantiation, we want to find the discriminant
|
|
-- that corresponds to D in Rec, ie X.
|
|
|
|
if Present (Original_Discriminant (Id)) then
|
|
Discr := Find_Corresponding_Discriminant (Id, T);
|
|
Found := True;
|
|
|
|
else
|
|
Discr := First_Discriminant (T);
|
|
while Present (Discr) loop
|
|
if Chars (Discr) = Chars (Id) then
|
|
Found := True;
|
|
exit;
|
|
end if;
|
|
|
|
Next_Discriminant (Discr);
|
|
end loop;
|
|
|
|
if not Found then
|
|
Error_Msg_N ("& does not match any discriminant", Id);
|
|
return New_Elmt_List;
|
|
|
|
-- The following is only useful for the benefit of generic
|
|
-- instances but it does not interfere with other
|
|
-- processing for the non-generic case so we do it in all
|
|
-- cases (for generics this statement is executed when
|
|
-- processing the generic definition, see comment at the
|
|
-- begining of this if statement).
|
|
|
|
else
|
|
Set_Original_Discriminant (Id, Discr);
|
|
end if;
|
|
end if;
|
|
|
|
Position := Pos_Of_Discr (T, Discr);
|
|
|
|
if Present (Discr_Expr (Position)) then
|
|
Error_Msg_N ("duplicate constraint for discriminant&", Id);
|
|
|
|
else
|
|
-- Each discriminant specified in the same named association
|
|
-- must be associated with a separate copy of the
|
|
-- corresponding expression.
|
|
|
|
if Present (Next (Id)) then
|
|
Expr := New_Copy_Tree (Expression (Constr));
|
|
Set_Parent (Expr, Parent (Expression (Constr)));
|
|
else
|
|
Expr := Expression (Constr);
|
|
end if;
|
|
|
|
Discr_Expr (Position) := Expr;
|
|
Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
|
|
end if;
|
|
|
|
-- A discriminant association with more than one discriminant
|
|
-- name is only allowed if the named discriminants are all of
|
|
-- the same type (RM 3.7.1(8)).
|
|
|
|
if E = Empty then
|
|
E := Base_Type (Etype (Discr));
|
|
|
|
elsif Base_Type (Etype (Discr)) /= E then
|
|
Error_Msg_N
|
|
("all discriminants in an association " &
|
|
"must have the same type", Id);
|
|
end if;
|
|
|
|
Next (Id);
|
|
end loop;
|
|
end if;
|
|
|
|
Next (Constr);
|
|
end loop;
|
|
|
|
-- A discriminant constraint must provide exactly one value for each
|
|
-- discriminant of the type (RM 3.7.1(8)).
|
|
|
|
for J in Discr_Expr'Range loop
|
|
if No (Discr_Expr (J)) then
|
|
Error_Msg_N ("too few discriminants given in constraint", C);
|
|
return New_Elmt_List;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Determine if there are discriminant expressions in the constraint.
|
|
|
|
for J in Discr_Expr'Range loop
|
|
if Denotes_Discriminant (Discr_Expr (J)) then
|
|
Discrim_Present := True;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Build an element list consisting of the expressions given in the
|
|
-- discriminant constraint and apply the appropriate range
|
|
-- checks. The list is constructed after resolving any named
|
|
-- discriminant associations and therefore the expressions appear in
|
|
-- the textual order of the discriminants.
|
|
|
|
Discr := First_Discriminant (T);
|
|
for J in Discr_Expr'Range loop
|
|
if Discr_Expr (J) /= Error then
|
|
|
|
Append_Elmt (Discr_Expr (J), Elist);
|
|
|
|
-- If any of the discriminant constraints is given by a
|
|
-- discriminant and we are in a derived type declaration we
|
|
-- have a discriminant renaming. Establish link between new
|
|
-- and old discriminant.
|
|
|
|
if Denotes_Discriminant (Discr_Expr (J)) then
|
|
if Derived_Def then
|
|
Set_Corresponding_Discriminant
|
|
(Entity (Discr_Expr (J)), Discr);
|
|
end if;
|
|
|
|
-- Force the evaluation of non-discriminant expressions.
|
|
-- If we have found a discriminant in the constraint 3.4(26)
|
|
-- and 3.8(18) demand that no range checks are performed are
|
|
-- after evaluation. In all other cases perform a range check.
|
|
|
|
else
|
|
if not Discrim_Present then
|
|
Apply_Range_Check (Discr_Expr (J), Etype (Discr));
|
|
end if;
|
|
|
|
Force_Evaluation (Discr_Expr (J));
|
|
end if;
|
|
|
|
-- Check that the designated type of an access discriminant's
|
|
-- expression is not a class-wide type unless the discriminant's
|
|
-- designated type is also class-wide.
|
|
|
|
if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
|
|
and then not Is_Class_Wide_Type
|
|
(Designated_Type (Etype (Discr)))
|
|
and then Etype (Discr_Expr (J)) /= Any_Type
|
|
and then Is_Class_Wide_Type
|
|
(Designated_Type (Etype (Discr_Expr (J))))
|
|
then
|
|
Wrong_Type (Discr_Expr (J), Etype (Discr));
|
|
end if;
|
|
end if;
|
|
|
|
Next_Discriminant (Discr);
|
|
end loop;
|
|
|
|
return Elist;
|
|
end Build_Discriminant_Constraints;
|
|
|
|
---------------------------------
|
|
-- Build_Discriminated_Subtype --
|
|
---------------------------------
|
|
|
|
procedure Build_Discriminated_Subtype
|
|
(T : Entity_Id;
|
|
Def_Id : Entity_Id;
|
|
Elist : Elist_Id;
|
|
Related_Nod : Node_Id;
|
|
For_Access : Boolean := False)
|
|
is
|
|
Has_Discrs : constant Boolean := Has_Discriminants (T);
|
|
Constrained : constant Boolean
|
|
:= (Has_Discrs and then not Is_Empty_Elmt_List (Elist))
|
|
or else Is_Constrained (T);
|
|
|
|
begin
|
|
if Ekind (T) = E_Record_Type then
|
|
if For_Access then
|
|
Set_Ekind (Def_Id, E_Private_Subtype);
|
|
Set_Is_For_Access_Subtype (Def_Id, True);
|
|
else
|
|
Set_Ekind (Def_Id, E_Record_Subtype);
|
|
end if;
|
|
|
|
elsif Ekind (T) = E_Task_Type then
|
|
Set_Ekind (Def_Id, E_Task_Subtype);
|
|
|
|
elsif Ekind (T) = E_Protected_Type then
|
|
Set_Ekind (Def_Id, E_Protected_Subtype);
|
|
|
|
elsif Is_Private_Type (T) then
|
|
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
|
|
|
|
elsif Is_Class_Wide_Type (T) then
|
|
Set_Ekind (Def_Id, E_Class_Wide_Subtype);
|
|
|
|
else
|
|
-- Incomplete type. Attach subtype to list of dependents, to be
|
|
-- completed with full view of parent type.
|
|
|
|
Set_Ekind (Def_Id, Ekind (T));
|
|
Append_Elmt (Def_Id, Private_Dependents (T));
|
|
end if;
|
|
|
|
Set_Etype (Def_Id, T);
|
|
Init_Size_Align (Def_Id);
|
|
Set_Has_Discriminants (Def_Id, Has_Discrs);
|
|
Set_Is_Constrained (Def_Id, Constrained);
|
|
|
|
Set_First_Entity (Def_Id, First_Entity (T));
|
|
Set_Last_Entity (Def_Id, Last_Entity (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
|
|
if Is_Tagged_Type (T) then
|
|
Set_Is_Tagged_Type (Def_Id);
|
|
Make_Class_Wide_Type (Def_Id);
|
|
end if;
|
|
|
|
Set_Girder_Constraint (Def_Id, No_Elist);
|
|
|
|
if Has_Discrs then
|
|
Set_Discriminant_Constraint (Def_Id, Elist);
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Def_Id);
|
|
end if;
|
|
|
|
if Is_Tagged_Type (T) then
|
|
Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
|
|
Set_Is_Abstract (Def_Id, Is_Abstract (T));
|
|
end if;
|
|
|
|
-- Subtypes introduced by component declarations do not need to be
|
|
-- marked as delayed, and do not get freeze nodes, because the semantics
|
|
-- verifies that the parents of the subtypes are frozen before the
|
|
-- enclosing record is frozen.
|
|
|
|
if not Is_Type (Scope (Def_Id)) then
|
|
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
|
|
|
|
if Is_Private_Type (T)
|
|
and then Present (Full_View (T))
|
|
then
|
|
Conditional_Delay (Def_Id, Full_View (T));
|
|
else
|
|
Conditional_Delay (Def_Id, T);
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Record_Type (T) then
|
|
Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
|
|
|
|
if Has_Discrs
|
|
and then not Is_Empty_Elmt_List (Elist)
|
|
and then not For_Access
|
|
then
|
|
Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
|
|
elsif not For_Access then
|
|
Set_Cloned_Subtype (Def_Id, T);
|
|
end if;
|
|
end if;
|
|
|
|
end Build_Discriminated_Subtype;
|
|
|
|
------------------------
|
|
-- Build_Scalar_Bound --
|
|
------------------------
|
|
|
|
function Build_Scalar_Bound
|
|
(Bound : Node_Id;
|
|
Par_T : Entity_Id;
|
|
Der_T : Entity_Id;
|
|
Loc : Source_Ptr)
|
|
return Node_Id
|
|
is
|
|
New_Bound : Entity_Id;
|
|
|
|
begin
|
|
-- Note: not clear why this is needed, how can the original bound
|
|
-- be unanalyzed at this point? and if it is, what business do we
|
|
-- have messing around with it? and why is the base type of the
|
|
-- parent type the right type for the resolution. It probably is
|
|
-- not! It is OK for the new bound we are creating, but not for
|
|
-- the old one??? Still if it never happens, no problem!
|
|
|
|
Analyze_And_Resolve (Bound, Base_Type (Par_T));
|
|
|
|
if Nkind (Bound) = N_Integer_Literal
|
|
or else Nkind (Bound) = N_Real_Literal
|
|
then
|
|
New_Bound := New_Copy (Bound);
|
|
Set_Etype (New_Bound, Der_T);
|
|
Set_Analyzed (New_Bound);
|
|
|
|
elsif Is_Entity_Name (Bound) then
|
|
New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
|
|
|
|
-- The following is almost certainly wrong. What business do we have
|
|
-- relocating a node (Bound) that is presumably still attached to
|
|
-- the tree elsewhere???
|
|
|
|
else
|
|
New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
|
|
end if;
|
|
|
|
Set_Etype (New_Bound, Der_T);
|
|
return New_Bound;
|
|
end Build_Scalar_Bound;
|
|
|
|
--------------------------------
|
|
-- Build_Underlying_Full_View --
|
|
--------------------------------
|
|
|
|
procedure Build_Underlying_Full_View
|
|
(N : Node_Id;
|
|
Typ : Entity_Id;
|
|
Par : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Subt : constant Entity_Id :=
|
|
Make_Defining_Identifier
|
|
(Loc, New_External_Name (Chars (Typ), 'S'));
|
|
|
|
Constr : Node_Id;
|
|
Indic : Node_Id;
|
|
C : Node_Id;
|
|
Id : Node_Id;
|
|
|
|
begin
|
|
if Nkind (N) = N_Full_Type_Declaration then
|
|
Constr := Constraint (Subtype_Indication (Type_Definition (N)));
|
|
|
|
-- ??? ??? is this assert right, I assume so otherwise Constr
|
|
-- would not be defined below (this used to be an elsif)
|
|
|
|
else pragma Assert (Nkind (N) = N_Subtype_Declaration);
|
|
Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
|
|
end if;
|
|
|
|
-- If the constraint has discriminant associations, the discriminant
|
|
-- entity is already set, but it denotes a discriminant of the new
|
|
-- type, not the original parent, so it must be found anew.
|
|
|
|
C := First (Constraints (Constr));
|
|
|
|
while Present (C) loop
|
|
|
|
if Nkind (C) = N_Discriminant_Association then
|
|
Id := First (Selector_Names (C));
|
|
|
|
while Present (Id) loop
|
|
Set_Original_Discriminant (Id, Empty);
|
|
Next (Id);
|
|
end loop;
|
|
end if;
|
|
|
|
Next (C);
|
|
end loop;
|
|
|
|
Indic := Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Subt,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (Par, Loc),
|
|
Constraint => New_Copy_Tree (Constr)));
|
|
|
|
Insert_Before (N, Indic);
|
|
Analyze (Indic);
|
|
Set_Underlying_Full_View (Typ, Full_View (Subt));
|
|
end Build_Underlying_Full_View;
|
|
|
|
-------------------------------
|
|
-- Check_Abstract_Overriding --
|
|
-------------------------------
|
|
|
|
procedure Check_Abstract_Overriding (T : Entity_Id) is
|
|
Op_List : Elist_Id;
|
|
Elmt : Elmt_Id;
|
|
Subp : Entity_Id;
|
|
Type_Def : Node_Id;
|
|
|
|
begin
|
|
Op_List := Primitive_Operations (T);
|
|
|
|
-- Loop to check primitive operations
|
|
|
|
Elmt := First_Elmt (Op_List);
|
|
while Present (Elmt) loop
|
|
Subp := Node (Elmt);
|
|
|
|
-- Special exception, do not complain about failure to
|
|
-- override _Input and _Output, since we always provide
|
|
-- automatic overridings for these subprograms.
|
|
|
|
if Is_Abstract (Subp)
|
|
and then Chars (Subp) /= Name_uInput
|
|
and then Chars (Subp) /= Name_uOutput
|
|
and then not Is_Abstract (T)
|
|
then
|
|
if Present (Alias (Subp)) then
|
|
-- Only perform the check for a derived subprogram when
|
|
-- the type has an explicit record extension. This avoids
|
|
-- incorrectly flagging abstract subprograms for the case
|
|
-- of a type without an extension derived from a formal type
|
|
-- with a tagged actual (can occur within a private part).
|
|
|
|
Type_Def := Type_Definition (Parent (T));
|
|
if Nkind (Type_Def) = N_Derived_Type_Definition
|
|
and then Present (Record_Extension_Part (Type_Def))
|
|
then
|
|
Error_Msg_NE
|
|
("type must be declared abstract or & overridden",
|
|
T, Subp);
|
|
end if;
|
|
else
|
|
Error_Msg_NE
|
|
("abstract subprogram not allowed for type&",
|
|
Subp, T);
|
|
Error_Msg_NE
|
|
("nonabstract type has abstract subprogram&",
|
|
T, Subp);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end Check_Abstract_Overriding;
|
|
|
|
------------------------------------------------
|
|
-- Check_Access_Discriminant_Requires_Limited --
|
|
------------------------------------------------
|
|
|
|
procedure Check_Access_Discriminant_Requires_Limited
|
|
(D : Node_Id;
|
|
Loc : Node_Id)
|
|
is
|
|
begin
|
|
-- A discriminant_specification for an access discriminant
|
|
-- shall appear only in the declaration for a task or protected
|
|
-- type, or for a type with the reserved word 'limited' in
|
|
-- its definition or in one of its ancestors. (RM 3.7(10))
|
|
|
|
if Nkind (Discriminant_Type (D)) = N_Access_Definition
|
|
and then not Is_Concurrent_Type (Current_Scope)
|
|
and then not Is_Concurrent_Record_Type (Current_Scope)
|
|
and then not Is_Limited_Record (Current_Scope)
|
|
and then Ekind (Current_Scope) /= E_Limited_Private_Type
|
|
then
|
|
Error_Msg_N
|
|
("access discriminants allowed only for limited types", Loc);
|
|
end if;
|
|
end Check_Access_Discriminant_Requires_Limited;
|
|
|
|
-----------------------------------
|
|
-- Check_Aliased_Component_Types --
|
|
-----------------------------------
|
|
|
|
procedure Check_Aliased_Component_Types (T : Entity_Id) is
|
|
C : Entity_Id;
|
|
|
|
begin
|
|
-- ??? Also need to check components of record extensions,
|
|
-- but not components of protected types (which are always
|
|
-- limited).
|
|
|
|
if not Is_Limited_Type (T) then
|
|
if Ekind (T) = E_Record_Type then
|
|
C := First_Component (T);
|
|
while Present (C) loop
|
|
if Is_Aliased (C)
|
|
and then Has_Discriminants (Etype (C))
|
|
and then not Is_Constrained (Etype (C))
|
|
and then not In_Instance
|
|
then
|
|
Error_Msg_N
|
|
("aliased component must be constrained ('R'M 3.6(11))",
|
|
C);
|
|
end if;
|
|
|
|
Next_Component (C);
|
|
end loop;
|
|
|
|
elsif Ekind (T) = E_Array_Type then
|
|
if Has_Aliased_Components (T)
|
|
and then Has_Discriminants (Component_Type (T))
|
|
and then not Is_Constrained (Component_Type (T))
|
|
and then not In_Instance
|
|
then
|
|
Error_Msg_N
|
|
("aliased component type must be constrained ('R'M 3.6(11))",
|
|
T);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Check_Aliased_Component_Types;
|
|
|
|
----------------------
|
|
-- Check_Completion --
|
|
----------------------
|
|
|
|
procedure Check_Completion (Body_Id : Node_Id := Empty) is
|
|
E : Entity_Id;
|
|
|
|
procedure Post_Error;
|
|
-- Post error message for lack of completion for entity E
|
|
|
|
procedure Post_Error is
|
|
begin
|
|
if not Comes_From_Source (E) then
|
|
|
|
if (Ekind (E) = E_Task_Type
|
|
or else Ekind (E) = E_Protected_Type)
|
|
then
|
|
-- It may be an anonymous protected type created for a
|
|
-- single variable. Post error on variable, if present.
|
|
|
|
declare
|
|
Var : Entity_Id;
|
|
|
|
begin
|
|
Var := First_Entity (Current_Scope);
|
|
|
|
while Present (Var) loop
|
|
exit when Etype (Var) = E
|
|
and then Comes_From_Source (Var);
|
|
|
|
Next_Entity (Var);
|
|
end loop;
|
|
|
|
if Present (Var) then
|
|
E := Var;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
|
|
-- If a generated entity has no completion, then either previous
|
|
-- semantic errors have disabled the expansion phase, or else
|
|
-- we had missing subunits, or else we are compiling without expan-
|
|
-- sion, or else something is very wrong.
|
|
|
|
if not Comes_From_Source (E) then
|
|
pragma Assert
|
|
(Errors_Detected > 0
|
|
or else Subunits_Missing
|
|
or else not Expander_Active);
|
|
return;
|
|
|
|
-- Here for source entity
|
|
|
|
else
|
|
-- Here if no body to post the error message, so we post the error
|
|
-- on the declaration that has no completion. This is not really
|
|
-- the right place to post it, think about this later ???
|
|
|
|
if No (Body_Id) then
|
|
if Is_Type (E) then
|
|
Error_Msg_NE
|
|
("missing full declaration for }", Parent (E), E);
|
|
else
|
|
Error_Msg_NE
|
|
("missing body for &", Parent (E), E);
|
|
end if;
|
|
|
|
-- Package body has no completion for a declaration that appears
|
|
-- in the corresponding spec. Post error on the body, with a
|
|
-- reference to the non-completed declaration.
|
|
|
|
else
|
|
Error_Msg_Sloc := Sloc (E);
|
|
|
|
if Is_Type (E) then
|
|
Error_Msg_NE
|
|
("missing full declaration for }!", Body_Id, E);
|
|
|
|
elsif Is_Overloadable (E)
|
|
and then Current_Entity_In_Scope (E) /= E
|
|
then
|
|
-- It may be that the completion is mistyped and appears
|
|
-- as a distinct overloading of the entity.
|
|
|
|
declare
|
|
Candidate : Entity_Id := Current_Entity_In_Scope (E);
|
|
Decl : Node_Id := Unit_Declaration_Node (Candidate);
|
|
|
|
begin
|
|
if Is_Overloadable (Candidate)
|
|
and then Ekind (Candidate) = Ekind (E)
|
|
and then Nkind (Decl) = N_Subprogram_Body
|
|
and then Acts_As_Spec (Decl)
|
|
then
|
|
Check_Type_Conformant (Candidate, E);
|
|
|
|
else
|
|
Error_Msg_NE ("missing body for & declared#!",
|
|
Body_Id, E);
|
|
end if;
|
|
end;
|
|
else
|
|
Error_Msg_NE ("missing body for & declared#!",
|
|
Body_Id, E);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Post_Error;
|
|
|
|
-- Start processing for Check_Completion
|
|
|
|
begin
|
|
E := First_Entity (Current_Scope);
|
|
while Present (E) loop
|
|
if Is_Intrinsic_Subprogram (E) then
|
|
null;
|
|
|
|
-- The following situation requires special handling: a child
|
|
-- unit that appears in the context clause of the body of its
|
|
-- parent:
|
|
|
|
-- procedure Parent.Child (...);
|
|
--
|
|
-- with Parent.Child;
|
|
-- package body Parent is
|
|
|
|
-- Here Parent.Child appears as a local entity, but should not
|
|
-- be flagged as requiring completion, because it is a
|
|
-- compilation unit.
|
|
|
|
elsif Ekind (E) = E_Function
|
|
or else Ekind (E) = E_Procedure
|
|
or else Ekind (E) = E_Generic_Function
|
|
or else Ekind (E) = E_Generic_Procedure
|
|
then
|
|
if not Has_Completion (E)
|
|
and then not Is_Abstract (E)
|
|
and then Nkind (Parent (Unit_Declaration_Node (E))) /=
|
|
N_Compilation_Unit
|
|
and then Chars (E) /= Name_uSize
|
|
then
|
|
Post_Error;
|
|
end if;
|
|
|
|
elsif Is_Entry (E) then
|
|
if not Has_Completion (E) and then
|
|
(Ekind (Scope (E)) = E_Protected_Object
|
|
or else Ekind (Scope (E)) = E_Protected_Type)
|
|
then
|
|
Post_Error;
|
|
end if;
|
|
|
|
elsif Is_Package (E) then
|
|
if Unit_Requires_Body (E) then
|
|
if not Has_Completion (E)
|
|
and then Nkind (Parent (Unit_Declaration_Node (E))) /=
|
|
N_Compilation_Unit
|
|
then
|
|
Post_Error;
|
|
end if;
|
|
|
|
elsif not Is_Child_Unit (E) then
|
|
May_Need_Implicit_Body (E);
|
|
end if;
|
|
|
|
elsif Ekind (E) = E_Incomplete_Type
|
|
and then No (Underlying_Type (E))
|
|
then
|
|
Post_Error;
|
|
|
|
elsif (Ekind (E) = E_Task_Type or else
|
|
Ekind (E) = E_Protected_Type)
|
|
and then not Has_Completion (E)
|
|
then
|
|
Post_Error;
|
|
|
|
elsif Ekind (E) = E_Constant
|
|
and then Ekind (Etype (E)) = E_Task_Type
|
|
and then not Has_Completion (Etype (E))
|
|
then
|
|
Post_Error;
|
|
|
|
elsif Ekind (E) = E_Protected_Object
|
|
and then not Has_Completion (Etype (E))
|
|
then
|
|
Post_Error;
|
|
|
|
elsif Ekind (E) = E_Record_Type then
|
|
if Is_Tagged_Type (E) then
|
|
Check_Abstract_Overriding (E);
|
|
end if;
|
|
|
|
Check_Aliased_Component_Types (E);
|
|
|
|
elsif Ekind (E) = E_Array_Type then
|
|
Check_Aliased_Component_Types (E);
|
|
|
|
end if;
|
|
|
|
Next_Entity (E);
|
|
end loop;
|
|
end Check_Completion;
|
|
|
|
----------------------------
|
|
-- Check_Delta_Expression --
|
|
----------------------------
|
|
|
|
procedure Check_Delta_Expression (E : Node_Id) is
|
|
begin
|
|
if not (Is_Real_Type (Etype (E))) then
|
|
Wrong_Type (E, Any_Real);
|
|
|
|
elsif not Is_OK_Static_Expression (E) then
|
|
Error_Msg_N ("non-static expression used for delta value", E);
|
|
|
|
elsif not UR_Is_Positive (Expr_Value_R (E)) then
|
|
Error_Msg_N ("delta expression must be positive", E);
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- If any of above errors occurred, then replace the incorrect
|
|
-- expression by the real 0.1, which should prevent further errors.
|
|
|
|
Rewrite (E,
|
|
Make_Real_Literal (Sloc (E), Ureal_Tenth));
|
|
Analyze_And_Resolve (E, Standard_Float);
|
|
|
|
end Check_Delta_Expression;
|
|
|
|
-----------------------------
|
|
-- Check_Digits_Expression --
|
|
-----------------------------
|
|
|
|
procedure Check_Digits_Expression (E : Node_Id) is
|
|
begin
|
|
if not (Is_Integer_Type (Etype (E))) then
|
|
Wrong_Type (E, Any_Integer);
|
|
|
|
elsif not Is_OK_Static_Expression (E) then
|
|
Error_Msg_N ("non-static expression used for digits value", E);
|
|
|
|
elsif Expr_Value (E) <= 0 then
|
|
Error_Msg_N ("digits value must be greater than zero", E);
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
-- If any of above errors occurred, then replace the incorrect
|
|
-- expression by the integer 1, which should prevent further errors.
|
|
|
|
Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
|
|
Analyze_And_Resolve (E, Standard_Integer);
|
|
|
|
end Check_Digits_Expression;
|
|
|
|
----------------------
|
|
-- Check_Incomplete --
|
|
----------------------
|
|
|
|
procedure Check_Incomplete (T : Entity_Id) is
|
|
begin
|
|
if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
|
|
Error_Msg_N ("invalid use of type before its full declaration", T);
|
|
end if;
|
|
end Check_Incomplete;
|
|
|
|
--------------------------
|
|
-- Check_Initialization --
|
|
--------------------------
|
|
|
|
procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
|
|
begin
|
|
if (Is_Limited_Type (T)
|
|
or else Is_Limited_Composite (T))
|
|
and then not In_Instance
|
|
then
|
|
Error_Msg_N
|
|
("cannot initialize entities of limited type", Exp);
|
|
end if;
|
|
end Check_Initialization;
|
|
|
|
------------------------------------
|
|
-- Check_Or_Process_Discriminants --
|
|
------------------------------------
|
|
|
|
-- If an incomplete or private type declaration was already given for
|
|
-- the type, the discriminants may have already been processed if they
|
|
-- were present on the incomplete declaration. In this case a full
|
|
-- conformance check is performed otherwise just process them.
|
|
|
|
procedure Check_Or_Process_Discriminants (N : Node_Id; T : Entity_Id) is
|
|
begin
|
|
if Has_Discriminants (T) then
|
|
|
|
-- Make the discriminants visible to component declarations.
|
|
|
|
declare
|
|
D : Entity_Id := First_Discriminant (T);
|
|
Prev : Entity_Id;
|
|
|
|
begin
|
|
while Present (D) loop
|
|
Prev := Current_Entity (D);
|
|
Set_Current_Entity (D);
|
|
Set_Is_Immediately_Visible (D);
|
|
Set_Homonym (D, Prev);
|
|
|
|
-- This restriction gets applied to the full type here; it
|
|
-- has already been applied earlier to the partial view
|
|
|
|
Check_Access_Discriminant_Requires_Limited (Parent (D), N);
|
|
|
|
Next_Discriminant (D);
|
|
end loop;
|
|
end;
|
|
|
|
elsif Present (Discriminant_Specifications (N)) then
|
|
Process_Discriminants (N);
|
|
end if;
|
|
end Check_Or_Process_Discriminants;
|
|
|
|
----------------------
|
|
-- Check_Real_Bound --
|
|
----------------------
|
|
|
|
procedure Check_Real_Bound (Bound : Node_Id) is
|
|
begin
|
|
if not Is_Real_Type (Etype (Bound)) then
|
|
Error_Msg_N
|
|
("bound in real type definition must be of real type", Bound);
|
|
|
|
elsif not Is_OK_Static_Expression (Bound) then
|
|
Error_Msg_N
|
|
("non-static expression used for real type bound", Bound);
|
|
|
|
else
|
|
return;
|
|
end if;
|
|
|
|
Rewrite
|
|
(Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
|
|
Analyze (Bound);
|
|
Resolve (Bound, Standard_Float);
|
|
end Check_Real_Bound;
|
|
|
|
------------------------------
|
|
-- Complete_Private_Subtype --
|
|
------------------------------
|
|
|
|
procedure Complete_Private_Subtype
|
|
(Priv : Entity_Id;
|
|
Full : Entity_Id;
|
|
Full_Base : Entity_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
Save_Next_Entity : Entity_Id;
|
|
Save_Homonym : Entity_Id;
|
|
|
|
begin
|
|
-- Set semantic attributes for (implicit) private subtype completion.
|
|
-- If the full type has no discriminants, then it is a copy of the full
|
|
-- view of the base. Otherwise, it is a subtype of the base with a
|
|
-- possible discriminant constraint. Save and restore the original
|
|
-- Next_Entity field of full to ensure that the calls to Copy_Node
|
|
-- do not corrupt the entity chain.
|
|
|
|
-- Note that the type of the full view is the same entity as the
|
|
-- type of the partial view. In this fashion, the subtype has
|
|
-- access to the correct view of the parent.
|
|
|
|
Save_Next_Entity := Next_Entity (Full);
|
|
Save_Homonym := Homonym (Priv);
|
|
|
|
case Ekind (Full_Base) is
|
|
|
|
when E_Record_Type |
|
|
E_Record_Subtype |
|
|
Class_Wide_Kind |
|
|
Private_Kind |
|
|
Task_Kind |
|
|
Protected_Kind =>
|
|
Copy_Node (Priv, Full);
|
|
|
|
Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
|
|
Set_First_Entity (Full, First_Entity (Full_Base));
|
|
Set_Last_Entity (Full, Last_Entity (Full_Base));
|
|
|
|
when others =>
|
|
Copy_Node (Full_Base, Full);
|
|
Set_Chars (Full, Chars (Priv));
|
|
Conditional_Delay (Full, Priv);
|
|
Set_Sloc (Full, Sloc (Priv));
|
|
|
|
end case;
|
|
|
|
Set_Next_Entity (Full, Save_Next_Entity);
|
|
Set_Homonym (Full, Save_Homonym);
|
|
Set_Associated_Node_For_Itype (Full, Related_Nod);
|
|
|
|
-- Set common attributes for all subtypes.
|
|
|
|
Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
|
|
|
|
-- The Etype of the full view is inconsistent. Gigi needs to see the
|
|
-- structural full view, which is what the current scheme gives:
|
|
-- the Etype of the full view is the etype of the full base. However,
|
|
-- if the full base is a derived type, the full view then looks like
|
|
-- a subtype of the parent, not a subtype of the full base. If instead
|
|
-- we write:
|
|
|
|
-- Set_Etype (Full, Full_Base);
|
|
|
|
-- then we get inconsistencies in the front-end (confusion between
|
|
-- views). Several outstanding bugs are related to this.
|
|
|
|
Set_Is_First_Subtype (Full, False);
|
|
Set_Scope (Full, Scope (Priv));
|
|
Set_Size_Info (Full, Full_Base);
|
|
Set_RM_Size (Full, RM_Size (Full_Base));
|
|
Set_Is_Itype (Full);
|
|
|
|
-- A subtype of a private-type-without-discriminants, whose full-view
|
|
-- has discriminants with default expressions, is not constrained!
|
|
|
|
if not Has_Discriminants (Priv) then
|
|
Set_Is_Constrained (Full, Is_Constrained (Full_Base));
|
|
end if;
|
|
|
|
Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
|
|
Set_Depends_On_Private (Full, Has_Private_Component (Full));
|
|
|
|
-- Freeze the private subtype entity if its parent is delayed,
|
|
-- and not already frozen. We skip this processing if the type
|
|
-- is an anonymous subtype of a record component, or is the
|
|
-- corresponding record of a protected type, since ???
|
|
|
|
if not Is_Type (Scope (Full)) then
|
|
Set_Has_Delayed_Freeze (Full,
|
|
Has_Delayed_Freeze (Full_Base)
|
|
and then (not Is_Frozen (Full_Base)));
|
|
end if;
|
|
|
|
Set_Freeze_Node (Full, Empty);
|
|
Set_Is_Frozen (Full, False);
|
|
Set_Full_View (Priv, Full);
|
|
|
|
if Has_Discriminants (Full) then
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (Full);
|
|
Set_Girder_Constraint (Priv, Girder_Constraint (Full));
|
|
if Has_Unknown_Discriminants (Full) then
|
|
Set_Discriminant_Constraint (Full, No_Elist);
|
|
end if;
|
|
end if;
|
|
|
|
if Ekind (Full_Base) = E_Record_Type
|
|
and then Has_Discriminants (Full_Base)
|
|
and then Has_Discriminants (Priv) -- might not, if errors
|
|
and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
|
|
then
|
|
Create_Constrained_Components
|
|
(Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
|
|
|
|
-- If the full base is itself derived from private, build a congruent
|
|
-- subtype of its underlying type, for use by the back end.
|
|
|
|
elsif Ekind (Full_Base) in Private_Kind
|
|
and then Is_Derived_Type (Full_Base)
|
|
and then Has_Discriminants (Full_Base)
|
|
and then
|
|
Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
|
|
then
|
|
Build_Underlying_Full_View (Parent (Priv), Full, Etype (Full_Base));
|
|
|
|
elsif Is_Record_Type (Full_Base) then
|
|
|
|
-- Show Full is simply a renaming of Full_Base.
|
|
|
|
Set_Cloned_Subtype (Full, Full_Base);
|
|
end if;
|
|
|
|
-- It is usafe to share to bounds of a scalar type, because the
|
|
-- Itype is elaborated on demand, and if a bound is non-static
|
|
-- then different orders of elaboration in different units will
|
|
-- lead to different external symbols.
|
|
|
|
if Is_Scalar_Type (Full_Base) then
|
|
Set_Scalar_Range (Full,
|
|
Make_Range (Sloc (Related_Nod),
|
|
Low_Bound => Duplicate_Subexpr (Type_Low_Bound (Full_Base)),
|
|
High_Bound => Duplicate_Subexpr (Type_High_Bound (Full_Base))));
|
|
end if;
|
|
|
|
-- ??? It seems that a lot of fields are missing that should be
|
|
-- copied from Full_Base to Full. Here are some that are introduced
|
|
-- in a non-disruptive way but a cleanup is necessary.
|
|
|
|
if Is_Tagged_Type (Full_Base) then
|
|
Set_Is_Tagged_Type (Full);
|
|
Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
|
|
|
|
elsif Is_Concurrent_Type (Full_Base) then
|
|
|
|
if Has_Discriminants (Full)
|
|
and then Present (Corresponding_Record_Type (Full_Base))
|
|
then
|
|
Set_Corresponding_Record_Type (Full,
|
|
Constrain_Corresponding_Record
|
|
(Full, Corresponding_Record_Type (Full_Base),
|
|
Related_Nod, Full_Base));
|
|
|
|
else
|
|
Set_Corresponding_Record_Type (Full,
|
|
Corresponding_Record_Type (Full_Base));
|
|
end if;
|
|
end if;
|
|
|
|
end Complete_Private_Subtype;
|
|
|
|
----------------------------
|
|
-- Constant_Redeclaration --
|
|
----------------------------
|
|
|
|
procedure Constant_Redeclaration
|
|
(Id : Entity_Id;
|
|
N : Node_Id;
|
|
T : out Entity_Id)
|
|
is
|
|
Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
|
|
Obj_Def : constant Node_Id := Object_Definition (N);
|
|
New_T : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Parent (Prev)) = N_Object_Declaration then
|
|
if Nkind (Object_Definition
|
|
(Parent (Prev))) = N_Subtype_Indication
|
|
then
|
|
-- Find type of new declaration. The constraints of the two
|
|
-- views must match statically, but there is no point in
|
|
-- creating an itype for the full view.
|
|
|
|
if Nkind (Obj_Def) = N_Subtype_Indication then
|
|
Find_Type (Subtype_Mark (Obj_Def));
|
|
New_T := Entity (Subtype_Mark (Obj_Def));
|
|
|
|
else
|
|
Find_Type (Obj_Def);
|
|
New_T := Entity (Obj_Def);
|
|
end if;
|
|
|
|
T := Etype (Prev);
|
|
|
|
else
|
|
-- The full view may impose a constraint, even if the partial
|
|
-- view does not, so construct the subtype.
|
|
|
|
New_T := Find_Type_Of_Object (Obj_Def, N);
|
|
T := New_T;
|
|
end if;
|
|
|
|
else
|
|
-- Current declaration is illegal, diagnosed below in Enter_Name.
|
|
|
|
T := Empty;
|
|
New_T := Any_Type;
|
|
end if;
|
|
|
|
-- If previous full declaration exists, or if a homograph is present,
|
|
-- let Enter_Name handle it, either with an error, or with the removal
|
|
-- of an overridden implicit subprogram.
|
|
|
|
if Ekind (Prev) /= E_Constant
|
|
or else Present (Expression (Parent (Prev)))
|
|
then
|
|
Enter_Name (Id);
|
|
|
|
-- Verify that types of both declarations match.
|
|
|
|
elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
|
|
Error_Msg_Sloc := Sloc (Prev);
|
|
Error_Msg_N ("type does not match declaration#", N);
|
|
Set_Full_View (Prev, Id);
|
|
Set_Etype (Id, Any_Type);
|
|
|
|
-- If so, process the full constant declaration
|
|
|
|
else
|
|
Set_Full_View (Prev, Id);
|
|
Set_Is_Public (Id, Is_Public (Prev));
|
|
Set_Is_Internal (Id);
|
|
Append_Entity (Id, Current_Scope);
|
|
|
|
-- Check ALIASED present if present before (RM 7.4(7))
|
|
|
|
if Is_Aliased (Prev)
|
|
and then not Aliased_Present (N)
|
|
then
|
|
Error_Msg_Sloc := Sloc (Prev);
|
|
Error_Msg_N ("ALIASED required (see declaration#)", N);
|
|
end if;
|
|
|
|
-- Check that placement is in private part
|
|
|
|
if Ekind (Current_Scope) = E_Package
|
|
and then not In_Private_Part (Current_Scope)
|
|
then
|
|
Error_Msg_Sloc := Sloc (Prev);
|
|
Error_Msg_N ("full constant for declaration#"
|
|
& " must be in private part", N);
|
|
end if;
|
|
end if;
|
|
end Constant_Redeclaration;
|
|
|
|
----------------------
|
|
-- Constrain_Access --
|
|
----------------------
|
|
|
|
procedure Constrain_Access
|
|
(Def_Id : in out Entity_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
Desig_Type : constant Entity_Id := Designated_Type (T);
|
|
Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
|
|
Constraint_OK : Boolean := True;
|
|
|
|
begin
|
|
if Is_Array_Type (Desig_Type) then
|
|
Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
|
|
|
|
elsif (Is_Record_Type (Desig_Type)
|
|
or else Is_Incomplete_Or_Private_Type (Desig_Type))
|
|
and then not Is_Constrained (Desig_Type)
|
|
then
|
|
-- ??? The following code is a temporary kludge to ignore
|
|
-- discriminant constraint on access type if
|
|
-- it is constraining the current record. Avoid creating the
|
|
-- implicit subtype of the record we are currently compiling
|
|
-- since right now, we cannot handle these.
|
|
-- For now, just return the access type itself.
|
|
|
|
if Desig_Type = Current_Scope
|
|
and then No (Def_Id)
|
|
then
|
|
Set_Ekind (Desig_Subtype, E_Record_Subtype);
|
|
Def_Id := Entity (Subtype_Mark (S));
|
|
|
|
-- This call added to ensure that the constraint is
|
|
-- analyzed (needed for a B test). Note that we
|
|
-- still return early from this procedure to avoid
|
|
-- recursive processing. ???
|
|
|
|
Constrain_Discriminated_Type
|
|
(Desig_Subtype, S, Related_Nod, For_Access => True);
|
|
|
|
return;
|
|
end if;
|
|
|
|
Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
|
|
For_Access => True);
|
|
|
|
elsif (Is_Task_Type (Desig_Type)
|
|
or else Is_Protected_Type (Desig_Type))
|
|
and then not Is_Constrained (Desig_Type)
|
|
then
|
|
Constrain_Concurrent
|
|
(Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
|
|
|
|
else
|
|
Error_Msg_N ("invalid constraint on access type", S);
|
|
Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
|
|
Constraint_OK := False;
|
|
end if;
|
|
|
|
if No (Def_Id) then
|
|
Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
|
|
else
|
|
Set_Ekind (Def_Id, E_Access_Subtype);
|
|
end if;
|
|
|
|
if Constraint_OK then
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
|
|
if Is_Private_Type (Desig_Type) then
|
|
Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
|
|
end if;
|
|
else
|
|
Set_Etype (Def_Id, Any_Type);
|
|
end if;
|
|
|
|
Set_Size_Info (Def_Id, T);
|
|
Set_Is_Constrained (Def_Id, Constraint_OK);
|
|
Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
|
Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
|
|
|
|
-- Itypes created for constrained record components do not receive
|
|
-- a freeze node, they are elaborated when first seen.
|
|
|
|
if not Is_Record_Type (Current_Scope) then
|
|
Conditional_Delay (Def_Id, T);
|
|
end if;
|
|
end Constrain_Access;
|
|
|
|
---------------------
|
|
-- Constrain_Array --
|
|
---------------------
|
|
|
|
procedure Constrain_Array
|
|
(Def_Id : in out Entity_Id;
|
|
SI : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character)
|
|
is
|
|
C : constant Node_Id := Constraint (SI);
|
|
Number_Of_Constraints : Nat := 0;
|
|
Index : Node_Id;
|
|
S, T : Entity_Id;
|
|
Constraint_OK : Boolean := True;
|
|
|
|
begin
|
|
T := Entity (Subtype_Mark (SI));
|
|
|
|
if Ekind (T) in Access_Kind then
|
|
T := Designated_Type (T);
|
|
end if;
|
|
|
|
-- If an index constraint follows a subtype mark in a subtype indication
|
|
-- then the type or subtype denoted by the subtype mark must not already
|
|
-- impose an index constraint. The subtype mark must denote either an
|
|
-- unconstrained array type or an access type whose designated type
|
|
-- is such an array type... (RM 3.6.1)
|
|
|
|
if Is_Constrained (T) then
|
|
Error_Msg_N
|
|
("array type is already constrained", Subtype_Mark (SI));
|
|
Constraint_OK := False;
|
|
|
|
else
|
|
S := First (Constraints (C));
|
|
|
|
while Present (S) loop
|
|
Number_Of_Constraints := Number_Of_Constraints + 1;
|
|
Next (S);
|
|
end loop;
|
|
|
|
-- In either case, the index constraint must provide a discrete
|
|
-- range for each index of the array type and the type of each
|
|
-- discrete range must be the same as that of the corresponding
|
|
-- index. (RM 3.6.1)
|
|
|
|
if Number_Of_Constraints /= Number_Dimensions (T) then
|
|
Error_Msg_NE ("incorrect number of index constraints for }", C, T);
|
|
Constraint_OK := False;
|
|
|
|
else
|
|
S := First (Constraints (C));
|
|
Index := First_Index (T);
|
|
Analyze (Index);
|
|
|
|
-- Apply constraints to each index type
|
|
|
|
for J in 1 .. Number_Of_Constraints loop
|
|
Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
|
|
Next (Index);
|
|
Next (S);
|
|
end loop;
|
|
|
|
end if;
|
|
end if;
|
|
|
|
if No (Def_Id) then
|
|
Def_Id :=
|
|
Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
|
|
else
|
|
Set_Ekind (Def_Id, E_Array_Subtype);
|
|
end if;
|
|
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
|
|
if Constraint_OK then
|
|
Set_First_Index (Def_Id, First (Constraints (C)));
|
|
end if;
|
|
|
|
Set_Component_Type (Def_Id, Component_Type (T));
|
|
Set_Is_Constrained (Def_Id, True);
|
|
Set_Is_Aliased (Def_Id, Is_Aliased (T));
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
|
|
|
Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
|
|
Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
|
|
|
|
-- If the subtype is not that of a record component, build a freeze
|
|
-- node if parent still needs one.
|
|
|
|
-- If the subtype is not that of a record component, make sure
|
|
-- that the Depends_On_Private status is set (explanation ???)
|
|
-- and also that a conditional delay is set.
|
|
|
|
if not Is_Type (Scope (Def_Id)) then
|
|
Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
|
|
Conditional_Delay (Def_Id, T);
|
|
end if;
|
|
|
|
end Constrain_Array;
|
|
|
|
------------------------------
|
|
-- Constrain_Component_Type --
|
|
------------------------------
|
|
|
|
function Constrain_Component_Type
|
|
(Compon_Type : Entity_Id;
|
|
Constrained_Typ : Entity_Id;
|
|
Related_Node : Node_Id;
|
|
Typ : Entity_Id;
|
|
Constraints : Elist_Id)
|
|
return Entity_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Constrained_Typ);
|
|
|
|
function Build_Constrained_Array_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id;
|
|
-- If Old_Type is an array type, one of whose indices is
|
|
-- constrained by a discriminant, build an Itype whose constraint
|
|
-- replaces the discriminant with its value in the constraint.
|
|
|
|
function Build_Constrained_Discriminated_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id;
|
|
-- Ditto for record components.
|
|
|
|
function Build_Constrained_Access_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id;
|
|
-- Ditto for access types. Makes use of previous two functions, to
|
|
-- constrain designated type.
|
|
|
|
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
|
|
-- T is an array or discriminated type, C is a list of constraints
|
|
-- that apply to T. This routine builds the constrained subtype.
|
|
|
|
function Is_Discriminant (Expr : Node_Id) return Boolean;
|
|
-- Returns True if Expr is a discriminant.
|
|
|
|
function Get_Value (Discrim : Entity_Id) return Node_Id;
|
|
-- Find the value of discriminant Discrim in Constraint.
|
|
|
|
-----------------------------------
|
|
-- Build_Constrained_Access_Type --
|
|
-----------------------------------
|
|
|
|
function Build_Constrained_Access_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id
|
|
is
|
|
Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
|
|
Itype : Entity_Id;
|
|
Desig_Subtype : Entity_Id;
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
-- if the original access type was not embedded in the enclosing
|
|
-- type definition, there is no need to produce a new access
|
|
-- subtype. In fact every access type with an explicit constraint
|
|
-- generates an itype whose scope is the enclosing record.
|
|
|
|
if not Is_Type (Scope (Old_Type)) then
|
|
return Old_Type;
|
|
|
|
elsif Is_Array_Type (Desig_Type) then
|
|
Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
|
|
|
|
elsif Has_Discriminants (Desig_Type) then
|
|
|
|
-- This may be an access type to an enclosing record type for
|
|
-- which we are constructing the constrained components. Return
|
|
-- the enclosing record subtype. This is not always correct,
|
|
-- but avoids infinite recursion. ???
|
|
|
|
Desig_Subtype := Any_Type;
|
|
|
|
for J in reverse 0 .. Scope_Stack.Last loop
|
|
Scop := Scope_Stack.Table (J).Entity;
|
|
|
|
if Is_Type (Scop)
|
|
and then Base_Type (Scop) = Base_Type (Desig_Type)
|
|
then
|
|
Desig_Subtype := Scop;
|
|
end if;
|
|
|
|
exit when not Is_Type (Scop);
|
|
end loop;
|
|
|
|
if Desig_Subtype = Any_Type then
|
|
Desig_Subtype :=
|
|
Build_Constrained_Discriminated_Type (Desig_Type);
|
|
end if;
|
|
|
|
else
|
|
return Old_Type;
|
|
end if;
|
|
|
|
if Desig_Subtype /= Desig_Type then
|
|
-- The Related_Node better be here or else we won't be able
|
|
-- to attach new itypes to a node in the tree.
|
|
|
|
pragma Assert (Present (Related_Node));
|
|
|
|
Itype := Create_Itype (E_Access_Subtype, Related_Node);
|
|
|
|
Set_Etype (Itype, Base_Type (Old_Type));
|
|
Set_Size_Info (Itype, (Old_Type));
|
|
Set_Directly_Designated_Type (Itype, Desig_Subtype);
|
|
Set_Depends_On_Private (Itype, Has_Private_Component
|
|
(Old_Type));
|
|
Set_Is_Access_Constant (Itype, Is_Access_Constant
|
|
(Old_Type));
|
|
|
|
-- The new itype needs freezing when it depends on a not frozen
|
|
-- type and the enclosing subtype needs freezing.
|
|
|
|
if Has_Delayed_Freeze (Constrained_Typ)
|
|
and then not Is_Frozen (Constrained_Typ)
|
|
then
|
|
Conditional_Delay (Itype, Base_Type (Old_Type));
|
|
end if;
|
|
|
|
return Itype;
|
|
|
|
else
|
|
return Old_Type;
|
|
end if;
|
|
end Build_Constrained_Access_Type;
|
|
|
|
----------------------------------
|
|
-- Build_Constrained_Array_Type --
|
|
----------------------------------
|
|
|
|
function Build_Constrained_Array_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id
|
|
is
|
|
Lo_Expr : Node_Id;
|
|
Hi_Expr : Node_Id;
|
|
Old_Index : Node_Id;
|
|
Range_Node : Node_Id;
|
|
Constr_List : List_Id;
|
|
|
|
Need_To_Create_Itype : Boolean := False;
|
|
|
|
begin
|
|
Old_Index := First_Index (Old_Type);
|
|
while Present (Old_Index) loop
|
|
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
|
|
|
|
if Is_Discriminant (Lo_Expr)
|
|
or else Is_Discriminant (Hi_Expr)
|
|
then
|
|
Need_To_Create_Itype := True;
|
|
end if;
|
|
|
|
Next_Index (Old_Index);
|
|
end loop;
|
|
|
|
if Need_To_Create_Itype then
|
|
Constr_List := New_List;
|
|
|
|
Old_Index := First_Index (Old_Type);
|
|
while Present (Old_Index) loop
|
|
Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
|
|
|
|
if Is_Discriminant (Lo_Expr) then
|
|
Lo_Expr := Get_Value (Lo_Expr);
|
|
end if;
|
|
|
|
if Is_Discriminant (Hi_Expr) then
|
|
Hi_Expr := Get_Value (Hi_Expr);
|
|
end if;
|
|
|
|
Range_Node :=
|
|
Make_Range
|
|
(Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
|
|
|
|
Append (Range_Node, To => Constr_List);
|
|
|
|
Next_Index (Old_Index);
|
|
end loop;
|
|
|
|
return Build_Subtype (Old_Type, Constr_List);
|
|
|
|
else
|
|
return Old_Type;
|
|
end if;
|
|
end Build_Constrained_Array_Type;
|
|
|
|
------------------------------------------
|
|
-- Build_Constrained_Discriminated_Type --
|
|
------------------------------------------
|
|
|
|
function Build_Constrained_Discriminated_Type
|
|
(Old_Type : Entity_Id)
|
|
return Entity_Id
|
|
is
|
|
Expr : Node_Id;
|
|
Constr_List : List_Id;
|
|
Old_Constraint : Elmt_Id;
|
|
|
|
Need_To_Create_Itype : Boolean := False;
|
|
|
|
begin
|
|
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
|
|
while Present (Old_Constraint) loop
|
|
Expr := Node (Old_Constraint);
|
|
|
|
if Is_Discriminant (Expr) then
|
|
Need_To_Create_Itype := True;
|
|
end if;
|
|
|
|
Next_Elmt (Old_Constraint);
|
|
end loop;
|
|
|
|
if Need_To_Create_Itype then
|
|
Constr_List := New_List;
|
|
|
|
Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
|
|
while Present (Old_Constraint) loop
|
|
Expr := Node (Old_Constraint);
|
|
|
|
if Is_Discriminant (Expr) then
|
|
Expr := Get_Value (Expr);
|
|
end if;
|
|
|
|
Append (New_Copy_Tree (Expr), To => Constr_List);
|
|
|
|
Next_Elmt (Old_Constraint);
|
|
end loop;
|
|
|
|
return Build_Subtype (Old_Type, Constr_List);
|
|
|
|
else
|
|
return Old_Type;
|
|
end if;
|
|
end Build_Constrained_Discriminated_Type;
|
|
|
|
-------------------
|
|
-- Build_Subtype --
|
|
-------------------
|
|
|
|
function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
|
|
Indic : Node_Id;
|
|
Subtyp_Decl : Node_Id;
|
|
Def_Id : Entity_Id;
|
|
Btyp : Entity_Id := Base_Type (T);
|
|
|
|
begin
|
|
-- The Related_Node better be here or else we won't be able
|
|
-- to attach new itypes to a node in the tree.
|
|
|
|
pragma Assert (Present (Related_Node));
|
|
|
|
-- If the view of the component's type is incomplete or private
|
|
-- with unknown discriminants, then the constraint must be applied
|
|
-- to the full type.
|
|
|
|
if Has_Unknown_Discriminants (Btyp)
|
|
and then Present (Underlying_Type (Btyp))
|
|
then
|
|
Btyp := Underlying_Type (Btyp);
|
|
end if;
|
|
|
|
Indic :=
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
|
|
Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
|
|
|
|
Def_Id := Create_Itype (Ekind (T), Related_Node);
|
|
|
|
Subtyp_Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Subtype_Indication => Indic);
|
|
Set_Parent (Subtyp_Decl, Parent (Related_Node));
|
|
|
|
-- Itypes must be analyzed with checks off (see itypes.ads).
|
|
|
|
Analyze (Subtyp_Decl, Suppress => All_Checks);
|
|
|
|
return Def_Id;
|
|
end Build_Subtype;
|
|
|
|
---------------
|
|
-- Get_Value --
|
|
---------------
|
|
|
|
function Get_Value (Discrim : Entity_Id) return Node_Id is
|
|
D : Entity_Id := First_Discriminant (Typ);
|
|
E : Elmt_Id := First_Elmt (Constraints);
|
|
|
|
begin
|
|
while Present (D) loop
|
|
|
|
-- If we are constraining the subtype of a derived tagged type,
|
|
-- recover the discriminant of the parent, which appears in
|
|
-- the constraint of an inherited component.
|
|
|
|
if D = Entity (Discrim)
|
|
or else Corresponding_Discriminant (D) = Entity (Discrim)
|
|
then
|
|
return Node (E);
|
|
end if;
|
|
|
|
Next_Discriminant (D);
|
|
Next_Elmt (E);
|
|
end loop;
|
|
|
|
-- Something is wrong if we did not find the value
|
|
|
|
raise Program_Error;
|
|
end Get_Value;
|
|
|
|
---------------------
|
|
-- Is_Discriminant --
|
|
---------------------
|
|
|
|
function Is_Discriminant (Expr : Node_Id) return Boolean is
|
|
Discrim_Scope : Entity_Id;
|
|
|
|
begin
|
|
if Denotes_Discriminant (Expr) then
|
|
Discrim_Scope := Scope (Entity (Expr));
|
|
|
|
-- Either we have a reference to one of Typ's discriminants,
|
|
|
|
pragma Assert (Discrim_Scope = Typ
|
|
|
|
-- or to the discriminants of the parent type, in the case
|
|
-- of a derivation of a tagged type with variants.
|
|
|
|
or else Discrim_Scope = Etype (Typ)
|
|
or else Full_View (Discrim_Scope) = Etype (Typ)
|
|
|
|
-- or same as above for the case where the discriminants
|
|
-- were declared in Typ's private view.
|
|
|
|
or else (Is_Private_Type (Discrim_Scope)
|
|
and then Chars (Discrim_Scope) = Chars (Typ))
|
|
|
|
-- or else we are deriving from the full view and the
|
|
-- discriminant is declared in the private entity.
|
|
|
|
or else (Is_Private_Type (Typ)
|
|
and then Chars (Discrim_Scope) = Chars (Typ))
|
|
|
|
-- or we have a class-wide type, in which case make sure the
|
|
-- discriminant found belongs to the root type.
|
|
|
|
or else (Is_Class_Wide_Type (Typ)
|
|
and then Etype (Typ) = Discrim_Scope));
|
|
|
|
return True;
|
|
end if;
|
|
|
|
-- In all other cases we have something wrong.
|
|
|
|
return False;
|
|
end Is_Discriminant;
|
|
|
|
-- Start of processing for Constrain_Component_Type
|
|
|
|
begin
|
|
if Is_Array_Type (Compon_Type) then
|
|
return Build_Constrained_Array_Type (Compon_Type);
|
|
|
|
elsif Has_Discriminants (Compon_Type) then
|
|
return Build_Constrained_Discriminated_Type (Compon_Type);
|
|
|
|
elsif Is_Access_Type (Compon_Type) then
|
|
return Build_Constrained_Access_Type (Compon_Type);
|
|
end if;
|
|
|
|
return Compon_Type;
|
|
end Constrain_Component_Type;
|
|
|
|
--------------------------
|
|
-- Constrain_Concurrent --
|
|
--------------------------
|
|
|
|
-- For concurrent types, the associated record value type carries the same
|
|
-- discriminants, so when we constrain a concurrent type, we must constrain
|
|
-- the value type as well.
|
|
|
|
procedure Constrain_Concurrent
|
|
(Def_Id : in out Entity_Id;
|
|
SI : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character)
|
|
is
|
|
T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
|
|
T_Val : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (T_Ent) in Access_Kind then
|
|
T_Ent := Designated_Type (T_Ent);
|
|
end if;
|
|
|
|
T_Val := Corresponding_Record_Type (T_Ent);
|
|
|
|
if Present (T_Val) then
|
|
|
|
if No (Def_Id) then
|
|
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
|
end if;
|
|
|
|
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
|
|
|
|
Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
|
|
Set_Corresponding_Record_Type (Def_Id,
|
|
Constrain_Corresponding_Record
|
|
(Def_Id, T_Val, Related_Nod, Related_Id));
|
|
|
|
else
|
|
-- If there is no associated record, expansion is disabled and this
|
|
-- is a generic context. Create a subtype in any case, so that
|
|
-- semantic analysis can proceed.
|
|
|
|
if No (Def_Id) then
|
|
Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
|
end if;
|
|
|
|
Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
|
|
end if;
|
|
end Constrain_Concurrent;
|
|
|
|
------------------------------------
|
|
-- Constrain_Corresponding_Record --
|
|
------------------------------------
|
|
|
|
function Constrain_Corresponding_Record
|
|
(Prot_Subt : Entity_Id;
|
|
Corr_Rec : Entity_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id)
|
|
return Entity_Id
|
|
is
|
|
T_Sub : constant Entity_Id
|
|
:= Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
|
|
|
|
begin
|
|
Set_Etype (T_Sub, Corr_Rec);
|
|
Init_Size_Align (T_Sub);
|
|
Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
|
|
Set_Is_Constrained (T_Sub, True);
|
|
Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
|
|
Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
|
|
|
|
Conditional_Delay (T_Sub, Corr_Rec);
|
|
|
|
if Has_Discriminants (Prot_Subt) then -- False only if errors.
|
|
Set_Discriminant_Constraint (T_Sub,
|
|
Discriminant_Constraint (Prot_Subt));
|
|
Set_Girder_Constraint_From_Discriminant_Constraint (T_Sub);
|
|
Create_Constrained_Components (T_Sub, Related_Nod, Corr_Rec,
|
|
Discriminant_Constraint (T_Sub));
|
|
end if;
|
|
|
|
Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
|
|
|
|
return T_Sub;
|
|
end Constrain_Corresponding_Record;
|
|
|
|
-----------------------
|
|
-- Constrain_Decimal --
|
|
-----------------------
|
|
|
|
procedure Constrain_Decimal
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
C : constant Node_Id := Constraint (S);
|
|
Loc : constant Source_Ptr := Sloc (C);
|
|
Range_Expr : Node_Id;
|
|
Digits_Expr : Node_Id;
|
|
Digits_Val : Uint;
|
|
Bound_Val : Ureal;
|
|
|
|
begin
|
|
Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
|
|
|
|
if Nkind (C) = N_Range_Constraint then
|
|
Range_Expr := Range_Expression (C);
|
|
Digits_Val := Digits_Value (T);
|
|
|
|
else
|
|
pragma Assert (Nkind (C) = N_Digits_Constraint);
|
|
Digits_Expr := Digits_Expression (C);
|
|
Analyze_And_Resolve (Digits_Expr, Any_Integer);
|
|
|
|
Check_Digits_Expression (Digits_Expr);
|
|
Digits_Val := Expr_Value (Digits_Expr);
|
|
|
|
if Digits_Val > Digits_Value (T) then
|
|
Error_Msg_N
|
|
("digits expression is incompatible with subtype", C);
|
|
Digits_Val := Digits_Value (T);
|
|
end if;
|
|
|
|
if Present (Range_Constraint (C)) then
|
|
Range_Expr := Range_Expression (Range_Constraint (C));
|
|
else
|
|
Range_Expr := Empty;
|
|
end if;
|
|
end if;
|
|
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
Set_Delta_Value (Def_Id, Delta_Value (T));
|
|
Set_Scale_Value (Def_Id, Scale_Value (T));
|
|
Set_Small_Value (Def_Id, Small_Value (T));
|
|
Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
|
|
Set_Digits_Value (Def_Id, Digits_Val);
|
|
|
|
-- Manufacture range from given digits value if no range present
|
|
|
|
if No (Range_Expr) then
|
|
Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
|
|
Range_Expr :=
|
|
Make_Range (Loc,
|
|
Low_Bound =>
|
|
Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
|
|
High_Bound =>
|
|
Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
|
|
|
|
end if;
|
|
|
|
Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T, Related_Nod);
|
|
Set_Discrete_RM_Size (Def_Id);
|
|
|
|
-- Unconditionally delay the freeze, since we cannot set size
|
|
-- information in all cases correctly until the freeze point.
|
|
|
|
Set_Has_Delayed_Freeze (Def_Id);
|
|
end Constrain_Decimal;
|
|
|
|
----------------------------------
|
|
-- Constrain_Discriminated_Type --
|
|
----------------------------------
|
|
|
|
procedure Constrain_Discriminated_Type
|
|
(Def_Id : Entity_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
For_Access : Boolean := False)
|
|
is
|
|
T : Entity_Id;
|
|
C : Node_Id;
|
|
Elist : Elist_Id := New_Elmt_List;
|
|
|
|
procedure Fixup_Bad_Constraint;
|
|
-- This is called after finding a bad constraint, and after having
|
|
-- posted an appropriate error message. The mission is to leave the
|
|
-- entity T in as reasonable state as possible!
|
|
|
|
procedure Fixup_Bad_Constraint is
|
|
begin
|
|
-- Set a reasonable Ekind for the entity. For an incomplete type,
|
|
-- we can't do much, but for other types, we can set the proper
|
|
-- corresponding subtype kind.
|
|
|
|
if Ekind (T) = E_Incomplete_Type then
|
|
Set_Ekind (Def_Id, Ekind (T));
|
|
else
|
|
Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
|
|
end if;
|
|
|
|
Set_Etype (Def_Id, Any_Type);
|
|
Set_Error_Posted (Def_Id);
|
|
end Fixup_Bad_Constraint;
|
|
|
|
-- Start of processing for Constrain_Discriminated_Type
|
|
|
|
begin
|
|
C := Constraint (S);
|
|
|
|
-- A discriminant constraint is only allowed in a subtype indication,
|
|
-- after a subtype mark. This subtype mark must denote either a type
|
|
-- with discriminants, or an access type whose designated type is a
|
|
-- type with discriminants. A discriminant constraint specifies the
|
|
-- values of these discriminants (RM 3.7.2(5)).
|
|
|
|
T := Base_Type (Entity (Subtype_Mark (S)));
|
|
|
|
if Ekind (T) in Access_Kind then
|
|
T := Designated_Type (T);
|
|
end if;
|
|
|
|
if not Has_Discriminants (T) then
|
|
Error_Msg_N ("invalid constraint: type has no discriminant", C);
|
|
Fixup_Bad_Constraint;
|
|
return;
|
|
|
|
elsif Is_Constrained (Entity (Subtype_Mark (S))) then
|
|
Error_Msg_N ("type is already constrained", Subtype_Mark (S));
|
|
Fixup_Bad_Constraint;
|
|
return;
|
|
end if;
|
|
|
|
-- T may be an unconstrained subtype (e.g. a generic actual).
|
|
-- Constraint applies to the base type.
|
|
|
|
T := Base_Type (T);
|
|
|
|
Elist := Build_Discriminant_Constraints (T, S);
|
|
|
|
-- If the list returned was empty we had an error in building the
|
|
-- discriminant constraint. We have also already signalled an error
|
|
-- in the incomplete type case
|
|
|
|
if Is_Empty_Elmt_List (Elist) then
|
|
Fixup_Bad_Constraint;
|
|
return;
|
|
end if;
|
|
|
|
Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
|
|
end Constrain_Discriminated_Type;
|
|
|
|
---------------------------
|
|
-- Constrain_Enumeration --
|
|
---------------------------
|
|
|
|
procedure Constrain_Enumeration
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
C : constant Node_Id := Constraint (S);
|
|
|
|
begin
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
|
|
|
Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
|
|
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
|
|
|
Set_Scalar_Range_For_Subtype
|
|
(Def_Id, Range_Expression (C), T, Related_Nod);
|
|
|
|
Set_Discrete_RM_Size (Def_Id);
|
|
|
|
end Constrain_Enumeration;
|
|
|
|
----------------------
|
|
-- Constrain_Float --
|
|
----------------------
|
|
|
|
procedure Constrain_Float
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
C : Node_Id;
|
|
D : Node_Id;
|
|
Rais : Node_Id;
|
|
|
|
begin
|
|
Set_Ekind (Def_Id, E_Floating_Point_Subtype);
|
|
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
|
|
-- Process the constraint
|
|
|
|
C := Constraint (S);
|
|
|
|
-- Digits constraint present
|
|
|
|
if Nkind (C) = N_Digits_Constraint then
|
|
D := Digits_Expression (C);
|
|
Analyze_And_Resolve (D, Any_Integer);
|
|
Check_Digits_Expression (D);
|
|
Set_Digits_Value (Def_Id, Expr_Value (D));
|
|
|
|
-- Check that digits value is in range. Obviously we can do this
|
|
-- at compile time, but it is strictly a runtime check, and of
|
|
-- course there is an ACVC test that checks this!
|
|
|
|
if Digits_Value (Def_Id) > Digits_Value (T) then
|
|
Error_Msg_Uint_1 := Digits_Value (T);
|
|
Error_Msg_N ("?digits value is too large, maximum is ^", D);
|
|
Rais := Make_Raise_Constraint_Error (Sloc (D));
|
|
Insert_Action (Declaration_Node (Def_Id), Rais);
|
|
end if;
|
|
|
|
C := Range_Constraint (C);
|
|
|
|
-- No digits constraint present
|
|
|
|
else
|
|
Set_Digits_Value (Def_Id, Digits_Value (T));
|
|
end if;
|
|
|
|
-- Range constraint present
|
|
|
|
if Nkind (C) = N_Range_Constraint then
|
|
Set_Scalar_Range_For_Subtype
|
|
(Def_Id, Range_Expression (C), T, Related_Nod);
|
|
|
|
-- No range constraint present
|
|
|
|
else
|
|
pragma Assert (No (C));
|
|
Set_Scalar_Range (Def_Id, Scalar_Range (T));
|
|
end if;
|
|
|
|
Set_Is_Constrained (Def_Id);
|
|
end Constrain_Float;
|
|
|
|
---------------------
|
|
-- Constrain_Index --
|
|
---------------------
|
|
|
|
procedure Constrain_Index
|
|
(Index : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id;
|
|
Suffix : Character;
|
|
Suffix_Index : Nat)
|
|
is
|
|
Def_Id : Entity_Id;
|
|
R : Node_Id := Empty;
|
|
Checks_Off : Boolean := False;
|
|
T : constant Entity_Id := Etype (Index);
|
|
|
|
begin
|
|
if Nkind (S) = N_Range
|
|
or else Nkind (S) = N_Attribute_Reference
|
|
then
|
|
-- A Range attribute will transformed into N_Range by Resolve.
|
|
|
|
Analyze (S);
|
|
Set_Etype (S, T);
|
|
R := S;
|
|
|
|
-- ??? Why on earth do we turn checks of in this very specific case ?
|
|
|
|
-- From the revision history: (Constrain_Index): Call
|
|
-- Process_Range_Expr_In_Decl with range checking off for range
|
|
-- bounds that are attributes. This avoids some horrible
|
|
-- constraint error checks.
|
|
|
|
if Nkind (R) = N_Range
|
|
and then Nkind (Low_Bound (R)) = N_Attribute_Reference
|
|
and then Nkind (High_Bound (R)) = N_Attribute_Reference
|
|
then
|
|
Checks_Off := True;
|
|
end if;
|
|
|
|
Process_Range_Expr_In_Decl
|
|
(R, T, Related_Nod, Empty_List, Checks_Off);
|
|
|
|
if not Error_Posted (S)
|
|
and then
|
|
(Nkind (S) /= N_Range
|
|
or else Base_Type (T) /= Base_Type (Etype (Low_Bound (S)))
|
|
or else Base_Type (T) /= Base_Type (Etype (High_Bound (S))))
|
|
then
|
|
if Base_Type (T) /= Any_Type
|
|
and then Etype (Low_Bound (S)) /= Any_Type
|
|
and then Etype (High_Bound (S)) /= Any_Type
|
|
then
|
|
Error_Msg_N ("range expected", S);
|
|
end if;
|
|
end if;
|
|
|
|
elsif Nkind (S) = N_Subtype_Indication then
|
|
-- the parser has verified that this is a discrete indication.
|
|
|
|
Resolve_Discrete_Subtype_Indication (S, T);
|
|
R := Range_Expression (Constraint (S));
|
|
|
|
elsif Nkind (S) = N_Discriminant_Association then
|
|
|
|
-- syntactically valid in subtype indication.
|
|
|
|
Error_Msg_N ("invalid index constraint", S);
|
|
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
|
|
return;
|
|
|
|
-- Subtype_Mark case, no anonymous subtypes to construct
|
|
|
|
else
|
|
Analyze (S);
|
|
|
|
if Is_Entity_Name (S) then
|
|
|
|
if not Is_Type (Entity (S)) then
|
|
Error_Msg_N ("expect subtype mark for index constraint", S);
|
|
|
|
elsif Base_Type (Entity (S)) /= Base_Type (T) then
|
|
Wrong_Type (S, Base_Type (T));
|
|
end if;
|
|
|
|
return;
|
|
|
|
else
|
|
Error_Msg_N ("invalid index constraint", S);
|
|
Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
Def_Id :=
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
|
|
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
|
|
if Is_Modular_Integer_Type (T) then
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
|
|
|
elsif Is_Integer_Type (T) then
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
|
|
|
else
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
|
end if;
|
|
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_RM_Size (Def_Id, RM_Size (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
|
|
Set_Scalar_Range (Def_Id, R);
|
|
|
|
Set_Etype (S, Def_Id);
|
|
Set_Discrete_RM_Size (Def_Id);
|
|
end Constrain_Index;
|
|
|
|
-----------------------
|
|
-- Constrain_Integer --
|
|
-----------------------
|
|
|
|
procedure Constrain_Integer
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
C : constant Node_Id := Constraint (S);
|
|
|
|
begin
|
|
Set_Scalar_Range_For_Subtype
|
|
(Def_Id, Range_Expression (C), T, Related_Nod);
|
|
|
|
if Is_Modular_Integer_Type (T) then
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
|
else
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
|
end if;
|
|
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
Set_Discrete_RM_Size (Def_Id);
|
|
|
|
end Constrain_Integer;
|
|
|
|
------------------------------
|
|
-- Constrain_Ordinary_Fixed --
|
|
------------------------------
|
|
|
|
procedure Constrain_Ordinary_Fixed
|
|
(Def_Id : Node_Id;
|
|
S : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
T : constant Entity_Id := Entity (Subtype_Mark (S));
|
|
C : Node_Id;
|
|
D : Node_Id;
|
|
Rais : Node_Id;
|
|
|
|
begin
|
|
Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
Set_Small_Value (Def_Id, Small_Value (T));
|
|
|
|
-- Process the constraint
|
|
|
|
C := Constraint (S);
|
|
|
|
-- Delta constraint present
|
|
|
|
if Nkind (C) = N_Delta_Constraint then
|
|
D := Delta_Expression (C);
|
|
Analyze_And_Resolve (D, Any_Real);
|
|
Check_Delta_Expression (D);
|
|
Set_Delta_Value (Def_Id, Expr_Value_R (D));
|
|
|
|
-- Check that delta value is in range. Obviously we can do this
|
|
-- at compile time, but it is strictly a runtime check, and of
|
|
-- course there is an ACVC test that checks this!
|
|
|
|
if Delta_Value (Def_Id) < Delta_Value (T) then
|
|
Error_Msg_N ("?delta value is too small", D);
|
|
Rais := Make_Raise_Constraint_Error (Sloc (D));
|
|
Insert_Action (Declaration_Node (Def_Id), Rais);
|
|
end if;
|
|
|
|
C := Range_Constraint (C);
|
|
|
|
-- No delta constraint present
|
|
|
|
else
|
|
Set_Delta_Value (Def_Id, Delta_Value (T));
|
|
end if;
|
|
|
|
-- Range constraint present
|
|
|
|
if Nkind (C) = N_Range_Constraint then
|
|
Set_Scalar_Range_For_Subtype
|
|
(Def_Id, Range_Expression (C), T, Related_Nod);
|
|
|
|
-- No range constraint present
|
|
|
|
else
|
|
pragma Assert (No (C));
|
|
Set_Scalar_Range (Def_Id, Scalar_Range (T));
|
|
|
|
end if;
|
|
|
|
Set_Discrete_RM_Size (Def_Id);
|
|
|
|
-- Unconditionally delay the freeze, since we cannot set size
|
|
-- information in all cases correctly until the freeze point.
|
|
|
|
Set_Has_Delayed_Freeze (Def_Id);
|
|
end Constrain_Ordinary_Fixed;
|
|
|
|
---------------------------
|
|
-- Convert_Scalar_Bounds --
|
|
---------------------------
|
|
|
|
procedure Convert_Scalar_Bounds
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Loc : Source_Ptr)
|
|
is
|
|
Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
|
|
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
Rng : Node_Id;
|
|
|
|
begin
|
|
Lo := Build_Scalar_Bound
|
|
(Type_Low_Bound (Derived_Type),
|
|
Parent_Type, Implicit_Base, Loc);
|
|
|
|
Hi := Build_Scalar_Bound
|
|
(Type_High_Bound (Derived_Type),
|
|
Parent_Type, Implicit_Base, Loc);
|
|
|
|
Rng :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi);
|
|
|
|
Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
|
|
|
|
Set_Parent (Rng, N);
|
|
Set_Scalar_Range (Derived_Type, Rng);
|
|
|
|
-- Analyze the bounds
|
|
|
|
Analyze_And_Resolve (Lo, Implicit_Base);
|
|
Analyze_And_Resolve (Hi, Implicit_Base);
|
|
|
|
-- Analyze the range itself, except that we do not analyze it if
|
|
-- the bounds are real literals, and we have a fixed-point type.
|
|
-- The reason for this is that we delay setting the bounds in this
|
|
-- case till we know the final Small and Size values (see circuit
|
|
-- in Freeze.Freeze_Fixed_Point_Type for further details).
|
|
|
|
if Is_Fixed_Point_Type (Parent_Type)
|
|
and then Nkind (Lo) = N_Real_Literal
|
|
and then Nkind (Hi) = N_Real_Literal
|
|
then
|
|
return;
|
|
|
|
-- Here we do the analysis of the range.
|
|
|
|
-- Note: we do this manually, since if we do a normal Analyze and
|
|
-- Resolve call, there are problems with the conversions used for
|
|
-- the derived type range.
|
|
|
|
else
|
|
Set_Etype (Rng, Implicit_Base);
|
|
Set_Analyzed (Rng, True);
|
|
end if;
|
|
end Convert_Scalar_Bounds;
|
|
|
|
-------------------
|
|
-- Copy_And_Swap --
|
|
-------------------
|
|
|
|
procedure Copy_And_Swap (Privat, Full : Entity_Id) is
|
|
begin
|
|
-- Initialize new full declaration entity by copying the pertinent
|
|
-- fields of the corresponding private declaration entity.
|
|
|
|
Copy_Private_To_Full (Privat, Full);
|
|
|
|
-- Swap the two entities. Now Privat is the full type entity and
|
|
-- Full is the private one. They will be swapped back at the end
|
|
-- of the private part. This swapping ensures that the entity that
|
|
-- is visible in the private part is the full declaration.
|
|
|
|
Exchange_Entities (Privat, Full);
|
|
Append_Entity (Full, Scope (Full));
|
|
end Copy_And_Swap;
|
|
|
|
-------------------------------------
|
|
-- Copy_Array_Base_Type_Attributes --
|
|
-------------------------------------
|
|
|
|
procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
|
|
begin
|
|
Set_Component_Alignment (T1, Component_Alignment (T2));
|
|
Set_Component_Type (T1, Component_Type (T2));
|
|
Set_Component_Size (T1, Component_Size (T2));
|
|
Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
|
|
Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
|
|
Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
|
|
Set_Has_Task (T1, Has_Task (T2));
|
|
Set_Is_Packed (T1, Is_Packed (T2));
|
|
Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
|
|
Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
|
|
Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
|
|
end Copy_Array_Base_Type_Attributes;
|
|
|
|
-----------------------------------
|
|
-- Copy_Array_Subtype_Attributes --
|
|
-----------------------------------
|
|
|
|
procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
|
|
begin
|
|
Set_Size_Info (T1, T2);
|
|
|
|
Set_First_Index (T1, First_Index (T2));
|
|
Set_Is_Aliased (T1, Is_Aliased (T2));
|
|
Set_Is_Atomic (T1, Is_Atomic (T2));
|
|
Set_Is_Volatile (T1, Is_Volatile (T2));
|
|
Set_Is_Constrained (T1, Is_Constrained (T2));
|
|
Set_Depends_On_Private (T1, Has_Private_Component (T2));
|
|
Set_First_Rep_Item (T1, First_Rep_Item (T2));
|
|
Set_Convention (T1, Convention (T2));
|
|
Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
|
|
Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
|
|
end Copy_Array_Subtype_Attributes;
|
|
|
|
--------------------------
|
|
-- Copy_Private_To_Full --
|
|
--------------------------
|
|
|
|
procedure Copy_Private_To_Full (Priv, Full : Entity_Id) is
|
|
begin
|
|
-- We temporarily set Ekind to a value appropriate for a type to
|
|
-- avoid assert failures in Einfo from checking for setting type
|
|
-- attributes on something that is not a type. Ekind (Priv) is an
|
|
-- appropriate choice, since it allowed the attributes to be set
|
|
-- in the first place. This Ekind value will be modified later.
|
|
|
|
Set_Ekind (Full, Ekind (Priv));
|
|
|
|
-- Also set Etype temporarily to Any_Type, again, in the absence
|
|
-- of errors, it will be properly reset, and if there are errors,
|
|
-- then we want a value of Any_Type to remain.
|
|
|
|
Set_Etype (Full, Any_Type);
|
|
|
|
-- Now start copying attributes
|
|
|
|
Set_Has_Discriminants (Full, Has_Discriminants (Priv));
|
|
|
|
if Has_Discriminants (Full) then
|
|
Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
|
|
Set_Girder_Constraint (Full, Girder_Constraint (Priv));
|
|
end if;
|
|
|
|
Set_Homonym (Full, Homonym (Priv));
|
|
Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
|
|
Set_Is_Public (Full, Is_Public (Priv));
|
|
Set_Is_Pure (Full, Is_Pure (Priv));
|
|
Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
|
|
|
|
Conditional_Delay (Full, Priv);
|
|
|
|
if Is_Tagged_Type (Full) then
|
|
Set_Primitive_Operations (Full, Primitive_Operations (Priv));
|
|
|
|
if Priv = Base_Type (Priv) then
|
|
Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
|
|
end if;
|
|
end if;
|
|
|
|
Set_Is_Volatile (Full, Is_Volatile (Priv));
|
|
Set_Scope (Full, Scope (Priv));
|
|
Set_Next_Entity (Full, Next_Entity (Priv));
|
|
Set_First_Entity (Full, First_Entity (Priv));
|
|
Set_Last_Entity (Full, Last_Entity (Priv));
|
|
|
|
-- If access types have been recorded for later handling, keep them
|
|
-- in the full view so that they get handled when the full view freeze
|
|
-- node is expanded.
|
|
|
|
if Present (Freeze_Node (Priv))
|
|
and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
|
|
then
|
|
Ensure_Freeze_Node (Full);
|
|
Set_Access_Types_To_Process (Freeze_Node (Full),
|
|
Access_Types_To_Process (Freeze_Node (Priv)));
|
|
end if;
|
|
end Copy_Private_To_Full;
|
|
|
|
-----------------------------------
|
|
-- Create_Constrained_Components --
|
|
-----------------------------------
|
|
|
|
procedure Create_Constrained_Components
|
|
(Subt : Entity_Id;
|
|
Decl_Node : Node_Id;
|
|
Typ : Entity_Id;
|
|
Constraints : Elist_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Subt);
|
|
Assoc_List : List_Id := New_List;
|
|
Comp_List : Elist_Id := New_Elmt_List;
|
|
Discr_Val : Elmt_Id;
|
|
Errors : Boolean;
|
|
New_C : Entity_Id;
|
|
Old_C : Entity_Id;
|
|
Is_Static : Boolean := True;
|
|
Parent_Type : constant Entity_Id := Etype (Typ);
|
|
|
|
procedure Collect_Fixed_Components (Typ : Entity_Id);
|
|
-- Collect components of parent type that do not appear in a variant
|
|
-- part.
|
|
|
|
procedure Create_All_Components;
|
|
-- Iterate over Comp_List to create the components of the subtype.
|
|
|
|
function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
|
|
-- Creates a new component from Old_Compon, coppying all the fields from
|
|
-- it, including its Etype, inserts the new component in the Subt entity
|
|
-- chain and returns the new component.
|
|
|
|
function Is_Variant_Record (T : Entity_Id) return Boolean;
|
|
-- If true, and discriminants are static, collect only components from
|
|
-- variants selected by discriminant values.
|
|
|
|
------------------------------
|
|
-- Collect_Fixed_Components --
|
|
------------------------------
|
|
|
|
procedure Collect_Fixed_Components (Typ : Entity_Id) is
|
|
begin
|
|
-- Build association list for discriminants, and find components of
|
|
-- the variant part selected by the values of the discriminants.
|
|
|
|
Old_C := First_Discriminant (Typ);
|
|
Discr_Val := First_Elmt (Constraints);
|
|
|
|
while Present (Old_C) loop
|
|
Append_To (Assoc_List,
|
|
Make_Component_Association (Loc,
|
|
Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
|
|
Expression => New_Copy (Node (Discr_Val))));
|
|
|
|
Next_Elmt (Discr_Val);
|
|
Next_Discriminant (Old_C);
|
|
end loop;
|
|
|
|
-- The tag, and the possible parent and controller components
|
|
-- are unconditionally in the subtype.
|
|
|
|
if Is_Tagged_Type (Typ)
|
|
or else Has_Controlled_Component (Typ)
|
|
then
|
|
Old_C := First_Component (Typ);
|
|
|
|
while Present (Old_C) loop
|
|
if Chars ((Old_C)) = Name_uTag
|
|
or else Chars ((Old_C)) = Name_uParent
|
|
or else Chars ((Old_C)) = Name_uController
|
|
then
|
|
Append_Elmt (Old_C, Comp_List);
|
|
end if;
|
|
|
|
Next_Component (Old_C);
|
|
end loop;
|
|
end if;
|
|
end Collect_Fixed_Components;
|
|
|
|
---------------------------
|
|
-- Create_All_Components --
|
|
---------------------------
|
|
|
|
procedure Create_All_Components is
|
|
Comp : Elmt_Id;
|
|
|
|
begin
|
|
Comp := First_Elmt (Comp_List);
|
|
|
|
while Present (Comp) loop
|
|
Old_C := Node (Comp);
|
|
New_C := Create_Component (Old_C);
|
|
|
|
Set_Etype
|
|
(New_C,
|
|
Constrain_Component_Type
|
|
(Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
|
|
|
Next_Elmt (Comp);
|
|
end loop;
|
|
end Create_All_Components;
|
|
|
|
----------------------
|
|
-- Create_Component --
|
|
----------------------
|
|
|
|
function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
|
|
New_Compon : Entity_Id := New_Copy (Old_Compon);
|
|
|
|
begin
|
|
-- Set the parent so we have a proper link for freezing etc. This
|
|
-- is not a real parent pointer, since of course our parent does
|
|
-- not own up to us and reference us, we are an illegitimate
|
|
-- child of the original parent!
|
|
|
|
Set_Parent (New_Compon, Parent (Old_Compon));
|
|
|
|
-- We do not want this node marked as Comes_From_Source, since
|
|
-- otherwise it would get first class status and a separate
|
|
-- cross-reference line would be generated. Illegitimate
|
|
-- children do not rate such recognition.
|
|
|
|
Set_Comes_From_Source (New_Compon, False);
|
|
|
|
-- But it is a real entity, and a birth certificate must be
|
|
-- properly registered by entering it into the entity list.
|
|
|
|
Enter_Name (New_Compon);
|
|
return New_Compon;
|
|
end Create_Component;
|
|
|
|
-----------------------
|
|
-- Is_Variant_Record --
|
|
-----------------------
|
|
|
|
function Is_Variant_Record (T : Entity_Id) return Boolean is
|
|
begin
|
|
return Nkind (Parent (T)) = N_Full_Type_Declaration
|
|
and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
|
|
and then Present (Component_List (Type_Definition (Parent (T))))
|
|
and then Present (
|
|
Variant_Part (Component_List (Type_Definition (Parent (T)))));
|
|
end Is_Variant_Record;
|
|
|
|
-- Start of processing for Create_Constrained_Components
|
|
|
|
begin
|
|
pragma Assert (Subt /= Base_Type (Subt));
|
|
pragma Assert (Typ = Base_Type (Typ));
|
|
|
|
Set_First_Entity (Subt, Empty);
|
|
Set_Last_Entity (Subt, Empty);
|
|
|
|
-- Check whether constraint is fully static, in which case we can
|
|
-- optimize the list of components.
|
|
|
|
Discr_Val := First_Elmt (Constraints);
|
|
|
|
while Present (Discr_Val) loop
|
|
|
|
if not Is_OK_Static_Expression (Node (Discr_Val)) then
|
|
Is_Static := False;
|
|
exit;
|
|
end if;
|
|
|
|
Next_Elmt (Discr_Val);
|
|
end loop;
|
|
|
|
New_Scope (Subt);
|
|
|
|
-- Inherit the discriminants of the parent type.
|
|
|
|
Old_C := First_Discriminant (Typ);
|
|
|
|
while Present (Old_C) loop
|
|
New_C := Create_Component (Old_C);
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
|
Next_Discriminant (Old_C);
|
|
end loop;
|
|
|
|
if Is_Static
|
|
and then Is_Variant_Record (Typ)
|
|
then
|
|
Collect_Fixed_Components (Typ);
|
|
|
|
Gather_Components (
|
|
Typ,
|
|
Component_List (Type_Definition (Parent (Typ))),
|
|
Governed_By => Assoc_List,
|
|
Into => Comp_List,
|
|
Report_Errors => Errors);
|
|
pragma Assert (not Errors);
|
|
|
|
Create_All_Components;
|
|
|
|
-- If the subtype declaration is created for a tagged type derivation
|
|
-- with constraints, we retrieve the record definition of the parent
|
|
-- type to select the components of the proper variant.
|
|
|
|
elsif Is_Static
|
|
and then Is_Tagged_Type (Typ)
|
|
and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
|
|
and then
|
|
Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
|
|
and then Is_Variant_Record (Parent_Type)
|
|
then
|
|
Collect_Fixed_Components (Typ);
|
|
|
|
Gather_Components (
|
|
Typ,
|
|
Component_List (Type_Definition (Parent (Parent_Type))),
|
|
Governed_By => Assoc_List,
|
|
Into => Comp_List,
|
|
Report_Errors => Errors);
|
|
pragma Assert (not Errors);
|
|
|
|
-- If the tagged derivation has a type extension, collect all the
|
|
-- new components therein.
|
|
|
|
if Present (
|
|
Record_Extension_Part (Type_Definition (Parent (Typ))))
|
|
then
|
|
Old_C := First_Component (Typ);
|
|
|
|
while Present (Old_C) loop
|
|
if Original_Record_Component (Old_C) = Old_C
|
|
and then Chars (Old_C) /= Name_uTag
|
|
and then Chars (Old_C) /= Name_uParent
|
|
and then Chars (Old_C) /= Name_uController
|
|
then
|
|
Append_Elmt (Old_C, Comp_List);
|
|
end if;
|
|
|
|
Next_Component (Old_C);
|
|
end loop;
|
|
end if;
|
|
|
|
Create_All_Components;
|
|
|
|
else
|
|
-- If the discriminants are not static, or if this is a multi-level
|
|
-- type extension, we have to include all the components of the
|
|
-- parent type.
|
|
|
|
Old_C := First_Component (Typ);
|
|
|
|
while Present (Old_C) loop
|
|
New_C := Create_Component (Old_C);
|
|
|
|
Set_Etype
|
|
(New_C,
|
|
Constrain_Component_Type
|
|
(Etype (Old_C), Subt, Decl_Node, Typ, Constraints));
|
|
Set_Is_Public (New_C, Is_Public (Subt));
|
|
|
|
Next_Component (Old_C);
|
|
end loop;
|
|
end if;
|
|
|
|
End_Scope;
|
|
end Create_Constrained_Components;
|
|
|
|
------------------------------------------
|
|
-- Decimal_Fixed_Point_Type_Declaration --
|
|
------------------------------------------
|
|
|
|
procedure Decimal_Fixed_Point_Type_Declaration
|
|
(T : Entity_Id;
|
|
Def : Node_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Def);
|
|
Digs_Expr : constant Node_Id := Digits_Expression (Def);
|
|
Delta_Expr : constant Node_Id := Delta_Expression (Def);
|
|
Implicit_Base : Entity_Id;
|
|
Digs_Val : Uint;
|
|
Delta_Val : Ureal;
|
|
Scale_Val : Uint;
|
|
Bound_Val : Ureal;
|
|
|
|
-- Start of processing for Decimal_Fixed_Point_Type_Declaration
|
|
|
|
begin
|
|
Check_Restriction (No_Fixed_Point, Def);
|
|
|
|
-- Create implicit base type
|
|
|
|
Implicit_Base :=
|
|
Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
|
|
|
-- Analyze and process delta expression
|
|
|
|
Analyze_And_Resolve (Delta_Expr, Universal_Real);
|
|
|
|
Check_Delta_Expression (Delta_Expr);
|
|
Delta_Val := Expr_Value_R (Delta_Expr);
|
|
|
|
-- Check delta is power of 10, and determine scale value from it
|
|
|
|
declare
|
|
Val : Ureal := Delta_Val;
|
|
|
|
begin
|
|
Scale_Val := Uint_0;
|
|
|
|
if Val < Ureal_1 then
|
|
while Val < Ureal_1 loop
|
|
Val := Val * Ureal_10;
|
|
Scale_Val := Scale_Val + 1;
|
|
end loop;
|
|
|
|
if Scale_Val > 18 then
|
|
Error_Msg_N ("scale exceeds maximum value of 18", Def);
|
|
Scale_Val := UI_From_Int (+18);
|
|
end if;
|
|
|
|
else
|
|
while Val > Ureal_1 loop
|
|
Val := Val / Ureal_10;
|
|
Scale_Val := Scale_Val - 1;
|
|
end loop;
|
|
|
|
if Scale_Val < -18 then
|
|
Error_Msg_N ("scale is less than minimum value of -18", Def);
|
|
Scale_Val := UI_From_Int (-18);
|
|
end if;
|
|
end if;
|
|
|
|
if Val /= Ureal_1 then
|
|
Error_Msg_N ("delta expression must be a power of 10", Def);
|
|
Delta_Val := Ureal_10 ** (-Scale_Val);
|
|
end if;
|
|
end;
|
|
|
|
-- Set delta, scale and small (small = delta for decimal type)
|
|
|
|
Set_Delta_Value (Implicit_Base, Delta_Val);
|
|
Set_Scale_Value (Implicit_Base, Scale_Val);
|
|
Set_Small_Value (Implicit_Base, Delta_Val);
|
|
|
|
-- Analyze and process digits expression
|
|
|
|
Analyze_And_Resolve (Digs_Expr, Any_Integer);
|
|
Check_Digits_Expression (Digs_Expr);
|
|
Digs_Val := Expr_Value (Digs_Expr);
|
|
|
|
if Digs_Val > 18 then
|
|
Digs_Val := UI_From_Int (+18);
|
|
Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
|
|
end if;
|
|
|
|
Set_Digits_Value (Implicit_Base, Digs_Val);
|
|
Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
|
|
|
|
-- Set range of base type from digits value for now. This will be
|
|
-- expanded to represent the true underlying base range by Freeze.
|
|
|
|
Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
|
|
|
|
-- Set size to zero for now, size will be set at freeze time. We have
|
|
-- to do this for ordinary fixed-point, because the size depends on
|
|
-- the specified small, and we might as well do the same for decimal
|
|
-- fixed-point.
|
|
|
|
Init_Size_Align (Implicit_Base);
|
|
|
|
-- Complete entity for first subtype
|
|
|
|
Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
|
|
Set_Etype (T, Implicit_Base);
|
|
Set_Size_Info (T, Implicit_Base);
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
|
Set_Digits_Value (T, Digs_Val);
|
|
Set_Delta_Value (T, Delta_Val);
|
|
Set_Small_Value (T, Delta_Val);
|
|
Set_Scale_Value (T, Scale_Val);
|
|
Set_Is_Constrained (T);
|
|
|
|
-- If there are bounds given in the declaration use them as the
|
|
-- bounds of the first named subtype.
|
|
|
|
if Present (Real_Range_Specification (Def)) then
|
|
declare
|
|
RRS : constant Node_Id := Real_Range_Specification (Def);
|
|
Low : constant Node_Id := Low_Bound (RRS);
|
|
High : constant Node_Id := High_Bound (RRS);
|
|
Low_Val : Ureal;
|
|
High_Val : Ureal;
|
|
|
|
begin
|
|
Analyze_And_Resolve (Low, Any_Real);
|
|
Analyze_And_Resolve (High, Any_Real);
|
|
Check_Real_Bound (Low);
|
|
Check_Real_Bound (High);
|
|
Low_Val := Expr_Value_R (Low);
|
|
High_Val := Expr_Value_R (High);
|
|
|
|
if Low_Val < (-Bound_Val) then
|
|
Error_Msg_N
|
|
("range low bound too small for digits value", Low);
|
|
Low_Val := -Bound_Val;
|
|
end if;
|
|
|
|
if High_Val > Bound_Val then
|
|
Error_Msg_N
|
|
("range high bound too large for digits value", High);
|
|
High_Val := Bound_Val;
|
|
end if;
|
|
|
|
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
|
|
end;
|
|
|
|
-- If no explicit range, use range that corresponds to given
|
|
-- digits value. This will end up as the final range for the
|
|
-- first subtype.
|
|
|
|
else
|
|
Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
|
|
end if;
|
|
|
|
end Decimal_Fixed_Point_Type_Declaration;
|
|
|
|
-----------------------
|
|
-- Derive_Subprogram --
|
|
-----------------------
|
|
|
|
procedure Derive_Subprogram
|
|
(New_Subp : in out Entity_Id;
|
|
Parent_Subp : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Parent_Type : Entity_Id;
|
|
Actual_Subp : Entity_Id := Empty)
|
|
is
|
|
Formal : Entity_Id;
|
|
New_Formal : Entity_Id;
|
|
Same_Subt : constant Boolean :=
|
|
Is_Scalar_Type (Parent_Type)
|
|
and then Subtypes_Statically_Compatible (Parent_Type, Derived_Type);
|
|
|
|
function Is_Private_Overriding return Boolean;
|
|
-- If Subp is a private overriding of a visible operation, the in-
|
|
-- herited operation derives from the overridden op (even though
|
|
-- its body is the overriding one) and the inherited operation is
|
|
-- visible now. See sem_disp to see the details of the handling of
|
|
-- the overridden subprogram, which is removed from the list of
|
|
-- primitive operations of the type.
|
|
|
|
procedure Replace_Type (Id, New_Id : Entity_Id);
|
|
-- When the type is an anonymous access type, create a new access type
|
|
-- designating the derived type.
|
|
|
|
---------------------------
|
|
-- Is_Private_Overriding --
|
|
---------------------------
|
|
|
|
function Is_Private_Overriding return Boolean is
|
|
Prev : Entity_Id;
|
|
|
|
begin
|
|
Prev := Homonym (Parent_Subp);
|
|
|
|
-- The visible operation that is overriden is a homonym of
|
|
-- the parent subprogram. We scan the homonym chain to find
|
|
-- the one whose alias is the subprogram we are deriving.
|
|
|
|
while Present (Prev) loop
|
|
if Is_Dispatching_Operation (Parent_Subp)
|
|
and then Present (Prev)
|
|
and then Ekind (Prev) = Ekind (Parent_Subp)
|
|
and then Alias (Prev) = Parent_Subp
|
|
and then Scope (Parent_Subp) = Scope (Prev)
|
|
and then not Is_Hidden (Prev)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Prev := Homonym (Prev);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Private_Overriding;
|
|
|
|
------------------
|
|
-- Replace_Type --
|
|
------------------
|
|
|
|
procedure Replace_Type (Id, New_Id : Entity_Id) is
|
|
Acc_Type : Entity_Id;
|
|
IR : Node_Id;
|
|
|
|
begin
|
|
-- When the type is an anonymous access type, create a new access
|
|
-- type designating the derived type. This itype must be elaborated
|
|
-- at the point of the derivation, not on subsequent calls that may
|
|
-- be out of the proper scope for Gigi, so we insert a reference to
|
|
-- it after the derivation.
|
|
|
|
if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
|
|
declare
|
|
Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
|
|
|
|
begin
|
|
if Ekind (Desig_Typ) = E_Record_Type_With_Private
|
|
and then Present (Full_View (Desig_Typ))
|
|
and then not Is_Private_Type (Parent_Type)
|
|
then
|
|
Desig_Typ := Full_View (Desig_Typ);
|
|
end if;
|
|
|
|
if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
|
|
Acc_Type := New_Copy (Etype (Id));
|
|
Set_Etype (Acc_Type, Acc_Type);
|
|
Set_Scope (Acc_Type, New_Subp);
|
|
|
|
-- Compute size of anonymous access type.
|
|
|
|
if Is_Array_Type (Desig_Typ)
|
|
and then not Is_Constrained (Desig_Typ)
|
|
then
|
|
Init_Size (Acc_Type, 2 * System_Address_Size);
|
|
else
|
|
Init_Size (Acc_Type, System_Address_Size);
|
|
end if;
|
|
|
|
Init_Alignment (Acc_Type);
|
|
|
|
Set_Directly_Designated_Type (Acc_Type, Derived_Type);
|
|
|
|
Set_Etype (New_Id, Acc_Type);
|
|
Set_Scope (New_Id, New_Subp);
|
|
|
|
-- Create a reference to it.
|
|
|
|
IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
|
|
Set_Itype (IR, Acc_Type);
|
|
Insert_After (Parent (Derived_Type), IR);
|
|
|
|
else
|
|
Set_Etype (New_Id, Etype (Id));
|
|
end if;
|
|
end;
|
|
elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
|
|
or else
|
|
(Ekind (Etype (Id)) = E_Record_Type_With_Private
|
|
and then Present (Full_View (Etype (Id)))
|
|
and then Base_Type (Full_View (Etype (Id))) =
|
|
Base_Type (Parent_Type))
|
|
then
|
|
|
|
-- Constraint checks on formals are generated during expansion,
|
|
-- based on the signature of the original subprogram. The bounds
|
|
-- of the derived type are not relevant, and thus we can use
|
|
-- the base type for the formals. However, the return type may be
|
|
-- used in a context that requires that the proper static bounds
|
|
-- be used (a case statement, for example) and for those cases
|
|
-- we must use the derived type (first subtype), not its base.
|
|
|
|
if Etype (Id) = Parent_Type
|
|
and then Same_Subt
|
|
then
|
|
Set_Etype (New_Id, Derived_Type);
|
|
else
|
|
Set_Etype (New_Id, Base_Type (Derived_Type));
|
|
end if;
|
|
|
|
else
|
|
Set_Etype (New_Id, Etype (Id));
|
|
end if;
|
|
end Replace_Type;
|
|
|
|
-- Start of processing for Derive_Subprogram
|
|
|
|
begin
|
|
New_Subp :=
|
|
New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
|
|
Set_Ekind (New_Subp, Ekind (Parent_Subp));
|
|
|
|
-- Check whether the inherited subprogram is a private operation that
|
|
-- should be inherited but not yet made visible. Such subprograms can
|
|
-- become visible at a later point (e.g., the private part of a public
|
|
-- child unit) via Declare_Inherited_Private_Subprograms. If the
|
|
-- following predicate is true, then this is not such a private
|
|
-- operation and the subprogram simply inherits the name of the parent
|
|
-- subprogram. Note the special check for the names of controlled
|
|
-- operations, which are currently exempted from being inherited with
|
|
-- a hidden name because they must be findable for generation of
|
|
-- implicit run-time calls.
|
|
|
|
if not Is_Hidden (Parent_Subp)
|
|
or else Is_Internal (Parent_Subp)
|
|
or else Is_Private_Overriding
|
|
or else Is_Internal_Name (Chars (Parent_Subp))
|
|
or else Chars (Parent_Subp) = Name_Initialize
|
|
or else Chars (Parent_Subp) = Name_Adjust
|
|
or else Chars (Parent_Subp) = Name_Finalize
|
|
then
|
|
Set_Chars (New_Subp, Chars (Parent_Subp));
|
|
|
|
-- If parent is hidden, this can be a regular derivation if the
|
|
-- parent is immediately visible in a non-instantiating context,
|
|
-- or if we are in the private part of an instance. This test
|
|
-- should still be refined ???
|
|
|
|
-- The test for In_Instance_Not_Visible avoids inheriting the
|
|
-- derived operation as a non-visible operation in cases where
|
|
-- the parent subprogram might not be visible now, but was
|
|
-- visible within the original generic, so it would be wrong
|
|
-- to make the inherited subprogram non-visible now. (Not
|
|
-- clear if this test is fully correct; are there any cases
|
|
-- where we should declare the inherited operation as not
|
|
-- visible to avoid it being overridden, e.g., when the
|
|
-- parent type is a generic actual with private primitives ???)
|
|
|
|
-- (they should be treated the same as other private inherited
|
|
-- subprograms, but it's not clear how to do this cleanly). ???
|
|
|
|
elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
|
|
and then Is_Immediately_Visible (Parent_Subp)
|
|
and then not In_Instance)
|
|
or else In_Instance_Not_Visible
|
|
then
|
|
Set_Chars (New_Subp, Chars (Parent_Subp));
|
|
|
|
-- The type is inheriting a private operation, so enter
|
|
-- it with a special name so it can't be overridden.
|
|
|
|
else
|
|
Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
|
|
end if;
|
|
|
|
Set_Parent (New_Subp, Parent (Derived_Type));
|
|
Replace_Type (Parent_Subp, New_Subp);
|
|
Conditional_Delay (New_Subp, Parent_Subp);
|
|
|
|
Formal := First_Formal (Parent_Subp);
|
|
while Present (Formal) loop
|
|
New_Formal := New_Copy (Formal);
|
|
|
|
-- Normally we do not go copying parents, but in the case of
|
|
-- formals, we need to link up to the declaration (which is
|
|
-- the parameter specification), and it is fine to link up to
|
|
-- the original formal's parameter specification in this case.
|
|
|
|
Set_Parent (New_Formal, Parent (Formal));
|
|
|
|
Append_Entity (New_Formal, New_Subp);
|
|
|
|
Replace_Type (Formal, New_Formal);
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
|
|
-- If this derivation corresponds to a tagged generic actual, then
|
|
-- primitive operations rename those of the actual. Otherwise the
|
|
-- primitive operations rename those of the parent type.
|
|
|
|
if No (Actual_Subp) then
|
|
Set_Alias (New_Subp, Parent_Subp);
|
|
Set_Is_Intrinsic_Subprogram (New_Subp,
|
|
Is_Intrinsic_Subprogram (Parent_Subp));
|
|
|
|
else
|
|
Set_Alias (New_Subp, Actual_Subp);
|
|
end if;
|
|
|
|
-- Derived subprograms of a tagged type must inherit the convention
|
|
-- of the parent subprogram (a requirement of AI-117). Derived
|
|
-- subprograms of untagged types simply get convention Ada by default.
|
|
|
|
if Is_Tagged_Type (Derived_Type) then
|
|
Set_Convention (New_Subp, Convention (Parent_Subp));
|
|
end if;
|
|
|
|
Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
|
|
Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
|
|
|
|
if Ekind (Parent_Subp) = E_Procedure then
|
|
Set_Is_Valued_Procedure
|
|
(New_Subp, Is_Valued_Procedure (Parent_Subp));
|
|
end if;
|
|
|
|
New_Overloaded_Entity (New_Subp, Derived_Type);
|
|
|
|
-- Check for case of a derived subprogram for the instantiation
|
|
-- of a formal derived tagged type, so mark the subprogram as
|
|
-- dispatching and inherit the dispatching attributes of the
|
|
-- parent subprogram. The derived subprogram is effectively a
|
|
-- renaming of the actual subprogram, so it needs to have the
|
|
-- same attributes as the actual.
|
|
|
|
if Present (Actual_Subp)
|
|
and then Is_Dispatching_Operation (Parent_Subp)
|
|
then
|
|
Set_Is_Dispatching_Operation (New_Subp);
|
|
if Present (DTC_Entity (Parent_Subp)) then
|
|
Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
|
|
Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
|
|
end if;
|
|
end if;
|
|
|
|
-- Indicate that a derived subprogram does not require a body
|
|
-- and that it does not require processing of default expressions.
|
|
|
|
Set_Has_Completion (New_Subp);
|
|
Set_Default_Expressions_Processed (New_Subp);
|
|
|
|
-- A derived function with a controlling result is abstract.
|
|
-- If the Derived_Type is a nonabstract formal generic derived
|
|
-- type, then inherited operations are not abstract: check is
|
|
-- done at instantiation time. If the derivation is for a generic
|
|
-- actual, the function is not abstract unless the actual is.
|
|
|
|
if Is_Generic_Type (Derived_Type)
|
|
and then not Is_Abstract (Derived_Type)
|
|
then
|
|
null;
|
|
|
|
elsif Is_Abstract (Alias (New_Subp))
|
|
or else (Is_Tagged_Type (Derived_Type)
|
|
and then Etype (New_Subp) = Derived_Type
|
|
and then No (Actual_Subp))
|
|
then
|
|
Set_Is_Abstract (New_Subp);
|
|
end if;
|
|
|
|
if Ekind (New_Subp) = E_Function then
|
|
Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
|
|
end if;
|
|
end Derive_Subprogram;
|
|
|
|
------------------------
|
|
-- Derive_Subprograms --
|
|
------------------------
|
|
|
|
procedure Derive_Subprograms
|
|
(Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id;
|
|
Generic_Actual : Entity_Id := Empty)
|
|
is
|
|
Op_List : Elist_Id := Collect_Primitive_Operations (Parent_Type);
|
|
Act_List : Elist_Id;
|
|
Act_Elmt : Elmt_Id;
|
|
Elmt : Elmt_Id;
|
|
Subp : Entity_Id;
|
|
New_Subp : Entity_Id := Empty;
|
|
Parent_Base : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Parent_Type) = E_Record_Type_With_Private
|
|
and then Has_Discriminants (Parent_Type)
|
|
and then Present (Full_View (Parent_Type))
|
|
then
|
|
Parent_Base := Full_View (Parent_Type);
|
|
else
|
|
Parent_Base := Parent_Type;
|
|
end if;
|
|
|
|
Elmt := First_Elmt (Op_List);
|
|
|
|
if Present (Generic_Actual) then
|
|
Act_List := Collect_Primitive_Operations (Generic_Actual);
|
|
Act_Elmt := First_Elmt (Act_List);
|
|
else
|
|
Act_Elmt := No_Elmt;
|
|
end if;
|
|
|
|
-- Literals are derived earlier in the process of building the
|
|
-- derived type, and are skipped here.
|
|
|
|
while Present (Elmt) loop
|
|
Subp := Node (Elmt);
|
|
|
|
if Ekind (Subp) /= E_Enumeration_Literal then
|
|
if No (Generic_Actual) then
|
|
Derive_Subprogram
|
|
(New_Subp, Subp, Derived_Type, Parent_Base);
|
|
|
|
else
|
|
Derive_Subprogram (New_Subp, Subp,
|
|
Derived_Type, Parent_Base, Node (Act_Elmt));
|
|
Next_Elmt (Act_Elmt);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Elmt (Elmt);
|
|
end loop;
|
|
end Derive_Subprograms;
|
|
|
|
--------------------------------
|
|
-- Derived_Standard_Character --
|
|
--------------------------------
|
|
|
|
procedure Derived_Standard_Character
|
|
(N : Node_Id;
|
|
Parent_Type : Entity_Id;
|
|
Derived_Type : Entity_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Def : constant Node_Id := Type_Definition (N);
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
|
Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
|
|
Implicit_Base : constant Entity_Id :=
|
|
Create_Itype
|
|
(E_Enumeration_Type, N, Derived_Type, 'B');
|
|
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
T := Process_Subtype (Indic, N);
|
|
|
|
Set_Etype (Implicit_Base, Parent_Base);
|
|
Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
|
|
Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
|
|
|
|
Set_Is_Character_Type (Implicit_Base, True);
|
|
Set_Has_Delayed_Freeze (Implicit_Base);
|
|
|
|
Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
|
|
Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
|
|
|
|
Set_Scalar_Range (Implicit_Base,
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi));
|
|
|
|
Conditional_Delay (Derived_Type, Parent_Type);
|
|
|
|
Set_Ekind (Derived_Type, E_Enumeration_Subtype);
|
|
Set_Etype (Derived_Type, Implicit_Base);
|
|
Set_Size_Info (Derived_Type, Parent_Type);
|
|
|
|
if Unknown_RM_Size (Derived_Type) then
|
|
Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
|
|
end if;
|
|
|
|
Set_Is_Character_Type (Derived_Type, True);
|
|
|
|
if Nkind (Indic) /= N_Subtype_Indication then
|
|
Set_Scalar_Range (Derived_Type, Scalar_Range (Implicit_Base));
|
|
end if;
|
|
|
|
Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
|
|
|
|
-- Because the implicit base is used in the conversion of the bounds,
|
|
-- we have to freeze it now. This is similar to what is done for
|
|
-- numeric types, and it equally suspicious, but otherwise a non-
|
|
-- static bound will have a reference to an unfrozen type, which is
|
|
-- rejected by Gigi (???).
|
|
|
|
Freeze_Before (N, Implicit_Base);
|
|
|
|
end Derived_Standard_Character;
|
|
|
|
------------------------------
|
|
-- Derived_Type_Declaration --
|
|
------------------------------
|
|
|
|
procedure Derived_Type_Declaration
|
|
(T : Entity_Id;
|
|
N : Node_Id;
|
|
Is_Completion : Boolean)
|
|
is
|
|
Def : constant Node_Id := Type_Definition (N);
|
|
Indic : constant Node_Id := Subtype_Indication (Def);
|
|
Extension : constant Node_Id := Record_Extension_Part (Def);
|
|
Parent_Type : Entity_Id;
|
|
Parent_Scope : Entity_Id;
|
|
Taggd : Boolean;
|
|
|
|
begin
|
|
Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
|
|
|
|
if Parent_Type = Any_Type
|
|
or else Etype (Parent_Type) = Any_Type
|
|
or else (Is_Class_Wide_Type (Parent_Type)
|
|
and then Etype (Parent_Type) = T)
|
|
then
|
|
-- If Parent_Type is undefined or illegal, make new type into
|
|
-- a subtype of Any_Type, and set a few attributes to prevent
|
|
-- cascaded errors. If this is a self-definition, emit error now.
|
|
|
|
if T = Parent_Type
|
|
or else T = Etype (Parent_Type)
|
|
then
|
|
Error_Msg_N ("type cannot be used in its own definition", Indic);
|
|
end if;
|
|
|
|
Set_Ekind (T, Ekind (Parent_Type));
|
|
Set_Etype (T, Any_Type);
|
|
Set_Scalar_Range (T, Scalar_Range (Any_Type));
|
|
|
|
if Is_Tagged_Type (T) then
|
|
Set_Primitive_Operations (T, New_Elmt_List);
|
|
end if;
|
|
return;
|
|
|
|
elsif Is_Unchecked_Union (Parent_Type) then
|
|
Error_Msg_N ("cannot derive from Unchecked_Union type", N);
|
|
end if;
|
|
|
|
-- Only composite types other than array types are allowed to have
|
|
-- discriminants.
|
|
|
|
if Present (Discriminant_Specifications (N))
|
|
and then (Is_Elementary_Type (Parent_Type)
|
|
or else Is_Array_Type (Parent_Type))
|
|
and then not Error_Posted (N)
|
|
then
|
|
Error_Msg_N
|
|
("elementary or array type cannot have discriminants",
|
|
Defining_Identifier (First (Discriminant_Specifications (N))));
|
|
Set_Has_Discriminants (T, False);
|
|
end if;
|
|
|
|
-- In Ada 83, a derived type defined in a package specification cannot
|
|
-- be used for further derivation until the end of its visible part.
|
|
-- Note that derivation in the private part of the package is allowed.
|
|
|
|
if Ada_83
|
|
and then Is_Derived_Type (Parent_Type)
|
|
and then In_Visible_Part (Scope (Parent_Type))
|
|
then
|
|
if Ada_83 and then Comes_From_Source (Indic) then
|
|
Error_Msg_N
|
|
("(Ada 83): premature use of type for derivation", Indic);
|
|
end if;
|
|
end if;
|
|
|
|
-- Check for early use of incomplete or private type
|
|
|
|
if Ekind (Parent_Type) = E_Void
|
|
or else Ekind (Parent_Type) = E_Incomplete_Type
|
|
then
|
|
Error_Msg_N ("premature derivation of incomplete type", Indic);
|
|
return;
|
|
|
|
elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
|
|
and then not Is_Generic_Type (Parent_Type)
|
|
and then not Is_Generic_Type (Root_Type (Parent_Type))
|
|
and then not Is_Generic_Actual_Type (Parent_Type))
|
|
or else Has_Private_Component (Parent_Type)
|
|
then
|
|
-- The ancestor type of a formal type can be incomplete, in which
|
|
-- case only the operations of the partial view are available in
|
|
-- the generic. Subsequent checks may be required when the full
|
|
-- view is analyzed, to verify that derivation from a tagged type
|
|
-- has an extension.
|
|
|
|
if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
|
|
null;
|
|
|
|
elsif No (Underlying_Type (Parent_Type))
|
|
or else Has_Private_Component (Parent_Type)
|
|
then
|
|
Error_Msg_N
|
|
("premature derivation of derived or private type", Indic);
|
|
|
|
-- Flag the type itself as being in error, this prevents some
|
|
-- nasty problems with people looking at the malformed type.
|
|
|
|
Set_Error_Posted (T);
|
|
|
|
-- Check that within the immediate scope of an untagged partial
|
|
-- view it's illegal to derive from the partial view if the
|
|
-- full view is tagged. (7.3(7))
|
|
|
|
-- We verify that the Parent_Type is a partial view by checking
|
|
-- that it is not a Full_Type_Declaration (i.e. a private type or
|
|
-- private extension declaration), to distinguish a partial view
|
|
-- from a derivation from a private type which also appears as
|
|
-- E_Private_Type.
|
|
|
|
elsif Present (Full_View (Parent_Type))
|
|
and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
|
|
and then not Is_Tagged_Type (Parent_Type)
|
|
and then Is_Tagged_Type (Full_View (Parent_Type))
|
|
then
|
|
Parent_Scope := Scope (T);
|
|
while Present (Parent_Scope)
|
|
and then Parent_Scope /= Standard_Standard
|
|
loop
|
|
if Parent_Scope = Scope (Parent_Type) then
|
|
Error_Msg_N
|
|
("premature derivation from type with tagged full view",
|
|
Indic);
|
|
end if;
|
|
|
|
Parent_Scope := Scope (Parent_Scope);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
-- Check that form of derivation is appropriate
|
|
|
|
Taggd := Is_Tagged_Type (Parent_Type);
|
|
|
|
-- Perhaps the parent type should be changed to the class-wide type's
|
|
-- specific type in this case to prevent cascading errors ???
|
|
|
|
if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
|
|
Error_Msg_N ("parent type must not be a class-wide type", Indic);
|
|
return;
|
|
end if;
|
|
|
|
if Present (Extension) and then not Taggd then
|
|
Error_Msg_N
|
|
("type derived from untagged type cannot have extension", Indic);
|
|
|
|
elsif No (Extension) and then Taggd then
|
|
-- If this is within a private part (or body) of a generic
|
|
-- instantiation then the derivation is allowed (the parent
|
|
-- type can only appear tagged in this case if it's a generic
|
|
-- actual type, since it would otherwise have been rejected
|
|
-- in the analysis of the generic template).
|
|
|
|
if not Is_Generic_Actual_Type (Parent_Type)
|
|
or else In_Visible_Part (Scope (Parent_Type))
|
|
then
|
|
Error_Msg_N
|
|
("type derived from tagged type must have extension", Indic);
|
|
end if;
|
|
end if;
|
|
|
|
Build_Derived_Type (N, Parent_Type, T, Is_Completion);
|
|
end Derived_Type_Declaration;
|
|
|
|
----------------------------------
|
|
-- Enumeration_Type_Declaration --
|
|
----------------------------------
|
|
|
|
procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
|
Ev : Uint;
|
|
L : Node_Id;
|
|
R_Node : Node_Id;
|
|
B_Node : Node_Id;
|
|
|
|
begin
|
|
-- Create identifier node representing lower bound
|
|
|
|
B_Node := New_Node (N_Identifier, Sloc (Def));
|
|
L := First (Literals (Def));
|
|
Set_Chars (B_Node, Chars (L));
|
|
Set_Entity (B_Node, L);
|
|
Set_Etype (B_Node, T);
|
|
Set_Is_Static_Expression (B_Node, True);
|
|
|
|
R_Node := New_Node (N_Range, Sloc (Def));
|
|
Set_Low_Bound (R_Node, B_Node);
|
|
|
|
Set_Ekind (T, E_Enumeration_Type);
|
|
Set_First_Literal (T, L);
|
|
Set_Etype (T, T);
|
|
Set_Is_Constrained (T);
|
|
|
|
Ev := Uint_0;
|
|
|
|
-- Loop through literals of enumeration type setting pos and rep values
|
|
-- except that if the Ekind is already set, then it means that the
|
|
-- literal was already constructed (case of a derived type declaration
|
|
-- and we should not disturb the Pos and Rep values.
|
|
|
|
while Present (L) loop
|
|
if Ekind (L) /= E_Enumeration_Literal then
|
|
Set_Ekind (L, E_Enumeration_Literal);
|
|
Set_Enumeration_Pos (L, Ev);
|
|
Set_Enumeration_Rep (L, Ev);
|
|
Set_Is_Known_Valid (L, True);
|
|
end if;
|
|
|
|
Set_Etype (L, T);
|
|
New_Overloaded_Entity (L);
|
|
Generate_Definition (L);
|
|
Set_Convention (L, Convention_Intrinsic);
|
|
|
|
if Nkind (L) = N_Defining_Character_Literal then
|
|
Set_Is_Character_Type (T, True);
|
|
end if;
|
|
|
|
Ev := Ev + 1;
|
|
Next (L);
|
|
end loop;
|
|
|
|
-- Now create a node representing upper bound
|
|
|
|
B_Node := New_Node (N_Identifier, Sloc (Def));
|
|
Set_Chars (B_Node, Chars (Last (Literals (Def))));
|
|
Set_Entity (B_Node, Last (Literals (Def)));
|
|
Set_Etype (B_Node, T);
|
|
Set_Is_Static_Expression (B_Node, True);
|
|
|
|
Set_High_Bound (R_Node, B_Node);
|
|
Set_Scalar_Range (T, R_Node);
|
|
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
|
|
Set_Enum_Esize (T);
|
|
|
|
-- Set Discard_Names if configuration pragma setg, or if there is
|
|
-- a parameterless pragma in the current declarative region
|
|
|
|
if Global_Discard_Names
|
|
or else Discard_Names (Scope (T))
|
|
then
|
|
Set_Discard_Names (T);
|
|
end if;
|
|
end Enumeration_Type_Declaration;
|
|
|
|
--------------------------
|
|
-- Expand_Others_Choice --
|
|
--------------------------
|
|
|
|
procedure Expand_Others_Choice
|
|
(Case_Table : Choice_Table_Type;
|
|
Others_Choice : Node_Id;
|
|
Choice_Type : Entity_Id)
|
|
is
|
|
Choice : Node_Id;
|
|
Choice_List : List_Id := New_List;
|
|
Exp_Lo : Node_Id;
|
|
Exp_Hi : Node_Id;
|
|
Hi : Uint;
|
|
Lo : Uint;
|
|
Loc : Source_Ptr := Sloc (Others_Choice);
|
|
Previous_Hi : Uint;
|
|
|
|
function Build_Choice (Value1, Value2 : Uint) return Node_Id;
|
|
-- Builds a node representing the missing choices given by the
|
|
-- Value1 and Value2. A N_Range node is built if there is more than
|
|
-- one literal value missing. Otherwise a single N_Integer_Literal,
|
|
-- N_Identifier or N_Character_Literal is built depending on what
|
|
-- Choice_Type is.
|
|
|
|
function Lit_Of (Value : Uint) return Node_Id;
|
|
-- Returns the Node_Id for the enumeration literal corresponding to the
|
|
-- position given by Value within the enumeration type Choice_Type.
|
|
|
|
------------------
|
|
-- Build_Choice --
|
|
------------------
|
|
|
|
function Build_Choice (Value1, Value2 : Uint) return Node_Id is
|
|
Lit_Node : Node_Id;
|
|
Lo, Hi : Node_Id;
|
|
|
|
begin
|
|
-- If there is only one choice value missing between Value1 and
|
|
-- Value2, build an integer or enumeration literal to represent it.
|
|
|
|
if (Value2 - Value1) = 0 then
|
|
if Is_Integer_Type (Choice_Type) then
|
|
Lit_Node := Make_Integer_Literal (Loc, Value1);
|
|
Set_Etype (Lit_Node, Choice_Type);
|
|
else
|
|
Lit_Node := Lit_Of (Value1);
|
|
end if;
|
|
|
|
-- Otherwise is more that one choice value that is missing between
|
|
-- Value1 and Value2, therefore build a N_Range node of either
|
|
-- integer or enumeration literals.
|
|
|
|
else
|
|
if Is_Integer_Type (Choice_Type) then
|
|
Lo := Make_Integer_Literal (Loc, Value1);
|
|
Set_Etype (Lo, Choice_Type);
|
|
Hi := Make_Integer_Literal (Loc, Value2);
|
|
Set_Etype (Hi, Choice_Type);
|
|
Lit_Node :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
High_Bound => Hi);
|
|
|
|
else
|
|
Lit_Node :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Lit_Of (Value1),
|
|
High_Bound => Lit_Of (Value2));
|
|
end if;
|
|
end if;
|
|
|
|
return Lit_Node;
|
|
end Build_Choice;
|
|
|
|
------------
|
|
-- Lit_Of --
|
|
------------
|
|
|
|
function Lit_Of (Value : Uint) return Node_Id is
|
|
Lit : Entity_Id;
|
|
|
|
begin
|
|
-- In the case where the literal is of type Character, there needs
|
|
-- to be some special handling since there is no explicit chain
|
|
-- of literals to search. Instead, a N_Character_Literal node
|
|
-- is created with the appropriate Char_Code and Chars fields.
|
|
|
|
if Root_Type (Choice_Type) = Standard_Character then
|
|
Set_Character_Literal_Name (Char_Code (UI_To_Int (Value)));
|
|
Lit := New_Node (N_Character_Literal, Loc);
|
|
Set_Chars (Lit, Name_Find);
|
|
Set_Char_Literal_Value (Lit, Char_Code (UI_To_Int (Value)));
|
|
Set_Etype (Lit, Choice_Type);
|
|
Set_Is_Static_Expression (Lit, True);
|
|
return Lit;
|
|
|
|
-- Otherwise, iterate through the literals list of Choice_Type
|
|
-- "Value" number of times until the desired literal is reached
|
|
-- and then return an occurrence of it.
|
|
|
|
else
|
|
Lit := First_Literal (Choice_Type);
|
|
for J in 1 .. UI_To_Int (Value) loop
|
|
Next_Literal (Lit);
|
|
end loop;
|
|
|
|
return New_Occurrence_Of (Lit, Loc);
|
|
end if;
|
|
end Lit_Of;
|
|
|
|
-- Start of processing for Expand_Others_Choice
|
|
|
|
begin
|
|
if Case_Table'Length = 0 then
|
|
|
|
-- Pathological case: only an others case is present.
|
|
-- The others case covers the full range of the type.
|
|
|
|
if Is_Static_Subtype (Choice_Type) then
|
|
Choice := New_Occurrence_Of (Choice_Type, Loc);
|
|
else
|
|
Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
|
|
end if;
|
|
|
|
Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
|
|
return;
|
|
end if;
|
|
|
|
-- Establish the bound values for the variant depending upon whether
|
|
-- the type of the discriminant name is static or not.
|
|
|
|
if Is_OK_Static_Subtype (Choice_Type) then
|
|
Exp_Lo := Type_Low_Bound (Choice_Type);
|
|
Exp_Hi := Type_High_Bound (Choice_Type);
|
|
else
|
|
Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
|
|
Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
|
|
end if;
|
|
|
|
Lo := Expr_Value (Case_Table (Case_Table'First).Lo);
|
|
Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
|
|
Previous_Hi := Expr_Value (Case_Table (Case_Table'First).Hi);
|
|
|
|
-- Build the node for any missing choices that are smaller than any
|
|
-- explicit choices given in the variant.
|
|
|
|
if Expr_Value (Exp_Lo) < Lo then
|
|
Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
|
|
end if;
|
|
|
|
-- Build the nodes representing any missing choices that lie between
|
|
-- the explicit ones given in the variant.
|
|
|
|
for J in Case_Table'First + 1 .. Case_Table'Last loop
|
|
Lo := Expr_Value (Case_Table (J).Lo);
|
|
Hi := Expr_Value (Case_Table (J).Hi);
|
|
|
|
if Lo /= (Previous_Hi + 1) then
|
|
Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
|
|
end if;
|
|
|
|
Previous_Hi := Hi;
|
|
end loop;
|
|
|
|
-- Build the node for any missing choices that are greater than any
|
|
-- explicit choices given in the variant.
|
|
|
|
if Expr_Value (Exp_Hi) > Hi then
|
|
Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
|
|
end if;
|
|
|
|
Set_Others_Discrete_Choices (Others_Choice, Choice_List);
|
|
end Expand_Others_Choice;
|
|
|
|
---------------------------------
|
|
-- Expand_To_Girder_Constraint --
|
|
---------------------------------
|
|
|
|
function Expand_To_Girder_Constraint
|
|
(Typ : Entity_Id;
|
|
Constraint : Elist_Id)
|
|
return Elist_Id
|
|
is
|
|
Explicitly_Discriminated_Type : Entity_Id;
|
|
Expansion : Elist_Id;
|
|
Discriminant : Entity_Id;
|
|
|
|
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
|
|
-- Find the nearest type that actually specifies discriminants.
|
|
|
|
---------------------------------
|
|
-- Type_With_Explicit_Discrims --
|
|
---------------------------------
|
|
|
|
function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
|
|
Typ : constant E := Base_Type (Id);
|
|
|
|
begin
|
|
if Ekind (Typ) in Incomplete_Or_Private_Kind then
|
|
if Present (Full_View (Typ)) then
|
|
return Type_With_Explicit_Discrims (Full_View (Typ));
|
|
end if;
|
|
|
|
else
|
|
if Has_Discriminants (Typ) then
|
|
return Typ;
|
|
end if;
|
|
end if;
|
|
|
|
if Etype (Typ) = Typ then
|
|
return Empty;
|
|
elsif Has_Discriminants (Typ) then
|
|
return Typ;
|
|
else
|
|
return Type_With_Explicit_Discrims (Etype (Typ));
|
|
end if;
|
|
|
|
end Type_With_Explicit_Discrims;
|
|
|
|
-- Start of processing for Expand_To_Girder_Constraint
|
|
|
|
begin
|
|
if No (Constraint)
|
|
or else Is_Empty_Elmt_List (Constraint)
|
|
then
|
|
return No_Elist;
|
|
end if;
|
|
|
|
Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
|
|
|
|
if No (Explicitly_Discriminated_Type) then
|
|
return No_Elist;
|
|
end if;
|
|
|
|
Expansion := New_Elmt_List;
|
|
|
|
Discriminant :=
|
|
First_Girder_Discriminant (Explicitly_Discriminated_Type);
|
|
|
|
while Present (Discriminant) loop
|
|
|
|
Append_Elmt (
|
|
Get_Discriminant_Value (
|
|
Discriminant, Explicitly_Discriminated_Type, Constraint),
|
|
Expansion);
|
|
|
|
Next_Girder_Discriminant (Discriminant);
|
|
end loop;
|
|
|
|
return Expansion;
|
|
end Expand_To_Girder_Constraint;
|
|
|
|
--------------------
|
|
-- Find_Type_Name --
|
|
--------------------
|
|
|
|
function Find_Type_Name (N : Node_Id) return Entity_Id is
|
|
Id : constant Entity_Id := Defining_Identifier (N);
|
|
Prev : Entity_Id;
|
|
New_Id : Entity_Id;
|
|
Prev_Par : Node_Id;
|
|
|
|
begin
|
|
-- Find incomplete declaration, if some was given.
|
|
|
|
Prev := Current_Entity_In_Scope (Id);
|
|
|
|
if Present (Prev) then
|
|
|
|
-- Previous declaration exists. Error if not incomplete/private case
|
|
-- except if previous declaration is implicit, etc. Enter_Name will
|
|
-- emit error if appropriate.
|
|
|
|
Prev_Par := Parent (Prev);
|
|
|
|
if not Is_Incomplete_Or_Private_Type (Prev) then
|
|
Enter_Name (Id);
|
|
New_Id := Id;
|
|
|
|
elsif Nkind (N) /= N_Full_Type_Declaration
|
|
and then Nkind (N) /= N_Task_Type_Declaration
|
|
and then Nkind (N) /= N_Protected_Type_Declaration
|
|
then
|
|
-- Completion must be a full type declarations (RM 7.3(4))
|
|
|
|
Error_Msg_Sloc := Sloc (Prev);
|
|
Error_Msg_NE ("invalid completion of }", Id, Prev);
|
|
|
|
-- Set scope of Id to avoid cascaded errors. Entity is never
|
|
-- examined again, except when saving globals in generics.
|
|
|
|
Set_Scope (Id, Current_Scope);
|
|
New_Id := Id;
|
|
|
|
-- Case of full declaration of incomplete type
|
|
|
|
elsif Ekind (Prev) = E_Incomplete_Type then
|
|
|
|
-- Indicate that the incomplete declaration has a matching
|
|
-- full declaration. The defining occurrence of the incomplete
|
|
-- declaration remains the visible one, and the procedure
|
|
-- Get_Full_View dereferences it whenever the type is used.
|
|
|
|
if Present (Full_View (Prev)) then
|
|
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
|
|
end if;
|
|
|
|
Set_Full_View (Prev, Id);
|
|
Append_Entity (Id, Current_Scope);
|
|
Set_Is_Public (Id, Is_Public (Prev));
|
|
Set_Is_Internal (Id);
|
|
New_Id := Prev;
|
|
|
|
-- Case of full declaration of private type
|
|
|
|
else
|
|
if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
|
|
if Etype (Prev) /= Prev then
|
|
|
|
-- Prev is a private subtype or a derived type, and needs
|
|
-- no completion.
|
|
|
|
Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
|
|
New_Id := Id;
|
|
|
|
elsif Ekind (Prev) = E_Private_Type
|
|
and then
|
|
(Nkind (N) = N_Task_Type_Declaration
|
|
or else Nkind (N) = N_Protected_Type_Declaration)
|
|
then
|
|
Error_Msg_N
|
|
("completion of nonlimited type cannot be limited", N);
|
|
end if;
|
|
|
|
elsif Nkind (N) /= N_Full_Type_Declaration
|
|
or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
|
|
then
|
|
Error_Msg_N ("full view of private extension must be"
|
|
& " an extension", N);
|
|
|
|
elsif not (Abstract_Present (Parent (Prev)))
|
|
and then Abstract_Present (Type_Definition (N))
|
|
then
|
|
Error_Msg_N ("full view of non-abstract extension cannot"
|
|
& " be abstract", N);
|
|
end if;
|
|
|
|
if not In_Private_Part (Current_Scope) then
|
|
Error_Msg_N
|
|
("declaration of full view must appear in private part", N);
|
|
end if;
|
|
|
|
Copy_And_Swap (Prev, Id);
|
|
Set_Full_View (Id, Prev);
|
|
Set_Has_Private_Declaration (Prev);
|
|
Set_Has_Private_Declaration (Id);
|
|
New_Id := Prev;
|
|
end if;
|
|
|
|
-- Verify that full declaration conforms to incomplete one
|
|
|
|
if Is_Incomplete_Or_Private_Type (Prev)
|
|
and then Present (Discriminant_Specifications (Prev_Par))
|
|
then
|
|
if Present (Discriminant_Specifications (N)) then
|
|
if Ekind (Prev) = E_Incomplete_Type then
|
|
Check_Discriminant_Conformance (N, Prev, Prev);
|
|
else
|
|
Check_Discriminant_Conformance (N, Prev, Id);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg_N
|
|
("missing discriminants in full type declaration", N);
|
|
|
|
-- To avoid cascaded errors on subsequent use, share the
|
|
-- discriminants of the partial view.
|
|
|
|
Set_Discriminant_Specifications (N,
|
|
Discriminant_Specifications (Prev_Par));
|
|
end if;
|
|
end if;
|
|
|
|
-- A prior untagged private type can have an associated
|
|
-- class-wide type due to use of the class attribute,
|
|
-- and in this case also the full type is required to
|
|
-- be tagged.
|
|
|
|
if Is_Type (Prev)
|
|
and then (Is_Tagged_Type (Prev)
|
|
or else Present (Class_Wide_Type (Prev)))
|
|
then
|
|
-- The full declaration is either a tagged record or an
|
|
-- extension otherwise this is an error
|
|
|
|
if Nkind (Type_Definition (N)) = N_Record_Definition then
|
|
if not Tagged_Present (Type_Definition (N)) then
|
|
Error_Msg_NE
|
|
("full declaration of } must be tagged", Prev, Id);
|
|
Set_Is_Tagged_Type (Id);
|
|
Set_Primitive_Operations (Id, New_Elmt_List);
|
|
end if;
|
|
|
|
elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
|
|
if No (Record_Extension_Part (Type_Definition (N))) then
|
|
Error_Msg_NE (
|
|
"full declaration of } must be a record extension",
|
|
Prev, Id);
|
|
Set_Is_Tagged_Type (Id);
|
|
Set_Primitive_Operations (Id, New_Elmt_List);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("full declaration of } must be a tagged type", Prev, Id);
|
|
|
|
end if;
|
|
end if;
|
|
|
|
return New_Id;
|
|
|
|
else
|
|
-- New type declaration
|
|
|
|
Enter_Name (Id);
|
|
return Id;
|
|
end if;
|
|
end Find_Type_Name;
|
|
|
|
-------------------------
|
|
-- Find_Type_Of_Object --
|
|
-------------------------
|
|
|
|
function Find_Type_Of_Object
|
|
(Obj_Def : Node_Id;
|
|
Related_Nod : Node_Id)
|
|
return Entity_Id
|
|
is
|
|
Def_Kind : constant Node_Kind := Nkind (Obj_Def);
|
|
P : constant Node_Id := Parent (Obj_Def);
|
|
T : Entity_Id;
|
|
Nam : Name_Id;
|
|
|
|
begin
|
|
-- Case of an anonymous array subtype
|
|
|
|
if Def_Kind = N_Constrained_Array_Definition
|
|
or else Def_Kind = N_Unconstrained_Array_Definition
|
|
then
|
|
T := Empty;
|
|
Array_Type_Declaration (T, Obj_Def);
|
|
|
|
-- Create an explicit subtype whenever possible.
|
|
|
|
elsif Nkind (P) /= N_Component_Declaration
|
|
and then Def_Kind = N_Subtype_Indication
|
|
then
|
|
-- Base name of subtype on object name, which will be unique in
|
|
-- the current scope.
|
|
|
|
-- If this is a duplicate declaration, return base type, to avoid
|
|
-- generating duplicate anonymous types.
|
|
|
|
if Error_Posted (P) then
|
|
Analyze (Subtype_Mark (Obj_Def));
|
|
return Entity (Subtype_Mark (Obj_Def));
|
|
end if;
|
|
|
|
Nam :=
|
|
New_External_Name
|
|
(Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
|
|
|
|
T := Make_Defining_Identifier (Sloc (P), Nam);
|
|
|
|
Insert_Action (Obj_Def,
|
|
Make_Subtype_Declaration (Sloc (P),
|
|
Defining_Identifier => T,
|
|
Subtype_Indication => Relocate_Node (Obj_Def)));
|
|
|
|
-- This subtype may need freezing and it will not be done
|
|
-- automatically if the object declaration is not in a
|
|
-- declarative part. Since this is an object declaration, the
|
|
-- type cannot always be frozen here. Deferred constants do not
|
|
-- freeze their type (which often enough will be private).
|
|
|
|
if Nkind (P) = N_Object_Declaration
|
|
and then Constant_Present (P)
|
|
and then No (Expression (P))
|
|
then
|
|
null;
|
|
|
|
else
|
|
Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
|
|
end if;
|
|
|
|
else
|
|
T := Process_Subtype (Obj_Def, Related_Nod);
|
|
end if;
|
|
|
|
return T;
|
|
end Find_Type_Of_Object;
|
|
|
|
--------------------------------
|
|
-- Find_Type_Of_Subtype_Indic --
|
|
--------------------------------
|
|
|
|
function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
|
|
Typ : Entity_Id;
|
|
|
|
begin
|
|
-- Case of subtype mark with a constraint
|
|
|
|
if Nkind (S) = N_Subtype_Indication then
|
|
Find_Type (Subtype_Mark (S));
|
|
Typ := Entity (Subtype_Mark (S));
|
|
|
|
if not
|
|
Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
|
|
then
|
|
Error_Msg_N
|
|
("incorrect constraint for this kind of type", Constraint (S));
|
|
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
|
|
end if;
|
|
|
|
-- Otherwise we have a subtype mark without a constraint
|
|
|
|
elsif Error_Posted (S) then
|
|
Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
|
|
return Any_Type;
|
|
|
|
else
|
|
Find_Type (S);
|
|
Typ := Entity (S);
|
|
end if;
|
|
|
|
if Typ = Standard_Wide_Character
|
|
or else Typ = Standard_Wide_String
|
|
then
|
|
Check_Restriction (No_Wide_Characters, S);
|
|
end if;
|
|
|
|
return Typ;
|
|
end Find_Type_Of_Subtype_Indic;
|
|
|
|
-------------------------------------
|
|
-- Floating_Point_Type_Declaration --
|
|
-------------------------------------
|
|
|
|
procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
|
Digs : constant Node_Id := Digits_Expression (Def);
|
|
Digs_Val : Uint;
|
|
Base_Typ : Entity_Id;
|
|
Implicit_Base : Entity_Id;
|
|
Bound : Node_Id;
|
|
|
|
function Can_Derive_From (E : Entity_Id) return Boolean;
|
|
-- Find if given digits value allows derivation from specified type
|
|
|
|
function Can_Derive_From (E : Entity_Id) return Boolean is
|
|
Spec : constant Entity_Id := Real_Range_Specification (Def);
|
|
|
|
begin
|
|
if Digs_Val > Digits_Value (E) then
|
|
return False;
|
|
end if;
|
|
|
|
if Present (Spec) then
|
|
if Expr_Value_R (Type_Low_Bound (E)) >
|
|
Expr_Value_R (Low_Bound (Spec))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
if Expr_Value_R (Type_High_Bound (E)) <
|
|
Expr_Value_R (High_Bound (Spec))
|
|
then
|
|
return False;
|
|
end if;
|
|
end if;
|
|
|
|
return True;
|
|
end Can_Derive_From;
|
|
|
|
-- Start of processing for Floating_Point_Type_Declaration
|
|
|
|
begin
|
|
Check_Restriction (No_Floating_Point, Def);
|
|
|
|
-- Create an implicit base type
|
|
|
|
Implicit_Base :=
|
|
Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
|
|
|
|
-- Analyze and verify digits value
|
|
|
|
Analyze_And_Resolve (Digs, Any_Integer);
|
|
Check_Digits_Expression (Digs);
|
|
Digs_Val := Expr_Value (Digs);
|
|
|
|
-- Process possible range spec and find correct type to derive from
|
|
|
|
Process_Real_Range_Specification (Def);
|
|
|
|
if Can_Derive_From (Standard_Short_Float) then
|
|
Base_Typ := Standard_Short_Float;
|
|
elsif Can_Derive_From (Standard_Float) then
|
|
Base_Typ := Standard_Float;
|
|
elsif Can_Derive_From (Standard_Long_Float) then
|
|
Base_Typ := Standard_Long_Float;
|
|
elsif Can_Derive_From (Standard_Long_Long_Float) then
|
|
Base_Typ := Standard_Long_Long_Float;
|
|
|
|
-- If we can't derive from any existing type, use long long float
|
|
-- and give appropriate message explaining the problem.
|
|
|
|
else
|
|
Base_Typ := Standard_Long_Long_Float;
|
|
|
|
if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
|
|
Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
|
|
Error_Msg_N ("digits value out of range, maximum is ^", Digs);
|
|
|
|
else
|
|
Error_Msg_N
|
|
("range too large for any predefined type",
|
|
Real_Range_Specification (Def));
|
|
end if;
|
|
end if;
|
|
|
|
-- If there are bounds given in the declaration use them as the bounds
|
|
-- of the type, otherwise use the bounds of the predefined base type
|
|
-- that was chosen based on the Digits value.
|
|
|
|
if Present (Real_Range_Specification (Def)) then
|
|
Set_Scalar_Range (T, Real_Range_Specification (Def));
|
|
Set_Is_Constrained (T);
|
|
|
|
-- The bounds of this range must be converted to machine numbers
|
|
-- in accordance with RM 4.9(38).
|
|
|
|
Bound := Type_Low_Bound (T);
|
|
|
|
if Nkind (Bound) = N_Real_Literal then
|
|
Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
|
|
Set_Is_Machine_Number (Bound);
|
|
end if;
|
|
|
|
Bound := Type_High_Bound (T);
|
|
|
|
if Nkind (Bound) = N_Real_Literal then
|
|
Set_Realval (Bound, Machine (Base_Typ, Realval (Bound), Round));
|
|
Set_Is_Machine_Number (Bound);
|
|
end if;
|
|
|
|
else
|
|
Set_Scalar_Range (T, Scalar_Range (Base_Typ));
|
|
end if;
|
|
|
|
-- Complete definition of implicit base and declared first subtype
|
|
|
|
Set_Etype (Implicit_Base, Base_Typ);
|
|
|
|
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
|
|
Set_Size_Info (Implicit_Base, (Base_Typ));
|
|
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
|
|
Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
|
|
Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
|
|
|
|
Set_Ekind (T, E_Floating_Point_Subtype);
|
|
Set_Etype (T, Implicit_Base);
|
|
|
|
Set_Size_Info (T, (Implicit_Base));
|
|
Set_RM_Size (T, RM_Size (Implicit_Base));
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
|
Set_Digits_Value (T, Digs_Val);
|
|
|
|
end Floating_Point_Type_Declaration;
|
|
|
|
----------------------------
|
|
-- Get_Discriminant_Value --
|
|
----------------------------
|
|
|
|
-- This is the situation...
|
|
|
|
-- There is a non-derived type
|
|
|
|
-- type T0 (Dx, Dy, Dz...)
|
|
|
|
-- There are zero or more levels of derivation, with each
|
|
-- derivation either purely inheriting the discriminants, or
|
|
-- defining its own.
|
|
|
|
-- type Ti is new Ti-1
|
|
-- or
|
|
-- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
|
|
-- or
|
|
-- subtype Ti is ...
|
|
|
|
-- The subtype issue is avoided by the use of
|
|
-- Original_Record_Component, and the fact that derived subtypes
|
|
-- also derive the constraits.
|
|
|
|
-- This chain leads back from
|
|
|
|
-- Typ_For_Constraint
|
|
|
|
-- Typ_For_Constraint has discriminants, and the value for each
|
|
-- discriminant is given by its corresponding Elmt of Constraints.
|
|
|
|
-- Discriminant is some discriminant in this hierarchy.
|
|
|
|
-- We need to return its value.
|
|
|
|
-- We do this by recursively searching each level, and looking for
|
|
-- Discriminant. Once we get to the bottom, we start backing up
|
|
-- returning the value for it which may in turn be a discriminant
|
|
-- further up, so on the backup we continue the substitution.
|
|
|
|
function Get_Discriminant_Value
|
|
(Discriminant : Entity_Id;
|
|
Typ_For_Constraint : Entity_Id;
|
|
Constraint : Elist_Id)
|
|
return Node_Id
|
|
is
|
|
function Recurse
|
|
(Ti : Entity_Id;
|
|
Discrim_Values : Elist_Id;
|
|
Girder_Discrim_Values : Boolean)
|
|
return Node_Or_Entity_Id;
|
|
-- This is the routine that performs the recursive search of levels
|
|
-- as described above.
|
|
|
|
function Recurse
|
|
(Ti : Entity_Id;
|
|
Discrim_Values : Elist_Id;
|
|
Girder_Discrim_Values : Boolean)
|
|
return Node_Or_Entity_Id
|
|
is
|
|
Assoc : Elmt_Id;
|
|
Disc : Entity_Id;
|
|
Result : Node_Or_Entity_Id;
|
|
Result_Entity : Node_Id;
|
|
|
|
begin
|
|
-- If inappropriate type, return Error, this happens only in
|
|
-- cascaded error situations, and we want to avoid a blow up.
|
|
|
|
if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
|
|
return Error;
|
|
end if;
|
|
|
|
-- Look deeper if possible. Use Girder_Constraints only for
|
|
-- untagged types. For tagged types use the given constraint.
|
|
-- This asymmetry needs explanation???
|
|
|
|
if not Girder_Discrim_Values
|
|
and then Present (Girder_Constraint (Ti))
|
|
and then not Is_Tagged_Type (Ti)
|
|
then
|
|
Result := Recurse (Ti, Girder_Constraint (Ti), True);
|
|
else
|
|
declare
|
|
Td : Entity_Id := Etype (Ti);
|
|
begin
|
|
|
|
if Td = Ti then
|
|
Result := Discriminant;
|
|
|
|
else
|
|
if Present (Girder_Constraint (Ti)) then
|
|
Result :=
|
|
Recurse (Td, Girder_Constraint (Ti), True);
|
|
else
|
|
Result :=
|
|
Recurse (Td, Discrim_Values, Girder_Discrim_Values);
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Extra underlying places to search, if not found above. For
|
|
-- concurrent types, the relevant discriminant appears in the
|
|
-- corresponding record. For a type derived from a private type
|
|
-- without discriminant, the full view inherits the discriminants
|
|
-- of the full view of the parent.
|
|
|
|
if Result = Discriminant then
|
|
if Is_Concurrent_Type (Ti)
|
|
and then Present (Corresponding_Record_Type (Ti))
|
|
then
|
|
Result :=
|
|
Recurse (
|
|
Corresponding_Record_Type (Ti),
|
|
Discrim_Values,
|
|
Girder_Discrim_Values);
|
|
|
|
elsif Is_Private_Type (Ti)
|
|
and then not Has_Discriminants (Ti)
|
|
and then Present (Full_View (Ti))
|
|
and then Etype (Full_View (Ti)) /= Ti
|
|
then
|
|
Result :=
|
|
Recurse (
|
|
Full_View (Ti),
|
|
Discrim_Values,
|
|
Girder_Discrim_Values);
|
|
end if;
|
|
end if;
|
|
|
|
-- If Result is not a (reference to a) discriminant,
|
|
-- return it, otherwise set Result_Entity to the discriminant.
|
|
|
|
if Nkind (Result) = N_Defining_Identifier then
|
|
|
|
pragma Assert (Result = Discriminant);
|
|
|
|
Result_Entity := Result;
|
|
|
|
else
|
|
if not Denotes_Discriminant (Result) then
|
|
return Result;
|
|
end if;
|
|
|
|
Result_Entity := Entity (Result);
|
|
end if;
|
|
|
|
-- See if this level of derivation actually has discriminants
|
|
-- because tagged derivations can add them, hence the lower
|
|
-- levels need not have any.
|
|
|
|
if not Has_Discriminants (Ti) then
|
|
return Result;
|
|
end if;
|
|
|
|
-- Scan Ti's discriminants for Result_Entity,
|
|
-- and return its corresponding value, if any.
|
|
|
|
Result_Entity := Original_Record_Component (Result_Entity);
|
|
|
|
Assoc := First_Elmt (Discrim_Values);
|
|
|
|
if Girder_Discrim_Values then
|
|
Disc := First_Girder_Discriminant (Ti);
|
|
else
|
|
Disc := First_Discriminant (Ti);
|
|
end if;
|
|
|
|
while Present (Disc) loop
|
|
|
|
pragma Assert (Present (Assoc));
|
|
|
|
if Original_Record_Component (Disc) = Result_Entity then
|
|
return Node (Assoc);
|
|
end if;
|
|
|
|
Next_Elmt (Assoc);
|
|
|
|
if Girder_Discrim_Values then
|
|
Next_Girder_Discriminant (Disc);
|
|
else
|
|
Next_Discriminant (Disc);
|
|
end if;
|
|
end loop;
|
|
|
|
-- Could not find it
|
|
--
|
|
return Result;
|
|
end Recurse;
|
|
|
|
Result : Node_Or_Entity_Id;
|
|
|
|
-- Start of processing for Get_Discriminant_Value
|
|
|
|
begin
|
|
-- ??? this routine is a gigantic mess and will be deleted.
|
|
-- for the time being just test for the trivial case before calling
|
|
-- recurse.
|
|
|
|
if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
|
|
declare
|
|
D : Entity_Id := First_Discriminant (Typ_For_Constraint);
|
|
E : Elmt_Id := First_Elmt (Constraint);
|
|
begin
|
|
while Present (D) loop
|
|
if Chars (D) = Chars (Discriminant) then
|
|
return Node (E);
|
|
end if;
|
|
|
|
Next_Discriminant (D);
|
|
Next_Elmt (E);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
Result := Recurse (Typ_For_Constraint, Constraint, False);
|
|
|
|
-- ??? hack to disappear when this routine is gone
|
|
|
|
if Nkind (Result) = N_Defining_Identifier then
|
|
declare
|
|
D : Entity_Id := First_Discriminant (Typ_For_Constraint);
|
|
E : Elmt_Id := First_Elmt (Constraint);
|
|
begin
|
|
while Present (D) loop
|
|
if Corresponding_Discriminant (D) = Discriminant then
|
|
return Node (E);
|
|
end if;
|
|
|
|
Next_Discriminant (D);
|
|
Next_Elmt (E);
|
|
end loop;
|
|
end;
|
|
end if;
|
|
|
|
pragma Assert (Nkind (Result) /= N_Defining_Identifier);
|
|
return Result;
|
|
end Get_Discriminant_Value;
|
|
|
|
--------------------------
|
|
-- Has_Range_Constraint --
|
|
--------------------------
|
|
|
|
function Has_Range_Constraint (N : Node_Id) return Boolean is
|
|
C : constant Node_Id := Constraint (N);
|
|
|
|
begin
|
|
if Nkind (C) = N_Range_Constraint then
|
|
return True;
|
|
|
|
elsif Nkind (C) = N_Digits_Constraint then
|
|
return
|
|
Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
|
|
or else
|
|
Present (Range_Constraint (C));
|
|
|
|
elsif Nkind (C) = N_Delta_Constraint then
|
|
return Present (Range_Constraint (C));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Has_Range_Constraint;
|
|
|
|
------------------------
|
|
-- Inherit_Components --
|
|
------------------------
|
|
|
|
function Inherit_Components
|
|
(N : Node_Id;
|
|
Parent_Base : Entity_Id;
|
|
Derived_Base : Entity_Id;
|
|
Is_Tagged : Boolean;
|
|
Inherit_Discr : Boolean;
|
|
Discs : Elist_Id)
|
|
return Elist_Id
|
|
is
|
|
Assoc_List : Elist_Id := New_Elmt_List;
|
|
|
|
procedure Inherit_Component
|
|
(Old_C : Entity_Id;
|
|
Plain_Discrim : Boolean := False;
|
|
Girder_Discrim : Boolean := False);
|
|
-- Inherits component Old_C from Parent_Base to the Derived_Base.
|
|
-- If Plain_Discrim is True, Old_C is a discriminant.
|
|
-- If Girder_Discrim is True, Old_C is a girder discriminant.
|
|
-- If they are both false then Old_C is a regular component.
|
|
|
|
-----------------------
|
|
-- Inherit_Component --
|
|
-----------------------
|
|
|
|
procedure Inherit_Component
|
|
(Old_C : Entity_Id;
|
|
Plain_Discrim : Boolean := False;
|
|
Girder_Discrim : Boolean := False)
|
|
is
|
|
New_C : Entity_Id := New_Copy (Old_C);
|
|
|
|
Discrim : Entity_Id;
|
|
Corr_Discrim : Entity_Id;
|
|
|
|
begin
|
|
pragma Assert (not Is_Tagged or else not Girder_Discrim);
|
|
|
|
Set_Parent (New_C, Parent (Old_C));
|
|
|
|
-- Regular discriminants and components must be inserted
|
|
-- in the scope of the Derived_Base. Do it here.
|
|
|
|
if not Girder_Discrim then
|
|
Enter_Name (New_C);
|
|
end if;
|
|
|
|
-- For tagged types the Original_Record_Component must point to
|
|
-- whatever this field was pointing to in the parent type. This has
|
|
-- already been achieved by the call to New_Copy above.
|
|
|
|
if not Is_Tagged then
|
|
Set_Original_Record_Component (New_C, New_C);
|
|
end if;
|
|
|
|
-- If we have inherited a component then see if its Etype contains
|
|
-- references to Parent_Base discriminants. In this case, replace
|
|
-- these references with the constraints given in Discs. We do not
|
|
-- do this for the partial view of private types because this is
|
|
-- not needed (only the components of the full view will be used
|
|
-- for code generation) and cause problem. We also avoid this
|
|
-- transformation in some error situations.
|
|
|
|
if Ekind (New_C) = E_Component then
|
|
if (Is_Private_Type (Derived_Base)
|
|
and then not Is_Generic_Type (Derived_Base))
|
|
or else (Is_Empty_Elmt_List (Discs)
|
|
and then not Expander_Active)
|
|
then
|
|
Set_Etype (New_C, Etype (Old_C));
|
|
else
|
|
Set_Etype (New_C, Constrain_Component_Type (Etype (Old_C),
|
|
Derived_Base, N, Parent_Base, Discs));
|
|
end if;
|
|
end if;
|
|
|
|
-- In derived tagged types it is illegal to reference a non
|
|
-- discriminant component in the parent type. To catch this, mark
|
|
-- these components with an Ekind of E_Void. This will be reset in
|
|
-- Record_Type_Definition after processing the record extension of
|
|
-- the derived type.
|
|
|
|
if Is_Tagged and then Ekind (New_C) = E_Component then
|
|
Set_Ekind (New_C, E_Void);
|
|
end if;
|
|
|
|
if Plain_Discrim then
|
|
Set_Corresponding_Discriminant (New_C, Old_C);
|
|
Build_Discriminal (New_C);
|
|
|
|
-- If we are explicitly inheriting a girder discriminant it will be
|
|
-- completely hidden.
|
|
|
|
elsif Girder_Discrim then
|
|
Set_Corresponding_Discriminant (New_C, Empty);
|
|
Set_Discriminal (New_C, Empty);
|
|
Set_Is_Completely_Hidden (New_C);
|
|
|
|
-- Set the Original_Record_Component of each discriminant in the
|
|
-- derived base to point to the corresponding girder that we just
|
|
-- created.
|
|
|
|
Discrim := First_Discriminant (Derived_Base);
|
|
while Present (Discrim) loop
|
|
Corr_Discrim := Corresponding_Discriminant (Discrim);
|
|
|
|
-- Corr_Discrimm could be missing in an error situation.
|
|
|
|
if Present (Corr_Discrim)
|
|
and then Original_Record_Component (Corr_Discrim) = Old_C
|
|
then
|
|
Set_Original_Record_Component (Discrim, New_C);
|
|
end if;
|
|
|
|
Next_Discriminant (Discrim);
|
|
end loop;
|
|
|
|
Append_Entity (New_C, Derived_Base);
|
|
end if;
|
|
|
|
if not Is_Tagged then
|
|
Append_Elmt (Old_C, Assoc_List);
|
|
Append_Elmt (New_C, Assoc_List);
|
|
end if;
|
|
end Inherit_Component;
|
|
|
|
-- Variables local to Inherit_Components.
|
|
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
|
|
Parent_Discrim : Entity_Id;
|
|
Girder_Discrim : Entity_Id;
|
|
D : Entity_Id;
|
|
|
|
Component : Entity_Id;
|
|
|
|
-- Start of processing for Inherit_Components
|
|
|
|
begin
|
|
if not Is_Tagged then
|
|
Append_Elmt (Parent_Base, Assoc_List);
|
|
Append_Elmt (Derived_Base, Assoc_List);
|
|
end if;
|
|
|
|
-- Inherit parent discriminants if needed.
|
|
|
|
if Inherit_Discr then
|
|
Parent_Discrim := First_Discriminant (Parent_Base);
|
|
while Present (Parent_Discrim) loop
|
|
Inherit_Component (Parent_Discrim, Plain_Discrim => True);
|
|
Next_Discriminant (Parent_Discrim);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Create explicit girder discrims for untagged types when necessary.
|
|
|
|
if not Has_Unknown_Discriminants (Derived_Base)
|
|
and then Has_Discriminants (Parent_Base)
|
|
and then not Is_Tagged
|
|
and then
|
|
(not Inherit_Discr
|
|
or else First_Discriminant (Parent_Base) /=
|
|
First_Girder_Discriminant (Parent_Base))
|
|
then
|
|
Girder_Discrim := First_Girder_Discriminant (Parent_Base);
|
|
while Present (Girder_Discrim) loop
|
|
Inherit_Component (Girder_Discrim, Girder_Discrim => True);
|
|
Next_Girder_Discriminant (Girder_Discrim);
|
|
end loop;
|
|
end if;
|
|
|
|
-- See if we can apply the second transformation for derived types, as
|
|
-- explained in point 6. in the comments above Build_Derived_Record_Type
|
|
-- This is achieved by appending Derived_Base discriminants into
|
|
-- Discs, which has the side effect of returning a non empty Discs
|
|
-- list to the caller of Inherit_Components, which is what we want.
|
|
|
|
if Inherit_Discr
|
|
and then Is_Empty_Elmt_List (Discs)
|
|
and then (not Is_Private_Type (Derived_Base)
|
|
or Is_Generic_Type (Derived_Base))
|
|
then
|
|
D := First_Discriminant (Derived_Base);
|
|
while Present (D) loop
|
|
Append_Elmt (New_Reference_To (D, Loc), Discs);
|
|
Next_Discriminant (D);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Finally, inherit non-discriminant components unless they are not
|
|
-- visible because defined or inherited from the full view of the
|
|
-- parent. Don't inherit the _parent field of the parent type.
|
|
|
|
Component := First_Entity (Parent_Base);
|
|
while Present (Component) loop
|
|
if Ekind (Component) /= E_Component
|
|
or else Chars (Component) = Name_uParent
|
|
then
|
|
null;
|
|
|
|
-- If the derived type is within the parent type's declarative
|
|
-- region, then the components can still be inherited even though
|
|
-- they aren't visible at this point. This can occur for cases
|
|
-- such as within public child units where the components must
|
|
-- become visible upon entering the child unit's private part.
|
|
|
|
elsif not Is_Visible_Component (Component)
|
|
and then not In_Open_Scopes (Scope (Parent_Base))
|
|
then
|
|
null;
|
|
|
|
elsif Ekind (Derived_Base) = E_Private_Type
|
|
or else Ekind (Derived_Base) = E_Limited_Private_Type
|
|
then
|
|
null;
|
|
|
|
else
|
|
Inherit_Component (Component);
|
|
end if;
|
|
|
|
Next_Entity (Component);
|
|
end loop;
|
|
|
|
-- For tagged derived types, inherited discriminants cannot be used in
|
|
-- component declarations of the record extension part. To achieve this
|
|
-- we mark the inherited discriminants as not visible.
|
|
|
|
if Is_Tagged and then Inherit_Discr then
|
|
D := First_Discriminant (Derived_Base);
|
|
while Present (D) loop
|
|
Set_Is_Immediately_Visible (D, False);
|
|
Next_Discriminant (D);
|
|
end loop;
|
|
end if;
|
|
|
|
return Assoc_List;
|
|
end Inherit_Components;
|
|
|
|
------------------------------
|
|
-- Is_Valid_Constraint_Kind --
|
|
------------------------------
|
|
|
|
function Is_Valid_Constraint_Kind
|
|
(T_Kind : Type_Kind;
|
|
Constraint_Kind : Node_Kind)
|
|
return Boolean
|
|
is
|
|
begin
|
|
case T_Kind is
|
|
|
|
when Enumeration_Kind |
|
|
Integer_Kind =>
|
|
return Constraint_Kind = N_Range_Constraint;
|
|
|
|
when Decimal_Fixed_Point_Kind =>
|
|
return
|
|
Constraint_Kind = N_Digits_Constraint
|
|
or else
|
|
Constraint_Kind = N_Range_Constraint;
|
|
|
|
when Ordinary_Fixed_Point_Kind =>
|
|
return
|
|
Constraint_Kind = N_Delta_Constraint
|
|
or else
|
|
Constraint_Kind = N_Range_Constraint;
|
|
|
|
when Float_Kind =>
|
|
return
|
|
Constraint_Kind = N_Digits_Constraint
|
|
or else
|
|
Constraint_Kind = N_Range_Constraint;
|
|
|
|
when Access_Kind |
|
|
Array_Kind |
|
|
E_Record_Type |
|
|
E_Record_Subtype |
|
|
Class_Wide_Kind |
|
|
E_Incomplete_Type |
|
|
Private_Kind |
|
|
Concurrent_Kind =>
|
|
return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
|
|
|
|
when others =>
|
|
return True; -- Error will be detected later.
|
|
end case;
|
|
|
|
end Is_Valid_Constraint_Kind;
|
|
|
|
--------------------------
|
|
-- Is_Visible_Component --
|
|
--------------------------
|
|
|
|
function Is_Visible_Component (C : Entity_Id) return Boolean is
|
|
Original_Comp : constant Entity_Id := Original_Record_Component (C);
|
|
Original_Scope : Entity_Id;
|
|
|
|
begin
|
|
if No (Original_Comp) then
|
|
|
|
-- Premature usage, or previous error
|
|
|
|
return False;
|
|
|
|
else
|
|
Original_Scope := Scope (Original_Comp);
|
|
end if;
|
|
|
|
-- This test only concern tagged types
|
|
|
|
if not Is_Tagged_Type (Original_Scope) then
|
|
return True;
|
|
|
|
-- If it is _Parent or _Tag, there is no visiblity issue
|
|
|
|
elsif not Comes_From_Source (Original_Comp) then
|
|
return True;
|
|
|
|
-- If we are in the body of an instantiation, the component is
|
|
-- visible even when the parent type (possibly defined in an
|
|
-- enclosing unit or in a parent unit) might not.
|
|
|
|
elsif In_Instance_Body then
|
|
return True;
|
|
|
|
-- Discriminants are always visible.
|
|
|
|
elsif Ekind (Original_Comp) = E_Discriminant
|
|
and then not Has_Unknown_Discriminants (Original_Scope)
|
|
then
|
|
return True;
|
|
|
|
-- If the component has been declared in an ancestor which is
|
|
-- currently a private type, then it is not visible. The same
|
|
-- applies if the component's containing type is not in an
|
|
-- open scope and the original component's enclosing type
|
|
-- is a visible full type of a private type (which can occur
|
|
-- in cases where an attempt is being made to reference a
|
|
-- component in a sibling package that is inherited from
|
|
-- a visible component of a type in an ancestor package;
|
|
-- the component in the sibling package should not be
|
|
-- visible even though the component it inherited from
|
|
-- is visible). This does not apply however in the case
|
|
-- where the scope of the type is a private child unit.
|
|
-- The latter suppression of visibility is needed for cases
|
|
-- that are tested in B730006.
|
|
|
|
elsif (Ekind (Original_Comp) /= E_Discriminant
|
|
or else Has_Unknown_Discriminants (Original_Scope))
|
|
and then
|
|
(Is_Private_Type (Original_Scope)
|
|
or else
|
|
(not Is_Private_Descendant (Scope (Base_Type (Scope (C))))
|
|
and then not In_Open_Scopes (Scope (Base_Type (Scope (C))))
|
|
and then Has_Private_Declaration (Original_Scope)))
|
|
then
|
|
return False;
|
|
|
|
-- There is another weird way in which a component may be invisible
|
|
-- when the private and the full view are not derived from the same
|
|
-- ancestor. Here is an example :
|
|
|
|
-- type A1 is tagged record F1 : integer; end record;
|
|
-- type A2 is new A1 with record F2 : integer; end record;
|
|
-- type T is new A1 with private;
|
|
-- private
|
|
-- type T is new A2 with private;
|
|
|
|
-- In this case, the full view of T inherits F1 and F2 but the
|
|
-- private view inherits only F1
|
|
|
|
else
|
|
declare
|
|
Ancestor : Entity_Id := Scope (C);
|
|
|
|
begin
|
|
loop
|
|
if Ancestor = Original_Scope then
|
|
return True;
|
|
elsif Ancestor = Etype (Ancestor) then
|
|
return False;
|
|
end if;
|
|
|
|
Ancestor := Etype (Ancestor);
|
|
end loop;
|
|
|
|
return True;
|
|
end;
|
|
end if;
|
|
end Is_Visible_Component;
|
|
|
|
--------------------------
|
|
-- Make_Class_Wide_Type --
|
|
--------------------------
|
|
|
|
procedure Make_Class_Wide_Type (T : Entity_Id) is
|
|
CW_Type : Entity_Id;
|
|
CW_Name : Name_Id;
|
|
Next_E : Entity_Id;
|
|
|
|
begin
|
|
-- The class wide type can have been defined by the partial view in
|
|
-- which case everything is already done
|
|
|
|
if Present (Class_Wide_Type (T)) then
|
|
return;
|
|
end if;
|
|
|
|
CW_Type :=
|
|
New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
|
|
|
|
-- Inherit root type characteristics
|
|
|
|
CW_Name := Chars (CW_Type);
|
|
Next_E := Next_Entity (CW_Type);
|
|
Copy_Node (T, CW_Type);
|
|
Set_Comes_From_Source (CW_Type, False);
|
|
Set_Chars (CW_Type, CW_Name);
|
|
Set_Parent (CW_Type, Parent (T));
|
|
Set_Next_Entity (CW_Type, Next_E);
|
|
Set_Has_Delayed_Freeze (CW_Type);
|
|
|
|
-- Customize the class-wide type: It has no prim. op., it cannot be
|
|
-- abstract and its Etype points back to the root type
|
|
|
|
Set_Ekind (CW_Type, E_Class_Wide_Type);
|
|
Set_Is_Tagged_Type (CW_Type, True);
|
|
Set_Primitive_Operations (CW_Type, New_Elmt_List);
|
|
Set_Is_Abstract (CW_Type, False);
|
|
Set_Etype (CW_Type, T);
|
|
Set_Is_Constrained (CW_Type, False);
|
|
Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
|
|
Init_Size_Align (CW_Type);
|
|
|
|
-- If this is the class_wide type of a constrained subtype, it does
|
|
-- not have discriminants.
|
|
|
|
Set_Has_Discriminants (CW_Type,
|
|
Has_Discriminants (T) and then not Is_Constrained (T));
|
|
|
|
Set_Has_Unknown_Discriminants (CW_Type, True);
|
|
Set_Class_Wide_Type (T, CW_Type);
|
|
Set_Equivalent_Type (CW_Type, Empty);
|
|
|
|
-- The class-wide type of a class-wide type is itself (RM 3.9(14))
|
|
|
|
Set_Class_Wide_Type (CW_Type, CW_Type);
|
|
|
|
end Make_Class_Wide_Type;
|
|
|
|
----------------
|
|
-- Make_Index --
|
|
----------------
|
|
|
|
procedure Make_Index
|
|
(I : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id := Empty;
|
|
Suffix_Index : Nat := 1)
|
|
is
|
|
R : Node_Id;
|
|
T : Entity_Id;
|
|
Def_Id : Entity_Id := Empty;
|
|
Found : Boolean := False;
|
|
|
|
begin
|
|
-- For a discrete range used in a constrained array definition and
|
|
-- defined by a range, an implicit conversion to the predefined type
|
|
-- INTEGER is assumed if each bound is either a numeric literal, a named
|
|
-- number, or an attribute, and the type of both bounds (prior to the
|
|
-- implicit conversion) is the type universal_integer. Otherwise, both
|
|
-- bounds must be of the same discrete type, other than universal
|
|
-- integer; this type must be determinable independently of the
|
|
-- context, but using the fact that the type must be discrete and that
|
|
-- both bounds must have the same type.
|
|
|
|
-- Character literals also have a universal type in the absence of
|
|
-- of additional context, and are resolved to Standard_Character.
|
|
|
|
if Nkind (I) = N_Range then
|
|
|
|
-- The index is given by a range constraint. The bounds are known
|
|
-- to be of a consistent type.
|
|
|
|
if not Is_Overloaded (I) then
|
|
T := Etype (I);
|
|
|
|
-- If the bounds are universal, choose the specific predefined
|
|
-- type.
|
|
|
|
if T = Universal_Integer then
|
|
T := Standard_Integer;
|
|
|
|
elsif T = Any_Character then
|
|
|
|
if not Ada_83 then
|
|
Error_Msg_N
|
|
("ambiguous character literals (could be Wide_Character)",
|
|
I);
|
|
end if;
|
|
|
|
T := Standard_Character;
|
|
end if;
|
|
|
|
else
|
|
T := Any_Type;
|
|
|
|
declare
|
|
Ind : Interp_Index;
|
|
It : Interp;
|
|
|
|
begin
|
|
Get_First_Interp (I, Ind, It);
|
|
|
|
while Present (It.Typ) loop
|
|
if Is_Discrete_Type (It.Typ) then
|
|
|
|
if Found
|
|
and then not Covers (It.Typ, T)
|
|
and then not Covers (T, It.Typ)
|
|
then
|
|
Error_Msg_N ("ambiguous bounds in discrete range", I);
|
|
exit;
|
|
else
|
|
T := It.Typ;
|
|
Found := True;
|
|
end if;
|
|
end if;
|
|
|
|
Get_Next_Interp (Ind, It);
|
|
end loop;
|
|
|
|
if T = Any_Type then
|
|
Error_Msg_N ("discrete type required for range", I);
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
|
|
elsif T = Universal_Integer then
|
|
T := Standard_Integer;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
if not Is_Discrete_Type (T) then
|
|
Error_Msg_N ("discrete type required for range", I);
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
end if;
|
|
|
|
R := I;
|
|
Process_Range_Expr_In_Decl (R, T, Related_Nod);
|
|
|
|
elsif Nkind (I) = N_Subtype_Indication then
|
|
|
|
-- The index is given by a subtype with a range constraint.
|
|
|
|
T := Base_Type (Entity (Subtype_Mark (I)));
|
|
|
|
if not Is_Discrete_Type (T) then
|
|
Error_Msg_N ("discrete type required for range", I);
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
end if;
|
|
|
|
R := Range_Expression (Constraint (I));
|
|
|
|
Resolve (R, T);
|
|
Process_Range_Expr_In_Decl (R,
|
|
Entity (Subtype_Mark (I)), Related_Nod);
|
|
|
|
elsif Nkind (I) = N_Attribute_Reference then
|
|
|
|
-- The parser guarantees that the attribute is a RANGE attribute
|
|
|
|
Analyze_And_Resolve (I);
|
|
T := Etype (I);
|
|
R := I;
|
|
|
|
-- If none of the above, must be a subtype. We convert this to a
|
|
-- range attribute reference because in the case of declared first
|
|
-- named subtypes, the types in the range reference can be different
|
|
-- from the type of the entity. A range attribute normalizes the
|
|
-- reference and obtains the correct types for the bounds.
|
|
|
|
-- This transformation is in the nature of an expansion, is only
|
|
-- done if expansion is active. In particular, it is not done on
|
|
-- formal generic types, because we need to retain the name of the
|
|
-- original index for instantiation purposes.
|
|
|
|
else
|
|
if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
|
|
Error_Msg_N ("invalid subtype mark in discrete range ", I);
|
|
Set_Etype (I, Any_Integer);
|
|
return;
|
|
else
|
|
-- The type mark may be that of an incomplete type. It is only
|
|
-- now that we can get the full view, previous analysis does
|
|
-- not look specifically for a type mark.
|
|
|
|
Set_Entity (I, Get_Full_View (Entity (I)));
|
|
Set_Etype (I, Entity (I));
|
|
Def_Id := Entity (I);
|
|
|
|
if not Is_Discrete_Type (Def_Id) then
|
|
Error_Msg_N ("discrete type required for index", I);
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
if Expander_Active then
|
|
Rewrite (I,
|
|
Make_Attribute_Reference (Sloc (I),
|
|
Attribute_Name => Name_Range,
|
|
Prefix => Relocate_Node (I)));
|
|
|
|
-- The original was a subtype mark that does not freeze. This
|
|
-- means that the rewritten version must not freeze either.
|
|
|
|
Set_Must_Not_Freeze (I);
|
|
Set_Must_Not_Freeze (Prefix (I));
|
|
|
|
-- Is order critical??? if so, document why, if not
|
|
-- use Analyze_And_Resolve
|
|
|
|
Analyze (I);
|
|
T := Etype (I);
|
|
Resolve (I, T);
|
|
R := I;
|
|
|
|
else
|
|
-- Type is legal, nothing else to construct.
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
if not Is_Discrete_Type (T) then
|
|
Error_Msg_N ("discrete type required for range", I);
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
|
|
elsif T = Any_Type then
|
|
Set_Etype (I, Any_Type);
|
|
return;
|
|
end if;
|
|
|
|
-- We will now create the appropriate Itype to describe the
|
|
-- range, but first a check. If we originally had a subtype,
|
|
-- then we just label the range with this subtype. Not only
|
|
-- is there no need to construct a new subtype, but it is wrong
|
|
-- to do so for two reasons:
|
|
|
|
-- 1. A legality concern, if we have a subtype, it must not
|
|
-- freeze, and the Itype would cause freezing incorrectly
|
|
|
|
-- 2. An efficiency concern, if we created an Itype, it would
|
|
-- not be recognized as the same type for the purposes of
|
|
-- eliminating checks in some circumstances.
|
|
|
|
-- We signal this case by setting the subtype entity in Def_Id.
|
|
|
|
-- It would be nice to also do this optimization for the cases
|
|
-- of X'Range and also the explicit range X'First .. X'Last,
|
|
-- but that is not done yet (it is just an efficiency concern) ???
|
|
|
|
if No (Def_Id) then
|
|
|
|
Def_Id :=
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
|
|
Set_Etype (Def_Id, Base_Type (T));
|
|
|
|
if Is_Signed_Integer_Type (T) then
|
|
Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
|
|
|
|
elsif Is_Modular_Integer_Type (T) then
|
|
Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
|
|
|
|
else
|
|
Set_Ekind (Def_Id, E_Enumeration_Subtype);
|
|
Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
|
|
end if;
|
|
|
|
Set_Size_Info (Def_Id, (T));
|
|
Set_RM_Size (Def_Id, RM_Size (T));
|
|
Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
|
|
|
|
Set_Scalar_Range (Def_Id, R);
|
|
Conditional_Delay (Def_Id, T);
|
|
|
|
-- In the subtype indication case, if the immediate parent of the
|
|
-- new subtype is non-static, then the subtype we create is non-
|
|
-- static, even if its bounds are static.
|
|
|
|
if Nkind (I) = N_Subtype_Indication
|
|
and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
|
|
then
|
|
Set_Is_Non_Static_Subtype (Def_Id);
|
|
end if;
|
|
end if;
|
|
|
|
-- Final step is to label the index with this constructed type
|
|
|
|
Set_Etype (I, Def_Id);
|
|
end Make_Index;
|
|
|
|
------------------------------
|
|
-- Modular_Type_Declaration --
|
|
------------------------------
|
|
|
|
procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
|
Mod_Expr : constant Node_Id := Expression (Def);
|
|
M_Val : Uint;
|
|
|
|
procedure Set_Modular_Size (Bits : Int);
|
|
-- Sets RM_Size to Bits, and Esize to normal word size above this
|
|
|
|
procedure Set_Modular_Size (Bits : Int) is
|
|
begin
|
|
Set_RM_Size (T, UI_From_Int (Bits));
|
|
|
|
if Bits <= 8 then
|
|
Init_Esize (T, 8);
|
|
|
|
elsif Bits <= 16 then
|
|
Init_Esize (T, 16);
|
|
|
|
elsif Bits <= 32 then
|
|
Init_Esize (T, 32);
|
|
|
|
else
|
|
Init_Esize (T, System_Max_Binary_Modulus_Power);
|
|
end if;
|
|
end Set_Modular_Size;
|
|
|
|
-- Start of processing for Modular_Type_Declaration
|
|
|
|
begin
|
|
Analyze_And_Resolve (Mod_Expr, Any_Integer);
|
|
Set_Etype (T, T);
|
|
Set_Ekind (T, E_Modular_Integer_Type);
|
|
Init_Alignment (T);
|
|
Set_Is_Constrained (T);
|
|
|
|
if not Is_OK_Static_Expression (Mod_Expr) then
|
|
Error_Msg_N
|
|
("non-static expression used for modular type bound", Mod_Expr);
|
|
M_Val := 2 ** System_Max_Binary_Modulus_Power;
|
|
else
|
|
M_Val := Expr_Value (Mod_Expr);
|
|
end if;
|
|
|
|
if M_Val < 1 then
|
|
Error_Msg_N ("modulus value must be positive", Mod_Expr);
|
|
M_Val := 2 ** System_Max_Binary_Modulus_Power;
|
|
end if;
|
|
|
|
Set_Modulus (T, M_Val);
|
|
|
|
-- Create bounds for the modular type based on the modulus given in
|
|
-- the type declaration and then analyze and resolve those bounds.
|
|
|
|
Set_Scalar_Range (T,
|
|
Make_Range (Sloc (Mod_Expr),
|
|
Low_Bound =>
|
|
Make_Integer_Literal (Sloc (Mod_Expr), 0),
|
|
High_Bound =>
|
|
Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
|
|
|
|
-- Properly analyze the literals for the range. We do this manually
|
|
-- because we can't go calling Resolve, since we are resolving these
|
|
-- bounds with the type, and this type is certainly not complete yet!
|
|
|
|
Set_Etype (Low_Bound (Scalar_Range (T)), T);
|
|
Set_Etype (High_Bound (Scalar_Range (T)), T);
|
|
Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
|
|
Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
|
|
|
|
-- Loop through powers of two to find number of bits required
|
|
|
|
for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
|
|
|
|
-- Binary case
|
|
|
|
if M_Val = 2 ** Bits then
|
|
Set_Modular_Size (Bits);
|
|
return;
|
|
|
|
-- Non-binary case
|
|
|
|
elsif M_Val < 2 ** Bits then
|
|
Set_Non_Binary_Modulus (T);
|
|
|
|
if Bits > System_Max_Nonbinary_Modulus_Power then
|
|
Error_Msg_Uint_1 :=
|
|
UI_From_Int (System_Max_Nonbinary_Modulus_Power);
|
|
Error_Msg_N
|
|
("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
|
|
Set_Modular_Size (System_Max_Binary_Modulus_Power);
|
|
return;
|
|
|
|
else
|
|
-- In the non-binary case, set size as per RM 13.3(55).
|
|
|
|
Set_Modular_Size (Bits);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
end loop;
|
|
|
|
-- If we fall through, then the size exceed System.Max_Binary_Modulus
|
|
-- so we just signal an error and set the maximum size.
|
|
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
|
|
Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
|
|
|
|
Set_Modular_Size (System_Max_Binary_Modulus_Power);
|
|
Init_Alignment (T);
|
|
|
|
end Modular_Type_Declaration;
|
|
|
|
-------------------------
|
|
-- New_Binary_Operator --
|
|
-------------------------
|
|
|
|
procedure New_Binary_Operator (Op_Name : Name_Id; Typ : Entity_Id) is
|
|
Loc : constant Source_Ptr := Sloc (Typ);
|
|
Op : Entity_Id;
|
|
|
|
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
|
|
-- Create abbreviated declaration for the formal of a predefined
|
|
-- Operator 'Op' of type 'Typ'
|
|
|
|
--------------------
|
|
-- Make_Op_Formal --
|
|
--------------------
|
|
|
|
function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
|
|
Set_Etype (Formal, Typ);
|
|
Set_Mechanism (Formal, Default_Mechanism);
|
|
return Formal;
|
|
end Make_Op_Formal;
|
|
|
|
-- Start of processing for New_Binary_Operator
|
|
|
|
begin
|
|
Op := Make_Defining_Operator_Symbol (Loc, Op_Name);
|
|
|
|
Set_Ekind (Op, E_Operator);
|
|
Set_Scope (Op, Current_Scope);
|
|
Set_Etype (Op, Typ);
|
|
Set_Homonym (Op, Get_Name_Entity_Id (Op_Name));
|
|
Set_Is_Immediately_Visible (Op);
|
|
Set_Is_Intrinsic_Subprogram (Op);
|
|
Set_Has_Completion (Op);
|
|
Append_Entity (Op, Current_Scope);
|
|
|
|
Set_Name_Entity_Id (Op_Name, Op);
|
|
|
|
Append_Entity (Make_Op_Formal (Typ, Op), Op);
|
|
Append_Entity (Make_Op_Formal (Typ, Op), Op);
|
|
|
|
end New_Binary_Operator;
|
|
|
|
-------------------------------------------
|
|
-- Ordinary_Fixed_Point_Type_Declaration --
|
|
-------------------------------------------
|
|
|
|
procedure Ordinary_Fixed_Point_Type_Declaration
|
|
(T : Entity_Id;
|
|
Def : Node_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Def);
|
|
Delta_Expr : constant Node_Id := Delta_Expression (Def);
|
|
RRS : constant Node_Id := Real_Range_Specification (Def);
|
|
Implicit_Base : Entity_Id;
|
|
Delta_Val : Ureal;
|
|
Small_Val : Ureal;
|
|
Low_Val : Ureal;
|
|
High_Val : Ureal;
|
|
|
|
begin
|
|
Check_Restriction (No_Fixed_Point, Def);
|
|
|
|
-- Create implicit base type
|
|
|
|
Implicit_Base :=
|
|
Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
|
|
Set_Etype (Implicit_Base, Implicit_Base);
|
|
|
|
-- Analyze and process delta expression
|
|
|
|
Analyze_And_Resolve (Delta_Expr, Any_Real);
|
|
|
|
Check_Delta_Expression (Delta_Expr);
|
|
Delta_Val := Expr_Value_R (Delta_Expr);
|
|
|
|
Set_Delta_Value (Implicit_Base, Delta_Val);
|
|
|
|
-- Compute default small from given delta, which is the largest
|
|
-- power of two that does not exceed the given delta value.
|
|
|
|
declare
|
|
Tmp : Ureal := Ureal_1;
|
|
Scale : Int := 0;
|
|
|
|
begin
|
|
if Delta_Val < Ureal_1 then
|
|
while Delta_Val < Tmp loop
|
|
Tmp := Tmp / Ureal_2;
|
|
Scale := Scale + 1;
|
|
end loop;
|
|
|
|
else
|
|
loop
|
|
Tmp := Tmp * Ureal_2;
|
|
exit when Tmp > Delta_Val;
|
|
Scale := Scale - 1;
|
|
end loop;
|
|
end if;
|
|
|
|
Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
|
|
end;
|
|
|
|
Set_Small_Value (Implicit_Base, Small_Val);
|
|
|
|
-- If no range was given, set a dummy range
|
|
|
|
if RRS <= Empty_Or_Error then
|
|
Low_Val := -Small_Val;
|
|
High_Val := Small_Val;
|
|
|
|
-- Otherwise analyze and process given range
|
|
|
|
else
|
|
declare
|
|
Low : constant Node_Id := Low_Bound (RRS);
|
|
High : constant Node_Id := High_Bound (RRS);
|
|
|
|
begin
|
|
Analyze_And_Resolve (Low, Any_Real);
|
|
Analyze_And_Resolve (High, Any_Real);
|
|
Check_Real_Bound (Low);
|
|
Check_Real_Bound (High);
|
|
|
|
-- Obtain and set the range
|
|
|
|
Low_Val := Expr_Value_R (Low);
|
|
High_Val := Expr_Value_R (High);
|
|
|
|
if Low_Val > High_Val then
|
|
Error_Msg_NE ("?fixed point type& has null range", Def, T);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- The range for both the implicit base and the declared first
|
|
-- subtype cannot be set yet, so we use the special routine
|
|
-- Set_Fixed_Range to set a temporary range in place. Note that
|
|
-- the bounds of the base type will be widened to be symmetrical
|
|
-- and to fill the available bits when the type is frozen.
|
|
|
|
-- We could do this with all discrete types, and probably should, but
|
|
-- we absolutely have to do it for fixed-point, since the end-points
|
|
-- of the range and the size are determined by the small value, which
|
|
-- could be reset before the freeze point.
|
|
|
|
Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
|
|
Set_Fixed_Range (T, Loc, Low_Val, High_Val);
|
|
|
|
Init_Size_Align (Implicit_Base);
|
|
|
|
-- Complete definition of first subtype
|
|
|
|
Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
|
|
Set_Etype (T, Implicit_Base);
|
|
Init_Size_Align (T);
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
|
Set_Small_Value (T, Small_Val);
|
|
Set_Delta_Value (T, Delta_Val);
|
|
Set_Is_Constrained (T);
|
|
|
|
end Ordinary_Fixed_Point_Type_Declaration;
|
|
|
|
----------------------------------------
|
|
-- Prepare_Private_Subtype_Completion --
|
|
----------------------------------------
|
|
|
|
procedure Prepare_Private_Subtype_Completion
|
|
(Id : Entity_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
Id_B : constant Entity_Id := Base_Type (Id);
|
|
Full_B : constant Entity_Id := Full_View (Id_B);
|
|
Full : Entity_Id;
|
|
|
|
begin
|
|
if Present (Full_B) then
|
|
|
|
-- The Base_Type is already completed, we can complete the
|
|
-- subtype now. We have to create a new entity with the same name,
|
|
-- Thus we can't use Create_Itype.
|
|
-- This is messy, should be fixed ???
|
|
|
|
Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
|
|
Set_Is_Itype (Full);
|
|
Set_Associated_Node_For_Itype (Full, Related_Nod);
|
|
Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
|
|
end if;
|
|
|
|
-- The parent subtype may be private, but the base might not, in some
|
|
-- nested instances. In that case, the subtype does not need to be
|
|
-- exchanged. It would still be nice to make private subtypes and their
|
|
-- bases consistent at all times ???
|
|
|
|
if Is_Private_Type (Id_B) then
|
|
Append_Elmt (Id, Private_Dependents (Id_B));
|
|
end if;
|
|
|
|
end Prepare_Private_Subtype_Completion;
|
|
|
|
---------------------------
|
|
-- Process_Discriminants --
|
|
---------------------------
|
|
|
|
procedure Process_Discriminants (N : Node_Id) is
|
|
Id : Node_Id;
|
|
Discr : Node_Id;
|
|
Discr_Number : Uint;
|
|
Discr_Type : Entity_Id;
|
|
Default_Present : Boolean := False;
|
|
Default_Not_Present : Boolean := False;
|
|
Elist : Elist_Id := New_Elmt_List;
|
|
|
|
begin
|
|
-- A composite type other than an array type can have discriminants.
|
|
-- Discriminants of non-limited types must have a discrete type.
|
|
-- On entry, the current scope is the composite type.
|
|
|
|
-- The discriminants are initially entered into the scope of the type
|
|
-- via Enter_Name with the default Ekind of E_Void to prevent premature
|
|
-- use, as explained at the end of this procedure.
|
|
|
|
Discr := First (Discriminant_Specifications (N));
|
|
while Present (Discr) loop
|
|
Enter_Name (Defining_Identifier (Discr));
|
|
|
|
if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
|
|
Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
|
|
|
|
else
|
|
Find_Type (Discriminant_Type (Discr));
|
|
Discr_Type := Etype (Discriminant_Type (Discr));
|
|
|
|
if Error_Posted (Discriminant_Type (Discr)) then
|
|
Discr_Type := Any_Type;
|
|
end if;
|
|
end if;
|
|
|
|
if Is_Access_Type (Discr_Type) then
|
|
Check_Access_Discriminant_Requires_Limited
|
|
(Discr, Discriminant_Type (Discr));
|
|
|
|
if Ada_83 and then Comes_From_Source (Discr) then
|
|
Error_Msg_N
|
|
("(Ada 83) access discriminant not allowed", Discr);
|
|
end if;
|
|
|
|
elsif not Is_Discrete_Type (Discr_Type) then
|
|
Error_Msg_N ("discriminants must have a discrete or access type",
|
|
Discriminant_Type (Discr));
|
|
end if;
|
|
|
|
Set_Etype (Defining_Identifier (Discr), Discr_Type);
|
|
|
|
-- If a discriminant specification includes the assignment compound
|
|
-- delimiter followed by an expression, the expression is the default
|
|
-- expression of the discriminant; the default expression must be of
|
|
-- the type of the discriminant. (RM 3.7.1) Since this expression is
|
|
-- a default expression, we do the special preanalysis, since this
|
|
-- expression does not freeze (see "Handling of Default Expressions"
|
|
-- in spec of package Sem).
|
|
|
|
if Present (Expression (Discr)) then
|
|
Analyze_Default_Expression (Expression (Discr), Discr_Type);
|
|
|
|
if Nkind (N) = N_Formal_Type_Declaration then
|
|
Error_Msg_N
|
|
("discriminant defaults not allowed for formal type",
|
|
Expression (Discr));
|
|
|
|
elsif Is_Tagged_Type (Current_Scope) then
|
|
Error_Msg_N
|
|
("discriminants of tagged type cannot have defaults",
|
|
Expression (Discr));
|
|
|
|
else
|
|
Default_Present := True;
|
|
Append_Elmt (Expression (Discr), Elist);
|
|
|
|
-- Tag the defining identifiers for the discriminants with
|
|
-- their corresponding default expressions from the tree.
|
|
|
|
Set_Discriminant_Default_Value
|
|
(Defining_Identifier (Discr), Expression (Discr));
|
|
end if;
|
|
|
|
else
|
|
Default_Not_Present := True;
|
|
end if;
|
|
|
|
Next (Discr);
|
|
end loop;
|
|
|
|
-- An element list consisting of the default expressions of the
|
|
-- discriminants is constructed in the above loop and used to set
|
|
-- the Discriminant_Constraint attribute for the type. If an object
|
|
-- is declared of this (record or task) type without any explicit
|
|
-- discriminant constraint given, this element list will form the
|
|
-- actual parameters for the corresponding initialization procedure
|
|
-- for the type.
|
|
|
|
Set_Discriminant_Constraint (Current_Scope, Elist);
|
|
Set_Girder_Constraint (Current_Scope, No_Elist);
|
|
|
|
-- Default expressions must be provided either for all or for none
|
|
-- of the discriminants of a discriminant part. (RM 3.7.1)
|
|
|
|
if Default_Present and then Default_Not_Present then
|
|
Error_Msg_N
|
|
("incomplete specification of defaults for discriminants", N);
|
|
end if;
|
|
|
|
-- The use of the name of a discriminant is not allowed in default
|
|
-- expressions of a discriminant part if the specification of the
|
|
-- discriminant is itself given in the discriminant part. (RM 3.7.1)
|
|
|
|
-- To detect this, the discriminant names are entered initially with an
|
|
-- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
|
|
-- attempt to use a void entity (for example in an expression that is
|
|
-- type-checked) produces the error message: premature usage. Now after
|
|
-- completing the semantic analysis of the discriminant part, we can set
|
|
-- the Ekind of all the discriminants appropriately.
|
|
|
|
Discr := First (Discriminant_Specifications (N));
|
|
Discr_Number := Uint_1;
|
|
|
|
while Present (Discr) loop
|
|
Id := Defining_Identifier (Discr);
|
|
Set_Ekind (Id, E_Discriminant);
|
|
Init_Component_Location (Id);
|
|
Init_Esize (Id);
|
|
Set_Discriminant_Number (Id, Discr_Number);
|
|
|
|
-- Make sure this is always set, even in illegal programs
|
|
|
|
Set_Corresponding_Discriminant (Id, Empty);
|
|
|
|
-- Initialize the Original_Record_Component to the entity itself.
|
|
-- Inherit_Components will propagate the right value to
|
|
-- discriminants in derived record types.
|
|
|
|
Set_Original_Record_Component (Id, Id);
|
|
|
|
-- Create the discriminal for the discriminant.
|
|
|
|
Build_Discriminal (Id);
|
|
|
|
Next (Discr);
|
|
Discr_Number := Discr_Number + 1;
|
|
end loop;
|
|
|
|
Set_Has_Discriminants (Current_Scope);
|
|
end Process_Discriminants;
|
|
|
|
-----------------------
|
|
-- Process_Full_View --
|
|
-----------------------
|
|
|
|
procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
|
|
Priv_Parent : Entity_Id;
|
|
Full_Parent : Entity_Id;
|
|
Full_Indic : Node_Id;
|
|
|
|
begin
|
|
-- First some sanity checks that must be done after semantic
|
|
-- decoration of the full view and thus cannot be placed with other
|
|
-- similar checks in Find_Type_Name
|
|
|
|
if not Is_Limited_Type (Priv_T)
|
|
and then (Is_Limited_Type (Full_T)
|
|
or else Is_Limited_Composite (Full_T))
|
|
then
|
|
Error_Msg_N
|
|
("completion of nonlimited type cannot be limited", Full_T);
|
|
|
|
elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
|
|
Error_Msg_N
|
|
("completion of nonabstract type cannot be abstract", Full_T);
|
|
|
|
elsif Is_Tagged_Type (Priv_T)
|
|
and then Is_Limited_Type (Priv_T)
|
|
and then not Is_Limited_Type (Full_T)
|
|
then
|
|
-- GNAT allow its own definition of Limited_Controlled to disobey
|
|
-- this rule in order in ease the implementation. The next test is
|
|
-- safe because Root_Controlled is defined in a private system child
|
|
|
|
if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
|
|
Set_Is_Limited_Composite (Full_T);
|
|
else
|
|
Error_Msg_N
|
|
("completion of limited tagged type must be limited", Full_T);
|
|
end if;
|
|
|
|
elsif Is_Generic_Type (Priv_T) then
|
|
Error_Msg_N ("generic type cannot have a completion", Full_T);
|
|
end if;
|
|
|
|
if Is_Tagged_Type (Priv_T)
|
|
and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
|
|
and then Is_Derived_Type (Full_T)
|
|
then
|
|
Priv_Parent := Etype (Priv_T);
|
|
|
|
-- The full view of a private extension may have been transformed
|
|
-- into an unconstrained derived type declaration and a subtype
|
|
-- declaration (see build_derived_record_type for details).
|
|
|
|
if Nkind (N) = N_Subtype_Declaration then
|
|
Full_Indic := Subtype_Indication (N);
|
|
Full_Parent := Etype (Base_Type (Full_T));
|
|
else
|
|
Full_Indic := Subtype_Indication (Type_Definition (N));
|
|
Full_Parent := Etype (Full_T);
|
|
end if;
|
|
|
|
-- Check that the parent type of the full type is a descendant of
|
|
-- the ancestor subtype given in the private extension. If either
|
|
-- entity has an Etype equal to Any_Type then we had some previous
|
|
-- error situation [7.3(8)].
|
|
|
|
if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
|
|
return;
|
|
|
|
elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
|
|
Error_Msg_N
|
|
("parent of full type must descend from parent"
|
|
& " of private extension", Full_Indic);
|
|
|
|
-- Check the rules of 7.3(10): if the private extension inherits
|
|
-- known discriminants, then the full type must also inherit those
|
|
-- discriminants from the same (ancestor) type, and the parent
|
|
-- subtype of the full type must be constrained if and only if
|
|
-- the ancestor subtype of the private extension is constrained.
|
|
|
|
elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
|
|
and then not Has_Unknown_Discriminants (Priv_T)
|
|
and then Has_Discriminants (Base_Type (Priv_Parent))
|
|
then
|
|
declare
|
|
Priv_Indic : constant Node_Id :=
|
|
Subtype_Indication (Parent (Priv_T));
|
|
|
|
Priv_Constr : constant Boolean :=
|
|
Is_Constrained (Priv_Parent)
|
|
or else
|
|
Nkind (Priv_Indic) = N_Subtype_Indication
|
|
or else Is_Constrained (Entity (Priv_Indic));
|
|
|
|
Full_Constr : constant Boolean :=
|
|
Is_Constrained (Full_Parent)
|
|
or else
|
|
Nkind (Full_Indic) = N_Subtype_Indication
|
|
or else Is_Constrained (Entity (Full_Indic));
|
|
|
|
Priv_Discr : Entity_Id;
|
|
Full_Discr : Entity_Id;
|
|
|
|
begin
|
|
Priv_Discr := First_Discriminant (Priv_Parent);
|
|
Full_Discr := First_Discriminant (Full_Parent);
|
|
|
|
while Present (Priv_Discr) and then Present (Full_Discr) loop
|
|
if Original_Record_Component (Priv_Discr) =
|
|
Original_Record_Component (Full_Discr)
|
|
or else
|
|
Corresponding_Discriminant (Priv_Discr) =
|
|
Corresponding_Discriminant (Full_Discr)
|
|
then
|
|
null;
|
|
else
|
|
exit;
|
|
end if;
|
|
|
|
Next_Discriminant (Priv_Discr);
|
|
Next_Discriminant (Full_Discr);
|
|
end loop;
|
|
|
|
if Present (Priv_Discr) or else Present (Full_Discr) then
|
|
Error_Msg_N
|
|
("full view must inherit discriminants of the parent type"
|
|
& " used in the private extension", Full_Indic);
|
|
|
|
elsif Priv_Constr and then not Full_Constr then
|
|
Error_Msg_N
|
|
("parent subtype of full type must be constrained",
|
|
Full_Indic);
|
|
|
|
elsif Full_Constr and then not Priv_Constr then
|
|
Error_Msg_N
|
|
("parent subtype of full type must be unconstrained",
|
|
Full_Indic);
|
|
end if;
|
|
end;
|
|
|
|
-- Check the rules of 7.3(12): if a partial view has neither known
|
|
-- or unknown discriminants, then the full type declaration shall
|
|
-- define a definite subtype.
|
|
|
|
elsif not Has_Unknown_Discriminants (Priv_T)
|
|
and then not Has_Discriminants (Priv_T)
|
|
and then not Is_Constrained (Full_T)
|
|
then
|
|
Error_Msg_N
|
|
("full view must define a constrained type if partial view"
|
|
& " has no discriminants", Full_T);
|
|
end if;
|
|
|
|
-- ??????? Do we implement the following properly ?????
|
|
-- If the ancestor subtype of a private extension has constrained
|
|
-- discriminants, then the parent subtype of the full view shall
|
|
-- impose a statically matching constraint on those discriminants
|
|
-- [7.3(13)].
|
|
|
|
else
|
|
-- For untagged types, verify that a type without discriminants
|
|
-- is not completed with an unconstrained type.
|
|
|
|
if not Is_Indefinite_Subtype (Priv_T)
|
|
and then Is_Indefinite_Subtype (Full_T)
|
|
then
|
|
Error_Msg_N ("full view of type must be definite subtype", Full_T);
|
|
end if;
|
|
end if;
|
|
|
|
-- Create a full declaration for all its subtypes recorded in
|
|
-- Private_Dependents and swap them similarly to the base type.
|
|
-- These are subtypes that have been define before the full
|
|
-- declaration of the private type. We also swap the entry in
|
|
-- Private_Dependents list so we can properly restore the
|
|
-- private view on exit from the scope.
|
|
|
|
declare
|
|
Priv_Elmt : Elmt_Id;
|
|
Priv : Entity_Id;
|
|
Full : Entity_Id;
|
|
|
|
begin
|
|
Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
|
|
while Present (Priv_Elmt) loop
|
|
Priv := Node (Priv_Elmt);
|
|
|
|
if Ekind (Priv) = E_Private_Subtype
|
|
or else Ekind (Priv) = E_Limited_Private_Subtype
|
|
or else Ekind (Priv) = E_Record_Subtype_With_Private
|
|
then
|
|
Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
|
|
Set_Is_Itype (Full);
|
|
Set_Parent (Full, Parent (Priv));
|
|
Set_Associated_Node_For_Itype (Full, N);
|
|
|
|
-- Now we need to complete the private subtype, but since the
|
|
-- base type has already been swapped, we must also swap the
|
|
-- subtypes (and thus, reverse the arguments in the call to
|
|
-- Complete_Private_Subtype).
|
|
|
|
Copy_And_Swap (Priv, Full);
|
|
Complete_Private_Subtype (Full, Priv, Full_T, N);
|
|
Replace_Elmt (Priv_Elmt, Full);
|
|
end if;
|
|
|
|
Next_Elmt (Priv_Elmt);
|
|
end loop;
|
|
end;
|
|
|
|
-- If the private view was tagged, copy the new Primitive
|
|
-- operations from the private view to the full view.
|
|
|
|
if Is_Tagged_Type (Full_T) then
|
|
declare
|
|
Priv_List : Elist_Id;
|
|
Full_List : constant Elist_Id := Primitive_Operations (Full_T);
|
|
P1, P2 : Elmt_Id;
|
|
Prim : Entity_Id;
|
|
D_Type : Entity_Id;
|
|
|
|
begin
|
|
if Is_Tagged_Type (Priv_T) then
|
|
Priv_List := Primitive_Operations (Priv_T);
|
|
|
|
P1 := First_Elmt (Priv_List);
|
|
while Present (P1) loop
|
|
Prim := Node (P1);
|
|
|
|
-- Transfer explicit primitives, not those inherited from
|
|
-- parent of partial view, which will be re-inherited on
|
|
-- the full view.
|
|
|
|
if Comes_From_Source (Prim) then
|
|
P2 := First_Elmt (Full_List);
|
|
while Present (P2) and then Node (P2) /= Prim loop
|
|
Next_Elmt (P2);
|
|
end loop;
|
|
|
|
-- If not found, that is a new one
|
|
|
|
if No (P2) then
|
|
Append_Elmt (Prim, Full_List);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Elmt (P1);
|
|
end loop;
|
|
|
|
else
|
|
-- In this case the partial view is untagged, so here we
|
|
-- locate all of the earlier primitives that need to be
|
|
-- treated as dispatching (those that appear between the
|
|
-- two views). Note that these additional operations must
|
|
-- all be new operations (any earlier operations that
|
|
-- override inherited operations of the full view will
|
|
-- already have been inserted in the primitives list and
|
|
-- marked as dispatching by Check_Operation_From_Private_View.
|
|
-- Note that implicit "/=" operators are excluded from being
|
|
-- added to the primitives list since they shouldn't be
|
|
-- treated as dispatching (tagged "/=" is handled specially).
|
|
|
|
Prim := Next_Entity (Full_T);
|
|
while Present (Prim) and then Prim /= Priv_T loop
|
|
if (Ekind (Prim) = E_Procedure
|
|
or else Ekind (Prim) = E_Function)
|
|
then
|
|
|
|
D_Type := Find_Dispatching_Type (Prim);
|
|
|
|
if D_Type = Full_T
|
|
and then (Chars (Prim) /= Name_Op_Ne
|
|
or else Comes_From_Source (Prim))
|
|
then
|
|
Check_Controlling_Formals (Full_T, Prim);
|
|
|
|
if not Is_Dispatching_Operation (Prim) then
|
|
Append_Elmt (Prim, Full_List);
|
|
Set_Is_Dispatching_Operation (Prim, True);
|
|
Set_DT_Position (Prim, No_Uint);
|
|
end if;
|
|
|
|
elsif Is_Dispatching_Operation (Prim)
|
|
and then D_Type /= Full_T
|
|
then
|
|
|
|
-- Verify that it is not otherwise controlled by
|
|
-- a formal or a return value ot type T.
|
|
|
|
Check_Controlling_Formals (D_Type, Prim);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Prim);
|
|
end loop;
|
|
end if;
|
|
|
|
-- For the tagged case, the two views can share the same
|
|
-- Primitive Operation list and the same class wide type.
|
|
-- Update attributes of the class-wide type which depend on
|
|
-- the full declaration.
|
|
|
|
if Is_Tagged_Type (Priv_T) then
|
|
Set_Primitive_Operations (Priv_T, Full_List);
|
|
Set_Class_Wide_Type
|
|
(Base_Type (Full_T), Class_Wide_Type (Priv_T));
|
|
|
|
-- Any other attributes should be propagated to C_W ???
|
|
|
|
Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
|
|
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Process_Full_View;
|
|
|
|
-----------------------------------
|
|
-- Process_Incomplete_Dependents --
|
|
-----------------------------------
|
|
|
|
procedure Process_Incomplete_Dependents
|
|
(N : Node_Id;
|
|
Full_T : Entity_Id;
|
|
Inc_T : Entity_Id)
|
|
is
|
|
Inc_Elmt : Elmt_Id;
|
|
Priv_Dep : Entity_Id;
|
|
New_Subt : Entity_Id;
|
|
|
|
Disc_Constraint : Elist_Id;
|
|
|
|
begin
|
|
if No (Private_Dependents (Inc_T)) then
|
|
return;
|
|
|
|
else
|
|
Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
|
|
|
|
-- Itypes that may be generated by the completion of an incomplete
|
|
-- subtype are not used by the back-end and not attached to the tree.
|
|
-- They are created only for constraint-checking purposes.
|
|
end if;
|
|
|
|
while Present (Inc_Elmt) loop
|
|
Priv_Dep := Node (Inc_Elmt);
|
|
|
|
if Ekind (Priv_Dep) = E_Subprogram_Type then
|
|
|
|
-- An Access_To_Subprogram type may have a return type or a
|
|
-- parameter type that is incomplete. Replace with the full view.
|
|
|
|
if Etype (Priv_Dep) = Inc_T then
|
|
Set_Etype (Priv_Dep, Full_T);
|
|
end if;
|
|
|
|
declare
|
|
Formal : Entity_Id;
|
|
|
|
begin
|
|
Formal := First_Formal (Priv_Dep);
|
|
|
|
while Present (Formal) loop
|
|
|
|
if Etype (Formal) = Inc_T then
|
|
Set_Etype (Formal, Full_T);
|
|
end if;
|
|
|
|
Next_Formal (Formal);
|
|
end loop;
|
|
end;
|
|
|
|
elsif Is_Overloadable (Priv_Dep) then
|
|
|
|
if Is_Tagged_Type (Full_T) then
|
|
|
|
-- Subprogram has an access parameter whose designated type
|
|
-- was incomplete. Reexamine declaration now, because it may
|
|
-- be a primitive operation of the full type.
|
|
|
|
Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
|
|
Set_Is_Dispatching_Operation (Priv_Dep);
|
|
Check_Controlling_Formals (Full_T, Priv_Dep);
|
|
end if;
|
|
|
|
elsif Ekind (Priv_Dep) = E_Subprogram_Body then
|
|
|
|
-- Can happen during processing of a body before the completion
|
|
-- of a TA type. Ignore, because spec is also on dependent list.
|
|
|
|
return;
|
|
|
|
-- Dependent is a subtype
|
|
|
|
else
|
|
-- We build a new subtype indication using the full view of the
|
|
-- incomplete parent. The discriminant constraints have been
|
|
-- elaborated already at the point of the subtype declaration.
|
|
|
|
New_Subt := Create_Itype (E_Void, N);
|
|
|
|
if Has_Discriminants (Full_T) then
|
|
Disc_Constraint := Discriminant_Constraint (Priv_Dep);
|
|
else
|
|
Disc_Constraint := No_Elist;
|
|
end if;
|
|
|
|
Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
|
|
Set_Full_View (Priv_Dep, New_Subt);
|
|
end if;
|
|
|
|
Next_Elmt (Inc_Elmt);
|
|
end loop;
|
|
|
|
end Process_Incomplete_Dependents;
|
|
|
|
--------------------------------
|
|
-- Process_Range_Expr_In_Decl --
|
|
--------------------------------
|
|
|
|
procedure Process_Range_Expr_In_Decl
|
|
(R : Node_Id;
|
|
T : Entity_Id;
|
|
Related_Nod : Node_Id;
|
|
Check_List : List_Id := Empty_List;
|
|
R_Check_Off : Boolean := False)
|
|
is
|
|
Lo, Hi : Node_Id;
|
|
R_Checks : Check_Result;
|
|
Type_Decl : Node_Id;
|
|
Def_Id : Entity_Id;
|
|
|
|
begin
|
|
Analyze_And_Resolve (R, Base_Type (T));
|
|
|
|
if Nkind (R) = N_Range then
|
|
Lo := Low_Bound (R);
|
|
Hi := High_Bound (R);
|
|
|
|
-- If there were errors in the declaration, try and patch up some
|
|
-- common mistakes in the bounds. The cases handled are literals
|
|
-- which are Integer where the expected type is Real and vice versa.
|
|
-- These corrections allow the compilation process to proceed further
|
|
-- along since some basic assumptions of the format of the bounds
|
|
-- are guaranteed.
|
|
|
|
if Etype (R) = Any_Type then
|
|
|
|
if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
|
|
Rewrite (Lo,
|
|
Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
|
|
|
|
elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
|
|
Rewrite (Hi,
|
|
Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
|
|
|
|
elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
|
|
Rewrite (Lo,
|
|
Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
|
|
|
|
elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
|
|
Rewrite (Hi,
|
|
Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
|
|
end if;
|
|
|
|
Set_Etype (Lo, T);
|
|
Set_Etype (Hi, T);
|
|
end if;
|
|
|
|
-- If the bounds of the range have been mistakenly given as
|
|
-- string literals (perhaps in place of character literals),
|
|
-- then an error has already been reported, but we rewrite
|
|
-- the string literal as a bound of the range's type to
|
|
-- avoid blowups in later processing that looks at static
|
|
-- values.
|
|
|
|
if Nkind (Lo) = N_String_Literal then
|
|
Rewrite (Lo,
|
|
Make_Attribute_Reference (Sloc (Lo),
|
|
Attribute_Name => Name_First,
|
|
Prefix => New_Reference_To (T, Sloc (Lo))));
|
|
Analyze_And_Resolve (Lo);
|
|
end if;
|
|
|
|
if Nkind (Hi) = N_String_Literal then
|
|
Rewrite (Hi,
|
|
Make_Attribute_Reference (Sloc (Hi),
|
|
Attribute_Name => Name_First,
|
|
Prefix => New_Reference_To (T, Sloc (Hi))));
|
|
Analyze_And_Resolve (Hi);
|
|
end if;
|
|
|
|
-- If bounds aren't scalar at this point then exit, avoiding
|
|
-- problems with further processing of the range in this procedure.
|
|
|
|
if not Is_Scalar_Type (Etype (Lo)) then
|
|
return;
|
|
end if;
|
|
|
|
-- Resolve (actually Sem_Eval) has checked that the bounds are in
|
|
-- then range of the base type. Here we check whether the bounds
|
|
-- are in the range of the subtype itself. Note that if the bounds
|
|
-- represent the null range the Constraint_Error exception should
|
|
-- not be raised.
|
|
|
|
-- ??? The following code should be cleaned up as follows
|
|
-- 1. The Is_Null_Range (Lo, Hi) test should disapper since it
|
|
-- is done in the call to Range_Check (R, T); below
|
|
-- 2. The use of R_Check_Off should be investigated and possibly
|
|
-- removed, this would clean up things a bit.
|
|
|
|
if Is_Null_Range (Lo, Hi) then
|
|
null;
|
|
|
|
else
|
|
-- We use a flag here instead of suppressing checks on the
|
|
-- type because the type we check against isn't necessarily the
|
|
-- place where we put the check.
|
|
|
|
if not R_Check_Off then
|
|
R_Checks := Range_Check (R, T);
|
|
Type_Decl := Parent (R);
|
|
|
|
-- Look up tree to find an appropriate insertion point.
|
|
-- This seems really junk code, and very brittle, couldn't
|
|
-- we just use an insert actions call of some kind ???
|
|
|
|
while Present (Type_Decl) and then not
|
|
(Nkind (Type_Decl) = N_Full_Type_Declaration
|
|
or else
|
|
Nkind (Type_Decl) = N_Subtype_Declaration
|
|
or else
|
|
Nkind (Type_Decl) = N_Loop_Statement
|
|
or else
|
|
Nkind (Type_Decl) = N_Task_Type_Declaration
|
|
or else
|
|
Nkind (Type_Decl) = N_Single_Task_Declaration
|
|
or else
|
|
Nkind (Type_Decl) = N_Protected_Type_Declaration
|
|
or else
|
|
Nkind (Type_Decl) = N_Single_Protected_Declaration)
|
|
loop
|
|
Type_Decl := Parent (Type_Decl);
|
|
end loop;
|
|
|
|
-- Why would Type_Decl not be present??? Without this test,
|
|
-- short regression tests fail.
|
|
|
|
if Present (Type_Decl) then
|
|
if Nkind (Type_Decl) = N_Loop_Statement then
|
|
declare
|
|
Indic : Node_Id := Parent (R);
|
|
begin
|
|
while Present (Indic) and then not
|
|
(Nkind (Indic) = N_Subtype_Indication)
|
|
loop
|
|
Indic := Parent (Indic);
|
|
end loop;
|
|
|
|
if Present (Indic) then
|
|
Def_Id := Etype (Subtype_Mark (Indic));
|
|
|
|
Insert_Range_Checks
|
|
(R_Checks,
|
|
Type_Decl,
|
|
Def_Id,
|
|
Sloc (Type_Decl),
|
|
R,
|
|
Do_Before => True);
|
|
end if;
|
|
end;
|
|
else
|
|
Def_Id := Defining_Identifier (Type_Decl);
|
|
|
|
if (Ekind (Def_Id) = E_Record_Type
|
|
and then Depends_On_Discriminant (R))
|
|
or else
|
|
(Ekind (Def_Id) = E_Protected_Type
|
|
and then Has_Discriminants (Def_Id))
|
|
then
|
|
Append_Range_Checks
|
|
(R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
|
|
|
|
else
|
|
Insert_Range_Checks
|
|
(R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
|
|
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Get_Index_Bounds (R, Lo, Hi);
|
|
|
|
if Expander_Active then
|
|
Force_Evaluation (Lo);
|
|
Force_Evaluation (Hi);
|
|
end if;
|
|
|
|
end Process_Range_Expr_In_Decl;
|
|
|
|
--------------------------------------
|
|
-- Process_Real_Range_Specification --
|
|
--------------------------------------
|
|
|
|
procedure Process_Real_Range_Specification (Def : Node_Id) is
|
|
Spec : constant Node_Id := Real_Range_Specification (Def);
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
Err : Boolean := False;
|
|
|
|
procedure Analyze_Bound (N : Node_Id);
|
|
-- Analyze and check one bound
|
|
|
|
procedure Analyze_Bound (N : Node_Id) is
|
|
begin
|
|
Analyze_And_Resolve (N, Any_Real);
|
|
|
|
if not Is_OK_Static_Expression (N) then
|
|
Error_Msg_N
|
|
("bound in real type definition is not static", N);
|
|
Err := True;
|
|
end if;
|
|
end Analyze_Bound;
|
|
|
|
begin
|
|
if Present (Spec) then
|
|
Lo := Low_Bound (Spec);
|
|
Hi := High_Bound (Spec);
|
|
Analyze_Bound (Lo);
|
|
Analyze_Bound (Hi);
|
|
|
|
-- If error, clear away junk range specification
|
|
|
|
if Err then
|
|
Set_Real_Range_Specification (Def, Empty);
|
|
end if;
|
|
end if;
|
|
end Process_Real_Range_Specification;
|
|
|
|
---------------------
|
|
-- Process_Subtype --
|
|
---------------------
|
|
|
|
function Process_Subtype
|
|
(S : Node_Id;
|
|
Related_Nod : Node_Id;
|
|
Related_Id : Entity_Id := Empty;
|
|
Suffix : Character := ' ')
|
|
return Entity_Id
|
|
is
|
|
P : Node_Id;
|
|
Def_Id : Entity_Id;
|
|
Full_View_Id : Entity_Id;
|
|
Subtype_Mark_Id : Entity_Id;
|
|
N_Dynamic_Ityp : Node_Id := Empty;
|
|
|
|
begin
|
|
-- Case of constraint present, so that we have an N_Subtype_Indication
|
|
-- node (this node is created only if constraints are present).
|
|
|
|
if Nkind (S) = N_Subtype_Indication then
|
|
Find_Type (Subtype_Mark (S));
|
|
|
|
if Nkind (Parent (S)) /= N_Access_To_Object_Definition
|
|
and then not
|
|
(Nkind (Parent (S)) = N_Subtype_Declaration
|
|
and then
|
|
Is_Itype (Defining_Identifier (Parent (S))))
|
|
then
|
|
Check_Incomplete (Subtype_Mark (S));
|
|
end if;
|
|
|
|
P := Parent (S);
|
|
Subtype_Mark_Id := Entity (Subtype_Mark (S));
|
|
|
|
if Is_Unchecked_Union (Subtype_Mark_Id)
|
|
and then Comes_From_Source (Related_Nod)
|
|
then
|
|
Error_Msg_N
|
|
("cannot create subtype of Unchecked_Union", Related_Nod);
|
|
end if;
|
|
|
|
-- Explicit subtype declaration case
|
|
|
|
if Nkind (P) = N_Subtype_Declaration then
|
|
Def_Id := Defining_Identifier (P);
|
|
|
|
-- Explicit derived type definition case
|
|
|
|
elsif Nkind (P) = N_Derived_Type_Definition then
|
|
Def_Id := Defining_Identifier (Parent (P));
|
|
|
|
-- Implicit case, the Def_Id must be created as an implicit type.
|
|
-- The one exception arises in the case of concurrent types,
|
|
-- array and access types, where other subsidiary implicit types
|
|
-- may be created and must appear before the main implicit type.
|
|
-- In these cases we leave Def_Id set to Empty as a signal that
|
|
-- Create_Itype has not yet been called to create Def_Id.
|
|
|
|
else
|
|
if Is_Array_Type (Subtype_Mark_Id)
|
|
or else Is_Concurrent_Type (Subtype_Mark_Id)
|
|
or else Is_Access_Type (Subtype_Mark_Id)
|
|
then
|
|
Def_Id := Empty;
|
|
|
|
-- For the other cases, we create a new unattached Itype,
|
|
-- and set the indication to ensure it gets attached later.
|
|
|
|
else
|
|
Def_Id :=
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
|
end if;
|
|
|
|
N_Dynamic_Ityp := Related_Nod;
|
|
end if;
|
|
|
|
-- If the kind of constraint is invalid for this kind of type,
|
|
-- then give an error, and then pretend no constraint was given.
|
|
|
|
if not Is_Valid_Constraint_Kind
|
|
(Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
|
|
then
|
|
Error_Msg_N
|
|
("incorrect constraint for this kind of type", Constraint (S));
|
|
|
|
Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
|
|
|
|
-- Make recursive call, having got rid of the bogus constraint
|
|
|
|
return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
|
|
end if;
|
|
|
|
-- Remaining processing depends on type
|
|
|
|
case Ekind (Subtype_Mark_Id) is
|
|
|
|
when Access_Kind =>
|
|
Constrain_Access (Def_Id, S, Related_Nod);
|
|
|
|
when Array_Kind =>
|
|
Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
|
|
|
|
when Decimal_Fixed_Point_Kind =>
|
|
Constrain_Decimal (Def_Id, S, N_Dynamic_Ityp);
|
|
|
|
when Enumeration_Kind =>
|
|
Constrain_Enumeration (Def_Id, S, N_Dynamic_Ityp);
|
|
|
|
when Ordinary_Fixed_Point_Kind =>
|
|
Constrain_Ordinary_Fixed (Def_Id, S, N_Dynamic_Ityp);
|
|
|
|
when Float_Kind =>
|
|
Constrain_Float (Def_Id, S, N_Dynamic_Ityp);
|
|
|
|
when Integer_Kind =>
|
|
Constrain_Integer (Def_Id, S, N_Dynamic_Ityp);
|
|
|
|
when E_Record_Type |
|
|
E_Record_Subtype |
|
|
Class_Wide_Kind |
|
|
E_Incomplete_Type =>
|
|
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
|
|
|
|
when Private_Kind =>
|
|
Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
|
|
Set_Private_Dependents (Def_Id, New_Elmt_List);
|
|
|
|
-- In case of an invalid constraint prevent further processing
|
|
-- since the type constructed is missing expected fields.
|
|
|
|
if Etype (Def_Id) = Any_Type then
|
|
return Def_Id;
|
|
end if;
|
|
|
|
-- If the full view is that of a task with discriminants,
|
|
-- we must constrain both the concurrent type and its
|
|
-- corresponding record type. Otherwise we will just propagate
|
|
-- the constraint to the full view, if available.
|
|
|
|
if Present (Full_View (Subtype_Mark_Id))
|
|
and then Has_Discriminants (Subtype_Mark_Id)
|
|
and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
|
|
then
|
|
Full_View_Id :=
|
|
Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
|
|
|
|
Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
|
|
Constrain_Concurrent (Full_View_Id, S,
|
|
Related_Nod, Related_Id, Suffix);
|
|
Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
|
|
Set_Full_View (Def_Id, Full_View_Id);
|
|
|
|
else
|
|
Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
|
|
end if;
|
|
|
|
when Concurrent_Kind =>
|
|
Constrain_Concurrent (Def_Id, S,
|
|
Related_Nod, Related_Id, Suffix);
|
|
|
|
when others =>
|
|
Error_Msg_N ("invalid subtype mark in subtype indication", S);
|
|
end case;
|
|
|
|
-- Size and Convention are always inherited from the base type
|
|
|
|
Set_Size_Info (Def_Id, (Subtype_Mark_Id));
|
|
Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
|
|
|
|
return Def_Id;
|
|
|
|
-- Case of no constraints present
|
|
|
|
else
|
|
Find_Type (S);
|
|
Check_Incomplete (S);
|
|
return Entity (S);
|
|
end if;
|
|
end Process_Subtype;
|
|
|
|
-----------------------------
|
|
-- Record_Type_Declaration --
|
|
-----------------------------
|
|
|
|
procedure Record_Type_Declaration (T : Entity_Id; N : Node_Id) is
|
|
Def : constant Node_Id := Type_Definition (N);
|
|
Range_Checks_Suppressed_Flag : Boolean := False;
|
|
|
|
Is_Tagged : Boolean;
|
|
Tag_Comp : Entity_Id;
|
|
|
|
begin
|
|
-- The flag Is_Tagged_Type might have already been set by Find_Type_Name
|
|
-- if it detected an error for declaration T. This arises in the case of
|
|
-- private tagged types where the full view omits the word tagged.
|
|
|
|
Is_Tagged := Tagged_Present (Def)
|
|
or else (Errors_Detected > 0 and then Is_Tagged_Type (T));
|
|
|
|
-- Records constitute a scope for the component declarations within.
|
|
-- The scope is created prior to the processing of these declarations.
|
|
-- Discriminants are processed first, so that they are visible when
|
|
-- processing the other components. The Ekind of the record type itself
|
|
-- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
|
|
|
|
-- Enter record scope
|
|
|
|
New_Scope (T);
|
|
|
|
-- These flags must be initialized before calling Process_Discriminants
|
|
-- because this routine makes use of them.
|
|
|
|
Set_Is_Tagged_Type (T, Is_Tagged);
|
|
Set_Is_Limited_Record (T, Limited_Present (Def));
|
|
|
|
-- Type is abstract if full declaration carries keyword, or if
|
|
-- previous partial view did.
|
|
|
|
Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
|
|
|
|
Set_Ekind (T, E_Record_Type);
|
|
Set_Etype (T, T);
|
|
Init_Size_Align (T);
|
|
|
|
Set_Girder_Constraint (T, No_Elist);
|
|
|
|
-- If an incomplete or private type declaration was already given for
|
|
-- the type, then this scope already exists, and the discriminants have
|
|
-- been declared within. We must verify that the full declaration
|
|
-- matches the incomplete one.
|
|
|
|
Check_Or_Process_Discriminants (N, T);
|
|
|
|
Set_Is_Constrained (T, not Has_Discriminants (T));
|
|
Set_Has_Delayed_Freeze (T, True);
|
|
|
|
-- For tagged types add a manually analyzed component corresponding
|
|
-- to the component _tag, the corresponding piece of tree will be
|
|
-- expanded as part of the freezing actions if it is not a CPP_Class.
|
|
|
|
if Is_Tagged then
|
|
-- Do not add the tag unless we are in expansion mode.
|
|
|
|
if Expander_Active then
|
|
Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
|
|
Enter_Name (Tag_Comp);
|
|
|
|
Set_Is_Tag (Tag_Comp);
|
|
Set_Ekind (Tag_Comp, E_Component);
|
|
Set_Etype (Tag_Comp, RTE (RE_Tag));
|
|
Set_DT_Entry_Count (Tag_Comp, No_Uint);
|
|
Set_Original_Record_Component (Tag_Comp, Tag_Comp);
|
|
Init_Component_Location (Tag_Comp);
|
|
end if;
|
|
|
|
Make_Class_Wide_Type (T);
|
|
Set_Primitive_Operations (T, New_Elmt_List);
|
|
end if;
|
|
|
|
-- We must suppress range checks when processing the components
|
|
-- of a record in the presence of discriminants, since we don't
|
|
-- want spurious checks to be generated during their analysis, but
|
|
-- must reset the Suppress_Range_Checks flags after having procesed
|
|
-- the record definition.
|
|
|
|
if Has_Discriminants (T) and then not Suppress_Range_Checks (T) then
|
|
Set_Suppress_Range_Checks (T, True);
|
|
Range_Checks_Suppressed_Flag := True;
|
|
end if;
|
|
|
|
Record_Type_Definition (Def, T);
|
|
|
|
if Range_Checks_Suppressed_Flag then
|
|
Set_Suppress_Range_Checks (T, False);
|
|
Range_Checks_Suppressed_Flag := False;
|
|
end if;
|
|
|
|
-- Exit from record scope
|
|
|
|
End_Scope;
|
|
end Record_Type_Declaration;
|
|
|
|
----------------------------
|
|
-- Record_Type_Definition --
|
|
----------------------------
|
|
|
|
procedure Record_Type_Definition (Def : Node_Id; T : Entity_Id) is
|
|
Component : Entity_Id;
|
|
Ctrl_Components : Boolean := False;
|
|
Final_Storage_Only : Boolean := not Is_Controlled (T);
|
|
|
|
begin
|
|
-- If the component list of a record type is defined by the reserved
|
|
-- word null and there is no discriminant part, then the record type has
|
|
-- no components and all records of the type are null records (RM 3.7)
|
|
-- This procedure is also called to process the extension part of a
|
|
-- record extension, in which case the current scope may have inherited
|
|
-- components.
|
|
|
|
if No (Def)
|
|
or else No (Component_List (Def))
|
|
or else Null_Present (Component_List (Def))
|
|
then
|
|
null;
|
|
|
|
else
|
|
Analyze_Declarations (Component_Items (Component_List (Def)));
|
|
|
|
if Present (Variant_Part (Component_List (Def))) then
|
|
Analyze (Variant_Part (Component_List (Def)));
|
|
end if;
|
|
end if;
|
|
|
|
-- After completing the semantic analysis of the record definition,
|
|
-- record components, both new and inherited, are accessible. Set
|
|
-- their kind accordingly.
|
|
|
|
Component := First_Entity (Current_Scope);
|
|
while Present (Component) loop
|
|
|
|
if Ekind (Component) = E_Void then
|
|
Set_Ekind (Component, E_Component);
|
|
Init_Component_Location (Component);
|
|
end if;
|
|
|
|
if Has_Task (Etype (Component)) then
|
|
Set_Has_Task (T);
|
|
end if;
|
|
|
|
if Ekind (Component) /= E_Component then
|
|
null;
|
|
|
|
elsif Has_Controlled_Component (Etype (Component))
|
|
or else (Chars (Component) /= Name_uParent
|
|
and then Is_Controlled (Etype (Component)))
|
|
then
|
|
Set_Has_Controlled_Component (T, True);
|
|
Final_Storage_Only := Final_Storage_Only
|
|
and then Finalize_Storage_Only (Etype (Component));
|
|
Ctrl_Components := True;
|
|
end if;
|
|
|
|
Next_Entity (Component);
|
|
end loop;
|
|
|
|
-- A type is Finalize_Storage_Only only if all its controlled
|
|
-- components are so.
|
|
|
|
if Ctrl_Components then
|
|
Set_Finalize_Storage_Only (T, Final_Storage_Only);
|
|
end if;
|
|
|
|
if Present (Def) then
|
|
Process_End_Label (Def, 'e');
|
|
end if;
|
|
end Record_Type_Definition;
|
|
|
|
---------------------
|
|
-- Set_Fixed_Range --
|
|
---------------------
|
|
|
|
-- The range for fixed-point types is complicated by the fact that we
|
|
-- do not know the exact end points at the time of the declaration. This
|
|
-- is true for three reasons:
|
|
|
|
-- A size clause may affect the fudging of the end-points
|
|
-- A small clause may affect the values of the end-points
|
|
-- We try to include the end-points if it does not affect the size
|
|
|
|
-- This means that the actual end-points must be established at the
|
|
-- point when the type is frozen. Meanwhile, we first narrow the range
|
|
-- as permitted (so that it will fit if necessary in a small specified
|
|
-- size), and then build a range subtree with these narrowed bounds.
|
|
|
|
-- Set_Fixed_Range constructs the range from real literal values, and
|
|
-- sets the range as the Scalar_Range of the given fixed-point type
|
|
-- entity.
|
|
|
|
-- The parent of this range is set to point to the entity so that it
|
|
-- is properly hooked into the tree (unlike normal Scalar_Range entries
|
|
-- for other scalar types, which are just pointers to the range in the
|
|
-- original tree, this would otherwise be an orphan).
|
|
|
|
-- The tree is left unanalyzed. When the type is frozen, the processing
|
|
-- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
|
|
-- analyzed, and uses this as an indication that it should complete
|
|
-- work on the range (it will know the final small and size values).
|
|
|
|
procedure Set_Fixed_Range
|
|
(E : Entity_Id;
|
|
Loc : Source_Ptr;
|
|
Lo : Ureal;
|
|
Hi : Ureal)
|
|
is
|
|
S : constant Node_Id :=
|
|
Make_Range (Loc,
|
|
Low_Bound => Make_Real_Literal (Loc, Lo),
|
|
High_Bound => Make_Real_Literal (Loc, Hi));
|
|
|
|
begin
|
|
Set_Scalar_Range (E, S);
|
|
Set_Parent (S, E);
|
|
end Set_Fixed_Range;
|
|
|
|
--------------------------------------------------------
|
|
-- Set_Girder_Constraint_From_Discriminant_Constraint --
|
|
--------------------------------------------------------
|
|
|
|
procedure Set_Girder_Constraint_From_Discriminant_Constraint
|
|
(E : Entity_Id)
|
|
is
|
|
begin
|
|
-- Make sure set if encountered during
|
|
-- Expand_To_Girder_Constraint
|
|
|
|
Set_Girder_Constraint (E, No_Elist);
|
|
|
|
-- Give it the right value
|
|
|
|
if Is_Constrained (E) and then Has_Discriminants (E) then
|
|
Set_Girder_Constraint (E,
|
|
Expand_To_Girder_Constraint (E, Discriminant_Constraint (E)));
|
|
end if;
|
|
|
|
end Set_Girder_Constraint_From_Discriminant_Constraint;
|
|
|
|
----------------------------------
|
|
-- Set_Scalar_Range_For_Subtype --
|
|
----------------------------------
|
|
|
|
procedure Set_Scalar_Range_For_Subtype
|
|
(Def_Id : Entity_Id;
|
|
R : Node_Id;
|
|
Subt : Entity_Id;
|
|
Related_Nod : Node_Id)
|
|
is
|
|
Kind : constant Entity_Kind := Ekind (Def_Id);
|
|
begin
|
|
Set_Scalar_Range (Def_Id, R);
|
|
|
|
-- We need to link the range into the tree before resolving it so
|
|
-- that types that are referenced, including importantly the subtype
|
|
-- itself, are properly frozen (Freeze_Expression requires that the
|
|
-- expression be properly linked into the tree). Of course if it is
|
|
-- already linked in, then we do not disturb the current link.
|
|
|
|
if No (Parent (R)) then
|
|
Set_Parent (R, Def_Id);
|
|
end if;
|
|
|
|
-- Reset the kind of the subtype during analysis of the range, to
|
|
-- catch possible premature use in the bounds themselves.
|
|
|
|
Set_Ekind (Def_Id, E_Void);
|
|
Process_Range_Expr_In_Decl (R, Subt, Related_Nod);
|
|
Set_Ekind (Def_Id, Kind);
|
|
|
|
end Set_Scalar_Range_For_Subtype;
|
|
|
|
-------------------------------------
|
|
-- Signed_Integer_Type_Declaration --
|
|
-------------------------------------
|
|
|
|
procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
|
|
Implicit_Base : Entity_Id;
|
|
Base_Typ : Entity_Id;
|
|
Lo_Val : Uint;
|
|
Hi_Val : Uint;
|
|
Errs : Boolean := False;
|
|
Lo : Node_Id;
|
|
Hi : Node_Id;
|
|
|
|
function Can_Derive_From (E : Entity_Id) return Boolean;
|
|
-- Determine whether given bounds allow derivation from specified type
|
|
|
|
procedure Check_Bound (Expr : Node_Id);
|
|
-- Check bound to make sure it is integral and static. If not, post
|
|
-- appropriate error message and set Errs flag
|
|
|
|
function Can_Derive_From (E : Entity_Id) return Boolean is
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (E));
|
|
|
|
begin
|
|
-- Note we check both bounds against both end values, to deal with
|
|
-- strange types like ones with a range of 0 .. -12341234.
|
|
|
|
return Lo <= Lo_Val and then Lo_Val <= Hi
|
|
and then
|
|
Lo <= Hi_Val and then Hi_Val <= Hi;
|
|
end Can_Derive_From;
|
|
|
|
procedure Check_Bound (Expr : Node_Id) is
|
|
begin
|
|
-- If a range constraint is used as an integer type definition, each
|
|
-- bound of the range must be defined by a static expression of some
|
|
-- integer type, but the two bounds need not have the same integer
|
|
-- type (Negative bounds are allowed.) (RM 3.5.4)
|
|
|
|
if not Is_Integer_Type (Etype (Expr)) then
|
|
Error_Msg_N
|
|
("integer type definition bounds must be of integer type", Expr);
|
|
Errs := True;
|
|
|
|
elsif not Is_OK_Static_Expression (Expr) then
|
|
Error_Msg_N
|
|
("non-static expression used for integer type bound", Expr);
|
|
Errs := True;
|
|
|
|
-- The bounds are folded into literals, and we set their type to be
|
|
-- universal, to avoid typing difficulties: we cannot set the type
|
|
-- of the literal to the new type, because this would be a forward
|
|
-- reference for the back end, and if the original type is user-
|
|
-- defined this can lead to spurious semantic errors (e.g. 2928-003).
|
|
|
|
else
|
|
if Is_Entity_Name (Expr) then
|
|
Fold_Uint (Expr, Expr_Value (Expr));
|
|
end if;
|
|
|
|
Set_Etype (Expr, Universal_Integer);
|
|
end if;
|
|
end Check_Bound;
|
|
|
|
-- Start of processing for Signed_Integer_Type_Declaration
|
|
|
|
begin
|
|
-- Create an anonymous base type
|
|
|
|
Implicit_Base :=
|
|
Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
|
|
|
|
-- Analyze and check the bounds, they can be of any integer type
|
|
|
|
Lo := Low_Bound (Def);
|
|
Hi := High_Bound (Def);
|
|
|
|
-- Arbitrarily use Integer as the type if either bound had an error
|
|
|
|
if Hi = Error or else Lo = Error then
|
|
Base_Typ := Any_Integer;
|
|
Set_Error_Posted (T, True);
|
|
|
|
-- Here both bounds are OK expressions
|
|
|
|
else
|
|
Analyze_And_Resolve (Lo, Any_Integer);
|
|
Analyze_And_Resolve (Hi, Any_Integer);
|
|
|
|
Check_Bound (Lo);
|
|
Check_Bound (Hi);
|
|
|
|
if Errs then
|
|
Hi := Type_High_Bound (Standard_Long_Long_Integer);
|
|
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
|
|
end if;
|
|
|
|
-- Find type to derive from
|
|
|
|
Lo_Val := Expr_Value (Lo);
|
|
Hi_Val := Expr_Value (Hi);
|
|
|
|
if Can_Derive_From (Standard_Short_Short_Integer) then
|
|
Base_Typ := Base_Type (Standard_Short_Short_Integer);
|
|
|
|
elsif Can_Derive_From (Standard_Short_Integer) then
|
|
Base_Typ := Base_Type (Standard_Short_Integer);
|
|
|
|
elsif Can_Derive_From (Standard_Integer) then
|
|
Base_Typ := Base_Type (Standard_Integer);
|
|
|
|
elsif Can_Derive_From (Standard_Long_Integer) then
|
|
Base_Typ := Base_Type (Standard_Long_Integer);
|
|
|
|
elsif Can_Derive_From (Standard_Long_Long_Integer) then
|
|
Base_Typ := Base_Type (Standard_Long_Long_Integer);
|
|
|
|
else
|
|
Base_Typ := Base_Type (Standard_Long_Long_Integer);
|
|
Error_Msg_N ("integer type definition bounds out of range", Def);
|
|
Hi := Type_High_Bound (Standard_Long_Long_Integer);
|
|
Lo := Type_Low_Bound (Standard_Long_Long_Integer);
|
|
end if;
|
|
end if;
|
|
|
|
-- Complete both implicit base and declared first subtype entities
|
|
|
|
Set_Etype (Implicit_Base, Base_Typ);
|
|
Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
|
|
Set_Size_Info (Implicit_Base, (Base_Typ));
|
|
Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
|
|
Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
|
|
|
|
Set_Ekind (T, E_Signed_Integer_Subtype);
|
|
Set_Etype (T, Implicit_Base);
|
|
|
|
Set_Size_Info (T, (Implicit_Base));
|
|
Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
|
|
Set_Scalar_Range (T, Def);
|
|
Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
|
|
Set_Is_Constrained (T);
|
|
|
|
end Signed_Integer_Type_Declaration;
|
|
|
|
end Sem_Ch3;
|