* 5ataprop.adb, 5atpopsp.adb, 5ftaprop.adb, 5gmastop.adb, 5gtaprop.adb, 5htaprop.adb, 5itaprop.adb, 5lintman.adb, 5omastop.adb, 5oosinte.adb, 5otaprop.adb, 5staprop.adb, 5vinterr.adb, 5vtaprop.adb, 5vtpopde.adb, 5wintman.adb, 5wtaprop.adb, 5zinterr.adb, 5ztaprop.adb, 6vcstrea.adb, 7sintman.adb, 7staprop.adb, 9drpc.adb, ChangeLog, Makefile.in, a-except.adb, a-tags.ads, a-tasatt.adb, a-teioed.adb, a-textio.ads, a-witeio.ads, a-wtedit.adb, ali.ads, comperr.adb, cstand.adb, einfo.ads, errout.adb, exp_ch11.adb, exp_ch2.adb, exp_ch3.adb, exp_ch4.adb, exp_ch5.adb, exp_ch6.adb, exp_ch9.adb, exp_util.adb, exp_util.ads, fname-uf.adb, g-cgi.ads, g-exctra.ads, g-expect.ads, g-regist.adb, g-spipat.adb, gnatchop.adb, gnatlink.adb, gnatls.adb, gnatmain.adb, gnatmem.adb, init.c, make.adb, make.ads, mdlltool.adb, nlists.ads, osint.ads, par-ch3.adb, par-ch4.adb, par-ch5.adb, par-ch6.adb, par.adb, repinfo.adb, s-fatflt.ads, s-fatlfl.ads, s-fatllf.ads, s-fatsfl.ads, s-finimp.adb, s-finimp.ads, s-interr.adb, s-secsta.ads, s-shasto.ads, s-stalib.adb, s-stalib.ads, s-tarest.ads, s-tasdeb.adb, s-tassta.adb, s-tassta.ads, s-vaflop.ads, scans.ads, scn.adb, sem.ads, sem_aggr.adb, sem_attr.adb, sem_case.ads, sem_ch10.adb, sem_ch12.adb, sem_ch13.adb, sem_ch3.adb, sem_ch3.ads, sem_ch5.adb, sem_ch7.adb, sem_ch8.adb, sem_ch8.ads, sem_type.adb, sem_util.ads, sinfo.ads, sprint.adb, tbuild.ads, types.ads, utils.c, xeinfo.adb: Fix spelling errors. From-SVN: r48055
3167 lines
109 KiB
Ada
3167 lines
109 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- E X P _ U T I L --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- $Revision: 1.8 $
|
|
-- --
|
|
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
|
|
-- MA 02111-1307, USA. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Checks; use Checks;
|
|
with Einfo; use Einfo;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Exp_Ch7; use Exp_Ch7;
|
|
with Exp_Ch11; use Exp_Ch11;
|
|
with Hostparm; use Hostparm;
|
|
with Inline; use Inline;
|
|
with Itypes; use Itypes;
|
|
with Lib; use Lib;
|
|
with Namet; use Namet;
|
|
with Nlists; use Nlists;
|
|
with Nmake; use Nmake;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Sem; use Sem;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sinfo; use Sinfo;
|
|
with Stand; use Stand;
|
|
with Stringt; use Stringt;
|
|
with Tbuild; use Tbuild;
|
|
with Ttypes; use Ttypes;
|
|
with Uintp; use Uintp;
|
|
with Validsw; use Validsw;
|
|
|
|
package body Exp_Util is
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Build_Task_Array_Image
|
|
(Loc : Source_Ptr;
|
|
Id_Ref : Node_Id;
|
|
A_Type : Entity_Id;
|
|
Dyn : Boolean := False)
|
|
return Node_Id;
|
|
-- Build function to generate the image string for a task that is an
|
|
-- array component, concatenating the images of each index. To avoid
|
|
-- storage leaks, the string is built with successive slice assignments.
|
|
-- The flag Dyn indicates whether this is called for the initialization
|
|
-- procedure of an array of tasks, or for the name of a dynamically
|
|
-- created task that is assigned to an indexed component.
|
|
|
|
function Build_Task_Image_Function
|
|
(Loc : Source_Ptr;
|
|
Decls : List_Id;
|
|
Stats : List_Id;
|
|
Res : Entity_Id)
|
|
return Node_Id;
|
|
-- Common processing for Task_Array_Image and Task_Record_Image.
|
|
-- Build function body that computes image.
|
|
|
|
procedure Build_Task_Image_Prefix
|
|
(Loc : Source_Ptr;
|
|
Len : out Entity_Id;
|
|
Res : out Entity_Id;
|
|
Pos : out Entity_Id;
|
|
Prefix : Entity_Id;
|
|
Sum : Node_Id;
|
|
Decls : in out List_Id;
|
|
Stats : in out List_Id);
|
|
-- Common processing for Task_Array_Image and Task_Record_Image.
|
|
-- Create local variables and assign prefix of name to result string.
|
|
|
|
function Build_Task_Record_Image
|
|
(Loc : Source_Ptr;
|
|
Id_Ref : Node_Id;
|
|
A_Type : Entity_Id;
|
|
Dyn : Boolean := False)
|
|
return Node_Id;
|
|
-- Build function to generate the image string for a task that is a
|
|
-- record component. Concatenate name of variable with that of selector.
|
|
-- The flag Dyn indicates whether this is called for the initialization
|
|
-- procedure of record with task components, or for a dynamically
|
|
-- created task that is assigned to a selected component.
|
|
|
|
function Make_CW_Equivalent_Type
|
|
(T : Entity_Id;
|
|
E : Node_Id)
|
|
return Entity_Id;
|
|
-- T is a class-wide type entity, E is the initial expression node that
|
|
-- constrains T in case such as: " X: T := E" or "new T'(E)"
|
|
-- This function returns the entity of the Equivalent type and inserts
|
|
-- on the fly the necessary declaration such as:
|
|
-- type anon is record
|
|
-- _parent : Root_Type (T); constrained with E discriminants (if any)
|
|
-- Extension : String (1 .. expr to match size of E);
|
|
-- end record;
|
|
--
|
|
-- This record is compatible with any object of the class of T thanks
|
|
-- to the first field and has the same size as E thanks to the second.
|
|
|
|
function Make_Literal_Range
|
|
(Loc : Source_Ptr;
|
|
Literal_Typ : Entity_Id)
|
|
return Node_Id;
|
|
-- Produce a Range node whose bounds are:
|
|
-- Low_Bound (Literal_Type) ..
|
|
-- Low_Bound (Literal_Type) + Length (Literal_Typ) - 1
|
|
-- this is used for expanding declarations like X : String := "sdfgdfg";
|
|
|
|
function New_Class_Wide_Subtype
|
|
(CW_Typ : Entity_Id;
|
|
N : Node_Id)
|
|
return Entity_Id;
|
|
-- Create an implicit subtype of CW_Typ attached to node N.
|
|
|
|
----------------------
|
|
-- Adjust_Condition --
|
|
----------------------
|
|
|
|
procedure Adjust_Condition (N : Node_Id) is
|
|
begin
|
|
if No (N) then
|
|
return;
|
|
end if;
|
|
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
T : constant Entity_Id := Etype (N);
|
|
Ti : Entity_Id;
|
|
|
|
begin
|
|
-- For now, we simply ignore a call where the argument has no
|
|
-- type (probably case of unanalyzed condition), or has a type
|
|
-- that is not Boolean. This is because this is a pretty marginal
|
|
-- piece of functionality, and violations of these rules are
|
|
-- likely to be truly marginal (how much code uses Fortran Logical
|
|
-- as the barrier to a protected entry?) and we do not want to
|
|
-- blow up existing programs. We can change this to an assertion
|
|
-- after 3.12a is released ???
|
|
|
|
if No (T) or else not Is_Boolean_Type (T) then
|
|
return;
|
|
end if;
|
|
|
|
-- Apply validity checking if needed
|
|
|
|
if Validity_Checks_On and Validity_Check_Tests then
|
|
Ensure_Valid (N);
|
|
end if;
|
|
|
|
-- Immediate return if standard boolean, the most common case,
|
|
-- where nothing needs to be done.
|
|
|
|
if Base_Type (T) = Standard_Boolean then
|
|
return;
|
|
end if;
|
|
|
|
-- Case of zero/non-zero semantics or non-standard enumeration
|
|
-- representation. In each case, we rewrite the node as:
|
|
|
|
-- ityp!(N) /= False'Enum_Rep
|
|
|
|
-- where ityp is an integer type with large enough size to hold
|
|
-- any value of type T.
|
|
|
|
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
|
|
if Esize (T) <= Esize (Standard_Integer) then
|
|
Ti := Standard_Integer;
|
|
else
|
|
Ti := Standard_Long_Long_Integer;
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Op_Ne (Loc,
|
|
Left_Opnd => Unchecked_Convert_To (Ti, N),
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Enum_Rep,
|
|
Prefix =>
|
|
New_Occurrence_Of (First_Literal (T), Loc))));
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
|
|
else
|
|
Rewrite (N, Convert_To (Standard_Boolean, N));
|
|
Analyze_And_Resolve (N, Standard_Boolean);
|
|
end if;
|
|
end;
|
|
end Adjust_Condition;
|
|
|
|
------------------------
|
|
-- Adjust_Result_Type --
|
|
------------------------
|
|
|
|
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
|
|
begin
|
|
-- Ignore call if current type is not Standard.Boolean
|
|
|
|
if Etype (N) /= Standard_Boolean then
|
|
return;
|
|
end if;
|
|
|
|
-- If result is already of correct type, nothing to do. Note that
|
|
-- this will get the most common case where everything has a type
|
|
-- of Standard.Boolean.
|
|
|
|
if Base_Type (T) = Standard_Boolean then
|
|
return;
|
|
|
|
else
|
|
declare
|
|
KP : constant Node_Kind := Nkind (Parent (N));
|
|
|
|
begin
|
|
-- If result is to be used as a Condition in the syntax, no need
|
|
-- to convert it back, since if it was changed to Standard.Boolean
|
|
-- using Adjust_Condition, that is just fine for this usage.
|
|
|
|
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
|
|
return;
|
|
|
|
-- If result is an operand of another logical operation, no need
|
|
-- to reset its type, since Standard.Boolean is just fine, and
|
|
-- such operations always do Adjust_Condition on their operands.
|
|
|
|
elsif KP in N_Op_Boolean
|
|
or else KP = N_And_Then
|
|
or else KP = N_Or_Else
|
|
or else KP = N_Op_Not
|
|
then
|
|
return;
|
|
|
|
-- Otherwise we perform a conversion from the current type,
|
|
-- which must be Standard.Boolean, to the desired type.
|
|
|
|
else
|
|
Set_Analyzed (N);
|
|
Rewrite (N, Convert_To (T, N));
|
|
Analyze_And_Resolve (N, T);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Adjust_Result_Type;
|
|
|
|
--------------------------
|
|
-- Append_Freeze_Action --
|
|
--------------------------
|
|
|
|
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
|
|
Fnode : Node_Id := Freeze_Node (T);
|
|
|
|
begin
|
|
Ensure_Freeze_Node (T);
|
|
Fnode := Freeze_Node (T);
|
|
|
|
if not Present (Actions (Fnode)) then
|
|
Set_Actions (Fnode, New_List);
|
|
end if;
|
|
|
|
Append (N, Actions (Fnode));
|
|
end Append_Freeze_Action;
|
|
|
|
---------------------------
|
|
-- Append_Freeze_Actions --
|
|
---------------------------
|
|
|
|
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
|
|
Fnode : constant Node_Id := Freeze_Node (T);
|
|
|
|
begin
|
|
if No (L) then
|
|
return;
|
|
|
|
else
|
|
if No (Actions (Fnode)) then
|
|
Set_Actions (Fnode, L);
|
|
|
|
else
|
|
Append_List (L, Actions (Fnode));
|
|
end if;
|
|
|
|
end if;
|
|
end Append_Freeze_Actions;
|
|
|
|
------------------------
|
|
-- Build_Runtime_Call --
|
|
------------------------
|
|
|
|
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
|
|
begin
|
|
return
|
|
Make_Procedure_Call_Statement (Loc,
|
|
Name => New_Reference_To (RTE (RE), Loc));
|
|
end Build_Runtime_Call;
|
|
|
|
-----------------------------
|
|
-- Build_Task_Array_Image --
|
|
-----------------------------
|
|
|
|
-- This function generates the body for a function that constructs the
|
|
-- image string for a task that is an array component. The function is
|
|
-- local to the init_proc for the array type, and is called for each one
|
|
-- of the components. The constructed image has the form of an indexed
|
|
-- component, whose prefix is the outer variable of the array type.
|
|
-- The n-dimensional array type has known indices Index, Index2...
|
|
-- Id_Ref is an indexed component form created by the enclosing init_proc.
|
|
-- Its successive indices are Val1, Val2,.. which are the loop variables
|
|
-- in the loops that call the individual task init_proc on each component.
|
|
|
|
-- The generated function has the following structure:
|
|
|
|
-- function F return Task_Image_Type is
|
|
-- Pref : string := Task_Id.all;
|
|
-- T1 : String := Index1'Image (Val1);
|
|
-- ...
|
|
-- Tn : String := indexn'image (Valn);
|
|
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
|
|
-- -- Len includes commas and the end parentheses.
|
|
-- Res : String (1..Len);
|
|
-- Pos : Integer := Pref'Length;
|
|
--
|
|
-- begin
|
|
-- Res (1 .. Pos) := Pref;
|
|
-- Pos := Pos + 1;
|
|
-- Res (Pos) := '(';
|
|
-- Pos := Pos + 1;
|
|
-- Res (Pos .. Pos + T1'Length - 1) := T1;
|
|
-- Pos := Pos + T1'Length;
|
|
-- Res (Pos) := '.';
|
|
-- Pos := Pos + 1;
|
|
-- ...
|
|
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
|
|
-- Res (Len) := ')';
|
|
--
|
|
-- return new String (Res);
|
|
-- end F;
|
|
--
|
|
-- Needless to say, multidimensional arrays of tasks are rare enough
|
|
-- that the bulkiness of this code is not really a concern.
|
|
|
|
function Build_Task_Array_Image
|
|
(Loc : Source_Ptr;
|
|
Id_Ref : Node_Id;
|
|
A_Type : Entity_Id;
|
|
Dyn : Boolean := False)
|
|
return Node_Id
|
|
is
|
|
Dims : constant Nat := Number_Dimensions (A_Type);
|
|
-- Number of dimensions for array of tasks.
|
|
|
|
Temps : array (1 .. Dims) of Entity_Id;
|
|
-- Array of temporaries to hold string for each index.
|
|
|
|
Indx : Node_Id;
|
|
-- Index expression
|
|
|
|
Len : Entity_Id;
|
|
-- Total length of generated name
|
|
|
|
Pos : Entity_Id;
|
|
-- Running index for substring assignments
|
|
|
|
Pref : Entity_Id;
|
|
-- Name of enclosing variable, prefix of resulting name
|
|
|
|
P_Nam : Node_Id;
|
|
-- string expression for Pref.
|
|
|
|
Res : Entity_Id;
|
|
-- String to hold result
|
|
|
|
Val : Node_Id;
|
|
-- Value of successive indices
|
|
|
|
Sum : Node_Id;
|
|
-- Expression to compute total size of string
|
|
|
|
T : Entity_Id;
|
|
-- Entity for name at one index position
|
|
|
|
Decls : List_Id := New_List;
|
|
Stats : List_Id := New_List;
|
|
|
|
begin
|
|
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
|
|
|
-- For a dynamic task, the name comes from the target variable.
|
|
-- For a static one it is a formal of the enclosing init_proc.
|
|
|
|
if Dyn then
|
|
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
|
|
P_Nam :=
|
|
Make_String_Literal (Loc, Strval => String_From_Name_Buffer);
|
|
else
|
|
P_Nam :=
|
|
Make_Explicit_Dereference (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_uTask_Id));
|
|
end if;
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Pref,
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
|
Expression => P_Nam));
|
|
|
|
Indx := First_Index (A_Type);
|
|
Val := First (Expressions (Id_Ref));
|
|
|
|
for J in 1 .. Dims loop
|
|
T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
|
Temps (J) := T;
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => T,
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
|
Expression =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Image,
|
|
Prefix =>
|
|
New_Occurrence_Of (Etype (Indx), Loc),
|
|
Expressions => New_List (
|
|
New_Copy_Tree (Val)))));
|
|
|
|
Next_Index (Indx);
|
|
Next (Val);
|
|
end loop;
|
|
|
|
Sum := Make_Integer_Literal (Loc, Dims + 1);
|
|
|
|
Sum :=
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => Sum,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix =>
|
|
New_Occurrence_Of (Pref, Loc),
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
|
|
|
for J in 1 .. Dims loop
|
|
Sum :=
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => Sum,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix =>
|
|
New_Occurrence_Of (Temps (J), Loc),
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
|
end loop;
|
|
|
|
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
|
|
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
|
Expression =>
|
|
Make_Character_Literal (Loc,
|
|
Chars => Name_Find,
|
|
Char_Literal_Value =>
|
|
Char_Code (Character'Pos ('(')))));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
|
|
|
for J in 1 .. Dims loop
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Slice (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Discrete_Range =>
|
|
Make_Range (Loc,
|
|
Low_Bound => New_Occurrence_Of (Pos, Loc),
|
|
High_Bound => Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix =>
|
|
New_Occurrence_Of (Temps (J), Loc),
|
|
Expressions =>
|
|
New_List (Make_Integer_Literal (Loc, 1)))),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
|
|
|
|
Expression => New_Occurrence_Of (Temps (J), Loc)));
|
|
|
|
if J < Dims then
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix => New_Occurrence_Of (Temps (J), Loc),
|
|
Expressions =>
|
|
New_List (Make_Integer_Literal (Loc, 1))))));
|
|
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
|
Expression =>
|
|
Make_Character_Literal (Loc,
|
|
Chars => Name_Find,
|
|
Char_Literal_Value =>
|
|
Char_Code (Character'Pos (',')))));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
|
end if;
|
|
end loop;
|
|
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
|
|
Expression =>
|
|
Make_Character_Literal (Loc,
|
|
Chars => Name_Find,
|
|
Char_Literal_Value =>
|
|
Char_Code (Character'Pos (')')))));
|
|
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
|
|
end Build_Task_Array_Image;
|
|
|
|
----------------------------
|
|
-- Build_Task_Image_Decls --
|
|
----------------------------
|
|
|
|
function Build_Task_Image_Decls
|
|
(Loc : Source_Ptr;
|
|
Id_Ref : Node_Id;
|
|
A_Type : Entity_Id)
|
|
return List_Id
|
|
is
|
|
T_Id : Entity_Id := Empty;
|
|
Decl : Node_Id;
|
|
Decls : List_Id := New_List;
|
|
Expr : Node_Id := Empty;
|
|
Fun : Node_Id := Empty;
|
|
Is_Dyn : constant Boolean :=
|
|
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
|
|
and then Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
|
|
|
|
begin
|
|
-- If Discard_Names is in effect, generate a dummy declaration only.
|
|
|
|
if Global_Discard_Names then
|
|
T_Id :=
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
|
|
|
|
return
|
|
New_List (
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => T_Id,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc)));
|
|
|
|
else
|
|
if Nkind (Id_Ref) = N_Identifier
|
|
or else Nkind (Id_Ref) = N_Defining_Identifier
|
|
then
|
|
-- For a simple variable, the image of the task is the name
|
|
-- of the variable.
|
|
|
|
T_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
New_External_Name (Chars (Id_Ref), 'I'));
|
|
|
|
Get_Name_String (Chars (Id_Ref));
|
|
|
|
Expr :=
|
|
Make_Allocator (Loc,
|
|
Expression =>
|
|
Make_Qualified_Expression (Loc,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (Standard_String, Loc),
|
|
Expression =>
|
|
Make_String_Literal
|
|
(Loc, Strval => String_From_Name_Buffer)));
|
|
|
|
elsif Nkind (Id_Ref) = N_Selected_Component then
|
|
T_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
New_External_Name (Chars (Selector_Name (Id_Ref)), 'I'));
|
|
Fun := Build_Task_Record_Image (Loc, Id_Ref, A_Type, Is_Dyn);
|
|
|
|
elsif Nkind (Id_Ref) = N_Indexed_Component then
|
|
T_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
New_External_Name (Chars (A_Type), 'I'));
|
|
|
|
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
|
|
end if;
|
|
end if;
|
|
|
|
if Present (Fun) then
|
|
Append (Fun, Decls);
|
|
|
|
Expr :=
|
|
Make_Function_Call (Loc,
|
|
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
|
|
end if;
|
|
|
|
Decl := Make_Object_Declaration (Loc,
|
|
Defining_Identifier => T_Id,
|
|
Object_Definition =>
|
|
New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc),
|
|
Expression => Expr);
|
|
|
|
Append (Decl, Decls);
|
|
return Decls;
|
|
end Build_Task_Image_Decls;
|
|
|
|
-------------------------------
|
|
-- Build_Task_Image_Function --
|
|
-------------------------------
|
|
|
|
function Build_Task_Image_Function
|
|
(Loc : Source_Ptr;
|
|
Decls : List_Id;
|
|
Stats : List_Id;
|
|
Res : Entity_Id)
|
|
return Node_Id
|
|
is
|
|
Spec : Node_Id;
|
|
|
|
begin
|
|
Append_To (Stats,
|
|
Make_Return_Statement (Loc,
|
|
Expression =>
|
|
Make_Allocator (Loc,
|
|
Expression =>
|
|
Make_Qualified_Expression (Loc,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (Standard_String, Loc),
|
|
Expression => New_Occurrence_Of (Res, Loc)))));
|
|
|
|
Spec := Make_Function_Specification (Loc,
|
|
Defining_Unit_Name =>
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
|
|
Subtype_Mark => New_Occurrence_Of (RTE (RE_Task_Image_Type), Loc));
|
|
|
|
return Make_Subprogram_Body (Loc,
|
|
Specification => Spec,
|
|
Declarations => Decls,
|
|
Handled_Statement_Sequence =>
|
|
Make_Handled_Sequence_Of_Statements (Loc,
|
|
Statements => Stats));
|
|
end Build_Task_Image_Function;
|
|
|
|
-----------------------------
|
|
-- Build_Task_Image_Prefix --
|
|
-----------------------------
|
|
|
|
procedure Build_Task_Image_Prefix
|
|
(Loc : Source_Ptr;
|
|
Len : out Entity_Id;
|
|
Res : out Entity_Id;
|
|
Pos : out Entity_Id;
|
|
Prefix : Entity_Id;
|
|
Sum : Node_Id;
|
|
Decls : in out List_Id;
|
|
Stats : in out List_Id)
|
|
is
|
|
begin
|
|
Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Len,
|
|
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
|
|
Expression => Sum));
|
|
|
|
Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Res,
|
|
Object_Definition =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints =>
|
|
New_List (
|
|
Make_Range (Loc,
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
|
High_Bound => New_Occurrence_Of (Len, Loc)))))));
|
|
|
|
Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Pos,
|
|
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
|
|
|
|
-- Pos := Prefix'Length;
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix => New_Occurrence_Of (Prefix, Loc),
|
|
Expressions =>
|
|
New_List (Make_Integer_Literal (Loc, 1)))));
|
|
|
|
-- Res (1 .. Pos) := Prefix;
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Slice (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Discrete_Range =>
|
|
Make_Range (Loc,
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
|
High_Bound => New_Occurrence_Of (Pos, Loc))),
|
|
|
|
Expression => New_Occurrence_Of (Prefix, Loc)));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
|
end Build_Task_Image_Prefix;
|
|
|
|
-----------------------------
|
|
-- Build_Task_Record_Image --
|
|
-----------------------------
|
|
|
|
function Build_Task_Record_Image
|
|
(Loc : Source_Ptr;
|
|
Id_Ref : Node_Id;
|
|
A_Type : Entity_Id;
|
|
Dyn : Boolean := False)
|
|
return Node_Id
|
|
is
|
|
Len : Entity_Id;
|
|
-- Total length of generated name
|
|
|
|
Pos : Entity_Id;
|
|
-- Index into result
|
|
|
|
Res : Entity_Id;
|
|
-- String to hold result
|
|
|
|
Pref : Entity_Id;
|
|
-- Name of enclosing variable, prefix of resulting name
|
|
|
|
P_Nam : Node_Id;
|
|
-- string expression for Pref.
|
|
|
|
Sum : Node_Id;
|
|
-- Expression to compute total size of string.
|
|
|
|
Sel : Entity_Id;
|
|
-- Entity for selector name
|
|
|
|
Decls : List_Id := New_List;
|
|
Stats : List_Id := New_List;
|
|
|
|
begin
|
|
Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
|
|
|
-- For a dynamic task, the name comes from the target variable.
|
|
-- For a static one it is a formal of the enclosing init_proc.
|
|
|
|
if Dyn then
|
|
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
|
|
P_Nam :=
|
|
Make_String_Literal (Loc, Strval => String_From_Name_Buffer);
|
|
else
|
|
P_Nam :=
|
|
Make_Explicit_Dereference (Loc,
|
|
Prefix => Make_Identifier (Loc, Name_uTask_Id));
|
|
end if;
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Pref,
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
|
Expression => P_Nam));
|
|
|
|
Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
|
|
|
Get_Name_String (Chars (Selector_Name (Id_Ref)));
|
|
|
|
Append_To (Decls,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Sel,
|
|
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
|
|
Expression =>
|
|
Make_String_Literal (Loc, Strval => String_From_Name_Buffer)));
|
|
|
|
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
|
|
|
|
Sum :=
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => Sum,
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Attribute_Name => Name_Length,
|
|
Prefix =>
|
|
New_Occurrence_Of (Pref, Loc),
|
|
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
|
|
|
|
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
|
|
|
|
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
|
|
|
|
-- Res (Pos) := '.';
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Indexed_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
|
|
Expression =>
|
|
Make_Character_Literal (Loc,
|
|
Chars => Name_Find,
|
|
Char_Literal_Value =>
|
|
Char_Code (Character'Pos ('.')))));
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Pos, Loc),
|
|
Expression =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Occurrence_Of (Pos, Loc),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1))));
|
|
|
|
-- Res (Pos .. Len) := Selector;
|
|
|
|
Append_To (Stats,
|
|
Make_Assignment_Statement (Loc,
|
|
Name => Make_Slice (Loc,
|
|
Prefix => New_Occurrence_Of (Res, Loc),
|
|
Discrete_Range =>
|
|
Make_Range (Loc,
|
|
Low_Bound => New_Occurrence_Of (Pos, Loc),
|
|
High_Bound => New_Occurrence_Of (Len, Loc))),
|
|
Expression => New_Occurrence_Of (Sel, Loc)));
|
|
|
|
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
|
|
end Build_Task_Record_Image;
|
|
|
|
-------------------------------
|
|
-- Convert_To_Actual_Subtype --
|
|
-------------------------------
|
|
|
|
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
|
|
Act_ST : Entity_Id;
|
|
|
|
begin
|
|
Act_ST := Get_Actual_Subtype (Exp);
|
|
|
|
if Act_ST = Etype (Exp) then
|
|
return;
|
|
|
|
else
|
|
Rewrite (Exp,
|
|
Convert_To (Act_ST, Relocate_Node (Exp)));
|
|
Analyze_And_Resolve (Exp, Act_ST);
|
|
end if;
|
|
end Convert_To_Actual_Subtype;
|
|
|
|
-----------------------------------
|
|
-- Current_Sem_Unit_Declarations --
|
|
-----------------------------------
|
|
|
|
function Current_Sem_Unit_Declarations return List_Id is
|
|
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
|
|
Decls : List_Id;
|
|
|
|
begin
|
|
-- If the current unit is a package body, locate the visible
|
|
-- declarations of the package spec.
|
|
|
|
if Nkind (U) = N_Package_Body then
|
|
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
|
|
end if;
|
|
|
|
if Nkind (U) = N_Package_Declaration then
|
|
U := Specification (U);
|
|
Decls := Visible_Declarations (U);
|
|
|
|
if No (Decls) then
|
|
Decls := New_List;
|
|
Set_Visible_Declarations (U, Decls);
|
|
end if;
|
|
|
|
else
|
|
Decls := Declarations (U);
|
|
|
|
if No (Decls) then
|
|
Decls := New_List;
|
|
Set_Declarations (U, Decls);
|
|
end if;
|
|
end if;
|
|
|
|
return Decls;
|
|
end Current_Sem_Unit_Declarations;
|
|
|
|
-----------------------
|
|
-- Duplicate_Subexpr --
|
|
-----------------------
|
|
|
|
function Duplicate_Subexpr
|
|
(Exp : Node_Id;
|
|
Name_Req : Boolean := False)
|
|
return Node_Id
|
|
is
|
|
begin
|
|
Remove_Side_Effects (Exp, Name_Req);
|
|
return New_Copy_Tree (Exp);
|
|
end Duplicate_Subexpr;
|
|
|
|
--------------------
|
|
-- Ensure_Defined --
|
|
--------------------
|
|
|
|
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
|
|
IR : Node_Id;
|
|
P : Node_Id;
|
|
|
|
begin
|
|
if Is_Itype (Typ) then
|
|
IR := Make_Itype_Reference (Sloc (N));
|
|
Set_Itype (IR, Typ);
|
|
|
|
if not In_Open_Scopes (Scope (Typ))
|
|
and then Is_Subprogram (Current_Scope)
|
|
and then Scope (Current_Scope) /= Standard_Standard
|
|
then
|
|
-- Insert node in front of subprogram, to avoid scope anomalies
|
|
-- in gigi.
|
|
|
|
P := Parent (N);
|
|
|
|
while Present (P)
|
|
and then Nkind (P) /= N_Subprogram_Body
|
|
loop
|
|
P := Parent (P);
|
|
end loop;
|
|
|
|
if Present (P) then
|
|
Insert_Action (P, IR);
|
|
else
|
|
Insert_Action (N, IR);
|
|
end if;
|
|
|
|
else
|
|
Insert_Action (N, IR);
|
|
end if;
|
|
end if;
|
|
end Ensure_Defined;
|
|
|
|
---------------------
|
|
-- Evolve_And_Then --
|
|
---------------------
|
|
|
|
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
|
|
begin
|
|
if No (Cond) then
|
|
Cond := Cond1;
|
|
else
|
|
Cond :=
|
|
Make_And_Then (Sloc (Cond1),
|
|
Left_Opnd => Cond,
|
|
Right_Opnd => Cond1);
|
|
end if;
|
|
end Evolve_And_Then;
|
|
|
|
--------------------
|
|
-- Evolve_Or_Else --
|
|
--------------------
|
|
|
|
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
|
|
begin
|
|
if No (Cond) then
|
|
Cond := Cond1;
|
|
else
|
|
Cond :=
|
|
Make_Or_Else (Sloc (Cond1),
|
|
Left_Opnd => Cond,
|
|
Right_Opnd => Cond1);
|
|
end if;
|
|
end Evolve_Or_Else;
|
|
|
|
------------------------------
|
|
-- Expand_Subtype_From_Expr --
|
|
------------------------------
|
|
|
|
-- This function is applicable for both static and dynamic allocation of
|
|
-- objects which are constrained by an initial expression. Basically it
|
|
-- transforms an unconstrained subtype indication into a constrained one.
|
|
-- The expression may also be transformed in certain cases in order to
|
|
-- avoid multiple evaulation. In the static allocation case, the general
|
|
-- scheme is :
|
|
|
|
-- Val : T := Expr;
|
|
|
|
-- is transformed into
|
|
|
|
-- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
|
|
--
|
|
-- Here are the main cases :
|
|
--
|
|
-- <if Expr is a Slice>
|
|
-- Val : T ([Index_Subtype (Expr)]) := Expr;
|
|
--
|
|
-- <elsif Expr is a String Literal>
|
|
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
|
|
--
|
|
-- <elsif Expr is Constrained>
|
|
-- subtype T is Type_Of_Expr
|
|
-- Val : T := Expr;
|
|
--
|
|
-- <elsif Expr is an entity_name>
|
|
-- Val : T (constraints taken from Expr) := Expr;
|
|
--
|
|
-- <else>
|
|
-- type Axxx is access all T;
|
|
-- Rval : Axxx := Expr'ref;
|
|
-- Val : T (constraints taken from Rval) := Rval.all;
|
|
|
|
-- ??? note: when the Expression is allocated in the secondary stack
|
|
-- we could use it directly instead of copying it by declaring
|
|
-- Val : T (...) renames Rval.all
|
|
|
|
procedure Expand_Subtype_From_Expr
|
|
(N : Node_Id;
|
|
Unc_Type : Entity_Id;
|
|
Subtype_Indic : Node_Id;
|
|
Exp : Node_Id)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Exp_Typ : constant Entity_Id := Etype (Exp);
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
-- In general we cannot build the subtype if expansion is disabled,
|
|
-- because internal entities may not have been defined. However, to
|
|
-- avoid some cascaded errors, we try to continue when the expression
|
|
-- is an array (or string), because it is safe to compute the bounds.
|
|
-- It is in fact required to do so even in a generic context, because
|
|
-- there may be constants that depend on bounds of string literal.
|
|
|
|
if not Expander_Active
|
|
and then (No (Etype (Exp))
|
|
or else Base_Type (Etype (Exp)) /= Standard_String)
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
if Nkind (Exp) = N_Slice then
|
|
declare
|
|
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
|
|
|
|
begin
|
|
Rewrite (Subtype_Indic,
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => New_List
|
|
(New_Reference_To (Slice_Type, Loc)))));
|
|
|
|
-- This subtype indication may be used later for contraint checks
|
|
-- we better make sure that if a variable was used as a bound of
|
|
-- of the original slice, its value is frozen.
|
|
|
|
Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
|
|
Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
|
|
end;
|
|
|
|
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
|
|
Rewrite (Subtype_Indic,
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => New_List (
|
|
Make_Literal_Range (Loc,
|
|
Literal_Typ => Exp_Typ)))));
|
|
|
|
elsif Is_Constrained (Exp_Typ)
|
|
and then not Is_Class_Wide_Type (Unc_Type)
|
|
then
|
|
if Is_Itype (Exp_Typ) then
|
|
|
|
-- No need to generate a new one.
|
|
|
|
T := Exp_Typ;
|
|
|
|
else
|
|
T :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_Internal_Name ('T'));
|
|
|
|
Insert_Action (N,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => T,
|
|
Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
|
|
|
|
-- This type is marked as an itype even though it has an
|
|
-- explicit declaration because otherwise it can be marked
|
|
-- with Is_Generic_Actual_Type and generate spurious errors.
|
|
-- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
|
|
|
|
Set_Is_Itype (T);
|
|
Set_Associated_Node_For_Itype (T, Exp);
|
|
end if;
|
|
|
|
Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
|
|
|
|
-- nothing needs to be done for private types with unknown discriminants
|
|
-- if the underlying type is not an unconstrained composite type.
|
|
|
|
elsif Is_Private_Type (Unc_Type)
|
|
and then Has_Unknown_Discriminants (Unc_Type)
|
|
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
|
|
or else Is_Constrained (Underlying_Type (Unc_Type)))
|
|
then
|
|
null;
|
|
|
|
else
|
|
Remove_Side_Effects (Exp);
|
|
Rewrite (Subtype_Indic,
|
|
Make_Subtype_From_Expr (Exp, Unc_Type));
|
|
end if;
|
|
end Expand_Subtype_From_Expr;
|
|
|
|
------------------
|
|
-- Find_Prim_Op --
|
|
------------------
|
|
|
|
function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
|
|
Prim : Elmt_Id;
|
|
Typ : Entity_Id := T;
|
|
|
|
begin
|
|
if Is_Class_Wide_Type (Typ) then
|
|
Typ := Root_Type (Typ);
|
|
end if;
|
|
|
|
Typ := Underlying_Type (Typ);
|
|
|
|
Prim := First_Elmt (Primitive_Operations (Typ));
|
|
while Chars (Node (Prim)) /= Name loop
|
|
Next_Elmt (Prim);
|
|
pragma Assert (Present (Prim));
|
|
end loop;
|
|
|
|
return Node (Prim);
|
|
end Find_Prim_Op;
|
|
|
|
----------------------
|
|
-- Force_Evaluation --
|
|
----------------------
|
|
|
|
procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
|
|
begin
|
|
Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
|
|
end Force_Evaluation;
|
|
|
|
------------------------
|
|
-- Generate_Poll_Call --
|
|
------------------------
|
|
|
|
procedure Generate_Poll_Call (N : Node_Id) is
|
|
begin
|
|
-- No poll call if polling not active
|
|
|
|
if not Polling_Required then
|
|
return;
|
|
|
|
-- Otherwise generate require poll call
|
|
|
|
else
|
|
Insert_Before_And_Analyze (N,
|
|
Make_Procedure_Call_Statement (Sloc (N),
|
|
Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
|
|
end if;
|
|
end Generate_Poll_Call;
|
|
|
|
--------------------
|
|
-- Homonym_Number --
|
|
--------------------
|
|
|
|
function Homonym_Number (Subp : Entity_Id) return Nat is
|
|
Count : Nat;
|
|
Hom : Entity_Id;
|
|
|
|
begin
|
|
Count := 1;
|
|
Hom := Homonym (Subp);
|
|
while Present (Hom) loop
|
|
if Scope (Hom) = Scope (Subp) then
|
|
Count := Count + 1;
|
|
end if;
|
|
|
|
Hom := Homonym (Hom);
|
|
end loop;
|
|
|
|
return Count;
|
|
end Homonym_Number;
|
|
|
|
------------------------------
|
|
-- In_Unconditional_Context --
|
|
------------------------------
|
|
|
|
function In_Unconditional_Context (Node : Node_Id) return Boolean is
|
|
P : Node_Id;
|
|
|
|
begin
|
|
P := Node;
|
|
while Present (P) loop
|
|
case Nkind (P) is
|
|
when N_Subprogram_Body =>
|
|
return True;
|
|
|
|
when N_If_Statement =>
|
|
return False;
|
|
|
|
when N_Loop_Statement =>
|
|
return False;
|
|
|
|
when N_Case_Statement =>
|
|
return False;
|
|
|
|
when others =>
|
|
P := Parent (P);
|
|
end case;
|
|
end loop;
|
|
|
|
return False;
|
|
end In_Unconditional_Context;
|
|
|
|
-------------------
|
|
-- Insert_Action --
|
|
-------------------
|
|
|
|
procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
|
|
begin
|
|
if Present (Ins_Action) then
|
|
Insert_Actions (Assoc_Node, New_List (Ins_Action));
|
|
end if;
|
|
end Insert_Action;
|
|
|
|
-- Version with check(s) suppressed
|
|
|
|
procedure Insert_Action
|
|
(Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
|
|
is
|
|
begin
|
|
Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
|
|
end Insert_Action;
|
|
|
|
--------------------
|
|
-- Insert_Actions --
|
|
--------------------
|
|
|
|
procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
|
|
N : Node_Id;
|
|
P : Node_Id;
|
|
|
|
Wrapped_Node : Node_Id := Empty;
|
|
|
|
begin
|
|
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
|
|
return;
|
|
end if;
|
|
|
|
-- Ignore insert of actions from inside default expression in the
|
|
-- special preliminary analyze mode. Any insertions at this point
|
|
-- have no relevance, since we are only doing the analyze to freeze
|
|
-- the types of any static expressions. See section "Handling of
|
|
-- Default Expressions" in the spec of package Sem for further details.
|
|
|
|
if In_Default_Expression then
|
|
return;
|
|
end if;
|
|
|
|
-- If the action derives from stuff inside a record, then the actions
|
|
-- are attached to the current scope, to be inserted and analyzed on
|
|
-- exit from the scope. The reason for this is that we may also
|
|
-- be generating freeze actions at the same time, and they must
|
|
-- eventually be elaborated in the correct order.
|
|
|
|
if Is_Record_Type (Current_Scope)
|
|
and then not Is_Frozen (Current_Scope)
|
|
then
|
|
if No (Scope_Stack.Table
|
|
(Scope_Stack.Last).Pending_Freeze_Actions)
|
|
then
|
|
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
|
|
Ins_Actions;
|
|
else
|
|
Append_List
|
|
(Ins_Actions,
|
|
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- We now intend to climb up the tree to find the right point to
|
|
-- insert the actions. We start at Assoc_Node, unless this node is
|
|
-- a subexpression in which case we start with its parent. We do this
|
|
-- for two reasons. First it speeds things up. Second, if Assoc_Node
|
|
-- is itself one of the special nodes like N_And_Then, then we assume
|
|
-- that an initial request to insert actions for such a node does not
|
|
-- expect the actions to get deposited in the node for later handling
|
|
-- when the node is expanded, since clearly the node is being dealt
|
|
-- with by the caller. Note that in the subexpression case, N is
|
|
-- always the child we came from.
|
|
|
|
-- N_Raise_xxx_Error is an annoying special case, it is a statement
|
|
-- if it has type Standard_Void_Type, and a subexpression otherwise.
|
|
-- otherwise. Procedure attribute references are also statements.
|
|
|
|
if Nkind (Assoc_Node) in N_Subexpr
|
|
and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
|
|
or else Etype (Assoc_Node) /= Standard_Void_Type)
|
|
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
|
|
or else
|
|
not Is_Procedure_Attribute_Name
|
|
(Attribute_Name (Assoc_Node)))
|
|
then
|
|
P := Assoc_Node; -- ????? does not agree with above!
|
|
N := Parent (Assoc_Node);
|
|
|
|
-- Non-subexpression case. Note that N is initially Empty in this
|
|
-- case (N is only guaranteed Non-Empty in the subexpr case).
|
|
|
|
else
|
|
P := Assoc_Node;
|
|
N := Empty;
|
|
end if;
|
|
|
|
-- Capture root of the transient scope
|
|
|
|
if Scope_Is_Transient then
|
|
Wrapped_Node := Node_To_Be_Wrapped;
|
|
end if;
|
|
|
|
loop
|
|
pragma Assert (Present (P));
|
|
|
|
case Nkind (P) is
|
|
|
|
-- Case of right operand of AND THEN or OR ELSE. Put the actions
|
|
-- in the Actions field of the right operand. They will be moved
|
|
-- out further when the AND THEN or OR ELSE operator is expanded.
|
|
-- Nothing special needs to be done for the left operand since
|
|
-- in that case the actions are executed unconditionally.
|
|
|
|
when N_And_Then | N_Or_Else =>
|
|
if N = Right_Opnd (P) then
|
|
if Present (Actions (P)) then
|
|
Insert_List_After_And_Analyze
|
|
(Last (Actions (P)), Ins_Actions);
|
|
else
|
|
Set_Actions (P, Ins_Actions);
|
|
Analyze_List (Actions (P));
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Then or Else operand of conditional expression. Add actions to
|
|
-- Then_Actions or Else_Actions field as appropriate. The actions
|
|
-- will be moved further out when the conditional is expanded.
|
|
|
|
when N_Conditional_Expression =>
|
|
declare
|
|
ThenX : constant Node_Id := Next (First (Expressions (P)));
|
|
ElseX : constant Node_Id := Next (ThenX);
|
|
|
|
begin
|
|
-- Actions belong to the then expression, temporarily
|
|
-- place them as Then_Actions of the conditional expr.
|
|
-- They will be moved to the proper place later when
|
|
-- the conditional expression is expanded.
|
|
|
|
if N = ThenX then
|
|
if Present (Then_Actions (P)) then
|
|
Insert_List_After_And_Analyze
|
|
(Last (Then_Actions (P)), Ins_Actions);
|
|
else
|
|
Set_Then_Actions (P, Ins_Actions);
|
|
Analyze_List (Then_Actions (P));
|
|
end if;
|
|
|
|
return;
|
|
|
|
-- Actions belong to the else expression, temporarily
|
|
-- place them as Else_Actions of the conditional expr.
|
|
-- They will be moved to the proper place later when
|
|
-- the conditional expression is expanded.
|
|
|
|
elsif N = ElseX then
|
|
if Present (Else_Actions (P)) then
|
|
Insert_List_After_And_Analyze
|
|
(Last (Else_Actions (P)), Ins_Actions);
|
|
else
|
|
Set_Else_Actions (P, Ins_Actions);
|
|
Analyze_List (Else_Actions (P));
|
|
end if;
|
|
|
|
return;
|
|
|
|
-- Actions belong to the condition. In this case they are
|
|
-- unconditionally executed, and so we can continue the
|
|
-- search for the proper insert point.
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
end;
|
|
|
|
-- Case of appearing in the condition of a while expression or
|
|
-- elsif. We insert the actions into the Condition_Actions field.
|
|
-- They will be moved further out when the while loop or elsif
|
|
-- is analyzed.
|
|
|
|
when N_Iteration_Scheme |
|
|
N_Elsif_Part
|
|
=>
|
|
if N = Condition (P) then
|
|
if Present (Condition_Actions (P)) then
|
|
Insert_List_After_And_Analyze
|
|
(Last (Condition_Actions (P)), Ins_Actions);
|
|
else
|
|
Set_Condition_Actions (P, Ins_Actions);
|
|
|
|
-- Set the parent of the insert actions explicitly.
|
|
-- This is not a syntactic field, but we need the
|
|
-- parent field set, in particular so that freeze
|
|
-- can understand that it is dealing with condition
|
|
-- actions, and properly insert the freezing actions.
|
|
|
|
Set_Parent (Ins_Actions, P);
|
|
Analyze_List (Condition_Actions (P));
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Statements, declarations, pragmas, representation clauses.
|
|
|
|
when
|
|
-- Statements
|
|
|
|
N_Procedure_Call_Statement |
|
|
N_Statement_Other_Than_Procedure_Call |
|
|
|
|
-- Pragmas
|
|
|
|
N_Pragma |
|
|
|
|
-- Representation_Clause
|
|
|
|
N_At_Clause |
|
|
N_Attribute_Definition_Clause |
|
|
N_Enumeration_Representation_Clause |
|
|
N_Record_Representation_Clause |
|
|
|
|
-- Declarations
|
|
|
|
N_Abstract_Subprogram_Declaration |
|
|
N_Entry_Body |
|
|
N_Exception_Declaration |
|
|
N_Exception_Renaming_Declaration |
|
|
N_Formal_Object_Declaration |
|
|
N_Formal_Subprogram_Declaration |
|
|
N_Formal_Type_Declaration |
|
|
N_Full_Type_Declaration |
|
|
N_Function_Instantiation |
|
|
N_Generic_Function_Renaming_Declaration |
|
|
N_Generic_Package_Declaration |
|
|
N_Generic_Package_Renaming_Declaration |
|
|
N_Generic_Procedure_Renaming_Declaration |
|
|
N_Generic_Subprogram_Declaration |
|
|
N_Implicit_Label_Declaration |
|
|
N_Incomplete_Type_Declaration |
|
|
N_Number_Declaration |
|
|
N_Object_Declaration |
|
|
N_Object_Renaming_Declaration |
|
|
N_Package_Body |
|
|
N_Package_Body_Stub |
|
|
N_Package_Declaration |
|
|
N_Package_Instantiation |
|
|
N_Package_Renaming_Declaration |
|
|
N_Private_Extension_Declaration |
|
|
N_Private_Type_Declaration |
|
|
N_Procedure_Instantiation |
|
|
N_Protected_Body_Stub |
|
|
N_Protected_Type_Declaration |
|
|
N_Single_Task_Declaration |
|
|
N_Subprogram_Body |
|
|
N_Subprogram_Body_Stub |
|
|
N_Subprogram_Declaration |
|
|
N_Subprogram_Renaming_Declaration |
|
|
N_Subtype_Declaration |
|
|
N_Task_Body |
|
|
N_Task_Body_Stub |
|
|
N_Task_Type_Declaration |
|
|
|
|
-- Freeze entity behaves like a declaration or statement
|
|
|
|
N_Freeze_Entity
|
|
=>
|
|
-- Do not insert here if the item is not a list member (this
|
|
-- happens for example with a triggering statement, and the
|
|
-- proper approach is to insert before the entire select).
|
|
|
|
if not Is_List_Member (P) then
|
|
null;
|
|
|
|
-- Do not insert if parent of P is an N_Component_Association
|
|
-- node (i.e. we are in the context of an N_Aggregate node.
|
|
-- In this case we want to insert before the entire aggregate.
|
|
|
|
elsif Nkind (Parent (P)) = N_Component_Association then
|
|
null;
|
|
|
|
-- Do not insert if the parent of P is either an N_Variant
|
|
-- node or an N_Record_Definition node, meaning in either
|
|
-- case that P is a member of a component list, and that
|
|
-- therefore the actions should be inserted outside the
|
|
-- complete record declaration.
|
|
|
|
elsif Nkind (Parent (P)) = N_Variant
|
|
or else Nkind (Parent (P)) = N_Record_Definition
|
|
then
|
|
null;
|
|
|
|
-- Do not insert freeze nodes within the loop generated for
|
|
-- an aggregate, because they may be elaborated too late for
|
|
-- subsequent use in the back end: within a package spec the
|
|
-- loop is part of the elaboration procedure and is only
|
|
-- elaborated during the second pass.
|
|
-- If the loop comes from source, or the entity is local to
|
|
-- the loop itself it must remain within.
|
|
|
|
elsif Nkind (Parent (P)) = N_Loop_Statement
|
|
and then not Comes_From_Source (Parent (P))
|
|
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
|
|
and then
|
|
Scope (Entity (First (Ins_Actions))) /= Current_Scope
|
|
then
|
|
null;
|
|
|
|
-- Otherwise we can go ahead and do the insertion
|
|
|
|
elsif P = Wrapped_Node then
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
|
return;
|
|
|
|
else
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
|
return;
|
|
end if;
|
|
|
|
-- A special case, N_Raise_xxx_Error can act either as a
|
|
-- statement or a subexpression. We tell the difference
|
|
-- by looking at the Etype. It is set to Standard_Void_Type
|
|
-- in the statement case.
|
|
|
|
when
|
|
N_Raise_xxx_Error =>
|
|
if Etype (P) = Standard_Void_Type then
|
|
if P = Wrapped_Node then
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
|
else
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
|
end if;
|
|
|
|
return;
|
|
|
|
-- In the subexpression case, keep climbing
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
|
|
-- If a component association appears within a loop created for
|
|
-- an array aggregate, attach the actions to the association so
|
|
-- they can be subsequently inserted within the loop. For other
|
|
-- component associations insert outside of the aggregate.
|
|
|
|
-- The list of loop_actions can in turn generate additional ones,
|
|
-- that are inserted before the associated node. If the associated
|
|
-- node is outside the aggregate, the new actions are collected
|
|
-- at the end of the loop actions, to respect the order in which
|
|
-- they are to be elaborated.
|
|
|
|
when
|
|
N_Component_Association =>
|
|
if Nkind (Parent (P)) = N_Aggregate
|
|
and then Present (Aggregate_Bounds (Parent (P)))
|
|
and then Nkind (First (Choices (P))) = N_Others_Choice
|
|
and then Nkind (First (Ins_Actions)) /= N_Freeze_Entity
|
|
then
|
|
if No (Loop_Actions (P)) then
|
|
Set_Loop_Actions (P, Ins_Actions);
|
|
Analyze_List (Ins_Actions);
|
|
|
|
else
|
|
declare
|
|
Decl : Node_Id := Assoc_Node;
|
|
|
|
begin
|
|
-- Check whether these actions were generated
|
|
-- by a declaration that is part of the loop_
|
|
-- actions for the component_association.
|
|
|
|
while Present (Decl) loop
|
|
exit when Parent (Decl) = P
|
|
and then Is_List_Member (Decl)
|
|
and then
|
|
List_Containing (Decl) = Loop_Actions (P);
|
|
Decl := Parent (Decl);
|
|
end loop;
|
|
|
|
if Present (Decl) then
|
|
Insert_List_Before_And_Analyze
|
|
(Decl, Ins_Actions);
|
|
else
|
|
Insert_List_After_And_Analyze
|
|
(Last (Loop_Actions (P)), Ins_Actions);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
return;
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
|
|
-- Another special case, an attribute denoting a procedure call
|
|
|
|
when
|
|
N_Attribute_Reference =>
|
|
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
|
|
if P = Wrapped_Node then
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
|
else
|
|
Insert_List_Before_And_Analyze (P, Ins_Actions);
|
|
end if;
|
|
|
|
return;
|
|
|
|
-- In the subexpression case, keep climbing
|
|
|
|
else
|
|
null;
|
|
end if;
|
|
|
|
-- For all other node types, keep climbing tree
|
|
|
|
when
|
|
N_Abortable_Part |
|
|
N_Accept_Alternative |
|
|
N_Access_Definition |
|
|
N_Access_Function_Definition |
|
|
N_Access_Procedure_Definition |
|
|
N_Access_To_Object_Definition |
|
|
N_Aggregate |
|
|
N_Allocator |
|
|
N_Case_Statement_Alternative |
|
|
N_Character_Literal |
|
|
N_Compilation_Unit |
|
|
N_Compilation_Unit_Aux |
|
|
N_Component_Clause |
|
|
N_Component_Declaration |
|
|
N_Component_List |
|
|
N_Constrained_Array_Definition |
|
|
N_Decimal_Fixed_Point_Definition |
|
|
N_Defining_Character_Literal |
|
|
N_Defining_Identifier |
|
|
N_Defining_Operator_Symbol |
|
|
N_Defining_Program_Unit_Name |
|
|
N_Delay_Alternative |
|
|
N_Delta_Constraint |
|
|
N_Derived_Type_Definition |
|
|
N_Designator |
|
|
N_Digits_Constraint |
|
|
N_Discriminant_Association |
|
|
N_Discriminant_Specification |
|
|
N_Empty |
|
|
N_Entry_Body_Formal_Part |
|
|
N_Entry_Call_Alternative |
|
|
N_Entry_Declaration |
|
|
N_Entry_Index_Specification |
|
|
N_Enumeration_Type_Definition |
|
|
N_Error |
|
|
N_Exception_Handler |
|
|
N_Expanded_Name |
|
|
N_Explicit_Dereference |
|
|
N_Extension_Aggregate |
|
|
N_Floating_Point_Definition |
|
|
N_Formal_Decimal_Fixed_Point_Definition |
|
|
N_Formal_Derived_Type_Definition |
|
|
N_Formal_Discrete_Type_Definition |
|
|
N_Formal_Floating_Point_Definition |
|
|
N_Formal_Modular_Type_Definition |
|
|
N_Formal_Ordinary_Fixed_Point_Definition |
|
|
N_Formal_Package_Declaration |
|
|
N_Formal_Private_Type_Definition |
|
|
N_Formal_Signed_Integer_Type_Definition |
|
|
N_Function_Call |
|
|
N_Function_Specification |
|
|
N_Generic_Association |
|
|
N_Handled_Sequence_Of_Statements |
|
|
N_Identifier |
|
|
N_In |
|
|
N_Index_Or_Discriminant_Constraint |
|
|
N_Indexed_Component |
|
|
N_Integer_Literal |
|
|
N_Itype_Reference |
|
|
N_Label |
|
|
N_Loop_Parameter_Specification |
|
|
N_Mod_Clause |
|
|
N_Modular_Type_Definition |
|
|
N_Not_In |
|
|
N_Null |
|
|
N_Op_Abs |
|
|
N_Op_Add |
|
|
N_Op_And |
|
|
N_Op_Concat |
|
|
N_Op_Divide |
|
|
N_Op_Eq |
|
|
N_Op_Expon |
|
|
N_Op_Ge |
|
|
N_Op_Gt |
|
|
N_Op_Le |
|
|
N_Op_Lt |
|
|
N_Op_Minus |
|
|
N_Op_Mod |
|
|
N_Op_Multiply |
|
|
N_Op_Ne |
|
|
N_Op_Not |
|
|
N_Op_Or |
|
|
N_Op_Plus |
|
|
N_Op_Rem |
|
|
N_Op_Rotate_Left |
|
|
N_Op_Rotate_Right |
|
|
N_Op_Shift_Left |
|
|
N_Op_Shift_Right |
|
|
N_Op_Shift_Right_Arithmetic |
|
|
N_Op_Subtract |
|
|
N_Op_Xor |
|
|
N_Operator_Symbol |
|
|
N_Ordinary_Fixed_Point_Definition |
|
|
N_Others_Choice |
|
|
N_Package_Specification |
|
|
N_Parameter_Association |
|
|
N_Parameter_Specification |
|
|
N_Pragma_Argument_Association |
|
|
N_Procedure_Specification |
|
|
N_Protected_Body |
|
|
N_Protected_Definition |
|
|
N_Qualified_Expression |
|
|
N_Range |
|
|
N_Range_Constraint |
|
|
N_Real_Literal |
|
|
N_Real_Range_Specification |
|
|
N_Record_Definition |
|
|
N_Reference |
|
|
N_Selected_Component |
|
|
N_Signed_Integer_Type_Definition |
|
|
N_Single_Protected_Declaration |
|
|
N_Slice |
|
|
N_String_Literal |
|
|
N_Subprogram_Info |
|
|
N_Subtype_Indication |
|
|
N_Subunit |
|
|
N_Task_Definition |
|
|
N_Terminate_Alternative |
|
|
N_Triggering_Alternative |
|
|
N_Type_Conversion |
|
|
N_Unchecked_Expression |
|
|
N_Unchecked_Type_Conversion |
|
|
N_Unconstrained_Array_Definition |
|
|
N_Unused_At_End |
|
|
N_Unused_At_Start |
|
|
N_Use_Package_Clause |
|
|
N_Use_Type_Clause |
|
|
N_Variant |
|
|
N_Variant_Part |
|
|
N_Validate_Unchecked_Conversion |
|
|
N_With_Clause |
|
|
N_With_Type_Clause
|
|
=>
|
|
null;
|
|
|
|
end case;
|
|
|
|
-- Make sure that inserted actions stay in the transient scope
|
|
|
|
if P = Wrapped_Node then
|
|
Store_Before_Actions_In_Scope (Ins_Actions);
|
|
return;
|
|
end if;
|
|
|
|
-- If we fall through above tests, keep climbing tree
|
|
|
|
N := P;
|
|
|
|
if Nkind (Parent (N)) = N_Subunit then
|
|
|
|
-- This is the proper body corresponding to a stub. Insertion
|
|
-- must be done at the point of the stub, which is in the decla-
|
|
-- tive part of the parent unit.
|
|
|
|
P := Corresponding_Stub (Parent (N));
|
|
|
|
else
|
|
P := Parent (N);
|
|
end if;
|
|
end loop;
|
|
|
|
end Insert_Actions;
|
|
|
|
-- Version with check(s) suppressed
|
|
|
|
procedure Insert_Actions
|
|
(Assoc_Node : Node_Id; Ins_Actions : List_Id; Suppress : Check_Id)
|
|
is
|
|
begin
|
|
if Suppress = All_Checks then
|
|
declare
|
|
Svg : constant Suppress_Record := Scope_Suppress;
|
|
|
|
begin
|
|
Scope_Suppress := (others => True);
|
|
Insert_Actions (Assoc_Node, Ins_Actions);
|
|
Scope_Suppress := Svg;
|
|
end;
|
|
|
|
else
|
|
declare
|
|
Svg : constant Boolean := Get_Scope_Suppress (Suppress);
|
|
|
|
begin
|
|
Set_Scope_Suppress (Suppress, True);
|
|
Insert_Actions (Assoc_Node, Ins_Actions);
|
|
Set_Scope_Suppress (Suppress, Svg);
|
|
end;
|
|
end if;
|
|
end Insert_Actions;
|
|
|
|
--------------------------
|
|
-- Insert_Actions_After --
|
|
--------------------------
|
|
|
|
procedure Insert_Actions_After
|
|
(Assoc_Node : Node_Id;
|
|
Ins_Actions : List_Id)
|
|
is
|
|
begin
|
|
if Scope_Is_Transient
|
|
and then Assoc_Node = Node_To_Be_Wrapped
|
|
then
|
|
Store_After_Actions_In_Scope (Ins_Actions);
|
|
else
|
|
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
|
|
end if;
|
|
end Insert_Actions_After;
|
|
|
|
---------------------------------
|
|
-- Insert_Library_Level_Action --
|
|
---------------------------------
|
|
|
|
procedure Insert_Library_Level_Action (N : Node_Id) is
|
|
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
|
|
|
|
begin
|
|
New_Scope (Cunit_Entity (Main_Unit));
|
|
|
|
if No (Actions (Aux)) then
|
|
Set_Actions (Aux, New_List (N));
|
|
else
|
|
Append (N, Actions (Aux));
|
|
end if;
|
|
|
|
Analyze (N);
|
|
Pop_Scope;
|
|
end Insert_Library_Level_Action;
|
|
|
|
----------------------------------
|
|
-- Insert_Library_Level_Actions --
|
|
----------------------------------
|
|
|
|
procedure Insert_Library_Level_Actions (L : List_Id) is
|
|
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
|
|
|
|
begin
|
|
if Is_Non_Empty_List (L) then
|
|
New_Scope (Cunit_Entity (Main_Unit));
|
|
|
|
if No (Actions (Aux)) then
|
|
Set_Actions (Aux, L);
|
|
Analyze_List (L);
|
|
else
|
|
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
|
|
end if;
|
|
|
|
Pop_Scope;
|
|
end if;
|
|
end Insert_Library_Level_Actions;
|
|
|
|
----------------------
|
|
-- Inside_Init_Proc --
|
|
----------------------
|
|
|
|
function Inside_Init_Proc return Boolean is
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Current_Scope;
|
|
while S /= Standard_Standard loop
|
|
if Chars (S) = Name_uInit_Proc then
|
|
return True;
|
|
else
|
|
S := Scope (S);
|
|
end if;
|
|
end loop;
|
|
|
|
return False;
|
|
end Inside_Init_Proc;
|
|
|
|
--------------------------------
|
|
-- Is_Ref_To_Bit_Packed_Array --
|
|
--------------------------------
|
|
|
|
function Is_Ref_To_Bit_Packed_Array (P : Node_Id) return Boolean is
|
|
Result : Boolean;
|
|
Expr : Node_Id;
|
|
|
|
begin
|
|
if Nkind (P) = N_Indexed_Component
|
|
or else
|
|
Nkind (P) = N_Selected_Component
|
|
then
|
|
if Is_Bit_Packed_Array (Etype (Prefix (P))) then
|
|
Result := True;
|
|
else
|
|
Result := Is_Ref_To_Bit_Packed_Array (Prefix (P));
|
|
end if;
|
|
|
|
if Result and then Nkind (P) = N_Indexed_Component then
|
|
Expr := First (Expressions (P));
|
|
|
|
while Present (Expr) loop
|
|
Force_Evaluation (Expr);
|
|
Next (Expr);
|
|
end loop;
|
|
end if;
|
|
|
|
return Result;
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Ref_To_Bit_Packed_Array;
|
|
|
|
--------------------------------
|
|
-- Is_Ref_To_Bit_Packed_Slce --
|
|
--------------------------------
|
|
|
|
function Is_Ref_To_Bit_Packed_Slice (P : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (P) = N_Slice
|
|
and then Is_Bit_Packed_Array (Etype (Prefix (P)))
|
|
then
|
|
return True;
|
|
|
|
elsif Nkind (P) = N_Indexed_Component
|
|
or else
|
|
Nkind (P) = N_Selected_Component
|
|
then
|
|
return Is_Ref_To_Bit_Packed_Slice (Prefix (P));
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Ref_To_Bit_Packed_Slice;
|
|
|
|
-----------------------
|
|
-- Is_Renamed_Object --
|
|
-----------------------
|
|
|
|
function Is_Renamed_Object (N : Node_Id) return Boolean is
|
|
Pnod : constant Node_Id := Parent (N);
|
|
Kind : constant Node_Kind := Nkind (Pnod);
|
|
|
|
begin
|
|
if Kind = N_Object_Renaming_Declaration then
|
|
return True;
|
|
|
|
elsif Kind = N_Indexed_Component
|
|
or else Kind = N_Selected_Component
|
|
then
|
|
return Is_Renamed_Object (Pnod);
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Is_Renamed_Object;
|
|
|
|
----------------------------
|
|
-- Is_Untagged_Derivation --
|
|
----------------------------
|
|
|
|
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
|
|
begin
|
|
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
|
|
or else
|
|
(Is_Private_Type (T) and then Present (Full_View (T))
|
|
and then not Is_Tagged_Type (Full_View (T))
|
|
and then Is_Derived_Type (Full_View (T))
|
|
and then Etype (Full_View (T)) /= T);
|
|
|
|
end Is_Untagged_Derivation;
|
|
|
|
--------------------
|
|
-- Kill_Dead_Code --
|
|
--------------------
|
|
|
|
procedure Kill_Dead_Code (N : Node_Id) is
|
|
begin
|
|
if Present (N) then
|
|
Remove_Handler_Entries (N);
|
|
Remove_Warning_Messages (N);
|
|
|
|
-- Recurse into block statements to process declarations/statements
|
|
|
|
if Nkind (N) = N_Block_Statement then
|
|
Kill_Dead_Code (Declarations (N));
|
|
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
|
|
|
|
-- Recurse into composite statement to kill individual statements,
|
|
-- in particular instantiations.
|
|
|
|
elsif Nkind (N) = N_If_Statement then
|
|
Kill_Dead_Code (Then_Statements (N));
|
|
Kill_Dead_Code (Elsif_Parts (N));
|
|
Kill_Dead_Code (Else_Statements (N));
|
|
|
|
elsif Nkind (N) = N_Loop_Statement then
|
|
Kill_Dead_Code (Statements (N));
|
|
|
|
elsif Nkind (N) = N_Case_Statement then
|
|
declare
|
|
Alt : Node_Id := First (Alternatives (N));
|
|
|
|
begin
|
|
while Present (Alt) loop
|
|
Kill_Dead_Code (Statements (Alt));
|
|
Next (Alt);
|
|
end loop;
|
|
end;
|
|
|
|
-- Deal with dead instances caused by deleting instantiations
|
|
|
|
elsif Nkind (N) in N_Generic_Instantiation then
|
|
Remove_Dead_Instance (N);
|
|
end if;
|
|
|
|
Delete_Tree (N);
|
|
end if;
|
|
end Kill_Dead_Code;
|
|
|
|
-- Case where argument is a list of nodes to be killed
|
|
|
|
procedure Kill_Dead_Code (L : List_Id) is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
if Is_Non_Empty_List (L) then
|
|
loop
|
|
N := Remove_Head (L);
|
|
exit when No (N);
|
|
Kill_Dead_Code (N);
|
|
end loop;
|
|
end if;
|
|
end Kill_Dead_Code;
|
|
|
|
------------------------
|
|
-- Known_Non_Negative --
|
|
------------------------
|
|
|
|
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
|
|
begin
|
|
if Is_OK_Static_Expression (Opnd)
|
|
and then Expr_Value (Opnd) >= 0
|
|
then
|
|
return True;
|
|
|
|
else
|
|
declare
|
|
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
|
|
|
|
begin
|
|
return
|
|
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
|
|
end;
|
|
end if;
|
|
end Known_Non_Negative;
|
|
|
|
-----------------------------
|
|
-- Make_CW_Equivalent_Type --
|
|
-----------------------------
|
|
|
|
-- Create a record type used as an equivalent of any member
|
|
-- of the class which takes its size from exp.
|
|
|
|
-- Generate the following code:
|
|
|
|
-- type Equiv_T is record
|
|
-- _parent : T (List of discriminant constaints taken from Exp);
|
|
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'size) / Storage_Unit);
|
|
-- end Equiv_T;
|
|
|
|
function Make_CW_Equivalent_Type
|
|
(T : Entity_Id;
|
|
E : Node_Id)
|
|
return Entity_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (E);
|
|
Root_Typ : constant Entity_Id := Root_Type (T);
|
|
Equiv_Type : Entity_Id;
|
|
Range_Type : Entity_Id;
|
|
Str_Type : Entity_Id;
|
|
List_Def : List_Id := Empty_List;
|
|
Constr_Root : Entity_Id;
|
|
Sizexpr : Node_Id;
|
|
|
|
begin
|
|
if not Has_Discriminants (Root_Typ) then
|
|
Constr_Root := Root_Typ;
|
|
else
|
|
Constr_Root :=
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
|
|
-- subtype cstr__n is T (List of discr constraints taken from Exp)
|
|
|
|
Append_To (List_Def,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Constr_Root,
|
|
Subtype_Indication =>
|
|
Make_Subtype_From_Expr (E, Root_Typ)));
|
|
end if;
|
|
|
|
-- subtype rg__xx is Storage_Offset range
|
|
-- (Expr'size - typ'size) / Storage_Unit
|
|
|
|
Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
|
|
|
|
Sizexpr :=
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => OK_Convert_To (T, Duplicate_Subexpr (E)),
|
|
Attribute_Name => Name_Size),
|
|
Right_Opnd =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => New_Reference_To (Constr_Root, Loc),
|
|
Attribute_Name => Name_Size));
|
|
|
|
Set_Paren_Count (Sizexpr, 1);
|
|
|
|
Append_To (List_Def,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Range_Type,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
|
|
Constraint => Make_Range_Constraint (Loc,
|
|
Range_Expression =>
|
|
Make_Range (Loc,
|
|
Low_Bound => Make_Integer_Literal (Loc, 1),
|
|
High_Bound =>
|
|
Make_Op_Divide (Loc,
|
|
Left_Opnd => Sizexpr,
|
|
Right_Opnd => Make_Integer_Literal (Loc,
|
|
Intval => System_Storage_Unit)))))));
|
|
|
|
-- subtype str__nn is Storage_Array (rg__x);
|
|
|
|
Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
|
|
Append_To (List_Def,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Str_Type,
|
|
Subtype_Indication =>
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints =>
|
|
New_List (New_Reference_To (Range_Type, Loc))))));
|
|
|
|
-- type Equiv_T is record
|
|
-- _parent : Tnn;
|
|
-- E : Str_Type;
|
|
-- end Equiv_T;
|
|
|
|
Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
|
|
|
|
-- Avoid the generation of an init procedure
|
|
|
|
Set_Is_Frozen (Equiv_Type);
|
|
|
|
Set_Ekind (Equiv_Type, E_Record_Type);
|
|
Set_Parent_Subtype (Equiv_Type, Constr_Root);
|
|
|
|
Append_To (List_Def,
|
|
Make_Full_Type_Declaration (Loc,
|
|
Defining_Identifier => Equiv_Type,
|
|
|
|
Type_Definition =>
|
|
Make_Record_Definition (Loc,
|
|
Component_List => Make_Component_List (Loc,
|
|
Component_Items => New_List (
|
|
Make_Component_Declaration (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Name_uParent),
|
|
Subtype_Indication => New_Reference_To (Constr_Root, Loc)),
|
|
|
|
Make_Component_Declaration (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_Internal_Name ('C')),
|
|
Subtype_Indication => New_Reference_To (Str_Type, Loc))),
|
|
Variant_Part => Empty))));
|
|
|
|
Insert_Actions (E, List_Def);
|
|
return Equiv_Type;
|
|
end Make_CW_Equivalent_Type;
|
|
|
|
------------------------
|
|
-- Make_Literal_Range --
|
|
------------------------
|
|
|
|
function Make_Literal_Range
|
|
(Loc : Source_Ptr;
|
|
Literal_Typ : Entity_Id)
|
|
return Node_Id
|
|
is
|
|
Lo : Node_Id :=
|
|
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
|
|
|
|
begin
|
|
Set_Analyzed (Lo, False);
|
|
|
|
return
|
|
Make_Range (Loc,
|
|
Low_Bound => Lo,
|
|
|
|
High_Bound =>
|
|
Make_Op_Subtract (Loc,
|
|
Left_Opnd =>
|
|
Make_Op_Add (Loc,
|
|
Left_Opnd => New_Copy_Tree (Lo),
|
|
Right_Opnd =>
|
|
Make_Integer_Literal (Loc,
|
|
String_Literal_Length (Literal_Typ))),
|
|
Right_Opnd => Make_Integer_Literal (Loc, 1)));
|
|
end Make_Literal_Range;
|
|
|
|
----------------------------
|
|
-- Make_Subtype_From_Expr --
|
|
----------------------------
|
|
|
|
-- 1. If Expr is an uncontrained array expression, creates
|
|
-- Unc_Type(Expr'first(1)..Expr'Last(1),..., Expr'first(n)..Expr'last(n))
|
|
|
|
-- 2. If Expr is a unconstrained discriminated type expression, creates
|
|
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
|
|
|
|
-- 3. If Expr is class-wide, creates an implicit class wide subtype
|
|
|
|
function Make_Subtype_From_Expr
|
|
(E : Node_Id;
|
|
Unc_Typ : Entity_Id)
|
|
return Node_Id
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (E);
|
|
List_Constr : List_Id := New_List;
|
|
D : Entity_Id;
|
|
|
|
Full_Subtyp : Entity_Id;
|
|
Priv_Subtyp : Entity_Id;
|
|
Utyp : Entity_Id;
|
|
Full_Exp : Node_Id;
|
|
|
|
begin
|
|
if Is_Private_Type (Unc_Typ)
|
|
and then Has_Unknown_Discriminants (Unc_Typ)
|
|
then
|
|
-- Prepare the subtype completion
|
|
|
|
Utyp := Underlying_Type (Unc_Typ);
|
|
Full_Subtyp := Make_Defining_Identifier (Loc,
|
|
New_Internal_Name ('C'));
|
|
Full_Exp := Unchecked_Convert_To (Utyp, Duplicate_Subexpr (E));
|
|
Set_Parent (Full_Exp, Parent (E));
|
|
|
|
Priv_Subtyp :=
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
|
|
|
|
Insert_Action (E,
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => Full_Subtyp,
|
|
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
|
|
|
|
-- Define the dummy private subtype
|
|
|
|
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
|
|
Set_Etype (Priv_Subtyp, Unc_Typ);
|
|
Set_Scope (Priv_Subtyp, Full_Subtyp);
|
|
Set_Is_Constrained (Priv_Subtyp);
|
|
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
|
|
Set_Is_Itype (Priv_Subtyp);
|
|
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
|
|
|
|
if Is_Tagged_Type (Priv_Subtyp) then
|
|
Set_Class_Wide_Type
|
|
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
|
|
Set_Primitive_Operations (Priv_Subtyp,
|
|
Primitive_Operations (Unc_Typ));
|
|
end if;
|
|
|
|
Set_Full_View (Priv_Subtyp, Full_Subtyp);
|
|
|
|
return New_Reference_To (Priv_Subtyp, Loc);
|
|
|
|
elsif Is_Array_Type (Unc_Typ) then
|
|
for J in 1 .. Number_Dimensions (Unc_Typ) loop
|
|
Append_To (List_Constr,
|
|
Make_Range (Loc,
|
|
Low_Bound =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Duplicate_Subexpr (E),
|
|
Attribute_Name => Name_First,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, J))),
|
|
High_Bound =>
|
|
Make_Attribute_Reference (Loc,
|
|
Prefix => Duplicate_Subexpr (E),
|
|
Attribute_Name => Name_Last,
|
|
Expressions => New_List (
|
|
Make_Integer_Literal (Loc, J)))));
|
|
end loop;
|
|
|
|
elsif Is_Class_Wide_Type (Unc_Typ) then
|
|
declare
|
|
CW_Subtype : Entity_Id;
|
|
EQ_Typ : Entity_Id := Empty;
|
|
|
|
begin
|
|
-- A class-wide equivalent type is not needed when Java_VM
|
|
-- because the JVM back end handles the class-wide object
|
|
-- initialization itself (and doesn't need or want the
|
|
-- additional intermediate type to handle the assignment).
|
|
|
|
if Expander_Active and then not Java_VM then
|
|
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
|
|
end if;
|
|
|
|
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
|
|
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
|
|
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
|
|
|
|
return New_Occurrence_Of (CW_Subtype, Loc);
|
|
end;
|
|
|
|
else
|
|
D := First_Discriminant (Unc_Typ);
|
|
while (Present (D)) loop
|
|
|
|
Append_To (List_Constr,
|
|
Make_Selected_Component (Loc,
|
|
Prefix => Duplicate_Subexpr (E),
|
|
Selector_Name => New_Reference_To (D, Loc)));
|
|
|
|
Next_Discriminant (D);
|
|
end loop;
|
|
end if;
|
|
|
|
return
|
|
Make_Subtype_Indication (Loc,
|
|
Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
|
|
Constraint =>
|
|
Make_Index_Or_Discriminant_Constraint (Loc,
|
|
Constraints => List_Constr));
|
|
end Make_Subtype_From_Expr;
|
|
|
|
-----------------------------
|
|
-- May_Generate_Large_Temp --
|
|
-----------------------------
|
|
|
|
-- At the current time, the only types that we return False for (i.e.
|
|
-- where we decide we know they cannot generate large temps) are ones
|
|
-- where we know the size is 128 bits or less at compile time, and we
|
|
-- are still not doing a thorough job on arrays and records ???
|
|
|
|
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
|
|
begin
|
|
if not Stack_Checking_Enabled then
|
|
return False;
|
|
|
|
elsif not Size_Known_At_Compile_Time (Typ) then
|
|
return False;
|
|
|
|
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
|
|
return False;
|
|
|
|
elsif Is_Array_Type (Typ)
|
|
and then Present (Packed_Array_Type (Typ))
|
|
then
|
|
return May_Generate_Large_Temp (Packed_Array_Type (Typ));
|
|
|
|
-- We could do more here to find other small types ???
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end May_Generate_Large_Temp;
|
|
|
|
----------------------------
|
|
-- New_Class_Wide_Subtype --
|
|
----------------------------
|
|
|
|
function New_Class_Wide_Subtype
|
|
(CW_Typ : Entity_Id;
|
|
N : Node_Id)
|
|
return Entity_Id
|
|
is
|
|
Res : Entity_Id := Create_Itype (E_Void, N);
|
|
Res_Name : constant Name_Id := Chars (Res);
|
|
Res_Scope : Entity_Id := Scope (Res);
|
|
|
|
begin
|
|
Copy_Node (CW_Typ, Res);
|
|
Set_Sloc (Res, Sloc (N));
|
|
Set_Is_Itype (Res);
|
|
Set_Associated_Node_For_Itype (Res, N);
|
|
Set_Is_Public (Res, False); -- By default, may be changed below.
|
|
Set_Public_Status (Res);
|
|
Set_Chars (Res, Res_Name);
|
|
Set_Scope (Res, Res_Scope);
|
|
Set_Ekind (Res, E_Class_Wide_Subtype);
|
|
Set_Next_Entity (Res, Empty);
|
|
Set_Etype (Res, Base_Type (CW_Typ));
|
|
Set_Freeze_Node (Res, Empty);
|
|
return (Res);
|
|
end New_Class_Wide_Subtype;
|
|
|
|
-------------------------
|
|
-- Remove_Side_Effects --
|
|
-------------------------
|
|
|
|
procedure Remove_Side_Effects
|
|
(Exp : Node_Id;
|
|
Name_Req : Boolean := False;
|
|
Variable_Ref : Boolean := False)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (Exp);
|
|
Exp_Type : constant Entity_Id := Etype (Exp);
|
|
Svg_Suppress : constant Suppress_Record := Scope_Suppress;
|
|
Def_Id : Entity_Id;
|
|
Ref_Type : Entity_Id;
|
|
Res : Node_Id;
|
|
Ptr_Typ_Decl : Node_Id;
|
|
New_Exp : Node_Id;
|
|
E : Node_Id;
|
|
|
|
function Side_Effect_Free (N : Node_Id) return Boolean;
|
|
-- Determines if the tree N represents an expession that is known
|
|
-- not to have side effects, and for which no processing is required.
|
|
|
|
function Side_Effect_Free (L : List_Id) return Boolean;
|
|
-- Determines if all elements of the list L are side effect free
|
|
|
|
function Mutable_Dereference (N : Node_Id) return Boolean;
|
|
-- If a selected component involves an implicit dereference and
|
|
-- the type of the prefix is not an_access_to_constant, the node
|
|
-- must be evaluated because it may be affected by a subsequent
|
|
-- assignment.
|
|
|
|
-------------------------
|
|
-- Mutable_Dereference --
|
|
-------------------------
|
|
|
|
function Mutable_Dereference (N : Node_Id) return Boolean is
|
|
begin
|
|
return Nkind (N) = N_Selected_Component
|
|
and then Is_Access_Type (Etype (Prefix (N)))
|
|
and then not Is_Access_Constant (Etype (Prefix (N)))
|
|
and then Variable_Ref;
|
|
end Mutable_Dereference;
|
|
|
|
----------------------
|
|
-- Side_Effect_Free --
|
|
----------------------
|
|
|
|
function Side_Effect_Free (N : Node_Id) return Boolean is
|
|
K : constant Node_Kind := Nkind (N);
|
|
|
|
begin
|
|
-- Note on checks that could raise Constraint_Error. Strictly, if
|
|
-- we take advantage of 11.6, these checks do not count as side
|
|
-- effects. However, we would just as soon consider that they are
|
|
-- side effects, since the backend CSE does not work very well on
|
|
-- expressions which can raise Constraint_Error. On the other
|
|
-- hand, if we do not consider them to be side effect free, then
|
|
-- we get some awkward expansions in -gnato mode, resulting in
|
|
-- code insertions at a point where we do not have a clear model
|
|
-- for performing the insertions. See 4908-002/comment for details.
|
|
|
|
-- An attribute reference is side effect free if its expressions
|
|
-- are side effect free and its prefix is (could be a dereference
|
|
-- or an indexed retrieval for example).
|
|
|
|
if K = N_Attribute_Reference then
|
|
return Side_Effect_Free (Expressions (N))
|
|
and then (Is_Entity_Name (Prefix (N))
|
|
or else Side_Effect_Free (Prefix (N)));
|
|
|
|
-- An entity is side effect free unless it is a function call, or
|
|
-- a reference to a volatile variable and Name_Req is False. If
|
|
-- Name_Req is True then we can't help returning a name which
|
|
-- effectively allows multiple references in any case.
|
|
|
|
elsif Is_Entity_Name (N)
|
|
and then Ekind (Entity (N)) /= E_Function
|
|
and then (not Is_Volatile (Entity (N)) or else Name_Req)
|
|
then
|
|
-- If the entity is a constant, it is definitely side effect
|
|
-- free. Note that the test of Is_Variable (N) below might
|
|
-- be expected to catch this case, but it does not, because
|
|
-- this test goes to the original tree, and we may have
|
|
-- already rewritten a variable node with a constant as
|
|
-- a result of an earlier Force_Evaluation call.
|
|
|
|
if Ekind (Entity (N)) = E_Constant then
|
|
return True;
|
|
|
|
-- If the Variable_Ref flag is set, any variable reference is
|
|
-- is considered a side-effect
|
|
|
|
elsif Variable_Ref then
|
|
return not Is_Variable (N);
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
|
|
-- A value known at compile time is always side effect free
|
|
|
|
elsif Compile_Time_Known_Value (N) then
|
|
return True;
|
|
|
|
-- Literals are always side-effect free
|
|
|
|
elsif (K = N_Integer_Literal
|
|
or else K = N_Real_Literal
|
|
or else K = N_Character_Literal
|
|
or else K = N_String_Literal
|
|
or else K = N_Null)
|
|
and then not Raises_Constraint_Error (N)
|
|
then
|
|
return True;
|
|
|
|
-- A type conversion or qualification is side effect free if the
|
|
-- expression to be converted is side effect free.
|
|
|
|
elsif K = N_Type_Conversion or else K = N_Qualified_Expression then
|
|
return Side_Effect_Free (Expression (N));
|
|
|
|
-- An unchecked type conversion is never side effect free since we
|
|
-- need to check whether it is safe.
|
|
-- effect free if its argument is side effect free.
|
|
|
|
elsif K = N_Unchecked_Type_Conversion then
|
|
if Safe_Unchecked_Type_Conversion (N) then
|
|
return Side_Effect_Free (Expression (N));
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- A unary operator is side effect free if the operand
|
|
-- is side effect free.
|
|
|
|
elsif K in N_Unary_Op then
|
|
return Side_Effect_Free (Right_Opnd (N));
|
|
|
|
-- A binary operator is side effect free if and both operands
|
|
-- are side effect free.
|
|
|
|
elsif K in N_Binary_Op then
|
|
return Side_Effect_Free (Left_Opnd (N))
|
|
and then Side_Effect_Free (Right_Opnd (N));
|
|
|
|
-- An explicit dereference or selected component is side effect
|
|
-- free if its prefix is side effect free.
|
|
|
|
elsif K = N_Explicit_Dereference
|
|
or else K = N_Selected_Component
|
|
then
|
|
return Side_Effect_Free (Prefix (N))
|
|
and then not Mutable_Dereference (Prefix (N));
|
|
|
|
-- An indexed component can be copied if the prefix is copyable
|
|
-- and all the indexing expressions are copyable and there is
|
|
-- no access check and no range checks.
|
|
|
|
elsif K = N_Indexed_Component then
|
|
return Side_Effect_Free (Prefix (N))
|
|
and then Side_Effect_Free (Expressions (N));
|
|
|
|
elsif K = N_Unchecked_Expression then
|
|
return Side_Effect_Free (Expression (N));
|
|
|
|
-- A call to _rep_to_pos is side effect free, since we generate
|
|
-- this pure function call ourselves. Moreover it is critically
|
|
-- important to make this exception, since otherwise we can
|
|
-- have discriminants in array components which don't look
|
|
-- side effect free in the case of an array whose index type
|
|
-- is an enumeration type with an enumeration rep clause.
|
|
|
|
elsif K = N_Function_Call
|
|
and then Nkind (Name (N)) = N_Identifier
|
|
and then Chars (Name (N)) = Name_uRep_To_Pos
|
|
then
|
|
return True;
|
|
|
|
-- We consider that anything else has side effects. This is a bit
|
|
-- crude, but we are pretty close for most common cases, and we
|
|
-- are certainly correct (i.e. we never return True when the
|
|
-- answer should be False).
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
end Side_Effect_Free;
|
|
|
|
function Side_Effect_Free (L : List_Id) return Boolean is
|
|
N : Node_Id;
|
|
|
|
begin
|
|
if L = No_List or else L = Error_List then
|
|
return True;
|
|
|
|
else
|
|
N := First (L);
|
|
|
|
while Present (N) loop
|
|
if not Side_Effect_Free (N) then
|
|
return False;
|
|
else
|
|
Next (N);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end if;
|
|
end Side_Effect_Free;
|
|
|
|
-- Start of processing for Remove_Side_Effects
|
|
|
|
begin
|
|
-- If we are side effect free already or expansion is disabled,
|
|
-- there is nothing to do.
|
|
|
|
if Side_Effect_Free (Exp) or else not Expander_Active then
|
|
return;
|
|
end if;
|
|
|
|
-- All the must not have any checks
|
|
|
|
Scope_Suppress := (others => True);
|
|
|
|
-- If the expression has the form v.all then we can just capture
|
|
-- the pointer, and then do an explicit dereference on the result.
|
|
|
|
if Nkind (Exp) = N_Explicit_Dereference then
|
|
Def_Id :=
|
|
Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
Res :=
|
|
Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
|
|
|
|
Insert_Action (Exp,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Object_Definition =>
|
|
New_Reference_To (Etype (Prefix (Exp)), Loc),
|
|
Constant_Present => True,
|
|
Expression => Relocate_Node (Prefix (Exp))));
|
|
|
|
-- If this is a type conversion, leave the type conversion and remove
|
|
-- the side effects in the expression. This is important in several
|
|
-- circumstances: for change of representations, and also when this
|
|
-- is a view conversion to a smaller object, where gigi can end up
|
|
-- its own temporary of the wrong size.
|
|
|
|
-- ??? this transformation is inhibited for elementary types that are
|
|
-- not involved in a change of representation because it causes
|
|
-- regressions that are not fully understood yet.
|
|
|
|
elsif Nkind (Exp) = N_Type_Conversion
|
|
and then (not Is_Elementary_Type (Underlying_Type (Exp_Type))
|
|
or else Nkind (Parent (Exp)) = N_Assignment_Statement)
|
|
then
|
|
Remove_Side_Effects (Expression (Exp), Variable_Ref);
|
|
Scope_Suppress := Svg_Suppress;
|
|
return;
|
|
|
|
-- For expressions that denote objects, we can use a renaming scheme.
|
|
-- We skip using this if we have a volatile variable and we do not
|
|
-- have Nam_Req set true (see comments above for Side_Effect_Free).
|
|
-- We also skip this scheme for class-wide expressions in order to
|
|
-- avoid recursive expension (see Expand_N_Object_Renaming_Declaration)
|
|
-- If the object is a function call, we need to create a temporary and
|
|
-- not a renaming.
|
|
|
|
elsif Is_Object_Reference (Exp)
|
|
and then Nkind (Exp) /= N_Function_Call
|
|
and then not Variable_Ref
|
|
and then (Name_Req
|
|
or else not Is_Entity_Name (Exp)
|
|
or else not Is_Volatile (Entity (Exp)))
|
|
and then not Is_Class_Wide_Type (Exp_Type)
|
|
then
|
|
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
|
|
if Nkind (Exp) = N_Selected_Component
|
|
and then Nkind (Prefix (Exp)) = N_Function_Call
|
|
and then Is_Array_Type (Etype (Exp))
|
|
then
|
|
-- Avoid generating a variable-sized temporary, by generating
|
|
-- the renaming declaration just for the function call. The
|
|
-- transformation could be refined to apply only when the array
|
|
-- component is constrained by a discriminant???
|
|
|
|
Res :=
|
|
Make_Selected_Component (Loc,
|
|
Prefix => New_Occurrence_Of (Def_Id, Loc),
|
|
Selector_Name => Selector_Name (Exp));
|
|
|
|
Insert_Action (Exp,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Subtype_Mark =>
|
|
New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
|
|
Name => Relocate_Node (Prefix (Exp))));
|
|
else
|
|
Res := New_Reference_To (Def_Id, Loc);
|
|
|
|
Insert_Action (Exp,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
|
|
Name => Relocate_Node (Exp)));
|
|
end if;
|
|
|
|
-- If it is a scalar type, just make a copy.
|
|
|
|
elsif Is_Elementary_Type (Exp_Type) then
|
|
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
Set_Etype (Def_Id, Exp_Type);
|
|
Res := New_Reference_To (Def_Id, Loc);
|
|
|
|
E :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Object_Definition => New_Reference_To (Exp_Type, Loc),
|
|
Constant_Present => True,
|
|
Expression => Relocate_Node (Exp));
|
|
|
|
Set_Assignment_OK (E);
|
|
Insert_Action (Exp, E);
|
|
|
|
-- If this is an unchecked conversion that Gigi can't handle, make
|
|
-- a copy or a use a renaming to capture the value.
|
|
|
|
elsif (Nkind (Exp) = N_Unchecked_Type_Conversion
|
|
and then not Safe_Unchecked_Type_Conversion (Exp))
|
|
then
|
|
if Controlled_Type (Etype (Exp)) then
|
|
-- Use a renaming to capture the expression, rather than create
|
|
-- a controlled temporary.
|
|
|
|
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
Res := New_Reference_To (Def_Id, Loc);
|
|
|
|
Insert_Action (Exp,
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
|
|
Name => Relocate_Node (Exp)));
|
|
|
|
else
|
|
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
Set_Etype (Def_Id, Exp_Type);
|
|
Res := New_Reference_To (Def_Id, Loc);
|
|
|
|
E :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Object_Definition => New_Reference_To (Exp_Type, Loc),
|
|
Constant_Present => True,
|
|
Expression => Relocate_Node (Exp));
|
|
|
|
Set_Assignment_OK (E);
|
|
Insert_Action (Exp, E);
|
|
end if;
|
|
|
|
-- Otherwise we generate a reference to the value
|
|
|
|
else
|
|
Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
|
|
|
|
Ptr_Typ_Decl :=
|
|
Make_Full_Type_Declaration (Loc,
|
|
Defining_Identifier => Ref_Type,
|
|
Type_Definition =>
|
|
Make_Access_To_Object_Definition (Loc,
|
|
All_Present => True,
|
|
Subtype_Indication =>
|
|
New_Reference_To (Exp_Type, Loc)));
|
|
|
|
E := Exp;
|
|
Insert_Action (Exp, Ptr_Typ_Decl);
|
|
|
|
Def_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
|
|
Set_Etype (Def_Id, Exp_Type);
|
|
|
|
Res :=
|
|
Make_Explicit_Dereference (Loc,
|
|
Prefix => New_Reference_To (Def_Id, Loc));
|
|
|
|
if Nkind (E) = N_Explicit_Dereference then
|
|
New_Exp := Relocate_Node (Prefix (E));
|
|
else
|
|
E := Relocate_Node (E);
|
|
New_Exp := Make_Reference (Loc, E);
|
|
end if;
|
|
|
|
if Nkind (E) = N_Aggregate and then Expansion_Delayed (E) then
|
|
Set_Expansion_Delayed (E, False);
|
|
Set_Analyzed (E, False);
|
|
end if;
|
|
|
|
Insert_Action (Exp,
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Def_Id,
|
|
Object_Definition => New_Reference_To (Ref_Type, Loc),
|
|
Expression => New_Exp));
|
|
end if;
|
|
|
|
-- Preserve the Assignment_OK flag in all copies, since at least
|
|
-- one copy may be used in a context where this flag must be set
|
|
-- (otherwise why would the flag be set in the first place).
|
|
|
|
Set_Assignment_OK (Res, Assignment_OK (Exp));
|
|
|
|
-- Finally rewrite the original expression and we are done
|
|
|
|
Rewrite (Exp, Res);
|
|
Analyze_And_Resolve (Exp, Exp_Type);
|
|
Scope_Suppress := Svg_Suppress;
|
|
end Remove_Side_Effects;
|
|
|
|
------------------------------------
|
|
-- Safe_Unchecked_Type_Conversion --
|
|
------------------------------------
|
|
|
|
-- Note: this function knows quite a bit about the exact requirements
|
|
-- of Gigi with respect to unchecked type conversions, and its code
|
|
-- must be coordinated with any changes in Gigi in this area.
|
|
|
|
-- The above requirements should be documented in Sinfo ???
|
|
|
|
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
|
|
Otyp : Entity_Id;
|
|
Ityp : Entity_Id;
|
|
Oalign : Uint;
|
|
Ialign : Uint;
|
|
Pexp : constant Node_Id := Parent (Exp);
|
|
|
|
begin
|
|
-- If the expression is the RHS of an assignment or object declaration
|
|
-- we are always OK because there will always be a target.
|
|
|
|
-- Object renaming declarations, (generated for view conversions of
|
|
-- actuals in inlined calls), like object declarations, provide an
|
|
-- explicit type, and are safe as well.
|
|
|
|
if (Nkind (Pexp) = N_Assignment_Statement
|
|
and then Expression (Pexp) = Exp)
|
|
or else Nkind (Pexp) = N_Object_Declaration
|
|
or else Nkind (Pexp) = N_Object_Renaming_Declaration
|
|
then
|
|
return True;
|
|
|
|
-- If the expression is the prefix of an N_Selected_Component
|
|
-- we should also be OK because GCC knows to look inside the
|
|
-- conversion except if the type is discriminated. We assume
|
|
-- that we are OK anyway if the type is not set yet or if it is
|
|
-- controlled since we can't afford to introduce a temporary in
|
|
-- this case.
|
|
|
|
elsif Nkind (Pexp) = N_Selected_Component
|
|
and then Prefix (Pexp) = Exp
|
|
then
|
|
if No (Etype (Pexp)) then
|
|
return True;
|
|
else
|
|
return
|
|
not Has_Discriminants (Etype (Pexp))
|
|
or else Is_Constrained (Etype (Pexp));
|
|
end if;
|
|
end if;
|
|
|
|
-- Set the output type, this comes from Etype if it is set, otherwise
|
|
-- we take it from the subtype mark, which we assume was already
|
|
-- fully analyzed.
|
|
|
|
if Present (Etype (Exp)) then
|
|
Otyp := Etype (Exp);
|
|
else
|
|
Otyp := Entity (Subtype_Mark (Exp));
|
|
end if;
|
|
|
|
-- The input type always comes from the expression, and we assume
|
|
-- this is indeed always analyzed, so we can simply get the Etype.
|
|
|
|
Ityp := Etype (Expression (Exp));
|
|
|
|
-- Initialize alignments to unknown so far
|
|
|
|
Oalign := No_Uint;
|
|
Ialign := No_Uint;
|
|
|
|
-- Replace a concurrent type by its corresponding record type
|
|
-- and each type by its underlying type and do the tests on those.
|
|
-- The original type may be a private type whose completion is a
|
|
-- concurrent type, so find the underlying type first.
|
|
|
|
if Present (Underlying_Type (Otyp)) then
|
|
Otyp := Underlying_Type (Otyp);
|
|
end if;
|
|
|
|
if Present (Underlying_Type (Ityp)) then
|
|
Ityp := Underlying_Type (Ityp);
|
|
end if;
|
|
|
|
if Is_Concurrent_Type (Otyp) then
|
|
Otyp := Corresponding_Record_Type (Otyp);
|
|
end if;
|
|
|
|
if Is_Concurrent_Type (Ityp) then
|
|
Ityp := Corresponding_Record_Type (Ityp);
|
|
end if;
|
|
|
|
-- If the base types are the same, we know there is no problem since
|
|
-- this conversion will be a noop.
|
|
|
|
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
|
|
return True;
|
|
|
|
-- If the size of output type is known at compile time, there is
|
|
-- never a problem. Note that unconstrained records are considered
|
|
-- to be of known size, but we can't consider them that way here,
|
|
-- because we are talking about the actual size of the object.
|
|
|
|
-- We also make sure that in addition to the size being known, we do
|
|
-- not have a case which might generate an embarrassingly large temp
|
|
-- in stack checking mode.
|
|
|
|
elsif Size_Known_At_Compile_Time (Otyp)
|
|
and then not May_Generate_Large_Temp (Otyp)
|
|
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
|
|
then
|
|
return True;
|
|
|
|
-- If either type is tagged, then we know the alignment is OK so
|
|
-- Gigi will be able to use pointer punning.
|
|
|
|
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
|
|
return True;
|
|
|
|
-- If either type is a limited record type, we cannot do a copy, so
|
|
-- say safe since there's nothing else we can do.
|
|
|
|
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
|
|
return True;
|
|
|
|
-- Conversions to and from packed array types are always ignored and
|
|
-- hence are safe.
|
|
|
|
elsif Is_Packed_Array_Type (Otyp)
|
|
or else Is_Packed_Array_Type (Ityp)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- The only other cases known to be safe is if the input type's
|
|
-- alignment is known to be at least the maximum alignment for the
|
|
-- target or if both alignments are known and the output type's
|
|
-- alignment is no stricter than the input's. We can use the alignment
|
|
-- of the component type of an array if a type is an unpacked
|
|
-- array type.
|
|
|
|
if Present (Alignment_Clause (Otyp)) then
|
|
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
|
|
|
|
elsif Is_Array_Type (Otyp)
|
|
and then Present (Alignment_Clause (Component_Type (Otyp)))
|
|
then
|
|
Oalign := Expr_Value (Expression (Alignment_Clause
|
|
(Component_Type (Otyp))));
|
|
end if;
|
|
|
|
if Present (Alignment_Clause (Ityp)) then
|
|
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
|
|
|
|
elsif Is_Array_Type (Ityp)
|
|
and then Present (Alignment_Clause (Component_Type (Ityp)))
|
|
then
|
|
Ialign := Expr_Value (Expression (Alignment_Clause
|
|
(Component_Type (Ityp))));
|
|
end if;
|
|
|
|
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
|
|
return True;
|
|
|
|
elsif Ialign /= No_Uint and then Oalign /= No_Uint
|
|
and then Ialign <= Oalign
|
|
then
|
|
return True;
|
|
|
|
-- Otherwise, Gigi cannot handle this and we must make a temporary.
|
|
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
end Safe_Unchecked_Type_Conversion;
|
|
|
|
--------------------------
|
|
-- Set_Elaboration_Flag --
|
|
--------------------------
|
|
|
|
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Asn : Node_Id;
|
|
|
|
begin
|
|
if Present (Elaboration_Entity (Spec_Id)) then
|
|
|
|
-- Nothing to do if at the compilation unit level, because in this
|
|
-- case the flag is set by the binder generated elaboration routine.
|
|
|
|
if Nkind (Parent (N)) = N_Compilation_Unit then
|
|
null;
|
|
|
|
-- Here we do need to generate an assignment statement
|
|
|
|
else
|
|
Check_Restriction (No_Elaboration_Code, N);
|
|
Asn :=
|
|
Make_Assignment_Statement (Loc,
|
|
Name => New_Occurrence_Of (Elaboration_Entity (Spec_Id), Loc),
|
|
Expression => New_Occurrence_Of (Standard_True, Loc));
|
|
|
|
if Nkind (Parent (N)) = N_Subunit then
|
|
Insert_After (Corresponding_Stub (Parent (N)), Asn);
|
|
else
|
|
Insert_After (N, Asn);
|
|
end if;
|
|
|
|
Analyze (Asn);
|
|
end if;
|
|
end if;
|
|
end Set_Elaboration_Flag;
|
|
|
|
----------------------------
|
|
-- Wrap_Cleanup_Procedure --
|
|
----------------------------
|
|
|
|
procedure Wrap_Cleanup_Procedure (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Stseq : constant Node_Id := Handled_Statement_Sequence (N);
|
|
Stmts : constant List_Id := Statements (Stseq);
|
|
|
|
begin
|
|
if Abort_Allowed then
|
|
Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
|
|
Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
|
|
end if;
|
|
end Wrap_Cleanup_Procedure;
|
|
|
|
end Exp_Util;
|