1876 lines
51 KiB
C
1876 lines
51 KiB
C
/* Decompose multiword subregs.
|
||
Copyright (C) 2007-2021 Free Software Foundation, Inc.
|
||
Contributed by Richard Henderson <rth@redhat.com>
|
||
Ian Lance Taylor <iant@google.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "cfghooks.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "expmed.h"
|
||
#include "insn-config.h"
|
||
#include "emit-rtl.h"
|
||
#include "recog.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfgbuild.h"
|
||
#include "dce.h"
|
||
#include "expr.h"
|
||
#include "tree-pass.h"
|
||
#include "lower-subreg.h"
|
||
#include "rtl-iter.h"
|
||
#include "target.h"
|
||
|
||
|
||
/* Decompose multi-word pseudo-registers into individual
|
||
pseudo-registers when possible and profitable. This is possible
|
||
when all the uses of a multi-word register are via SUBREG, or are
|
||
copies of the register to another location. Breaking apart the
|
||
register permits more CSE and permits better register allocation.
|
||
This is profitable if the machine does not have move instructions
|
||
to do this.
|
||
|
||
This pass only splits moves with modes that are wider than
|
||
word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
|
||
integer modes that are twice the width of word_mode. The latter
|
||
could be generalized if there was a need to do this, but the trend in
|
||
architectures is to not need this.
|
||
|
||
There are two useful preprocessor defines for use by maintainers:
|
||
|
||
#define LOG_COSTS 1
|
||
|
||
if you wish to see the actual cost estimates that are being used
|
||
for each mode wider than word mode and the cost estimates for zero
|
||
extension and the shifts. This can be useful when port maintainers
|
||
are tuning insn rtx costs.
|
||
|
||
#define FORCE_LOWERING 1
|
||
|
||
if you wish to test the pass with all the transformation forced on.
|
||
This can be useful for finding bugs in the transformations. */
|
||
|
||
#define LOG_COSTS 0
|
||
#define FORCE_LOWERING 0
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a context in
|
||
which we can decompose it. */
|
||
static bitmap decomposable_context;
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a context in
|
||
which it cannot be decomposed. */
|
||
static bitmap non_decomposable_context;
|
||
|
||
/* Bit N in this bitmap is set if regno N is used in a subreg
|
||
which changes the mode but not the size. This typically happens
|
||
when the register accessed as a floating-point value; we want to
|
||
avoid generating accesses to its subwords in integer modes. */
|
||
static bitmap subreg_context;
|
||
|
||
/* Bit N in the bitmap in element M of this array is set if there is a
|
||
copy from reg M to reg N. */
|
||
static vec<bitmap> reg_copy_graph;
|
||
|
||
struct target_lower_subreg default_target_lower_subreg;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_lower_subreg *this_target_lower_subreg
|
||
= &default_target_lower_subreg;
|
||
#endif
|
||
|
||
#define twice_word_mode \
|
||
this_target_lower_subreg->x_twice_word_mode
|
||
#define choices \
|
||
this_target_lower_subreg->x_choices
|
||
|
||
/* Return true if MODE is a mode we know how to lower. When returning true,
|
||
store its byte size in *BYTES and its word size in *WORDS. */
|
||
|
||
static inline bool
|
||
interesting_mode_p (machine_mode mode, unsigned int *bytes,
|
||
unsigned int *words)
|
||
{
|
||
if (!GET_MODE_SIZE (mode).is_constant (bytes))
|
||
return false;
|
||
*words = CEIL (*bytes, UNITS_PER_WORD);
|
||
return true;
|
||
}
|
||
|
||
/* RTXes used while computing costs. */
|
||
struct cost_rtxes {
|
||
/* Source and target registers. */
|
||
rtx source;
|
||
rtx target;
|
||
|
||
/* A twice_word_mode ZERO_EXTEND of SOURCE. */
|
||
rtx zext;
|
||
|
||
/* A shift of SOURCE. */
|
||
rtx shift;
|
||
|
||
/* A SET of TARGET. */
|
||
rtx set;
|
||
};
|
||
|
||
/* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
|
||
rtxes in RTXES. SPEED_P selects between the speed and size cost. */
|
||
|
||
static int
|
||
shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
|
||
machine_mode mode, int op1)
|
||
{
|
||
PUT_CODE (rtxes->shift, code);
|
||
PUT_MODE (rtxes->shift, mode);
|
||
PUT_MODE (rtxes->source, mode);
|
||
XEXP (rtxes->shift, 1) = gen_int_shift_amount (mode, op1);
|
||
return set_src_cost (rtxes->shift, mode, speed_p);
|
||
}
|
||
|
||
/* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
|
||
to true if it is profitable to split a double-word CODE shift
|
||
of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
|
||
for speed or size profitability.
|
||
|
||
Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
|
||
the cost of moving zero into a word-mode register. WORD_MOVE_COST
|
||
is the cost of moving between word registers. */
|
||
|
||
static void
|
||
compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
|
||
bool *splitting, enum rtx_code code,
|
||
int word_move_zero_cost, int word_move_cost)
|
||
{
|
||
int wide_cost, narrow_cost, upper_cost, i;
|
||
|
||
for (i = 0; i < BITS_PER_WORD; i++)
|
||
{
|
||
wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
|
||
i + BITS_PER_WORD);
|
||
if (i == 0)
|
||
narrow_cost = word_move_cost;
|
||
else
|
||
narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
|
||
|
||
if (code != ASHIFTRT)
|
||
upper_cost = word_move_zero_cost;
|
||
else if (i == BITS_PER_WORD - 1)
|
||
upper_cost = word_move_cost;
|
||
else
|
||
upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
|
||
BITS_PER_WORD - 1);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
|
||
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
|
||
i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
|
||
|
||
if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
|
||
splitting[i] = true;
|
||
}
|
||
}
|
||
|
||
/* Compute what we should do when optimizing for speed or size; SPEED_P
|
||
selects which. Use RTXES for computing costs. */
|
||
|
||
static void
|
||
compute_costs (bool speed_p, struct cost_rtxes *rtxes)
|
||
{
|
||
unsigned int i;
|
||
int word_move_zero_cost, word_move_cost;
|
||
|
||
PUT_MODE (rtxes->target, word_mode);
|
||
SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
|
||
word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
|
||
|
||
SET_SRC (rtxes->set) = rtxes->source;
|
||
word_move_cost = set_rtx_cost (rtxes->set, speed_p);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
|
||
GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
|
||
|
||
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
||
{
|
||
machine_mode mode = (machine_mode) i;
|
||
unsigned int size, factor;
|
||
if (interesting_mode_p (mode, &size, &factor) && factor > 1)
|
||
{
|
||
unsigned int mode_move_cost;
|
||
|
||
PUT_MODE (rtxes->target, mode);
|
||
PUT_MODE (rtxes->source, mode);
|
||
mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
|
||
GET_MODE_NAME (mode), mode_move_cost,
|
||
word_move_cost, factor);
|
||
|
||
if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
|
||
{
|
||
choices[speed_p].move_modes_to_split[i] = true;
|
||
choices[speed_p].something_to_do = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For the moves and shifts, the only case that is checked is one
|
||
where the mode of the target is an integer mode twice the width
|
||
of the word_mode.
|
||
|
||
If it is not profitable to split a double word move then do not
|
||
even consider the shifts or the zero extension. */
|
||
if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
|
||
{
|
||
int zext_cost;
|
||
|
||
/* The only case here to check to see if moving the upper part with a
|
||
zero is cheaper than doing the zext itself. */
|
||
PUT_MODE (rtxes->source, word_mode);
|
||
zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
|
||
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
|
||
zext_cost, word_move_cost, word_move_zero_cost);
|
||
|
||
if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
|
||
choices[speed_p].splitting_zext = true;
|
||
|
||
compute_splitting_shift (speed_p, rtxes,
|
||
choices[speed_p].splitting_ashift, ASHIFT,
|
||
word_move_zero_cost, word_move_cost);
|
||
compute_splitting_shift (speed_p, rtxes,
|
||
choices[speed_p].splitting_lshiftrt, LSHIFTRT,
|
||
word_move_zero_cost, word_move_cost);
|
||
compute_splitting_shift (speed_p, rtxes,
|
||
choices[speed_p].splitting_ashiftrt, ASHIFTRT,
|
||
word_move_zero_cost, word_move_cost);
|
||
}
|
||
}
|
||
|
||
/* Do one-per-target initialisation. This involves determining
|
||
which operations on the machine are profitable. If none are found,
|
||
then the pass just returns when called. */
|
||
|
||
void
|
||
init_lower_subreg (void)
|
||
{
|
||
struct cost_rtxes rtxes;
|
||
|
||
memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
|
||
|
||
twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode).require ();
|
||
|
||
rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
|
||
rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
|
||
rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
|
||
rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
|
||
rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "\nSize costs\n==========\n\n");
|
||
compute_costs (false, &rtxes);
|
||
|
||
if (LOG_COSTS)
|
||
fprintf (stderr, "\nSpeed costs\n===========\n\n");
|
||
compute_costs (true, &rtxes);
|
||
}
|
||
|
||
static bool
|
||
simple_move_operand (rtx x)
|
||
{
|
||
if (GET_CODE (x) == SUBREG)
|
||
x = SUBREG_REG (x);
|
||
|
||
if (!OBJECT_P (x))
|
||
return false;
|
||
|
||
if (GET_CODE (x) == LABEL_REF
|
||
|| GET_CODE (x) == SYMBOL_REF
|
||
|| GET_CODE (x) == HIGH
|
||
|| GET_CODE (x) == CONST)
|
||
return false;
|
||
|
||
if (MEM_P (x)
|
||
&& (MEM_VOLATILE_P (x)
|
||
|| mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If X is an operator that can be treated as a simple move that we
|
||
can split, then return the operand that is operated on. */
|
||
|
||
static rtx
|
||
operand_for_swap_move_operator (rtx x)
|
||
{
|
||
/* A word sized rotate of a register pair is equivalent to swapping
|
||
the registers in the register pair. */
|
||
if (GET_CODE (x) == ROTATE
|
||
&& GET_MODE (x) == twice_word_mode
|
||
&& simple_move_operand (XEXP (x, 0))
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) == BITS_PER_WORD)
|
||
return XEXP (x, 0);
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* If INSN is a single set between two objects that we want to split,
|
||
return the single set. SPEED_P says whether we are optimizing
|
||
INSN for speed or size.
|
||
|
||
INSN should have been passed to recog and extract_insn before this
|
||
is called. */
|
||
|
||
static rtx
|
||
simple_move (rtx_insn *insn, bool speed_p)
|
||
{
|
||
rtx x, op;
|
||
rtx set;
|
||
machine_mode mode;
|
||
|
||
if (recog_data.n_operands != 2)
|
||
return NULL_RTX;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return NULL_RTX;
|
||
|
||
x = SET_DEST (set);
|
||
if (x != recog_data.operand[0] && x != recog_data.operand[1])
|
||
return NULL_RTX;
|
||
if (!simple_move_operand (x))
|
||
return NULL_RTX;
|
||
|
||
x = SET_SRC (set);
|
||
if ((op = operand_for_swap_move_operator (x)) != NULL_RTX)
|
||
x = op;
|
||
|
||
if (x != recog_data.operand[0] && x != recog_data.operand[1])
|
||
return NULL_RTX;
|
||
/* For the src we can handle ASM_OPERANDS, and it is beneficial for
|
||
things like x86 rdtsc which returns a DImode value. */
|
||
if (GET_CODE (x) != ASM_OPERANDS
|
||
&& !simple_move_operand (x))
|
||
return NULL_RTX;
|
||
|
||
/* We try to decompose in integer modes, to avoid generating
|
||
inefficient code copying between integer and floating point
|
||
registers. That means that we can't decompose if this is a
|
||
non-integer mode for which there is no integer mode of the same
|
||
size. */
|
||
mode = GET_MODE (SET_DEST (set));
|
||
if (!SCALAR_INT_MODE_P (mode)
|
||
&& !int_mode_for_size (GET_MODE_BITSIZE (mode), 0).exists ())
|
||
return NULL_RTX;
|
||
|
||
/* Reject PARTIAL_INT modes. They are used for processor specific
|
||
purposes and it's probably best not to tamper with them. */
|
||
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
return NULL_RTX;
|
||
|
||
if (!choices[speed_p].move_modes_to_split[(int) mode])
|
||
return NULL_RTX;
|
||
|
||
return set;
|
||
}
|
||
|
||
/* If SET is a copy from one multi-word pseudo-register to another,
|
||
record that in reg_copy_graph. Return whether it is such a
|
||
copy. */
|
||
|
||
static bool
|
||
find_pseudo_copy (rtx set)
|
||
{
|
||
rtx dest = SET_DEST (set);
|
||
rtx src = SET_SRC (set);
|
||
rtx op;
|
||
unsigned int rd, rs;
|
||
bitmap b;
|
||
|
||
if ((op = operand_for_swap_move_operator (src)) != NULL_RTX)
|
||
src = op;
|
||
|
||
if (!REG_P (dest) || !REG_P (src))
|
||
return false;
|
||
|
||
rd = REGNO (dest);
|
||
rs = REGNO (src);
|
||
if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
|
||
return false;
|
||
|
||
b = reg_copy_graph[rs];
|
||
if (b == NULL)
|
||
{
|
||
b = BITMAP_ALLOC (NULL);
|
||
reg_copy_graph[rs] = b;
|
||
}
|
||
|
||
bitmap_set_bit (b, rd);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
|
||
where they are copied to another register, add the register to
|
||
which they are copied to DECOMPOSABLE_CONTEXT. Use
|
||
NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
|
||
copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
|
||
|
||
static void
|
||
propagate_pseudo_copies (void)
|
||
{
|
||
auto_bitmap queue, propagate;
|
||
|
||
bitmap_copy (queue, decomposable_context);
|
||
do
|
||
{
|
||
bitmap_iterator iter;
|
||
unsigned int i;
|
||
|
||
bitmap_clear (propagate);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
|
||
{
|
||
bitmap b = reg_copy_graph[i];
|
||
if (b)
|
||
bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
|
||
}
|
||
|
||
bitmap_and_compl (queue, propagate, decomposable_context);
|
||
bitmap_ior_into (decomposable_context, propagate);
|
||
}
|
||
while (!bitmap_empty_p (queue));
|
||
}
|
||
|
||
/* A pointer to one of these values is passed to
|
||
find_decomposable_subregs. */
|
||
|
||
enum classify_move_insn
|
||
{
|
||
/* Not a simple move from one location to another. */
|
||
NOT_SIMPLE_MOVE,
|
||
/* A simple move we want to decompose. */
|
||
DECOMPOSABLE_SIMPLE_MOVE,
|
||
/* Any other simple move. */
|
||
SIMPLE_MOVE
|
||
};
|
||
|
||
/* If we find a SUBREG in *LOC which we could use to decompose a
|
||
pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
|
||
unadorned register which is not a simple pseudo-register copy,
|
||
DATA will point at the type of move, and we set a bit in
|
||
DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
|
||
|
||
static void
|
||
find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
|
||
{
|
||
rtx x = *iter;
|
||
if (GET_CODE (x) == SUBREG)
|
||
{
|
||
rtx inner = SUBREG_REG (x);
|
||
unsigned int regno, outer_size, inner_size, outer_words, inner_words;
|
||
|
||
if (!REG_P (inner))
|
||
continue;
|
||
|
||
regno = REGNO (inner);
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
{
|
||
iter.skip_subrtxes ();
|
||
continue;
|
||
}
|
||
|
||
if (!interesting_mode_p (GET_MODE (x), &outer_size, &outer_words)
|
||
|| !interesting_mode_p (GET_MODE (inner), &inner_size,
|
||
&inner_words))
|
||
continue;
|
||
|
||
/* We only try to decompose single word subregs of multi-word
|
||
registers. When we find one, we return -1 to avoid iterating
|
||
over the inner register.
|
||
|
||
??? This doesn't allow, e.g., DImode subregs of TImode values
|
||
on 32-bit targets. We would need to record the way the
|
||
pseudo-register was used, and only decompose if all the uses
|
||
were the same number and size of pieces. Hopefully this
|
||
doesn't happen much. */
|
||
|
||
if (outer_words == 1
|
||
&& inner_words > 1
|
||
/* Don't allow to decompose floating point subregs of
|
||
multi-word pseudos if the floating point mode does
|
||
not have word size, because otherwise we'd generate
|
||
a subreg with that floating mode from a different
|
||
sized integral pseudo which is not allowed by
|
||
validate_subreg. */
|
||
&& (!FLOAT_MODE_P (GET_MODE (x))
|
||
|| outer_size == UNITS_PER_WORD))
|
||
{
|
||
bitmap_set_bit (decomposable_context, regno);
|
||
iter.skip_subrtxes ();
|
||
continue;
|
||
}
|
||
|
||
/* If this is a cast from one mode to another, where the modes
|
||
have the same size, and they are not tieable, then mark this
|
||
register as non-decomposable. If we decompose it we are
|
||
likely to mess up whatever the backend is trying to do. */
|
||
if (outer_words > 1
|
||
&& outer_size == inner_size
|
||
&& !targetm.modes_tieable_p (GET_MODE (x), GET_MODE (inner)))
|
||
{
|
||
bitmap_set_bit (non_decomposable_context, regno);
|
||
bitmap_set_bit (subreg_context, regno);
|
||
iter.skip_subrtxes ();
|
||
continue;
|
||
}
|
||
}
|
||
else if (REG_P (x))
|
||
{
|
||
unsigned int regno, size, words;
|
||
|
||
/* We will see an outer SUBREG before we see the inner REG, so
|
||
when we see a plain REG here it means a direct reference to
|
||
the register.
|
||
|
||
If this is not a simple copy from one location to another,
|
||
then we cannot decompose this register. If this is a simple
|
||
copy we want to decompose, and the mode is right,
|
||
then we mark the register as decomposable.
|
||
Otherwise we don't say anything about this register --
|
||
it could be decomposed, but whether that would be
|
||
profitable depends upon how it is used elsewhere.
|
||
|
||
We only set bits in the bitmap for multi-word
|
||
pseudo-registers, since those are the only ones we care about
|
||
and it keeps the size of the bitmaps down. */
|
||
|
||
regno = REGNO (x);
|
||
if (!HARD_REGISTER_NUM_P (regno)
|
||
&& interesting_mode_p (GET_MODE (x), &size, &words)
|
||
&& words > 1)
|
||
{
|
||
switch (*pcmi)
|
||
{
|
||
case NOT_SIMPLE_MOVE:
|
||
bitmap_set_bit (non_decomposable_context, regno);
|
||
break;
|
||
case DECOMPOSABLE_SIMPLE_MOVE:
|
||
if (targetm.modes_tieable_p (GET_MODE (x), word_mode))
|
||
bitmap_set_bit (decomposable_context, regno);
|
||
break;
|
||
case SIMPLE_MOVE:
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
else if (MEM_P (x))
|
||
{
|
||
enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
|
||
|
||
/* Any registers used in a MEM do not participate in a
|
||
SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
|
||
here, and return -1 to block the parent's recursion. */
|
||
find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
|
||
iter.skip_subrtxes ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Decompose REGNO into word-sized components. We smash the REG node
|
||
in place. This ensures that (1) something goes wrong quickly if we
|
||
fail to make some replacement, and (2) the debug information inside
|
||
the symbol table is automatically kept up to date. */
|
||
|
||
static void
|
||
decompose_register (unsigned int regno)
|
||
{
|
||
rtx reg;
|
||
unsigned int size, words, i;
|
||
rtvec v;
|
||
|
||
reg = regno_reg_rtx[regno];
|
||
|
||
regno_reg_rtx[regno] = NULL_RTX;
|
||
|
||
if (!interesting_mode_p (GET_MODE (reg), &size, &words))
|
||
gcc_unreachable ();
|
||
|
||
v = rtvec_alloc (words);
|
||
for (i = 0; i < words; ++i)
|
||
RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
|
||
|
||
PUT_CODE (reg, CONCATN);
|
||
XVEC (reg, 0) = v;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "; Splitting reg %u ->", regno);
|
||
for (i = 0; i < words; ++i)
|
||
fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
|
||
fputc ('\n', dump_file);
|
||
}
|
||
}
|
||
|
||
/* Get a SUBREG of a CONCATN. */
|
||
|
||
static rtx
|
||
simplify_subreg_concatn (machine_mode outermode, rtx op, poly_uint64 orig_byte)
|
||
{
|
||
unsigned int outer_size, outer_words, inner_size, inner_words;
|
||
machine_mode innermode, partmode;
|
||
rtx part;
|
||
unsigned int final_offset;
|
||
unsigned int byte;
|
||
|
||
innermode = GET_MODE (op);
|
||
if (!interesting_mode_p (outermode, &outer_size, &outer_words)
|
||
|| !interesting_mode_p (innermode, &inner_size, &inner_words))
|
||
gcc_unreachable ();
|
||
|
||
/* Must be constant if interesting_mode_p passes. */
|
||
byte = orig_byte.to_constant ();
|
||
gcc_assert (GET_CODE (op) == CONCATN);
|
||
gcc_assert (byte % outer_size == 0);
|
||
|
||
gcc_assert (byte < inner_size);
|
||
if (outer_size > inner_size)
|
||
return NULL_RTX;
|
||
|
||
inner_size /= XVECLEN (op, 0);
|
||
part = XVECEXP (op, 0, byte / inner_size);
|
||
partmode = GET_MODE (part);
|
||
|
||
final_offset = byte % inner_size;
|
||
if (final_offset + outer_size > inner_size)
|
||
return NULL_RTX;
|
||
|
||
/* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
|
||
regular CONST_VECTORs. They have vector or integer modes, depending
|
||
on the capabilities of the target. Cope with them. */
|
||
if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
|
||
partmode = GET_MODE_INNER (innermode);
|
||
else if (partmode == VOIDmode)
|
||
partmode = mode_for_size (inner_size * BITS_PER_UNIT,
|
||
GET_MODE_CLASS (innermode), 0).require ();
|
||
|
||
return simplify_gen_subreg (outermode, part, partmode, final_offset);
|
||
}
|
||
|
||
/* Wrapper around simplify_gen_subreg which handles CONCATN. */
|
||
|
||
static rtx
|
||
simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
|
||
machine_mode innermode, unsigned int byte)
|
||
{
|
||
rtx ret;
|
||
|
||
/* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
|
||
If OP is a SUBREG of a CONCATN, then it must be a simple mode
|
||
change with the same size and offset 0, or it must extract a
|
||
part. We shouldn't see anything else here. */
|
||
if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
|
||
{
|
||
rtx op2;
|
||
|
||
if (known_eq (GET_MODE_SIZE (GET_MODE (op)),
|
||
GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
|
||
&& known_eq (SUBREG_BYTE (op), 0))
|
||
return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
|
||
GET_MODE (SUBREG_REG (op)), byte);
|
||
|
||
op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
|
||
SUBREG_BYTE (op));
|
||
if (op2 == NULL_RTX)
|
||
{
|
||
/* We don't handle paradoxical subregs here. */
|
||
gcc_assert (!paradoxical_subreg_p (outermode, GET_MODE (op)));
|
||
gcc_assert (!paradoxical_subreg_p (op));
|
||
op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
|
||
byte + SUBREG_BYTE (op));
|
||
gcc_assert (op2 != NULL_RTX);
|
||
return op2;
|
||
}
|
||
|
||
op = op2;
|
||
gcc_assert (op != NULL_RTX);
|
||
gcc_assert (innermode == GET_MODE (op));
|
||
}
|
||
|
||
if (GET_CODE (op) == CONCATN)
|
||
return simplify_subreg_concatn (outermode, op, byte);
|
||
|
||
ret = simplify_gen_subreg (outermode, op, innermode, byte);
|
||
|
||
/* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
|
||
resolve_simple_move will ask for the high part of the paradoxical
|
||
subreg, which does not have a value. Just return a zero. */
|
||
if (ret == NULL_RTX
|
||
&& paradoxical_subreg_p (op))
|
||
return CONST0_RTX (outermode);
|
||
|
||
gcc_assert (ret != NULL_RTX);
|
||
return ret;
|
||
}
|
||
|
||
/* Return whether we should resolve X into the registers into which it
|
||
was decomposed. */
|
||
|
||
static bool
|
||
resolve_reg_p (rtx x)
|
||
{
|
||
return GET_CODE (x) == CONCATN;
|
||
}
|
||
|
||
/* Return whether X is a SUBREG of a register which we need to
|
||
resolve. */
|
||
|
||
static bool
|
||
resolve_subreg_p (rtx x)
|
||
{
|
||
if (GET_CODE (x) != SUBREG)
|
||
return false;
|
||
return resolve_reg_p (SUBREG_REG (x));
|
||
}
|
||
|
||
/* Look for SUBREGs in *LOC which need to be decomposed. */
|
||
|
||
static bool
|
||
resolve_subreg_use (rtx *loc, rtx insn)
|
||
{
|
||
subrtx_ptr_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
|
||
{
|
||
rtx *loc = *iter;
|
||
rtx x = *loc;
|
||
if (resolve_subreg_p (x))
|
||
{
|
||
x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
|
||
SUBREG_BYTE (x));
|
||
|
||
/* It is possible for a note to contain a reference which we can
|
||
decompose. In this case, return 1 to the caller to indicate
|
||
that the note must be removed. */
|
||
if (!x)
|
||
{
|
||
gcc_assert (!insn);
|
||
return true;
|
||
}
|
||
|
||
validate_change (insn, loc, x, 1);
|
||
iter.skip_subrtxes ();
|
||
}
|
||
else if (resolve_reg_p (x))
|
||
/* Return 1 to the caller to indicate that we found a direct
|
||
reference to a register which is being decomposed. This can
|
||
happen inside notes, multiword shift or zero-extend
|
||
instructions. */
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Resolve any decomposed registers which appear in register notes on
|
||
INSN. */
|
||
|
||
static void
|
||
resolve_reg_notes (rtx_insn *insn)
|
||
{
|
||
rtx *pnote, note;
|
||
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note)
|
||
{
|
||
int old_count = num_validated_changes ();
|
||
if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
|
||
remove_note (insn, note);
|
||
else
|
||
if (old_count != num_validated_changes ())
|
||
df_notes_rescan (insn);
|
||
}
|
||
|
||
pnote = ®_NOTES (insn);
|
||
while (*pnote != NULL_RTX)
|
||
{
|
||
bool del = false;
|
||
|
||
note = *pnote;
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_DEAD:
|
||
case REG_UNUSED:
|
||
if (resolve_reg_p (XEXP (note, 0)))
|
||
del = true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (del)
|
||
*pnote = XEXP (note, 1);
|
||
else
|
||
pnote = &XEXP (note, 1);
|
||
}
|
||
}
|
||
|
||
/* Return whether X can be decomposed into subwords. */
|
||
|
||
static bool
|
||
can_decompose_p (rtx x)
|
||
{
|
||
if (REG_P (x))
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
|
||
if (HARD_REGISTER_NUM_P (regno))
|
||
{
|
||
unsigned int byte, num_bytes, num_words;
|
||
|
||
if (!interesting_mode_p (GET_MODE (x), &num_bytes, &num_words))
|
||
return false;
|
||
for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
|
||
if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
else
|
||
return !bitmap_bit_p (subreg_context, regno);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* OPND is a concatn operand this is used with a simple move operator.
|
||
Return a new rtx with the concatn's operands swapped. */
|
||
|
||
static rtx
|
||
resolve_operand_for_swap_move_operator (rtx opnd)
|
||
{
|
||
gcc_assert (GET_CODE (opnd) == CONCATN);
|
||
rtx concatn = copy_rtx (opnd);
|
||
rtx op0 = XVECEXP (concatn, 0, 0);
|
||
rtx op1 = XVECEXP (concatn, 0, 1);
|
||
XVECEXP (concatn, 0, 0) = op1;
|
||
XVECEXP (concatn, 0, 1) = op0;
|
||
return concatn;
|
||
}
|
||
|
||
/* Decompose the registers used in a simple move SET within INSN. If
|
||
we don't change anything, return INSN, otherwise return the start
|
||
of the sequence of moves. */
|
||
|
||
static rtx_insn *
|
||
resolve_simple_move (rtx set, rtx_insn *insn)
|
||
{
|
||
rtx src, dest, real_dest, src_op;
|
||
rtx_insn *insns;
|
||
machine_mode orig_mode, dest_mode;
|
||
unsigned int orig_size, words;
|
||
bool pushing;
|
||
|
||
src = SET_SRC (set);
|
||
dest = SET_DEST (set);
|
||
orig_mode = GET_MODE (dest);
|
||
|
||
if (!interesting_mode_p (orig_mode, &orig_size, &words))
|
||
gcc_unreachable ();
|
||
gcc_assert (words > 1);
|
||
|
||
start_sequence ();
|
||
|
||
/* We have to handle copying from a SUBREG of a decomposed reg where
|
||
the SUBREG is larger than word size. Rather than assume that we
|
||
can take a word_mode SUBREG of the destination, we copy to a new
|
||
register and then copy that to the destination. */
|
||
|
||
real_dest = NULL_RTX;
|
||
|
||
if ((src_op = operand_for_swap_move_operator (src)) != NULL_RTX)
|
||
{
|
||
if (resolve_reg_p (dest))
|
||
{
|
||
/* DEST is a CONCATN, so swap its operands and strip
|
||
SRC's operator. */
|
||
dest = resolve_operand_for_swap_move_operator (dest);
|
||
src = src_op;
|
||
}
|
||
else if (resolve_reg_p (src_op))
|
||
{
|
||
/* SRC is an operation on a CONCATN, so strip the operator and
|
||
swap the CONCATN's operands. */
|
||
src = resolve_operand_for_swap_move_operator (src_op);
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (src) == SUBREG
|
||
&& resolve_reg_p (SUBREG_REG (src))
|
||
&& (maybe_ne (SUBREG_BYTE (src), 0)
|
||
|| maybe_ne (orig_size, GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
|
||
{
|
||
real_dest = dest;
|
||
dest = gen_reg_rtx (orig_mode);
|
||
if (REG_P (real_dest))
|
||
REG_ATTRS (dest) = REG_ATTRS (real_dest);
|
||
}
|
||
|
||
/* Similarly if we are copying to a SUBREG of a decomposed reg where
|
||
the SUBREG is larger than word size. */
|
||
|
||
if (GET_CODE (dest) == SUBREG
|
||
&& resolve_reg_p (SUBREG_REG (dest))
|
||
&& (maybe_ne (SUBREG_BYTE (dest), 0)
|
||
|| maybe_ne (orig_size,
|
||
GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
|
||
{
|
||
rtx reg, smove;
|
||
rtx_insn *minsn;
|
||
|
||
reg = gen_reg_rtx (orig_mode);
|
||
minsn = emit_move_insn (reg, src);
|
||
smove = single_set (minsn);
|
||
gcc_assert (smove != NULL_RTX);
|
||
resolve_simple_move (smove, minsn);
|
||
src = reg;
|
||
}
|
||
|
||
/* If we didn't have any big SUBREGS of decomposed registers, and
|
||
neither side of the move is a register we are decomposing, then
|
||
we don't have to do anything here. */
|
||
|
||
if (src == SET_SRC (set)
|
||
&& dest == SET_DEST (set)
|
||
&& !resolve_reg_p (src)
|
||
&& !resolve_subreg_p (src)
|
||
&& !resolve_reg_p (dest)
|
||
&& !resolve_subreg_p (dest))
|
||
{
|
||
end_sequence ();
|
||
return insn;
|
||
}
|
||
|
||
/* It's possible for the code to use a subreg of a decomposed
|
||
register while forming an address. We need to handle that before
|
||
passing the address to emit_move_insn. We pass NULL_RTX as the
|
||
insn parameter to resolve_subreg_use because we cannot validate
|
||
the insn yet. */
|
||
if (MEM_P (src) || MEM_P (dest))
|
||
{
|
||
int acg;
|
||
|
||
if (MEM_P (src))
|
||
resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
|
||
if (MEM_P (dest))
|
||
resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
|
||
acg = apply_change_group ();
|
||
gcc_assert (acg);
|
||
}
|
||
|
||
/* If SRC is a register which we can't decompose, or has side
|
||
effects, we need to move via a temporary register. */
|
||
|
||
if (!can_decompose_p (src)
|
||
|| side_effects_p (src)
|
||
|| GET_CODE (src) == ASM_OPERANDS)
|
||
{
|
||
rtx reg;
|
||
|
||
reg = gen_reg_rtx (orig_mode);
|
||
|
||
if (AUTO_INC_DEC)
|
||
{
|
||
rtx_insn *move = emit_move_insn (reg, src);
|
||
if (MEM_P (src))
|
||
{
|
||
rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
|
||
if (note)
|
||
add_reg_note (move, REG_INC, XEXP (note, 0));
|
||
}
|
||
}
|
||
else
|
||
emit_move_insn (reg, src);
|
||
|
||
src = reg;
|
||
}
|
||
|
||
/* If DEST is a register which we can't decompose, or has side
|
||
effects, we need to first move to a temporary register. We
|
||
handle the common case of pushing an operand directly. We also
|
||
go through a temporary register if it holds a floating point
|
||
value. This gives us better code on systems which can't move
|
||
data easily between integer and floating point registers. */
|
||
|
||
dest_mode = orig_mode;
|
||
pushing = push_operand (dest, dest_mode);
|
||
if (!can_decompose_p (dest)
|
||
|| (side_effects_p (dest) && !pushing)
|
||
|| (!SCALAR_INT_MODE_P (dest_mode)
|
||
&& !resolve_reg_p (dest)
|
||
&& !resolve_subreg_p (dest)))
|
||
{
|
||
if (real_dest == NULL_RTX)
|
||
real_dest = dest;
|
||
if (!SCALAR_INT_MODE_P (dest_mode))
|
||
dest_mode = int_mode_for_mode (dest_mode).require ();
|
||
dest = gen_reg_rtx (dest_mode);
|
||
if (REG_P (real_dest))
|
||
REG_ATTRS (dest) = REG_ATTRS (real_dest);
|
||
}
|
||
|
||
if (pushing)
|
||
{
|
||
unsigned int i, j, jinc;
|
||
|
||
gcc_assert (orig_size % UNITS_PER_WORD == 0);
|
||
gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
|
||
gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
|
||
|
||
if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
|
||
{
|
||
j = 0;
|
||
jinc = 1;
|
||
}
|
||
else
|
||
{
|
||
j = words - 1;
|
||
jinc = -1;
|
||
}
|
||
|
||
for (i = 0; i < words; ++i, j += jinc)
|
||
{
|
||
rtx temp;
|
||
|
||
temp = copy_rtx (XEXP (dest, 0));
|
||
temp = adjust_automodify_address_nv (dest, word_mode, temp,
|
||
j * UNITS_PER_WORD);
|
||
emit_move_insn (temp,
|
||
simplify_gen_subreg_concatn (word_mode, src,
|
||
orig_mode,
|
||
j * UNITS_PER_WORD));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned int i;
|
||
|
||
if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
|
||
emit_clobber (dest);
|
||
|
||
for (i = 0; i < words; ++i)
|
||
{
|
||
rtx t = simplify_gen_subreg_concatn (word_mode, dest,
|
||
dest_mode,
|
||
i * UNITS_PER_WORD);
|
||
/* simplify_gen_subreg_concatn can return (const_int 0) for
|
||
some sub-objects of paradoxical subregs. As a source operand,
|
||
that's fine. As a destination it must be avoided. Those are
|
||
supposed to be don't care bits, so we can just drop that store
|
||
on the floor. */
|
||
if (t != CONST0_RTX (word_mode))
|
||
emit_move_insn (t,
|
||
simplify_gen_subreg_concatn (word_mode, src,
|
||
orig_mode,
|
||
i * UNITS_PER_WORD));
|
||
}
|
||
}
|
||
|
||
if (real_dest != NULL_RTX)
|
||
{
|
||
rtx mdest, smove;
|
||
rtx_insn *minsn;
|
||
|
||
if (dest_mode == orig_mode)
|
||
mdest = dest;
|
||
else
|
||
mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
|
||
minsn = emit_move_insn (real_dest, mdest);
|
||
|
||
if (AUTO_INC_DEC && MEM_P (real_dest)
|
||
&& !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
|
||
{
|
||
rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
|
||
if (note)
|
||
add_reg_note (minsn, REG_INC, XEXP (note, 0));
|
||
}
|
||
|
||
smove = single_set (minsn);
|
||
gcc_assert (smove != NULL_RTX);
|
||
|
||
resolve_simple_move (smove, minsn);
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
|
||
copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
|
||
|
||
emit_insn_before (insns, insn);
|
||
|
||
/* If we get here via self-recursion, then INSN is not yet in the insns
|
||
chain and delete_insn will fail. We only want to remove INSN from the
|
||
current sequence. See PR56738. */
|
||
if (in_sequence_p ())
|
||
remove_insn (insn);
|
||
else
|
||
delete_insn (insn);
|
||
|
||
return insns;
|
||
}
|
||
|
||
/* Change a CLOBBER of a decomposed register into a CLOBBER of the
|
||
component registers. Return whether we changed something. */
|
||
|
||
static bool
|
||
resolve_clobber (rtx pat, rtx_insn *insn)
|
||
{
|
||
rtx reg;
|
||
machine_mode orig_mode;
|
||
unsigned int orig_size, words, i;
|
||
int ret;
|
||
|
||
reg = XEXP (pat, 0);
|
||
/* For clobbers we can look through paradoxical subregs which
|
||
we do not handle in simplify_gen_subreg_concatn. */
|
||
if (paradoxical_subreg_p (reg))
|
||
reg = SUBREG_REG (reg);
|
||
if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
|
||
return false;
|
||
|
||
orig_mode = GET_MODE (reg);
|
||
if (!interesting_mode_p (orig_mode, &orig_size, &words))
|
||
gcc_unreachable ();
|
||
|
||
ret = validate_change (NULL_RTX, &XEXP (pat, 0),
|
||
simplify_gen_subreg_concatn (word_mode, reg,
|
||
orig_mode, 0),
|
||
0);
|
||
df_insn_rescan (insn);
|
||
gcc_assert (ret != 0);
|
||
|
||
for (i = words - 1; i > 0; --i)
|
||
{
|
||
rtx x;
|
||
|
||
x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
|
||
i * UNITS_PER_WORD);
|
||
x = gen_rtx_CLOBBER (VOIDmode, x);
|
||
emit_insn_after (x, insn);
|
||
}
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A USE of a decomposed register is no longer meaningful. Return
|
||
whether we changed something. */
|
||
|
||
static bool
|
||
resolve_use (rtx pat, rtx_insn *insn)
|
||
{
|
||
if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
|
||
{
|
||
delete_insn (insn);
|
||
return true;
|
||
}
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* A VAR_LOCATION can be simplified. */
|
||
|
||
static void
|
||
resolve_debug (rtx_insn *insn)
|
||
{
|
||
subrtx_ptr_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
|
||
{
|
||
rtx *loc = *iter;
|
||
rtx x = *loc;
|
||
if (resolve_subreg_p (x))
|
||
{
|
||
x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
|
||
SUBREG_BYTE (x));
|
||
|
||
if (x)
|
||
*loc = x;
|
||
else
|
||
x = copy_rtx (*loc);
|
||
}
|
||
if (resolve_reg_p (x))
|
||
*loc = copy_rtx (x);
|
||
}
|
||
|
||
df_insn_rescan (insn);
|
||
|
||
resolve_reg_notes (insn);
|
||
}
|
||
|
||
/* Check if INSN is a decomposable multiword-shift or zero-extend and
|
||
set the decomposable_context bitmap accordingly. SPEED_P is true
|
||
if we are optimizing INSN for speed rather than size. Return true
|
||
if INSN is decomposable. */
|
||
|
||
static bool
|
||
find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
|
||
{
|
||
rtx set;
|
||
rtx op;
|
||
rtx op_operand;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return false;
|
||
|
||
op = SET_SRC (set);
|
||
if (GET_CODE (op) != ASHIFT
|
||
&& GET_CODE (op) != LSHIFTRT
|
||
&& GET_CODE (op) != ASHIFTRT
|
||
&& GET_CODE (op) != ZERO_EXTEND)
|
||
return false;
|
||
|
||
op_operand = XEXP (op, 0);
|
||
if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
|
||
|| HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
|
||
|| HARD_REGISTER_NUM_P (REGNO (op_operand))
|
||
|| GET_MODE (op) != twice_word_mode)
|
||
return false;
|
||
|
||
if (GET_CODE (op) == ZERO_EXTEND)
|
||
{
|
||
if (GET_MODE (op_operand) != word_mode
|
||
|| !choices[speed_p].splitting_zext)
|
||
return false;
|
||
}
|
||
else /* left or right shift */
|
||
{
|
||
bool *splitting = (GET_CODE (op) == ASHIFT
|
||
? choices[speed_p].splitting_ashift
|
||
: GET_CODE (op) == ASHIFTRT
|
||
? choices[speed_p].splitting_ashiftrt
|
||
: choices[speed_p].splitting_lshiftrt);
|
||
if (!CONST_INT_P (XEXP (op, 1))
|
||
|| !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
|
||
2 * BITS_PER_WORD - 1)
|
||
|| !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
|
||
return false;
|
||
|
||
bitmap_set_bit (decomposable_context, REGNO (op_operand));
|
||
}
|
||
|
||
bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Decompose a more than word wide shift (in INSN) of a multiword
|
||
pseudo or a multiword zero-extend of a wordmode pseudo into a move
|
||
and 'set to zero' insn. Return a pointer to the new insn when a
|
||
replacement was done. */
|
||
|
||
static rtx_insn *
|
||
resolve_shift_zext (rtx_insn *insn)
|
||
{
|
||
rtx set;
|
||
rtx op;
|
||
rtx op_operand;
|
||
rtx_insn *insns;
|
||
rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
|
||
int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
|
||
scalar_int_mode inner_mode;
|
||
|
||
set = single_set (insn);
|
||
if (!set)
|
||
return NULL;
|
||
|
||
op = SET_SRC (set);
|
||
if (GET_CODE (op) != ASHIFT
|
||
&& GET_CODE (op) != LSHIFTRT
|
||
&& GET_CODE (op) != ASHIFTRT
|
||
&& GET_CODE (op) != ZERO_EXTEND)
|
||
return NULL;
|
||
|
||
op_operand = XEXP (op, 0);
|
||
if (!is_a <scalar_int_mode> (GET_MODE (op_operand), &inner_mode))
|
||
return NULL;
|
||
|
||
/* We can tear this operation apart only if the regs were already
|
||
torn apart. */
|
||
if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
|
||
return NULL;
|
||
|
||
/* src_reg_num is the number of the word mode register which we
|
||
are operating on. For a left shift and a zero_extend on little
|
||
endian machines this is register 0. */
|
||
src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
|
||
? 1 : 0;
|
||
|
||
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
|
||
src_reg_num = 1 - src_reg_num;
|
||
|
||
if (GET_CODE (op) == ZERO_EXTEND)
|
||
dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
|
||
else
|
||
dest_reg_num = 1 - src_reg_num;
|
||
|
||
offset1 = UNITS_PER_WORD * dest_reg_num;
|
||
offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
|
||
src_offset = UNITS_PER_WORD * src_reg_num;
|
||
|
||
start_sequence ();
|
||
|
||
dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
|
||
GET_MODE (SET_DEST (set)),
|
||
offset1);
|
||
dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
|
||
GET_MODE (SET_DEST (set)),
|
||
offset2);
|
||
src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
|
||
GET_MODE (op_operand),
|
||
src_offset);
|
||
if (GET_CODE (op) == ASHIFTRT
|
||
&& INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
|
||
upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
|
||
BITS_PER_WORD - 1, NULL_RTX, 0);
|
||
|
||
if (GET_CODE (op) != ZERO_EXTEND)
|
||
{
|
||
int shift_count = INTVAL (XEXP (op, 1));
|
||
if (shift_count > BITS_PER_WORD)
|
||
src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
|
||
LSHIFT_EXPR : RSHIFT_EXPR,
|
||
word_mode, src_reg,
|
||
shift_count - BITS_PER_WORD,
|
||
dest_reg, GET_CODE (op) != ASHIFTRT);
|
||
}
|
||
|
||
if (dest_reg != src_reg)
|
||
emit_move_insn (dest_reg, src_reg);
|
||
if (GET_CODE (op) != ASHIFTRT)
|
||
emit_move_insn (dest_upper, CONST0_RTX (word_mode));
|
||
else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
|
||
emit_move_insn (dest_upper, copy_rtx (src_reg));
|
||
else
|
||
emit_move_insn (dest_upper, upper_src);
|
||
insns = get_insns ();
|
||
|
||
end_sequence ();
|
||
|
||
emit_insn_before (insns, insn);
|
||
|
||
if (dump_file)
|
||
{
|
||
rtx_insn *in;
|
||
fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
|
||
for (in = insns; in != insn; in = NEXT_INSN (in))
|
||
fprintf (dump_file, "%d ", INSN_UID (in));
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
delete_insn (insn);
|
||
return insns;
|
||
}
|
||
|
||
/* Print to dump_file a description of what we're doing with shift code CODE.
|
||
SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
|
||
|
||
static void
|
||
dump_shift_choices (enum rtx_code code, bool *splitting)
|
||
{
|
||
int i;
|
||
const char *sep;
|
||
|
||
fprintf (dump_file,
|
||
" Splitting mode %s for %s lowering with shift amounts = ",
|
||
GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
|
||
sep = "";
|
||
for (i = 0; i < BITS_PER_WORD; i++)
|
||
if (splitting[i])
|
||
{
|
||
fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
|
||
sep = ",";
|
||
}
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
/* Print to dump_file a description of what we're doing when optimizing
|
||
for speed or size; SPEED_P says which. DESCRIPTION is a description
|
||
of the SPEED_P choice. */
|
||
|
||
static void
|
||
dump_choices (bool speed_p, const char *description)
|
||
{
|
||
unsigned int size, factor, i;
|
||
|
||
fprintf (dump_file, "Choices when optimizing for %s:\n", description);
|
||
|
||
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
||
if (interesting_mode_p ((machine_mode) i, &size, &factor)
|
||
&& factor > 1)
|
||
fprintf (dump_file, " %s mode %s for copy lowering.\n",
|
||
choices[speed_p].move_modes_to_split[i]
|
||
? "Splitting"
|
||
: "Skipping",
|
||
GET_MODE_NAME ((machine_mode) i));
|
||
|
||
fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
|
||
choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
|
||
GET_MODE_NAME (twice_word_mode));
|
||
|
||
dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
|
||
dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
|
||
dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
/* Look for registers which are always accessed via word-sized SUBREGs
|
||
or -if DECOMPOSE_COPIES is true- via copies. Decompose these
|
||
registers into several word-sized pseudo-registers. */
|
||
|
||
static void
|
||
decompose_multiword_subregs (bool decompose_copies)
|
||
{
|
||
unsigned int max;
|
||
basic_block bb;
|
||
bool speed_p;
|
||
|
||
if (dump_file)
|
||
{
|
||
dump_choices (false, "size");
|
||
dump_choices (true, "speed");
|
||
}
|
||
|
||
/* Check if this target even has any modes to consider lowering. */
|
||
if (!choices[false].something_to_do && !choices[true].something_to_do)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Nothing to do!\n");
|
||
return;
|
||
}
|
||
|
||
max = max_reg_num ();
|
||
|
||
/* First see if there are any multi-word pseudo-registers. If there
|
||
aren't, there is nothing we can do. This should speed up this
|
||
pass in the normal case, since it should be faster than scanning
|
||
all the insns. */
|
||
{
|
||
unsigned int i;
|
||
bool useful_modes_seen = false;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
|
||
if (regno_reg_rtx[i] != NULL)
|
||
{
|
||
machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
||
if (choices[false].move_modes_to_split[(int) mode]
|
||
|| choices[true].move_modes_to_split[(int) mode])
|
||
{
|
||
useful_modes_seen = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!useful_modes_seen)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Nothing to lower in this function.\n");
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (df)
|
||
{
|
||
df_set_flags (DF_DEFER_INSN_RESCAN);
|
||
run_word_dce ();
|
||
}
|
||
|
||
/* FIXME: It may be possible to change this code to look for each
|
||
multi-word pseudo-register and to find each insn which sets or
|
||
uses that register. That should be faster than scanning all the
|
||
insns. */
|
||
|
||
decomposable_context = BITMAP_ALLOC (NULL);
|
||
non_decomposable_context = BITMAP_ALLOC (NULL);
|
||
subreg_context = BITMAP_ALLOC (NULL);
|
||
|
||
reg_copy_graph.create (max);
|
||
reg_copy_graph.safe_grow_cleared (max, true);
|
||
memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
|
||
|
||
speed_p = optimize_function_for_speed_p (cfun);
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx set;
|
||
enum classify_move_insn cmi;
|
||
int i, n;
|
||
|
||
if (!INSN_P (insn)
|
||
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
||
|| GET_CODE (PATTERN (insn)) == USE)
|
||
continue;
|
||
|
||
recog_memoized (insn);
|
||
|
||
if (find_decomposable_shift_zext (insn, speed_p))
|
||
continue;
|
||
|
||
extract_insn (insn);
|
||
|
||
set = simple_move (insn, speed_p);
|
||
|
||
if (!set)
|
||
cmi = NOT_SIMPLE_MOVE;
|
||
else
|
||
{
|
||
/* We mark pseudo-to-pseudo copies as decomposable during the
|
||
second pass only. The first pass is so early that there is
|
||
good chance such moves will be optimized away completely by
|
||
subsequent optimizations anyway.
|
||
|
||
However, we call find_pseudo_copy even during the first pass
|
||
so as to properly set up the reg_copy_graph. */
|
||
if (find_pseudo_copy (set))
|
||
cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
|
||
else
|
||
cmi = SIMPLE_MOVE;
|
||
}
|
||
|
||
n = recog_data.n_operands;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
find_decomposable_subregs (&recog_data.operand[i], &cmi);
|
||
|
||
/* We handle ASM_OPERANDS as a special case to support
|
||
things like x86 rdtsc which returns a DImode value.
|
||
We can decompose the output, which will certainly be
|
||
operand 0, but not the inputs. */
|
||
|
||
if (cmi == SIMPLE_MOVE
|
||
&& GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
|
||
{
|
||
gcc_assert (i == 0);
|
||
cmi = NOT_SIMPLE_MOVE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
bitmap_and_compl_into (decomposable_context, non_decomposable_context);
|
||
if (!bitmap_empty_p (decomposable_context))
|
||
{
|
||
unsigned int i;
|
||
sbitmap_iterator sbi;
|
||
bitmap_iterator iter;
|
||
unsigned int regno;
|
||
|
||
propagate_pseudo_copies ();
|
||
|
||
auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
|
||
bitmap_clear (sub_blocks);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
|
||
decompose_register (regno);
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
rtx pat;
|
||
|
||
if (!INSN_P (insn))
|
||
continue;
|
||
|
||
pat = PATTERN (insn);
|
||
if (GET_CODE (pat) == CLOBBER)
|
||
resolve_clobber (pat, insn);
|
||
else if (GET_CODE (pat) == USE)
|
||
resolve_use (pat, insn);
|
||
else if (DEBUG_INSN_P (insn))
|
||
resolve_debug (insn);
|
||
else
|
||
{
|
||
rtx set;
|
||
int i;
|
||
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
|
||
set = simple_move (insn, speed_p);
|
||
if (set)
|
||
{
|
||
rtx_insn *orig_insn = insn;
|
||
bool cfi = control_flow_insn_p (insn);
|
||
|
||
/* We can end up splitting loads to multi-word pseudos
|
||
into separate loads to machine word size pseudos.
|
||
When this happens, we first had one load that can
|
||
throw, and after resolve_simple_move we'll have a
|
||
bunch of loads (at least two). All those loads may
|
||
trap if we can have non-call exceptions, so they
|
||
all will end the current basic block. We split the
|
||
block after the outer loop over all insns, but we
|
||
make sure here that we will be able to split the
|
||
basic block and still produce the correct control
|
||
flow graph for it. */
|
||
gcc_assert (!cfi
|
||
|| (cfun->can_throw_non_call_exceptions
|
||
&& can_throw_internal (insn)));
|
||
|
||
insn = resolve_simple_move (set, insn);
|
||
if (insn != orig_insn)
|
||
{
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
|
||
if (cfi)
|
||
bitmap_set_bit (sub_blocks, bb->index);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rtx_insn *decomposed_shift;
|
||
|
||
decomposed_shift = resolve_shift_zext (insn);
|
||
if (decomposed_shift != NULL_RTX)
|
||
{
|
||
insn = decomposed_shift;
|
||
recog_memoized (insn);
|
||
extract_insn (insn);
|
||
}
|
||
}
|
||
|
||
for (i = recog_data.n_operands - 1; i >= 0; --i)
|
||
resolve_subreg_use (recog_data.operand_loc[i], insn);
|
||
|
||
resolve_reg_notes (insn);
|
||
|
||
if (num_validated_changes () > 0)
|
||
{
|
||
for (i = recog_data.n_dups - 1; i >= 0; --i)
|
||
{
|
||
rtx *pl = recog_data.dup_loc[i];
|
||
int dup_num = recog_data.dup_num[i];
|
||
rtx *px = recog_data.operand_loc[dup_num];
|
||
|
||
validate_unshare_change (insn, pl, *px, 1);
|
||
}
|
||
|
||
i = apply_change_group ();
|
||
gcc_assert (i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we had insns to split that caused control flow insns in the middle
|
||
of a basic block, split those blocks now. Note that we only handle
|
||
the case where splitting a load has caused multiple possibly trapping
|
||
loads to appear. */
|
||
EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
|
||
{
|
||
rtx_insn *insn, *end;
|
||
edge fallthru;
|
||
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, i);
|
||
insn = BB_HEAD (bb);
|
||
end = BB_END (bb);
|
||
|
||
while (insn != end)
|
||
{
|
||
if (control_flow_insn_p (insn))
|
||
{
|
||
/* Split the block after insn. There will be a fallthru
|
||
edge, which is OK so we keep it. We have to create the
|
||
exception edges ourselves. */
|
||
fallthru = split_block (bb, insn);
|
||
rtl_make_eh_edge (NULL, bb, BB_END (bb));
|
||
bb = fallthru->dest;
|
||
insn = BB_HEAD (bb);
|
||
}
|
||
else
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
unsigned int i;
|
||
bitmap b;
|
||
|
||
FOR_EACH_VEC_ELT (reg_copy_graph, i, b)
|
||
if (b)
|
||
BITMAP_FREE (b);
|
||
}
|
||
|
||
reg_copy_graph.release ();
|
||
|
||
BITMAP_FREE (decomposable_context);
|
||
BITMAP_FREE (non_decomposable_context);
|
||
BITMAP_FREE (subreg_context);
|
||
}
|
||
|
||
/* Implement first lower subreg pass. */
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_subreg =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"subreg1", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_LOWER_SUBREG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_subreg : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_subreg (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_lower_subreg, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_split_wide_types != 0; }
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
decompose_multiword_subregs (false);
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_lower_subreg
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_lower_subreg (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_subreg (ctxt);
|
||
}
|
||
|
||
/* Implement second lower subreg pass. */
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_subreg2 =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"subreg2", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_LOWER_SUBREG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_subreg2 : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_subreg2 (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_lower_subreg2, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_split_wide_types
|
||
&& flag_split_wide_types_early; }
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
decompose_multiword_subregs (true);
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_lower_subreg2
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_lower_subreg2 (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_subreg2 (ctxt);
|
||
}
|
||
|
||
/* Implement third lower subreg pass. */
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_lower_subreg3 =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"subreg3", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_LOWER_SUBREG, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_lower_subreg3 : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_lower_subreg3 (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_lower_subreg3, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return flag_split_wide_types; }
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
decompose_multiword_subregs (true);
|
||
return 0;
|
||
}
|
||
|
||
}; // class pass_lower_subreg3
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_lower_subreg3 (gcc::context *ctxt)
|
||
{
|
||
return new pass_lower_subreg3 (ctxt);
|
||
}
|