8sa1-gcc/gcc/ipa-icf.h
2021-01-04 10:26:59 +01:00

677 lines
21 KiB
C++

/* Interprocedural semantic function equality pass
Copyright (C) 2014-2021 Free Software Foundation, Inc.
Contributed by Jan Hubicka <hubicka@ucw.cz> and Martin Liska <mliska@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
namespace ipa_icf {
class sem_item;
/* Congruence class encompasses a collection of either functions or
read-only variables. These items are considered to be equivalent
if not proved the opposite. */
class congruence_class
{
public:
/* Congruence class constructor for a new class with _ID. */
congruence_class (unsigned int _id): in_worklist (false), id (_id),
referenced_by_count (0)
{
}
/* Destructor. */
~congruence_class ()
{
}
/* Dump function prints all class members to a FILE with an INDENT. */
void dump (FILE *file, unsigned int indent = 0) const;
/* Returns true if there's a member that is used from another group. */
bool is_class_used (void);
/* Flag is used in case we want to remove a class from worklist and
delete operation is quite expensive for
the data structure (linked list). */
bool in_worklist;
/* Vector of all group members. */
auto_vec <sem_item *> members;
/* Global unique class identifier. */
unsigned int id;
/* Total number of references to items of this class. */
unsigned referenced_by_count;
};
/* Semantic item type enum. */
enum sem_item_type
{
FUNC,
VAR
};
/* Class is container for address references for a symtab_node. */
class symbol_compare_collection
{
public:
/* Constructor. */
symbol_compare_collection (symtab_node *node);
/* Destructor. */
~symbol_compare_collection ()
{
m_references.release ();
m_interposables.release ();
}
/* Vector of address references. */
vec<symtab_node *> m_references;
/* Vector of interposable references. */
vec<symtab_node *> m_interposables;
};
/* Hash traits for symbol_compare_collection map. */
struct symbol_compare_hash : nofree_ptr_hash <symbol_compare_collection>
{
static hashval_t
hash (value_type v)
{
inchash::hash hstate;
hstate.add_int (v->m_references.length ());
for (unsigned i = 0; i < v->m_references.length (); i++)
hstate.add_int (v->m_references[i]->ultimate_alias_target ()->order);
hstate.add_int (v->m_interposables.length ());
for (unsigned i = 0; i < v->m_interposables.length (); i++)
hstate.add_int (v->m_interposables[i]->ultimate_alias_target ()->order);
return hstate.end ();
}
static bool
equal (value_type a, value_type b)
{
if (a->m_references.length () != b->m_references.length ()
|| a->m_interposables.length () != b->m_interposables.length ())
return false;
for (unsigned i = 0; i < a->m_references.length (); i++)
if (a->m_references[i]->equal_address_to (b->m_references[i]) != 1)
return false;
for (unsigned i = 0; i < a->m_interposables.length (); i++)
if (!a->m_interposables[i]->semantically_equivalent_p
(b->m_interposables[i]))
return false;
return true;
}
};
/* Semantic item usage pair. */
class sem_usage_pair
{
public:
/* Constructor for key value pair, where _ITEM is key and _INDEX is a target. */
sem_usage_pair (sem_item *_item, unsigned int _index);
/* Target semantic item where an item is used. */
sem_item *item;
/* Index of usage of such an item. */
unsigned int index;
};
struct sem_usage_pair_hash : pointer_hash <sem_usage_pair>
{
static inline hashval_t hash (sem_usage_pair *);
static inline bool equal (sem_usage_pair *, sem_usage_pair *);
};
inline hashval_t
sem_usage_pair_hash::hash (sem_usage_pair *pair)
{
inchash::hash hstate;
hstate.add_ptr (pair->item);
hstate.add_int (pair->index);
return hstate.end ();
}
inline bool
sem_usage_pair_hash::equal (sem_usage_pair *p1, sem_usage_pair *p2)
{
return p1->item == p2->item && p1->index == p2->index;
}
struct sem_usage_hash : sem_usage_pair_hash, typed_delete_remove <sem_usage_pair> {};
typedef hash_map<sem_usage_hash, auto_vec<sem_item *> > ref_map;
typedef std::pair<symtab_node *, symtab_node *> symtab_pair;
/* Semantic item is a base class that encapsulates all shared functionality
for both semantic function and variable items. */
class sem_item
{
public:
/* Semantic item constructor for a node of _TYPE, where STACK is used
for bitmap memory allocation. */
sem_item (sem_item_type _type, bitmap_obstack *stack);
/* Semantic item constructor for a node of _TYPE, where STACK is used
for bitmap memory allocation. The item is based on symtab node _NODE. */
sem_item (sem_item_type _type, symtab_node *_node, bitmap_obstack *stack);
virtual ~sem_item ();
/* Dump function for debugging purpose. */
DEBUG_FUNCTION void dump (void);
/* Semantic item initialization function. */
virtual void init (ipa_icf_gimple::func_checker *) = 0;
/* Add reference to a semantic TARGET. */
void add_reference (ref_map *map, sem_item *target);
/* Fast equality function based on knowledge known in WPA. */
virtual bool equals_wpa (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes) = 0;
/* Returns true if the item equals to ITEM given as argument. */
virtual bool equals (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes) = 0;
/* References independent hash function. */
virtual hashval_t get_hash (void) = 0;
/* Set new hash value of the item. */
void set_hash (hashval_t hash);
/* Merges instance with an ALIAS_ITEM, where alias, thunk or redirection can
be applied. */
virtual bool merge (sem_item *alias_item) = 0;
/* Dump symbol to FILE. */
virtual void dump_to_file (FILE *file) = 0;
/* Update hash by address sensitive references. */
void update_hash_by_addr_refs (hash_map <symtab_node *,
sem_item *> &m_symtab_node_map);
/* Update hash by computed local hash values taken from different
semantic items. */
void update_hash_by_local_refs (hash_map <symtab_node *,
sem_item *> &m_symtab_node_map);
/* Return base tree that can be used for compatible_types_p and
contains_polymorphic_type_p comparison. */
static bool get_base_types (tree *t1, tree *t2);
/* Return true if target supports alias symbols. */
bool target_supports_symbol_aliases_p (void);
/* Item type. */
sem_item_type type;
/* Symtab node. */
symtab_node *node;
/* Declaration tree node. */
tree decl;
/* Number of references to a semantic symbols (function calls,
variable references). */
unsigned reference_count;
/* Pointer to a congruence class the item belongs to. */
congruence_class *cls;
/* Index of the item in a class belonging to. */
unsigned int index_in_class;
/* A bitmap with indices of all classes referencing this item. */
bitmap usage_index_bitmap;
/* List of tree references (either FUNC_DECL or VAR_DECL). */
vec <tree> tree_refs;
/* A set with symbol table references. */
hash_set <symtab_node *> refs_set;
/* Temporary hash used where hash values of references are added. */
hashval_t global_hash;
/* Number of references to this symbol. */
unsigned referenced_by_count;
protected:
/* Cached, once calculated hash for the item. */
/* Compare properties of symbol that does not affect semantics of symbol
itself but affects semantics of its references.
If ADDRESS is true, do extra checking needed for IPA_REF_ADDR. */
static bool compare_referenced_symbol_properties (symtab_node *used_by,
symtab_node *n1,
symtab_node *n2,
bool address);
/* Hash properties compared by compare_referenced_symbol_properties. */
void hash_referenced_symbol_properties (symtab_node *ref,
inchash::hash &hstate,
bool address);
/* For a given symbol table nodes N1 and N2, we check that FUNCTION_DECLs
point to a same function. Comparison can be skipped if IGNORED_NODES
contains these nodes. ADDRESS indicate if address is taken. */
bool compare_symbol_references (hash_map <symtab_node *, sem_item *>
&ignored_nodes,
symtab_node *n1, symtab_node *n2,
bool address);
protected:
/* Hash of item. */
hashval_t m_hash;
/* Indicated whether a hash value has been set or not. */
bool m_hash_set;
private:
/* Initialize internal data structures. Bitmap STACK is used for
bitmap memory allocation process. */
void setup (bitmap_obstack *stack);
/* Because types can be arbitrarily large, avoid quadratic bottleneck. */
static hash_map<const_tree, hashval_t> m_type_hash_cache;
}; // class sem_item
class sem_function: public sem_item
{
public:
/* Semantic function constructor that uses STACK as bitmap memory stack. */
sem_function (bitmap_obstack *stack);
/* Constructor based on callgraph node _NODE.
Bitmap STACK is used for memory allocation. */
sem_function (cgraph_node *_node, bitmap_obstack *stack);
~sem_function ();
virtual void init (ipa_icf_gimple::func_checker *);
virtual bool equals_wpa (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes);
virtual hashval_t get_hash (void);
virtual bool equals (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes);
virtual bool merge (sem_item *alias_item);
/* Dump symbol to FILE. */
virtual void dump_to_file (FILE *file)
{
gcc_assert (file);
dump_function_to_file (decl, file, TDF_DETAILS);
}
/* Returns cgraph_node. */
inline cgraph_node *get_node (void)
{
return dyn_cast <cgraph_node *> (node);
}
/* Improve accumulated hash for HSTATE based on a gimple statement STMT. */
void hash_stmt (gimple *stmt, inchash::hash &inchash);
/* Return true if polymorphic comparison must be processed. */
bool compare_polymorphic_p (void);
/* For a given call graph NODE, the function constructs new
semantic function item. */
static sem_function *parse (cgraph_node *node, bitmap_obstack *stack,
ipa_icf_gimple::func_checker *checker);
/* Perform additional checks needed to match types of used function
parameters. */
bool compatible_parm_types_p (tree, tree);
/* Exception handling region tree. */
eh_region region_tree;
/* Number of function arguments. */
unsigned int arg_count;
/* Total amount of edges in the function. */
unsigned int edge_count;
/* Vector of sizes of all basic blocks. */
vec <unsigned int> bb_sizes;
/* Control flow graph checksum. */
hashval_t cfg_checksum;
/* GIMPLE codes hash value. */
hashval_t gcode_hash;
/* Vector of subpart of memory access types. */
vec<tree> memory_access_types;
/* Total number of SSA names used in the function. */
unsigned ssa_names_size;
/* Array of structures for all basic blocks. */
vec <ipa_icf_gimple::sem_bb *> bb_sorted;
/* Hash of canonical types used for memory references in the
function. */
hashval_t m_alias_sets_hash;
/* Return true if parameter I may be used. */
bool param_used_p (unsigned int i);
private:
/* Calculates hash value based on a BASIC_BLOCK. */
hashval_t get_bb_hash (const ipa_icf_gimple::sem_bb *basic_block);
/* For given basic blocks BB1 and BB2 (from functions FUNC1 and FUNC),
true value is returned if phi nodes are semantically
equivalent in these blocks . */
bool compare_phi_node (basic_block bb1, basic_block bb2);
/* Basic blocks dictionary BB_DICT returns true if SOURCE index BB
corresponds to TARGET. */
bool bb_dict_test (vec<int> *bb_dict, int source, int target);
/* If cgraph edges E1 and E2 are indirect calls, verify that
ICF flags are the same. */
bool compare_edge_flags (cgraph_edge *e1, cgraph_edge *e2);
/* Processes function equality comparison. */
bool equals_private (sem_item *item);
/* Function checker stores binding between functions. */
ipa_icf_gimple::func_checker *m_checker;
/* COMPARED_FUNC is a function that we compare to. */
sem_function *m_compared_func;
}; // class sem_function
class sem_variable: public sem_item
{
public:
/* Semantic variable constructor that uses STACK as bitmap memory stack. */
sem_variable (bitmap_obstack *stack);
/* Constructor based on callgraph node _NODE.
Bitmap STACK is used for memory allocation. */
sem_variable (varpool_node *_node, bitmap_obstack *stack);
/* Semantic variable initialization function. */
virtual void init (ipa_icf_gimple::func_checker *);
virtual hashval_t get_hash (void);
virtual bool merge (sem_item *alias_item);
virtual void dump_to_file (FILE *file);
virtual bool equals (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes);
/* Fast equality variable based on knowledge known in WPA. */
virtual bool equals_wpa (sem_item *item,
hash_map <symtab_node *, sem_item *> &ignored_nodes);
/* Returns varpool_node. */
inline varpool_node *get_node (void)
{
return dyn_cast <varpool_node *> (node);
}
/* Parser function that visits a varpool NODE. */
static sem_variable *parse (varpool_node *node, bitmap_obstack *stack,
ipa_icf_gimple::func_checker *checker);
private:
/* Compares trees T1 and T2 for semantic equality. */
static bool equals (tree t1, tree t2);
}; // class sem_variable
class sem_item_optimizer;
struct congruence_class_group
{
hashval_t hash;
sem_item_type type;
vec <congruence_class *> classes;
};
/* Congruence class set structure. */
struct congruence_class_hash : nofree_ptr_hash <congruence_class_group>
{
static inline hashval_t hash (const congruence_class_group *item)
{
return item->hash;
}
static inline int equal (const congruence_class_group *item1,
const congruence_class_group *item2)
{
return item1->hash == item2->hash && item1->type == item2->type;
}
};
struct traverse_split_pair
{
sem_item_optimizer *optimizer;
class congruence_class *cls;
};
/* Semantic item optimizer includes all top-level logic
related to semantic equality comparison. */
class sem_item_optimizer
{
public:
sem_item_optimizer ();
~sem_item_optimizer ();
/* Function responsible for visiting all potential functions and
read-only variables that can be merged. */
void parse_funcs_and_vars (void);
/* Optimizer entry point which returns true in case it processes
a merge operation. True is returned if there's a merge operation
processed. */
bool execute (void);
/* Dump function. */
void dump (void);
/* Verify congruence classes if checking is enabled. */
void checking_verify_classes (void);
/* Verify congruence classes. */
void verify_classes (void);
/* Write IPA ICF summary for symbols. */
void write_summary (void);
/* Read IPA ICF summary for symbols. */
void read_summary (void);
/* Callgraph removal hook called for a NODE with a custom DATA. */
static void cgraph_removal_hook (cgraph_node *node, void *data);
/* Varpool removal hook called for a NODE with a custom DATA. */
static void varpool_removal_hook (varpool_node *node, void *data);
/* Worklist of congruence classes that can potentially
refine classes of congruence. */
fibonacci_heap<unsigned, congruence_class> worklist;
/* Remove semantic ITEM and release memory. */
void remove_item (sem_item *item);
/* Remove symtab NODE triggered by symtab removal hooks. */
void remove_symtab_node (symtab_node *node);
/* Register callgraph and varpool hooks. */
void register_hooks (void);
/* Unregister callgraph and varpool hooks. */
void unregister_hooks (void);
/* Adds a CLS to hashtable associated by hash value. */
void add_class (congruence_class *cls);
/* Gets a congruence class group based on given HASH value and TYPE. */
congruence_class_group *get_group_by_hash (hashval_t hash,
sem_item_type type);
private:
/* For each semantic item, append hash values of references. */
void update_hash_by_addr_refs ();
/* Update hash by canonical types of memory accesses. */
void update_hash_by_memory_access_type ();
/* Congruence classes are built by hash value. */
void build_hash_based_classes (void);
/* Semantic items in classes having more than one element and initialized.
In case of WPA, we load function body. */
unsigned int parse_nonsingleton_classes (void);
/* Equality function for semantic items is used to subdivide existing
classes. If IN_WPA, fast equality function is invoked. */
void subdivide_classes_by_equality (bool in_wpa = false);
/* Subdivide classes by address and interposable references
that members of the class reference.
Example can be a pair of functions that have an address
taken from a function. If these addresses are different the class
is split. */
unsigned subdivide_classes_by_sensitive_refs();
/* Debug function prints all informations about congruence classes. */
void dump_cong_classes (void);
/* Build references according to call graph. */
void build_graph (void);
/* Iterative congruence reduction function. */
void process_cong_reduction (void);
/* After reduction is done, we can declare all items in a group
to be equal. PREV_CLASS_COUNT is start number of classes
before reduction. True is returned if there's a merge operation
processed. LOADED_SYMBOLS is number of symbols that were loaded
in WPA. */
bool merge_classes (unsigned int prev_class_count,
unsigned int loaded_symbols);
/* Fixup points to analysis info. */
void fixup_points_to_sets (void);
/* Fixup points to set PT. */
void fixup_pt_set (struct pt_solution *pt);
/* Adds a newly created congruence class CLS to worklist. */
void worklist_push (congruence_class *cls);
/* Pops a class from worklist. */
congruence_class *worklist_pop ();
/* Every usage of a congruence class CLS is a candidate that can split the
collection of classes. Bitmap stack BMSTACK is used for bitmap
allocation. */
void do_congruence_step (congruence_class *cls);
/* Tests if a class CLS used as INDEXth splits any congruence classes.
Bitmap stack BMSTACK is used for bitmap allocation. */
bool do_congruence_step_for_index (congruence_class *cls, unsigned int index);
/* Makes pairing between a congruence class CLS and semantic ITEM. */
static void add_item_to_class (congruence_class *cls, sem_item *item);
/* Disposes split map traverse function. CLS is congruence
class, BSLOT is bitmap slot we want to release. DATA is mandatory,
but unused argument. */
static bool release_split_map (congruence_class * const &cls, bitmap const &b,
traverse_split_pair *pair);
/* Process split operation for a congruence class CLS,
where bitmap B splits congruence class members. DATA is used
as argument of split pair. */
static bool traverse_congruence_split (congruence_class * const &cls,
bitmap const &b,
traverse_split_pair *pair);
/* Compare function for sorting pairs in do_congruence_step_f. */
static int sort_congruence_split (const void *, const void *);
/* Reads a section from LTO stream file FILE_DATA. Input block for DATA
contains LEN bytes. */
void read_section (lto_file_decl_data *file_data, const char *data,
size_t len);
/* Removes all callgraph and varpool nodes that are marked by symtab
as deleted. */
void filter_removed_items (void);
/* Vector of semantic items. */
vec <sem_item *> m_items;
/* A set containing all items removed by hooks. */
hash_set <symtab_node *> m_removed_items_set;
/* Hashtable of congruence classes. */
hash_table <congruence_class_hash> m_classes;
/* Count of congruence classes. */
unsigned int m_classes_count;
/* Map data structure maps symtab nodes to semantic items. */
hash_map <symtab_node *, sem_item *> m_symtab_node_map;
/* Set to true if a splitter class is removed. */
bool splitter_class_removed;
/* Global unique class id counter. */
static unsigned int class_id;
/* Callgraph node removal hook holder. */
cgraph_node_hook_list *m_cgraph_node_hooks;
/* Varpool node removal hook holder. */
varpool_node_hook_list *m_varpool_node_hooks;
/* Bitmap stack. */
bitmap_obstack m_bmstack;
/* Vector of merged variables. Needed for fixup of points-to-analysis
info. */
vec <symtab_pair> m_merged_variables;
/* Hash map will all references. */
ref_map m_references;
}; // class sem_item_optimizer
} // ipa_icf namespace