8sa1-gcc/gcc/gimple-range-gori.h
2021-01-04 10:26:59 +01:00

142 lines
5.5 KiB
C++

/* Header file for gimple range GORI structures.
Copyright (C) 2017-2021 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GIMPLE_RANGE_GORI_H
#define GCC_GIMPLE_RANGE_GORI_H
// This class is used to determine which SSA_NAMES can have ranges
// calculated for them on outgoing edges from basic blocks. This represents
// ONLY the effect of the basic block edge->src on a range.
//
// There are 2 primary entry points:
//
// has_edge_range_p (tree name, edge e)
// returns true if the outgoing edge *may* be able to produce range
// information for ssa_name NAME on edge E.
// FALSE is returned if this edge does not affect the range of NAME.
// if no edge is specified, return TRUE if name may have a value calculated
// on *ANY* edge that has been seen. FALSE indicates that the global value
// is applicable everywhere that has been processed.
//
// outgoing_edge_range_p (irange &range, edge e, tree name)
// Actually does the calculation of RANGE for name on E
// This represents application of whatever static range effect edge E
// may have on NAME, not any cumulative effect.
// There are also some internal APIs
//
// ssa_range_in_bb () is an internal routine which is used to start any
// calculation chain using SSA_NAMES which come from outside the block. ie
// a_2 = b_4 - 8
// if (a_2 < 30)
// on the true edge, a_2 is known to be [0, 29]
// b_4 can be calculated as [8, 37]
// during this calculation, b_4 is considered an "import" and ssa_range_in_bb
// is queried for a starting range which is used in the calculation.
// A default value of VARYING provides the raw static info for the edge.
//
// If there is any known range for b_4 coming into this block, it can refine
// the results. This allows for cascading results to be propogated.
// if b_4 is [100, 200] on entry to the block, feeds into the calculation
// of a_2 = [92, 192], and finally on the true edge the range would be
// an empty range [] because it is not possible for the true edge to be taken.
//
// expr_range_in_bb is simply a wrapper which calls ssa_range_in_bb for
// SSA_NAMES and otherwise simply calculates the range of the expression.
//
// The remaining routines are internal use only.
class gori_compute
{
public:
gori_compute ();
~gori_compute ();
bool outgoing_edge_range_p (irange &r, edge e, tree name);
bool has_edge_range_p (tree name, edge e = NULL);
void dump (FILE *f);
protected:
virtual void ssa_range_in_bb (irange &r, tree name, basic_block bb);
virtual bool compute_operand_range (irange &r, gimple *stmt,
const irange &lhs, tree name);
void expr_range_in_bb (irange &r, tree expr, basic_block bb);
bool compute_logical_operands (irange &r, gimple *stmt,
const irange &lhs,
tree name);
void compute_logical_operands_in_chain (class tf_range &range,
gimple *stmt, const irange &lhs,
tree name, tree op,
bool op_in_chain);
bool optimize_logical_operands (tf_range &range, gimple *stmt,
const irange &lhs, tree name, tree op);
bool logical_combine (irange &r, enum tree_code code, const irange &lhs,
const class tf_range &op1_range,
const class tf_range &op2_range);
int_range<2> m_bool_zero; // Boolean false cached.
int_range<2> m_bool_one; // Boolean true cached.
private:
bool compute_operand_range_switch (irange &r, gswitch *stmt,
const irange &lhs, tree name);
bool compute_name_range_op (irange &r, gimple *stmt, const irange &lhs,
tree name);
bool compute_operand1_range (irange &r, gimple *stmt, const irange &lhs,
tree name);
bool compute_operand2_range (irange &r, gimple *stmt, const irange &lhs,
tree name);
bool compute_operand1_and_operand2_range (irange &r, gimple *stmt,
const irange &lhs, tree name);
class gori_map *m_gori_map;
outgoing_range outgoing; // Edge values for COND_EXPR & SWITCH_EXPR.
};
// This class adds a cache to gori_computes for logical expressions.
// bool result = x && y
// requires calcuation of both X and Y for both true and false results.
// There are 4 combinations [0,0][0,0] [0,0][1,1] [1,1][0,0] and [1,1][1,1].
// Note that each pair of possible results for X and Y are used twice, and
// the calcuation of those results are the same each time.
//
// The cache simply checks if a stmt is cachable, and if so, saves both the
// true and false results for the next time the query is made.
//
// This is used to speed up long chains of logical operations which
// quickly become exponential.
class gori_compute_cache : public gori_compute
{
public:
gori_compute_cache ();
~gori_compute_cache ();
protected:
virtual bool compute_operand_range (irange &r, gimple *stmt,
const irange &lhs, tree name);
private:
void cache_stmt (gimple *);
typedef gori_compute super;
class logical_stmt_cache *m_cache;
};
#endif // GCC_GIMPLE_RANGE_GORI_H