7b7e6ecdb0
PR middle-end/33088 * gimplify.c (gimplify_modify_expr_complex_part): Add note to comment. * tree-complex.c (init_dont_simulate_again): Return true if there are uninitialized loads generated by gimplify_modify_expr_complex_part. * tree-gimple.c (is_gimple_reg_type): Return false for complex types if not optimizing. * tree-ssa.c (ssa_undefined_value_p): New predicate extracted from... (warn_uninit): ...here. Use ssa_undefined_value_p. * tree-ssa-pre.c (is_undefined_value): Delete. (phi_translate_1): Use ssa_undefined_value_p. (add_to_exp_gen): Likewise. (make_values_for_stmt): Likewise. * tree-flow.h (ssa_undefined_value_p): Declare. From-SVN: r130917
1522 lines
41 KiB
C
1522 lines
41 KiB
C
/* Miscellaneous SSA utility functions.
|
||
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "expr.h"
|
||
#include "function.h"
|
||
#include "diagnostic.h"
|
||
#include "bitmap.h"
|
||
#include "pointer-set.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "varray.h"
|
||
#include "timevar.h"
|
||
#include "hashtab.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "toplev.h"
|
||
|
||
/* Remove the corresponding arguments from the PHI nodes in E's
|
||
destination block and redirect it to DEST. Return redirected edge.
|
||
The list of removed arguments is stored in PENDING_STMT (e). */
|
||
|
||
edge
|
||
ssa_redirect_edge (edge e, basic_block dest)
|
||
{
|
||
tree phi;
|
||
tree list = NULL, *last = &list;
|
||
tree src, dst, node;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (PHI_ARG_DEF (phi, e->dest_idx) == NULL_TREE)
|
||
continue;
|
||
|
||
src = PHI_ARG_DEF (phi, e->dest_idx);
|
||
dst = PHI_RESULT (phi);
|
||
node = build_tree_list (dst, src);
|
||
*last = node;
|
||
last = &TREE_CHAIN (node);
|
||
}
|
||
|
||
e = redirect_edge_succ_nodup (e, dest);
|
||
PENDING_STMT (e) = list;
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Add PHI arguments queued in PENDING_STMT list on edge E to edge
|
||
E->dest. */
|
||
|
||
void
|
||
flush_pending_stmts (edge e)
|
||
{
|
||
tree phi, arg;
|
||
|
||
if (!PENDING_STMT (e))
|
||
return;
|
||
|
||
for (phi = phi_nodes (e->dest), arg = PENDING_STMT (e);
|
||
phi;
|
||
phi = PHI_CHAIN (phi), arg = TREE_CHAIN (arg))
|
||
{
|
||
tree def = TREE_VALUE (arg);
|
||
add_phi_arg (phi, def, e);
|
||
}
|
||
|
||
PENDING_STMT (e) = NULL;
|
||
}
|
||
|
||
/* Return true if SSA_NAME is malformed and mark it visited.
|
||
|
||
IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
|
||
operand. */
|
||
|
||
static bool
|
||
verify_ssa_name (tree ssa_name, bool is_virtual)
|
||
{
|
||
if (TREE_CODE (ssa_name) != SSA_NAME)
|
||
{
|
||
error ("expected an SSA_NAME object");
|
||
return true;
|
||
}
|
||
|
||
if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
|
||
{
|
||
error ("type mismatch between an SSA_NAME and its symbol");
|
||
return true;
|
||
}
|
||
|
||
if (SSA_NAME_IN_FREE_LIST (ssa_name))
|
||
{
|
||
error ("found an SSA_NAME that had been released into the free pool");
|
||
return true;
|
||
}
|
||
|
||
if (is_virtual && is_gimple_reg (ssa_name))
|
||
{
|
||
error ("found a virtual definition for a GIMPLE register");
|
||
return true;
|
||
}
|
||
|
||
if (!is_virtual && !is_gimple_reg (ssa_name))
|
||
{
|
||
error ("found a real definition for a non-register");
|
||
return true;
|
||
}
|
||
|
||
if (is_virtual && var_ann (SSA_NAME_VAR (ssa_name))
|
||
&& get_subvars_for_var (SSA_NAME_VAR (ssa_name)) != NULL)
|
||
{
|
||
error ("found real variable when subvariables should have appeared");
|
||
return true;
|
||
}
|
||
|
||
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
|
||
&& !IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name)))
|
||
{
|
||
error ("found a default name with a non-empty defining statement");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if the definition of SSA_NAME at block BB is malformed.
|
||
|
||
STMT is the statement where SSA_NAME is created.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
||
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
||
it means that the block in that array slot contains the
|
||
definition of SSA_NAME.
|
||
|
||
IS_VIRTUAL is true if SSA_NAME is created by a VDEF. */
|
||
|
||
static bool
|
||
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
|
||
tree stmt, bool is_virtual)
|
||
{
|
||
if (verify_ssa_name (ssa_name, is_virtual))
|
||
goto err;
|
||
|
||
if (definition_block[SSA_NAME_VERSION (ssa_name)])
|
||
{
|
||
error ("SSA_NAME created in two different blocks %i and %i",
|
||
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
|
||
goto err;
|
||
}
|
||
|
||
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
|
||
|
||
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
|
||
{
|
||
error ("SSA_NAME_DEF_STMT is wrong");
|
||
fprintf (stderr, "Expected definition statement:\n");
|
||
print_generic_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), TDF_VOPS);
|
||
fprintf (stderr, "\nActual definition statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
return false;
|
||
|
||
err:
|
||
fprintf (stderr, "while verifying SSA_NAME ");
|
||
print_generic_expr (stderr, ssa_name, 0);
|
||
fprintf (stderr, " in statement\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Return true if the use of SSA_NAME at statement STMT in block BB is
|
||
malformed.
|
||
|
||
DEF_BB is the block where SSA_NAME was found to be created.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
CHECK_ABNORMAL is true if the caller wants to check whether this use
|
||
is flowing through an abnormal edge (only used when checking PHI
|
||
arguments).
|
||
|
||
If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
|
||
that are defined before STMT in basic block BB. */
|
||
|
||
static bool
|
||
verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
|
||
tree stmt, bool check_abnormal, bitmap names_defined_in_bb)
|
||
{
|
||
bool err = false;
|
||
tree ssa_name = USE_FROM_PTR (use_p);
|
||
|
||
if (!TREE_VISITED (ssa_name))
|
||
if (verify_imm_links (stderr, ssa_name))
|
||
err = true;
|
||
|
||
TREE_VISITED (ssa_name) = 1;
|
||
|
||
if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))
|
||
&& SSA_NAME_IS_DEFAULT_DEF (ssa_name))
|
||
; /* Default definitions have empty statements. Nothing to do. */
|
||
else if (!def_bb)
|
||
{
|
||
error ("missing definition");
|
||
err = true;
|
||
}
|
||
else if (bb != def_bb
|
||
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
{
|
||
error ("definition in block %i does not dominate use in block %i",
|
||
def_bb->index, bb->index);
|
||
err = true;
|
||
}
|
||
else if (bb == def_bb
|
||
&& names_defined_in_bb != NULL
|
||
&& !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
|
||
{
|
||
error ("definition in block %i follows the use", def_bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (check_abnormal
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
|
||
err = true;
|
||
}
|
||
|
||
/* Make sure the use is in an appropriate list by checking the previous
|
||
element to make sure it's the same. */
|
||
if (use_p->prev == NULL)
|
||
{
|
||
error ("no immediate_use list");
|
||
err = true;
|
||
}
|
||
else
|
||
{
|
||
tree listvar ;
|
||
if (use_p->prev->use == NULL)
|
||
listvar = use_p->prev->stmt;
|
||
else
|
||
listvar = USE_FROM_PTR (use_p->prev);
|
||
if (listvar != ssa_name)
|
||
{
|
||
error ("wrong immediate use list");
|
||
err = true;
|
||
}
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for SSA_NAME: ");
|
||
print_generic_expr (stderr, ssa_name, TDF_VOPS);
|
||
fprintf (stderr, " in statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return true if any of the arguments for PHI node PHI at block BB is
|
||
malformed.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
||
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
||
it means that the block in that array slot contains the
|
||
definition of SSA_NAME. */
|
||
|
||
static bool
|
||
verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
|
||
{
|
||
edge e;
|
||
bool err = false;
|
||
unsigned i, phi_num_args = PHI_NUM_ARGS (phi);
|
||
|
||
if (EDGE_COUNT (bb->preds) != phi_num_args)
|
||
{
|
||
error ("incoming edge count does not match number of PHI arguments");
|
||
err = true;
|
||
goto error;
|
||
}
|
||
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
use_operand_p op_p = PHI_ARG_DEF_PTR (phi, i);
|
||
tree op = USE_FROM_PTR (op_p);
|
||
|
||
e = EDGE_PRED (bb, i);
|
||
|
||
if (op == NULL_TREE)
|
||
{
|
||
error ("PHI argument is missing for edge %d->%d",
|
||
e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
goto error;
|
||
}
|
||
|
||
if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
|
||
{
|
||
error ("PHI argument is not SSA_NAME, or invariant");
|
||
err = true;
|
||
}
|
||
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
{
|
||
err = verify_ssa_name (op, !is_gimple_reg (PHI_RESULT (phi)));
|
||
err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)],
|
||
op_p, phi, e->flags & EDGE_ABNORMAL, NULL);
|
||
}
|
||
|
||
if (e->dest != bb)
|
||
{
|
||
error ("wrong edge %d->%d for PHI argument",
|
||
e->src->index, e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "PHI argument\n");
|
||
print_generic_stmt (stderr, op, TDF_VOPS);
|
||
goto error;
|
||
}
|
||
}
|
||
|
||
error:
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for PHI node\n");
|
||
print_generic_stmt (stderr, phi, TDF_VOPS|TDF_MEMSYMS);
|
||
}
|
||
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_insensitive_alias_info (void)
|
||
{
|
||
tree var;
|
||
referenced_var_iterator rvi;
|
||
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
unsigned int j;
|
||
bitmap aliases;
|
||
tree alias;
|
||
bitmap_iterator bi;
|
||
|
||
if (!MTAG_P (var) || !MTAG_ALIASES (var))
|
||
continue;
|
||
|
||
aliases = MTAG_ALIASES (var);
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (aliases, 0, j, bi)
|
||
{
|
||
alias = referenced_var (j);
|
||
|
||
if (TREE_CODE (alias) != MEMORY_PARTITION_TAG
|
||
&& !may_be_aliased (alias))
|
||
{
|
||
error ("non-addressable variable inside an alias set");
|
||
debug_variable (alias);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
err:
|
||
debug_variable (var);
|
||
internal_error ("verify_flow_insensitive_alias_info failed");
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_sensitive_alias_info (void)
|
||
{
|
||
size_t i;
|
||
tree ptr;
|
||
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
{
|
||
tree var;
|
||
var_ann_t ann;
|
||
struct ptr_info_def *pi;
|
||
|
||
|
||
ptr = ssa_name (i);
|
||
if (!ptr)
|
||
continue;
|
||
|
||
/* We only care for pointers that are actually referenced in the
|
||
program. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (ptr)) || !TREE_VISITED (ptr))
|
||
continue;
|
||
|
||
/* RESULT_DECL is special. If it's a GIMPLE register, then it
|
||
is only written-to only once in the return statement.
|
||
Otherwise, aggregate RESULT_DECLs may be written-to more than
|
||
once in virtual operands. */
|
||
var = SSA_NAME_VAR (ptr);
|
||
if (TREE_CODE (var) == RESULT_DECL
|
||
&& is_gimple_reg (ptr))
|
||
continue;
|
||
|
||
pi = SSA_NAME_PTR_INFO (ptr);
|
||
if (pi == NULL)
|
||
continue;
|
||
|
||
ann = var_ann (var);
|
||
if (pi->is_dereferenced && !pi->name_mem_tag && !ann->symbol_mem_tag)
|
||
{
|
||
error ("dereferenced pointers should have a name or a symbol tag");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->name_mem_tag
|
||
&& (pi->pt_vars == NULL || bitmap_empty_p (pi->pt_vars)))
|
||
{
|
||
error ("pointers with a memory tag, should have points-to sets");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->value_escapes_p && pi->name_mem_tag)
|
||
{
|
||
tree t = memory_partition (pi->name_mem_tag);
|
||
if (t == NULL_TREE)
|
||
t = pi->name_mem_tag;
|
||
|
||
if (!is_call_clobbered (t))
|
||
{
|
||
error ("pointer escapes but its name tag is not call-clobbered");
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
err:
|
||
debug_variable (ptr);
|
||
internal_error ("verify_flow_sensitive_alias_info failed");
|
||
}
|
||
|
||
|
||
/* Verify the consistency of call clobbering information. */
|
||
|
||
static void
|
||
verify_call_clobbering (void)
|
||
{
|
||
unsigned int i;
|
||
bitmap_iterator bi;
|
||
tree var;
|
||
referenced_var_iterator rvi;
|
||
|
||
/* At all times, the result of the call_clobbered flag should
|
||
match the result of the call_clobbered_vars bitmap. Verify both
|
||
that everything in call_clobbered_vars is marked
|
||
call_clobbered, and that everything marked
|
||
call_clobbered is in call_clobbered_vars. */
|
||
EXECUTE_IF_SET_IN_BITMAP (gimple_call_clobbered_vars (cfun), 0, i, bi)
|
||
{
|
||
var = referenced_var (i);
|
||
|
||
if (memory_partition (var))
|
||
var = memory_partition (var);
|
||
|
||
if (!MTAG_P (var) && !var_ann (var)->call_clobbered)
|
||
{
|
||
error ("variable in call_clobbered_vars but not marked "
|
||
"call_clobbered");
|
||
debug_variable (var);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
if (is_gimple_reg (var))
|
||
continue;
|
||
|
||
if (memory_partition (var))
|
||
var = memory_partition (var);
|
||
|
||
if (!MTAG_P (var)
|
||
&& var_ann (var)->call_clobbered
|
||
&& !bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var)))
|
||
{
|
||
error ("variable marked call_clobbered but not in "
|
||
"call_clobbered_vars bitmap.");
|
||
debug_variable (var);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_call_clobbering failed");
|
||
}
|
||
|
||
|
||
/* Verify invariants in memory partitions. */
|
||
|
||
static void
|
||
verify_memory_partitions (void)
|
||
{
|
||
unsigned i;
|
||
tree mpt;
|
||
VEC(tree,heap) *mpt_table = gimple_ssa_operands (cfun)->mpt_table;
|
||
struct pointer_set_t *partitioned_syms = pointer_set_create ();
|
||
|
||
for (i = 0; VEC_iterate (tree, mpt_table, i, mpt); i++)
|
||
{
|
||
unsigned j;
|
||
bitmap_iterator bj;
|
||
|
||
if (MPT_SYMBOLS (mpt) == NULL)
|
||
{
|
||
error ("Memory partitions should have at least one symbol");
|
||
debug_variable (mpt);
|
||
goto err;
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (MPT_SYMBOLS (mpt), 0, j, bj)
|
||
{
|
||
tree var = referenced_var (j);
|
||
if (pointer_set_insert (partitioned_syms, var))
|
||
{
|
||
error ("Partitioned symbols should belong to exactly one "
|
||
"partition");
|
||
debug_variable (var);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
pointer_set_destroy (partitioned_syms);
|
||
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_memory_partitions failed");
|
||
}
|
||
|
||
|
||
/* Verify the consistency of aliasing information. */
|
||
|
||
static void
|
||
verify_alias_info (void)
|
||
{
|
||
verify_flow_sensitive_alias_info ();
|
||
verify_call_clobbering ();
|
||
verify_flow_insensitive_alias_info ();
|
||
verify_memory_partitions ();
|
||
}
|
||
|
||
|
||
/* Verify common invariants in the SSA web.
|
||
TODO: verify the variable annotations. */
|
||
|
||
void
|
||
verify_ssa (bool check_modified_stmt)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
|
||
ssa_op_iter iter;
|
||
tree op;
|
||
enum dom_state orig_dom_state = dom_info_state (CDI_DOMINATORS);
|
||
bitmap names_defined_in_bb = BITMAP_ALLOC (NULL);
|
||
|
||
gcc_assert (!need_ssa_update_p ());
|
||
|
||
verify_stmts ();
|
||
|
||
timevar_push (TV_TREE_SSA_VERIFY);
|
||
|
||
/* Keep track of SSA names present in the IL. */
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
{
|
||
tree name = ssa_name (i);
|
||
if (name)
|
||
{
|
||
tree stmt;
|
||
TREE_VISITED (name) = 0;
|
||
|
||
stmt = SSA_NAME_DEF_STMT (name);
|
||
if (!IS_EMPTY_STMT (stmt))
|
||
{
|
||
basic_block bb = bb_for_stmt (stmt);
|
||
verify_def (bb, definition_block,
|
||
name, stmt, !is_gimple_reg (name));
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* Now verify all the uses and make sure they agree with the definitions
|
||
found in the previous pass. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
tree phi;
|
||
edge_iterator ei;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Make sure that all edges have a clear 'aux' field. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (e->aux)
|
||
{
|
||
error ("AUX pointer initialized for edge %d->%d", e->src->index,
|
||
e->dest->index);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
/* Verify the arguments for every PHI node in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (verify_phi_args (phi, bb, definition_block))
|
||
goto err;
|
||
|
||
bitmap_set_bit (names_defined_in_bb,
|
||
SSA_NAME_VERSION (PHI_RESULT (phi)));
|
||
}
|
||
|
||
/* Now verify all the uses and vuses in every statement of the block. */
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
use_operand_p use_p;
|
||
|
||
if (check_modified_stmt && stmt_modified_p (stmt))
|
||
{
|
||
error ("stmt (%p) marked modified after optimization pass: ",
|
||
(void *)stmt);
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
|
||
&& TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) != SSA_NAME)
|
||
{
|
||
tree lhs, base_address;
|
||
|
||
lhs = GIMPLE_STMT_OPERAND (stmt, 0);
|
||
base_address = get_base_address (lhs);
|
||
|
||
if (base_address
|
||
&& gimple_aliases_computed_p (cfun)
|
||
&& SSA_VAR_P (base_address)
|
||
&& !stmt_ann (stmt)->has_volatile_ops
|
||
&& ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
|
||
{
|
||
error ("statement makes a memory store, but has no VDEFS");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_VIRTUALS)
|
||
{
|
||
if (verify_ssa_name (op, true))
|
||
{
|
||
error ("in statement");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS|TDF_MEMSYMS);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE|SSA_OP_DEF)
|
||
{
|
||
if (verify_ssa_name (op, false))
|
||
{
|
||
error ("in statement");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS|TDF_MEMSYMS);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE|SSA_OP_VUSE)
|
||
{
|
||
op = USE_FROM_PTR (use_p);
|
||
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
use_p, stmt, false, names_defined_in_bb))
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
|
||
bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
|
||
}
|
||
|
||
bitmap_clear (names_defined_in_bb);
|
||
}
|
||
|
||
/* Finally, verify alias information. */
|
||
if (gimple_aliases_computed_p (cfun))
|
||
verify_alias_info ();
|
||
|
||
free (definition_block);
|
||
|
||
/* Restore the dominance information to its prior known state, so
|
||
that we do not perturb the compiler's subsequent behavior. */
|
||
if (orig_dom_state == DOM_NONE)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
else
|
||
set_dom_info_availability (CDI_DOMINATORS, orig_dom_state);
|
||
|
||
BITMAP_FREE (names_defined_in_bb);
|
||
timevar_pop (TV_TREE_SSA_VERIFY);
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_ssa failed");
|
||
}
|
||
|
||
/* Return true if the uid in both int tree maps are equal. */
|
||
|
||
int
|
||
int_tree_map_eq (const void *va, const void *vb)
|
||
{
|
||
const struct int_tree_map *a = (const struct int_tree_map *) va;
|
||
const struct int_tree_map *b = (const struct int_tree_map *) vb;
|
||
return (a->uid == b->uid);
|
||
}
|
||
|
||
/* Hash a UID in a int_tree_map. */
|
||
|
||
unsigned int
|
||
int_tree_map_hash (const void *item)
|
||
{
|
||
return ((const struct int_tree_map *)item)->uid;
|
||
}
|
||
|
||
/* Return true if the DECL_UID in both trees are equal. */
|
||
|
||
int
|
||
uid_decl_map_eq (const void *va, const void *vb)
|
||
{
|
||
const_tree a = (const_tree) va;
|
||
const_tree b = (const_tree) vb;
|
||
return (a->decl_minimal.uid == b->decl_minimal.uid);
|
||
}
|
||
|
||
/* Hash a tree in a uid_decl_map. */
|
||
|
||
unsigned int
|
||
uid_decl_map_hash (const void *item)
|
||
{
|
||
return ((const_tree)item)->decl_minimal.uid;
|
||
}
|
||
|
||
/* Return true if the uid in both int tree maps are equal. */
|
||
|
||
static int
|
||
var_ann_eq (const void *va, const void *vb)
|
||
{
|
||
const struct static_var_ann_d *a = (const struct static_var_ann_d *) va;
|
||
const_tree const b = (const_tree) vb;
|
||
return (a->uid == DECL_UID (b));
|
||
}
|
||
|
||
/* Hash a UID in a int_tree_map. */
|
||
|
||
static unsigned int
|
||
var_ann_hash (const void *item)
|
||
{
|
||
return ((const struct static_var_ann_d *)item)->uid;
|
||
}
|
||
|
||
/* Return true if the DECL_UID in both trees are equal. */
|
||
|
||
static int
|
||
uid_ssaname_map_eq (const void *va, const void *vb)
|
||
{
|
||
const_tree a = (const_tree) va;
|
||
const_tree b = (const_tree) vb;
|
||
return (a->ssa_name.var->decl_minimal.uid == b->ssa_name.var->decl_minimal.uid);
|
||
}
|
||
|
||
/* Hash a tree in a uid_decl_map. */
|
||
|
||
static unsigned int
|
||
uid_ssaname_map_hash (const void *item)
|
||
{
|
||
return ((const_tree)item)->ssa_name.var->decl_minimal.uid;
|
||
}
|
||
|
||
|
||
/* Initialize global DFA and SSA structures. */
|
||
|
||
void
|
||
init_tree_ssa (void)
|
||
{
|
||
cfun->gimple_df = GGC_CNEW (struct gimple_df);
|
||
cfun->gimple_df->referenced_vars = htab_create_ggc (20, uid_decl_map_hash,
|
||
uid_decl_map_eq, NULL);
|
||
cfun->gimple_df->default_defs = htab_create_ggc (20, uid_ssaname_map_hash,
|
||
uid_ssaname_map_eq, NULL);
|
||
cfun->gimple_df->var_anns = htab_create_ggc (20, var_ann_hash,
|
||
var_ann_eq, NULL);
|
||
cfun->gimple_df->call_clobbered_vars = BITMAP_GGC_ALLOC ();
|
||
cfun->gimple_df->addressable_vars = BITMAP_GGC_ALLOC ();
|
||
init_ssanames ();
|
||
init_phinodes ();
|
||
}
|
||
|
||
|
||
/* Deallocate memory associated with SSA data structures for FNDECL. */
|
||
|
||
void
|
||
delete_tree_ssa (void)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
referenced_var_iterator rvi;
|
||
tree var;
|
||
|
||
/* Release any ssa_names still in use. */
|
||
for (i = 0; i < num_ssa_names; i++)
|
||
{
|
||
tree var = ssa_name (i);
|
||
if (var && TREE_CODE (var) == SSA_NAME)
|
||
{
|
||
SSA_NAME_IMM_USE_NODE (var).prev = &(SSA_NAME_IMM_USE_NODE (var));
|
||
SSA_NAME_IMM_USE_NODE (var).next = &(SSA_NAME_IMM_USE_NODE (var));
|
||
}
|
||
release_ssa_name (var);
|
||
}
|
||
|
||
/* Remove annotations from every tree in the function. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
stmt_ann_t ann = get_stmt_ann (stmt);
|
||
|
||
free_ssa_operands (&ann->operands);
|
||
ann->addresses_taken = 0;
|
||
mark_stmt_modified (stmt);
|
||
}
|
||
set_phi_nodes (bb, NULL);
|
||
}
|
||
|
||
/* Remove annotations from every referenced variable. */
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
{
|
||
if (var->base.ann)
|
||
ggc_free (var->base.ann);
|
||
var->base.ann = NULL;
|
||
}
|
||
htab_delete (gimple_referenced_vars (cfun));
|
||
cfun->gimple_df->referenced_vars = NULL;
|
||
|
||
fini_ssanames ();
|
||
fini_phinodes ();
|
||
/* we no longer maintain the SSA operand cache at this point. */
|
||
if (ssa_operands_active ())
|
||
fini_ssa_operands ();
|
||
|
||
cfun->gimple_df->global_var = NULL_TREE;
|
||
|
||
htab_delete (cfun->gimple_df->default_defs);
|
||
cfun->gimple_df->default_defs = NULL;
|
||
htab_delete (cfun->gimple_df->var_anns);
|
||
cfun->gimple_df->var_anns = NULL;
|
||
cfun->gimple_df->call_clobbered_vars = NULL;
|
||
cfun->gimple_df->addressable_vars = NULL;
|
||
cfun->gimple_df->modified_noreturn_calls = NULL;
|
||
if (gimple_aliases_computed_p (cfun))
|
||
{
|
||
delete_alias_heapvars ();
|
||
gcc_assert (!need_ssa_update_p ());
|
||
}
|
||
cfun->gimple_df->aliases_computed_p = false;
|
||
delete_mem_ref_stats (cfun);
|
||
|
||
cfun->gimple_df = NULL;
|
||
}
|
||
|
||
/* Helper function for useless_type_conversion_p. */
|
||
|
||
static bool
|
||
useless_type_conversion_p_1 (tree outer_type, tree inner_type)
|
||
{
|
||
/* Qualifiers on value types do not matter. */
|
||
inner_type = TYPE_MAIN_VARIANT (inner_type);
|
||
outer_type = TYPE_MAIN_VARIANT (outer_type);
|
||
|
||
if (inner_type == outer_type)
|
||
return true;
|
||
|
||
/* If we know the canonical types, compare them. */
|
||
if (TYPE_CANONICAL (inner_type)
|
||
&& TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
|
||
return true;
|
||
|
||
/* Changes in machine mode are never useless conversions. */
|
||
if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type))
|
||
return false;
|
||
|
||
/* If both the inner and outer types are integral types, then the
|
||
conversion is not necessary if they have the same mode and
|
||
signedness and precision, and both or neither are boolean. */
|
||
if (INTEGRAL_TYPE_P (inner_type)
|
||
&& INTEGRAL_TYPE_P (outer_type))
|
||
{
|
||
/* Preserve changes in signedness or precision. */
|
||
if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
|
||
|| TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
|
||
return false;
|
||
|
||
/* Conversions from a non-base to a base type are not useless.
|
||
This way we preserve the invariant to do arithmetic in
|
||
base types only. */
|
||
if (TREE_TYPE (inner_type)
|
||
&& TREE_TYPE (inner_type) != inner_type
|
||
&& (TREE_TYPE (outer_type) == outer_type
|
||
|| TREE_TYPE (outer_type) == NULL_TREE))
|
||
return false;
|
||
|
||
/* We don't need to preserve changes in the types minimum or
|
||
maximum value in general as these do not generate code
|
||
unless the types precisions are different. */
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Scalar floating point types with the same mode are compatible. */
|
||
else if (SCALAR_FLOAT_TYPE_P (inner_type)
|
||
&& SCALAR_FLOAT_TYPE_P (outer_type))
|
||
return true;
|
||
|
||
/* We need to take special care recursing to pointed-to types. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type))
|
||
{
|
||
/* Don't lose casts between pointers to volatile and non-volatile
|
||
qualified types. Doing so would result in changing the semantics
|
||
of later accesses. */
|
||
if ((TYPE_VOLATILE (TREE_TYPE (outer_type))
|
||
!= TYPE_VOLATILE (TREE_TYPE (inner_type)))
|
||
&& TYPE_VOLATILE (TREE_TYPE (outer_type)))
|
||
return false;
|
||
|
||
/* Do not lose casts between pointers with different
|
||
TYPE_REF_CAN_ALIAS_ALL setting or alias sets. */
|
||
if ((TYPE_REF_CAN_ALIAS_ALL (inner_type)
|
||
!= TYPE_REF_CAN_ALIAS_ALL (outer_type))
|
||
|| (get_alias_set (TREE_TYPE (inner_type))
|
||
!= get_alias_set (TREE_TYPE (outer_type))))
|
||
return false;
|
||
|
||
/* Do not lose casts from const qualified to non-const
|
||
qualified. */
|
||
if ((TYPE_READONLY (TREE_TYPE (outer_type))
|
||
!= TYPE_READONLY (TREE_TYPE (inner_type)))
|
||
&& TYPE_READONLY (TREE_TYPE (inner_type)))
|
||
return false;
|
||
|
||
/* Do not lose casts to restrict qualified pointers. */
|
||
if ((TYPE_RESTRICT (outer_type)
|
||
!= TYPE_RESTRICT (inner_type))
|
||
&& TYPE_RESTRICT (outer_type))
|
||
return false;
|
||
|
||
/* Otherwise pointers/references are equivalent if their pointed
|
||
to types are effectively the same. We can strip qualifiers
|
||
on pointed-to types for further comparison, which is done in
|
||
the callee. */
|
||
return useless_type_conversion_p_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type));
|
||
}
|
||
|
||
/* Recurse for complex types. */
|
||
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
|
||
&& TREE_CODE (outer_type) == COMPLEX_TYPE)
|
||
return useless_type_conversion_p_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type));
|
||
|
||
/* Recurse for vector types with the same number of subparts. */
|
||
else if (TREE_CODE (inner_type) == VECTOR_TYPE
|
||
&& TREE_CODE (outer_type) == VECTOR_TYPE
|
||
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
|
||
return useless_type_conversion_p_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type));
|
||
|
||
/* For aggregates we may need to fall back to structural equality
|
||
checks. */
|
||
else if (AGGREGATE_TYPE_P (inner_type)
|
||
&& AGGREGATE_TYPE_P (outer_type))
|
||
{
|
||
/* Different types of aggregates are incompatible. */
|
||
if (TREE_CODE (inner_type) != TREE_CODE (outer_type))
|
||
return false;
|
||
|
||
/* ??? Add structural equivalence check. */
|
||
|
||
/* ??? This should eventually just return false. */
|
||
return lang_hooks.types_compatible_p (inner_type, outer_type);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
|
||
useless type conversion, otherwise return false.
|
||
|
||
This function implicitly defines the middle-end type system. With
|
||
the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
|
||
holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
|
||
the following invariants shall be fulfilled:
|
||
|
||
1) useless_type_conversion_p is transitive.
|
||
If a < b and b < c then a < c.
|
||
|
||
2) useless_type_conversion_p is not symmetric.
|
||
From a < b does not follow a > b.
|
||
|
||
3) Types define the available set of operations applicable to values.
|
||
A type conversion is useless if the operations for the target type
|
||
is a subset of the operations for the source type. For example
|
||
casts to void* are useless, casts from void* are not (void* can't
|
||
be dereferenced or offsetted, but copied, hence its set of operations
|
||
is a strict subset of that of all other data pointer types). Casts
|
||
to const T* are useless (can't be written to), casts from const T*
|
||
to T* are not. */
|
||
|
||
bool
|
||
useless_type_conversion_p (tree outer_type, tree inner_type)
|
||
{
|
||
/* If the outer type is (void *), then the conversion is not
|
||
necessary. We have to make sure to not apply this while
|
||
recursing though. */
|
||
if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
|
||
return true;
|
||
|
||
return useless_type_conversion_p_1 (outer_type, inner_type);
|
||
}
|
||
|
||
/* Return true if a conversion from either type of TYPE1 and TYPE2
|
||
to the other is not required. Otherwise return false. */
|
||
|
||
bool
|
||
types_compatible_p (tree type1, tree type2)
|
||
{
|
||
return (type1 == type2
|
||
|| (useless_type_conversion_p (type1, type2)
|
||
&& useless_type_conversion_p (type2, type1)));
|
||
}
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion (tree expr)
|
||
{
|
||
/* If we have an assignment that merely uses a NOP_EXPR to change
|
||
the top of the RHS to the type of the LHS and the type conversion
|
||
is "safe", then strip away the type conversion so that we can
|
||
enter LHS = RHS into the const_and_copies table. */
|
||
if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR
|
||
|| TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
||
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
/* FIXME: Use of GENERIC_TREE_TYPE here is a temporary measure to work
|
||
around known bugs with GIMPLE_MODIFY_STMTs appearing in places
|
||
they shouldn't. See PR 30391. */
|
||
return useless_type_conversion_p
|
||
(TREE_TYPE (expr),
|
||
GENERIC_TREE_TYPE (TREE_OPERAND (expr, 0)));
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
|
||
described in walk_use_def_chains.
|
||
|
||
VISITED is a pointer set used to mark visited SSA_NAMEs to avoid
|
||
infinite loops. We used to have a bitmap for this to just mark
|
||
SSA versions we had visited. But non-sparse bitmaps are way too
|
||
expensive, while sparse bitmaps may cause quadratic behavior.
|
||
|
||
IS_DFS is true if the caller wants to perform a depth-first search
|
||
when visiting PHI nodes. A DFS will visit each PHI argument and
|
||
call FN after each one. Otherwise, all the arguments are
|
||
visited first and then FN is called with each of the visited
|
||
arguments in a separate pass. */
|
||
|
||
static bool
|
||
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
|
||
struct pointer_set_t *visited, bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
if (pointer_set_insert (visited, var))
|
||
return false;
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
{
|
||
/* If we reached the end of the use-def chain, call FN. */
|
||
return fn (var, def_stmt, data);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* When doing a breadth-first search, call FN before following the
|
||
use-def links for each argument. */
|
||
if (!is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
|
||
/* Follow use-def links out of each PHI argument. */
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (def_stmt, i);
|
||
|
||
/* ARG may be NULL for newly introduced PHI nodes. */
|
||
if (arg
|
||
&& TREE_CODE (arg) == SSA_NAME
|
||
&& walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
|
||
return true;
|
||
}
|
||
|
||
/* When doing a depth-first search, call FN after following the
|
||
use-def links for each argument. */
|
||
if (is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Walk use-def chains starting at the SSA variable VAR. Call
|
||
function FN at each reaching definition found. FN takes three
|
||
arguments: VAR, its defining statement (DEF_STMT) and a generic
|
||
pointer to whatever state information that FN may want to maintain
|
||
(DATA). FN is able to stop the walk by returning true, otherwise
|
||
in order to continue the walk, FN should return false.
|
||
|
||
Note, that if DEF_STMT is a PHI node, the semantics are slightly
|
||
different. The first argument to FN is no longer the original
|
||
variable VAR, but the PHI argument currently being examined. If FN
|
||
wants to get at VAR, it should call PHI_RESULT (PHI).
|
||
|
||
If IS_DFS is true, this function will:
|
||
|
||
1- walk the use-def chains for all the PHI arguments, and,
|
||
2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
|
||
|
||
If IS_DFS is false, the two steps above are done in reverse order
|
||
(i.e., a breadth-first search). */
|
||
|
||
void
|
||
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
|
||
bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
/* We only need to recurse if the reaching definition comes from a PHI
|
||
node. */
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
(*fn) (var, def_stmt, data);
|
||
else
|
||
{
|
||
struct pointer_set_t *visited = pointer_set_create ();
|
||
walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
|
||
pointer_set_destroy (visited);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if T, an SSA_NAME, has an undefined value. */
|
||
|
||
bool
|
||
ssa_undefined_value_p (tree t)
|
||
{
|
||
tree var = SSA_NAME_VAR (t);
|
||
|
||
/* Parameters get their initial value from the function entry. */
|
||
if (TREE_CODE (var) == PARM_DECL)
|
||
return false;
|
||
|
||
/* Hard register variables get their initial value from the ether. */
|
||
if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
|
||
return false;
|
||
|
||
/* The value is undefined iff its definition statement is empty. */
|
||
return IS_EMPTY_STMT (SSA_NAME_DEF_STMT (t));
|
||
}
|
||
|
||
/* Emit warnings for uninitialized variables. This is done in two passes.
|
||
|
||
The first pass notices real uses of SSA names with undefined values.
|
||
Such uses are unconditionally uninitialized, and we can be certain that
|
||
such a use is a mistake. This pass is run before most optimizations,
|
||
so that we catch as many as we can.
|
||
|
||
The second pass follows PHI nodes to find uses that are potentially
|
||
uninitialized. In this case we can't necessarily prove that the use
|
||
is really uninitialized. This pass is run after most optimizations,
|
||
so that we thread as many jumps and possible, and delete as much dead
|
||
code as possible, in order to reduce false positives. We also look
|
||
again for plain uninitialized variables, since optimization may have
|
||
changed conditionally uninitialized to unconditionally uninitialized. */
|
||
|
||
/* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
|
||
warning text is in MSGID and LOCUS may contain a location or be null. */
|
||
|
||
static void
|
||
warn_uninit (tree t, const char *gmsgid, void *data)
|
||
{
|
||
tree var = SSA_NAME_VAR (t);
|
||
tree context = (tree) data;
|
||
location_t *locus;
|
||
expanded_location xloc, floc;
|
||
|
||
if (!ssa_undefined_value_p (t))
|
||
return;
|
||
|
||
/* TREE_NO_WARNING either means we already warned, or the front end
|
||
wishes to suppress the warning. */
|
||
if (TREE_NO_WARNING (var))
|
||
return;
|
||
|
||
locus = (context != NULL && EXPR_HAS_LOCATION (context)
|
||
? EXPR_LOCUS (context)
|
||
: &DECL_SOURCE_LOCATION (var));
|
||
warning (OPT_Wuninitialized, gmsgid, locus, var);
|
||
xloc = expand_location (*locus);
|
||
floc = expand_location (DECL_SOURCE_LOCATION (cfun->decl));
|
||
if (xloc.file != floc.file
|
||
|| xloc.line < floc.line
|
||
|| xloc.line > LOCATION_LINE (cfun->function_end_locus))
|
||
inform ("%J%qD was declared here", var, var);
|
||
|
||
TREE_NO_WARNING (var) = 1;
|
||
}
|
||
|
||
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static tree
|
||
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
tree t = *tp;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SSA_NAME:
|
||
/* We only do data flow with SSA_NAMEs, so that's all we
|
||
can warn about. */
|
||
warn_uninit (t, "%H%qD is used uninitialized in this function", data);
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
/* The total store transformation performed during gimplification
|
||
creates uninitialized variable uses. If all is well, these will
|
||
be optimized away, so don't warn now. */
|
||
if (TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
|
||
*walk_subtrees = 0;
|
||
break;
|
||
|
||
default:
|
||
if (IS_TYPE_OR_DECL_P (t))
|
||
*walk_subtrees = 0;
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static void
|
||
warn_uninitialized_phi (tree phi)
|
||
{
|
||
int i, n = PHI_NUM_ARGS (phi);
|
||
|
||
/* Don't look at memory tags. */
|
||
if (!is_gimple_reg (PHI_RESULT (phi)))
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
warn_uninit (op, "%H%qD may be used uninitialized in this function",
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
static unsigned int
|
||
execute_early_warn_uninitialized (void)
|
||
{
|
||
block_stmt_iterator bsi;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree context = bsi_stmt (bsi);
|
||
walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
|
||
context, NULL);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static unsigned int
|
||
execute_late_warn_uninitialized (void)
|
||
{
|
||
basic_block bb;
|
||
tree phi;
|
||
|
||
/* Re-do the plain uninitialized variable check, as optimization may have
|
||
straightened control flow. Do this first so that we don't accidentally
|
||
get a "may be" warning when we'd have seen an "is" warning later. */
|
||
execute_early_warn_uninitialized ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
warn_uninitialized_phi (phi);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_warn_uninitialized (void)
|
||
{
|
||
return warn_uninitialized != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_early_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_early_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
struct tree_opt_pass pass_late_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_late_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
/* Compute TREE_ADDRESSABLE for local variables. */
|
||
|
||
static unsigned int
|
||
execute_update_addresses_taken (void)
|
||
{
|
||
tree var;
|
||
referenced_var_iterator rvi;
|
||
block_stmt_iterator bsi;
|
||
basic_block bb;
|
||
bitmap addresses_taken = BITMAP_ALLOC (NULL);
|
||
bitmap vars_updated = BITMAP_ALLOC (NULL);
|
||
bool update_vops = false;
|
||
tree phi;
|
||
|
||
/* Collect into ADDRESSES_TAKEN all variables whose address is taken within
|
||
the function body. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
stmt_ann_t s_ann = stmt_ann (bsi_stmt (bsi));
|
||
|
||
if (s_ann->addresses_taken)
|
||
bitmap_ior_into (addresses_taken, s_ann->addresses_taken);
|
||
}
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
unsigned i, phi_num_args = PHI_NUM_ARGS (phi);
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i), var;
|
||
if (TREE_CODE (op) == ADDR_EXPR
|
||
&& (var = get_base_address (TREE_OPERAND (op, 0))) != NULL_TREE
|
||
&& DECL_P (var))
|
||
bitmap_set_bit (addresses_taken, DECL_UID (var));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* When possible, clear ADDRESSABLE bit and mark variable for conversion into
|
||
SSA. */
|
||
FOR_EACH_REFERENCED_VAR (var, rvi)
|
||
if (!is_global_var (var)
|
||
&& TREE_CODE (var) != RESULT_DECL
|
||
&& TREE_ADDRESSABLE (var)
|
||
&& !bitmap_bit_p (addresses_taken, DECL_UID (var)))
|
||
{
|
||
TREE_ADDRESSABLE (var) = 0;
|
||
if (is_gimple_reg (var))
|
||
mark_sym_for_renaming (var);
|
||
update_vops = true;
|
||
bitmap_set_bit (vars_updated, DECL_UID (var));
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "No longer having address taken ");
|
||
print_generic_expr (dump_file, var, 0);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
}
|
||
|
||
/* Operand caches needs to be recomputed for operands referencing the updated
|
||
variables. */
|
||
if (update_vops)
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
|
||
if ((LOADED_SYMS (stmt)
|
||
&& bitmap_intersect_p (LOADED_SYMS (stmt), vars_updated))
|
||
|| (STORED_SYMS (stmt)
|
||
&& bitmap_intersect_p (STORED_SYMS (stmt), vars_updated)))
|
||
update_stmt (stmt);
|
||
}
|
||
BITMAP_FREE (addresses_taken);
|
||
BITMAP_FREE (vars_updated);
|
||
return 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_update_address_taken =
|
||
{
|
||
"addressables", /* name */
|
||
NULL, /* gate */
|
||
execute_update_addresses_taken, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_update_ssa, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|