83d865c57c
2003-10-06 Andrew Haley <aph@redhat.com> * tree.c (get_callee_fndecl): Call lang_hooks.lang_get_callee_fndecl. * langhooks-def.h (LANG_HOOKS_GET_CALLEE_FNDECL): New. (lhd_get_callee_fndecl): New. From-SVN: r72150
5002 lines
134 KiB
C
5002 lines
134 KiB
C
/* Language-independent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This file contains the low level primitives for operating on tree nodes,
|
||
including allocation, list operations, interning of identifiers,
|
||
construction of data type nodes and statement nodes,
|
||
and construction of type conversion nodes. It also contains
|
||
tables index by tree code that describe how to take apart
|
||
nodes of that code.
|
||
|
||
It is intended to be language-independent, but occasionally
|
||
calls language-dependent routines defined (for C) in typecheck.c. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "flags.h"
|
||
#include "tree.h"
|
||
#include "real.h"
|
||
#include "tm_p.h"
|
||
#include "function.h"
|
||
#include "obstack.h"
|
||
#include "toplev.h"
|
||
#include "ggc.h"
|
||
#include "hashtab.h"
|
||
#include "output.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
|
||
/* obstack.[ch] explicitly declined to prototype this. */
|
||
extern int _obstack_allocated_p (struct obstack *h, void *obj);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
/* Statistics-gathering stuff. */
|
||
|
||
int tree_node_counts[(int) all_kinds];
|
||
int tree_node_sizes[(int) all_kinds];
|
||
|
||
/* Keep in sync with tree.h:enum tree_node_kind. */
|
||
static const char * const tree_node_kind_names[] = {
|
||
"decls",
|
||
"types",
|
||
"blocks",
|
||
"stmts",
|
||
"refs",
|
||
"exprs",
|
||
"constants",
|
||
"identifiers",
|
||
"perm_tree_lists",
|
||
"temp_tree_lists",
|
||
"vecs",
|
||
"random kinds",
|
||
"lang_decl kinds",
|
||
"lang_type kinds"
|
||
};
|
||
#endif /* GATHER_STATISTICS */
|
||
|
||
/* Unique id for next decl created. */
|
||
static GTY(()) int next_decl_uid;
|
||
/* Unique id for next type created. */
|
||
static GTY(()) int next_type_uid = 1;
|
||
|
||
/* Since we cannot rehash a type after it is in the table, we have to
|
||
keep the hash code. */
|
||
|
||
struct type_hash GTY(())
|
||
{
|
||
unsigned long hash;
|
||
tree type;
|
||
};
|
||
|
||
/* Initial size of the hash table (rounded to next prime). */
|
||
#define TYPE_HASH_INITIAL_SIZE 1000
|
||
|
||
/* Now here is the hash table. When recording a type, it is added to
|
||
the slot whose index is the hash code. Note that the hash table is
|
||
used for several kinds of types (function types, array types and
|
||
array index range types, for now). While all these live in the
|
||
same table, they are completely independent, and the hash code is
|
||
computed differently for each of these. */
|
||
|
||
static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
|
||
htab_t type_hash_table;
|
||
|
||
static void set_type_quals (tree, int);
|
||
static int type_hash_eq (const void *, const void *);
|
||
static hashval_t type_hash_hash (const void *);
|
||
static void print_type_hash_statistics (void);
|
||
static void finish_vector_type (tree);
|
||
static tree make_vector (enum machine_mode, tree, int);
|
||
static int type_hash_marked_p (const void *);
|
||
|
||
tree global_trees[TI_MAX];
|
||
tree integer_types[itk_none];
|
||
|
||
/* Init tree.c. */
|
||
|
||
void
|
||
init_ttree (void)
|
||
{
|
||
/* Initialize the hash table of types. */
|
||
type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
|
||
type_hash_eq, 0);
|
||
}
|
||
|
||
|
||
/* The name of the object as the assembler will see it (but before any
|
||
translations made by ASM_OUTPUT_LABELREF). Often this is the same
|
||
as DECL_NAME. It is an IDENTIFIER_NODE. */
|
||
tree
|
||
decl_assembler_name (tree decl)
|
||
{
|
||
if (!DECL_ASSEMBLER_NAME_SET_P (decl))
|
||
(*lang_hooks.set_decl_assembler_name) (decl);
|
||
return DECL_CHECK (decl)->decl.assembler_name;
|
||
}
|
||
|
||
/* Compute the number of bytes occupied by 'node'. This routine only
|
||
looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
|
||
size_t
|
||
tree_size (tree node)
|
||
{
|
||
enum tree_code code = TREE_CODE (node);
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'd': /* A decl node */
|
||
return sizeof (struct tree_decl);
|
||
|
||
case 't': /* a type node */
|
||
return sizeof (struct tree_type);
|
||
|
||
case 'b': /* a lexical block node */
|
||
return sizeof (struct tree_block);
|
||
|
||
case 'r': /* a reference */
|
||
case 'e': /* an expression */
|
||
case 's': /* an expression with side effects */
|
||
case '<': /* a comparison expression */
|
||
case '1': /* a unary arithmetic expression */
|
||
case '2': /* a binary arithmetic expression */
|
||
return (sizeof (struct tree_exp)
|
||
+ TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
|
||
|
||
case 'c': /* a constant */
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST: return sizeof (struct tree_int_cst);
|
||
case REAL_CST: return sizeof (struct tree_real_cst);
|
||
case COMPLEX_CST: return sizeof (struct tree_complex);
|
||
case VECTOR_CST: return sizeof (struct tree_vector);
|
||
case STRING_CST: return sizeof (struct tree_string);
|
||
default:
|
||
return (*lang_hooks.tree_size) (code);
|
||
}
|
||
|
||
case 'x': /* something random, like an identifier. */
|
||
switch (code)
|
||
{
|
||
case IDENTIFIER_NODE: return lang_hooks.identifier_size;
|
||
case TREE_LIST: return sizeof (struct tree_list);
|
||
case TREE_VEC: return (sizeof (struct tree_vec)
|
||
+ TREE_VEC_LENGTH(node) * sizeof(char *)
|
||
- sizeof (char *));
|
||
|
||
case ERROR_MARK:
|
||
case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
|
||
|
||
default:
|
||
return (*lang_hooks.tree_size) (code);
|
||
}
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return a newly allocated node of code CODE.
|
||
For decl and type nodes, some other fields are initialized.
|
||
The rest of the node is initialized to zero.
|
||
|
||
Achoo! I got a code in the node. */
|
||
|
||
tree
|
||
make_node (enum tree_code code)
|
||
{
|
||
tree t;
|
||
int type = TREE_CODE_CLASS (code);
|
||
size_t length;
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kind kind;
|
||
#endif
|
||
struct tree_common ttmp;
|
||
|
||
/* We can't allocate a TREE_VEC without knowing how many elements
|
||
it will have. */
|
||
if (code == TREE_VEC)
|
||
abort ();
|
||
|
||
TREE_SET_CODE ((tree)&ttmp, code);
|
||
length = tree_size ((tree)&ttmp);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
switch (type)
|
||
{
|
||
case 'd': /* A decl node */
|
||
kind = d_kind;
|
||
break;
|
||
|
||
case 't': /* a type node */
|
||
kind = t_kind;
|
||
break;
|
||
|
||
case 'b': /* a lexical block */
|
||
kind = b_kind;
|
||
break;
|
||
|
||
case 's': /* an expression with side effects */
|
||
kind = s_kind;
|
||
break;
|
||
|
||
case 'r': /* a reference */
|
||
kind = r_kind;
|
||
break;
|
||
|
||
case 'e': /* an expression */
|
||
case '<': /* a comparison expression */
|
||
case '1': /* a unary arithmetic expression */
|
||
case '2': /* a binary arithmetic expression */
|
||
kind = e_kind;
|
||
break;
|
||
|
||
case 'c': /* a constant */
|
||
kind = c_kind;
|
||
break;
|
||
|
||
case 'x': /* something random, like an identifier. */
|
||
if (code == IDENTIFIER_NODE)
|
||
kind = id_kind;
|
||
else if (code == TREE_VEC)
|
||
kind = vec_kind;
|
||
else
|
||
kind = x_kind;
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
tree_node_counts[(int) kind]++;
|
||
tree_node_sizes[(int) kind] += length;
|
||
#endif
|
||
|
||
t = ggc_alloc_tree (length);
|
||
|
||
memset (t, 0, length);
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
switch (type)
|
||
{
|
||
case 's':
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
case 'd':
|
||
if (code != FUNCTION_DECL)
|
||
DECL_ALIGN (t) = 1;
|
||
DECL_USER_ALIGN (t) = 0;
|
||
DECL_IN_SYSTEM_HEADER (t) = in_system_header;
|
||
DECL_SOURCE_LOCATION (t) = input_location;
|
||
DECL_UID (t) = next_decl_uid++;
|
||
|
||
/* We have not yet computed the alias set for this declaration. */
|
||
DECL_POINTER_ALIAS_SET (t) = -1;
|
||
break;
|
||
|
||
case 't':
|
||
TYPE_UID (t) = next_type_uid++;
|
||
TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
|
||
TYPE_USER_ALIGN (t) = 0;
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
|
||
/* Default to no attributes for type, but let target change that. */
|
||
TYPE_ATTRIBUTES (t) = NULL_TREE;
|
||
(*targetm.set_default_type_attributes) (t);
|
||
|
||
/* We have not yet computed the alias set for this type. */
|
||
TYPE_ALIAS_SET (t) = -1;
|
||
break;
|
||
|
||
case 'c':
|
||
TREE_CONSTANT (t) = 1;
|
||
break;
|
||
|
||
case 'e':
|
||
switch (code)
|
||
{
|
||
case INIT_EXPR:
|
||
case MODIFY_EXPR:
|
||
case VA_ARG_EXPR:
|
||
case RTL_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a new node with the same contents as NODE except that its
|
||
TREE_CHAIN is zero and it has a fresh uid. */
|
||
|
||
tree
|
||
copy_node (tree node)
|
||
{
|
||
tree t;
|
||
enum tree_code code = TREE_CODE (node);
|
||
size_t length;
|
||
|
||
length = tree_size (node);
|
||
t = ggc_alloc_tree (length);
|
||
memcpy (t, node, length);
|
||
|
||
TREE_CHAIN (t) = 0;
|
||
TREE_ASM_WRITTEN (t) = 0;
|
||
|
||
if (TREE_CODE_CLASS (code) == 'd')
|
||
DECL_UID (t) = next_decl_uid++;
|
||
else if (TREE_CODE_CLASS (code) == 't')
|
||
{
|
||
TYPE_UID (t) = next_type_uid++;
|
||
/* The following is so that the debug code for
|
||
the copy is different from the original type.
|
||
The two statements usually duplicate each other
|
||
(because they clear fields of the same union),
|
||
but the optimizer should catch that. */
|
||
TYPE_SYMTAB_POINTER (t) = 0;
|
||
TYPE_SYMTAB_ADDRESS (t) = 0;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
|
||
For example, this can copy a list made of TREE_LIST nodes. */
|
||
|
||
tree
|
||
copy_list (tree list)
|
||
{
|
||
tree head;
|
||
tree prev, next;
|
||
|
||
if (list == 0)
|
||
return 0;
|
||
|
||
head = prev = copy_node (list);
|
||
next = TREE_CHAIN (list);
|
||
while (next)
|
||
{
|
||
TREE_CHAIN (prev) = copy_node (next);
|
||
prev = TREE_CHAIN (prev);
|
||
next = TREE_CHAIN (next);
|
||
}
|
||
return head;
|
||
}
|
||
|
||
|
||
/* Return a newly constructed INTEGER_CST node whose constant value
|
||
is specified by the two ints LOW and HI.
|
||
The TREE_TYPE is set to `int'.
|
||
|
||
This function should be used via the `build_int_2' macro. */
|
||
|
||
tree
|
||
build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
|
||
{
|
||
tree t = make_node (INTEGER_CST);
|
||
|
||
TREE_INT_CST_LOW (t) = low;
|
||
TREE_INT_CST_HIGH (t) = hi;
|
||
TREE_TYPE (t) = integer_type_node;
|
||
return t;
|
||
}
|
||
|
||
/* Return a new VECTOR_CST node whose type is TYPE and whose values
|
||
are in a list pointed by VALS. */
|
||
|
||
tree
|
||
build_vector (tree type, tree vals)
|
||
{
|
||
tree v = make_node (VECTOR_CST);
|
||
int over1 = 0, over2 = 0;
|
||
tree link;
|
||
|
||
TREE_VECTOR_CST_ELTS (v) = vals;
|
||
TREE_TYPE (v) = type;
|
||
|
||
/* Iterate through elements and check for overflow. */
|
||
for (link = vals; link; link = TREE_CHAIN (link))
|
||
{
|
||
tree value = TREE_VALUE (link);
|
||
|
||
over1 |= TREE_OVERFLOW (value);
|
||
over2 |= TREE_CONSTANT_OVERFLOW (value);
|
||
}
|
||
|
||
TREE_OVERFLOW (v) = over1;
|
||
TREE_CONSTANT_OVERFLOW (v) = over2;
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
|
||
are in a list pointed to by VALS. */
|
||
tree
|
||
build_constructor (tree type, tree vals)
|
||
{
|
||
tree c = make_node (CONSTRUCTOR);
|
||
TREE_TYPE (c) = type;
|
||
CONSTRUCTOR_ELTS (c) = vals;
|
||
|
||
/* ??? May not be necessary. Mirrors what build does. */
|
||
if (vals)
|
||
{
|
||
TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
|
||
TREE_READONLY (c) = TREE_READONLY (vals);
|
||
TREE_CONSTANT (c) = TREE_CONSTANT (vals);
|
||
}
|
||
else
|
||
TREE_CONSTANT (c) = 0; /* safe side */
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE and value is D. */
|
||
|
||
tree
|
||
build_real (tree type, REAL_VALUE_TYPE d)
|
||
{
|
||
tree v;
|
||
REAL_VALUE_TYPE *dp;
|
||
int overflow = 0;
|
||
|
||
/* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
|
||
Consider doing it via real_convert now. */
|
||
|
||
v = make_node (REAL_CST);
|
||
dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
|
||
memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
|
||
|
||
TREE_TYPE (v) = type;
|
||
TREE_REAL_CST_PTR (v) = dp;
|
||
TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE
|
||
and whose value is the integer value of the INTEGER_CST node I. */
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_from_int_cst (tree type, tree i)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
/* Clear all bits of the real value type so that we can later do
|
||
bitwise comparisons to see if two values are the same. */
|
||
memset (&d, 0, sizeof d);
|
||
|
||
real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
|
||
TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
|
||
TREE_UNSIGNED (TREE_TYPE (i)));
|
||
return d;
|
||
}
|
||
|
||
/* Given a tree representing an integer constant I, return a tree
|
||
representing the same value as a floating-point constant of type TYPE. */
|
||
|
||
tree
|
||
build_real_from_int_cst (tree type, tree i)
|
||
{
|
||
tree v;
|
||
int overflow = TREE_OVERFLOW (i);
|
||
|
||
v = build_real (type, real_value_from_int_cst (type, i));
|
||
|
||
TREE_OVERFLOW (v) |= overflow;
|
||
TREE_CONSTANT_OVERFLOW (v) |= overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Return a newly constructed STRING_CST node whose value is
|
||
the LEN characters at STR.
|
||
The TREE_TYPE is not initialized. */
|
||
|
||
tree
|
||
build_string (int len, const char *str)
|
||
{
|
||
tree s = make_node (STRING_CST);
|
||
|
||
TREE_STRING_LENGTH (s) = len;
|
||
TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Return a newly constructed COMPLEX_CST node whose value is
|
||
specified by the real and imaginary parts REAL and IMAG.
|
||
Both REAL and IMAG should be constant nodes. TYPE, if specified,
|
||
will be the type of the COMPLEX_CST; otherwise a new type will be made. */
|
||
|
||
tree
|
||
build_complex (tree type, tree real, tree imag)
|
||
{
|
||
tree t = make_node (COMPLEX_CST);
|
||
|
||
TREE_REALPART (t) = real;
|
||
TREE_IMAGPART (t) = imag;
|
||
TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
|
||
TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
|
||
TREE_CONSTANT_OVERFLOW (t)
|
||
= TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
|
||
return t;
|
||
}
|
||
|
||
/* Build a newly constructed TREE_VEC node of length LEN. */
|
||
|
||
tree
|
||
make_tree_vec (int len)
|
||
{
|
||
tree t;
|
||
int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_counts[(int) vec_kind]++;
|
||
tree_node_sizes[(int) vec_kind] += length;
|
||
#endif
|
||
|
||
t = ggc_alloc_tree (length);
|
||
|
||
memset (t, 0, length);
|
||
TREE_SET_CODE (t, TREE_VEC);
|
||
TREE_VEC_LENGTH (t) = len;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant zero or a complex constant
|
||
of zero. */
|
||
|
||
int
|
||
integer_zerop (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& TREE_INT_CST_LOW (expr) == 0
|
||
&& TREE_INT_CST_HIGH (expr) == 0)
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_zerop (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one or the corresponding
|
||
complex constant. */
|
||
|
||
int
|
||
integer_onep (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& TREE_INT_CST_LOW (expr) == 1
|
||
&& TREE_INT_CST_HIGH (expr) == 0)
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_onep (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer containing all 1's in as much precision as
|
||
it contains. Likewise for the corresponding complex constant. */
|
||
|
||
int
|
||
integer_all_onesp (tree expr)
|
||
{
|
||
int prec;
|
||
int uns;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_all_onesp (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
else if (TREE_CODE (expr) != INTEGER_CST
|
||
|| TREE_CONSTANT_OVERFLOW (expr))
|
||
return 0;
|
||
|
||
uns = TREE_UNSIGNED (TREE_TYPE (expr));
|
||
if (!uns)
|
||
return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
|
||
&& TREE_INT_CST_HIGH (expr) == -1);
|
||
|
||
/* Note that using TYPE_PRECISION here is wrong. We care about the
|
||
actual bits, not the (arbitrary) range of the type. */
|
||
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
|
||
if (prec >= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
HOST_WIDE_INT high_value;
|
||
int shift_amount;
|
||
|
||
shift_amount = prec - HOST_BITS_PER_WIDE_INT;
|
||
|
||
if (shift_amount > HOST_BITS_PER_WIDE_INT)
|
||
/* Can not handle precisions greater than twice the host int size. */
|
||
abort ();
|
||
else if (shift_amount == HOST_BITS_PER_WIDE_INT)
|
||
/* Shifting by the host word size is undefined according to the ANSI
|
||
standard, so we must handle this as a special case. */
|
||
high_value = -1;
|
||
else
|
||
high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
|
||
|
||
return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
|
||
&& TREE_INT_CST_HIGH (expr) == high_value);
|
||
}
|
||
else
|
||
return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
|
||
one bit on). */
|
||
|
||
int
|
||
integer_pow2p (tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_pow2p (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
|
||
return 0;
|
||
|
||
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
|
||
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
if (high == 0 && low == 0)
|
||
return 0;
|
||
|
||
return ((high == 0 && (low & (low - 1)) == 0)
|
||
|| (low == 0 && (high & (high - 1)) == 0));
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant other than zero or a
|
||
complex constant other than zero. */
|
||
|
||
int
|
||
integer_nonzerop (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& (TREE_INT_CST_LOW (expr) != 0
|
||
|| TREE_INT_CST_HIGH (expr) != 0))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& (integer_nonzerop (TREE_REALPART (expr))
|
||
|| integer_nonzerop (TREE_IMAGPART (expr)))));
|
||
}
|
||
|
||
/* Return the power of two represented by a tree node known to be a
|
||
power of two. */
|
||
|
||
int
|
||
tree_log2 (tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
|
||
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
|
||
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
|
||
: exact_log2 (low));
|
||
}
|
||
|
||
/* Similar, but return the largest integer Y such that 2 ** Y is less
|
||
than or equal to EXPR. */
|
||
|
||
int
|
||
tree_floor_log2 (tree expr)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT high, low;
|
||
|
||
STRIP_NOPS (expr);
|
||
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
prec = (POINTER_TYPE_P (TREE_TYPE (expr))
|
||
? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
|
||
|
||
high = TREE_INT_CST_HIGH (expr);
|
||
low = TREE_INT_CST_LOW (expr);
|
||
|
||
/* First clear all bits that are beyond the type's precision in case
|
||
we've been sign extended. Ignore if type's precision hasn't been set
|
||
since what we are doing is setting it. */
|
||
|
||
if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
|
||
;
|
||
else if (prec > HOST_BITS_PER_WIDE_INT)
|
||
high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
||
else
|
||
{
|
||
high = 0;
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
low &= ~((HOST_WIDE_INT) (-1) << prec);
|
||
}
|
||
|
||
return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
|
||
: floor_log2 (low));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant zero. */
|
||
|
||
int
|
||
real_zerop (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_zerop (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant one in real or complex form. */
|
||
|
||
int
|
||
real_onep (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant two. */
|
||
|
||
int
|
||
real_twop (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_twop (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant minus one. */
|
||
|
||
int
|
||
real_minus_onep (tree expr)
|
||
{
|
||
STRIP_NOPS (expr);
|
||
|
||
return ((TREE_CODE (expr) == REAL_CST
|
||
&& ! TREE_CONSTANT_OVERFLOW (expr)
|
||
&& REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& real_minus_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr))));
|
||
}
|
||
|
||
/* Nonzero if EXP is a constant or a cast of a constant. */
|
||
|
||
int
|
||
really_constant_p (tree exp)
|
||
{
|
||
/* This is not quite the same as STRIP_NOPS. It does more. */
|
||
while (TREE_CODE (exp) == NOP_EXPR
|
||
|| TREE_CODE (exp) == CONVERT_EXPR
|
||
|| TREE_CODE (exp) == NON_LVALUE_EXPR)
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return TREE_CONSTANT (exp);
|
||
}
|
||
|
||
/* Return first list element whose TREE_VALUE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
value_member (tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_VALUE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return first list element whose TREE_PURPOSE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
purpose_member (tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_PURPOSE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return first list element whose BINFO_TYPE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
binfo_member (tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == BINFO_TYPE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if ELEM is part of the chain CHAIN. */
|
||
|
||
int
|
||
chain_member (tree elem, tree chain)
|
||
{
|
||
while (chain)
|
||
{
|
||
if (elem == chain)
|
||
return 1;
|
||
chain = TREE_CHAIN (chain);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the length of a chain of nodes chained through TREE_CHAIN.
|
||
We expect a null pointer to mark the end of the chain.
|
||
This is the Lisp primitive `length'. */
|
||
|
||
int
|
||
list_length (tree t)
|
||
{
|
||
tree tail;
|
||
int len = 0;
|
||
|
||
for (tail = t; tail; tail = TREE_CHAIN (tail))
|
||
len++;
|
||
|
||
return len;
|
||
}
|
||
|
||
/* Returns the number of FIELD_DECLs in TYPE. */
|
||
|
||
int
|
||
fields_length (tree type)
|
||
{
|
||
tree t = TYPE_FIELDS (type);
|
||
int count = 0;
|
||
|
||
for (; t; t = TREE_CHAIN (t))
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
++count;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Concatenate two chains of nodes (chained through TREE_CHAIN)
|
||
by modifying the last node in chain 1 to point to chain 2.
|
||
This is the Lisp primitive `nconc'. */
|
||
|
||
tree
|
||
chainon (tree op1, tree op2)
|
||
{
|
||
tree t1;
|
||
|
||
if (!op1)
|
||
return op2;
|
||
if (!op2)
|
||
return op1;
|
||
|
||
for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
|
||
continue;
|
||
TREE_CHAIN (t1) = op2;
|
||
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
{
|
||
tree t2;
|
||
for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
|
||
if (t2 == t1)
|
||
abort (); /* Circularity created. */
|
||
}
|
||
#endif
|
||
|
||
return op1;
|
||
}
|
||
|
||
/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
|
||
|
||
tree
|
||
tree_last (tree chain)
|
||
{
|
||
tree next;
|
||
if (chain)
|
||
while ((next = TREE_CHAIN (chain)))
|
||
chain = next;
|
||
return chain;
|
||
}
|
||
|
||
/* Reverse the order of elements in the chain T,
|
||
and return the new head of the chain (old last element). */
|
||
|
||
tree
|
||
nreverse (tree t)
|
||
{
|
||
tree prev = 0, decl, next;
|
||
for (decl = t; decl; decl = next)
|
||
{
|
||
next = TREE_CHAIN (decl);
|
||
TREE_CHAIN (decl) = prev;
|
||
prev = decl;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PARM and VALUE. */
|
||
|
||
tree
|
||
build_tree_list (tree parm, tree value)
|
||
{
|
||
tree t = make_node (TREE_LIST);
|
||
TREE_PURPOSE (t) = parm;
|
||
TREE_VALUE (t) = value;
|
||
return t;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PURPOSE and VALUE
|
||
and whose TREE_CHAIN is CHAIN. */
|
||
|
||
tree
|
||
tree_cons (tree purpose, tree value, tree chain)
|
||
{
|
||
tree node;
|
||
|
||
node = ggc_alloc_tree (sizeof (struct tree_list));
|
||
|
||
memset (node, 0, sizeof (struct tree_common));
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_counts[(int) x_kind]++;
|
||
tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
|
||
#endif
|
||
|
||
TREE_SET_CODE (node, TREE_LIST);
|
||
TREE_CHAIN (node) = chain;
|
||
TREE_PURPOSE (node) = purpose;
|
||
TREE_VALUE (node) = value;
|
||
return node;
|
||
}
|
||
|
||
/* Return the first expression in a sequence of COMPOUND_EXPRs. */
|
||
|
||
tree
|
||
expr_first (tree expr)
|
||
{
|
||
if (expr == NULL_TREE)
|
||
return expr;
|
||
while (TREE_CODE (expr) == COMPOUND_EXPR)
|
||
expr = TREE_OPERAND (expr, 0);
|
||
return expr;
|
||
}
|
||
|
||
/* Return the last expression in a sequence of COMPOUND_EXPRs. */
|
||
|
||
tree
|
||
expr_last (tree expr)
|
||
{
|
||
if (expr == NULL_TREE)
|
||
return expr;
|
||
while (TREE_CODE (expr) == COMPOUND_EXPR)
|
||
expr = TREE_OPERAND (expr, 1);
|
||
return expr;
|
||
}
|
||
|
||
/* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
|
||
|
||
int
|
||
expr_length (tree expr)
|
||
{
|
||
int len = 0;
|
||
|
||
if (expr == NULL_TREE)
|
||
return 0;
|
||
for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
|
||
len += expr_length (TREE_OPERAND (expr, 0));
|
||
++len;
|
||
return len;
|
||
}
|
||
|
||
/* Return the size nominally occupied by an object of type TYPE
|
||
when it resides in memory. The value is measured in units of bytes,
|
||
and its data type is that normally used for type sizes
|
||
(which is the first type created by make_signed_type or
|
||
make_unsigned_type). */
|
||
|
||
tree
|
||
size_in_bytes (tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return integer_zero_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
|
||
if (t == 0)
|
||
{
|
||
(*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
|
||
return size_zero_node;
|
||
}
|
||
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
force_fit_type (t, 0);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return the size of TYPE (in bytes) as a wide integer
|
||
or return -1 if the size can vary or is larger than an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
int_size_in_bytes (tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
if (t == 0
|
||
|| TREE_CODE (t) != INTEGER_CST
|
||
|| TREE_OVERFLOW (t)
|
||
|| TREE_INT_CST_HIGH (t) != 0
|
||
/* If the result would appear negative, it's too big to represent. */
|
||
|| (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
|
||
return -1;
|
||
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* Return the bit position of FIELD, in bits from the start of the record.
|
||
This is a tree of type bitsizetype. */
|
||
|
||
tree
|
||
bit_position (tree field)
|
||
{
|
||
return bit_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Likewise, but return as an integer. Abort if it cannot be represented
|
||
in that way (since it could be a signed value, we don't have the option
|
||
of returning -1 like int_size_in_byte can. */
|
||
|
||
HOST_WIDE_INT
|
||
int_bit_position (tree field)
|
||
{
|
||
return tree_low_cst (bit_position (field), 0);
|
||
}
|
||
|
||
/* Return the byte position of FIELD, in bytes from the start of the record.
|
||
This is a tree of type sizetype. */
|
||
|
||
tree
|
||
byte_position (tree field)
|
||
{
|
||
return byte_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Likewise, but return as an integer. Abort if it cannot be represented
|
||
in that way (since it could be a signed value, we don't have the option
|
||
of returning -1 like int_size_in_byte can. */
|
||
|
||
HOST_WIDE_INT
|
||
int_byte_position (tree field)
|
||
{
|
||
return tree_low_cst (byte_position (field), 0);
|
||
}
|
||
|
||
/* Return the strictest alignment, in bits, that T is known to have. */
|
||
|
||
unsigned int
|
||
expr_align (tree t)
|
||
{
|
||
unsigned int align0, align1;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
|
||
/* If we have conversions, we know that the alignment of the
|
||
object must meet each of the alignments of the types. */
|
||
align0 = expr_align (TREE_OPERAND (t, 0));
|
||
align1 = TYPE_ALIGN (TREE_TYPE (t));
|
||
return MAX (align0, align1);
|
||
|
||
case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
|
||
case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
|
||
case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
|
||
/* These don't change the alignment of an object. */
|
||
return expr_align (TREE_OPERAND (t, 0));
|
||
|
||
case COND_EXPR:
|
||
/* The best we can do is say that the alignment is the least aligned
|
||
of the two arms. */
|
||
align0 = expr_align (TREE_OPERAND (t, 1));
|
||
align1 = expr_align (TREE_OPERAND (t, 2));
|
||
return MIN (align0, align1);
|
||
|
||
case LABEL_DECL: case CONST_DECL:
|
||
case VAR_DECL: case PARM_DECL: case RESULT_DECL:
|
||
if (DECL_ALIGN (t) != 0)
|
||
return DECL_ALIGN (t);
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
return FUNCTION_BOUNDARY;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Otherwise take the alignment from that of the type. */
|
||
return TYPE_ALIGN (TREE_TYPE (t));
|
||
}
|
||
|
||
/* Return, as a tree node, the number of elements for TYPE (which is an
|
||
ARRAY_TYPE) minus one. This counts only elements of the top array. */
|
||
|
||
tree
|
||
array_type_nelts (tree type)
|
||
{
|
||
tree index_type, min, max;
|
||
|
||
/* If they did it with unspecified bounds, then we should have already
|
||
given an error about it before we got here. */
|
||
if (! TYPE_DOMAIN (type))
|
||
return error_mark_node;
|
||
|
||
index_type = TYPE_DOMAIN (type);
|
||
min = TYPE_MIN_VALUE (index_type);
|
||
max = TYPE_MAX_VALUE (index_type);
|
||
|
||
return (integer_zerop (min)
|
||
? max
|
||
: fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
|
||
}
|
||
|
||
/* Return nonzero if arg is static -- a reference to an object in
|
||
static storage. This is not the same as the C meaning of `static'. */
|
||
|
||
int
|
||
staticp (tree arg)
|
||
{
|
||
switch (TREE_CODE (arg))
|
||
{
|
||
case FUNCTION_DECL:
|
||
/* Nested functions aren't static, since taking their address
|
||
involves a trampoline. */
|
||
return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
|
||
&& ! DECL_NON_ADDR_CONST_P (arg));
|
||
|
||
case VAR_DECL:
|
||
return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
|
||
&& ! DECL_THREAD_LOCAL (arg)
|
||
&& ! DECL_NON_ADDR_CONST_P (arg));
|
||
|
||
case CONSTRUCTOR:
|
||
return TREE_STATIC (arg);
|
||
|
||
case LABEL_DECL:
|
||
case STRING_CST:
|
||
return 1;
|
||
|
||
/* If we are referencing a bitfield, we can't evaluate an
|
||
ADDR_EXPR at compile time and so it isn't a constant. */
|
||
case COMPONENT_REF:
|
||
return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
|
||
&& staticp (TREE_OPERAND (arg, 0)));
|
||
|
||
case BIT_FIELD_REF:
|
||
return 0;
|
||
|
||
#if 0
|
||
/* This case is technically correct, but results in setting
|
||
TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
|
||
compile time. */
|
||
case INDIRECT_REF:
|
||
return TREE_CONSTANT (TREE_OPERAND (arg, 0));
|
||
#endif
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
|
||
default:
|
||
if ((unsigned int) TREE_CODE (arg)
|
||
>= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
|
||
return (*lang_hooks.staticp) (arg);
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Wrap a SAVE_EXPR around EXPR, if appropriate.
|
||
Do this to any expression which may be used in more than one place,
|
||
but must be evaluated only once.
|
||
|
||
Normally, expand_expr would reevaluate the expression each time.
|
||
Calling save_expr produces something that is evaluated and recorded
|
||
the first time expand_expr is called on it. Subsequent calls to
|
||
expand_expr just reuse the recorded value.
|
||
|
||
The call to expand_expr that generates code that actually computes
|
||
the value is the first call *at compile time*. Subsequent calls
|
||
*at compile time* generate code to use the saved value.
|
||
This produces correct result provided that *at run time* control
|
||
always flows through the insns made by the first expand_expr
|
||
before reaching the other places where the save_expr was evaluated.
|
||
You, the caller of save_expr, must make sure this is so.
|
||
|
||
Constants, and certain read-only nodes, are returned with no
|
||
SAVE_EXPR because that is safe. Expressions containing placeholders
|
||
are not touched; see tree.def for an explanation of what these
|
||
are used for. */
|
||
|
||
tree
|
||
save_expr (tree expr)
|
||
{
|
||
tree t = fold (expr);
|
||
tree inner;
|
||
|
||
/* If the tree evaluates to a constant, then we don't want to hide that
|
||
fact (i.e. this allows further folding, and direct checks for constants).
|
||
However, a read-only object that has side effects cannot be bypassed.
|
||
Since it is no problem to reevaluate literals, we just return the
|
||
literal node. */
|
||
inner = skip_simple_arithmetic (t);
|
||
if (TREE_CONSTANT (inner)
|
||
|| (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
|
||
|| TREE_CODE (inner) == SAVE_EXPR
|
||
|| TREE_CODE (inner) == ERROR_MARK)
|
||
return t;
|
||
|
||
/* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
|
||
it means that the size or offset of some field of an object depends on
|
||
the value within another field.
|
||
|
||
Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
|
||
and some variable since it would then need to be both evaluated once and
|
||
evaluated more than once. Front-ends must assure this case cannot
|
||
happen by surrounding any such subexpressions in their own SAVE_EXPR
|
||
and forcing evaluation at the proper time. */
|
||
if (contains_placeholder_p (inner))
|
||
return t;
|
||
|
||
t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
|
||
|
||
/* This expression might be placed ahead of a jump to ensure that the
|
||
value was computed on both sides of the jump. So make sure it isn't
|
||
eliminated as dead. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
TREE_READONLY (t) = 1;
|
||
return t;
|
||
}
|
||
|
||
/* Look inside EXPR and into any simple arithmetic operations. Return
|
||
the innermost non-arithmetic node. */
|
||
|
||
tree
|
||
skip_simple_arithmetic (tree expr)
|
||
{
|
||
tree inner;
|
||
|
||
/* We don't care about whether this can be used as an lvalue in this
|
||
context. */
|
||
while (TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
/* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
|
||
a constant, it will be more efficient to not make another SAVE_EXPR since
|
||
it will allow better simplification and GCSE will be able to merge the
|
||
computations if they actually occur. */
|
||
inner = expr;
|
||
while (1)
|
||
{
|
||
if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
|
||
inner = TREE_OPERAND (inner, 0);
|
||
else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
|
||
{
|
||
if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
|
||
inner = TREE_OPERAND (inner, 0);
|
||
else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
|
||
inner = TREE_OPERAND (inner, 1);
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
return inner;
|
||
}
|
||
|
||
/* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
|
||
SAVE_EXPR. Return FALSE otherwise. */
|
||
|
||
bool
|
||
saved_expr_p (tree expr)
|
||
{
|
||
return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
|
||
}
|
||
|
||
/* Arrange for an expression to be expanded multiple independent
|
||
times. This is useful for cleanup actions, as the backend can
|
||
expand them multiple times in different places. */
|
||
|
||
tree
|
||
unsave_expr (tree expr)
|
||
{
|
||
tree t;
|
||
|
||
/* If this is already protected, no sense in protecting it again. */
|
||
if (TREE_CODE (expr) == UNSAVE_EXPR)
|
||
return expr;
|
||
|
||
t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
|
||
return t;
|
||
}
|
||
|
||
/* Returns the index of the first non-tree operand for CODE, or the number
|
||
of operands if all are trees. */
|
||
|
||
int
|
||
first_rtl_op (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case SAVE_EXPR:
|
||
return 2;
|
||
case GOTO_SUBROUTINE_EXPR:
|
||
case RTL_EXPR:
|
||
return 0;
|
||
case WITH_CLEANUP_EXPR:
|
||
return 2;
|
||
default:
|
||
return TREE_CODE_LENGTH (code);
|
||
}
|
||
}
|
||
|
||
/* Return which tree structure is used by T. */
|
||
|
||
enum tree_node_structure_enum
|
||
tree_node_structure (tree t)
|
||
{
|
||
enum tree_code code = TREE_CODE (t);
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'd': return TS_DECL;
|
||
case 't': return TS_TYPE;
|
||
case 'b': return TS_BLOCK;
|
||
case 'r': case '<': case '1': case '2': case 'e': case 's':
|
||
return TS_EXP;
|
||
default: /* 'c' and 'x' */
|
||
break;
|
||
}
|
||
switch (code)
|
||
{
|
||
/* 'c' cases. */
|
||
case INTEGER_CST: return TS_INT_CST;
|
||
case REAL_CST: return TS_REAL_CST;
|
||
case COMPLEX_CST: return TS_COMPLEX;
|
||
case VECTOR_CST: return TS_VECTOR;
|
||
case STRING_CST: return TS_STRING;
|
||
/* 'x' cases. */
|
||
case ERROR_MARK: return TS_COMMON;
|
||
case IDENTIFIER_NODE: return TS_IDENTIFIER;
|
||
case TREE_LIST: return TS_LIST;
|
||
case TREE_VEC: return TS_VEC;
|
||
case PLACEHOLDER_EXPR: return TS_COMMON;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Perform any modifications to EXPR required when it is unsaved. Does
|
||
not recurse into EXPR's subtrees. */
|
||
|
||
void
|
||
unsave_expr_1 (tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case SAVE_EXPR:
|
||
if (! SAVE_EXPR_PERSISTENT_P (expr))
|
||
SAVE_EXPR_RTL (expr) = 0;
|
||
break;
|
||
|
||
case TARGET_EXPR:
|
||
/* Don't mess with a TARGET_EXPR that hasn't been expanded.
|
||
It's OK for this to happen if it was part of a subtree that
|
||
isn't immediately expanded, such as operand 2 of another
|
||
TARGET_EXPR. */
|
||
if (TREE_OPERAND (expr, 1))
|
||
break;
|
||
|
||
TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
|
||
TREE_OPERAND (expr, 3) = NULL_TREE;
|
||
break;
|
||
|
||
case RTL_EXPR:
|
||
/* I don't yet know how to emit a sequence multiple times. */
|
||
if (RTL_EXPR_SEQUENCE (expr) != 0)
|
||
abort ();
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Default lang hook for "unsave_expr_now". */
|
||
|
||
tree
|
||
lhd_unsave_expr_now (tree expr)
|
||
{
|
||
enum tree_code code;
|
||
|
||
/* There's nothing to do for NULL_TREE. */
|
||
if (expr == 0)
|
||
return expr;
|
||
|
||
unsave_expr_1 (expr);
|
||
|
||
code = TREE_CODE (expr);
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'c': /* a constant */
|
||
case 't': /* a type node */
|
||
case 'd': /* A decl node */
|
||
case 'b': /* A block node */
|
||
break;
|
||
|
||
case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
|
||
if (code == TREE_LIST)
|
||
{
|
||
lhd_unsave_expr_now (TREE_VALUE (expr));
|
||
lhd_unsave_expr_now (TREE_CHAIN (expr));
|
||
}
|
||
break;
|
||
|
||
case 'e': /* an expression */
|
||
case 'r': /* a reference */
|
||
case 's': /* an expression with side effects */
|
||
case '<': /* a comparison expression */
|
||
case '2': /* a binary arithmetic expression */
|
||
case '1': /* a unary arithmetic expression */
|
||
{
|
||
int i;
|
||
|
||
for (i = first_rtl_op (code) - 1; i >= 0; i--)
|
||
lhd_unsave_expr_now (TREE_OPERAND (expr, i));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Return 0 if it is safe to evaluate EXPR multiple times,
|
||
return 1 if it is safe if EXPR is unsaved afterward, or
|
||
return 2 if it is completely unsafe.
|
||
|
||
This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
|
||
an expression tree, so that it safe to unsave them and the surrounding
|
||
context will be correct.
|
||
|
||
SAVE_EXPRs basically *only* appear replicated in an expression tree,
|
||
occasionally across the whole of a function. It is therefore only
|
||
safe to unsave a SAVE_EXPR if you know that all occurrences appear
|
||
below the UNSAVE_EXPR.
|
||
|
||
RTL_EXPRs consume their rtl during evaluation. It is therefore
|
||
never possible to unsave them. */
|
||
|
||
int
|
||
unsafe_for_reeval (tree expr)
|
||
{
|
||
int unsafeness = 0;
|
||
enum tree_code code;
|
||
int i, tmp, tmp2;
|
||
tree exp;
|
||
int first_rtl;
|
||
|
||
if (expr == NULL_TREE)
|
||
return 1;
|
||
|
||
code = TREE_CODE (expr);
|
||
first_rtl = first_rtl_op (code);
|
||
|
||
switch (code)
|
||
{
|
||
case SAVE_EXPR:
|
||
case RTL_EXPR:
|
||
return 2;
|
||
|
||
case TREE_LIST:
|
||
for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
|
||
{
|
||
tmp = unsafe_for_reeval (TREE_VALUE (exp));
|
||
unsafeness = MAX (tmp, unsafeness);
|
||
}
|
||
|
||
return unsafeness;
|
||
|
||
case CALL_EXPR:
|
||
tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
|
||
tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
|
||
return MAX (MAX (tmp, 1), tmp2);
|
||
|
||
case TARGET_EXPR:
|
||
unsafeness = 1;
|
||
break;
|
||
|
||
default:
|
||
tmp = (*lang_hooks.unsafe_for_reeval) (expr);
|
||
if (tmp >= 0)
|
||
return tmp;
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'c': /* a constant */
|
||
case 't': /* a type node */
|
||
case 'x': /* something random, like an identifier or an ERROR_MARK. */
|
||
case 'd': /* A decl node */
|
||
case 'b': /* A block node */
|
||
return 0;
|
||
|
||
case 'e': /* an expression */
|
||
case 'r': /* a reference */
|
||
case 's': /* an expression with side effects */
|
||
case '<': /* a comparison expression */
|
||
case '2': /* a binary arithmetic expression */
|
||
case '1': /* a unary arithmetic expression */
|
||
for (i = first_rtl - 1; i >= 0; i--)
|
||
{
|
||
tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
|
||
unsafeness = MAX (tmp, unsafeness);
|
||
}
|
||
|
||
return unsafeness;
|
||
|
||
default:
|
||
return 2;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
|
||
or offset that depends on a field within a record. */
|
||
|
||
bool
|
||
contains_placeholder_p (tree exp)
|
||
{
|
||
enum tree_code code;
|
||
int result;
|
||
|
||
if (!exp)
|
||
return 0;
|
||
|
||
/* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
|
||
in it since it is supplying a value for it. */
|
||
code = TREE_CODE (exp);
|
||
if (code == WITH_RECORD_EXPR)
|
||
return 0;
|
||
else if (code == PLACEHOLDER_EXPR)
|
||
return 1;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'r':
|
||
/* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
|
||
position computations since they will be converted into a
|
||
WITH_RECORD_EXPR involving the reference, which will assume
|
||
here will be valid. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
|
||
case 'x':
|
||
if (code == TREE_LIST)
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
|
||
break;
|
||
|
||
case '1':
|
||
case '2': case '<':
|
||
case 'e':
|
||
switch (code)
|
||
{
|
||
case COMPOUND_EXPR:
|
||
/* Ignoring the first operand isn't quite right, but works best. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
|
||
|
||
case RTL_EXPR:
|
||
case CONSTRUCTOR:
|
||
return 0;
|
||
|
||
case COND_EXPR:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
|
||
|
||
case SAVE_EXPR:
|
||
/* If we already know this doesn't have a placeholder, don't
|
||
check again. */
|
||
if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
|
||
return 0;
|
||
|
||
SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
|
||
result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
if (result)
|
||
SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
|
||
|
||
return result;
|
||
|
||
case CALL_EXPR:
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 1:
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
case 2:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
|
||
This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
|
||
positions. */
|
||
|
||
bool
|
||
type_contains_placeholder_p (tree type)
|
||
{
|
||
/* If the size contains a placeholder or the parent type (component type in
|
||
the case of arrays) type involves a placeholder, this type does. */
|
||
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
|
||
|| (TREE_TYPE (type) != 0
|
||
&& type_contains_placeholder_p (TREE_TYPE (type))))
|
||
return 1;
|
||
|
||
/* Now do type-specific checks. Note that the last part of the check above
|
||
greatly limits what we have to do below. */
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case VECTOR_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case CHAR_TYPE:
|
||
case POINTER_TYPE:
|
||
case OFFSET_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case METHOD_TYPE:
|
||
case FILE_TYPE:
|
||
case FUNCTION_TYPE:
|
||
return 0;
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
/* Here we just check the bounds. */
|
||
return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
|
||
|
||
case ARRAY_TYPE:
|
||
case SET_TYPE:
|
||
/* We're already checked the component type (TREE_TYPE), so just check
|
||
the index type. */
|
||
return type_contains_placeholder_p (TYPE_DOMAIN (type));
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
static tree seen_types = 0;
|
||
tree field;
|
||
bool ret = 0;
|
||
|
||
/* We have to be careful here that we don't end up in infinite
|
||
recursions due to a field of a type being a pointer to that type
|
||
or to a mutually-recursive type. So we store a list of record
|
||
types that we've seen and see if this type is in them. To save
|
||
memory, we don't use a list for just one type. Here we check
|
||
whether we've seen this type before and store it if not. */
|
||
if (seen_types == 0)
|
||
seen_types = type;
|
||
else if (TREE_CODE (seen_types) != TREE_LIST)
|
||
{
|
||
if (seen_types == type)
|
||
return 0;
|
||
|
||
seen_types = tree_cons (NULL_TREE, type,
|
||
build_tree_list (NULL_TREE, seen_types));
|
||
}
|
||
else
|
||
{
|
||
if (value_member (type, seen_types) != 0)
|
||
return 0;
|
||
|
||
seen_types = tree_cons (NULL_TREE, type, seen_types);
|
||
}
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
|
||
|| (TREE_CODE (type) == QUAL_UNION_TYPE
|
||
&& CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
|
||
|| type_contains_placeholder_p (TREE_TYPE (field))))
|
||
{
|
||
ret = true;
|
||
break;
|
||
}
|
||
|
||
/* Now remove us from seen_types and return the result. */
|
||
if (seen_types == type)
|
||
seen_types = 0;
|
||
else
|
||
seen_types = TREE_CHAIN (seen_types);
|
||
|
||
return ret;
|
||
}
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXP contains any expressions that produce cleanups for an
|
||
outer scope to deal with. Used by fold. */
|
||
|
||
int
|
||
has_cleanups (tree exp)
|
||
{
|
||
int i, nops, cmp;
|
||
|
||
if (! TREE_SIDE_EFFECTS (exp))
|
||
return 0;
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case TARGET_EXPR:
|
||
case GOTO_SUBROUTINE_EXPR:
|
||
case WITH_CLEANUP_EXPR:
|
||
return 1;
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
return 0;
|
||
|
||
case CALL_EXPR:
|
||
for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
|
||
{
|
||
cmp = has_cleanups (TREE_VALUE (exp));
|
||
if (cmp)
|
||
return cmp;
|
||
}
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* This general rule works for most tree codes. All exceptions should be
|
||
handled above. If this is a language-specific tree code, we can't
|
||
trust what might be in the operand, so say we don't know
|
||
the situation. */
|
||
if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
|
||
return -1;
|
||
|
||
nops = first_rtl_op (TREE_CODE (exp));
|
||
for (i = 0; i < nops; i++)
|
||
if (TREE_OPERAND (exp, i) != 0)
|
||
{
|
||
int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
|
||
if (type == 'e' || type == '<' || type == '1' || type == '2'
|
||
|| type == 'r' || type == 's')
|
||
{
|
||
cmp = has_cleanups (TREE_OPERAND (exp, i));
|
||
if (cmp)
|
||
return cmp;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
|
||
return a tree with all occurrences of references to F in a
|
||
PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
|
||
contains only arithmetic expressions or a CALL_EXPR with a
|
||
PLACEHOLDER_EXPR occurring only in its arglist. */
|
||
|
||
tree
|
||
substitute_in_expr (tree exp, tree f, tree r)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree op0, op1, op2;
|
||
tree new;
|
||
tree inner;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'c':
|
||
case 'd':
|
||
return exp;
|
||
|
||
case 'x':
|
||
if (code == PLACEHOLDER_EXPR)
|
||
return exp;
|
||
else if (code == TREE_LIST)
|
||
{
|
||
op0 = (TREE_CHAIN (exp) == 0
|
||
? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
|
||
op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
|
||
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
|
||
return exp;
|
||
|
||
return tree_cons (TREE_PURPOSE (exp), op1, op0);
|
||
}
|
||
|
||
abort ();
|
||
|
||
case '1':
|
||
case '2':
|
||
case '<':
|
||
case 'e':
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 1:
|
||
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
if (code == NON_LVALUE_EXPR)
|
||
return op0;
|
||
|
||
new = fold (build1 (code, TREE_TYPE (exp), op0));
|
||
break;
|
||
|
||
case 2:
|
||
/* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
|
||
could, but we don't support it. */
|
||
if (code == RTL_EXPR)
|
||
return exp;
|
||
else if (code == CONSTRUCTOR)
|
||
abort ();
|
||
|
||
op0 = TREE_OPERAND (exp, 0);
|
||
op1 = TREE_OPERAND (exp, 1);
|
||
if (CONTAINS_PLACEHOLDER_P (op0))
|
||
op0 = substitute_in_expr (op0, f, r);
|
||
if (CONTAINS_PLACEHOLDER_P (op1))
|
||
op1 = substitute_in_expr (op1, f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
new = fold (build (code, TREE_TYPE (exp), op0, op1));
|
||
break;
|
||
|
||
case 3:
|
||
/* It cannot be that anything inside a SAVE_EXPR contains a
|
||
PLACEHOLDER_EXPR. */
|
||
if (code == SAVE_EXPR)
|
||
return exp;
|
||
|
||
else if (code == CALL_EXPR)
|
||
{
|
||
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
|
||
if (op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
return build (code, TREE_TYPE (exp),
|
||
TREE_OPERAND (exp, 0), op1, NULL_TREE);
|
||
}
|
||
|
||
else if (code != COND_EXPR)
|
||
abort ();
|
||
|
||
op0 = TREE_OPERAND (exp, 0);
|
||
op1 = TREE_OPERAND (exp, 1);
|
||
op2 = TREE_OPERAND (exp, 2);
|
||
|
||
if (CONTAINS_PLACEHOLDER_P (op0))
|
||
op0 = substitute_in_expr (op0, f, r);
|
||
if (CONTAINS_PLACEHOLDER_P (op1))
|
||
op1 = substitute_in_expr (op1, f, r);
|
||
if (CONTAINS_PLACEHOLDER_P (op2))
|
||
op2 = substitute_in_expr (op2, f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
break;
|
||
|
||
case 'r':
|
||
switch (code)
|
||
{
|
||
case COMPONENT_REF:
|
||
/* If this expression is getting a value from a PLACEHOLDER_EXPR
|
||
and it is the right field, replace it with R. */
|
||
for (inner = TREE_OPERAND (exp, 0);
|
||
TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR
|
||
&& TREE_OPERAND (exp, 1) == f)
|
||
return r;
|
||
|
||
/* If this expression hasn't been completed let, leave it
|
||
alone. */
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR
|
||
&& TREE_TYPE (inner) == 0)
|
||
return exp;
|
||
|
||
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new = fold (build (code, TREE_TYPE (exp), op0,
|
||
TREE_OPERAND (exp, 1)));
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
|
||
op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
case BUFFER_REF:
|
||
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new = fold (build1 (code, TREE_TYPE (exp), op0));
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
TREE_READONLY (new) = TREE_READONLY (exp);
|
||
return new;
|
||
}
|
||
|
||
/* Stabilize a reference so that we can use it any number of times
|
||
without causing its operands to be evaluated more than once.
|
||
Returns the stabilized reference. This works by means of save_expr,
|
||
so see the caveats in the comments about save_expr.
|
||
|
||
Also allows conversion expressions whose operands are references.
|
||
Any other kind of expression is returned unchanged. */
|
||
|
||
tree
|
||
stabilize_reference (tree ref)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
/* No action is needed in this case. */
|
||
return ref;
|
||
|
||
case NOP_EXPR:
|
||
case CONVERT_EXPR:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
case FIX_FLOOR_EXPR:
|
||
case FIX_ROUND_EXPR:
|
||
case FIX_CEIL_EXPR:
|
||
result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
result = build_nt (INDIRECT_REF,
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
result = build_nt (COMPONENT_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
TREE_OPERAND (ref, 1));
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
result = build_nt (BIT_FIELD_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 2)));
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
result = build_nt (ARRAY_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)));
|
||
break;
|
||
|
||
case ARRAY_RANGE_REF:
|
||
result = build_nt (ARRAY_RANGE_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)));
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* We cannot wrap the first expression in a SAVE_EXPR, as then
|
||
it wouldn't be ignored. This matters when dealing with
|
||
volatiles. */
|
||
return stabilize_reference_1 (ref);
|
||
|
||
case RTL_EXPR:
|
||
result = build1 (INDIRECT_REF, TREE_TYPE (ref),
|
||
save_expr (build1 (ADDR_EXPR,
|
||
build_pointer_type (TREE_TYPE (ref)),
|
||
ref)));
|
||
break;
|
||
|
||
/* If arg isn't a kind of lvalue we recognize, make no change.
|
||
Caller should recognize the error for an invalid lvalue. */
|
||
default:
|
||
return ref;
|
||
|
||
case ERROR_MARK:
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (ref);
|
||
TREE_READONLY (result) = TREE_READONLY (ref);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Subroutine of stabilize_reference; this is called for subtrees of
|
||
references. Any expression with side-effects must be put in a SAVE_EXPR
|
||
to ensure that it is only evaluated once.
|
||
|
||
We don't put SAVE_EXPR nodes around everything, because assigning very
|
||
simple expressions to temporaries causes us to miss good opportunities
|
||
for optimizations. Among other things, the opportunity to fold in the
|
||
addition of a constant into an addressing mode often gets lost, e.g.
|
||
"y[i+1] += x;". In general, we take the approach that we should not make
|
||
an assignment unless we are forced into it - i.e., that any non-side effect
|
||
operator should be allowed, and that cse should take care of coalescing
|
||
multiple utterances of the same expression should that prove fruitful. */
|
||
|
||
tree
|
||
stabilize_reference_1 (tree e)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (e);
|
||
|
||
/* We cannot ignore const expressions because it might be a reference
|
||
to a const array but whose index contains side-effects. But we can
|
||
ignore things that are actual constant or that already have been
|
||
handled by this function. */
|
||
|
||
if (TREE_CONSTANT (e) || code == SAVE_EXPR)
|
||
return e;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 'x':
|
||
case 't':
|
||
case 'd':
|
||
case 'b':
|
||
case '<':
|
||
case 's':
|
||
case 'e':
|
||
case 'r':
|
||
/* If the expression has side-effects, then encase it in a SAVE_EXPR
|
||
so that it will only be evaluated once. */
|
||
/* The reference (r) and comparison (<) classes could be handled as
|
||
below, but it is generally faster to only evaluate them once. */
|
||
if (TREE_SIDE_EFFECTS (e))
|
||
return save_expr (e);
|
||
return e;
|
||
|
||
case 'c':
|
||
/* Constants need no processing. In fact, we should never reach
|
||
here. */
|
||
return e;
|
||
|
||
case '2':
|
||
/* Division is slow and tends to be compiled with jumps,
|
||
especially the division by powers of 2 that is often
|
||
found inside of an array reference. So do it just once. */
|
||
if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
|
||
|| code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
|
||
|| code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
|
||
|| code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
|
||
return save_expr (e);
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (e, 1)));
|
||
break;
|
||
|
||
case '1':
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (e);
|
||
TREE_READONLY (result) = TREE_READONLY (e);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Low-level constructors for expressions. */
|
||
|
||
/* Build an expression of code CODE, data type TYPE,
|
||
and operands as specified by the arguments ARG1 and following arguments.
|
||
Expressions and reference nodes can be created this way.
|
||
Constants, decls, types and misc nodes cannot be. */
|
||
|
||
tree
|
||
build (enum tree_code code, tree tt, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
int fro;
|
||
int constant;
|
||
va_list p;
|
||
|
||
va_start (p, tt);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
/* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
|
||
result based on those same flags for the arguments. But if the
|
||
arguments aren't really even `tree' expressions, we shouldn't be trying
|
||
to do this. */
|
||
fro = first_rtl_op (code);
|
||
|
||
/* Expressions without side effects may be constant if their
|
||
arguments are as well. */
|
||
constant = (TREE_CODE_CLASS (code) == '<'
|
||
|| TREE_CODE_CLASS (code) == '1'
|
||
|| TREE_CODE_CLASS (code) == '2'
|
||
|| TREE_CODE_CLASS (code) == 'c');
|
||
|
||
if (length == 2)
|
||
{
|
||
/* This is equivalent to the loop below, but faster. */
|
||
tree arg0 = va_arg (p, tree);
|
||
tree arg1 = va_arg (p, tree);
|
||
|
||
TREE_OPERAND (t, 0) = arg0;
|
||
TREE_OPERAND (t, 1) = arg1;
|
||
TREE_READONLY (t) = 1;
|
||
if (arg0 && fro > 0)
|
||
{
|
||
if (TREE_SIDE_EFFECTS (arg0))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
if (!TREE_READONLY (arg0))
|
||
TREE_READONLY (t) = 0;
|
||
if (!TREE_CONSTANT (arg0))
|
||
constant = 0;
|
||
}
|
||
|
||
if (arg1 && fro > 1)
|
||
{
|
||
if (TREE_SIDE_EFFECTS (arg1))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
if (!TREE_READONLY (arg1))
|
||
TREE_READONLY (t) = 0;
|
||
if (!TREE_CONSTANT (arg1))
|
||
constant = 0;
|
||
}
|
||
}
|
||
else if (length == 1)
|
||
{
|
||
tree arg0 = va_arg (p, tree);
|
||
|
||
/* The only one-operand cases we handle here are those with side-effects.
|
||
Others are handled with build1. So don't bother checked if the
|
||
arg has side-effects since we'll already have set it.
|
||
|
||
??? This really should use build1 too. */
|
||
if (TREE_CODE_CLASS (code) != 's')
|
||
abort ();
|
||
TREE_OPERAND (t, 0) = arg0;
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree operand = va_arg (p, tree);
|
||
|
||
TREE_OPERAND (t, i) = operand;
|
||
if (operand && fro > i)
|
||
{
|
||
if (TREE_SIDE_EFFECTS (operand))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
if (!TREE_CONSTANT (operand))
|
||
constant = 0;
|
||
}
|
||
}
|
||
}
|
||
va_end (p);
|
||
|
||
TREE_CONSTANT (t) = constant;
|
||
|
||
if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
|
||
{
|
||
/* Calls have side-effects, except those to const or
|
||
pure functions. */
|
||
tree fn = get_callee_fndecl (t);
|
||
|
||
if (!fn || (!DECL_IS_PURE (fn) && !TREE_READONLY (fn)))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Same as above, but only builds for unary operators.
|
||
Saves lions share of calls to `build'; cuts down use
|
||
of varargs, which is expensive for RISC machines. */
|
||
|
||
tree
|
||
build1 (enum tree_code code, tree type, tree node)
|
||
{
|
||
int length = sizeof (struct tree_exp);
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_kind kind;
|
||
#endif
|
||
tree t;
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case 's': /* an expression with side effects */
|
||
kind = s_kind;
|
||
break;
|
||
case 'r': /* a reference */
|
||
kind = r_kind;
|
||
break;
|
||
default:
|
||
kind = e_kind;
|
||
break;
|
||
}
|
||
|
||
tree_node_counts[(int) kind]++;
|
||
tree_node_sizes[(int) kind] += length;
|
||
#endif
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (TREE_CODE_CLASS (code) == '2'
|
||
|| TREE_CODE_CLASS (code) == '<'
|
||
|| TREE_CODE_LENGTH (code) != 1)
|
||
abort ();
|
||
#endif /* ENABLE_CHECKING */
|
||
|
||
t = ggc_alloc_tree (length);
|
||
|
||
memset (t, 0, sizeof (struct tree_common));
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
TREE_TYPE (t) = type;
|
||
TREE_COMPLEXITY (t) = 0;
|
||
TREE_OPERAND (t, 0) = node;
|
||
if (node && first_rtl_op (code) != 0)
|
||
{
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
|
||
TREE_READONLY (t) = TREE_READONLY (node);
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == 's')
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
else switch (code)
|
||
{
|
||
case INIT_EXPR:
|
||
case MODIFY_EXPR:
|
||
case VA_ARG_EXPR:
|
||
case RTL_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
/* Whether a dereference is readonly has nothing to do with whether
|
||
its operand is readonly. */
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
default:
|
||
if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
|
||
TREE_CONSTANT (t) = 1;
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Similar except don't specify the TREE_TYPE
|
||
and leave the TREE_SIDE_EFFECTS as 0.
|
||
It is permissible for arguments to be null,
|
||
or even garbage if their values do not matter. */
|
||
|
||
tree
|
||
build_nt (enum tree_code code, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, code);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
|
||
for (i = 0; i < length; i++)
|
||
TREE_OPERAND (t, i) = va_arg (p, tree);
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
|
||
We do NOT enter this node in any sort of symbol table.
|
||
|
||
layout_decl is used to set up the decl's storage layout.
|
||
Other slots are initialized to 0 or null pointers. */
|
||
|
||
tree
|
||
build_decl (enum tree_code code, tree name, tree type)
|
||
{
|
||
tree t;
|
||
|
||
t = make_node (code);
|
||
|
||
/* if (type == error_mark_node)
|
||
type = integer_type_node; */
|
||
/* That is not done, deliberately, so that having error_mark_node
|
||
as the type can suppress useless errors in the use of this variable. */
|
||
|
||
DECL_NAME (t) = name;
|
||
TREE_TYPE (t) = type;
|
||
|
||
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
|
||
layout_decl (t, 0);
|
||
else if (code == FUNCTION_DECL)
|
||
DECL_MODE (t) = FUNCTION_MODE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* BLOCK nodes are used to represent the structure of binding contours
|
||
and declarations, once those contours have been exited and their contents
|
||
compiled. This information is used for outputting debugging info. */
|
||
|
||
tree
|
||
build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
|
||
tree supercontext, tree chain)
|
||
{
|
||
tree block = make_node (BLOCK);
|
||
|
||
BLOCK_VARS (block) = vars;
|
||
BLOCK_SUBBLOCKS (block) = subblocks;
|
||
BLOCK_SUPERCONTEXT (block) = supercontext;
|
||
BLOCK_CHAIN (block) = chain;
|
||
return block;
|
||
}
|
||
|
||
/* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
|
||
location where an expression or an identifier were encountered. It
|
||
is necessary for languages where the frontend parser will handle
|
||
recursively more than one file (Java is one of them). */
|
||
|
||
tree
|
||
build_expr_wfl (tree node, const char *file, int line, int col)
|
||
{
|
||
static const char *last_file = 0;
|
||
static tree last_filenode = NULL_TREE;
|
||
tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
|
||
|
||
EXPR_WFL_NODE (wfl) = node;
|
||
EXPR_WFL_SET_LINECOL (wfl, line, col);
|
||
if (file != last_file)
|
||
{
|
||
last_file = file;
|
||
last_filenode = file ? get_identifier (file) : NULL_TREE;
|
||
}
|
||
|
||
EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
|
||
if (node)
|
||
{
|
||
TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
|
||
TREE_TYPE (wfl) = TREE_TYPE (node);
|
||
}
|
||
|
||
return wfl;
|
||
}
|
||
|
||
/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
|
||
is ATTRIBUTE. */
|
||
|
||
tree
|
||
build_decl_attribute_variant (tree ddecl, tree attribute)
|
||
{
|
||
DECL_ATTRIBUTES (ddecl) = attribute;
|
||
return ddecl;
|
||
}
|
||
|
||
/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
|
||
is ATTRIBUTE.
|
||
|
||
Record such modified types already made so we don't make duplicates. */
|
||
|
||
tree
|
||
build_type_attribute_variant (tree ttype, tree attribute)
|
||
{
|
||
if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
|
||
{
|
||
unsigned int hashcode;
|
||
tree ntype;
|
||
|
||
ntype = copy_node (ttype);
|
||
|
||
TYPE_POINTER_TO (ntype) = 0;
|
||
TYPE_REFERENCE_TO (ntype) = 0;
|
||
TYPE_ATTRIBUTES (ntype) = attribute;
|
||
|
||
/* Create a new main variant of TYPE. */
|
||
TYPE_MAIN_VARIANT (ntype) = ntype;
|
||
TYPE_NEXT_VARIANT (ntype) = 0;
|
||
set_type_quals (ntype, TYPE_UNQUALIFIED);
|
||
|
||
hashcode = (TYPE_HASH (TREE_CODE (ntype))
|
||
+ TYPE_HASH (TREE_TYPE (ntype))
|
||
+ attribute_hash_list (attribute));
|
||
|
||
switch (TREE_CODE (ntype))
|
||
{
|
||
case FUNCTION_TYPE:
|
||
hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
|
||
break;
|
||
case ARRAY_TYPE:
|
||
hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
|
||
break;
|
||
case INTEGER_TYPE:
|
||
hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
|
||
break;
|
||
case REAL_TYPE:
|
||
hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
ntype = type_hash_canon (hashcode, ntype);
|
||
ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
|
||
}
|
||
|
||
return ttype;
|
||
}
|
||
|
||
/* Return nonzero if IDENT is a valid name for attribute ATTR,
|
||
or zero if not.
|
||
|
||
We try both `text' and `__text__', ATTR may be either one. */
|
||
/* ??? It might be a reasonable simplification to require ATTR to be only
|
||
`text'. One might then also require attribute lists to be stored in
|
||
their canonicalized form. */
|
||
|
||
int
|
||
is_attribute_p (const char *attr, tree ident)
|
||
{
|
||
int ident_len, attr_len;
|
||
const char *p;
|
||
|
||
if (TREE_CODE (ident) != IDENTIFIER_NODE)
|
||
return 0;
|
||
|
||
if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
|
||
return 1;
|
||
|
||
p = IDENTIFIER_POINTER (ident);
|
||
ident_len = strlen (p);
|
||
attr_len = strlen (attr);
|
||
|
||
/* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
|
||
if (attr[0] == '_')
|
||
{
|
||
if (attr[1] != '_'
|
||
|| attr[attr_len - 2] != '_'
|
||
|| attr[attr_len - 1] != '_')
|
||
abort ();
|
||
if (ident_len == attr_len - 4
|
||
&& strncmp (attr + 2, p, attr_len - 4) == 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (ident_len == attr_len + 4
|
||
&& p[0] == '_' && p[1] == '_'
|
||
&& p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
|
||
&& strncmp (attr, p + 2, attr_len) == 0)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given an attribute name and a list of attributes, return a pointer to the
|
||
attribute's list element if the attribute is part of the list, or NULL_TREE
|
||
if not found. If the attribute appears more than once, this only
|
||
returns the first occurrence; the TREE_CHAIN of the return value should
|
||
be passed back in if further occurrences are wanted. */
|
||
|
||
tree
|
||
lookup_attribute (const char *attr_name, tree list)
|
||
{
|
||
tree l;
|
||
|
||
for (l = list; l; l = TREE_CHAIN (l))
|
||
{
|
||
if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
|
||
abort ();
|
||
if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
|
||
return l;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return an attribute list that is the union of a1 and a2. */
|
||
|
||
tree
|
||
merge_attributes (tree a1, tree a2)
|
||
{
|
||
tree attributes;
|
||
|
||
/* Either one unset? Take the set one. */
|
||
|
||
if ((attributes = a1) == 0)
|
||
attributes = a2;
|
||
|
||
/* One that completely contains the other? Take it. */
|
||
|
||
else if (a2 != 0 && ! attribute_list_contained (a1, a2))
|
||
{
|
||
if (attribute_list_contained (a2, a1))
|
||
attributes = a2;
|
||
else
|
||
{
|
||
/* Pick the longest list, and hang on the other list. */
|
||
|
||
if (list_length (a1) < list_length (a2))
|
||
attributes = a2, a2 = a1;
|
||
|
||
for (; a2 != 0; a2 = TREE_CHAIN (a2))
|
||
{
|
||
tree a;
|
||
for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
|
||
attributes);
|
||
a != NULL_TREE;
|
||
a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
|
||
TREE_CHAIN (a)))
|
||
{
|
||
if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
|
||
break;
|
||
}
|
||
if (a == NULL_TREE)
|
||
{
|
||
a1 = copy_node (a2);
|
||
TREE_CHAIN (a1) = attributes;
|
||
attributes = a1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return attributes;
|
||
}
|
||
|
||
/* Given types T1 and T2, merge their attributes and return
|
||
the result. */
|
||
|
||
tree
|
||
merge_type_attributes (tree t1, tree t2)
|
||
{
|
||
return merge_attributes (TYPE_ATTRIBUTES (t1),
|
||
TYPE_ATTRIBUTES (t2));
|
||
}
|
||
|
||
/* Given decls OLDDECL and NEWDECL, merge their attributes and return
|
||
the result. */
|
||
|
||
tree
|
||
merge_decl_attributes (tree olddecl, tree newdecl)
|
||
{
|
||
return merge_attributes (DECL_ATTRIBUTES (olddecl),
|
||
DECL_ATTRIBUTES (newdecl));
|
||
}
|
||
|
||
#ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
||
|
||
/* Specialization of merge_decl_attributes for various Windows targets.
|
||
|
||
This handles the following situation:
|
||
|
||
__declspec (dllimport) int foo;
|
||
int foo;
|
||
|
||
The second instance of `foo' nullifies the dllimport. */
|
||
|
||
tree
|
||
merge_dllimport_decl_attributes (tree old, tree new)
|
||
{
|
||
tree a;
|
||
int delete_dllimport_p;
|
||
|
||
old = DECL_ATTRIBUTES (old);
|
||
new = DECL_ATTRIBUTES (new);
|
||
|
||
/* What we need to do here is remove from `old' dllimport if it doesn't
|
||
appear in `new'. dllimport behaves like extern: if a declaration is
|
||
marked dllimport and a definition appears later, then the object
|
||
is not dllimport'd. */
|
||
if (lookup_attribute ("dllimport", old) != NULL_TREE
|
||
&& lookup_attribute ("dllimport", new) == NULL_TREE)
|
||
delete_dllimport_p = 1;
|
||
else
|
||
delete_dllimport_p = 0;
|
||
|
||
a = merge_attributes (old, new);
|
||
|
||
if (delete_dllimport_p)
|
||
{
|
||
tree prev, t;
|
||
|
||
/* Scan the list for dllimport and delete it. */
|
||
for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
|
||
{
|
||
if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
|
||
{
|
||
if (prev == NULL_TREE)
|
||
a = TREE_CHAIN (a);
|
||
else
|
||
TREE_CHAIN (prev) = TREE_CHAIN (t);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return a;
|
||
}
|
||
|
||
#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
|
||
|
||
/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
|
||
of the various TYPE_QUAL values. */
|
||
|
||
static void
|
||
set_type_quals (tree type, int type_quals)
|
||
{
|
||
TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
|
||
TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
|
||
TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
|
||
}
|
||
|
||
/* Return a version of the TYPE, qualified as indicated by the
|
||
TYPE_QUALS, if one exists. If no qualified version exists yet,
|
||
return NULL_TREE. */
|
||
|
||
tree
|
||
get_qualified_type (tree type, int type_quals)
|
||
{
|
||
tree t;
|
||
|
||
/* Search the chain of variants to see if there is already one there just
|
||
like the one we need to have. If so, use that existing one. We must
|
||
preserve the TYPE_NAME, since there is code that depends on this. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
|
||
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
|
||
return t;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Like get_qualified_type, but creates the type if it does not
|
||
exist. This function never returns NULL_TREE. */
|
||
|
||
tree
|
||
build_qualified_type (tree type, int type_quals)
|
||
{
|
||
tree t;
|
||
|
||
/* See if we already have the appropriate qualified variant. */
|
||
t = get_qualified_type (type, type_quals);
|
||
|
||
/* If not, build it. */
|
||
if (!t)
|
||
{
|
||
t = build_type_copy (type);
|
||
set_type_quals (t, type_quals);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a new variant of TYPE, equivalent but distinct.
|
||
This is so the caller can modify it. */
|
||
|
||
tree
|
||
build_type_copy (tree type)
|
||
{
|
||
tree t, m = TYPE_MAIN_VARIANT (type);
|
||
|
||
t = copy_node (type);
|
||
|
||
TYPE_POINTER_TO (t) = 0;
|
||
TYPE_REFERENCE_TO (t) = 0;
|
||
|
||
/* Add this type to the chain of variants of TYPE. */
|
||
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
|
||
TYPE_NEXT_VARIANT (m) = t;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Hashing of types so that we don't make duplicates.
|
||
The entry point is `type_hash_canon'. */
|
||
|
||
/* Compute a hash code for a list of types (chain of TREE_LIST nodes
|
||
with types in the TREE_VALUE slots), by adding the hash codes
|
||
of the individual types. */
|
||
|
||
unsigned int
|
||
type_hash_list (tree list)
|
||
{
|
||
unsigned int hashcode;
|
||
tree tail;
|
||
|
||
for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
|
||
hashcode += TYPE_HASH (TREE_VALUE (tail));
|
||
|
||
return hashcode;
|
||
}
|
||
|
||
/* These are the Hashtable callback functions. */
|
||
|
||
/* Returns true if the types are equal. */
|
||
|
||
static int
|
||
type_hash_eq (const void *va, const void *vb)
|
||
{
|
||
const struct type_hash *a = va, *b = vb;
|
||
if (a->hash == b->hash
|
||
&& TREE_CODE (a->type) == TREE_CODE (b->type)
|
||
&& TREE_TYPE (a->type) == TREE_TYPE (b->type)
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (a->type),
|
||
TYPE_ATTRIBUTES (b->type))
|
||
&& TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
|
||
&& (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
|
||
TYPE_MAX_VALUE (b->type)))
|
||
&& (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
|
||
TYPE_MIN_VALUE (b->type)))
|
||
/* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
|
||
&& (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
|
||
|| (TYPE_DOMAIN (a->type)
|
||
&& TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
|
||
&& TYPE_DOMAIN (b->type)
|
||
&& TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_DOMAIN (a->type),
|
||
TYPE_DOMAIN (b->type)))))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the cached hash value. */
|
||
|
||
static hashval_t
|
||
type_hash_hash (const void *item)
|
||
{
|
||
return ((const struct type_hash *) item)->hash;
|
||
}
|
||
|
||
/* Look in the type hash table for a type isomorphic to TYPE.
|
||
If one is found, return it. Otherwise return 0. */
|
||
|
||
tree
|
||
type_hash_lookup (unsigned int hashcode, tree type)
|
||
{
|
||
struct type_hash *h, in;
|
||
|
||
/* The TYPE_ALIGN field of a type is set by layout_type(), so we
|
||
must call that routine before comparing TYPE_ALIGNs. */
|
||
layout_type (type);
|
||
|
||
in.hash = hashcode;
|
||
in.type = type;
|
||
|
||
h = htab_find_with_hash (type_hash_table, &in, hashcode);
|
||
if (h)
|
||
return h->type;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Add an entry to the type-hash-table
|
||
for a type TYPE whose hash code is HASHCODE. */
|
||
|
||
void
|
||
type_hash_add (unsigned int hashcode, tree type)
|
||
{
|
||
struct type_hash *h;
|
||
void **loc;
|
||
|
||
h = ggc_alloc (sizeof (struct type_hash));
|
||
h->hash = hashcode;
|
||
h->type = type;
|
||
loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
|
||
*(struct type_hash **) loc = h;
|
||
}
|
||
|
||
/* Given TYPE, and HASHCODE its hash code, return the canonical
|
||
object for an identical type if one already exists.
|
||
Otherwise, return TYPE, and record it as the canonical object
|
||
if it is a permanent object.
|
||
|
||
To use this function, first create a type of the sort you want.
|
||
Then compute its hash code from the fields of the type that
|
||
make it different from other similar types.
|
||
Then call this function and use the value.
|
||
This function frees the type you pass in if it is a duplicate. */
|
||
|
||
/* Set to 1 to debug without canonicalization. Never set by program. */
|
||
int debug_no_type_hash = 0;
|
||
|
||
tree
|
||
type_hash_canon (unsigned int hashcode, tree type)
|
||
{
|
||
tree t1;
|
||
|
||
if (debug_no_type_hash)
|
||
return type;
|
||
|
||
/* See if the type is in the hash table already. If so, return it.
|
||
Otherwise, add the type. */
|
||
t1 = type_hash_lookup (hashcode, type);
|
||
if (t1 != 0)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
tree_node_counts[(int) t_kind]--;
|
||
tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
|
||
#endif
|
||
return t1;
|
||
}
|
||
else
|
||
{
|
||
type_hash_add (hashcode, type);
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* See if the data pointed to by the type hash table is marked. We consider
|
||
it marked if the type is marked or if a debug type number or symbol
|
||
table entry has been made for the type. This reduces the amount of
|
||
debugging output and eliminates that dependency of the debug output on
|
||
the number of garbage collections. */
|
||
|
||
static int
|
||
type_hash_marked_p (const void *p)
|
||
{
|
||
tree type = ((struct type_hash *) p)->type;
|
||
|
||
return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
|
||
}
|
||
|
||
static void
|
||
print_type_hash_statistics (void)
|
||
{
|
||
fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) htab_size (type_hash_table),
|
||
(long) htab_elements (type_hash_table),
|
||
htab_collisions (type_hash_table));
|
||
}
|
||
|
||
/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
|
||
with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
|
||
by adding the hash codes of the individual attributes. */
|
||
|
||
unsigned int
|
||
attribute_hash_list (tree list)
|
||
{
|
||
unsigned int hashcode;
|
||
tree tail;
|
||
|
||
for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
|
||
/* ??? Do we want to add in TREE_VALUE too? */
|
||
hashcode += TYPE_HASH (TREE_PURPOSE (tail));
|
||
return hashcode;
|
||
}
|
||
|
||
/* Given two lists of attributes, return true if list l2 is
|
||
equivalent to l1. */
|
||
|
||
int
|
||
attribute_list_equal (tree l1, tree l2)
|
||
{
|
||
return attribute_list_contained (l1, l2)
|
||
&& attribute_list_contained (l2, l1);
|
||
}
|
||
|
||
/* Given two lists of attributes, return true if list L2 is
|
||
completely contained within L1. */
|
||
/* ??? This would be faster if attribute names were stored in a canonicalized
|
||
form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
|
||
must be used to show these elements are equivalent (which they are). */
|
||
/* ??? It's not clear that attributes with arguments will always be handled
|
||
correctly. */
|
||
|
||
int
|
||
attribute_list_contained (tree l1, tree l2)
|
||
{
|
||
tree t1, t2;
|
||
|
||
/* First check the obvious, maybe the lists are identical. */
|
||
if (l1 == l2)
|
||
return 1;
|
||
|
||
/* Maybe the lists are similar. */
|
||
for (t1 = l1, t2 = l2;
|
||
t1 != 0 && t2 != 0
|
||
&& TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
|
||
&& TREE_VALUE (t1) == TREE_VALUE (t2);
|
||
t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
|
||
|
||
/* Maybe the lists are equal. */
|
||
if (t1 == 0 && t2 == 0)
|
||
return 1;
|
||
|
||
for (; t2 != 0; t2 = TREE_CHAIN (t2))
|
||
{
|
||
tree attr;
|
||
for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
|
||
attr != NULL_TREE;
|
||
attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
|
||
TREE_CHAIN (attr)))
|
||
{
|
||
if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
|
||
break;
|
||
}
|
||
|
||
if (attr == 0)
|
||
return 0;
|
||
|
||
if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given two lists of types
|
||
(chains of TREE_LIST nodes with types in the TREE_VALUE slots)
|
||
return 1 if the lists contain the same types in the same order.
|
||
Also, the TREE_PURPOSEs must match. */
|
||
|
||
int
|
||
type_list_equal (tree l1, tree l2)
|
||
{
|
||
tree t1, t2;
|
||
|
||
for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
|
||
if (TREE_VALUE (t1) != TREE_VALUE (t2)
|
||
|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
|
||
&& ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
|
||
&& (TREE_TYPE (TREE_PURPOSE (t1))
|
||
== TREE_TYPE (TREE_PURPOSE (t2))))))
|
||
return 0;
|
||
|
||
return t1 == t2;
|
||
}
|
||
|
||
/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
|
||
given by TYPE. If the argument list accepts variable arguments,
|
||
then this function counts only the ordinary arguments. */
|
||
|
||
int
|
||
type_num_arguments (tree type)
|
||
{
|
||
int i = 0;
|
||
tree t;
|
||
|
||
for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
|
||
/* If the function does not take a variable number of arguments,
|
||
the last element in the list will have type `void'. */
|
||
if (VOID_TYPE_P (TREE_VALUE (t)))
|
||
break;
|
||
else
|
||
++i;
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2
|
||
represent the same constant value. */
|
||
|
||
int
|
||
tree_int_cst_equal (tree t1, tree t2)
|
||
{
|
||
if (t1 == t2)
|
||
return 1;
|
||
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
if (TREE_CODE (t1) == INTEGER_CST
|
||
&& TREE_CODE (t2) == INTEGER_CST
|
||
&& TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
|
||
The precise way of comparison depends on their data type. */
|
||
|
||
int
|
||
tree_int_cst_lt (tree t1, tree t2)
|
||
{
|
||
if (t1 == t2)
|
||
return 0;
|
||
|
||
if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
|
||
{
|
||
int t1_sgn = tree_int_cst_sgn (t1);
|
||
int t2_sgn = tree_int_cst_sgn (t2);
|
||
|
||
if (t1_sgn < t2_sgn)
|
||
return 1;
|
||
else if (t1_sgn > t2_sgn)
|
||
return 0;
|
||
/* Otherwise, both are non-negative, so we compare them as
|
||
unsigned just in case one of them would overflow a signed
|
||
type. */
|
||
}
|
||
else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
|
||
return INT_CST_LT (t1, t2);
|
||
|
||
return INT_CST_LT_UNSIGNED (t1, t2);
|
||
}
|
||
|
||
/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
|
||
|
||
int
|
||
tree_int_cst_compare (tree t1, tree t2)
|
||
{
|
||
if (tree_int_cst_lt (t1, t2))
|
||
return -1;
|
||
else if (tree_int_cst_lt (t2, t1))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
|
||
the host. If POS is zero, the value can be represented in a single
|
||
HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
|
||
be represented in a single unsigned HOST_WIDE_INT. */
|
||
|
||
int
|
||
host_integerp (tree t, int pos)
|
||
{
|
||
return (TREE_CODE (t) == INTEGER_CST
|
||
&& ! TREE_OVERFLOW (t)
|
||
&& ((TREE_INT_CST_HIGH (t) == 0
|
||
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
|
||
|| (! pos && TREE_INT_CST_HIGH (t) == -1
|
||
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
|
||
&& ! TREE_UNSIGNED (TREE_TYPE (t)))
|
||
|| (pos && TREE_INT_CST_HIGH (t) == 0)));
|
||
}
|
||
|
||
/* Return the HOST_WIDE_INT least significant bits of T if it is an
|
||
INTEGER_CST and there is no overflow. POS is nonzero if the result must
|
||
be positive. Abort if we cannot satisfy the above conditions. */
|
||
|
||
HOST_WIDE_INT
|
||
tree_low_cst (tree t, int pos)
|
||
{
|
||
if (host_integerp (t, pos))
|
||
return TREE_INT_CST_LOW (t);
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return the most significant bit of the integer constant T. */
|
||
|
||
int
|
||
tree_int_cst_msb (tree t)
|
||
{
|
||
int prec;
|
||
HOST_WIDE_INT h;
|
||
unsigned HOST_WIDE_INT l;
|
||
|
||
/* Note that using TYPE_PRECISION here is wrong. We care about the
|
||
actual bits, not the (arbitrary) range of the type. */
|
||
prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
|
||
rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
|
||
2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
|
||
return (l & 1) == 1;
|
||
}
|
||
|
||
/* Return an indication of the sign of the integer constant T.
|
||
The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
|
||
Note that -1 will never be returned it T's type is unsigned. */
|
||
|
||
int
|
||
tree_int_cst_sgn (tree t)
|
||
{
|
||
if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
|
||
return 0;
|
||
else if (TREE_UNSIGNED (TREE_TYPE (t)))
|
||
return 1;
|
||
else if (TREE_INT_CST_HIGH (t) < 0)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Compare two constructor-element-type constants. Return 1 if the lists
|
||
are known to be equal; otherwise return 0. */
|
||
|
||
int
|
||
simple_cst_list_equal (tree l1, tree l2)
|
||
{
|
||
while (l1 != NULL_TREE && l2 != NULL_TREE)
|
||
{
|
||
if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
|
||
return 0;
|
||
|
||
l1 = TREE_CHAIN (l1);
|
||
l2 = TREE_CHAIN (l2);
|
||
}
|
||
|
||
return l1 == l2;
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same.
|
||
Return 0 if they are understandably different.
|
||
Return -1 if either contains tree structure not understood by
|
||
this function. */
|
||
|
||
int
|
||
simple_cst_equal (tree t1, tree t2)
|
||
{
|
||
enum tree_code code1, code2;
|
||
int cmp;
|
||
int i;
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
|
||
{
|
||
if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
else
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
|
||
}
|
||
|
||
else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
|
||
|
||
if (code1 != code2)
|
||
return 0;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1)));
|
||
|
||
case CONSTRUCTOR:
|
||
if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
|
||
return 1;
|
||
else
|
||
abort ();
|
||
|
||
case SAVE_EXPR:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case CALL_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
return
|
||
simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case TARGET_EXPR:
|
||
/* Special case: if either target is an unallocated VAR_DECL,
|
||
it means that it's going to be unified with whatever the
|
||
TARGET_EXPR is really supposed to initialize, so treat it
|
||
as being equivalent to anything. */
|
||
if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
|
||
|| (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
|
||
cmp = 1;
|
||
else
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
return 0;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* This general rule works for most tree codes. All exceptions should be
|
||
handled above. If this is a language-specific tree code, we can't
|
||
trust what might be in the operand, so say we don't know
|
||
the situation. */
|
||
if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
|
||
return -1;
|
||
|
||
switch (TREE_CODE_CLASS (code1))
|
||
{
|
||
case '1':
|
||
case '2':
|
||
case '<':
|
||
case 'e':
|
||
case 'r':
|
||
case 's':
|
||
cmp = 1;
|
||
for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
|
||
{
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
}
|
||
|
||
return cmp;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
|
||
Return -1, 0, or 1 if the value of T is less than, equal to, or greater
|
||
than U, respectively. */
|
||
|
||
int
|
||
compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
|
||
{
|
||
if (tree_int_cst_sgn (t) < 0)
|
||
return -1;
|
||
else if (TREE_INT_CST_HIGH (t) != 0)
|
||
return 1;
|
||
else if (TREE_INT_CST_LOW (t) == u)
|
||
return 0;
|
||
else if (TREE_INT_CST_LOW (t) < u)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Generate a hash value for an expression. This can be used iteratively
|
||
by passing a previous result as the "val" argument.
|
||
|
||
This function is intended to produce the same hash for expressions which
|
||
would compare equal using operand_equal_p. */
|
||
|
||
hashval_t
|
||
iterative_hash_expr (tree t, hashval_t val)
|
||
{
|
||
int i;
|
||
enum tree_code code;
|
||
char class;
|
||
|
||
if (t == NULL_TREE)
|
||
return iterative_hash_object (t, val);
|
||
|
||
code = TREE_CODE (t);
|
||
class = TREE_CODE_CLASS (code);
|
||
|
||
if (class == 'd')
|
||
{
|
||
/* Decls we can just compare by pointer. */
|
||
val = iterative_hash_object (t, val);
|
||
}
|
||
else if (class == 'c')
|
||
{
|
||
/* Alas, constants aren't shared, so we can't rely on pointer
|
||
identity. */
|
||
if (code == INTEGER_CST)
|
||
{
|
||
val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
|
||
val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
|
||
}
|
||
else if (code == REAL_CST)
|
||
val = iterative_hash (TREE_REAL_CST_PTR (t),
|
||
sizeof (REAL_VALUE_TYPE), val);
|
||
else if (code == STRING_CST)
|
||
val = iterative_hash (TREE_STRING_POINTER (t),
|
||
TREE_STRING_LENGTH (t), val);
|
||
else if (code == COMPLEX_CST)
|
||
{
|
||
val = iterative_hash_expr (TREE_REALPART (t), val);
|
||
val = iterative_hash_expr (TREE_IMAGPART (t), val);
|
||
}
|
||
else if (code == VECTOR_CST)
|
||
val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
|
||
else
|
||
abort ();
|
||
}
|
||
else if (IS_EXPR_CODE_CLASS (class))
|
||
{
|
||
val = iterative_hash_object (code, val);
|
||
|
||
if (code == NOP_EXPR || code == CONVERT_EXPR
|
||
|| code == NON_LVALUE_EXPR)
|
||
val = iterative_hash_object (TREE_TYPE (t), val);
|
||
|
||
if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
|
||
|| code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
|
||
|| code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
|
||
{
|
||
/* It's a commutative expression. We want to hash it the same
|
||
however it appears. We do this by first hashing both operands
|
||
and then rehashing based on the order of their independent
|
||
hashes. */
|
||
hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
|
||
hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
|
||
hashval_t t;
|
||
|
||
if (one > two)
|
||
t = one, one = two, two = t;
|
||
|
||
val = iterative_hash_object (one, val);
|
||
val = iterative_hash_object (two, val);
|
||
}
|
||
else
|
||
for (i = first_rtl_op (code) - 1; i >= 0; --i)
|
||
val = iterative_hash_expr (TREE_OPERAND (t, i), val);
|
||
}
|
||
else if (code == TREE_LIST)
|
||
{
|
||
/* A list of expressions, for a CALL_EXPR or as the elements of a
|
||
VECTOR_CST. */
|
||
for (; t; t = TREE_CHAIN (t))
|
||
val = iterative_hash_expr (TREE_VALUE (t), val);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Constructors for pointer, array and function types.
|
||
(RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
|
||
constructed by language-dependent code, not here.) */
|
||
|
||
/* Construct, lay out and return the type of pointers to TO_TYPE
|
||
with mode MODE. If such a type has already been constructed,
|
||
reuse it. */
|
||
|
||
tree
|
||
build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
|
||
{
|
||
tree t = TYPE_POINTER_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE, use it. */
|
||
if (t != 0 && mode == ptr_mode)
|
||
return t;
|
||
|
||
t = make_node (POINTER_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
TYPE_MODE (t) = mode;
|
||
|
||
/* Record this type as the pointer to TO_TYPE. */
|
||
if (mode == ptr_mode)
|
||
TYPE_POINTER_TO (to_type) = t;
|
||
|
||
/* Lay out the type. This function has many callers that are concerned
|
||
with expression-construction, and this simplifies them all.
|
||
Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* By default build pointers in ptr_mode. */
|
||
|
||
tree
|
||
build_pointer_type (tree to_type)
|
||
{
|
||
return build_pointer_type_for_mode (to_type, ptr_mode);
|
||
}
|
||
|
||
/* Construct, lay out and return the type of references to TO_TYPE
|
||
with mode MODE. If such a type has already been constructed,
|
||
reuse it. */
|
||
|
||
tree
|
||
build_reference_type_for_mode (tree to_type, enum machine_mode mode)
|
||
{
|
||
tree t = TYPE_REFERENCE_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE, use it. */
|
||
if (t != 0 && mode == ptr_mode)
|
||
return t;
|
||
|
||
t = make_node (REFERENCE_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
TYPE_MODE (t) = mode;
|
||
|
||
/* Record this type as the pointer to TO_TYPE. */
|
||
if (mode == ptr_mode)
|
||
TYPE_REFERENCE_TO (to_type) = t;
|
||
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Build the node for the type of references-to-TO_TYPE by default
|
||
in ptr_mode. */
|
||
|
||
tree
|
||
build_reference_type (tree to_type)
|
||
{
|
||
return build_reference_type_for_mode (to_type, ptr_mode);
|
||
}
|
||
|
||
/* Build a type that is compatible with t but has no cv quals anywhere
|
||
in its type, thus
|
||
|
||
const char *const *const * -> char ***. */
|
||
|
||
tree
|
||
build_type_no_quals (tree t)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case POINTER_TYPE:
|
||
return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
|
||
case REFERENCE_TYPE:
|
||
return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
|
||
default:
|
||
return TYPE_MAIN_VARIANT (t);
|
||
}
|
||
}
|
||
|
||
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
|
||
MAXVAL should be the maximum value in the domain
|
||
(one less than the length of the array).
|
||
|
||
The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
|
||
We don't enforce this limit, that is up to caller (e.g. language front end).
|
||
The limit exists because the result is a signed type and we don't handle
|
||
sizes that use more than one HOST_WIDE_INT. */
|
||
|
||
tree
|
||
build_index_type (tree maxval)
|
||
{
|
||
tree itype = make_node (INTEGER_TYPE);
|
||
|
||
TREE_TYPE (itype) = sizetype;
|
||
TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
|
||
TYPE_MIN_VALUE (itype) = size_zero_node;
|
||
TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
|
||
TYPE_MODE (itype) = TYPE_MODE (sizetype);
|
||
TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
|
||
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
|
||
TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
|
||
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
|
||
|
||
if (host_integerp (maxval, 1))
|
||
return type_hash_canon (tree_low_cst (maxval, 1), itype);
|
||
else
|
||
return itype;
|
||
}
|
||
|
||
/* Create a range of some discrete type TYPE (an INTEGER_TYPE,
|
||
ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
|
||
low bound LOWVAL and high bound HIGHVAL.
|
||
if TYPE==NULL_TREE, sizetype is used. */
|
||
|
||
tree
|
||
build_range_type (tree type, tree lowval, tree highval)
|
||
{
|
||
tree itype = make_node (INTEGER_TYPE);
|
||
|
||
TREE_TYPE (itype) = type;
|
||
if (type == NULL_TREE)
|
||
type = sizetype;
|
||
|
||
TYPE_MIN_VALUE (itype) = convert (type, lowval);
|
||
TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
|
||
|
||
TYPE_PRECISION (itype) = TYPE_PRECISION (type);
|
||
TYPE_MODE (itype) = TYPE_MODE (type);
|
||
TYPE_SIZE (itype) = TYPE_SIZE (type);
|
||
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
|
||
TYPE_ALIGN (itype) = TYPE_ALIGN (type);
|
||
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
|
||
|
||
if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
|
||
return type_hash_canon (tree_low_cst (highval, 0)
|
||
- tree_low_cst (lowval, 0),
|
||
itype);
|
||
else
|
||
return itype;
|
||
}
|
||
|
||
/* Just like build_index_type, but takes lowval and highval instead
|
||
of just highval (maxval). */
|
||
|
||
tree
|
||
build_index_2_type (tree lowval, tree highval)
|
||
{
|
||
return build_range_type (sizetype, lowval, highval);
|
||
}
|
||
|
||
/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
|
||
and number of elements specified by the range of values of INDEX_TYPE.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_array_type (tree elt_type, tree index_type)
|
||
{
|
||
tree t;
|
||
unsigned int hashcode;
|
||
|
||
if (TREE_CODE (elt_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("arrays of functions are not meaningful");
|
||
elt_type = integer_type_node;
|
||
}
|
||
|
||
/* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
|
||
build_pointer_type (elt_type);
|
||
|
||
/* Allocate the array after the pointer type,
|
||
in case we free it in type_hash_canon. */
|
||
t = make_node (ARRAY_TYPE);
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
|
||
if (index_type == 0)
|
||
{
|
||
return t;
|
||
}
|
||
|
||
hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Return the TYPE of the elements comprising
|
||
the innermost dimension of ARRAY. */
|
||
|
||
tree
|
||
get_inner_array_type (tree array)
|
||
{
|
||
tree type = TREE_TYPE (array);
|
||
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Construct, lay out and return
|
||
the type of functions returning type VALUE_TYPE
|
||
given arguments of types ARG_TYPES.
|
||
ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
|
||
are data type nodes for the arguments of the function.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_function_type (tree value_type, tree arg_types)
|
||
{
|
||
tree t;
|
||
unsigned int hashcode;
|
||
|
||
if (TREE_CODE (value_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("function return type cannot be function");
|
||
value_type = integer_type_node;
|
||
}
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (FUNCTION_TYPE);
|
||
TREE_TYPE (t) = value_type;
|
||
TYPE_ARG_TYPES (t) = arg_types;
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build a function type. The RETURN_TYPE is the type returned by the
|
||
function. If additional arguments are provided, they are
|
||
additional argument types. The list of argument types must always
|
||
be terminated by NULL_TREE. */
|
||
|
||
tree
|
||
build_function_type_list (tree return_type, ...)
|
||
{
|
||
tree t, args, last;
|
||
va_list p;
|
||
|
||
va_start (p, return_type);
|
||
|
||
t = va_arg (p, tree);
|
||
for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
|
||
args = tree_cons (NULL_TREE, t, args);
|
||
|
||
last = args;
|
||
args = nreverse (args);
|
||
TREE_CHAIN (last) = void_list_node;
|
||
args = build_function_type (return_type, args);
|
||
|
||
va_end (p);
|
||
return args;
|
||
}
|
||
|
||
/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
|
||
and ARGTYPES (a TREE_LIST) are the return type and arguments types
|
||
for the method. An implicit additional parameter (of type
|
||
pointer-to-BASETYPE) is added to the ARGTYPES. */
|
||
|
||
tree
|
||
build_method_type_directly (tree basetype,
|
||
tree rettype,
|
||
tree argtypes)
|
||
{
|
||
tree t;
|
||
tree ptype;
|
||
int hashcode;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (METHOD_TYPE);
|
||
|
||
TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = rettype;
|
||
ptype = build_pointer_type (basetype);
|
||
|
||
/* The actual arglist for this function includes a "hidden" argument
|
||
which is "this". Put it into the list of argument types. */
|
||
argtypes = tree_cons (NULL_TREE, ptype, argtypes);
|
||
TYPE_ARG_TYPES (t) = argtypes;
|
||
|
||
/* If we already have such a type, use the old one and free this one.
|
||
Note that it also frees up the above cons cell if found. */
|
||
hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
|
||
type_hash_list (argtypes);
|
||
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of methods belonging to class
|
||
BASETYPE and whose arguments and values are described by TYPE.
|
||
If that type exists already, reuse it.
|
||
TYPE must be a FUNCTION_TYPE node. */
|
||
|
||
tree
|
||
build_method_type (tree basetype, tree type)
|
||
{
|
||
if (TREE_CODE (type) != FUNCTION_TYPE)
|
||
abort ();
|
||
|
||
return build_method_type_directly (basetype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
}
|
||
|
||
/* Construct, lay out and return the type of offsets to a value
|
||
of type TYPE, within an object of type BASETYPE.
|
||
If a suitable offset type exists already, reuse it. */
|
||
|
||
tree
|
||
build_offset_type (tree basetype, tree type)
|
||
{
|
||
tree t;
|
||
unsigned int hashcode;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (OFFSET_TYPE);
|
||
|
||
TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = type;
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a complex type whose components are COMPONENT_TYPE. */
|
||
|
||
tree
|
||
build_complex_type (tree component_type)
|
||
{
|
||
tree t;
|
||
unsigned int hashcode;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (COMPLEX_TYPE);
|
||
|
||
TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
|
||
set_type_quals (t, TYPE_QUALS (component_type));
|
||
|
||
/* If we already have such a type, use the old one and free this one. */
|
||
hashcode = TYPE_HASH (component_type);
|
||
t = type_hash_canon (hashcode, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
/* If we are writing Dwarf2 output we need to create a name,
|
||
since complex is a fundamental type. */
|
||
if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
|
||
&& ! TYPE_NAME (t))
|
||
{
|
||
const char *name;
|
||
if (component_type == char_type_node)
|
||
name = "complex char";
|
||
else if (component_type == signed_char_type_node)
|
||
name = "complex signed char";
|
||
else if (component_type == unsigned_char_type_node)
|
||
name = "complex unsigned char";
|
||
else if (component_type == short_integer_type_node)
|
||
name = "complex short int";
|
||
else if (component_type == short_unsigned_type_node)
|
||
name = "complex short unsigned int";
|
||
else if (component_type == integer_type_node)
|
||
name = "complex int";
|
||
else if (component_type == unsigned_type_node)
|
||
name = "complex unsigned int";
|
||
else if (component_type == long_integer_type_node)
|
||
name = "complex long int";
|
||
else if (component_type == long_unsigned_type_node)
|
||
name = "complex long unsigned int";
|
||
else if (component_type == long_long_integer_type_node)
|
||
name = "complex long long int";
|
||
else if (component_type == long_long_unsigned_type_node)
|
||
name = "complex long long unsigned int";
|
||
else
|
||
name = 0;
|
||
|
||
if (name != 0)
|
||
TYPE_NAME (t) = get_identifier (name);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return OP, stripped of any conversions to wider types as much as is safe.
|
||
Converting the value back to OP's type makes a value equivalent to OP.
|
||
|
||
If FOR_TYPE is nonzero, we return a value which, if converted to
|
||
type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
|
||
|
||
If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
|
||
narrowest type that can hold the value, even if they don't exactly fit.
|
||
Otherwise, bit-field references are changed to a narrower type
|
||
only if they can be fetched directly from memory in that type.
|
||
|
||
OP must have integer, real or enumeral type. Pointers are not allowed!
|
||
|
||
There are some cases where the obvious value we could return
|
||
would regenerate to OP if converted to OP's type,
|
||
but would not extend like OP to wider types.
|
||
If FOR_TYPE indicates such extension is contemplated, we eschew such values.
|
||
For example, if OP is (unsigned short)(signed char)-1,
|
||
we avoid returning (signed char)-1 if FOR_TYPE is int,
|
||
even though extending that to an unsigned short would regenerate OP,
|
||
since the result of extending (signed char)-1 to (int)
|
||
is different from (int) OP. */
|
||
|
||
tree
|
||
get_unwidened (tree op, tree for_type)
|
||
{
|
||
/* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
|
||
tree type = TREE_TYPE (op);
|
||
unsigned final_prec
|
||
= TYPE_PRECISION (for_type != 0 ? for_type : type);
|
||
int uns
|
||
= (for_type != 0 && for_type != type
|
||
&& final_prec > TYPE_PRECISION (type)
|
||
&& TREE_UNSIGNED (type));
|
||
tree win = op;
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
int bitschange
|
||
= TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
|
||
|
||
/* Truncations are many-one so cannot be removed.
|
||
Unless we are later going to truncate down even farther. */
|
||
if (bitschange < 0
|
||
&& final_prec > TYPE_PRECISION (TREE_TYPE (op)))
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
op = TREE_OPERAND (op, 0);
|
||
|
||
/* If we have not stripped any zero-extensions (uns is 0),
|
||
we can strip any kind of extension.
|
||
If we have previously stripped a zero-extension,
|
||
only zero-extensions can safely be stripped.
|
||
Any extension can be stripped if the bits it would produce
|
||
are all going to be discarded later by truncating to FOR_TYPE. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
|
||
win = op;
|
||
/* TREE_UNSIGNED says whether this is a zero-extension.
|
||
Let's avoid computing it if it does not affect WIN
|
||
and if UNS will not be needed again. */
|
||
if ((uns || TREE_CODE (op) == NOP_EXPR)
|
||
&& TREE_UNSIGNED (TREE_TYPE (op)))
|
||
{
|
||
uns = 1;
|
||
win = op;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (type) != REAL_TYPE
|
||
/* Don't crash if field not laid out yet. */
|
||
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0
|
||
&& host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
|
||
{
|
||
unsigned int innerprec
|
||
= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
|
||
int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
|
||
type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
|
||
|
||
/* We can get this structure field in the narrowest type it fits in.
|
||
If FOR_TYPE is 0, do this only for a field that matches the
|
||
narrower type exactly and is aligned for it
|
||
The resulting extension to its nominal type (a fullword type)
|
||
must fit the same conditions as for other extensions. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
|
||
&& (! uns || final_prec <= innerprec || unsignedp)
|
||
&& type != 0)
|
||
{
|
||
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
|
||
TREE_OPERAND (op, 1));
|
||
TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
|
||
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
|
||
}
|
||
}
|
||
|
||
return win;
|
||
}
|
||
|
||
/* Return OP or a simpler expression for a narrower value
|
||
which can be sign-extended or zero-extended to give back OP.
|
||
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
|
||
or 0 if the value should be sign-extended. */
|
||
|
||
tree
|
||
get_narrower (tree op, int *unsignedp_ptr)
|
||
{
|
||
int uns = 0;
|
||
int first = 1;
|
||
tree win = op;
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
int bitschange
|
||
= (TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
|
||
|
||
/* Truncations are many-one so cannot be removed. */
|
||
if (bitschange < 0)
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
op = TREE_OPERAND (op, 0);
|
||
/* An extension: the outermost one can be stripped,
|
||
but remember whether it is zero or sign extension. */
|
||
if (first)
|
||
uns = TREE_UNSIGNED (TREE_TYPE (op));
|
||
/* Otherwise, if a sign extension has been stripped,
|
||
only sign extensions can now be stripped;
|
||
if a zero extension has been stripped, only zero-extensions. */
|
||
else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
|
||
break;
|
||
first = 0;
|
||
}
|
||
else /* bitschange == 0 */
|
||
{
|
||
/* A change in nominal type can always be stripped, but we must
|
||
preserve the unsignedness. */
|
||
if (first)
|
||
uns = TREE_UNSIGNED (TREE_TYPE (op));
|
||
first = 0;
|
||
op = TREE_OPERAND (op, 0);
|
||
}
|
||
|
||
win = op;
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
|
||
/* Ensure field is laid out already. */
|
||
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
|
||
{
|
||
unsigned HOST_WIDE_INT innerprec
|
||
= tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
|
||
tree type = (*lang_hooks.types.type_for_size) (innerprec,
|
||
TREE_UNSIGNED (op));
|
||
|
||
/* We can get this structure field in a narrower type that fits it,
|
||
but the resulting extension to its nominal type (a fullword type)
|
||
must satisfy the same conditions as for other extensions.
|
||
|
||
Do this only for fields that are aligned (not bit-fields),
|
||
because when bit-field insns will be used there is no
|
||
advantage in doing this. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
|
||
&& (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
|
||
&& type != 0)
|
||
{
|
||
if (first)
|
||
uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
|
||
win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
|
||
TREE_OPERAND (op, 1));
|
||
TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
|
||
TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
|
||
}
|
||
}
|
||
*unsignedp_ptr = uns;
|
||
return win;
|
||
}
|
||
|
||
/* Nonzero if integer constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
int
|
||
int_fits_type_p (tree c, tree type)
|
||
{
|
||
tree type_low_bound = TYPE_MIN_VALUE (type);
|
||
tree type_high_bound = TYPE_MAX_VALUE (type);
|
||
int ok_for_low_bound, ok_for_high_bound;
|
||
|
||
/* Perform some generic filtering first, which may allow making a decision
|
||
even if the bounds are not constant. First, negative integers never fit
|
||
in unsigned types, */
|
||
if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
|
||
/* Also, unsigned integers with top bit set never fit signed types. */
|
||
|| (! TREE_UNSIGNED (type)
|
||
&& TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
|
||
return 0;
|
||
|
||
/* If at least one bound of the type is a constant integer, we can check
|
||
ourselves and maybe make a decision. If no such decision is possible, but
|
||
this type is a subtype, try checking against that. Otherwise, use
|
||
force_fit_type, which checks against the precision.
|
||
|
||
Compute the status for each possibly constant bound, and return if we see
|
||
one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
|
||
for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
|
||
for "constant known to fit". */
|
||
|
||
ok_for_low_bound = -1;
|
||
ok_for_high_bound = -1;
|
||
|
||
/* Check if C >= type_low_bound. */
|
||
if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
|
||
{
|
||
ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
|
||
if (! ok_for_low_bound)
|
||
return 0;
|
||
}
|
||
|
||
/* Check if c <= type_high_bound. */
|
||
if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
|
||
{
|
||
ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
|
||
if (! ok_for_high_bound)
|
||
return 0;
|
||
}
|
||
|
||
/* If the constant fits both bounds, the result is known. */
|
||
if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
|
||
return 1;
|
||
|
||
/* If we haven't been able to decide at this point, there nothing more we
|
||
can check ourselves here. Look at the base type if we have one. */
|
||
else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
|
||
return int_fits_type_p (c, TREE_TYPE (type));
|
||
|
||
/* Or to force_fit_type, if nothing else. */
|
||
else
|
||
{
|
||
c = copy_node (c);
|
||
TREE_TYPE (c) = type;
|
||
return !force_fit_type (c, 0);
|
||
}
|
||
}
|
||
|
||
/* Returns true if T is, contains, or refers to a type with variable
|
||
size. This concept is more general than that of C99 'variably
|
||
modified types': in C99, a struct type is never variably modified
|
||
because a VLA may not appear as a structure member. However, in
|
||
GNU C code like:
|
||
|
||
struct S { int i[f()]; };
|
||
|
||
is valid, and other languages may define similar constructs. */
|
||
|
||
bool
|
||
variably_modified_type_p (tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return false;
|
||
|
||
/* If TYPE itself has variable size, it is variably modified.
|
||
|
||
We do not yet have a representation of the C99 '[*]' syntax.
|
||
When a representation is chosen, this function should be modified
|
||
to test for that case as well. */
|
||
t = TYPE_SIZE (type);
|
||
if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
|
||
return true;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case ARRAY_TYPE:
|
||
/* If TYPE is a pointer or reference, it is variably modified if
|
||
the type pointed to is variably modified. Similarly for arrays;
|
||
note that VLAs are handled by the TYPE_SIZE check above. */
|
||
return variably_modified_type_p (TREE_TYPE (type));
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
/* If TYPE is a function type, it is variably modified if any of the
|
||
parameters or the return type are variably modified. */
|
||
{
|
||
tree parm;
|
||
|
||
if (variably_modified_type_p (TREE_TYPE (type)))
|
||
return true;
|
||
for (parm = TYPE_ARG_TYPES (type);
|
||
parm && parm != void_list_node;
|
||
parm = TREE_CHAIN (parm))
|
||
if (variably_modified_type_p (TREE_VALUE (parm)))
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
/* Scalar types are variably modified if their end points
|
||
aren't constant. */
|
||
t = TYPE_MIN_VALUE (type);
|
||
if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
|
||
return true;
|
||
t = TYPE_MAX_VALUE (type);
|
||
if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
|
||
return true;
|
||
return false;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* The current language may have other cases to check, but in general,
|
||
all other types are not variably modified. */
|
||
return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
|
||
}
|
||
|
||
/* Given a DECL or TYPE, return the scope in which it was declared, or
|
||
NULL_TREE if there is no containing scope. */
|
||
|
||
tree
|
||
get_containing_scope (tree t)
|
||
{
|
||
return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a FUNCTION_DECL, or zero if none. */
|
||
|
||
tree
|
||
decl_function_context (tree decl)
|
||
{
|
||
tree context;
|
||
|
||
if (TREE_CODE (decl) == ERROR_MARK)
|
||
return 0;
|
||
|
||
if (TREE_CODE (decl) == SAVE_EXPR)
|
||
context = SAVE_EXPR_CONTEXT (decl);
|
||
|
||
/* C++ virtual functions use DECL_CONTEXT for the class of the vtable
|
||
where we look up the function at runtime. Such functions always take
|
||
a first argument of type 'pointer to real context'.
|
||
|
||
C++ should really be fixed to use DECL_CONTEXT for the real context,
|
||
and use something else for the "virtual context". */
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
|
||
context
|
||
= TYPE_MAIN_VARIANT
|
||
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
|
||
else
|
||
context = DECL_CONTEXT (decl);
|
||
|
||
while (context && TREE_CODE (context) != FUNCTION_DECL)
|
||
{
|
||
if (TREE_CODE (context) == BLOCK)
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
else
|
||
context = get_containing_scope (context);
|
||
}
|
||
|
||
return context;
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
|
||
TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
|
||
|
||
tree
|
||
decl_type_context (tree decl)
|
||
{
|
||
tree context = DECL_CONTEXT (decl);
|
||
|
||
while (context)
|
||
switch (TREE_CODE (context))
|
||
{
|
||
case NAMESPACE_DECL:
|
||
case TRANSLATION_UNIT_DECL:
|
||
return NULL_TREE;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return context;
|
||
|
||
case TYPE_DECL:
|
||
case FUNCTION_DECL:
|
||
context = DECL_CONTEXT (context);
|
||
break;
|
||
|
||
case BLOCK:
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* CALL is a CALL_EXPR. Return the declaration for the function
|
||
called, or NULL_TREE if the called function cannot be
|
||
determined. */
|
||
|
||
tree
|
||
get_callee_fndecl (tree call)
|
||
{
|
||
tree addr;
|
||
|
||
/* It's invalid to call this function with anything but a
|
||
CALL_EXPR. */
|
||
if (TREE_CODE (call) != CALL_EXPR)
|
||
abort ();
|
||
|
||
/* The first operand to the CALL is the address of the function
|
||
called. */
|
||
addr = TREE_OPERAND (call, 0);
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* If this is a readonly function pointer, extract its initial value. */
|
||
if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
|
||
&& TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
|
||
&& DECL_INITIAL (addr))
|
||
addr = DECL_INITIAL (addr);
|
||
|
||
/* If the address is just `&f' for some function `f', then we know
|
||
that `f' is being called. */
|
||
if (TREE_CODE (addr) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
|
||
return TREE_OPERAND (addr, 0);
|
||
|
||
/* We couldn't figure out what was being called. Maybe the front
|
||
end has some idea. */
|
||
return (*lang_hooks.lang_get_callee_fndecl) (call);
|
||
}
|
||
|
||
/* Print debugging information about tree nodes generated during the compile,
|
||
and any language-specific information. */
|
||
|
||
void
|
||
dump_tree_statistics (void)
|
||
{
|
||
#ifdef GATHER_STATISTICS
|
||
int i;
|
||
int total_nodes, total_bytes;
|
||
#endif
|
||
|
||
fprintf (stderr, "\n??? tree nodes created\n\n");
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "Kind Nodes Bytes\n");
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
total_nodes = total_bytes = 0;
|
||
for (i = 0; i < (int) all_kinds; i++)
|
||
{
|
||
fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
|
||
tree_node_counts[i], tree_node_sizes[i]);
|
||
total_nodes += tree_node_counts[i];
|
||
total_bytes += tree_node_sizes[i];
|
||
}
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
|
||
fprintf (stderr, "---------------------------------------\n");
|
||
#else
|
||
fprintf (stderr, "(No per-node statistics)\n");
|
||
#endif
|
||
print_type_hash_statistics ();
|
||
(*lang_hooks.print_statistics) ();
|
||
}
|
||
|
||
#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
|
||
|
||
/* Generate a crc32 of a string. */
|
||
|
||
unsigned
|
||
crc32_string (unsigned chksum, const char *string)
|
||
{
|
||
do
|
||
{
|
||
unsigned value = *string << 24;
|
||
unsigned ix;
|
||
|
||
for (ix = 8; ix--; value <<= 1)
|
||
{
|
||
unsigned feedback;
|
||
|
||
feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
|
||
chksum <<= 1;
|
||
chksum ^= feedback;
|
||
}
|
||
}
|
||
while (*string++);
|
||
return chksum;
|
||
}
|
||
|
||
/* P is a string that will be used in a symbol. Mask out any characters
|
||
that are not valid in that context. */
|
||
|
||
void
|
||
clean_symbol_name (char *p)
|
||
{
|
||
for (; *p; p++)
|
||
if (! (ISALNUM (*p)
|
||
#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
|
||
|| *p == '$'
|
||
#endif
|
||
#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
|
||
|| *p == '.'
|
||
#endif
|
||
))
|
||
*p = '_';
|
||
}
|
||
|
||
/* Generate a name for a function unique to this translation unit.
|
||
TYPE is some string to identify the purpose of this function to the
|
||
linker or collect2. */
|
||
|
||
tree
|
||
get_file_function_name_long (const char *type)
|
||
{
|
||
char *buf;
|
||
const char *p;
|
||
char *q;
|
||
|
||
if (first_global_object_name)
|
||
p = first_global_object_name;
|
||
else
|
||
{
|
||
/* We don't have anything that we know to be unique to this translation
|
||
unit, so use what we do have and throw in some randomness. */
|
||
unsigned len;
|
||
const char *name = weak_global_object_name;
|
||
const char *file = main_input_filename;
|
||
|
||
if (! name)
|
||
name = "";
|
||
if (! file)
|
||
file = input_filename;
|
||
|
||
len = strlen (file);
|
||
q = alloca (9 * 2 + len + 1);
|
||
memcpy (q, file, len + 1);
|
||
clean_symbol_name (q);
|
||
|
||
sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
|
||
crc32_string (0, flag_random_seed));
|
||
|
||
p = q;
|
||
}
|
||
|
||
buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
|
||
|
||
/* Set up the name of the file-level functions we may need.
|
||
Use a global object (which is already required to be unique over
|
||
the program) rather than the file name (which imposes extra
|
||
constraints). */
|
||
sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
|
||
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
/* If KIND=='I', return a suitable global initializer (constructor) name.
|
||
If KIND=='D', return a suitable global clean-up (destructor) name. */
|
||
|
||
tree
|
||
get_file_function_name (int kind)
|
||
{
|
||
char p[2];
|
||
|
||
p[0] = kind;
|
||
p[1] = 0;
|
||
|
||
return get_file_function_name_long (p);
|
||
}
|
||
|
||
/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
|
||
The result is placed in BUFFER (which has length BIT_SIZE),
|
||
with one bit in each char ('\000' or '\001').
|
||
|
||
If the constructor is constant, NULL_TREE is returned.
|
||
Otherwise, a TREE_LIST of the non-constant elements is emitted. */
|
||
|
||
tree
|
||
get_set_constructor_bits (tree init, char *buffer, int bit_size)
|
||
{
|
||
int i;
|
||
tree vals;
|
||
HOST_WIDE_INT domain_min
|
||
= tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
|
||
tree non_const_bits = NULL_TREE;
|
||
|
||
for (i = 0; i < bit_size; i++)
|
||
buffer[i] = 0;
|
||
|
||
for (vals = TREE_OPERAND (init, 1);
|
||
vals != NULL_TREE; vals = TREE_CHAIN (vals))
|
||
{
|
||
if (!host_integerp (TREE_VALUE (vals), 0)
|
||
|| (TREE_PURPOSE (vals) != NULL_TREE
|
||
&& !host_integerp (TREE_PURPOSE (vals), 0)))
|
||
non_const_bits
|
||
= tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
|
||
else if (TREE_PURPOSE (vals) != NULL_TREE)
|
||
{
|
||
/* Set a range of bits to ones. */
|
||
HOST_WIDE_INT lo_index
|
||
= tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
|
||
HOST_WIDE_INT hi_index
|
||
= tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
|
||
|
||
if (lo_index < 0 || lo_index >= bit_size
|
||
|| hi_index < 0 || hi_index >= bit_size)
|
||
abort ();
|
||
for (; lo_index <= hi_index; lo_index++)
|
||
buffer[lo_index] = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Set a single bit to one. */
|
||
HOST_WIDE_INT index
|
||
= tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
|
||
if (index < 0 || index >= bit_size)
|
||
{
|
||
error ("invalid initializer for bit string");
|
||
return NULL_TREE;
|
||
}
|
||
buffer[index] = 1;
|
||
}
|
||
}
|
||
return non_const_bits;
|
||
}
|
||
|
||
/* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
|
||
The result is placed in BUFFER (which is an array of bytes).
|
||
If the constructor is constant, NULL_TREE is returned.
|
||
Otherwise, a TREE_LIST of the non-constant elements is emitted. */
|
||
|
||
tree
|
||
get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
|
||
{
|
||
int i;
|
||
int set_word_size = BITS_PER_UNIT;
|
||
int bit_size = wd_size * set_word_size;
|
||
int bit_pos = 0;
|
||
unsigned char *bytep = buffer;
|
||
char *bit_buffer = alloca (bit_size);
|
||
tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
|
||
|
||
for (i = 0; i < wd_size; i++)
|
||
buffer[i] = 0;
|
||
|
||
for (i = 0; i < bit_size; i++)
|
||
{
|
||
if (bit_buffer[i])
|
||
{
|
||
if (BYTES_BIG_ENDIAN)
|
||
*bytep |= (1 << (set_word_size - 1 - bit_pos));
|
||
else
|
||
*bytep |= 1 << bit_pos;
|
||
}
|
||
bit_pos++;
|
||
if (bit_pos >= set_word_size)
|
||
bit_pos = 0, bytep++;
|
||
}
|
||
return non_const_bits;
|
||
}
|
||
|
||
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
||
/* Complain that the tree code of NODE does not match the expected CODE.
|
||
FILE, LINE, and FUNCTION are of the caller. */
|
||
|
||
void
|
||
tree_check_failed (const tree node, enum tree_code code, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
|
||
tree_code_name[code], tree_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that we check for a class of tree
|
||
code, given in CL. */
|
||
|
||
void
|
||
tree_class_check_failed (const tree node, int cl, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
|
||
cl, TREE_CODE_CLASS (TREE_CODE (node)),
|
||
tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the bounds of a TREE_VEC's
|
||
(dynamically sized) vector. */
|
||
|
||
void
|
||
tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
|
||
idx + 1, len, function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the bounds of the operand
|
||
vector of an expression node. */
|
||
|
||
void
|
||
tree_operand_check_failed (int idx, enum tree_code code, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
|
||
idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
|
||
function, trim_filename (file), line);
|
||
}
|
||
#endif /* ENABLE_TREE_CHECKING */
|
||
|
||
/* For a new vector type node T, build the information necessary for
|
||
debugging output. */
|
||
|
||
static void
|
||
finish_vector_type (tree t)
|
||
{
|
||
layout_type (t);
|
||
|
||
{
|
||
tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
|
||
tree array = build_array_type (TREE_TYPE (t),
|
||
build_index_type (index));
|
||
tree rt = make_node (RECORD_TYPE);
|
||
|
||
TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
|
||
DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
|
||
layout_type (rt);
|
||
TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
|
||
/* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
|
||
the representation type, and we want to find that die when looking up
|
||
the vector type. This is most easily achieved by making the TYPE_UID
|
||
numbers equal. */
|
||
TYPE_UID (rt) = TYPE_UID (t);
|
||
}
|
||
}
|
||
|
||
/* Create nodes for all integer types (and error_mark_node) using the sizes
|
||
of C datatypes. The caller should call set_sizetype soon after calling
|
||
this function to select one of the types as sizetype. */
|
||
|
||
void
|
||
build_common_tree_nodes (int signed_char)
|
||
{
|
||
error_mark_node = make_node (ERROR_MARK);
|
||
TREE_TYPE (error_mark_node) = error_mark_node;
|
||
|
||
initialize_sizetypes ();
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
|
||
unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
|
||
|
||
/* Define `char', which is like either `signed char' or `unsigned char'
|
||
but not the same as either. */
|
||
char_type_node
|
||
= (signed_char
|
||
? make_signed_type (CHAR_TYPE_SIZE)
|
||
: make_unsigned_type (CHAR_TYPE_SIZE));
|
||
|
||
short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
|
||
short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
|
||
integer_type_node = make_signed_type (INT_TYPE_SIZE);
|
||
unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
|
||
long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
|
||
long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
|
||
long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
|
||
long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
|
||
|
||
/* Define a boolean type. This type only represents boolean values but
|
||
may be larger than char depending on the value of BOOL_TYPE_SIZE.
|
||
Front ends which want to override this size (i.e. Java) can redefine
|
||
boolean_type_node before calling build_common_tree_nodes_2. */
|
||
boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
|
||
TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
|
||
TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
|
||
TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
|
||
TYPE_PRECISION (boolean_type_node) = 1;
|
||
|
||
intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
|
||
intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
|
||
intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
|
||
intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
|
||
intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
|
||
|
||
unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
|
||
unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
|
||
unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
|
||
unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
|
||
unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
|
||
}
|
||
|
||
/* Call this function after calling build_common_tree_nodes and set_sizetype.
|
||
It will create several other common tree nodes. */
|
||
|
||
void
|
||
build_common_tree_nodes_2 (int short_double)
|
||
{
|
||
/* Define these next since types below may used them. */
|
||
integer_zero_node = build_int_2 (0, 0);
|
||
integer_one_node = build_int_2 (1, 0);
|
||
integer_minus_one_node = build_int_2 (-1, -1);
|
||
|
||
size_zero_node = size_int (0);
|
||
size_one_node = size_int (1);
|
||
bitsize_zero_node = bitsize_int (0);
|
||
bitsize_one_node = bitsize_int (1);
|
||
bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
|
||
|
||
boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
|
||
boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
|
||
|
||
void_type_node = make_node (VOID_TYPE);
|
||
layout_type (void_type_node);
|
||
|
||
/* We are not going to have real types in C with less than byte alignment,
|
||
so we might as well not have any types that claim to have it. */
|
||
TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
|
||
TYPE_USER_ALIGN (void_type_node) = 0;
|
||
|
||
null_pointer_node = build_int_2 (0, 0);
|
||
TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
|
||
layout_type (TREE_TYPE (null_pointer_node));
|
||
|
||
ptr_type_node = build_pointer_type (void_type_node);
|
||
const_ptr_type_node
|
||
= build_pointer_type (build_type_variant (void_type_node, 1, 0));
|
||
|
||
float_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
|
||
layout_type (float_type_node);
|
||
|
||
double_type_node = make_node (REAL_TYPE);
|
||
if (short_double)
|
||
TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
|
||
else
|
||
TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
|
||
layout_type (double_type_node);
|
||
|
||
long_double_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
|
||
layout_type (long_double_type_node);
|
||
|
||
float_ptr_type_node = build_pointer_type (float_type_node);
|
||
double_ptr_type_node = build_pointer_type (double_type_node);
|
||
long_double_ptr_type_node = build_pointer_type (long_double_type_node);
|
||
integer_ptr_type_node = build_pointer_type (integer_type_node);
|
||
|
||
complex_integer_type_node = make_node (COMPLEX_TYPE);
|
||
TREE_TYPE (complex_integer_type_node) = integer_type_node;
|
||
layout_type (complex_integer_type_node);
|
||
|
||
complex_float_type_node = make_node (COMPLEX_TYPE);
|
||
TREE_TYPE (complex_float_type_node) = float_type_node;
|
||
layout_type (complex_float_type_node);
|
||
|
||
complex_double_type_node = make_node (COMPLEX_TYPE);
|
||
TREE_TYPE (complex_double_type_node) = double_type_node;
|
||
layout_type (complex_double_type_node);
|
||
|
||
complex_long_double_type_node = make_node (COMPLEX_TYPE);
|
||
TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
|
||
layout_type (complex_long_double_type_node);
|
||
|
||
{
|
||
tree t;
|
||
BUILD_VA_LIST_TYPE (t);
|
||
|
||
/* Many back-ends define record types without setting TYPE_NAME.
|
||
If we copied the record type here, we'd keep the original
|
||
record type without a name. This breaks name mangling. So,
|
||
don't copy record types and let c_common_nodes_and_builtins()
|
||
declare the type to be __builtin_va_list. */
|
||
if (TREE_CODE (t) != RECORD_TYPE)
|
||
t = build_type_copy (t);
|
||
|
||
va_list_type_node = t;
|
||
}
|
||
|
||
unsigned_V4SI_type_node
|
||
= make_vector (V4SImode, unsigned_intSI_type_node, 1);
|
||
unsigned_V2HI_type_node
|
||
= make_vector (V2HImode, unsigned_intHI_type_node, 1);
|
||
unsigned_V2SI_type_node
|
||
= make_vector (V2SImode, unsigned_intSI_type_node, 1);
|
||
unsigned_V2DI_type_node
|
||
= make_vector (V2DImode, unsigned_intDI_type_node, 1);
|
||
unsigned_V4HI_type_node
|
||
= make_vector (V4HImode, unsigned_intHI_type_node, 1);
|
||
unsigned_V8QI_type_node
|
||
= make_vector (V8QImode, unsigned_intQI_type_node, 1);
|
||
unsigned_V8HI_type_node
|
||
= make_vector (V8HImode, unsigned_intHI_type_node, 1);
|
||
unsigned_V16QI_type_node
|
||
= make_vector (V16QImode, unsigned_intQI_type_node, 1);
|
||
unsigned_V1DI_type_node
|
||
= make_vector (V1DImode, unsigned_intDI_type_node, 1);
|
||
|
||
V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
|
||
V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
|
||
V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
|
||
V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
|
||
V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
|
||
V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
|
||
V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
|
||
V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
|
||
V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
|
||
V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
|
||
V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
|
||
V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
|
||
V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
|
||
V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
|
||
}
|
||
|
||
/* Returns a vector tree node given a vector mode, the inner type, and
|
||
the signness. */
|
||
|
||
static tree
|
||
make_vector (enum machine_mode mode, tree innertype, int unsignedp)
|
||
{
|
||
tree t;
|
||
|
||
t = make_node (VECTOR_TYPE);
|
||
TREE_TYPE (t) = innertype;
|
||
TYPE_MODE (t) = mode;
|
||
TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
|
||
finish_vector_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Given an initializer INIT, return TRUE if INIT is zero or some
|
||
aggregate of zeros. Otherwise return FALSE. */
|
||
|
||
bool
|
||
initializer_zerop (tree init)
|
||
{
|
||
STRIP_NOPS (init);
|
||
|
||
switch (TREE_CODE (init))
|
||
{
|
||
case INTEGER_CST:
|
||
return integer_zerop (init);
|
||
case REAL_CST:
|
||
return real_zerop (init)
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
|
||
case COMPLEX_CST:
|
||
return integer_zerop (init)
|
||
|| (real_zerop (init)
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
|
||
&& ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
|
||
case CONSTRUCTOR:
|
||
{
|
||
if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
|
||
{
|
||
tree aggr_init = CONSTRUCTOR_ELTS (init);
|
||
|
||
while (aggr_init)
|
||
{
|
||
if (! initializer_zerop (TREE_VALUE (aggr_init)))
|
||
return false;
|
||
aggr_init = TREE_CHAIN (aggr_init);
|
||
}
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
#include "gt-tree.h"
|