8sa1-gcc/libgo/go/index/suffixarray/sais2.go
2019-09-06 18:12:46 +00:00

1742 lines
52 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by go generate; DO NOT EDIT.
package suffixarray
func text_64(text []byte, sa []int64) {
if int(int64(len(text))) != len(text) || len(text) != len(sa) {
panic("suffixarray: misuse of text_64")
}
sais_8_64(text, 256, sa, make([]int64, 2*256))
}
func sais_8_64(text []byte, textMax int, sa, tmp []int64) {
if len(sa) != len(text) || len(tmp) < int(textMax) {
panic("suffixarray: misuse of sais_8_64")
}
// Trivial base cases. Sorting 0 or 1 things is easy.
if len(text) == 0 {
return
}
if len(text) == 1 {
sa[0] = 0
return
}
// Establish slices indexed by text character
// holding character frequency and bucket-sort offsets.
// If there's only enough tmp for one slice,
// we make it the bucket offsets and recompute
// the character frequency each time we need it.
var freq, bucket []int64
if len(tmp) >= 2*textMax {
freq, bucket = tmp[:textMax], tmp[textMax:2*textMax]
freq[0] = -1 // mark as uninitialized
} else {
freq, bucket = nil, tmp[:textMax]
}
// The SAIS algorithm.
// Each of these calls makes one scan through sa.
// See the individual functions for documentation
// about each's role in the algorithm.
numLMS := placeLMS_8_64(text, sa, freq, bucket)
if numLMS <= 1 {
// 0 or 1 items are already sorted. Do nothing.
} else {
induceSubL_8_64(text, sa, freq, bucket)
induceSubS_8_64(text, sa, freq, bucket)
length_8_64(text, sa, numLMS)
maxID := assignID_8_64(text, sa, numLMS)
if maxID < numLMS {
map_64(sa, numLMS)
recurse_64(sa, tmp, numLMS, maxID)
unmap_8_64(text, sa, numLMS)
} else {
// If maxID == numLMS, then each LMS-substring
// is unique, so the relative ordering of two LMS-suffixes
// is determined by just the leading LMS-substring.
// That is, the LMS-suffix sort order matches the
// (simpler) LMS-substring sort order.
// Copy the original LMS-substring order into the
// suffix array destination.
copy(sa, sa[len(sa)-numLMS:])
}
expand_8_64(text, freq, bucket, sa, numLMS)
}
induceL_8_64(text, sa, freq, bucket)
induceS_8_64(text, sa, freq, bucket)
// Mark for caller that we overwrote tmp.
tmp[0] = -1
}
func sais_32(text []int32, textMax int, sa, tmp []int32) {
if len(sa) != len(text) || len(tmp) < int(textMax) {
panic("suffixarray: misuse of sais_32")
}
// Trivial base cases. Sorting 0 or 1 things is easy.
if len(text) == 0 {
return
}
if len(text) == 1 {
sa[0] = 0
return
}
// Establish slices indexed by text character
// holding character frequency and bucket-sort offsets.
// If there's only enough tmp for one slice,
// we make it the bucket offsets and recompute
// the character frequency each time we need it.
var freq, bucket []int32
if len(tmp) >= 2*textMax {
freq, bucket = tmp[:textMax], tmp[textMax:2*textMax]
freq[0] = -1 // mark as uninitialized
} else {
freq, bucket = nil, tmp[:textMax]
}
// The SAIS algorithm.
// Each of these calls makes one scan through sa.
// See the individual functions for documentation
// about each's role in the algorithm.
numLMS := placeLMS_32(text, sa, freq, bucket)
if numLMS <= 1 {
// 0 or 1 items are already sorted. Do nothing.
} else {
induceSubL_32(text, sa, freq, bucket)
induceSubS_32(text, sa, freq, bucket)
length_32(text, sa, numLMS)
maxID := assignID_32(text, sa, numLMS)
if maxID < numLMS {
map_32(sa, numLMS)
recurse_32(sa, tmp, numLMS, maxID)
unmap_32(text, sa, numLMS)
} else {
// If maxID == numLMS, then each LMS-substring
// is unique, so the relative ordering of two LMS-suffixes
// is determined by just the leading LMS-substring.
// That is, the LMS-suffix sort order matches the
// (simpler) LMS-substring sort order.
// Copy the original LMS-substring order into the
// suffix array destination.
copy(sa, sa[len(sa)-numLMS:])
}
expand_32(text, freq, bucket, sa, numLMS)
}
induceL_32(text, sa, freq, bucket)
induceS_32(text, sa, freq, bucket)
// Mark for caller that we overwrote tmp.
tmp[0] = -1
}
func sais_64(text []int64, textMax int, sa, tmp []int64) {
if len(sa) != len(text) || len(tmp) < int(textMax) {
panic("suffixarray: misuse of sais_64")
}
// Trivial base cases. Sorting 0 or 1 things is easy.
if len(text) == 0 {
return
}
if len(text) == 1 {
sa[0] = 0
return
}
// Establish slices indexed by text character
// holding character frequency and bucket-sort offsets.
// If there's only enough tmp for one slice,
// we make it the bucket offsets and recompute
// the character frequency each time we need it.
var freq, bucket []int64
if len(tmp) >= 2*textMax {
freq, bucket = tmp[:textMax], tmp[textMax:2*textMax]
freq[0] = -1 // mark as uninitialized
} else {
freq, bucket = nil, tmp[:textMax]
}
// The SAIS algorithm.
// Each of these calls makes one scan through sa.
// See the individual functions for documentation
// about each's role in the algorithm.
numLMS := placeLMS_64(text, sa, freq, bucket)
if numLMS <= 1 {
// 0 or 1 items are already sorted. Do nothing.
} else {
induceSubL_64(text, sa, freq, bucket)
induceSubS_64(text, sa, freq, bucket)
length_64(text, sa, numLMS)
maxID := assignID_64(text, sa, numLMS)
if maxID < numLMS {
map_64(sa, numLMS)
recurse_64(sa, tmp, numLMS, maxID)
unmap_64(text, sa, numLMS)
} else {
// If maxID == numLMS, then each LMS-substring
// is unique, so the relative ordering of two LMS-suffixes
// is determined by just the leading LMS-substring.
// That is, the LMS-suffix sort order matches the
// (simpler) LMS-substring sort order.
// Copy the original LMS-substring order into the
// suffix array destination.
copy(sa, sa[len(sa)-numLMS:])
}
expand_64(text, freq, bucket, sa, numLMS)
}
induceL_64(text, sa, freq, bucket)
induceS_64(text, sa, freq, bucket)
// Mark for caller that we overwrote tmp.
tmp[0] = -1
}
func freq_8_64(text []byte, freq, bucket []int64) []int64 {
if freq != nil && freq[0] >= 0 {
return freq // already computed
}
if freq == nil {
freq = bucket
}
freq = freq[:256] // eliminate bounds check for freq[c] below
for i := range freq {
freq[i] = 0
}
for _, c := range text {
freq[c]++
}
return freq
}
func freq_32(text []int32, freq, bucket []int32) []int32 {
if freq != nil && freq[0] >= 0 {
return freq // already computed
}
if freq == nil {
freq = bucket
}
for i := range freq {
freq[i] = 0
}
for _, c := range text {
freq[c]++
}
return freq
}
func freq_64(text []int64, freq, bucket []int64) []int64 {
if freq != nil && freq[0] >= 0 {
return freq // already computed
}
if freq == nil {
freq = bucket
}
for i := range freq {
freq[i] = 0
}
for _, c := range text {
freq[c]++
}
return freq
}
func bucketMin_8_64(text []byte, freq, bucket []int64) {
freq = freq_8_64(text, freq, bucket)
freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below
bucket = bucket[:256] // eliminate bounds check for bucket[i] below
total := int64(0)
for i, n := range freq {
bucket[i] = total
total += n
}
}
func bucketMin_32(text []int32, freq, bucket []int32) {
freq = freq_32(text, freq, bucket)
total := int32(0)
for i, n := range freq {
bucket[i] = total
total += n
}
}
func bucketMin_64(text []int64, freq, bucket []int64) {
freq = freq_64(text, freq, bucket)
total := int64(0)
for i, n := range freq {
bucket[i] = total
total += n
}
}
func bucketMax_8_64(text []byte, freq, bucket []int64) {
freq = freq_8_64(text, freq, bucket)
freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below
bucket = bucket[:256] // eliminate bounds check for bucket[i] below
total := int64(0)
for i, n := range freq {
total += n
bucket[i] = total
}
}
func bucketMax_32(text []int32, freq, bucket []int32) {
freq = freq_32(text, freq, bucket)
total := int32(0)
for i, n := range freq {
total += n
bucket[i] = total
}
}
func bucketMax_64(text []int64, freq, bucket []int64) {
freq = freq_64(text, freq, bucket)
total := int64(0)
for i, n := range freq {
total += n
bucket[i] = total
}
}
func placeLMS_8_64(text []byte, sa, freq, bucket []int64) int {
bucketMax_8_64(text, freq, bucket)
numLMS := 0
lastB := int64(-1)
bucket = bucket[:256] // eliminate bounds check for bucket[c1] below
// The next stanza of code (until the blank line) loop backward
// over text, stopping to execute a code body at each position i
// such that text[i] is an L-character and text[i+1] is an S-character.
// That is, i+1 is the position of the start of an LMS-substring.
// These could be hoisted out into a function with a callback,
// but at a significant speed cost. Instead, we just write these
// seven lines a few times in this source file. The copies below
// refer back to the pattern established by this original as the
// "LMS-substring iterator".
//
// In every scan through the text, c0, c1 are successive characters of text.
// In this backward scan, c0 == text[i] and c1 == text[i+1].
// By scanning backward, we can keep track of whether the current
// position is type-S or type-L according to the usual definition:
//
// - position len(text) is type S with text[len(text)] == -1 (the sentinel)
// - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S.
// - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L.
//
// The backward scan lets us maintain the current type,
// update it when we see c0 != c1, and otherwise leave it alone.
// We want to identify all S positions with a preceding L.
// Position len(text) is one such position by definition, but we have
// nowhere to write it down, so we eliminate it by untruthfully
// setting isTypeS = false at the start of the loop.
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Bucket the index i+1 for the start of an LMS-substring.
b := bucket[c1] - 1
bucket[c1] = b
sa[b] = int64(i + 1)
lastB = b
numLMS++
}
}
// We recorded the LMS-substring starts but really want the ends.
// Luckily, with two differences, the start indexes and the end indexes are the same.
// The first difference is that the rightmost LMS-substring's end index is len(text),
// so the caller must pretend that sa[-1] == len(text), as noted above.
// The second difference is that the first leftmost LMS-substring start index
// does not end an earlier LMS-substring, so as an optimization we can omit
// that leftmost LMS-substring start index (the last one we wrote).
//
// Exception: if numLMS <= 1, the caller is not going to bother with
// the recursion at all and will treat the result as containing LMS-substring starts.
// In that case, we don't remove the final entry.
if numLMS > 1 {
sa[lastB] = 0
}
return numLMS
}
func placeLMS_32(text []int32, sa, freq, bucket []int32) int {
bucketMax_32(text, freq, bucket)
numLMS := 0
lastB := int32(-1)
// The next stanza of code (until the blank line) loop backward
// over text, stopping to execute a code body at each position i
// such that text[i] is an L-character and text[i+1] is an S-character.
// That is, i+1 is the position of the start of an LMS-substring.
// These could be hoisted out into a function with a callback,
// but at a significant speed cost. Instead, we just write these
// seven lines a few times in this source file. The copies below
// refer back to the pattern established by this original as the
// "LMS-substring iterator".
//
// In every scan through the text, c0, c1 are successive characters of text.
// In this backward scan, c0 == text[i] and c1 == text[i+1].
// By scanning backward, we can keep track of whether the current
// position is type-S or type-L according to the usual definition:
//
// - position len(text) is type S with text[len(text)] == -1 (the sentinel)
// - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S.
// - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L.
//
// The backward scan lets us maintain the current type,
// update it when we see c0 != c1, and otherwise leave it alone.
// We want to identify all S positions with a preceding L.
// Position len(text) is one such position by definition, but we have
// nowhere to write it down, so we eliminate it by untruthfully
// setting isTypeS = false at the start of the loop.
c0, c1, isTypeS := int32(0), int32(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Bucket the index i+1 for the start of an LMS-substring.
b := bucket[c1] - 1
bucket[c1] = b
sa[b] = int32(i + 1)
lastB = b
numLMS++
}
}
// We recorded the LMS-substring starts but really want the ends.
// Luckily, with two differences, the start indexes and the end indexes are the same.
// The first difference is that the rightmost LMS-substring's end index is len(text),
// so the caller must pretend that sa[-1] == len(text), as noted above.
// The second difference is that the first leftmost LMS-substring start index
// does not end an earlier LMS-substring, so as an optimization we can omit
// that leftmost LMS-substring start index (the last one we wrote).
//
// Exception: if numLMS <= 1, the caller is not going to bother with
// the recursion at all and will treat the result as containing LMS-substring starts.
// In that case, we don't remove the final entry.
if numLMS > 1 {
sa[lastB] = 0
}
return numLMS
}
func placeLMS_64(text []int64, sa, freq, bucket []int64) int {
bucketMax_64(text, freq, bucket)
numLMS := 0
lastB := int64(-1)
// The next stanza of code (until the blank line) loop backward
// over text, stopping to execute a code body at each position i
// such that text[i] is an L-character and text[i+1] is an S-character.
// That is, i+1 is the position of the start of an LMS-substring.
// These could be hoisted out into a function with a callback,
// but at a significant speed cost. Instead, we just write these
// seven lines a few times in this source file. The copies below
// refer back to the pattern established by this original as the
// "LMS-substring iterator".
//
// In every scan through the text, c0, c1 are successive characters of text.
// In this backward scan, c0 == text[i] and c1 == text[i+1].
// By scanning backward, we can keep track of whether the current
// position is type-S or type-L according to the usual definition:
//
// - position len(text) is type S with text[len(text)] == -1 (the sentinel)
// - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S.
// - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L.
//
// The backward scan lets us maintain the current type,
// update it when we see c0 != c1, and otherwise leave it alone.
// We want to identify all S positions with a preceding L.
// Position len(text) is one such position by definition, but we have
// nowhere to write it down, so we eliminate it by untruthfully
// setting isTypeS = false at the start of the loop.
c0, c1, isTypeS := int64(0), int64(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Bucket the index i+1 for the start of an LMS-substring.
b := bucket[c1] - 1
bucket[c1] = b
sa[b] = int64(i + 1)
lastB = b
numLMS++
}
}
// We recorded the LMS-substring starts but really want the ends.
// Luckily, with two differences, the start indexes and the end indexes are the same.
// The first difference is that the rightmost LMS-substring's end index is len(text),
// so the caller must pretend that sa[-1] == len(text), as noted above.
// The second difference is that the first leftmost LMS-substring start index
// does not end an earlier LMS-substring, so as an optimization we can omit
// that leftmost LMS-substring start index (the last one we wrote).
//
// Exception: if numLMS <= 1, the caller is not going to bother with
// the recursion at all and will treat the result as containing LMS-substring starts.
// In that case, we don't remove the final entry.
if numLMS > 1 {
sa[lastB] = 0
}
return numLMS
}
func induceSubL_8_64(text []byte, sa, freq, bucket []int64) {
// Initialize positions for left side of character buckets.
bucketMin_8_64(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// As we scan the array left-to-right, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type L.
// Because j-1 is type L, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type L from type S.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type S.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ > i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type S, at which point it must stop.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing
// only the indexes of the leftmost L-type indexes for each LMS-substring.
//
// The suffix array sa therefore serves simultaneously as input, output,
// and a miraculously well-tailored work queue.
// placeLMS_8_64 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index:
// we're processing suffixes in sorted order
// and accessing buckets indexed by the
// byte before the sorted order, which still
// has very good locality.
// Invariant: b is cached, possibly dirty copy of bucket[cB].
cB := c1
b := bucket[cB]
sa[b] = int64(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
if j < 0 {
// Leave discovered type-S index for caller.
sa[i] = int64(-j)
continue
}
sa[i] = 0
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
k := j - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int64(k)
b++
}
}
func induceSubL_32(text []int32, sa, freq, bucket []int32) {
// Initialize positions for left side of character buckets.
bucketMin_32(text, freq, bucket)
// As we scan the array left-to-right, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type L.
// Because j-1 is type L, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type L from type S.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type S.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ > i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type S, at which point it must stop.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing
// only the indexes of the leftmost L-type indexes for each LMS-substring.
//
// The suffix array sa therefore serves simultaneously as input, output,
// and a miraculously well-tailored work queue.
// placeLMS_32 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index:
// we're processing suffixes in sorted order
// and accessing buckets indexed by the
// int32 before the sorted order, which still
// has very good locality.
// Invariant: b is cached, possibly dirty copy of bucket[cB].
cB := c1
b := bucket[cB]
sa[b] = int32(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
if j < 0 {
// Leave discovered type-S index for caller.
sa[i] = int32(-j)
continue
}
sa[i] = 0
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
k := j - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int32(k)
b++
}
}
func induceSubL_64(text []int64, sa, freq, bucket []int64) {
// Initialize positions for left side of character buckets.
bucketMin_64(text, freq, bucket)
// As we scan the array left-to-right, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type L.
// Because j-1 is type L, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type L from type S.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type S.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ > i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type S, at which point it must stop.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing
// only the indexes of the leftmost L-type indexes for each LMS-substring.
//
// The suffix array sa therefore serves simultaneously as input, output,
// and a miraculously well-tailored work queue.
// placeLMS_64 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index:
// we're processing suffixes in sorted order
// and accessing buckets indexed by the
// int64 before the sorted order, which still
// has very good locality.
// Invariant: b is cached, possibly dirty copy of bucket[cB].
cB := c1
b := bucket[cB]
sa[b] = int64(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
if j < 0 {
// Leave discovered type-S index for caller.
sa[i] = int64(-j)
continue
}
sa[i] = 0
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
k := j - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int64(k)
b++
}
}
func induceSubS_8_64(text []byte, sa, freq, bucket []int64) {
// Initialize positions for right side of character buckets.
bucketMax_8_64(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// Analogous to induceSubL_8_64 above,
// as we scan the array right-to-left, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type S.
// Because j-1 is type S, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type S from type L.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type L.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ < i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type L, at which point it must stop.
// That index (preceded by one of type L) is an LMS-substring start.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i] and compact into the top of sa,
// so that the loop finishes with the top of sa containing exactly
// the LMS-substring start indexes, sorted by LMS-substring.
// Cache recently used bucket index:
cB := byte(0)
b := bucket[cB]
top := len(sa)
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
sa[i] = 0
if j < 0 {
// Leave discovered LMS-substring start index for caller.
top--
sa[top] = int64(-j)
continue
}
// Index j was on work queue, meaning k := j-1 is S-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller.
k := j - 1
c1 := text[k]
c0 := text[k-1]
if c0 > c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int64(k)
}
}
func induceSubS_32(text []int32, sa, freq, bucket []int32) {
// Initialize positions for right side of character buckets.
bucketMax_32(text, freq, bucket)
// Analogous to induceSubL_32 above,
// as we scan the array right-to-left, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type S.
// Because j-1 is type S, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type S from type L.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type L.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ < i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type L, at which point it must stop.
// That index (preceded by one of type L) is an LMS-substring start.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i] and compact into the top of sa,
// so that the loop finishes with the top of sa containing exactly
// the LMS-substring start indexes, sorted by LMS-substring.
// Cache recently used bucket index:
cB := int32(0)
b := bucket[cB]
top := len(sa)
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
sa[i] = 0
if j < 0 {
// Leave discovered LMS-substring start index for caller.
top--
sa[top] = int32(-j)
continue
}
// Index j was on work queue, meaning k := j-1 is S-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller.
k := j - 1
c1 := text[k]
c0 := text[k-1]
if c0 > c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int32(k)
}
}
func induceSubS_64(text []int64, sa, freq, bucket []int64) {
// Initialize positions for right side of character buckets.
bucketMax_64(text, freq, bucket)
// Analogous to induceSubL_64 above,
// as we scan the array right-to-left, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type S.
// Because j-1 is type S, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type S from type L.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type L.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ < i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type L, at which point it must stop.
// That index (preceded by one of type L) is an LMS-substring start.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i] and compact into the top of sa,
// so that the loop finishes with the top of sa containing exactly
// the LMS-substring start indexes, sorted by LMS-substring.
// Cache recently used bucket index:
cB := int64(0)
b := bucket[cB]
top := len(sa)
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
sa[i] = 0
if j < 0 {
// Leave discovered LMS-substring start index for caller.
top--
sa[top] = int64(-j)
continue
}
// Index j was on work queue, meaning k := j-1 is S-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller.
k := j - 1
c1 := text[k]
c0 := text[k-1]
if c0 > c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int64(k)
}
}
func length_8_64(text []byte, sa []int64, numLMS int) {
end := 0 // index of current LMS-substring end (0 indicates final LMS-substring)
// The encoding of N text bytes into a “length” word
// adds 1 to each byte, packs them into the bottom
// N*8 bits of a word, and then bitwise inverts the result.
// That is, the text sequence A B C (hex 41 42 43)
// encodes as ^uint64(0x42_43_44).
// LMS-substrings can never start or end with 0xFF.
// Adding 1 ensures the encoded byte sequence never
// starts or ends with 0x00, so that present bytes can be
// distinguished from zero-padding in the top bits,
// so the length need not be separately encoded.
// Inverting the bytes increases the chance that a
// 4-byte encoding will still be ≥ len(text).
// In particular, if the first byte is ASCII (<= 0x7E, so +1 <= 0x7F)
// then the high bit of the inversion will be set,
// making it clearly not a valid length (it would be a negative one).
//
// cx holds the pre-inverted encoding (the packed incremented bytes).
cx := uint64(0) // byte-only
// This stanza (until the blank line) is the "LMS-substring iterator",
// described in placeLMS_8_64 above, with one line added to maintain cx.
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
cx = cx<<8 | uint64(c1+1) // byte-only
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Index j = i+1 is the start of an LMS-substring.
// Compute length or encoded text to store in sa[j/2].
j := i + 1
var code int64
if end == 0 {
code = 0
} else {
code = int64(end - j)
if code <= 64/8 && ^cx >= uint64(len(text)) { // byte-only
code = int64(^cx) // byte-only
} // byte-only
}
sa[j>>1] = code
end = j + 1
cx = uint64(c1 + 1) // byte-only
}
}
}
func length_32(text []int32, sa []int32, numLMS int) {
end := 0 // index of current LMS-substring end (0 indicates final LMS-substring)
// The encoding of N text int32s into a “length” word
// adds 1 to each int32, packs them into the bottom
// N*8 bits of a word, and then bitwise inverts the result.
// That is, the text sequence A B C (hex 41 42 43)
// encodes as ^uint32(0x42_43_44).
// LMS-substrings can never start or end with 0xFF.
// Adding 1 ensures the encoded int32 sequence never
// starts or ends with 0x00, so that present int32s can be
// distinguished from zero-padding in the top bits,
// so the length need not be separately encoded.
// Inverting the int32s increases the chance that a
// 4-int32 encoding will still be ≥ len(text).
// In particular, if the first int32 is ASCII (<= 0x7E, so +1 <= 0x7F)
// then the high bit of the inversion will be set,
// making it clearly not a valid length (it would be a negative one).
//
// cx holds the pre-inverted encoding (the packed incremented int32s).
// This stanza (until the blank line) is the "LMS-substring iterator",
// described in placeLMS_32 above, with one line added to maintain cx.
c0, c1, isTypeS := int32(0), int32(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Index j = i+1 is the start of an LMS-substring.
// Compute length or encoded text to store in sa[j/2].
j := i + 1
var code int32
if end == 0 {
code = 0
} else {
code = int32(end - j)
}
sa[j>>1] = code
end = j + 1
}
}
}
func length_64(text []int64, sa []int64, numLMS int) {
end := 0 // index of current LMS-substring end (0 indicates final LMS-substring)
// The encoding of N text int64s into a “length” word
// adds 1 to each int64, packs them into the bottom
// N*8 bits of a word, and then bitwise inverts the result.
// That is, the text sequence A B C (hex 41 42 43)
// encodes as ^uint64(0x42_43_44).
// LMS-substrings can never start or end with 0xFF.
// Adding 1 ensures the encoded int64 sequence never
// starts or ends with 0x00, so that present int64s can be
// distinguished from zero-padding in the top bits,
// so the length need not be separately encoded.
// Inverting the int64s increases the chance that a
// 4-int64 encoding will still be ≥ len(text).
// In particular, if the first int64 is ASCII (<= 0x7E, so +1 <= 0x7F)
// then the high bit of the inversion will be set,
// making it clearly not a valid length (it would be a negative one).
//
// cx holds the pre-inverted encoding (the packed incremented int64s).
// This stanza (until the blank line) is the "LMS-substring iterator",
// described in placeLMS_64 above, with one line added to maintain cx.
c0, c1, isTypeS := int64(0), int64(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Index j = i+1 is the start of an LMS-substring.
// Compute length or encoded text to store in sa[j/2].
j := i + 1
var code int64
if end == 0 {
code = 0
} else {
code = int64(end - j)
}
sa[j>>1] = code
end = j + 1
}
}
}
func assignID_8_64(text []byte, sa []int64, numLMS int) int {
id := 0
lastLen := int64(-1) // impossible
lastPos := int64(0)
for _, j := range sa[len(sa)-numLMS:] {
// Is the LMS-substring at index j new, or is it the same as the last one we saw?
n := sa[j/2]
if n != lastLen {
goto New
}
if uint64(n) >= uint64(len(text)) {
// “Length” is really encoded full text, and they match.
goto Same
}
{
// Compare actual texts.
n := int(n)
this := text[j:][:n]
last := text[lastPos:][:n]
for i := 0; i < n; i++ {
if this[i] != last[i] {
goto New
}
}
goto Same
}
New:
id++
lastPos = j
lastLen = n
Same:
sa[j/2] = int64(id)
}
return id
}
func assignID_32(text []int32, sa []int32, numLMS int) int {
id := 0
lastLen := int32(-1) // impossible
lastPos := int32(0)
for _, j := range sa[len(sa)-numLMS:] {
// Is the LMS-substring at index j new, or is it the same as the last one we saw?
n := sa[j/2]
if n != lastLen {
goto New
}
if uint32(n) >= uint32(len(text)) {
// “Length” is really encoded full text, and they match.
goto Same
}
{
// Compare actual texts.
n := int(n)
this := text[j:][:n]
last := text[lastPos:][:n]
for i := 0; i < n; i++ {
if this[i] != last[i] {
goto New
}
}
goto Same
}
New:
id++
lastPos = j
lastLen = n
Same:
sa[j/2] = int32(id)
}
return id
}
func assignID_64(text []int64, sa []int64, numLMS int) int {
id := 0
lastLen := int64(-1) // impossible
lastPos := int64(0)
for _, j := range sa[len(sa)-numLMS:] {
// Is the LMS-substring at index j new, or is it the same as the last one we saw?
n := sa[j/2]
if n != lastLen {
goto New
}
if uint64(n) >= uint64(len(text)) {
// “Length” is really encoded full text, and they match.
goto Same
}
{
// Compare actual texts.
n := int(n)
this := text[j:][:n]
last := text[lastPos:][:n]
for i := 0; i < n; i++ {
if this[i] != last[i] {
goto New
}
}
goto Same
}
New:
id++
lastPos = j
lastLen = n
Same:
sa[j/2] = int64(id)
}
return id
}
func map_64(sa []int64, numLMS int) {
w := len(sa)
for i := len(sa) / 2; i >= 0; i-- {
j := sa[i]
if j > 0 {
w--
sa[w] = j - 1
}
}
}
func recurse_64(sa, oldTmp []int64, numLMS, maxID int) {
dst, saTmp, text := sa[:numLMS], sa[numLMS:len(sa)-numLMS], sa[len(sa)-numLMS:]
// Set up temporary space for recursive call.
// We must pass sais_64 a tmp buffer wiith at least maxID entries.
//
// The subproblem is guaranteed to have length at most len(sa)/2,
// so that sa can hold both the subproblem and its suffix array.
// Nearly all the time, however, the subproblem has length < len(sa)/3,
// in which case there is a subproblem-sized middle of sa that
// we can reuse for temporary space (saTmp).
// When recurse_64 is called from sais_8_64, oldTmp is length 512
// (from text_64), and saTmp will typically be much larger, so we'll use saTmp.
// When deeper recursions come back to recurse_64, now oldTmp is
// the saTmp from the top-most recursion, it is typically larger than
// the current saTmp (because the current sa gets smaller and smaller
// as the recursion gets deeper), and we keep reusing that top-most
// large saTmp instead of the offered smaller ones.
//
// Why is the subproblem length so often just under len(sa)/3?
// See Nong, Zhang, and Chen, section 3.6 for a plausible explanation.
// In brief, the len(sa)/2 case would correspond to an SLSLSLSLSLSL pattern
// in the input, perfect alternation of larger and smaller input bytes.
// Real text doesn't do that. If each L-type index is randomly followed
// by either an L-type or S-type index, then half the substrings will
// be of the form SLS, but the other half will be longer. Of that half,
// half (a quarter overall) will be SLLS; an eighth will be SLLLS, and so on.
// Not counting the final S in each (which overlaps the first S in the next),
// This works out to an average length 2×½ + 3×¼ + 4×⅛ + ... = 3.
// The space we need is further reduced by the fact that many of the
// short patterns like SLS will often be the same character sequences
// repeated throughout the text, reducing maxID relative to numLMS.
//
// For short inputs, the averages may not run in our favor, but then we
// can often fall back to using the length-512 tmp available in the
// top-most call. (Also a short allocation would not be a big deal.)
//
// For pathological inputs, we fall back to allocating a new tmp of length
// max(maxID, numLMS/2). This level of the recursion needs maxID,
// and all deeper levels of the recursion will need no more than numLMS/2,
// so this one allocation is guaranteed to suffice for the entire stack
// of recursive calls.
tmp := oldTmp
if len(tmp) < len(saTmp) {
tmp = saTmp
}
if len(tmp) < numLMS {
// TestSAIS/forcealloc reaches this code.
n := maxID
if n < numLMS/2 {
n = numLMS / 2
}
tmp = make([]int64, n)
}
// sais_64 requires that the caller arrange to clear dst,
// because in general the caller may know dst is
// freshly-allocated and already cleared. But this one is not.
for i := range dst {
dst[i] = 0
}
sais_64(text, maxID, dst, tmp)
}
func unmap_8_64(text []byte, sa []int64, numLMS int) {
unmap := sa[len(sa)-numLMS:]
j := len(unmap)
// "LMS-substring iterator" (see placeLMS_8_64 above).
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Populate inverse map.
j--
unmap[j] = int64(i + 1)
}
}
// Apply inverse map to subproblem suffix array.
sa = sa[:numLMS]
for i := 0; i < len(sa); i++ {
sa[i] = unmap[sa[i]]
}
}
func unmap_32(text []int32, sa []int32, numLMS int) {
unmap := sa[len(sa)-numLMS:]
j := len(unmap)
// "LMS-substring iterator" (see placeLMS_32 above).
c0, c1, isTypeS := int32(0), int32(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Populate inverse map.
j--
unmap[j] = int32(i + 1)
}
}
// Apply inverse map to subproblem suffix array.
sa = sa[:numLMS]
for i := 0; i < len(sa); i++ {
sa[i] = unmap[sa[i]]
}
}
func unmap_64(text []int64, sa []int64, numLMS int) {
unmap := sa[len(sa)-numLMS:]
j := len(unmap)
// "LMS-substring iterator" (see placeLMS_64 above).
c0, c1, isTypeS := int64(0), int64(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Populate inverse map.
j--
unmap[j] = int64(i + 1)
}
}
// Apply inverse map to subproblem suffix array.
sa = sa[:numLMS]
for i := 0; i < len(sa); i++ {
sa[i] = unmap[sa[i]]
}
}
func expand_8_64(text []byte, freq, bucket, sa []int64, numLMS int) {
bucketMax_8_64(text, freq, bucket)
bucket = bucket[:256] // eliminate bound check for bucket[c] below
// Loop backward through sa, always tracking
// the next index to populate from sa[:numLMS].
// When we get to one, populate it.
// Zero the rest of the slots; they have dead values in them.
x := numLMS - 1
saX := sa[x]
c := text[saX]
b := bucket[c] - 1
bucket[c] = b
for i := len(sa) - 1; i >= 0; i-- {
if i != int(b) {
sa[i] = 0
continue
}
sa[i] = saX
// Load next entry to put down (if any).
if x > 0 {
x--
saX = sa[x] // TODO bounds check
c = text[saX]
b = bucket[c] - 1
bucket[c] = b
}
}
}
func expand_32(text []int32, freq, bucket, sa []int32, numLMS int) {
bucketMax_32(text, freq, bucket)
// Loop backward through sa, always tracking
// the next index to populate from sa[:numLMS].
// When we get to one, populate it.
// Zero the rest of the slots; they have dead values in them.
x := numLMS - 1
saX := sa[x]
c := text[saX]
b := bucket[c] - 1
bucket[c] = b
for i := len(sa) - 1; i >= 0; i-- {
if i != int(b) {
sa[i] = 0
continue
}
sa[i] = saX
// Load next entry to put down (if any).
if x > 0 {
x--
saX = sa[x] // TODO bounds check
c = text[saX]
b = bucket[c] - 1
bucket[c] = b
}
}
}
func expand_64(text []int64, freq, bucket, sa []int64, numLMS int) {
bucketMax_64(text, freq, bucket)
// Loop backward through sa, always tracking
// the next index to populate from sa[:numLMS].
// When we get to one, populate it.
// Zero the rest of the slots; they have dead values in them.
x := numLMS - 1
saX := sa[x]
c := text[saX]
b := bucket[c] - 1
bucket[c] = b
for i := len(sa) - 1; i >= 0; i-- {
if i != int(b) {
sa[i] = 0
continue
}
sa[i] = saX
// Load next entry to put down (if any).
if x > 0 {
x--
saX = sa[x] // TODO bounds check
c = text[saX]
b = bucket[c] - 1
bucket[c] = b
}
}
}
func induceL_8_64(text []byte, sa, freq, bucket []int64) {
// Initialize positions for left side of character buckets.
bucketMin_8_64(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// This scan is similar to the one in induceSubL_8_64 above.
// That one arranges to clear all but the leftmost L-type indexes.
// This scan leaves all the L-type indexes and the original S-type
// indexes, but it negates the positive leftmost L-type indexes
// (the ones that induceS_8_64 needs to process).
// expand_8_64 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index.
cB := c1
b := bucket[cB]
sa[b] = int64(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j <= 0 {
// Skip empty or negated entry (including negated zero).
continue
}
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller. The caller can't tell the difference between
// an empty slot and a non-empty zero, but there's no need
// to distinguish them anyway: the final suffix array will end up
// with one zero somewhere, and that will be a real zero.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 < c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int64(k)
b++
}
}
func induceL_32(text []int32, sa, freq, bucket []int32) {
// Initialize positions for left side of character buckets.
bucketMin_32(text, freq, bucket)
// This scan is similar to the one in induceSubL_32 above.
// That one arranges to clear all but the leftmost L-type indexes.
// This scan leaves all the L-type indexes and the original S-type
// indexes, but it negates the positive leftmost L-type indexes
// (the ones that induceS_32 needs to process).
// expand_32 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index.
cB := c1
b := bucket[cB]
sa[b] = int32(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j <= 0 {
// Skip empty or negated entry (including negated zero).
continue
}
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller. The caller can't tell the difference between
// an empty slot and a non-empty zero, but there's no need
// to distinguish them anyway: the final suffix array will end up
// with one zero somewhere, and that will be a real zero.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 < c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int32(k)
b++
}
}
func induceL_64(text []int64, sa, freq, bucket []int64) {
// Initialize positions for left side of character buckets.
bucketMin_64(text, freq, bucket)
// This scan is similar to the one in induceSubL_64 above.
// That one arranges to clear all but the leftmost L-type indexes.
// This scan leaves all the L-type indexes and the original S-type
// indexes, but it negates the positive leftmost L-type indexes
// (the ones that induceS_64 needs to process).
// expand_64 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index.
cB := c1
b := bucket[cB]
sa[b] = int64(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j <= 0 {
// Skip empty or negated entry (including negated zero).
continue
}
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller. The caller can't tell the difference between
// an empty slot and a non-empty zero, but there's no need
// to distinguish them anyway: the final suffix array will end up
// with one zero somewhere, and that will be a real zero.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 < c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int64(k)
b++
}
}
func induceS_8_64(text []byte, sa, freq, bucket []int64) {
// Initialize positions for right side of character buckets.
bucketMax_8_64(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
cB := byte(0)
b := bucket[cB]
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j >= 0 {
// Skip non-flagged entry.
// (This loop can't see an empty entry; 0 means the real zero index.)
continue
}
// Negative j is a work queue entry; rewrite to positive j for final suffix array.
j = -j
sa[i] = int64(j)
// Index j was on work queue (encoded as -j but now decoded),
// meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue -k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 <= c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int64(k)
}
}
func induceS_32(text []int32, sa, freq, bucket []int32) {
// Initialize positions for right side of character buckets.
bucketMax_32(text, freq, bucket)
cB := int32(0)
b := bucket[cB]
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j >= 0 {
// Skip non-flagged entry.
// (This loop can't see an empty entry; 0 means the real zero index.)
continue
}
// Negative j is a work queue entry; rewrite to positive j for final suffix array.
j = -j
sa[i] = int32(j)
// Index j was on work queue (encoded as -j but now decoded),
// meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue -k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 <= c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int32(k)
}
}
func induceS_64(text []int64, sa, freq, bucket []int64) {
// Initialize positions for right side of character buckets.
bucketMax_64(text, freq, bucket)
cB := int64(0)
b := bucket[cB]
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j >= 0 {
// Skip non-flagged entry.
// (This loop can't see an empty entry; 0 means the real zero index.)
continue
}
// Negative j is a work queue entry; rewrite to positive j for final suffix array.
j = -j
sa[i] = int64(j)
// Index j was on work queue (encoded as -j but now decoded),
// meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue -k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 <= c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int64(k)
}
}