4254 lines
126 KiB
C
4254 lines
126 KiB
C
/* Support routines for Value Range Propagation (VRP).
|
|
Copyright (C) 2005-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "diagnostic-core.h"
|
|
#include "flags.h"
|
|
#include "fold-const.h"
|
|
#include "calls.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "intl.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "tree-chrec.h"
|
|
#include "omp-general.h"
|
|
#include "case-cfn-macros.h"
|
|
#include "alloc-pool.h"
|
|
#include "attribs.h"
|
|
#include "range.h"
|
|
#include "vr-values.h"
|
|
#include "cfghooks.h"
|
|
#include "range-op.h"
|
|
#include "gimple-range.h"
|
|
|
|
/* Set value range VR to a non-negative range of type TYPE. */
|
|
|
|
static inline void
|
|
set_value_range_to_nonnegative (value_range_equiv *vr, tree type)
|
|
{
|
|
tree zero = build_int_cst (type, 0);
|
|
vr->update (zero, vrp_val_max (type));
|
|
}
|
|
|
|
/* Set value range VR to a range of a truthvalue of type TYPE. */
|
|
|
|
static inline void
|
|
set_value_range_to_truthvalue (value_range_equiv *vr, tree type)
|
|
{
|
|
if (TYPE_PRECISION (type) == 1)
|
|
vr->set_varying (type);
|
|
else
|
|
vr->update (build_int_cst (type, 0), build_int_cst (type, 1));
|
|
}
|
|
|
|
/* Return the lattice entry for VAR or NULL if it doesn't exist or cannot
|
|
be initialized. */
|
|
|
|
value_range_equiv *
|
|
vr_values::get_lattice_entry (const_tree var)
|
|
{
|
|
value_range_equiv *vr;
|
|
tree sym;
|
|
unsigned ver = SSA_NAME_VERSION (var);
|
|
|
|
/* If we query the entry for a new SSA name avoid reallocating the lattice
|
|
since we should get here at most from the substitute-and-fold stage which
|
|
will never try to change values. */
|
|
if (ver >= num_vr_values)
|
|
return NULL;
|
|
|
|
vr = vr_value[ver];
|
|
if (vr)
|
|
return vr;
|
|
|
|
/* Create a default value range. */
|
|
vr = allocate_value_range_equiv ();
|
|
vr_value[ver] = vr;
|
|
|
|
/* After propagation finished return varying. */
|
|
if (values_propagated)
|
|
{
|
|
vr->set_varying (TREE_TYPE (var));
|
|
return vr;
|
|
}
|
|
|
|
vr->set_undefined ();
|
|
|
|
/* If VAR is a default definition of a parameter, the variable can
|
|
take any value in VAR's type. */
|
|
if (SSA_NAME_IS_DEFAULT_DEF (var))
|
|
{
|
|
sym = SSA_NAME_VAR (var);
|
|
if (TREE_CODE (sym) == PARM_DECL)
|
|
{
|
|
/* Try to use the "nonnull" attribute to create ~[0, 0]
|
|
anti-ranges for pointers. Note that this is only valid with
|
|
default definitions of PARM_DECLs. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (sym))
|
|
&& (nonnull_arg_p (sym)
|
|
|| get_ptr_nonnull (var)))
|
|
{
|
|
vr->set_nonzero (TREE_TYPE (sym));
|
|
vr->equiv_clear ();
|
|
}
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
|
|
{
|
|
get_range_info (var, *vr);
|
|
if (vr->undefined_p ())
|
|
vr->set_varying (TREE_TYPE (sym));
|
|
}
|
|
else
|
|
vr->set_varying (TREE_TYPE (sym));
|
|
}
|
|
else if (TREE_CODE (sym) == RESULT_DECL
|
|
&& DECL_BY_REFERENCE (sym))
|
|
{
|
|
vr->set_nonzero (TREE_TYPE (sym));
|
|
vr->equiv_clear ();
|
|
}
|
|
}
|
|
|
|
return vr;
|
|
}
|
|
|
|
/* Return value range information for VAR.
|
|
|
|
If we have no values ranges recorded (ie, VRP is not running), then
|
|
return NULL. Otherwise create an empty range if none existed for VAR. */
|
|
|
|
const value_range_equiv *
|
|
vr_values::get_value_range (const_tree var,
|
|
gimple *stmt ATTRIBUTE_UNUSED)
|
|
{
|
|
/* If we have no recorded ranges, then return NULL. */
|
|
if (!vr_value)
|
|
return NULL;
|
|
|
|
value_range_equiv *vr = get_lattice_entry (var);
|
|
|
|
/* Reallocate the lattice if needed. */
|
|
if (!vr)
|
|
{
|
|
unsigned int old_sz = num_vr_values;
|
|
num_vr_values = num_ssa_names + num_ssa_names / 10;
|
|
vr_value = XRESIZEVEC (value_range_equiv *, vr_value, num_vr_values);
|
|
for ( ; old_sz < num_vr_values; old_sz++)
|
|
vr_value [old_sz] = NULL;
|
|
|
|
/* Now that the lattice has been resized, we should never fail. */
|
|
vr = get_lattice_entry (var);
|
|
gcc_assert (vr);
|
|
}
|
|
|
|
return vr;
|
|
}
|
|
|
|
bool
|
|
vr_values::range_of_expr (irange &r, tree expr, gimple *stmt)
|
|
{
|
|
if (!gimple_range_ssa_p (expr))
|
|
return get_tree_range (r, expr);
|
|
|
|
if (const value_range *vr = get_value_range (expr, stmt))
|
|
{
|
|
if (vr->undefined_p () || vr->varying_p () || vr->constant_p ())
|
|
r = *vr;
|
|
else
|
|
{
|
|
value_range tmp = *vr;
|
|
tmp.normalize_symbolics ();
|
|
r = tmp;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
tree
|
|
vr_values::value_of_expr (tree op, gimple *)
|
|
{
|
|
return op_with_constant_singleton_value_range (op);
|
|
}
|
|
|
|
tree
|
|
vr_values::value_on_edge (edge, tree op)
|
|
{
|
|
return op_with_constant_singleton_value_range (op);
|
|
}
|
|
|
|
tree
|
|
vr_values::value_of_stmt (gimple *stmt, tree op)
|
|
{
|
|
if (!op)
|
|
op = gimple_get_lhs (stmt);
|
|
|
|
gcc_checking_assert (!op|| op == gimple_get_lhs (stmt));
|
|
|
|
if (op)
|
|
return op_with_constant_singleton_value_range (op);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Set the lattice entry for DEF to VARYING. */
|
|
|
|
void
|
|
vr_values::set_def_to_varying (const_tree def)
|
|
{
|
|
value_range_equiv *vr = get_lattice_entry (def);
|
|
if (vr)
|
|
vr->set_varying (TREE_TYPE (def));
|
|
}
|
|
|
|
/* Set value-ranges of all SSA names defined by STMT to varying. */
|
|
|
|
void
|
|
vr_values::set_defs_to_varying (gimple *stmt)
|
|
{
|
|
ssa_op_iter i;
|
|
tree def;
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
|
|
set_def_to_varying (def);
|
|
}
|
|
|
|
/* Update the value range and equivalence set for variable VAR to
|
|
NEW_VR. Return true if NEW_VR is different from VAR's previous
|
|
value.
|
|
|
|
NOTE: This function assumes that NEW_VR is a temporary value range
|
|
object created for the sole purpose of updating VAR's range. The
|
|
storage used by the equivalence set from NEW_VR will be freed by
|
|
this function. Do not call update_value_range when NEW_VR
|
|
is the range object associated with another SSA name. */
|
|
|
|
bool
|
|
vr_values::update_value_range (const_tree var, value_range_equiv *new_vr)
|
|
{
|
|
value_range_equiv *old_vr;
|
|
bool is_new;
|
|
|
|
/* If there is a value-range on the SSA name from earlier analysis
|
|
factor that in. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
|
|
{
|
|
value_range_equiv nr;
|
|
get_range_info (var, nr);
|
|
if (!nr.undefined_p ())
|
|
new_vr->intersect (&nr);
|
|
}
|
|
|
|
/* Update the value range, if necessary. If we cannot allocate a lattice
|
|
entry for VAR keep it at VARYING. This happens when DOM feeds us stmts
|
|
with SSA names allocated after setting up the lattice. */
|
|
old_vr = get_lattice_entry (var);
|
|
if (!old_vr)
|
|
return false;
|
|
is_new = !old_vr->equal_p (*new_vr, /*ignore_equivs=*/false);
|
|
|
|
if (is_new)
|
|
{
|
|
/* Do not allow transitions up the lattice. The following
|
|
is slightly more awkward than just new_vr->type < old_vr->type
|
|
because VR_RANGE and VR_ANTI_RANGE need to be considered
|
|
the same. We may not have is_new when transitioning to
|
|
UNDEFINED. If old_vr->type is VARYING, we shouldn't be
|
|
called, if we are anyway, keep it VARYING. */
|
|
if (old_vr->varying_p ())
|
|
{
|
|
new_vr->set_varying (TREE_TYPE (var));
|
|
is_new = false;
|
|
}
|
|
else if (new_vr->undefined_p ())
|
|
{
|
|
old_vr->set_varying (TREE_TYPE (var));
|
|
new_vr->set_varying (TREE_TYPE (var));
|
|
return true;
|
|
}
|
|
else
|
|
old_vr->set (new_vr->min (), new_vr->max (), new_vr->equiv (),
|
|
new_vr->kind ());
|
|
}
|
|
|
|
new_vr->equiv_clear ();
|
|
|
|
return is_new;
|
|
}
|
|
|
|
/* Return true if value range VR involves exactly one symbol SYM. */
|
|
|
|
static bool
|
|
symbolic_range_based_on_p (value_range *vr, const_tree sym)
|
|
{
|
|
bool neg, min_has_symbol, max_has_symbol;
|
|
tree inv;
|
|
|
|
if (is_gimple_min_invariant (vr->min ()))
|
|
min_has_symbol = false;
|
|
else if (get_single_symbol (vr->min (), &neg, &inv) == sym)
|
|
min_has_symbol = true;
|
|
else
|
|
return false;
|
|
|
|
if (is_gimple_min_invariant (vr->max ()))
|
|
max_has_symbol = false;
|
|
else if (get_single_symbol (vr->max (), &neg, &inv) == sym)
|
|
max_has_symbol = true;
|
|
else
|
|
return false;
|
|
|
|
return (min_has_symbol || max_has_symbol);
|
|
}
|
|
|
|
/* Return true if the result of assignment STMT is know to be non-zero. */
|
|
|
|
static bool
|
|
gimple_assign_nonzero_p (gimple *stmt)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
bool strict_overflow_p;
|
|
switch (get_gimple_rhs_class (code))
|
|
{
|
|
case GIMPLE_UNARY_RHS:
|
|
return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
&strict_overflow_p);
|
|
case GIMPLE_BINARY_RHS:
|
|
return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt),
|
|
&strict_overflow_p);
|
|
case GIMPLE_TERNARY_RHS:
|
|
return false;
|
|
case GIMPLE_SINGLE_RHS:
|
|
return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
|
|
&strict_overflow_p);
|
|
case GIMPLE_INVALID_RHS:
|
|
gcc_unreachable ();
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Return true if STMT is known to compute a non-zero value. */
|
|
|
|
static bool
|
|
gimple_stmt_nonzero_p (gimple *stmt)
|
|
{
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
return gimple_assign_nonzero_p (stmt);
|
|
case GIMPLE_CALL:
|
|
{
|
|
gcall *call_stmt = as_a<gcall *> (stmt);
|
|
return (gimple_call_nonnull_result_p (call_stmt)
|
|
|| gimple_call_nonnull_arg (call_stmt));
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
/* Like tree_expr_nonzero_p, but this function uses value ranges
|
|
obtained so far. */
|
|
|
|
bool
|
|
vr_values::vrp_stmt_computes_nonzero (gimple *stmt)
|
|
{
|
|
if (gimple_stmt_nonzero_p (stmt))
|
|
return true;
|
|
|
|
/* If we have an expression of the form &X->a, then the expression
|
|
is nonnull if X is nonnull. */
|
|
if (is_gimple_assign (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
|
|
{
|
|
tree expr = gimple_assign_rhs1 (stmt);
|
|
poly_int64 bitsize, bitpos;
|
|
tree offset;
|
|
machine_mode mode;
|
|
int unsignedp, reversep, volatilep;
|
|
tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
|
|
&bitpos, &offset, &mode, &unsignedp,
|
|
&reversep, &volatilep);
|
|
|
|
if (base != NULL_TREE
|
|
&& TREE_CODE (base) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
|
{
|
|
poly_offset_int off = 0;
|
|
bool off_cst = false;
|
|
if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
|
|
{
|
|
off = mem_ref_offset (base);
|
|
if (offset)
|
|
off += poly_offset_int::from (wi::to_poly_wide (offset),
|
|
SIGNED);
|
|
off <<= LOG2_BITS_PER_UNIT;
|
|
off += bitpos;
|
|
off_cst = true;
|
|
}
|
|
/* If &X->a is equal to X and X is ~[0, 0], the result is too.
|
|
For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
|
|
allow going from non-NULL pointer to NULL. */
|
|
if ((off_cst && known_eq (off, 0))
|
|
|| (flag_delete_null_pointer_checks
|
|
&& !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))))
|
|
{
|
|
const value_range_equiv *vr
|
|
= get_value_range (TREE_OPERAND (base, 0));
|
|
if (!range_includes_zero_p (vr))
|
|
return true;
|
|
}
|
|
/* If MEM_REF has a "positive" offset, consider it non-NULL
|
|
always, for -fdelete-null-pointer-checks also "negative"
|
|
ones. Punt for unknown offsets (e.g. variable ones). */
|
|
if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
|
|
&& off_cst
|
|
&& known_ne (off, 0)
|
|
&& (flag_delete_null_pointer_checks || known_gt (off, 0)))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if EXPR is a valid value (as expected by compare_values) --
|
|
a gimple invariant, or SSA_NAME +- CST. */
|
|
|
|
static bool
|
|
valid_value_p (tree expr)
|
|
{
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
|
return true;
|
|
|
|
if (TREE_CODE (expr) == PLUS_EXPR
|
|
|| TREE_CODE (expr) == MINUS_EXPR)
|
|
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
|
|
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
|
|
|
|
return is_gimple_min_invariant (expr);
|
|
}
|
|
|
|
/* If OP has a value range with a single constant value return that,
|
|
otherwise return NULL_TREE. This returns OP itself if OP is a
|
|
constant. */
|
|
|
|
tree
|
|
vr_values::op_with_constant_singleton_value_range (tree op)
|
|
{
|
|
if (is_gimple_min_invariant (op))
|
|
return op;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return NULL_TREE;
|
|
|
|
tree t;
|
|
if (get_value_range (op)->singleton_p (&t))
|
|
return t;
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true if op is in a boolean [0, 1] value-range. */
|
|
|
|
bool
|
|
simplify_using_ranges::op_with_boolean_value_range_p (tree op)
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
|
|
return true;
|
|
|
|
if (integer_zerop (op)
|
|
|| integer_onep (op))
|
|
return true;
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return false;
|
|
|
|
/* ?? Errr, this should probably check for [0,0] and [1,1] as well
|
|
as [0,1]. */
|
|
const value_range *vr = query->get_value_range (op);
|
|
return *vr == value_range (build_zero_cst (TREE_TYPE (op)),
|
|
build_one_cst (TREE_TYPE (op)));
|
|
}
|
|
|
|
/* Extract value range information for VAR when (OP COND_CODE LIMIT) is
|
|
true and store it in *VR_P. */
|
|
|
|
void
|
|
vr_values::extract_range_for_var_from_comparison_expr (tree var,
|
|
enum tree_code cond_code,
|
|
tree op, tree limit,
|
|
value_range_equiv *vr_p)
|
|
{
|
|
tree min, max, type;
|
|
const value_range_equiv *limit_vr;
|
|
type = TREE_TYPE (var);
|
|
|
|
/* For pointer arithmetic, we only keep track of pointer equality
|
|
and inequality. If we arrive here with unfolded conditions like
|
|
_1 > _1 do not derive anything. */
|
|
if ((POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
|
|
|| limit == var)
|
|
{
|
|
vr_p->set_varying (type);
|
|
return;
|
|
}
|
|
|
|
/* If LIMIT is another SSA name and LIMIT has a range of its own,
|
|
try to use LIMIT's range to avoid creating symbolic ranges
|
|
unnecessarily. */
|
|
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
|
|
|
|
/* LIMIT's range is only interesting if it has any useful information. */
|
|
if (! limit_vr
|
|
|| limit_vr->undefined_p ()
|
|
|| limit_vr->varying_p ()
|
|
|| (limit_vr->symbolic_p ()
|
|
&& ! (limit_vr->kind () == VR_RANGE
|
|
&& (limit_vr->min () == limit_vr->max ()
|
|
|| operand_equal_p (limit_vr->min (),
|
|
limit_vr->max (), 0)))))
|
|
limit_vr = NULL;
|
|
|
|
/* Initially, the new range has the same set of equivalences of
|
|
VAR's range. This will be revised before returning the final
|
|
value. Since assertions may be chained via mutually exclusive
|
|
predicates, we will need to trim the set of equivalences before
|
|
we are done. */
|
|
gcc_assert (vr_p->equiv () == NULL);
|
|
vr_p->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);
|
|
|
|
/* Extract a new range based on the asserted comparison for VAR and
|
|
LIMIT's value range. Notice that if LIMIT has an anti-range, we
|
|
will only use it for equality comparisons (EQ_EXPR). For any
|
|
other kind of assertion, we cannot derive a range from LIMIT's
|
|
anti-range that can be used to describe the new range. For
|
|
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
|
|
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
|
|
no single range for x_2 that could describe LE_EXPR, so we might
|
|
as well build the range [b_4, +INF] for it.
|
|
One special case we handle is extracting a range from a
|
|
range test encoded as (unsigned)var + CST <= limit. */
|
|
if (TREE_CODE (op) == NOP_EXPR
|
|
|| TREE_CODE (op) == PLUS_EXPR)
|
|
{
|
|
if (TREE_CODE (op) == PLUS_EXPR)
|
|
{
|
|
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
|
|
TREE_OPERAND (op, 1));
|
|
max = int_const_binop (PLUS_EXPR, limit, min);
|
|
op = TREE_OPERAND (op, 0);
|
|
}
|
|
else
|
|
{
|
|
min = build_int_cst (TREE_TYPE (var), 0);
|
|
max = limit;
|
|
}
|
|
|
|
/* Make sure to not set TREE_OVERFLOW on the final type
|
|
conversion. We are willingly interpreting large positive
|
|
unsigned values as negative signed values here. */
|
|
min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
|
|
max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
|
|
|
|
/* We can transform a max, min range to an anti-range or
|
|
vice-versa. Use set_and_canonicalize which does this for
|
|
us. */
|
|
if (cond_code == LE_EXPR)
|
|
vr_p->set (min, max, vr_p->equiv ());
|
|
else if (cond_code == GT_EXPR)
|
|
vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE);
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
else if (cond_code == EQ_EXPR)
|
|
{
|
|
enum value_range_kind range_kind;
|
|
|
|
if (limit_vr)
|
|
{
|
|
range_kind = limit_vr->kind ();
|
|
min = limit_vr->min ();
|
|
max = limit_vr->max ();
|
|
}
|
|
else
|
|
{
|
|
range_kind = VR_RANGE;
|
|
min = limit;
|
|
max = limit;
|
|
}
|
|
|
|
vr_p->update (min, max, range_kind);
|
|
|
|
/* When asserting the equality VAR == LIMIT and LIMIT is another
|
|
SSA name, the new range will also inherit the equivalence set
|
|
from LIMIT. */
|
|
if (TREE_CODE (limit) == SSA_NAME)
|
|
vr_p->equiv_add (limit, get_value_range (limit), &vrp_equiv_obstack);
|
|
}
|
|
else if (cond_code == NE_EXPR)
|
|
{
|
|
/* As described above, when LIMIT's range is an anti-range and
|
|
this assertion is an inequality (NE_EXPR), then we cannot
|
|
derive anything from the anti-range. For instance, if
|
|
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
|
|
not imply that VAR's range is [0, 0]. So, in the case of
|
|
anti-ranges, we just assert the inequality using LIMIT and
|
|
not its anti-range.
|
|
|
|
If LIMIT_VR is a range, we can only use it to build a new
|
|
anti-range if LIMIT_VR is a single-valued range. For
|
|
instance, if LIMIT_VR is [0, 1], the predicate
|
|
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
|
|
Rather, it means that for value 0 VAR should be ~[0, 0]
|
|
and for value 1, VAR should be ~[1, 1]. We cannot
|
|
represent these ranges.
|
|
|
|
The only situation in which we can build a valid
|
|
anti-range is when LIMIT_VR is a single-valued range
|
|
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
|
|
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
|
|
if (limit_vr
|
|
&& limit_vr->kind () == VR_RANGE
|
|
&& compare_values (limit_vr->min (), limit_vr->max ()) == 0)
|
|
{
|
|
min = limit_vr->min ();
|
|
max = limit_vr->max ();
|
|
}
|
|
else
|
|
{
|
|
/* In any other case, we cannot use LIMIT's range to build a
|
|
valid anti-range. */
|
|
min = max = limit;
|
|
}
|
|
|
|
/* If MIN and MAX cover the whole range for their type, then
|
|
just use the original LIMIT. */
|
|
if (INTEGRAL_TYPE_P (type)
|
|
&& vrp_val_is_min (min)
|
|
&& vrp_val_is_max (max))
|
|
min = max = limit;
|
|
|
|
vr_p->set (min, max, vr_p->equiv (), VR_ANTI_RANGE);
|
|
}
|
|
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
|
{
|
|
min = TYPE_MIN_VALUE (type);
|
|
|
|
if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
|
|
max = limit;
|
|
else
|
|
{
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
|
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
|
|
LT_EXPR. */
|
|
max = limit_vr->max ();
|
|
}
|
|
|
|
/* If the maximum value forces us to be out of bounds, simply punt.
|
|
It would be pointless to try and do anything more since this
|
|
all should be optimized away above us. */
|
|
if (cond_code == LT_EXPR
|
|
&& compare_values (max, min) == 0)
|
|
vr_p->set_varying (TREE_TYPE (min));
|
|
else
|
|
{
|
|
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
|
|
if (cond_code == LT_EXPR)
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (max)) == 1
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (max)))
|
|
max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
|
|
build_int_cst (TREE_TYPE (max), -1));
|
|
else
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
|
|
build_int_cst (TREE_TYPE (max), 1));
|
|
/* Signal to compare_values_warnv this expr doesn't overflow. */
|
|
if (EXPR_P (max))
|
|
TREE_NO_WARNING (max) = 1;
|
|
}
|
|
|
|
vr_p->update (min, max);
|
|
}
|
|
}
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
|
{
|
|
max = TYPE_MAX_VALUE (type);
|
|
|
|
if (limit_vr == NULL || limit_vr->kind () == VR_ANTI_RANGE)
|
|
min = limit;
|
|
else
|
|
{
|
|
/* If LIMIT_VR is of the form [N1, N2], we need to build the
|
|
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
|
|
GT_EXPR. */
|
|
min = limit_vr->min ();
|
|
}
|
|
|
|
/* If the minimum value forces us to be out of bounds, simply punt.
|
|
It would be pointless to try and do anything more since this
|
|
all should be optimized away above us. */
|
|
if (cond_code == GT_EXPR
|
|
&& compare_values (min, max) == 0)
|
|
vr_p->set_varying (TREE_TYPE (min));
|
|
else
|
|
{
|
|
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
|
|
if (cond_code == GT_EXPR)
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (min)) == 1
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (min)))
|
|
min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
|
|
build_int_cst (TREE_TYPE (min), -1));
|
|
else
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
|
|
build_int_cst (TREE_TYPE (min), 1));
|
|
/* Signal to compare_values_warnv this expr doesn't overflow. */
|
|
if (EXPR_P (min))
|
|
TREE_NO_WARNING (min) = 1;
|
|
}
|
|
|
|
vr_p->update (min, max);
|
|
}
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
/* Finally intersect the new range with what we already know about var. */
|
|
vr_p->intersect (get_value_range (var));
|
|
}
|
|
|
|
/* Extract value range information from an ASSERT_EXPR EXPR and store
|
|
it in *VR_P. */
|
|
|
|
void
|
|
vr_values::extract_range_from_assert (value_range_equiv *vr_p, tree expr)
|
|
{
|
|
tree var = ASSERT_EXPR_VAR (expr);
|
|
tree cond = ASSERT_EXPR_COND (expr);
|
|
tree limit, op;
|
|
enum tree_code cond_code;
|
|
gcc_assert (COMPARISON_CLASS_P (cond));
|
|
|
|
/* Find VAR in the ASSERT_EXPR conditional. */
|
|
if (var == TREE_OPERAND (cond, 0)
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
|
|
|| TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
|
|
{
|
|
/* If the predicate is of the form VAR COMP LIMIT, then we just
|
|
take LIMIT from the RHS and use the same comparison code. */
|
|
cond_code = TREE_CODE (cond);
|
|
limit = TREE_OPERAND (cond, 1);
|
|
op = TREE_OPERAND (cond, 0);
|
|
}
|
|
else
|
|
{
|
|
/* If the predicate is of the form LIMIT COMP VAR, then we need
|
|
to flip around the comparison code to create the proper range
|
|
for VAR. */
|
|
cond_code = swap_tree_comparison (TREE_CODE (cond));
|
|
limit = TREE_OPERAND (cond, 0);
|
|
op = TREE_OPERAND (cond, 1);
|
|
}
|
|
extract_range_for_var_from_comparison_expr (var, cond_code, op,
|
|
limit, vr_p);
|
|
}
|
|
|
|
/* Extract range information from SSA name VAR and store it in VR. If
|
|
VAR has an interesting range, use it. Otherwise, create the
|
|
range [VAR, VAR] and return it. This is useful in situations where
|
|
we may have conditionals testing values of VARYING names. For
|
|
instance,
|
|
|
|
x_3 = y_5;
|
|
if (x_3 > y_5)
|
|
...
|
|
|
|
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
|
|
always false. */
|
|
|
|
void
|
|
vr_values::extract_range_from_ssa_name (value_range_equiv *vr, tree var)
|
|
{
|
|
const value_range_equiv *var_vr = get_value_range (var);
|
|
|
|
if (!var_vr->varying_p ())
|
|
vr->deep_copy (var_vr);
|
|
else
|
|
vr->set (var);
|
|
|
|
if (!vr->undefined_p ())
|
|
vr->equiv_add (var, get_value_range (var), &vrp_equiv_obstack);
|
|
}
|
|
|
|
/* Extract range information from a binary expression OP0 CODE OP1 based on
|
|
the ranges of each of its operands with resulting type EXPR_TYPE.
|
|
The resulting range is stored in *VR. */
|
|
|
|
void
|
|
vr_values::extract_range_from_binary_expr (value_range_equiv *vr,
|
|
enum tree_code code,
|
|
tree expr_type, tree op0, tree op1)
|
|
{
|
|
/* Get value ranges for each operand. For constant operands, create
|
|
a new value range with the operand to simplify processing. */
|
|
value_range vr0, vr1;
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
|
vr0 = *(get_value_range (op0));
|
|
else if (is_gimple_min_invariant (op0))
|
|
vr0.set (op0);
|
|
else
|
|
vr0.set_varying (TREE_TYPE (op0));
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
vr1 = *(get_value_range (op1));
|
|
else if (is_gimple_min_invariant (op1))
|
|
vr1.set (op1);
|
|
else
|
|
vr1.set_varying (TREE_TYPE (op1));
|
|
|
|
/* If one argument is varying, we can sometimes still deduce a
|
|
range for the output: any + [3, +INF] is in [MIN+3, +INF]. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
|
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
|
|
{
|
|
if (vr0.varying_p () && !vr1.varying_p ())
|
|
vr0 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type));
|
|
else if (vr1.varying_p () && !vr0.varying_p ())
|
|
vr1 = value_range (vrp_val_min (expr_type), vrp_val_max (expr_type));
|
|
}
|
|
|
|
range_fold_binary_expr (vr, code, expr_type, &vr0, &vr1);
|
|
|
|
/* Set value_range for n in following sequence:
|
|
def = __builtin_memchr (arg, 0, sz)
|
|
n = def - arg
|
|
Here the range for n can be set to [0, PTRDIFF_MAX - 1]. */
|
|
|
|
if (vr->varying_p ()
|
|
&& code == POINTER_DIFF_EXPR
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& TREE_CODE (op1) == SSA_NAME)
|
|
{
|
|
tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
|
|
tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
|
|
gcall *call_stmt = NULL;
|
|
|
|
if (TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
|
|
&& TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
|
|
&& TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
|
|
&& TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
|
|
&& (call_stmt = dyn_cast<gcall *>(SSA_NAME_DEF_STMT (op0)))
|
|
&& gimple_call_builtin_p (call_stmt, BUILT_IN_MEMCHR)
|
|
&& operand_equal_p (op0, gimple_call_lhs (call_stmt), 0)
|
|
&& operand_equal_p (op1, gimple_call_arg (call_stmt, 0), 0)
|
|
&& integer_zerop (gimple_call_arg (call_stmt, 1)))
|
|
{
|
|
tree max = vrp_val_max (ptrdiff_type_node);
|
|
wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
|
|
tree range_min = build_zero_cst (expr_type);
|
|
tree range_max = wide_int_to_tree (expr_type, wmax - 1);
|
|
vr->set (range_min, range_max);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Try harder for PLUS and MINUS if the range of one operand is symbolic
|
|
and based on the other operand, for example if it was deduced from a
|
|
symbolic comparison. When a bound of the range of the first operand
|
|
is invariant, we set the corresponding bound of the new range to INF
|
|
in order to avoid recursing on the range of the second operand. */
|
|
if (vr->varying_p ()
|
|
&& (code == PLUS_EXPR || code == MINUS_EXPR)
|
|
&& TREE_CODE (op1) == SSA_NAME
|
|
&& vr0.kind () == VR_RANGE
|
|
&& symbolic_range_based_on_p (&vr0, op1))
|
|
{
|
|
const bool minus_p = (code == MINUS_EXPR);
|
|
value_range n_vr1;
|
|
|
|
/* Try with VR0 and [-INF, OP1]. */
|
|
if (is_gimple_min_invariant (minus_p ? vr0.max () : vr0.min ()))
|
|
n_vr1.set (vrp_val_min (expr_type), op1);
|
|
|
|
/* Try with VR0 and [OP1, +INF]. */
|
|
else if (is_gimple_min_invariant (minus_p ? vr0.min () : vr0.max ()))
|
|
n_vr1.set (op1, vrp_val_max (expr_type));
|
|
|
|
/* Try with VR0 and [OP1, OP1]. */
|
|
else
|
|
n_vr1.set (op1, op1);
|
|
|
|
range_fold_binary_expr (vr, code, expr_type, &vr0, &n_vr1);
|
|
}
|
|
|
|
if (vr->varying_p ()
|
|
&& (code == PLUS_EXPR || code == MINUS_EXPR)
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& vr1.kind () == VR_RANGE
|
|
&& symbolic_range_based_on_p (&vr1, op0))
|
|
{
|
|
const bool minus_p = (code == MINUS_EXPR);
|
|
value_range n_vr0;
|
|
|
|
/* Try with [-INF, OP0] and VR1. */
|
|
if (is_gimple_min_invariant (minus_p ? vr1.max () : vr1.min ()))
|
|
n_vr0.set (vrp_val_min (expr_type), op0);
|
|
|
|
/* Try with [OP0, +INF] and VR1. */
|
|
else if (is_gimple_min_invariant (minus_p ? vr1.min (): vr1.max ()))
|
|
n_vr0.set (op0, vrp_val_max (expr_type));
|
|
|
|
/* Try with [OP0, OP0] and VR1. */
|
|
else
|
|
n_vr0.set (op0);
|
|
|
|
range_fold_binary_expr (vr, code, expr_type, &n_vr0, &vr1);
|
|
}
|
|
|
|
/* If we didn't derive a range for MINUS_EXPR, and
|
|
op1's range is ~[op0,op0] or vice-versa, then we
|
|
can derive a non-null range. This happens often for
|
|
pointer subtraction. */
|
|
if (vr->varying_p ()
|
|
&& (code == MINUS_EXPR || code == POINTER_DIFF_EXPR)
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& ((vr0.kind () == VR_ANTI_RANGE
|
|
&& vr0.min () == op1
|
|
&& vr0.min () == vr0.max ())
|
|
|| (vr1.kind () == VR_ANTI_RANGE
|
|
&& vr1.min () == op0
|
|
&& vr1.min () == vr1.max ())))
|
|
{
|
|
vr->set_nonzero (expr_type);
|
|
vr->equiv_clear ();
|
|
}
|
|
}
|
|
|
|
/* Extract range information from a unary expression CODE OP0 based on
|
|
the range of its operand with resulting type TYPE.
|
|
The resulting range is stored in *VR. */
|
|
|
|
void
|
|
vr_values::extract_range_from_unary_expr (value_range_equiv *vr,
|
|
enum tree_code code,
|
|
tree type, tree op0)
|
|
{
|
|
value_range vr0;
|
|
|
|
/* Get value ranges for the operand. For constant operands, create
|
|
a new value range with the operand to simplify processing. */
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
|
vr0 = *(get_value_range (op0));
|
|
else if (is_gimple_min_invariant (op0))
|
|
vr0.set (op0);
|
|
else
|
|
vr0.set_varying (type);
|
|
|
|
range_fold_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
|
|
}
|
|
|
|
|
|
/* Extract range information from a conditional expression STMT based on
|
|
the ranges of each of its operands and the expression code. */
|
|
|
|
void
|
|
vr_values::extract_range_from_cond_expr (value_range_equiv *vr, gassign *stmt)
|
|
{
|
|
/* Get value ranges for each operand. For constant operands, create
|
|
a new value range with the operand to simplify processing. */
|
|
tree op0 = gimple_assign_rhs2 (stmt);
|
|
value_range_equiv tem0;
|
|
const value_range_equiv *vr0 = &tem0;
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
|
vr0 = get_value_range (op0);
|
|
else if (is_gimple_min_invariant (op0))
|
|
tem0.set (op0);
|
|
else
|
|
tem0.set_varying (TREE_TYPE (op0));
|
|
|
|
tree op1 = gimple_assign_rhs3 (stmt);
|
|
value_range_equiv tem1;
|
|
const value_range_equiv *vr1 = &tem1;
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
vr1 = get_value_range (op1);
|
|
else if (is_gimple_min_invariant (op1))
|
|
tem1.set (op1);
|
|
else
|
|
tem1.set_varying (TREE_TYPE (op1));
|
|
|
|
/* The resulting value range is the union of the operand ranges */
|
|
vr->deep_copy (vr0);
|
|
vr->union_ (vr1);
|
|
}
|
|
|
|
|
|
/* Extract range information from a comparison expression EXPR based
|
|
on the range of its operand and the expression code. */
|
|
|
|
void
|
|
vr_values::extract_range_from_comparison (value_range_equiv *vr,
|
|
gimple *stmt)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
tree type = gimple_expr_type (stmt);
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
|
bool sop;
|
|
tree val
|
|
= simplifier.vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1,
|
|
false, &sop, NULL);
|
|
if (val)
|
|
{
|
|
/* Since this expression was found on the RHS of an assignment,
|
|
its type may be different from _Bool. Convert VAL to EXPR's
|
|
type. */
|
|
val = fold_convert (type, val);
|
|
if (is_gimple_min_invariant (val))
|
|
vr->set (val);
|
|
else
|
|
vr->update (val, val);
|
|
}
|
|
else
|
|
/* The result of a comparison is always true or false. */
|
|
set_value_range_to_truthvalue (vr, type);
|
|
}
|
|
|
|
/* Helper function for simplify_internal_call_using_ranges and
|
|
extract_range_basic. Return true if OP0 SUBCODE OP1 for
|
|
SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
|
|
always overflow. Set *OVF to true if it is known to always
|
|
overflow. */
|
|
|
|
static bool
|
|
check_for_binary_op_overflow (range_query *query,
|
|
enum tree_code subcode, tree type,
|
|
tree op0, tree op1, bool *ovf)
|
|
{
|
|
value_range vr0, vr1;
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
|
vr0 = *query->get_value_range (op0);
|
|
else if (TREE_CODE (op0) == INTEGER_CST)
|
|
vr0.set (op0);
|
|
else
|
|
vr0.set_varying (TREE_TYPE (op0));
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
vr1 = *query->get_value_range (op1);
|
|
else if (TREE_CODE (op1) == INTEGER_CST)
|
|
vr1.set (op1);
|
|
else
|
|
vr1.set_varying (TREE_TYPE (op1));
|
|
|
|
tree vr0min = vr0.min (), vr0max = vr0.max ();
|
|
tree vr1min = vr1.min (), vr1max = vr1.max ();
|
|
if (!range_int_cst_p (&vr0)
|
|
|| TREE_OVERFLOW (vr0min)
|
|
|| TREE_OVERFLOW (vr0max))
|
|
{
|
|
vr0min = vrp_val_min (TREE_TYPE (op0));
|
|
vr0max = vrp_val_max (TREE_TYPE (op0));
|
|
}
|
|
if (!range_int_cst_p (&vr1)
|
|
|| TREE_OVERFLOW (vr1min)
|
|
|| TREE_OVERFLOW (vr1max))
|
|
{
|
|
vr1min = vrp_val_min (TREE_TYPE (op1));
|
|
vr1max = vrp_val_max (TREE_TYPE (op1));
|
|
}
|
|
*ovf = arith_overflowed_p (subcode, type, vr0min,
|
|
subcode == MINUS_EXPR ? vr1max : vr1min);
|
|
if (arith_overflowed_p (subcode, type, vr0max,
|
|
subcode == MINUS_EXPR ? vr1min : vr1max) != *ovf)
|
|
return false;
|
|
if (subcode == MULT_EXPR)
|
|
{
|
|
if (arith_overflowed_p (subcode, type, vr0min, vr1max) != *ovf
|
|
|| arith_overflowed_p (subcode, type, vr0max, vr1min) != *ovf)
|
|
return false;
|
|
}
|
|
if (*ovf)
|
|
{
|
|
/* So far we found that there is an overflow on the boundaries.
|
|
That doesn't prove that there is an overflow even for all values
|
|
in between the boundaries. For that compute widest_int range
|
|
of the result and see if it doesn't overlap the range of
|
|
type. */
|
|
widest_int wmin, wmax;
|
|
widest_int w[4];
|
|
int i;
|
|
w[0] = wi::to_widest (vr0min);
|
|
w[1] = wi::to_widest (vr0max);
|
|
w[2] = wi::to_widest (vr1min);
|
|
w[3] = wi::to_widest (vr1max);
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
widest_int wt;
|
|
switch (subcode)
|
|
{
|
|
case PLUS_EXPR:
|
|
wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
|
|
break;
|
|
case MINUS_EXPR:
|
|
wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
|
|
break;
|
|
case MULT_EXPR:
|
|
wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
if (i == 0)
|
|
{
|
|
wmin = wt;
|
|
wmax = wt;
|
|
}
|
|
else
|
|
{
|
|
wmin = wi::smin (wmin, wt);
|
|
wmax = wi::smax (wmax, wt);
|
|
}
|
|
}
|
|
/* The result of op0 CODE op1 is known to be in range
|
|
[wmin, wmax]. */
|
|
widest_int wtmin = wi::to_widest (vrp_val_min (type));
|
|
widest_int wtmax = wi::to_widest (vrp_val_max (type));
|
|
/* If all values in [wmin, wmax] are smaller than
|
|
[wtmin, wtmax] or all are larger than [wtmin, wtmax],
|
|
the arithmetic operation will always overflow. */
|
|
if (wmax < wtmin || wmin > wtmax)
|
|
return true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Derive a range from a builtin. Set range in VR and return TRUE if
|
|
successful. */
|
|
|
|
bool
|
|
vr_values::extract_range_from_ubsan_builtin (value_range_equiv *vr, gimple *stmt)
|
|
{
|
|
gcc_assert (is_gimple_call (stmt));
|
|
tree type = gimple_expr_type (stmt);
|
|
enum tree_code subcode = ERROR_MARK;
|
|
combined_fn cfn = gimple_call_combined_fn (stmt);
|
|
scalar_int_mode mode;
|
|
|
|
switch (cfn)
|
|
{
|
|
case CFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case CFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case CFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (subcode != ERROR_MARK)
|
|
{
|
|
bool saved_flag_wrapv = flag_wrapv;
|
|
/* Pretend the arithmetics is wrapping. If there is
|
|
any overflow, we'll complain, but will actually do
|
|
wrapping operation. */
|
|
flag_wrapv = 1;
|
|
extract_range_from_binary_expr (vr, subcode, type,
|
|
gimple_call_arg (stmt, 0),
|
|
gimple_call_arg (stmt, 1));
|
|
flag_wrapv = saved_flag_wrapv;
|
|
|
|
/* If for both arguments vrp_valueize returned non-NULL,
|
|
this should have been already folded and if not, it
|
|
wasn't folded because of overflow. Avoid removing the
|
|
UBSAN_CHECK_* calls in that case. */
|
|
if (vr->kind () == VR_RANGE
|
|
&& (vr->min () == vr->max ()
|
|
|| operand_equal_p (vr->min (), vr->max (), 0)))
|
|
vr->set_varying (vr->type ());
|
|
|
|
return !vr->varying_p ();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Try to derive a nonnegative or nonzero range out of STMT relying
|
|
primarily on generic routines in fold in conjunction with range data.
|
|
Store the result in *VR */
|
|
|
|
void
|
|
vr_values::extract_range_basic (value_range_equiv *vr, gimple *stmt)
|
|
{
|
|
bool sop;
|
|
tree type = gimple_expr_type (stmt);
|
|
|
|
if (is_gimple_call (stmt))
|
|
{
|
|
combined_fn cfn = gimple_call_combined_fn (stmt);
|
|
switch (cfn)
|
|
{
|
|
case CFN_UBSAN_CHECK_ADD:
|
|
case CFN_UBSAN_CHECK_SUB:
|
|
case CFN_UBSAN_CHECK_MUL:
|
|
if (extract_range_from_ubsan_builtin (vr, stmt))
|
|
return;
|
|
break;
|
|
default:
|
|
if (range_of_builtin_call (*this, *vr, as_a<gcall *> (stmt)))
|
|
{
|
|
/* The original code nuked equivalences every time a
|
|
range was found, so do the same here. */
|
|
vr->equiv_clear ();
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* Handle extraction of the two results (result of arithmetics and
|
|
a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
|
|
internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
|
|
else if (is_gimple_assign (stmt)
|
|
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
|
|
&& INTEGRAL_TYPE_P (type))
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
tree op = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
|
|
{
|
|
gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
|
|
if (is_gimple_call (g) && gimple_call_internal_p (g))
|
|
{
|
|
enum tree_code subcode = ERROR_MARK;
|
|
switch (gimple_call_internal_fn (g))
|
|
{
|
|
case IFN_ADD_OVERFLOW:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_SUB_OVERFLOW:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_MUL_OVERFLOW:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
case IFN_ATOMIC_COMPARE_EXCHANGE:
|
|
if (code == IMAGPART_EXPR)
|
|
{
|
|
/* This is the boolean return value whether compare and
|
|
exchange changed anything or not. */
|
|
vr->set (build_int_cst (type, 0),
|
|
build_int_cst (type, 1));
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (subcode != ERROR_MARK)
|
|
{
|
|
tree op0 = gimple_call_arg (g, 0);
|
|
tree op1 = gimple_call_arg (g, 1);
|
|
if (code == IMAGPART_EXPR)
|
|
{
|
|
bool ovf = false;
|
|
if (check_for_binary_op_overflow (this, subcode, type,
|
|
op0, op1, &ovf))
|
|
vr->set (build_int_cst (type, ovf));
|
|
else if (TYPE_PRECISION (type) == 1
|
|
&& !TYPE_UNSIGNED (type))
|
|
vr->set_varying (type);
|
|
else
|
|
vr->set (build_int_cst (type, 0),
|
|
build_int_cst (type, 1));
|
|
}
|
|
else if (types_compatible_p (type, TREE_TYPE (op0))
|
|
&& types_compatible_p (type, TREE_TYPE (op1)))
|
|
{
|
|
bool saved_flag_wrapv = flag_wrapv;
|
|
/* Pretend the arithmetics is wrapping. If there is
|
|
any overflow, IMAGPART_EXPR will be set. */
|
|
flag_wrapv = 1;
|
|
extract_range_from_binary_expr (vr, subcode, type,
|
|
op0, op1);
|
|
flag_wrapv = saved_flag_wrapv;
|
|
}
|
|
else
|
|
{
|
|
value_range_equiv vr0, vr1;
|
|
bool saved_flag_wrapv = flag_wrapv;
|
|
/* Pretend the arithmetics is wrapping. If there is
|
|
any overflow, IMAGPART_EXPR will be set. */
|
|
flag_wrapv = 1;
|
|
extract_range_from_unary_expr (&vr0, NOP_EXPR,
|
|
type, op0);
|
|
extract_range_from_unary_expr (&vr1, NOP_EXPR,
|
|
type, op1);
|
|
range_fold_binary_expr (vr, subcode, type, &vr0, &vr1);
|
|
flag_wrapv = saved_flag_wrapv;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (INTEGRAL_TYPE_P (type)
|
|
&& gimple_stmt_nonnegative_warnv_p (stmt, &sop))
|
|
set_value_range_to_nonnegative (vr, type);
|
|
else if (vrp_stmt_computes_nonzero (stmt))
|
|
{
|
|
vr->set_nonzero (type);
|
|
vr->equiv_clear ();
|
|
}
|
|
else
|
|
vr->set_varying (type);
|
|
}
|
|
|
|
|
|
/* Try to compute a useful range out of assignment STMT and store it
|
|
in *VR. */
|
|
|
|
void
|
|
vr_values::extract_range_from_assignment (value_range_equiv *vr, gassign *stmt)
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
|
|
if (code == ASSERT_EXPR)
|
|
extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
|
|
else if (code == SSA_NAME)
|
|
extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
|
|
else if (TREE_CODE_CLASS (code) == tcc_binary)
|
|
extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt),
|
|
gimple_assign_rhs2 (stmt));
|
|
else if (TREE_CODE_CLASS (code) == tcc_unary)
|
|
extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
|
|
gimple_expr_type (stmt),
|
|
gimple_assign_rhs1 (stmt));
|
|
else if (code == COND_EXPR)
|
|
extract_range_from_cond_expr (vr, stmt);
|
|
else if (TREE_CODE_CLASS (code) == tcc_comparison)
|
|
extract_range_from_comparison (vr, stmt);
|
|
else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
|
|
&& is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
|
vr->set (gimple_assign_rhs1 (stmt));
|
|
else
|
|
vr->set_varying (TREE_TYPE (gimple_assign_lhs (stmt)));
|
|
|
|
if (vr->varying_p ())
|
|
extract_range_basic (vr, stmt);
|
|
}
|
|
|
|
/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
|
|
|
|
- Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
|
|
all the values in the ranges.
|
|
|
|
- Return BOOLEAN_FALSE_NODE if the comparison always returns false.
|
|
|
|
- Return NULL_TREE if it is not always possible to determine the
|
|
value of the comparison.
|
|
|
|
Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
|
|
assumed signed overflow is undefined. */
|
|
|
|
|
|
static tree
|
|
compare_ranges (enum tree_code comp, const value_range_equiv *vr0,
|
|
const value_range_equiv *vr1, bool *strict_overflow_p)
|
|
{
|
|
/* VARYING or UNDEFINED ranges cannot be compared. */
|
|
if (vr0->varying_p ()
|
|
|| vr0->undefined_p ()
|
|
|| vr1->varying_p ()
|
|
|| vr1->undefined_p ())
|
|
return NULL_TREE;
|
|
|
|
/* Anti-ranges need to be handled separately. */
|
|
if (vr0->kind () == VR_ANTI_RANGE || vr1->kind () == VR_ANTI_RANGE)
|
|
{
|
|
/* If both are anti-ranges, then we cannot compute any
|
|
comparison. */
|
|
if (vr0->kind () == VR_ANTI_RANGE && vr1->kind () == VR_ANTI_RANGE)
|
|
return NULL_TREE;
|
|
|
|
/* These comparisons are never statically computable. */
|
|
if (comp == GT_EXPR
|
|
|| comp == GE_EXPR
|
|
|| comp == LT_EXPR
|
|
|| comp == LE_EXPR)
|
|
return NULL_TREE;
|
|
|
|
/* Equality can be computed only between a range and an
|
|
anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
|
|
if (vr0->kind () == VR_RANGE)
|
|
/* To simplify processing, make VR0 the anti-range. */
|
|
std::swap (vr0, vr1);
|
|
|
|
gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
|
|
|
|
if (compare_values_warnv (vr0->min (), vr1->min (), strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr0->max (), vr1->max (), strict_overflow_p) == 0)
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
|
|
operands around and change the comparison code. */
|
|
if (comp == GT_EXPR || comp == GE_EXPR)
|
|
{
|
|
comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
|
|
std::swap (vr0, vr1);
|
|
}
|
|
|
|
if (comp == EQ_EXPR)
|
|
{
|
|
/* Equality may only be computed if both ranges represent
|
|
exactly one value. */
|
|
if (compare_values_warnv (vr0->min (), vr0->max (), strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr1->min (), vr1->max (), strict_overflow_p) == 0)
|
|
{
|
|
int cmp_min = compare_values_warnv (vr0->min (), vr1->min (),
|
|
strict_overflow_p);
|
|
int cmp_max = compare_values_warnv (vr0->max (), vr1->max (),
|
|
strict_overflow_p);
|
|
if (cmp_min == 0 && cmp_max == 0)
|
|
return boolean_true_node;
|
|
else if (cmp_min != -2 && cmp_max != -2)
|
|
return boolean_false_node;
|
|
}
|
|
/* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
|
|
else if (compare_values_warnv (vr0->min (), vr1->max (),
|
|
strict_overflow_p) == 1
|
|
|| compare_values_warnv (vr1->min (), vr0->max (),
|
|
strict_overflow_p) == 1)
|
|
return boolean_false_node;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
else if (comp == NE_EXPR)
|
|
{
|
|
int cmp1, cmp2;
|
|
|
|
/* If VR0 is completely to the left or completely to the right
|
|
of VR1, they are always different. Notice that we need to
|
|
make sure that both comparisons yield similar results to
|
|
avoid comparing values that cannot be compared at
|
|
compile-time. */
|
|
cmp1 = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
|
|
cmp2 = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
|
|
if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
|
|
return boolean_true_node;
|
|
|
|
/* If VR0 and VR1 represent a single value and are identical,
|
|
return false. */
|
|
else if (compare_values_warnv (vr0->min (), vr0->max (),
|
|
strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr1->min (), vr1->max (),
|
|
strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr0->min (), vr1->min (),
|
|
strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr0->max (), vr1->max (),
|
|
strict_overflow_p) == 0)
|
|
return boolean_false_node;
|
|
|
|
/* Otherwise, they may or may not be different. */
|
|
else
|
|
return NULL_TREE;
|
|
}
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
|
{
|
|
int tst;
|
|
|
|
/* If VR0 is to the left of VR1, return true. */
|
|
tst = compare_values_warnv (vr0->max (), vr1->min (), strict_overflow_p);
|
|
if ((comp == LT_EXPR && tst == -1)
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
|
return boolean_true_node;
|
|
|
|
/* If VR0 is to the right of VR1, return false. */
|
|
tst = compare_values_warnv (vr0->min (), vr1->max (), strict_overflow_p);
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
|
|| (comp == LE_EXPR && tst == 1))
|
|
return boolean_false_node;
|
|
|
|
/* Otherwise, we don't know. */
|
|
return NULL_TREE;
|
|
}
|
|
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Given a value range VR, a value VAL and a comparison code COMP, return
|
|
BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
|
|
values in VR. Return BOOLEAN_FALSE_NODE if the comparison
|
|
always returns false. Return NULL_TREE if it is not always
|
|
possible to determine the value of the comparison. Also set
|
|
*STRICT_OVERFLOW_P to indicate whether comparision evaluation
|
|
assumed signed overflow is undefined. */
|
|
|
|
static tree
|
|
compare_range_with_value (enum tree_code comp, const value_range *vr,
|
|
tree val, bool *strict_overflow_p)
|
|
{
|
|
if (vr->varying_p () || vr->undefined_p ())
|
|
return NULL_TREE;
|
|
|
|
/* Anti-ranges need to be handled separately. */
|
|
if (vr->kind () == VR_ANTI_RANGE)
|
|
{
|
|
/* For anti-ranges, the only predicates that we can compute at
|
|
compile time are equality and inequality. */
|
|
if (comp == GT_EXPR
|
|
|| comp == GE_EXPR
|
|
|| comp == LT_EXPR
|
|
|| comp == LE_EXPR)
|
|
return NULL_TREE;
|
|
|
|
/* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
|
|
if (!vr->may_contain_p (val))
|
|
return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
if (comp == EQ_EXPR)
|
|
{
|
|
/* EQ_EXPR may only be computed if VR represents exactly
|
|
one value. */
|
|
if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0)
|
|
{
|
|
int cmp = compare_values_warnv (vr->min (), val, strict_overflow_p);
|
|
if (cmp == 0)
|
|
return boolean_true_node;
|
|
else if (cmp == -1 || cmp == 1 || cmp == 2)
|
|
return boolean_false_node;
|
|
}
|
|
else if (compare_values_warnv (val, vr->min (), strict_overflow_p) == -1
|
|
|| compare_values_warnv (vr->max (), val, strict_overflow_p) == -1)
|
|
return boolean_false_node;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
else if (comp == NE_EXPR)
|
|
{
|
|
/* If VAL is not inside VR, then they are always different. */
|
|
if (compare_values_warnv (vr->max (), val, strict_overflow_p) == -1
|
|
|| compare_values_warnv (vr->min (), val, strict_overflow_p) == 1)
|
|
return boolean_true_node;
|
|
|
|
/* If VR represents exactly one value equal to VAL, then return
|
|
false. */
|
|
if (compare_values_warnv (vr->min (), vr->max (), strict_overflow_p) == 0
|
|
&& compare_values_warnv (vr->min (), val, strict_overflow_p) == 0)
|
|
return boolean_false_node;
|
|
|
|
/* Otherwise, they may or may not be different. */
|
|
return NULL_TREE;
|
|
}
|
|
else if (comp == LT_EXPR || comp == LE_EXPR)
|
|
{
|
|
int tst;
|
|
|
|
/* If VR is to the left of VAL, return true. */
|
|
tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
|
|
if ((comp == LT_EXPR && tst == -1)
|
|
|| (comp == LE_EXPR && (tst == -1 || tst == 0)))
|
|
return boolean_true_node;
|
|
|
|
/* If VR is to the right of VAL, return false. */
|
|
tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
|
|
if ((comp == LT_EXPR && (tst == 0 || tst == 1))
|
|
|| (comp == LE_EXPR && tst == 1))
|
|
return boolean_false_node;
|
|
|
|
/* Otherwise, we don't know. */
|
|
return NULL_TREE;
|
|
}
|
|
else if (comp == GT_EXPR || comp == GE_EXPR)
|
|
{
|
|
int tst;
|
|
|
|
/* If VR is to the right of VAL, return true. */
|
|
tst = compare_values_warnv (vr->min (), val, strict_overflow_p);
|
|
if ((comp == GT_EXPR && tst == 1)
|
|
|| (comp == GE_EXPR && (tst == 0 || tst == 1)))
|
|
return boolean_true_node;
|
|
|
|
/* If VR is to the left of VAL, return false. */
|
|
tst = compare_values_warnv (vr->max (), val, strict_overflow_p);
|
|
if ((comp == GT_EXPR && (tst == -1 || tst == 0))
|
|
|| (comp == GE_EXPR && tst == -1))
|
|
return boolean_false_node;
|
|
|
|
/* Otherwise, we don't know. */
|
|
return NULL_TREE;
|
|
}
|
|
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Given a VAR in STMT within LOOP, determine the bounds of the
|
|
variable and store it in MIN/MAX and return TRUE. If no bounds
|
|
could be determined, return FALSE. */
|
|
|
|
bool
|
|
bounds_of_var_in_loop (tree *min, tree *max, range_query *query,
|
|
class loop *loop, gimple *stmt, tree var)
|
|
{
|
|
tree init, step, chrec, tmin, tmax, type = TREE_TYPE (var);
|
|
enum ev_direction dir;
|
|
|
|
chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
|
|
|
|
/* Like in PR19590, scev can return a constant function. */
|
|
if (is_gimple_min_invariant (chrec))
|
|
{
|
|
*min = *max = chrec;
|
|
goto fix_overflow;
|
|
}
|
|
|
|
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
|
return false;
|
|
|
|
init = initial_condition_in_loop_num (chrec, loop->num);
|
|
step = evolution_part_in_loop_num (chrec, loop->num);
|
|
|
|
/* If INIT is an SSA with a singleton range, set INIT to said
|
|
singleton, otherwise leave INIT alone. */
|
|
if (TREE_CODE (init) == SSA_NAME)
|
|
query->get_value_range (init, stmt)->singleton_p (&init);
|
|
/* Likewise for step. */
|
|
if (TREE_CODE (step) == SSA_NAME)
|
|
query->get_value_range (step, stmt)->singleton_p (&step);
|
|
|
|
/* If STEP is symbolic, we can't know whether INIT will be the
|
|
minimum or maximum value in the range. Also, unless INIT is
|
|
a simple expression, compare_values and possibly other functions
|
|
in tree-vrp won't be able to handle it. */
|
|
if (step == NULL_TREE
|
|
|| !is_gimple_min_invariant (step)
|
|
|| !valid_value_p (init))
|
|
return false;
|
|
|
|
dir = scev_direction (chrec);
|
|
if (/* Do not adjust ranges if we do not know whether the iv increases
|
|
or decreases, ... */
|
|
dir == EV_DIR_UNKNOWN
|
|
/* ... or if it may wrap. */
|
|
|| scev_probably_wraps_p (NULL_TREE, init, step, stmt,
|
|
get_chrec_loop (chrec), true))
|
|
return false;
|
|
|
|
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
|
|
tmin = lower_bound_in_type (type, type);
|
|
else
|
|
tmin = TYPE_MIN_VALUE (type);
|
|
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
|
|
tmax = upper_bound_in_type (type, type);
|
|
else
|
|
tmax = TYPE_MAX_VALUE (type);
|
|
|
|
/* Try to use estimated number of iterations for the loop to constrain the
|
|
final value in the evolution. */
|
|
if (TREE_CODE (step) == INTEGER_CST
|
|
&& is_gimple_val (init)
|
|
&& (TREE_CODE (init) != SSA_NAME
|
|
|| query->get_value_range (init, stmt)->kind () == VR_RANGE))
|
|
{
|
|
widest_int nit;
|
|
|
|
/* We are only entering here for loop header PHI nodes, so using
|
|
the number of latch executions is the correct thing to use. */
|
|
if (max_loop_iterations (loop, &nit))
|
|
{
|
|
signop sgn = TYPE_SIGN (TREE_TYPE (step));
|
|
wi::overflow_type overflow;
|
|
|
|
widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
|
|
&overflow);
|
|
/* If the multiplication overflowed we can't do a meaningful
|
|
adjustment. Likewise if the result doesn't fit in the type
|
|
of the induction variable. For a signed type we have to
|
|
check whether the result has the expected signedness which
|
|
is that of the step as number of iterations is unsigned. */
|
|
if (!overflow
|
|
&& wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
|
|
&& (sgn == UNSIGNED
|
|
|| wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0)))
|
|
{
|
|
value_range maxvr, vr0, vr1;
|
|
if (TREE_CODE (init) == SSA_NAME)
|
|
vr0 = *(query->get_value_range (init, stmt));
|
|
else if (is_gimple_min_invariant (init))
|
|
vr0.set (init);
|
|
else
|
|
vr0.set_varying (TREE_TYPE (init));
|
|
tree tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
|
|
vr1.set (tem, tem);
|
|
range_fold_binary_expr (&maxvr, PLUS_EXPR,
|
|
TREE_TYPE (init), &vr0, &vr1);
|
|
|
|
/* Likewise if the addition did. */
|
|
if (maxvr.kind () == VR_RANGE)
|
|
{
|
|
value_range initvr;
|
|
|
|
if (TREE_CODE (init) == SSA_NAME)
|
|
initvr = *(query->get_value_range (init, stmt));
|
|
else if (is_gimple_min_invariant (init))
|
|
initvr.set (init);
|
|
else
|
|
return false;
|
|
|
|
/* Check if init + nit * step overflows. Though we checked
|
|
scev {init, step}_loop doesn't wrap, it is not enough
|
|
because the loop may exit immediately. Overflow could
|
|
happen in the plus expression in this case. */
|
|
if ((dir == EV_DIR_DECREASES
|
|
&& compare_values (maxvr.min (), initvr.min ()) != -1)
|
|
|| (dir == EV_DIR_GROWS
|
|
&& compare_values (maxvr.max (), initvr.max ()) != 1))
|
|
return false;
|
|
|
|
tmin = maxvr.min ();
|
|
tmax = maxvr.max ();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*min = tmin;
|
|
*max = tmax;
|
|
if (dir == EV_DIR_DECREASES)
|
|
*max = init;
|
|
else
|
|
*min = init;
|
|
|
|
fix_overflow:
|
|
/* Even for valid range info, sometimes overflow flag will leak in.
|
|
As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
|
|
drop them. */
|
|
if (TREE_OVERFLOW_P (*min))
|
|
*min = drop_tree_overflow (*min);
|
|
if (TREE_OVERFLOW_P (*max))
|
|
*max = drop_tree_overflow (*max);
|
|
|
|
gcc_checking_assert (compare_values (*min, *max) != 1);
|
|
return true;
|
|
}
|
|
|
|
/* Given a range VR, a LOOP and a variable VAR, determine whether it
|
|
would be profitable to adjust VR using scalar evolution information
|
|
for VAR. If so, update VR with the new limits. */
|
|
|
|
void
|
|
vr_values::adjust_range_with_scev (value_range_equiv *vr, class loop *loop,
|
|
gimple *stmt, tree var)
|
|
{
|
|
tree min, max;
|
|
if (bounds_of_var_in_loop (&min, &max, this, loop, stmt, var))
|
|
{
|
|
if (vr->undefined_p () || vr->varying_p ())
|
|
{
|
|
/* For VARYING or UNDEFINED ranges, just about anything we get
|
|
from scalar evolutions should be better. */
|
|
vr->update (min, max);
|
|
}
|
|
else if (vr->kind () == VR_RANGE)
|
|
{
|
|
/* Start with the input range... */
|
|
tree vrmin = vr->min ();
|
|
tree vrmax = vr->max ();
|
|
|
|
/* ...and narrow it down with what we got from SCEV. */
|
|
if (compare_values (min, vrmin) == 1)
|
|
vrmin = min;
|
|
if (compare_values (max, vrmax) == -1)
|
|
vrmax = max;
|
|
|
|
vr->update (vrmin, vrmax);
|
|
}
|
|
else if (vr->kind () == VR_ANTI_RANGE)
|
|
{
|
|
/* ?? As an enhancement, if VR, MIN, and MAX are constants, one
|
|
could just intersect VR with a range of [MIN,MAX]. */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dump value ranges of all SSA_NAMEs to FILE. */
|
|
|
|
void
|
|
vr_values::dump_all_value_ranges (FILE *file)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < num_vr_values; i++)
|
|
{
|
|
if (vr_value[i] && ssa_name (i))
|
|
{
|
|
print_generic_expr (file, ssa_name (i));
|
|
fprintf (file, ": ");
|
|
dump_value_range (file, vr_value[i]);
|
|
fprintf (file, "\n");
|
|
}
|
|
}
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
/* Initialize VRP lattice. */
|
|
|
|
vr_values::vr_values () : simplifier (this)
|
|
{
|
|
values_propagated = false;
|
|
num_vr_values = num_ssa_names * 2;
|
|
vr_value = XCNEWVEC (value_range_equiv *, num_vr_values);
|
|
vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
|
|
bitmap_obstack_initialize (&vrp_equiv_obstack);
|
|
}
|
|
|
|
/* Free VRP lattice. */
|
|
|
|
vr_values::~vr_values ()
|
|
{
|
|
/* Free allocated memory. */
|
|
free (vr_value);
|
|
free (vr_phi_edge_counts);
|
|
bitmap_obstack_release (&vrp_equiv_obstack);
|
|
|
|
/* So that we can distinguish between VRP data being available
|
|
and not available. */
|
|
vr_value = NULL;
|
|
vr_phi_edge_counts = NULL;
|
|
}
|
|
|
|
|
|
/* A hack. */
|
|
static class vr_values *x_vr_values;
|
|
|
|
/* Return the singleton value-range for NAME or NAME. */
|
|
|
|
static inline tree
|
|
vrp_valueize (tree name)
|
|
{
|
|
if (TREE_CODE (name) == SSA_NAME)
|
|
{
|
|
const value_range_equiv *vr = x_vr_values->get_value_range (name);
|
|
if (vr->kind () == VR_RANGE
|
|
&& (TREE_CODE (vr->min ()) == SSA_NAME
|
|
|| is_gimple_min_invariant (vr->min ()))
|
|
&& vrp_operand_equal_p (vr->min (), vr->max ()))
|
|
return vr->min ();
|
|
}
|
|
return name;
|
|
}
|
|
|
|
/* Return the singleton value-range for NAME if that is a constant
|
|
but signal to not follow SSA edges. */
|
|
|
|
static inline tree
|
|
vrp_valueize_1 (tree name)
|
|
{
|
|
if (TREE_CODE (name) == SSA_NAME)
|
|
{
|
|
/* If the definition may be simulated again we cannot follow
|
|
this SSA edge as the SSA propagator does not necessarily
|
|
re-visit the use. */
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& prop_simulate_again_p (def_stmt))
|
|
return NULL_TREE;
|
|
const value_range_equiv *vr = x_vr_values->get_value_range (name);
|
|
tree singleton;
|
|
if (vr->singleton_p (&singleton))
|
|
return singleton;
|
|
}
|
|
return name;
|
|
}
|
|
|
|
/* Given STMT, an assignment or call, return its LHS if the type
|
|
of the LHS is suitable for VRP analysis, else return NULL_TREE. */
|
|
|
|
tree
|
|
get_output_for_vrp (gimple *stmt)
|
|
{
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
|
return NULL_TREE;
|
|
|
|
/* We only keep track of ranges in integral and pointer types. */
|
|
tree lhs = gimple_get_lhs (stmt);
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
|
&& ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
|
/* It is valid to have NULL MIN/MAX values on a type. See
|
|
build_range_type. */
|
|
&& TYPE_MIN_VALUE (TREE_TYPE (lhs))
|
|
&& TYPE_MAX_VALUE (TREE_TYPE (lhs)))
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs))))
|
|
return lhs;
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Visit assignment STMT. If it produces an interesting range, record
|
|
the range in VR and set LHS to OUTPUT_P. */
|
|
|
|
void
|
|
vr_values::vrp_visit_assignment_or_call (gimple *stmt, tree *output_p,
|
|
value_range_equiv *vr)
|
|
{
|
|
tree lhs = get_output_for_vrp (stmt);
|
|
*output_p = lhs;
|
|
|
|
/* We only keep track of ranges in integral and pointer types. */
|
|
if (lhs)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
|
|
/* Try folding the statement to a constant first. */
|
|
x_vr_values = this;
|
|
tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
|
|
vrp_valueize_1);
|
|
x_vr_values = NULL;
|
|
if (tem)
|
|
{
|
|
if (TREE_CODE (tem) == SSA_NAME
|
|
&& (SSA_NAME_IS_DEFAULT_DEF (tem)
|
|
|| ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
|
|
{
|
|
extract_range_from_ssa_name (vr, tem);
|
|
return;
|
|
}
|
|
else if (is_gimple_min_invariant (tem))
|
|
{
|
|
vr->set (tem);
|
|
return;
|
|
}
|
|
}
|
|
/* Then dispatch to value-range extracting functions. */
|
|
if (code == GIMPLE_CALL)
|
|
extract_range_basic (vr, stmt);
|
|
else
|
|
extract_range_from_assignment (vr, as_a <gassign *> (stmt));
|
|
}
|
|
}
|
|
|
|
/* Helper that gets the value range of the SSA_NAME with version I
|
|
or a symbolic range containing the SSA_NAME only if the value range
|
|
is varying or undefined. Uses TEM as storage for the alternate range. */
|
|
|
|
const value_range_equiv *
|
|
simplify_using_ranges::get_vr_for_comparison (int i, value_range_equiv *tem)
|
|
{
|
|
/* Shallow-copy equiv bitmap. */
|
|
const value_range_equiv *vr = query->get_value_range (ssa_name (i));
|
|
|
|
/* If name N_i does not have a valid range, use N_i as its own
|
|
range. This allows us to compare against names that may
|
|
have N_i in their ranges. */
|
|
if (vr->varying_p () || vr->undefined_p ())
|
|
{
|
|
tem->set (ssa_name (i));
|
|
return tem;
|
|
}
|
|
|
|
return vr;
|
|
}
|
|
|
|
/* Compare all the value ranges for names equivalent to VAR with VAL
|
|
using comparison code COMP. Return the same value returned by
|
|
compare_range_with_value, including the setting of
|
|
*STRICT_OVERFLOW_P. */
|
|
|
|
tree
|
|
simplify_using_ranges::compare_name_with_value
|
|
(enum tree_code comp, tree var, tree val,
|
|
bool *strict_overflow_p, bool use_equiv_p)
|
|
{
|
|
/* Get the set of equivalences for VAR. */
|
|
bitmap e = query->get_value_range (var)->equiv ();
|
|
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
|
int used_strict_overflow = -1;
|
|
|
|
/* Compare vars' value range with val. */
|
|
value_range_equiv tem_vr;
|
|
const value_range_equiv *equiv_vr
|
|
= get_vr_for_comparison (SSA_NAME_VERSION (var), &tem_vr);
|
|
bool sop = false;
|
|
tree retval = compare_range_with_value (comp, equiv_vr, val, &sop);
|
|
if (retval)
|
|
used_strict_overflow = sop ? 1 : 0;
|
|
|
|
/* If the equiv set is empty we have done all work we need to do. */
|
|
if (e == NULL)
|
|
{
|
|
if (retval && used_strict_overflow > 0)
|
|
*strict_overflow_p = true;
|
|
return retval;
|
|
}
|
|
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
|
|
{
|
|
tree name = ssa_name (i);
|
|
if (!name)
|
|
continue;
|
|
|
|
if (!use_equiv_p
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (name)
|
|
&& prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
|
|
continue;
|
|
|
|
equiv_vr = get_vr_for_comparison (i, &tem_vr);
|
|
sop = false;
|
|
tree t = compare_range_with_value (comp, equiv_vr, val, &sop);
|
|
if (t)
|
|
{
|
|
/* If we get different answers from different members
|
|
of the equivalence set this check must be in a dead
|
|
code region. Folding it to a trap representation
|
|
would be correct here. For now just return don't-know. */
|
|
if (retval != NULL
|
|
&& t != retval)
|
|
{
|
|
retval = NULL_TREE;
|
|
break;
|
|
}
|
|
retval = t;
|
|
|
|
if (!sop)
|
|
used_strict_overflow = 0;
|
|
else if (used_strict_overflow < 0)
|
|
used_strict_overflow = 1;
|
|
}
|
|
}
|
|
|
|
if (retval && used_strict_overflow > 0)
|
|
*strict_overflow_p = true;
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Given a comparison code COMP and names N1 and N2, compare all the
|
|
ranges equivalent to N1 against all the ranges equivalent to N2
|
|
to determine the value of N1 COMP N2. Return the same value
|
|
returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
|
|
whether we relied on undefined signed overflow in the comparison. */
|
|
|
|
|
|
tree
|
|
simplify_using_ranges::compare_names (enum tree_code comp, tree n1, tree n2,
|
|
bool *strict_overflow_p)
|
|
{
|
|
/* Compare the ranges of every name equivalent to N1 against the
|
|
ranges of every name equivalent to N2. */
|
|
bitmap e1 = query->get_value_range (n1)->equiv ();
|
|
bitmap e2 = query->get_value_range (n2)->equiv ();
|
|
|
|
/* Use the fake bitmaps if e1 or e2 are not available. */
|
|
static bitmap s_e1 = NULL, s_e2 = NULL;
|
|
static bitmap_obstack *s_obstack = NULL;
|
|
if (s_obstack == NULL)
|
|
{
|
|
s_obstack = XNEW (bitmap_obstack);
|
|
bitmap_obstack_initialize (s_obstack);
|
|
s_e1 = BITMAP_ALLOC (s_obstack);
|
|
s_e2 = BITMAP_ALLOC (s_obstack);
|
|
}
|
|
if (e1 == NULL)
|
|
e1 = s_e1;
|
|
if (e2 == NULL)
|
|
e2 = s_e2;
|
|
|
|
/* Add N1 and N2 to their own set of equivalences to avoid
|
|
duplicating the body of the loop just to check N1 and N2
|
|
ranges. */
|
|
bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
|
|
bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
|
|
|
|
/* If the equivalence sets have a common intersection, then the two
|
|
names can be compared without checking their ranges. */
|
|
if (bitmap_intersect_p (e1, e2))
|
|
{
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
|
|
|
return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
|
|
? boolean_true_node
|
|
: boolean_false_node;
|
|
}
|
|
|
|
/* Start at -1. Set it to 0 if we do a comparison without relying
|
|
on overflow, or 1 if all comparisons rely on overflow. */
|
|
int used_strict_overflow = -1;
|
|
|
|
/* Otherwise, compare all the equivalent ranges. First, add N1 and
|
|
N2 to their own set of equivalences to avoid duplicating the body
|
|
of the loop just to check N1 and N2 ranges. */
|
|
bitmap_iterator bi1;
|
|
unsigned i1;
|
|
EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
|
|
{
|
|
if (!ssa_name (i1))
|
|
continue;
|
|
|
|
value_range_equiv tem_vr1;
|
|
const value_range_equiv *vr1 = get_vr_for_comparison (i1, &tem_vr1);
|
|
|
|
tree t = NULL_TREE, retval = NULL_TREE;
|
|
bitmap_iterator bi2;
|
|
unsigned i2;
|
|
EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
|
|
{
|
|
if (!ssa_name (i2))
|
|
continue;
|
|
|
|
bool sop = false;
|
|
|
|
value_range_equiv tem_vr2;
|
|
const value_range_equiv *vr2 = get_vr_for_comparison (i2, &tem_vr2);
|
|
|
|
t = compare_ranges (comp, vr1, vr2, &sop);
|
|
if (t)
|
|
{
|
|
/* If we get different answers from different members
|
|
of the equivalence set this check must be in a dead
|
|
code region. Folding it to a trap representation
|
|
would be correct here. For now just return don't-know. */
|
|
if (retval != NULL && t != retval)
|
|
{
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
|
return NULL_TREE;
|
|
}
|
|
retval = t;
|
|
|
|
if (!sop)
|
|
used_strict_overflow = 0;
|
|
else if (used_strict_overflow < 0)
|
|
used_strict_overflow = 1;
|
|
}
|
|
}
|
|
|
|
if (retval)
|
|
{
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
|
if (used_strict_overflow > 0)
|
|
*strict_overflow_p = true;
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/* None of the equivalent ranges are useful in computing this
|
|
comparison. */
|
|
bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
|
|
bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Helper function for vrp_evaluate_conditional_warnv & other
|
|
optimizers. */
|
|
|
|
tree
|
|
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
|
(enum tree_code code, tree op0, tree op1, bool * strict_overflow_p)
|
|
{
|
|
const value_range_equiv *vr0, *vr1;
|
|
vr0 = (TREE_CODE (op0) == SSA_NAME) ? query->get_value_range (op0) : NULL;
|
|
vr1 = (TREE_CODE (op1) == SSA_NAME) ? query->get_value_range (op1) : NULL;
|
|
|
|
tree res = NULL_TREE;
|
|
if (vr0 && vr1)
|
|
res = compare_ranges (code, vr0, vr1, strict_overflow_p);
|
|
if (!res && vr0)
|
|
res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
|
|
if (!res && vr1)
|
|
res = (compare_range_with_value
|
|
(swap_tree_comparison (code), vr1, op0, strict_overflow_p));
|
|
return res;
|
|
}
|
|
|
|
/* Helper function for vrp_evaluate_conditional_warnv. */
|
|
|
|
tree
|
|
simplify_using_ranges::vrp_evaluate_conditional_warnv_with_ops
|
|
(gimple *stmt,
|
|
enum tree_code code,
|
|
tree op0, tree op1,
|
|
bool use_equiv_p,
|
|
bool *strict_overflow_p,
|
|
bool *only_ranges)
|
|
{
|
|
tree ret;
|
|
if (only_ranges)
|
|
*only_ranges = true;
|
|
|
|
/* We only deal with integral and pointer types. */
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
|
&& !POINTER_TYPE_P (TREE_TYPE (op0)))
|
|
return NULL_TREE;
|
|
|
|
/* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
|
|
as a simple equality test, then prefer that over its current form
|
|
for evaluation.
|
|
|
|
An overflow test which collapses to an equality test can always be
|
|
expressed as a comparison of one argument against zero. Overflow
|
|
occurs when the chosen argument is zero and does not occur if the
|
|
chosen argument is not zero. */
|
|
tree x;
|
|
if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
|
|
{
|
|
wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
|
|
/* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
|
|
B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
|
|
B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
|
|
B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
|
|
if (integer_zerop (x))
|
|
{
|
|
op1 = x;
|
|
code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
|
|
}
|
|
/* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
|
|
B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
|
|
B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
|
|
B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
|
|
else if (wi::to_wide (x) == max - 1)
|
|
{
|
|
op0 = op1;
|
|
op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
|
|
code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
|
|
}
|
|
else
|
|
{
|
|
value_range vro, vri;
|
|
if (code == GT_EXPR || code == GE_EXPR)
|
|
{
|
|
vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
|
|
vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
|
|
}
|
|
else if (code == LT_EXPR || code == LE_EXPR)
|
|
{
|
|
vro.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x);
|
|
vri.set (TYPE_MIN_VALUE (TREE_TYPE (op0)), x, VR_ANTI_RANGE);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
const value_range_equiv *vr0 = query->get_value_range (op0, stmt);
|
|
/* If vro, the range for OP0 to pass the overflow test, has
|
|
no intersection with *vr0, OP0's known range, then the
|
|
overflow test can't pass, so return the node for false.
|
|
If it is the inverted range, vri, that has no
|
|
intersection, then the overflow test must pass, so return
|
|
the node for true. In other cases, we could proceed with
|
|
a simplified condition comparing OP0 and X, with LE_EXPR
|
|
for previously LE_ or LT_EXPR and GT_EXPR otherwise, but
|
|
the comments next to the enclosing if suggest it's not
|
|
generally profitable to do so. */
|
|
vro.intersect (vr0);
|
|
if (vro.undefined_p ())
|
|
return boolean_false_node;
|
|
vri.intersect (vr0);
|
|
if (vri.undefined_p ())
|
|
return boolean_true_node;
|
|
}
|
|
}
|
|
|
|
if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
|
(code, op0, op1, strict_overflow_p)))
|
|
return ret;
|
|
if (only_ranges)
|
|
*only_ranges = false;
|
|
/* Do not use compare_names during propagation, it's quadratic. */
|
|
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
|
|
&& use_equiv_p)
|
|
return compare_names (code, op0, op1, strict_overflow_p);
|
|
else if (TREE_CODE (op0) == SSA_NAME)
|
|
return compare_name_with_value (code, op0, op1,
|
|
strict_overflow_p, use_equiv_p);
|
|
else if (TREE_CODE (op1) == SSA_NAME)
|
|
return compare_name_with_value (swap_tree_comparison (code), op1, op0,
|
|
strict_overflow_p, use_equiv_p);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
|
|
information. Return NULL if the conditional cannot be evaluated.
|
|
The ranges of all the names equivalent with the operands in COND
|
|
will be used when trying to compute the value. If the result is
|
|
based on undefined signed overflow, issue a warning if
|
|
appropriate. */
|
|
|
|
tree
|
|
simplify_using_ranges::vrp_evaluate_conditional (tree_code code, tree op0,
|
|
tree op1, gimple *stmt)
|
|
{
|
|
bool sop;
|
|
tree ret;
|
|
bool only_ranges;
|
|
|
|
/* Some passes and foldings leak constants with overflow flag set
|
|
into the IL. Avoid doing wrong things with these and bail out. */
|
|
if ((TREE_CODE (op0) == INTEGER_CST
|
|
&& TREE_OVERFLOW (op0))
|
|
|| (TREE_CODE (op1) == INTEGER_CST
|
|
&& TREE_OVERFLOW (op1)))
|
|
return NULL_TREE;
|
|
|
|
sop = false;
|
|
ret = vrp_evaluate_conditional_warnv_with_ops (stmt, code, op0, op1, true,
|
|
&sop, &only_ranges);
|
|
|
|
if (ret && sop)
|
|
{
|
|
enum warn_strict_overflow_code wc;
|
|
const char* warnmsg;
|
|
|
|
if (is_gimple_min_invariant (ret))
|
|
{
|
|
wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
|
"simplifying conditional to constant");
|
|
}
|
|
else
|
|
{
|
|
wc = WARN_STRICT_OVERFLOW_COMPARISON;
|
|
warnmsg = G_("assuming signed overflow does not occur when "
|
|
"simplifying conditional");
|
|
}
|
|
|
|
if (issue_strict_overflow_warning (wc))
|
|
{
|
|
location_t location;
|
|
|
|
if (!gimple_has_location (stmt))
|
|
location = input_location;
|
|
else
|
|
location = gimple_location (stmt);
|
|
warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
|
|
}
|
|
}
|
|
|
|
if (warn_type_limits
|
|
&& ret && only_ranges
|
|
&& TREE_CODE_CLASS (code) == tcc_comparison
|
|
&& TREE_CODE (op0) == SSA_NAME)
|
|
{
|
|
/* If the comparison is being folded and the operand on the LHS
|
|
is being compared against a constant value that is outside of
|
|
the natural range of OP0's type, then the predicate will
|
|
always fold regardless of the value of OP0. If -Wtype-limits
|
|
was specified, emit a warning. */
|
|
tree type = TREE_TYPE (op0);
|
|
const value_range_equiv *vr0 = query->get_value_range (op0, stmt);
|
|
|
|
if (vr0->varying_p ()
|
|
&& INTEGRAL_TYPE_P (type)
|
|
&& is_gimple_min_invariant (op1))
|
|
{
|
|
location_t location;
|
|
|
|
if (!gimple_has_location (stmt))
|
|
location = input_location;
|
|
else
|
|
location = gimple_location (stmt);
|
|
|
|
warning_at (location, OPT_Wtype_limits,
|
|
integer_zerop (ret)
|
|
? G_("comparison always false "
|
|
"due to limited range of data type")
|
|
: G_("comparison always true "
|
|
"due to limited range of data type"));
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Visit conditional statement STMT. If we can determine which edge
|
|
will be taken out of STMT's basic block, record it in
|
|
*TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
|
|
|
|
void
|
|
simplify_using_ranges::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
|
|
{
|
|
tree val;
|
|
|
|
*taken_edge_p = NULL;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
tree use;
|
|
ssa_op_iter i;
|
|
|
|
fprintf (dump_file, "\nVisiting conditional with predicate: ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\nWith known ranges\n");
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
|
{
|
|
fprintf (dump_file, "\t");
|
|
print_generic_expr (dump_file, use);
|
|
fprintf (dump_file, ": ");
|
|
dump_value_range (dump_file, query->get_value_range (use, stmt));
|
|
}
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
/* Compute the value of the predicate COND by checking the known
|
|
ranges of each of its operands.
|
|
|
|
Note that we cannot evaluate all the equivalent ranges here
|
|
because those ranges may not yet be final and with the current
|
|
propagation strategy, we cannot determine when the value ranges
|
|
of the names in the equivalence set have changed.
|
|
|
|
For instance, given the following code fragment
|
|
|
|
i_5 = PHI <8, i_13>
|
|
...
|
|
i_14 = ASSERT_EXPR <i_5, i_5 != 0>
|
|
if (i_14 == 1)
|
|
...
|
|
|
|
Assume that on the first visit to i_14, i_5 has the temporary
|
|
range [8, 8] because the second argument to the PHI function is
|
|
not yet executable. We derive the range ~[0, 0] for i_14 and the
|
|
equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
|
|
the first time, since i_14 is equivalent to the range [8, 8], we
|
|
determine that the predicate is always false.
|
|
|
|
On the next round of propagation, i_13 is determined to be
|
|
VARYING, which causes i_5 to drop down to VARYING. So, another
|
|
visit to i_14 is scheduled. In this second visit, we compute the
|
|
exact same range and equivalence set for i_14, namely ~[0, 0] and
|
|
{ i_5 }. But we did not have the previous range for i_5
|
|
registered, so vrp_visit_assignment thinks that the range for
|
|
i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
|
|
is not visited again, which stops propagation from visiting
|
|
statements in the THEN clause of that if().
|
|
|
|
To properly fix this we would need to keep the previous range
|
|
value for the names in the equivalence set. This way we would've
|
|
discovered that from one visit to the other i_5 changed from
|
|
range [8, 8] to VR_VARYING.
|
|
|
|
However, fixing this apparent limitation may not be worth the
|
|
additional checking. Testing on several code bases (GCC, DLV,
|
|
MICO, TRAMP3D and SPEC2000) showed that doing this results in
|
|
4 more predicates folded in SPEC. */
|
|
|
|
bool sop;
|
|
val = vrp_evaluate_conditional_warnv_with_ops (stmt,
|
|
gimple_cond_code (stmt),
|
|
gimple_cond_lhs (stmt),
|
|
gimple_cond_rhs (stmt),
|
|
false, &sop, NULL);
|
|
if (val)
|
|
*taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nPredicate evaluates to: ");
|
|
if (val == NULL_TREE)
|
|
fprintf (dump_file, "DON'T KNOW\n");
|
|
else
|
|
print_generic_stmt (dump_file, val);
|
|
}
|
|
}
|
|
|
|
/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
|
|
used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
|
|
MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
|
|
Returns true if the default label is not needed. */
|
|
|
|
static bool
|
|
find_case_label_ranges (gswitch *stmt, const value_range *vr,
|
|
size_t *min_idx1, size_t *max_idx1,
|
|
size_t *min_idx2, size_t *max_idx2)
|
|
{
|
|
size_t i, j, k, l;
|
|
unsigned int n = gimple_switch_num_labels (stmt);
|
|
bool take_default;
|
|
tree case_low, case_high;
|
|
tree min = vr->min (), max = vr->max ();
|
|
|
|
gcc_checking_assert (!vr->varying_p () && !vr->undefined_p ());
|
|
|
|
take_default = !find_case_label_range (stmt, min, max, &i, &j);
|
|
|
|
/* Set second range to empty. */
|
|
*min_idx2 = 1;
|
|
*max_idx2 = 0;
|
|
|
|
if (vr->kind () == VR_RANGE)
|
|
{
|
|
*min_idx1 = i;
|
|
*max_idx1 = j;
|
|
return !take_default;
|
|
}
|
|
|
|
/* Set first range to all case labels. */
|
|
*min_idx1 = 1;
|
|
*max_idx1 = n - 1;
|
|
|
|
if (i > j)
|
|
return false;
|
|
|
|
/* Make sure all the values of case labels [i , j] are contained in
|
|
range [MIN, MAX]. */
|
|
case_low = CASE_LOW (gimple_switch_label (stmt, i));
|
|
case_high = CASE_HIGH (gimple_switch_label (stmt, j));
|
|
if (tree_int_cst_compare (case_low, min) < 0)
|
|
i += 1;
|
|
if (case_high != NULL_TREE
|
|
&& tree_int_cst_compare (max, case_high) < 0)
|
|
j -= 1;
|
|
|
|
if (i > j)
|
|
return false;
|
|
|
|
/* If the range spans case labels [i, j], the corresponding anti-range spans
|
|
the labels [1, i - 1] and [j + 1, n - 1]. */
|
|
k = j + 1;
|
|
l = n - 1;
|
|
if (k > l)
|
|
{
|
|
k = 1;
|
|
l = 0;
|
|
}
|
|
|
|
j = i - 1;
|
|
i = 1;
|
|
if (i > j)
|
|
{
|
|
i = k;
|
|
j = l;
|
|
k = 1;
|
|
l = 0;
|
|
}
|
|
|
|
*min_idx1 = i;
|
|
*max_idx1 = j;
|
|
*min_idx2 = k;
|
|
*max_idx2 = l;
|
|
return false;
|
|
}
|
|
|
|
/* Visit switch statement STMT. If we can determine which edge
|
|
will be taken out of STMT's basic block, record it in
|
|
*TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
|
|
|
|
void
|
|
vr_values::vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
|
|
{
|
|
tree op, val;
|
|
const value_range_equiv *vr;
|
|
size_t i = 0, j = 0, k, l;
|
|
bool take_default;
|
|
|
|
*taken_edge_p = NULL;
|
|
op = gimple_switch_index (stmt);
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return;
|
|
|
|
vr = get_value_range (op);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting switch expression with operand ");
|
|
print_generic_expr (dump_file, op);
|
|
fprintf (dump_file, " with known range ");
|
|
dump_value_range (dump_file, vr);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (vr->undefined_p ()
|
|
|| vr->varying_p ()
|
|
|| vr->symbolic_p ())
|
|
return;
|
|
|
|
/* Find the single edge that is taken from the switch expression. */
|
|
take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
|
|
|
|
/* Check if the range spans no CASE_LABEL. If so, we only reach the default
|
|
label */
|
|
if (j < i)
|
|
{
|
|
gcc_assert (take_default);
|
|
val = gimple_switch_default_label (stmt);
|
|
}
|
|
else
|
|
{
|
|
/* Check if labels with index i to j and maybe the default label
|
|
are all reaching the same label. */
|
|
|
|
val = gimple_switch_label (stmt, i);
|
|
if (take_default
|
|
&& CASE_LABEL (gimple_switch_default_label (stmt))
|
|
!= CASE_LABEL (val))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " not a single destination for this "
|
|
"range\n");
|
|
return;
|
|
}
|
|
for (++i; i <= j; ++i)
|
|
{
|
|
if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " not a single destination for this "
|
|
"range\n");
|
|
return;
|
|
}
|
|
}
|
|
for (; k <= l; ++k)
|
|
{
|
|
if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " not a single destination for this "
|
|
"range\n");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
*taken_edge_p = find_edge (gimple_bb (stmt),
|
|
label_to_block (cfun, CASE_LABEL (val)));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, " will take edge to ");
|
|
print_generic_stmt (dump_file, CASE_LABEL (val));
|
|
}
|
|
}
|
|
|
|
|
|
/* Evaluate statement STMT. If the statement produces a useful range,
|
|
set VR and corepsponding OUTPUT_P.
|
|
|
|
If STMT is a conditional branch and we can determine its truth
|
|
value, the taken edge is recorded in *TAKEN_EDGE_P. */
|
|
|
|
void
|
|
vr_values::extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
|
|
tree *output_p, value_range_equiv *vr)
|
|
{
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nextract_range_from_stmt visiting:\n");
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
|
}
|
|
|
|
if (!stmt_interesting_for_vrp (stmt))
|
|
gcc_assert (stmt_ends_bb_p (stmt));
|
|
else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
|
|
vrp_visit_assignment_or_call (stmt, output_p, vr);
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
|
simplifier.vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
|
|
}
|
|
|
|
/* Visit all arguments for PHI node PHI that flow through executable
|
|
edges. If a valid value range can be derived from all the incoming
|
|
value ranges, set a new range in VR_RESULT. */
|
|
|
|
void
|
|
vr_values::extract_range_from_phi_node (gphi *phi,
|
|
value_range_equiv *vr_result)
|
|
{
|
|
tree lhs = PHI_RESULT (phi);
|
|
const value_range_equiv *lhs_vr = get_value_range (lhs);
|
|
bool first = true;
|
|
int old_edges;
|
|
class loop *l;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
|
}
|
|
|
|
bool may_simulate_backedge_again = false;
|
|
int edges = 0;
|
|
for (size_t i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
" Argument #%d (%d -> %d %sexecutable)\n",
|
|
(int) i, e->src->index, e->dest->index,
|
|
(e->flags & EDGE_EXECUTABLE) ? "" : "not ");
|
|
}
|
|
|
|
if (e->flags & EDGE_EXECUTABLE)
|
|
{
|
|
value_range_equiv vr_arg_tem;
|
|
const value_range_equiv *vr_arg = &vr_arg_tem;
|
|
|
|
++edges;
|
|
|
|
tree arg = PHI_ARG_DEF (phi, i);
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
/* See if we are eventually going to change one of the args. */
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
|
|
if (! gimple_nop_p (def_stmt)
|
|
&& prop_simulate_again_p (def_stmt)
|
|
&& e->flags & EDGE_DFS_BACK)
|
|
may_simulate_backedge_again = true;
|
|
|
|
const value_range_equiv *vr_arg_ = get_value_range (arg);
|
|
/* Do not allow equivalences or symbolic ranges to leak in from
|
|
backedges. That creates invalid equivalencies.
|
|
See PR53465 and PR54767. */
|
|
if (e->flags & EDGE_DFS_BACK)
|
|
{
|
|
if (!vr_arg_->varying_p () && !vr_arg_->undefined_p ())
|
|
{
|
|
vr_arg_tem.set (vr_arg_->min (), vr_arg_->max (), NULL,
|
|
vr_arg_->kind ());
|
|
if (vr_arg_tem.symbolic_p ())
|
|
vr_arg_tem.set_varying (TREE_TYPE (arg));
|
|
}
|
|
else
|
|
vr_arg = vr_arg_;
|
|
}
|
|
/* If the non-backedge arguments range is VR_VARYING then
|
|
we can still try recording a simple equivalence. */
|
|
else if (vr_arg_->varying_p ())
|
|
vr_arg_tem.set (arg);
|
|
else
|
|
vr_arg = vr_arg_;
|
|
}
|
|
else
|
|
{
|
|
if (TREE_OVERFLOW_P (arg))
|
|
arg = drop_tree_overflow (arg);
|
|
|
|
vr_arg_tem.set (arg);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\t");
|
|
print_generic_expr (dump_file, arg, dump_flags);
|
|
fprintf (dump_file, ": ");
|
|
dump_value_range (dump_file, vr_arg);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (first)
|
|
vr_result->deep_copy (vr_arg);
|
|
else
|
|
vr_result->union_ (vr_arg);
|
|
first = false;
|
|
|
|
if (vr_result->varying_p ())
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vr_result->varying_p ())
|
|
goto varying;
|
|
else if (vr_result->undefined_p ())
|
|
goto update_range;
|
|
|
|
old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
|
|
vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
|
|
|
|
/* To prevent infinite iterations in the algorithm, derive ranges
|
|
when the new value is slightly bigger or smaller than the
|
|
previous one. We don't do this if we have seen a new executable
|
|
edge; this helps us avoid an infinity for conditionals
|
|
which are not in a loop. If the old value-range was VR_UNDEFINED
|
|
use the updated range and iterate one more time. If we will not
|
|
simulate this PHI again via the backedge allow us to iterate. */
|
|
if (edges > 0
|
|
&& gimple_phi_num_args (phi) > 1
|
|
&& edges == old_edges
|
|
&& !lhs_vr->undefined_p ()
|
|
&& may_simulate_backedge_again)
|
|
{
|
|
/* Compare old and new ranges, fall back to varying if the
|
|
values are not comparable. */
|
|
int cmp_min = compare_values (lhs_vr->min (), vr_result->min ());
|
|
if (cmp_min == -2)
|
|
goto varying;
|
|
int cmp_max = compare_values (lhs_vr->max (), vr_result->max ());
|
|
if (cmp_max == -2)
|
|
goto varying;
|
|
|
|
/* For non VR_RANGE or for pointers fall back to varying if
|
|
the range changed. */
|
|
if ((lhs_vr->kind () != VR_RANGE || vr_result->kind () != VR_RANGE
|
|
|| POINTER_TYPE_P (TREE_TYPE (lhs)))
|
|
&& (cmp_min != 0 || cmp_max != 0))
|
|
goto varying;
|
|
|
|
/* If the new minimum is larger than the previous one
|
|
retain the old value. If the new minimum value is smaller
|
|
than the previous one and not -INF go all the way to -INF + 1.
|
|
In the first case, to avoid infinite bouncing between different
|
|
minimums, and in the other case to avoid iterating millions of
|
|
times to reach -INF. Going to -INF + 1 also lets the following
|
|
iteration compute whether there will be any overflow, at the
|
|
expense of one additional iteration. */
|
|
tree new_min = vr_result->min ();
|
|
tree new_max = vr_result->max ();
|
|
if (cmp_min < 0)
|
|
new_min = lhs_vr->min ();
|
|
else if (cmp_min > 0
|
|
&& (TREE_CODE (vr_result->min ()) != INTEGER_CST
|
|
|| tree_int_cst_lt (vrp_val_min (vr_result->type ()),
|
|
vr_result->min ())))
|
|
new_min = int_const_binop (PLUS_EXPR,
|
|
vrp_val_min (vr_result->type ()),
|
|
build_int_cst (vr_result->type (), 1));
|
|
|
|
/* Similarly for the maximum value. */
|
|
if (cmp_max > 0)
|
|
new_max = lhs_vr->max ();
|
|
else if (cmp_max < 0
|
|
&& (TREE_CODE (vr_result->max ()) != INTEGER_CST
|
|
|| tree_int_cst_lt (vr_result->max (),
|
|
vrp_val_max (vr_result->type ()))))
|
|
new_max = int_const_binop (MINUS_EXPR,
|
|
vrp_val_max (vr_result->type ()),
|
|
build_int_cst (vr_result->type (), 1));
|
|
|
|
vr_result->update (new_min, new_max, vr_result->kind ());
|
|
|
|
/* If we dropped either bound to +-INF then if this is a loop
|
|
PHI node SCEV may known more about its value-range. */
|
|
if (cmp_min > 0 || cmp_min < 0
|
|
|| cmp_max < 0 || cmp_max > 0)
|
|
goto scev_check;
|
|
|
|
goto infinite_check;
|
|
}
|
|
|
|
goto update_range;
|
|
|
|
varying:
|
|
vr_result->set_varying (TREE_TYPE (lhs));
|
|
|
|
scev_check:
|
|
/* If this is a loop PHI node SCEV may known more about its value-range.
|
|
scev_check can be reached from two paths, one is a fall through from above
|
|
"varying" label, the other is direct goto from code block which tries to
|
|
avoid infinite simulation. */
|
|
if (scev_initialized_p ()
|
|
&& (l = loop_containing_stmt (phi))
|
|
&& l->header == gimple_bb (phi))
|
|
adjust_range_with_scev (vr_result, l, phi, lhs);
|
|
|
|
infinite_check:
|
|
/* If we will end up with a (-INF, +INF) range, set it to
|
|
VARYING. Same if the previous max value was invalid for
|
|
the type and we end up with vr_result.min > vr_result.max. */
|
|
if ((!vr_result->varying_p () && !vr_result->undefined_p ())
|
|
&& !((vrp_val_is_max (vr_result->max ()) && vrp_val_is_min (vr_result->min ()))
|
|
|| compare_values (vr_result->min (), vr_result->max ()) > 0))
|
|
;
|
|
else
|
|
vr_result->set_varying (TREE_TYPE (lhs));
|
|
|
|
/* If the new range is different than the previous value, keep
|
|
iterating. */
|
|
update_range:
|
|
return;
|
|
}
|
|
|
|
/* Simplify boolean operations if the source is known
|
|
to be already a boolean. */
|
|
bool
|
|
simplify_using_ranges::simplify_truth_ops_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
|
tree lhs, op0, op1;
|
|
bool need_conversion;
|
|
|
|
/* We handle only !=/== case here. */
|
|
gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
|
|
|
|
op0 = gimple_assign_rhs1 (stmt);
|
|
if (!op_with_boolean_value_range_p (op0))
|
|
return false;
|
|
|
|
op1 = gimple_assign_rhs2 (stmt);
|
|
if (!op_with_boolean_value_range_p (op1))
|
|
return false;
|
|
|
|
/* Reduce number of cases to handle to NE_EXPR. As there is no
|
|
BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
|
|
if (rhs_code == EQ_EXPR)
|
|
{
|
|
if (TREE_CODE (op1) == INTEGER_CST)
|
|
op1 = int_const_binop (BIT_XOR_EXPR, op1,
|
|
build_int_cst (TREE_TYPE (op1), 1));
|
|
else
|
|
return false;
|
|
}
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
need_conversion
|
|
= !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
|
|
|
|
/* Make sure to not sign-extend a 1-bit 1 when converting the result. */
|
|
if (need_conversion
|
|
&& !TYPE_UNSIGNED (TREE_TYPE (op0))
|
|
&& TYPE_PRECISION (TREE_TYPE (op0)) == 1
|
|
&& TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
|
|
return false;
|
|
|
|
/* For A != 0 we can substitute A itself. */
|
|
if (integer_zerop (op1))
|
|
gimple_assign_set_rhs_with_ops (gsi,
|
|
need_conversion
|
|
? NOP_EXPR : TREE_CODE (op0), op0);
|
|
/* For A != B we substitute A ^ B. Either with conversion. */
|
|
else if (need_conversion)
|
|
{
|
|
tree tem = make_ssa_name (TREE_TYPE (op0));
|
|
gassign *newop
|
|
= gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
|
|
gsi_insert_before (gsi, newop, GSI_SAME_STMT);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
|
|
&& TYPE_PRECISION (TREE_TYPE (tem)) > 1)
|
|
set_range_info (tem, VR_RANGE,
|
|
wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
|
|
wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
|
|
gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
|
|
}
|
|
/* Or without. */
|
|
else
|
|
gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
|
|
update_stmt (gsi_stmt (*gsi));
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a division or modulo operator to a right shift or bitwise and
|
|
if the first operand is unsigned or is greater than zero and the second
|
|
operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
|
|
constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
|
|
optimize it into just op0 if op0's range is known to be a subset of
|
|
[-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
|
|
modulo. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_div_or_mod_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
|
tree val = NULL;
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
|
tree op0min = NULL_TREE, op0max = NULL_TREE;
|
|
tree op1min = op1;
|
|
const value_range *vr = NULL;
|
|
|
|
if (TREE_CODE (op0) == INTEGER_CST)
|
|
{
|
|
op0min = op0;
|
|
op0max = op0;
|
|
}
|
|
else
|
|
{
|
|
vr = query->get_value_range (op0, stmt);
|
|
if (range_int_cst_p (vr))
|
|
{
|
|
op0min = vr->min ();
|
|
op0max = vr->max ();
|
|
}
|
|
}
|
|
|
|
if (rhs_code == TRUNC_MOD_EXPR
|
|
&& TREE_CODE (op1) == SSA_NAME)
|
|
{
|
|
const value_range_equiv *vr1 = query->get_value_range (op1, stmt);
|
|
if (range_int_cst_p (vr1))
|
|
op1min = vr1->min ();
|
|
}
|
|
if (rhs_code == TRUNC_MOD_EXPR
|
|
&& TREE_CODE (op1min) == INTEGER_CST
|
|
&& tree_int_cst_sgn (op1min) == 1
|
|
&& op0max
|
|
&& tree_int_cst_lt (op0max, op1min))
|
|
{
|
|
if (TYPE_UNSIGNED (TREE_TYPE (op0))
|
|
|| tree_int_cst_sgn (op0min) >= 0
|
|
|| tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
|
|
op0min))
|
|
{
|
|
/* If op0 already has the range op0 % op1 has,
|
|
then TRUNC_MOD_EXPR won't change anything. */
|
|
gimple_assign_set_rhs_from_tree (gsi, op0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
|
return false;
|
|
|
|
if (!integer_pow2p (op1))
|
|
{
|
|
/* X % -Y can be only optimized into X % Y either if
|
|
X is not INT_MIN, or Y is not -1. Fold it now, as after
|
|
remove_range_assertions the range info might be not available
|
|
anymore. */
|
|
if (rhs_code == TRUNC_MOD_EXPR
|
|
&& fold_stmt (gsi, follow_single_use_edges))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (TYPE_UNSIGNED (TREE_TYPE (op0)))
|
|
val = integer_one_node;
|
|
else
|
|
{
|
|
bool sop = false;
|
|
|
|
val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
|
|
|
|
if (val
|
|
&& sop
|
|
&& integer_onep (val)
|
|
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
|
{
|
|
location_t location;
|
|
|
|
if (!gimple_has_location (stmt))
|
|
location = input_location;
|
|
else
|
|
location = gimple_location (stmt);
|
|
warning_at (location, OPT_Wstrict_overflow,
|
|
"assuming signed overflow does not occur when "
|
|
"simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
|
|
}
|
|
}
|
|
|
|
if (val && integer_onep (val))
|
|
{
|
|
tree t;
|
|
|
|
if (rhs_code == TRUNC_DIV_EXPR)
|
|
{
|
|
t = build_int_cst (integer_type_node, tree_log2 (op1));
|
|
gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
|
gimple_assign_set_rhs2 (stmt, t);
|
|
}
|
|
else
|
|
{
|
|
t = build_int_cst (TREE_TYPE (op1), 1);
|
|
t = int_const_binop (MINUS_EXPR, op1, t);
|
|
t = fold_convert (TREE_TYPE (op0), t);
|
|
|
|
gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
|
|
gimple_assign_set_rhs1 (stmt, op0);
|
|
gimple_assign_set_rhs2 (stmt, t);
|
|
}
|
|
|
|
update_stmt (stmt);
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a min or max if the ranges of the two operands are
|
|
disjoint. Return true if we do simplify. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_min_or_max_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
|
bool sop = false;
|
|
tree val;
|
|
|
|
val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
|
(LE_EXPR, op0, op1, &sop));
|
|
if (!val)
|
|
{
|
|
sop = false;
|
|
val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
|
|
(LT_EXPR, op0, op1, &sop));
|
|
}
|
|
|
|
if (val)
|
|
{
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
|
{
|
|
location_t location;
|
|
|
|
if (!gimple_has_location (stmt))
|
|
location = input_location;
|
|
else
|
|
location = gimple_location (stmt);
|
|
warning_at (location, OPT_Wstrict_overflow,
|
|
"assuming signed overflow does not occur when "
|
|
"simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
|
|
}
|
|
|
|
/* VAL == TRUE -> OP0 < or <= op1
|
|
VAL == FALSE -> OP0 > or >= op1. */
|
|
tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
|
|
== integer_zerop (val)) ? op0 : op1;
|
|
gimple_assign_set_rhs_from_tree (gsi, res);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If the operand to an ABS_EXPR is >= 0, then eliminate the
|
|
ABS_EXPR. If the operand is <= 0, then simplify the
|
|
ABS_EXPR into a NEGATE_EXPR. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_abs_using_ranges (gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
tree op = gimple_assign_rhs1 (stmt);
|
|
const value_range *vr = query->get_value_range (op, stmt);
|
|
|
|
if (vr)
|
|
{
|
|
tree val = NULL;
|
|
bool sop = false;
|
|
|
|
val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
|
|
if (!val)
|
|
{
|
|
/* The range is neither <= 0 nor > 0. Now see if it is
|
|
either < 0 or >= 0. */
|
|
sop = false;
|
|
val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
|
|
&sop);
|
|
}
|
|
|
|
if (val)
|
|
{
|
|
if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
|
|
{
|
|
location_t location;
|
|
|
|
if (!gimple_has_location (stmt))
|
|
location = input_location;
|
|
else
|
|
location = gimple_location (stmt);
|
|
warning_at (location, OPT_Wstrict_overflow,
|
|
"assuming signed overflow does not occur when "
|
|
"simplifying %<abs (X)%> to %<X%> or %<-X%>");
|
|
}
|
|
|
|
gimple_assign_set_rhs1 (stmt, op);
|
|
if (integer_zerop (val))
|
|
gimple_assign_set_rhs_code (stmt, SSA_NAME);
|
|
else
|
|
gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
|
|
update_stmt (stmt);
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* value_range wrapper for wi_set_zero_nonzero_bits.
|
|
|
|
Return TRUE if VR was a constant range and we were able to compute
|
|
the bit masks. */
|
|
|
|
static bool
|
|
vr_set_zero_nonzero_bits (const tree expr_type,
|
|
const value_range *vr,
|
|
wide_int *may_be_nonzero,
|
|
wide_int *must_be_nonzero)
|
|
{
|
|
if (range_int_cst_p (vr))
|
|
{
|
|
wi_set_zero_nonzero_bits (expr_type,
|
|
wi::to_wide (vr->min ()),
|
|
wi::to_wide (vr->max ()),
|
|
*may_be_nonzero, *must_be_nonzero);
|
|
return true;
|
|
}
|
|
*may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
|
|
*must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
|
|
return false;
|
|
}
|
|
|
|
/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
|
|
If all the bits that are being cleared by & are already
|
|
known to be zero from VR, or all the bits that are being
|
|
set by | are already known to be one from VR, the bit
|
|
operation is redundant. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_bit_ops_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
|
tree op = NULL_TREE;
|
|
value_range vr0, vr1;
|
|
wide_int may_be_nonzero0, may_be_nonzero1;
|
|
wide_int must_be_nonzero0, must_be_nonzero1;
|
|
wide_int mask;
|
|
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
|
vr0 = *(query->get_value_range (op0, stmt));
|
|
else if (is_gimple_min_invariant (op0))
|
|
vr0.set (op0);
|
|
else
|
|
return false;
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
vr1 = *(query->get_value_range (op1, stmt));
|
|
else if (is_gimple_min_invariant (op1))
|
|
vr1.set (op1);
|
|
else
|
|
return false;
|
|
|
|
if (!vr_set_zero_nonzero_bits (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
|
|
&must_be_nonzero0))
|
|
return false;
|
|
if (!vr_set_zero_nonzero_bits (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
|
|
&must_be_nonzero1))
|
|
return false;
|
|
|
|
switch (gimple_assign_rhs_code (stmt))
|
|
{
|
|
case BIT_AND_EXPR:
|
|
mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
|
|
if (mask == 0)
|
|
{
|
|
op = op0;
|
|
break;
|
|
}
|
|
mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
|
|
if (mask == 0)
|
|
{
|
|
op = op1;
|
|
break;
|
|
}
|
|
break;
|
|
case BIT_IOR_EXPR:
|
|
mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1);
|
|
if (mask == 0)
|
|
{
|
|
op = op1;
|
|
break;
|
|
}
|
|
mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0);
|
|
if (mask == 0)
|
|
{
|
|
op = op0;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (op == NULL_TREE)
|
|
return false;
|
|
|
|
gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
|
|
update_stmt (gsi_stmt (*gsi));
|
|
return true;
|
|
}
|
|
|
|
/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
|
|
a known value range VR.
|
|
|
|
If there is one and only one value which will satisfy the
|
|
conditional, then return that value. Else return NULL.
|
|
|
|
If signed overflow must be undefined for the value to satisfy
|
|
the conditional, then set *STRICT_OVERFLOW_P to true. */
|
|
|
|
static tree
|
|
test_for_singularity (enum tree_code cond_code, tree op0,
|
|
tree op1, const value_range *vr)
|
|
{
|
|
tree min = NULL;
|
|
tree max = NULL;
|
|
|
|
/* Extract minimum/maximum values which satisfy the conditional as it was
|
|
written. */
|
|
if (cond_code == LE_EXPR || cond_code == LT_EXPR)
|
|
{
|
|
min = TYPE_MIN_VALUE (TREE_TYPE (op0));
|
|
|
|
max = op1;
|
|
if (cond_code == LT_EXPR)
|
|
{
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
|
max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
|
|
/* Signal to compare_values_warnv this expr doesn't overflow. */
|
|
if (EXPR_P (max))
|
|
TREE_NO_WARNING (max) = 1;
|
|
}
|
|
}
|
|
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
|
|
{
|
|
max = TYPE_MAX_VALUE (TREE_TYPE (op0));
|
|
|
|
min = op1;
|
|
if (cond_code == GT_EXPR)
|
|
{
|
|
tree one = build_int_cst (TREE_TYPE (op0), 1);
|
|
min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
|
|
/* Signal to compare_values_warnv this expr doesn't overflow. */
|
|
if (EXPR_P (min))
|
|
TREE_NO_WARNING (min) = 1;
|
|
}
|
|
}
|
|
|
|
/* Now refine the minimum and maximum values using any
|
|
value range information we have for op0. */
|
|
if (min && max)
|
|
{
|
|
tree type = TREE_TYPE (op0);
|
|
tree tmin = wide_int_to_tree (type, vr->lower_bound ());
|
|
tree tmax = wide_int_to_tree (type, vr->upper_bound ());
|
|
if (compare_values (tmin, min) == 1)
|
|
min = tmin;
|
|
if (compare_values (tmax, max) == -1)
|
|
max = tmax;
|
|
|
|
/* If the new min/max values have converged to a single value,
|
|
then there is only one value which can satisfy the condition,
|
|
return that value. */
|
|
if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
|
|
return min;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return whether the value range *VR fits in an integer type specified
|
|
by PRECISION and UNSIGNED_P. */
|
|
|
|
bool
|
|
range_fits_type_p (const value_range *vr,
|
|
unsigned dest_precision, signop dest_sgn)
|
|
{
|
|
tree src_type;
|
|
unsigned src_precision;
|
|
widest_int tem;
|
|
signop src_sgn;
|
|
|
|
/* We can only handle integral and pointer types. */
|
|
src_type = vr->type ();
|
|
if (!INTEGRAL_TYPE_P (src_type)
|
|
&& !POINTER_TYPE_P (src_type))
|
|
return false;
|
|
|
|
/* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
|
|
and so is an identity transform. */
|
|
src_precision = TYPE_PRECISION (vr->type ());
|
|
src_sgn = TYPE_SIGN (src_type);
|
|
if ((src_precision < dest_precision
|
|
&& !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
|
|
|| (src_precision == dest_precision && src_sgn == dest_sgn))
|
|
return true;
|
|
|
|
/* Now we can only handle ranges with constant bounds. */
|
|
if (!range_int_cst_p (vr))
|
|
return false;
|
|
|
|
/* For sign changes, the MSB of the wide_int has to be clear.
|
|
An unsigned value with its MSB set cannot be represented by
|
|
a signed wide_int, while a negative value cannot be represented
|
|
by an unsigned wide_int. */
|
|
if (src_sgn != dest_sgn
|
|
&& (wi::lts_p (wi::to_wide (vr->min ()), 0)
|
|
|| wi::lts_p (wi::to_wide (vr->max ()), 0)))
|
|
return false;
|
|
|
|
/* Then we can perform the conversion on both ends and compare
|
|
the result for equality. */
|
|
tem = wi::ext (wi::to_widest (vr->min ()), dest_precision, dest_sgn);
|
|
if (tem != wi::to_widest (vr->min ()))
|
|
return false;
|
|
tem = wi::ext (wi::to_widest (vr->max ()), dest_precision, dest_sgn);
|
|
if (tem != wi::to_widest (vr->max ()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If COND can be folded entirely as TRUE or FALSE, rewrite the
|
|
conditional as such, and return TRUE. */
|
|
|
|
bool
|
|
simplify_using_ranges::fold_cond (gcond *cond)
|
|
{
|
|
/* ?? vrp_folder::fold_predicate_in() is a superset of this. At
|
|
some point we should merge all variants of this code. */
|
|
edge taken_edge;
|
|
vrp_visit_cond_stmt (cond, &taken_edge);
|
|
|
|
int_range_max r;
|
|
if (query->range_of_stmt (r, cond) && r.singleton_p ())
|
|
{
|
|
// COND has already been folded if arguments are constant.
|
|
if (TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|
|
&& TREE_CODE (gimple_cond_rhs (cond)) != SSA_NAME)
|
|
return false;
|
|
|
|
if (r.zero_p ())
|
|
{
|
|
gcc_checking_assert (!taken_edge
|
|
|| taken_edge->flags & EDGE_FALSE_VALUE);
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && !taken_edge)
|
|
fprintf (dump_file, "\nPredicate evaluates to: 0\n");
|
|
gimple_cond_make_false (cond);
|
|
}
|
|
else
|
|
{
|
|
gcc_checking_assert (!taken_edge
|
|
|| taken_edge->flags & EDGE_TRUE_VALUE);
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && !taken_edge)
|
|
fprintf (dump_file, "\nPredicate evaluates to: 1\n");
|
|
gimple_cond_make_true (cond);
|
|
}
|
|
update_stmt (cond);
|
|
return true;
|
|
}
|
|
|
|
if (taken_edge)
|
|
{
|
|
if (taken_edge->flags & EDGE_TRUE_VALUE)
|
|
gimple_cond_make_true (cond);
|
|
else if (taken_edge->flags & EDGE_FALSE_VALUE)
|
|
gimple_cond_make_false (cond);
|
|
else
|
|
gcc_unreachable ();
|
|
update_stmt (cond);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a conditional using a relational operator to an equality
|
|
test if the range information indicates only one value can satisfy
|
|
the original conditional. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_cond_using_ranges_1 (gcond *stmt)
|
|
{
|
|
tree op0 = gimple_cond_lhs (stmt);
|
|
tree op1 = gimple_cond_rhs (stmt);
|
|
enum tree_code cond_code = gimple_cond_code (stmt);
|
|
|
|
if (fold_cond (stmt))
|
|
return true;
|
|
|
|
if (cond_code != NE_EXPR
|
|
&& cond_code != EQ_EXPR
|
|
&& TREE_CODE (op0) == SSA_NAME
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
|
|
&& is_gimple_min_invariant (op1))
|
|
{
|
|
const value_range *vr = query->get_value_range (op0, stmt);
|
|
|
|
/* If we have range information for OP0, then we might be
|
|
able to simplify this conditional. */
|
|
if (!vr->undefined_p () && !vr->varying_p ())
|
|
{
|
|
tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
|
|
if (new_tree)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Simplified relational ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, " into ");
|
|
}
|
|
|
|
gimple_cond_set_code (stmt, EQ_EXPR);
|
|
gimple_cond_set_lhs (stmt, op0);
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
|
|
|
update_stmt (stmt);
|
|
|
|
if (dump_file)
|
|
{
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Try again after inverting the condition. We only deal
|
|
with integral types here, so no need to worry about
|
|
issues with inverting FP comparisons. */
|
|
new_tree = test_for_singularity
|
|
(invert_tree_comparison (cond_code, false),
|
|
op0, op1, vr);
|
|
if (new_tree)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Simplified relational ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, " into ");
|
|
}
|
|
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
|
gimple_cond_set_lhs (stmt, op0);
|
|
gimple_cond_set_rhs (stmt, new_tree);
|
|
|
|
update_stmt (stmt);
|
|
|
|
if (dump_file)
|
|
{
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Simplify a switch statement using the value range of the switch
|
|
argument. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_switch_using_ranges (gswitch *stmt)
|
|
{
|
|
tree op = gimple_switch_index (stmt);
|
|
const value_range *vr = NULL;
|
|
bool take_default;
|
|
edge e;
|
|
edge_iterator ei;
|
|
size_t i = 0, j = 0, n, n2;
|
|
tree vec2;
|
|
switch_update su;
|
|
size_t k = 1, l = 0;
|
|
|
|
if (TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
vr = query->get_value_range (op, stmt);
|
|
|
|
/* We can only handle integer ranges. */
|
|
if (vr->varying_p ()
|
|
|| vr->undefined_p ()
|
|
|| vr->symbolic_p ())
|
|
return false;
|
|
|
|
/* Find case label for min/max of the value range. */
|
|
take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
|
|
}
|
|
else if (TREE_CODE (op) == INTEGER_CST)
|
|
{
|
|
take_default = !find_case_label_index (stmt, 1, op, &i);
|
|
if (take_default)
|
|
{
|
|
i = 1;
|
|
j = 0;
|
|
}
|
|
else
|
|
{
|
|
j = i;
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
|
|
n = gimple_switch_num_labels (stmt);
|
|
|
|
/* We can truncate the case label ranges that partially overlap with OP's
|
|
value range. */
|
|
size_t min_idx = 1, max_idx = 0;
|
|
if (vr != NULL)
|
|
find_case_label_range (stmt, vr->min (), vr->max (), &min_idx, &max_idx);
|
|
if (min_idx <= max_idx)
|
|
{
|
|
tree min_label = gimple_switch_label (stmt, min_idx);
|
|
tree max_label = gimple_switch_label (stmt, max_idx);
|
|
|
|
/* Avoid changing the type of the case labels when truncating. */
|
|
tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
|
|
tree vr_min = fold_convert (case_label_type, vr->min ());
|
|
tree vr_max = fold_convert (case_label_type, vr->max ());
|
|
|
|
if (vr->kind () == VR_RANGE)
|
|
{
|
|
/* If OP's value range is [2,8] and the low label range is
|
|
0 ... 3, truncate the label's range to 2 .. 3. */
|
|
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
|
|
&& CASE_HIGH (min_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
|
|
CASE_LOW (min_label) = vr_min;
|
|
|
|
/* If OP's value range is [2,8] and the high label range is
|
|
7 ... 10, truncate the label's range to 7 .. 8. */
|
|
if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
|
|
&& CASE_HIGH (max_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
|
|
CASE_HIGH (max_label) = vr_max;
|
|
}
|
|
else if (vr->kind () == VR_ANTI_RANGE)
|
|
{
|
|
tree one_cst = build_one_cst (case_label_type);
|
|
|
|
if (min_label == max_label)
|
|
{
|
|
/* If OP's value range is ~[7,8] and the label's range is
|
|
7 ... 10, truncate the label's range to 9 ... 10. */
|
|
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
|
|
&& CASE_HIGH (min_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
|
|
CASE_LOW (min_label)
|
|
= int_const_binop (PLUS_EXPR, vr_max, one_cst);
|
|
|
|
/* If OP's value range is ~[7,8] and the label's range is
|
|
5 ... 8, truncate the label's range to 5 ... 6. */
|
|
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
|
|
&& CASE_HIGH (min_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
|
|
CASE_HIGH (min_label)
|
|
= int_const_binop (MINUS_EXPR, vr_min, one_cst);
|
|
}
|
|
else
|
|
{
|
|
/* If OP's value range is ~[2,8] and the low label range is
|
|
0 ... 3, truncate the label's range to 0 ... 1. */
|
|
if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
|
|
&& CASE_HIGH (min_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
|
|
CASE_HIGH (min_label)
|
|
= int_const_binop (MINUS_EXPR, vr_min, one_cst);
|
|
|
|
/* If OP's value range is ~[2,8] and the high label range is
|
|
7 ... 10, truncate the label's range to 9 ... 10. */
|
|
if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
|
|
&& CASE_HIGH (max_label) != NULL_TREE
|
|
&& tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
|
|
CASE_LOW (max_label)
|
|
= int_const_binop (PLUS_EXPR, vr_max, one_cst);
|
|
}
|
|
}
|
|
|
|
/* Canonicalize singleton case ranges. */
|
|
if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
|
|
CASE_HIGH (min_label) = NULL_TREE;
|
|
if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
|
|
CASE_HIGH (max_label) = NULL_TREE;
|
|
}
|
|
|
|
/* We can also eliminate case labels that lie completely outside OP's value
|
|
range. */
|
|
|
|
/* Bail out if this is just all edges taken. */
|
|
if (i == 1
|
|
&& j == n - 1
|
|
&& take_default)
|
|
return false;
|
|
|
|
/* Build a new vector of taken case labels. */
|
|
vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
|
|
n2 = 0;
|
|
|
|
/* Add the default edge, if necessary. */
|
|
if (take_default)
|
|
TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
|
|
|
|
for (; i <= j; ++i, ++n2)
|
|
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
|
|
|
|
for (; k <= l; ++k, ++n2)
|
|
TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
|
|
|
|
/* Mark needed edges. */
|
|
for (i = 0; i < n2; ++i)
|
|
{
|
|
e = find_edge (gimple_bb (stmt),
|
|
label_to_block (cfun,
|
|
CASE_LABEL (TREE_VEC_ELT (vec2, i))));
|
|
e->aux = (void *)-1;
|
|
}
|
|
|
|
/* Queue not needed edges for later removal. */
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
|
|
{
|
|
if (e->aux == (void *)-1)
|
|
{
|
|
e->aux = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "removing unreachable case label\n");
|
|
}
|
|
to_remove_edges.safe_push (e);
|
|
e->flags &= ~EDGE_EXECUTABLE;
|
|
e->flags |= EDGE_IGNORE;
|
|
}
|
|
|
|
/* And queue an update for the stmt. */
|
|
su.stmt = stmt;
|
|
su.vec = vec2;
|
|
to_update_switch_stmts.safe_push (su);
|
|
return true;
|
|
}
|
|
|
|
void
|
|
simplify_using_ranges::cleanup_edges_and_switches (void)
|
|
{
|
|
int i;
|
|
edge e;
|
|
switch_update *su;
|
|
|
|
/* Remove dead edges from SWITCH_EXPR optimization. This leaves the
|
|
CFG in a broken state and requires a cfg_cleanup run. */
|
|
FOR_EACH_VEC_ELT (to_remove_edges, i, e)
|
|
remove_edge (e);
|
|
|
|
/* Update SWITCH_EXPR case label vector. */
|
|
FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
|
|
{
|
|
size_t j;
|
|
size_t n = TREE_VEC_LENGTH (su->vec);
|
|
tree label;
|
|
gimple_switch_set_num_labels (su->stmt, n);
|
|
for (j = 0; j < n; j++)
|
|
gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
|
|
/* As we may have replaced the default label with a regular one
|
|
make sure to make it a real default label again. This ensures
|
|
optimal expansion. */
|
|
label = gimple_switch_label (su->stmt, 0);
|
|
CASE_LOW (label) = NULL_TREE;
|
|
CASE_HIGH (label) = NULL_TREE;
|
|
}
|
|
|
|
if (!to_remove_edges.is_empty ())
|
|
{
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
loops_state_set (LOOPS_NEED_FIXUP);
|
|
}
|
|
|
|
to_remove_edges.release ();
|
|
to_update_switch_stmts.release ();
|
|
}
|
|
|
|
/* Simplify an integral conversion from an SSA name in STMT. */
|
|
|
|
static bool
|
|
simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
|
|
{
|
|
tree innerop, middleop, finaltype;
|
|
gimple *def_stmt;
|
|
signop inner_sgn, middle_sgn, final_sgn;
|
|
unsigned inner_prec, middle_prec, final_prec;
|
|
widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
|
|
|
|
finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
if (!INTEGRAL_TYPE_P (finaltype))
|
|
return false;
|
|
middleop = gimple_assign_rhs1 (stmt);
|
|
def_stmt = SSA_NAME_DEF_STMT (middleop);
|
|
if (!is_gimple_assign (def_stmt)
|
|
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
|
return false;
|
|
innerop = gimple_assign_rhs1 (def_stmt);
|
|
if (TREE_CODE (innerop) != SSA_NAME
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
|
|
return false;
|
|
|
|
/* Get the value-range of the inner operand. Use get_range_info in
|
|
case innerop was created during substitute-and-fold. */
|
|
wide_int imin, imax;
|
|
value_range vr;
|
|
if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)))
|
|
return false;
|
|
get_range_info (innerop, vr);
|
|
if (vr.undefined_p () || vr.varying_p ())
|
|
return false;
|
|
innermin = widest_int::from (vr.lower_bound (), TYPE_SIGN (TREE_TYPE (innerop)));
|
|
innermax = widest_int::from (vr.upper_bound (), TYPE_SIGN (TREE_TYPE (innerop)));
|
|
|
|
/* Simulate the conversion chain to check if the result is equal if
|
|
the middle conversion is removed. */
|
|
inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
|
|
middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
|
|
final_prec = TYPE_PRECISION (finaltype);
|
|
|
|
/* If the first conversion is not injective, the second must not
|
|
be widening. */
|
|
if (wi::gtu_p (innermax - innermin,
|
|
wi::mask <widest_int> (middle_prec, false))
|
|
&& middle_prec < final_prec)
|
|
return false;
|
|
/* We also want a medium value so that we can track the effect that
|
|
narrowing conversions with sign change have. */
|
|
inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
|
|
if (inner_sgn == UNSIGNED)
|
|
innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
|
|
else
|
|
innermed = 0;
|
|
if (wi::cmp (innermin, innermed, inner_sgn) >= 0
|
|
|| wi::cmp (innermed, innermax, inner_sgn) >= 0)
|
|
innermed = innermin;
|
|
|
|
middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
|
|
middlemin = wi::ext (innermin, middle_prec, middle_sgn);
|
|
middlemed = wi::ext (innermed, middle_prec, middle_sgn);
|
|
middlemax = wi::ext (innermax, middle_prec, middle_sgn);
|
|
|
|
/* Require that the final conversion applied to both the original
|
|
and the intermediate range produces the same result. */
|
|
final_sgn = TYPE_SIGN (finaltype);
|
|
if (wi::ext (middlemin, final_prec, final_sgn)
|
|
!= wi::ext (innermin, final_prec, final_sgn)
|
|
|| wi::ext (middlemed, final_prec, final_sgn)
|
|
!= wi::ext (innermed, final_prec, final_sgn)
|
|
|| wi::ext (middlemax, final_prec, final_sgn)
|
|
!= wi::ext (innermax, final_prec, final_sgn))
|
|
return false;
|
|
|
|
gimple_assign_set_rhs1 (stmt, innerop);
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
return true;
|
|
}
|
|
|
|
/* Simplify a conversion from integral SSA name to float in STMT. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_float_conversion_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
const value_range *vr = query->get_value_range (rhs1, stmt);
|
|
scalar_float_mode fltmode
|
|
= SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
|
|
scalar_int_mode mode;
|
|
tree tem;
|
|
gassign *conv;
|
|
|
|
/* We can only handle constant ranges. */
|
|
if (!range_int_cst_p (vr))
|
|
return false;
|
|
|
|
/* First check if we can use a signed type in place of an unsigned. */
|
|
scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1));
|
|
if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
|
|
&& can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing
|
|
&& range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
|
|
mode = rhs_mode;
|
|
/* If we can do the conversion in the current input mode do nothing. */
|
|
else if (can_float_p (fltmode, rhs_mode,
|
|
TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
|
|
return false;
|
|
/* Otherwise search for a mode we can use, starting from the narrowest
|
|
integer mode available. */
|
|
else
|
|
{
|
|
mode = NARROWEST_INT_MODE;
|
|
for (;;)
|
|
{
|
|
/* If we cannot do a signed conversion to float from mode
|
|
or if the value-range does not fit in the signed type
|
|
try with a wider mode. */
|
|
if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
|
|
&& range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
|
|
break;
|
|
|
|
/* But do not widen the input. Instead leave that to the
|
|
optabs expansion code. */
|
|
if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
|
|
|| GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* It works, insert a truncation or sign-change before the
|
|
float conversion. */
|
|
tem = make_ssa_name (build_nonstandard_integer_type
|
|
(GET_MODE_PRECISION (mode), 0));
|
|
conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
|
|
gsi_insert_before (gsi, conv, GSI_SAME_STMT);
|
|
gimple_assign_set_rhs1 (stmt, tem);
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Simplify an internal fn call using ranges if possible. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify_internal_call_using_ranges
|
|
(gimple_stmt_iterator *gsi,
|
|
gimple *stmt)
|
|
{
|
|
enum tree_code subcode;
|
|
bool is_ubsan = false;
|
|
bool ovf = false;
|
|
switch (gimple_call_internal_fn (stmt))
|
|
{
|
|
case IFN_UBSAN_CHECK_ADD:
|
|
subcode = PLUS_EXPR;
|
|
is_ubsan = true;
|
|
break;
|
|
case IFN_UBSAN_CHECK_SUB:
|
|
subcode = MINUS_EXPR;
|
|
is_ubsan = true;
|
|
break;
|
|
case IFN_UBSAN_CHECK_MUL:
|
|
subcode = MULT_EXPR;
|
|
is_ubsan = true;
|
|
break;
|
|
case IFN_ADD_OVERFLOW:
|
|
subcode = PLUS_EXPR;
|
|
break;
|
|
case IFN_SUB_OVERFLOW:
|
|
subcode = MINUS_EXPR;
|
|
break;
|
|
case IFN_MUL_OVERFLOW:
|
|
subcode = MULT_EXPR;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
tree op0 = gimple_call_arg (stmt, 0);
|
|
tree op1 = gimple_call_arg (stmt, 1);
|
|
tree type;
|
|
if (is_ubsan)
|
|
{
|
|
type = TREE_TYPE (op0);
|
|
if (VECTOR_TYPE_P (type))
|
|
return false;
|
|
}
|
|
else if (gimple_call_lhs (stmt) == NULL_TREE)
|
|
return false;
|
|
else
|
|
type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
|
|
if (!check_for_binary_op_overflow (query, subcode, type, op0, op1, &ovf)
|
|
|| (is_ubsan && ovf))
|
|
return false;
|
|
|
|
gimple *g;
|
|
location_t loc = gimple_location (stmt);
|
|
if (is_ubsan)
|
|
g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
|
|
else
|
|
{
|
|
int prec = TYPE_PRECISION (type);
|
|
tree utype = type;
|
|
if (ovf
|
|
|| !useless_type_conversion_p (type, TREE_TYPE (op0))
|
|
|| !useless_type_conversion_p (type, TREE_TYPE (op1)))
|
|
utype = build_nonstandard_integer_type (prec, 1);
|
|
if (TREE_CODE (op0) == INTEGER_CST)
|
|
op0 = fold_convert (utype, op0);
|
|
else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
|
|
gimple_set_location (g, loc);
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
op0 = gimple_assign_lhs (g);
|
|
}
|
|
if (TREE_CODE (op1) == INTEGER_CST)
|
|
op1 = fold_convert (utype, op1);
|
|
else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
|
|
gimple_set_location (g, loc);
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
op1 = gimple_assign_lhs (g);
|
|
}
|
|
g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
|
|
gimple_set_location (g, loc);
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
if (utype != type)
|
|
{
|
|
g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
|
|
gimple_assign_lhs (g));
|
|
gimple_set_location (g, loc);
|
|
gsi_insert_before (gsi, g, GSI_SAME_STMT);
|
|
}
|
|
g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
|
|
gimple_assign_lhs (g),
|
|
build_int_cst (type, ovf));
|
|
}
|
|
gimple_set_location (g, loc);
|
|
gsi_replace (gsi, g, false);
|
|
return true;
|
|
}
|
|
|
|
/* Return true if VAR is a two-valued variable. Set a and b with the
|
|
two-values when it is true. Return false otherwise. */
|
|
|
|
bool
|
|
simplify_using_ranges::two_valued_val_range_p (tree var, tree *a, tree *b)
|
|
{
|
|
value_range vr = *query->get_value_range (var);
|
|
vr.normalize_symbolics ();
|
|
if (vr.varying_p () || vr.undefined_p ())
|
|
return false;
|
|
|
|
if ((vr.num_pairs () == 1 && vr.upper_bound () - vr.lower_bound () == 1)
|
|
|| (vr.num_pairs () == 2
|
|
&& vr.lower_bound (0) == vr.upper_bound (0)
|
|
&& vr.lower_bound (1) == vr.upper_bound (1)))
|
|
{
|
|
*a = wide_int_to_tree (TREE_TYPE (var), vr.lower_bound ());
|
|
*b = wide_int_to_tree (TREE_TYPE (var), vr.upper_bound ());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
simplify_using_ranges::simplify_using_ranges (range_query *query)
|
|
: query (query)
|
|
{
|
|
to_remove_edges = vNULL;
|
|
to_update_switch_stmts = vNULL;
|
|
}
|
|
|
|
simplify_using_ranges::~simplify_using_ranges ()
|
|
{
|
|
cleanup_edges_and_switches ();
|
|
}
|
|
|
|
/* Simplify STMT using ranges if possible. */
|
|
|
|
bool
|
|
simplify_using_ranges::simplify (gimple_stmt_iterator *gsi)
|
|
{
|
|
gcc_checking_assert (query);
|
|
|
|
gimple *stmt = gsi_stmt (*gsi);
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree val1 = NULL_TREE, val2 = NULL_TREE;
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
|
|
/* Convert:
|
|
LHS = CST BINOP VAR
|
|
Where VAR is two-valued and LHS is used in GIMPLE_COND only
|
|
To:
|
|
LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
|
|
|
|
Also handles:
|
|
LHS = VAR BINOP CST
|
|
Where VAR is two-valued and LHS is used in GIMPLE_COND only
|
|
To:
|
|
LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
|
|
|
|
if (TREE_CODE_CLASS (rhs_code) == tcc_binary
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
|
&& ((TREE_CODE (rhs1) == INTEGER_CST
|
|
&& TREE_CODE (rhs2) == SSA_NAME)
|
|
|| (TREE_CODE (rhs2) == INTEGER_CST
|
|
&& TREE_CODE (rhs1) == SSA_NAME))
|
|
&& single_imm_use (lhs, &use_p, &use_stmt)
|
|
&& gimple_code (use_stmt) == GIMPLE_COND)
|
|
|
|
{
|
|
tree new_rhs1 = NULL_TREE;
|
|
tree new_rhs2 = NULL_TREE;
|
|
tree cmp_var = NULL_TREE;
|
|
|
|
if (TREE_CODE (rhs2) == SSA_NAME
|
|
&& two_valued_val_range_p (rhs2, &val1, &val2))
|
|
{
|
|
/* Optimize RHS1 OP [VAL1, VAL2]. */
|
|
new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
|
|
new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
|
|
cmp_var = rhs2;
|
|
}
|
|
else if (TREE_CODE (rhs1) == SSA_NAME
|
|
&& two_valued_val_range_p (rhs1, &val1, &val2))
|
|
{
|
|
/* Optimize [VAL1, VAL2] OP RHS2. */
|
|
new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
|
|
new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
|
|
cmp_var = rhs1;
|
|
}
|
|
|
|
/* If we could not find two-vals or the optimzation is invalid as
|
|
in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
|
|
if (new_rhs1 && new_rhs2)
|
|
{
|
|
tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
|
|
gimple_assign_set_rhs_with_ops (gsi,
|
|
COND_EXPR, cond,
|
|
new_rhs1,
|
|
new_rhs2);
|
|
update_stmt (gsi_stmt (*gsi));
|
|
fold_stmt (gsi, follow_single_use_edges);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
switch (rhs_code)
|
|
{
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
/* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
|
|
if the RHS is zero or one, and the LHS are known to be boolean
|
|
values. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_truth_ops_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
/* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
|
|
and BIT_AND_EXPR respectively if the first operand is greater
|
|
than zero and the second operand is an exact power of two.
|
|
Also optimize TRUNC_MOD_EXPR away if the second operand is
|
|
constant and the first operand already has the right value
|
|
range. */
|
|
case TRUNC_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
if ((TREE_CODE (rhs1) == SSA_NAME
|
|
|| TREE_CODE (rhs1) == INTEGER_CST)
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_div_or_mod_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
/* Transform ABS (X) into X or -X as appropriate. */
|
|
case ABS_EXPR:
|
|
if (TREE_CODE (rhs1) == SSA_NAME
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_abs_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
/* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
|
|
if all the bits being cleared are already cleared or
|
|
all the bits being set are already set. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_bit_ops_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
CASE_CONVERT:
|
|
if (TREE_CODE (rhs1) == SSA_NAME
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_conversion_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
case FLOAT_EXPR:
|
|
if (TREE_CODE (rhs1) == SSA_NAME
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
|
|
return simplify_float_conversion_using_ranges (gsi, stmt);
|
|
break;
|
|
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
return simplify_min_or_max_using_ranges (gsi, stmt);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
|
return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
|
return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
|
|
else if (is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt))
|
|
return simplify_internal_call_using_ranges (gsi, stmt);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Set the lattice entry for VAR to VR. */
|
|
|
|
void
|
|
vr_values::set_vr_value (tree var, value_range_equiv *vr)
|
|
{
|
|
if (SSA_NAME_VERSION (var) >= num_vr_values)
|
|
return;
|
|
vr_value[SSA_NAME_VERSION (var)] = vr;
|
|
}
|
|
|
|
/* Swap the lattice entry for VAR with VR and return the old entry. */
|
|
|
|
value_range_equiv *
|
|
vr_values::swap_vr_value (tree var, value_range_equiv *vr)
|
|
{
|
|
if (SSA_NAME_VERSION (var) >= num_vr_values)
|
|
return NULL;
|
|
std::swap (vr_value[SSA_NAME_VERSION (var)], vr);
|
|
return vr;
|
|
}
|