d7bd009ab0
This fixes accounting issues with using auto_vec and auto_bitmap for -fmem-report. 2021-02-01 Richard Biener <rguenther@suse.de> * vec.h (auto_vec::auto_vec): Add memory stat parameters and pass them on. * bitmap.h (auto_bitmap::auto_bitmap): Likewise.
2266 lines
62 KiB
C++
2266 lines
62 KiB
C++
/* Vector API for GNU compiler.
|
|
Copyright (C) 2004-2021 Free Software Foundation, Inc.
|
|
Contributed by Nathan Sidwell <nathan@codesourcery.com>
|
|
Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GCC_VEC_H
|
|
#define GCC_VEC_H
|
|
|
|
/* Some gen* file have no ggc support as the header file gtype-desc.h is
|
|
missing. Provide these definitions in case ggc.h has not been included.
|
|
This is not a problem because any code that runs before gengtype is built
|
|
will never need to use GC vectors.*/
|
|
|
|
extern void ggc_free (void *);
|
|
extern size_t ggc_round_alloc_size (size_t requested_size);
|
|
extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
|
|
|
|
/* Templated vector type and associated interfaces.
|
|
|
|
The interface functions are typesafe and use inline functions,
|
|
sometimes backed by out-of-line generic functions. The vectors are
|
|
designed to interoperate with the GTY machinery.
|
|
|
|
There are both 'index' and 'iterate' accessors. The index accessor
|
|
is implemented by operator[]. The iterator returns a boolean
|
|
iteration condition and updates the iteration variable passed by
|
|
reference. Because the iterator will be inlined, the address-of
|
|
can be optimized away.
|
|
|
|
Each operation that increases the number of active elements is
|
|
available in 'quick' and 'safe' variants. The former presumes that
|
|
there is sufficient allocated space for the operation to succeed
|
|
(it dies if there is not). The latter will reallocate the
|
|
vector, if needed. Reallocation causes an exponential increase in
|
|
vector size. If you know you will be adding N elements, it would
|
|
be more efficient to use the reserve operation before adding the
|
|
elements with the 'quick' operation. This will ensure there are at
|
|
least as many elements as you ask for, it will exponentially
|
|
increase if there are too few spare slots. If you want reserve a
|
|
specific number of slots, but do not want the exponential increase
|
|
(for instance, you know this is the last allocation), use the
|
|
reserve_exact operation. You can also create a vector of a
|
|
specific size from the get go.
|
|
|
|
You should prefer the push and pop operations, as they append and
|
|
remove from the end of the vector. If you need to remove several
|
|
items in one go, use the truncate operation. The insert and remove
|
|
operations allow you to change elements in the middle of the
|
|
vector. There are two remove operations, one which preserves the
|
|
element ordering 'ordered_remove', and one which does not
|
|
'unordered_remove'. The latter function copies the end element
|
|
into the removed slot, rather than invoke a memmove operation. The
|
|
'lower_bound' function will determine where to place an item in the
|
|
array using insert that will maintain sorted order.
|
|
|
|
Vectors are template types with three arguments: the type of the
|
|
elements in the vector, the allocation strategy, and the physical
|
|
layout to use
|
|
|
|
Four allocation strategies are supported:
|
|
|
|
- Heap: allocation is done using malloc/free. This is the
|
|
default allocation strategy.
|
|
|
|
- GC: allocation is done using ggc_alloc/ggc_free.
|
|
|
|
- GC atomic: same as GC with the exception that the elements
|
|
themselves are assumed to be of an atomic type that does
|
|
not need to be garbage collected. This means that marking
|
|
routines do not need to traverse the array marking the
|
|
individual elements. This increases the performance of
|
|
GC activities.
|
|
|
|
Two physical layouts are supported:
|
|
|
|
- Embedded: The vector is structured using the trailing array
|
|
idiom. The last member of the structure is an array of size
|
|
1. When the vector is initially allocated, a single memory
|
|
block is created to hold the vector's control data and the
|
|
array of elements. These vectors cannot grow without
|
|
reallocation (see discussion on embeddable vectors below).
|
|
|
|
- Space efficient: The vector is structured as a pointer to an
|
|
embedded vector. This is the default layout. It means that
|
|
vectors occupy a single word of storage before initial
|
|
allocation. Vectors are allowed to grow (the internal
|
|
pointer is reallocated but the main vector instance does not
|
|
need to relocate).
|
|
|
|
The type, allocation and layout are specified when the vector is
|
|
declared.
|
|
|
|
If you need to directly manipulate a vector, then the 'address'
|
|
accessor will return the address of the start of the vector. Also
|
|
the 'space' predicate will tell you whether there is spare capacity
|
|
in the vector. You will not normally need to use these two functions.
|
|
|
|
Notes on the different layout strategies
|
|
|
|
* Embeddable vectors (vec<T, A, vl_embed>)
|
|
|
|
These vectors are suitable to be embedded in other data
|
|
structures so that they can be pre-allocated in a contiguous
|
|
memory block.
|
|
|
|
Embeddable vectors are implemented using the trailing array
|
|
idiom, thus they are not resizeable without changing the address
|
|
of the vector object itself. This means you cannot have
|
|
variables or fields of embeddable vector type -- always use a
|
|
pointer to a vector. The one exception is the final field of a
|
|
structure, which could be a vector type.
|
|
|
|
You will have to use the embedded_size & embedded_init calls to
|
|
create such objects, and they will not be resizeable (so the
|
|
'safe' allocation variants are not available).
|
|
|
|
Properties of embeddable vectors:
|
|
|
|
- The whole vector and control data are allocated in a single
|
|
contiguous block. It uses the trailing-vector idiom, so
|
|
allocation must reserve enough space for all the elements
|
|
in the vector plus its control data.
|
|
- The vector cannot be re-allocated.
|
|
- The vector cannot grow nor shrink.
|
|
- No indirections needed for access/manipulation.
|
|
- It requires 2 words of storage (prior to vector allocation).
|
|
|
|
|
|
* Space efficient vector (vec<T, A, vl_ptr>)
|
|
|
|
These vectors can grow dynamically and are allocated together
|
|
with their control data. They are suited to be included in data
|
|
structures. Prior to initial allocation, they only take a single
|
|
word of storage.
|
|
|
|
These vectors are implemented as a pointer to embeddable vectors.
|
|
The semantics allow for this pointer to be NULL to represent
|
|
empty vectors. This way, empty vectors occupy minimal space in
|
|
the structure containing them.
|
|
|
|
Properties:
|
|
|
|
- The whole vector and control data are allocated in a single
|
|
contiguous block.
|
|
- The whole vector may be re-allocated.
|
|
- Vector data may grow and shrink.
|
|
- Access and manipulation requires a pointer test and
|
|
indirection.
|
|
- It requires 1 word of storage (prior to vector allocation).
|
|
|
|
An example of their use would be,
|
|
|
|
struct my_struct {
|
|
// A space-efficient vector of tree pointers in GC memory.
|
|
vec<tree, va_gc, vl_ptr> v;
|
|
};
|
|
|
|
struct my_struct *s;
|
|
|
|
if (s->v.length ()) { we have some contents }
|
|
s->v.safe_push (decl); // append some decl onto the end
|
|
for (ix = 0; s->v.iterate (ix, &elt); ix++)
|
|
{ do something with elt }
|
|
*/
|
|
|
|
/* Support function for statistics. */
|
|
extern void dump_vec_loc_statistics (void);
|
|
|
|
/* Hashtable mapping vec addresses to descriptors. */
|
|
extern htab_t vec_mem_usage_hash;
|
|
|
|
/* Control data for vectors. This contains the number of allocated
|
|
and used slots inside a vector. */
|
|
|
|
struct vec_prefix
|
|
{
|
|
/* FIXME - These fields should be private, but we need to cater to
|
|
compilers that have stricter notions of PODness for types. */
|
|
|
|
/* Memory allocation support routines in vec.c. */
|
|
void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
|
|
void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
|
|
static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
|
|
static unsigned calculate_allocation_1 (unsigned, unsigned);
|
|
|
|
/* Note that vec_prefix should be a base class for vec, but we use
|
|
offsetof() on vector fields of tree structures (e.g.,
|
|
tree_binfo::base_binfos), and offsetof only supports base types.
|
|
|
|
To compensate, we make vec_prefix a field inside vec and make
|
|
vec a friend class of vec_prefix so it can access its fields. */
|
|
template <typename, typename, typename> friend struct vec;
|
|
|
|
/* The allocator types also need access to our internals. */
|
|
friend struct va_gc;
|
|
friend struct va_gc_atomic;
|
|
friend struct va_heap;
|
|
|
|
unsigned m_alloc : 31;
|
|
unsigned m_using_auto_storage : 1;
|
|
unsigned m_num;
|
|
};
|
|
|
|
/* Calculate the number of slots to reserve a vector, making sure that
|
|
RESERVE slots are free. If EXACT grow exactly, otherwise grow
|
|
exponentially. PFX is the control data for the vector. */
|
|
|
|
inline unsigned
|
|
vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
|
|
bool exact)
|
|
{
|
|
if (exact)
|
|
return (pfx ? pfx->m_num : 0) + reserve;
|
|
else if (!pfx)
|
|
return MAX (4, reserve);
|
|
return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
|
|
}
|
|
|
|
template<typename, typename, typename> struct vec;
|
|
|
|
/* Valid vector layouts
|
|
|
|
vl_embed - Embeddable vector that uses the trailing array idiom.
|
|
vl_ptr - Space efficient vector that uses a pointer to an
|
|
embeddable vector. */
|
|
struct vl_embed { };
|
|
struct vl_ptr { };
|
|
|
|
|
|
/* Types of supported allocations
|
|
|
|
va_heap - Allocation uses malloc/free.
|
|
va_gc - Allocation uses ggc_alloc.
|
|
va_gc_atomic - Same as GC, but individual elements of the array
|
|
do not need to be marked during collection. */
|
|
|
|
/* Allocator type for heap vectors. */
|
|
struct va_heap
|
|
{
|
|
/* Heap vectors are frequently regular instances, so use the vl_ptr
|
|
layout for them. */
|
|
typedef vl_ptr default_layout;
|
|
|
|
template<typename T>
|
|
static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
|
|
CXX_MEM_STAT_INFO);
|
|
|
|
template<typename T>
|
|
static void release (vec<T, va_heap, vl_embed> *&);
|
|
};
|
|
|
|
|
|
/* Allocator for heap memory. Ensure there are at least RESERVE free
|
|
slots in V. If EXACT is true, grow exactly, else grow
|
|
exponentially. As a special case, if the vector had not been
|
|
allocated and RESERVE is 0, no vector will be created. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
|
|
MEM_STAT_DECL)
|
|
{
|
|
size_t elt_size = sizeof (T);
|
|
unsigned alloc
|
|
= vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
|
|
gcc_checking_assert (alloc);
|
|
|
|
if (GATHER_STATISTICS && v)
|
|
v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
|
|
v->allocated (), false);
|
|
|
|
size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
|
|
unsigned nelem = v ? v->length () : 0;
|
|
v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
|
|
v->embedded_init (alloc, nelem);
|
|
|
|
if (GATHER_STATISTICS)
|
|
v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
#if GCC_VERSION >= 4007
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
|
|
#endif
|
|
|
|
/* Free the heap space allocated for vector V. */
|
|
|
|
template<typename T>
|
|
void
|
|
va_heap::release (vec<T, va_heap, vl_embed> *&v)
|
|
{
|
|
size_t elt_size = sizeof (T);
|
|
if (v == NULL)
|
|
return;
|
|
|
|
if (GATHER_STATISTICS)
|
|
v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
|
|
v->allocated (), true);
|
|
::free (v);
|
|
v = NULL;
|
|
}
|
|
|
|
#if GCC_VERSION >= 4007
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/* Allocator type for GC vectors. Notice that we need the structure
|
|
declaration even if GC is not enabled. */
|
|
|
|
struct va_gc
|
|
{
|
|
/* Use vl_embed as the default layout for GC vectors. Due to GTY
|
|
limitations, GC vectors must always be pointers, so it is more
|
|
efficient to use a pointer to the vl_embed layout, rather than
|
|
using a pointer to a pointer as would be the case with vl_ptr. */
|
|
typedef vl_embed default_layout;
|
|
|
|
template<typename T, typename A>
|
|
static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
|
|
CXX_MEM_STAT_INFO);
|
|
|
|
template<typename T, typename A>
|
|
static void release (vec<T, A, vl_embed> *&v);
|
|
};
|
|
|
|
|
|
/* Free GC memory used by V and reset V to NULL. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
va_gc::release (vec<T, A, vl_embed> *&v)
|
|
{
|
|
if (v)
|
|
::ggc_free (v);
|
|
v = NULL;
|
|
}
|
|
|
|
|
|
/* Allocator for GC memory. Ensure there are at least RESERVE free
|
|
slots in V. If EXACT is true, grow exactly, else grow
|
|
exponentially. As a special case, if the vector had not been
|
|
allocated and RESERVE is 0, no vector will be created. */
|
|
|
|
template<typename T, typename A>
|
|
void
|
|
va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
|
|
MEM_STAT_DECL)
|
|
{
|
|
unsigned alloc
|
|
= vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
|
|
if (!alloc)
|
|
{
|
|
::ggc_free (v);
|
|
v = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the amount of space we want. */
|
|
size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
|
|
|
|
/* Ask the allocator how much space it will really give us. */
|
|
size = ::ggc_round_alloc_size (size);
|
|
|
|
/* Adjust the number of slots accordingly. */
|
|
size_t vec_offset = sizeof (vec_prefix);
|
|
size_t elt_size = sizeof (T);
|
|
alloc = (size - vec_offset) / elt_size;
|
|
|
|
/* And finally, recalculate the amount of space we ask for. */
|
|
size = vec_offset + alloc * elt_size;
|
|
|
|
unsigned nelem = v ? v->length () : 0;
|
|
v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
|
|
PASS_MEM_STAT));
|
|
v->embedded_init (alloc, nelem);
|
|
}
|
|
|
|
|
|
/* Allocator type for GC vectors. This is for vectors of types
|
|
atomics w.r.t. collection, so allocation and deallocation is
|
|
completely inherited from va_gc. */
|
|
struct va_gc_atomic : va_gc
|
|
{
|
|
};
|
|
|
|
|
|
/* Generic vector template. Default values for A and L indicate the
|
|
most commonly used strategies.
|
|
|
|
FIXME - Ideally, they would all be vl_ptr to encourage using regular
|
|
instances for vectors, but the existing GTY machinery is limited
|
|
in that it can only deal with GC objects that are pointers
|
|
themselves.
|
|
|
|
This means that vector operations that need to deal with
|
|
potentially NULL pointers, must be provided as free
|
|
functions (see the vec_safe_* functions above). */
|
|
template<typename T,
|
|
typename A = va_heap,
|
|
typename L = typename A::default_layout>
|
|
struct GTY((user)) vec
|
|
{
|
|
};
|
|
|
|
/* Allow C++11 range-based 'for' to work directly on vec<T>*. */
|
|
template<typename T, typename A, typename L>
|
|
T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
|
|
template<typename T, typename A, typename L>
|
|
T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
|
|
template<typename T, typename A, typename L>
|
|
const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
|
|
template<typename T, typename A, typename L>
|
|
const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }
|
|
|
|
/* Generic vec<> debug helpers.
|
|
|
|
These need to be instantiated for each vec<TYPE> used throughout
|
|
the compiler like this:
|
|
|
|
DEFINE_DEBUG_VEC (TYPE)
|
|
|
|
The reason we have a debug_helper() is because GDB can't
|
|
disambiguate a plain call to debug(some_vec), and it must be called
|
|
like debug<TYPE>(some_vec). */
|
|
|
|
template<typename T>
|
|
void
|
|
debug_helper (vec<T> &ref)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < ref.length (); ++i)
|
|
{
|
|
fprintf (stderr, "[%d] = ", i);
|
|
debug_slim (ref[i]);
|
|
fputc ('\n', stderr);
|
|
}
|
|
}
|
|
|
|
/* We need a separate va_gc variant here because default template
|
|
argument for functions cannot be used in c++-98. Once this
|
|
restriction is removed, those variant should be folded with the
|
|
above debug_helper. */
|
|
|
|
template<typename T>
|
|
void
|
|
debug_helper (vec<T, va_gc> &ref)
|
|
{
|
|
unsigned i;
|
|
for (i = 0; i < ref.length (); ++i)
|
|
{
|
|
fprintf (stderr, "[%d] = ", i);
|
|
debug_slim (ref[i]);
|
|
fputc ('\n', stderr);
|
|
}
|
|
}
|
|
|
|
/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
|
|
functions for a type T. */
|
|
|
|
#define DEFINE_DEBUG_VEC(T) \
|
|
template void debug_helper (vec<T> &); \
|
|
template void debug_helper (vec<T, va_gc> &); \
|
|
/* Define the vec<T> debug functions. */ \
|
|
DEBUG_FUNCTION void \
|
|
debug (vec<T> &ref) \
|
|
{ \
|
|
debug_helper <T> (ref); \
|
|
} \
|
|
DEBUG_FUNCTION void \
|
|
debug (vec<T> *ptr) \
|
|
{ \
|
|
if (ptr) \
|
|
debug (*ptr); \
|
|
else \
|
|
fprintf (stderr, "<nil>\n"); \
|
|
} \
|
|
/* Define the vec<T, va_gc> debug functions. */ \
|
|
DEBUG_FUNCTION void \
|
|
debug (vec<T, va_gc> &ref) \
|
|
{ \
|
|
debug_helper <T> (ref); \
|
|
} \
|
|
DEBUG_FUNCTION void \
|
|
debug (vec<T, va_gc> *ptr) \
|
|
{ \
|
|
if (ptr) \
|
|
debug (*ptr); \
|
|
else \
|
|
fprintf (stderr, "<nil>\n"); \
|
|
}
|
|
|
|
/* Default-construct N elements in DST. */
|
|
|
|
template <typename T>
|
|
inline void
|
|
vec_default_construct (T *dst, unsigned n)
|
|
{
|
|
#ifdef BROKEN_VALUE_INITIALIZATION
|
|
/* Versions of GCC before 4.4 sometimes leave certain objects
|
|
uninitialized when value initialized, though if the type has
|
|
user defined default ctor, that ctor is invoked. As a workaround
|
|
perform clearing first and then the value initialization, which
|
|
fixes the case when value initialization doesn't initialize due to
|
|
the bugs and should initialize to all zeros, but still allows
|
|
vectors for types with user defined default ctor that initializes
|
|
some or all elements to non-zero. If T has no user defined
|
|
default ctor and some non-static data members have user defined
|
|
default ctors that initialize to non-zero the workaround will
|
|
still not work properly; in that case we just need to provide
|
|
user defined default ctor. */
|
|
memset (dst, '\0', sizeof (T) * n);
|
|
#endif
|
|
for ( ; n; ++dst, --n)
|
|
::new (static_cast<void*>(dst)) T ();
|
|
}
|
|
|
|
/* Copy-construct N elements in DST from *SRC. */
|
|
|
|
template <typename T>
|
|
inline void
|
|
vec_copy_construct (T *dst, const T *src, unsigned n)
|
|
{
|
|
for ( ; n; ++dst, ++src, --n)
|
|
::new (static_cast<void*>(dst)) T (*src);
|
|
}
|
|
|
|
/* Type to provide NULL values for vec<T, A, L>. This is used to
|
|
provide nil initializers for vec instances. Since vec must be
|
|
a POD, we cannot have proper ctor/dtor for it. To initialize
|
|
a vec instance, you can assign it the value vNULL. This isn't
|
|
needed for file-scope and function-local static vectors, which
|
|
are zero-initialized by default. */
|
|
struct vnull
|
|
{
|
|
template <typename T, typename A, typename L>
|
|
CONSTEXPR operator vec<T, A, L> () const { return vec<T, A, L>(); }
|
|
};
|
|
extern vnull vNULL;
|
|
|
|
|
|
/* Embeddable vector. These vectors are suitable to be embedded
|
|
in other data structures so that they can be pre-allocated in a
|
|
contiguous memory block.
|
|
|
|
Embeddable vectors are implemented using the trailing array idiom,
|
|
thus they are not resizeable without changing the address of the
|
|
vector object itself. This means you cannot have variables or
|
|
fields of embeddable vector type -- always use a pointer to a
|
|
vector. The one exception is the final field of a structure, which
|
|
could be a vector type.
|
|
|
|
You will have to use the embedded_size & embedded_init calls to
|
|
create such objects, and they will not be resizeable (so the 'safe'
|
|
allocation variants are not available).
|
|
|
|
Properties:
|
|
|
|
- The whole vector and control data are allocated in a single
|
|
contiguous block. It uses the trailing-vector idiom, so
|
|
allocation must reserve enough space for all the elements
|
|
in the vector plus its control data.
|
|
- The vector cannot be re-allocated.
|
|
- The vector cannot grow nor shrink.
|
|
- No indirections needed for access/manipulation.
|
|
- It requires 2 words of storage (prior to vector allocation). */
|
|
|
|
template<typename T, typename A>
|
|
struct GTY((user)) vec<T, A, vl_embed>
|
|
{
|
|
public:
|
|
unsigned allocated (void) const { return m_vecpfx.m_alloc; }
|
|
unsigned length (void) const { return m_vecpfx.m_num; }
|
|
bool is_empty (void) const { return m_vecpfx.m_num == 0; }
|
|
T *address (void) { return m_vecdata; }
|
|
const T *address (void) const { return m_vecdata; }
|
|
T *begin () { return address (); }
|
|
const T *begin () const { return address (); }
|
|
T *end () { return address () + length (); }
|
|
const T *end () const { return address () + length (); }
|
|
const T &operator[] (unsigned) const;
|
|
T &operator[] (unsigned);
|
|
T &last (void);
|
|
bool space (unsigned) const;
|
|
bool iterate (unsigned, T *) const;
|
|
bool iterate (unsigned, T **) const;
|
|
vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
|
|
void splice (const vec &);
|
|
void splice (const vec *src);
|
|
T *quick_push (const T &);
|
|
T &pop (void);
|
|
void truncate (unsigned);
|
|
void quick_insert (unsigned, const T &);
|
|
void ordered_remove (unsigned);
|
|
void unordered_remove (unsigned);
|
|
void block_remove (unsigned, unsigned);
|
|
void qsort (int (*) (const void *, const void *));
|
|
void sort (int (*) (const void *, const void *, void *), void *);
|
|
T *bsearch (const void *key, int (*compar)(const void *, const void *));
|
|
T *bsearch (const void *key,
|
|
int (*compar)(const void *, const void *, void *), void *);
|
|
unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
|
|
bool contains (const T &search) const;
|
|
static size_t embedded_size (unsigned);
|
|
void embedded_init (unsigned, unsigned = 0, unsigned = 0);
|
|
void quick_grow (unsigned len);
|
|
void quick_grow_cleared (unsigned len);
|
|
|
|
/* vec class can access our internal data and functions. */
|
|
template <typename, typename, typename> friend struct vec;
|
|
|
|
/* The allocator types also need access to our internals. */
|
|
friend struct va_gc;
|
|
friend struct va_gc_atomic;
|
|
friend struct va_heap;
|
|
|
|
/* FIXME - These fields should be private, but we need to cater to
|
|
compilers that have stricter notions of PODness for types. */
|
|
vec_prefix m_vecpfx;
|
|
T m_vecdata[1];
|
|
};
|
|
|
|
|
|
/* Convenience wrapper functions to use when dealing with pointers to
|
|
embedded vectors. Some functionality for these vectors must be
|
|
provided via free functions for these reasons:
|
|
|
|
1- The pointer may be NULL (e.g., before initial allocation).
|
|
|
|
2- When the vector needs to grow, it must be reallocated, so
|
|
the pointer will change its value.
|
|
|
|
Because of limitations with the current GC machinery, all vectors
|
|
in GC memory *must* be pointers. */
|
|
|
|
|
|
/* If V contains no room for NELEMS elements, return false. Otherwise,
|
|
return true. */
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
|
|
{
|
|
return v ? v->space (nelems) : nelems == 0;
|
|
}
|
|
|
|
|
|
/* If V is NULL, return 0. Otherwise, return V->length(). */
|
|
template<typename T, typename A>
|
|
inline unsigned
|
|
vec_safe_length (const vec<T, A, vl_embed> *v)
|
|
{
|
|
return v ? v->length () : 0;
|
|
}
|
|
|
|
|
|
/* If V is NULL, return NULL. Otherwise, return V->address(). */
|
|
template<typename T, typename A>
|
|
inline T *
|
|
vec_safe_address (vec<T, A, vl_embed> *v)
|
|
{
|
|
return v ? v->address () : NULL;
|
|
}
|
|
|
|
|
|
/* If V is NULL, return true. Otherwise, return V->is_empty(). */
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_is_empty (vec<T, A, vl_embed> *v)
|
|
{
|
|
return v ? v->is_empty () : true;
|
|
}
|
|
|
|
/* If V does not have space for NELEMS elements, call
|
|
V->reserve(NELEMS, EXACT). */
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
|
|
CXX_MEM_STAT_INFO)
|
|
{
|
|
bool extend = nelems ? !vec_safe_space (v, nelems) : false;
|
|
if (extend)
|
|
A::reserve (v, nelems, exact PASS_MEM_STAT);
|
|
return extend;
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
|
|
CXX_MEM_STAT_INFO)
|
|
{
|
|
return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
|
|
is 0, V is initialized to NULL. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
|
|
{
|
|
v = NULL;
|
|
vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* Free the GC memory allocated by vector V and set it to NULL. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_free (vec<T, A, vl_embed> *&v)
|
|
{
|
|
A::release (v);
|
|
}
|
|
|
|
|
|
/* Grow V to length LEN. Allocate it, if necessary. */
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
|
|
bool exact = false CXX_MEM_STAT_INFO)
|
|
{
|
|
unsigned oldlen = vec_safe_length (v);
|
|
gcc_checking_assert (len >= oldlen);
|
|
vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
|
|
v->quick_grow (len);
|
|
}
|
|
|
|
|
|
/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
|
|
bool exact = false CXX_MEM_STAT_INFO)
|
|
{
|
|
unsigned oldlen = vec_safe_length (v);
|
|
vec_safe_grow (v, len, exact PASS_MEM_STAT);
|
|
vec_default_construct (v->address () + oldlen, len - oldlen);
|
|
}
|
|
|
|
|
|
/* Assume V is not NULL. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
|
|
unsigned len, bool exact = false CXX_MEM_STAT_INFO)
|
|
{
|
|
v->safe_grow_cleared (len, exact PASS_MEM_STAT);
|
|
}
|
|
|
|
/* If V does not have space for NELEMS elements, call
|
|
V->reserve(NELEMS, EXACT). */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
|
|
CXX_MEM_STAT_INFO)
|
|
{
|
|
return v->reserve (nelems, exact);
|
|
}
|
|
|
|
|
|
/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
|
|
{
|
|
if (v)
|
|
return v->iterate (ix, ptr);
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
|
|
{
|
|
if (v)
|
|
return v->iterate (ix, ptr);
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* If V has no room for one more element, reallocate it. Then call
|
|
V->quick_push(OBJ). */
|
|
template<typename T, typename A>
|
|
inline T *
|
|
vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
|
|
{
|
|
vec_safe_reserve (v, 1, false PASS_MEM_STAT);
|
|
return v->quick_push (obj);
|
|
}
|
|
|
|
|
|
/* if V has no room for one more element, reallocate it. Then call
|
|
V->quick_insert(IX, OBJ). */
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
|
|
CXX_MEM_STAT_INFO)
|
|
{
|
|
vec_safe_reserve (v, 1, false PASS_MEM_STAT);
|
|
v->quick_insert (ix, obj);
|
|
}
|
|
|
|
|
|
/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
|
|
{
|
|
if (v)
|
|
v->truncate (size);
|
|
}
|
|
|
|
|
|
/* If SRC is not NULL, return a pointer to a copy of it. */
|
|
template<typename T, typename A>
|
|
inline vec<T, A, vl_embed> *
|
|
vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
|
|
{
|
|
return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
|
|
}
|
|
|
|
/* Copy the elements from SRC to the end of DST as if by memcpy.
|
|
Reallocate DST, if necessary. */
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
|
|
CXX_MEM_STAT_INFO)
|
|
{
|
|
unsigned src_len = vec_safe_length (src);
|
|
if (src_len)
|
|
{
|
|
vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
|
|
PASS_MEM_STAT);
|
|
dst->splice (*src);
|
|
}
|
|
}
|
|
|
|
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
|
|
size of the vector and so should be used with care. */
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
|
|
{
|
|
return v ? v->contains (search) : false;
|
|
}
|
|
|
|
/* Index into vector. Return the IX'th element. IX must be in the
|
|
domain of the vector. */
|
|
|
|
template<typename T, typename A>
|
|
inline const T &
|
|
vec<T, A, vl_embed>::operator[] (unsigned ix) const
|
|
{
|
|
gcc_checking_assert (ix < m_vecpfx.m_num);
|
|
return m_vecdata[ix];
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
inline T &
|
|
vec<T, A, vl_embed>::operator[] (unsigned ix)
|
|
{
|
|
gcc_checking_assert (ix < m_vecpfx.m_num);
|
|
return m_vecdata[ix];
|
|
}
|
|
|
|
|
|
/* Get the final element of the vector, which must not be empty. */
|
|
|
|
template<typename T, typename A>
|
|
inline T &
|
|
vec<T, A, vl_embed>::last (void)
|
|
{
|
|
gcc_checking_assert (m_vecpfx.m_num > 0);
|
|
return (*this)[m_vecpfx.m_num - 1];
|
|
}
|
|
|
|
|
|
/* If this vector has space for NELEMS additional entries, return
|
|
true. You usually only need to use this if you are doing your
|
|
own vector reallocation, for instance on an embedded vector. This
|
|
returns true in exactly the same circumstances that vec::reserve
|
|
will. */
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec<T, A, vl_embed>::space (unsigned nelems) const
|
|
{
|
|
return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
|
|
}
|
|
|
|
|
|
/* Return iteration condition and update PTR to point to the IX'th
|
|
element of this vector. Use this to iterate over the elements of a
|
|
vector as follows,
|
|
|
|
for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
|
|
continue; */
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
|
|
{
|
|
if (ix < m_vecpfx.m_num)
|
|
{
|
|
*ptr = m_vecdata[ix];
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return iteration condition and update *PTR to point to the
|
|
IX'th element of this vector. Use this to iterate over the
|
|
elements of a vector as follows,
|
|
|
|
for (ix = 0; v->iterate (ix, &ptr); ix++)
|
|
continue;
|
|
|
|
This variant is for vectors of objects. */
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
|
|
{
|
|
if (ix < m_vecpfx.m_num)
|
|
{
|
|
*ptr = CONST_CAST (T *, &m_vecdata[ix]);
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return a pointer to a copy of this vector. */
|
|
|
|
template<typename T, typename A>
|
|
inline vec<T, A, vl_embed> *
|
|
vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
|
|
{
|
|
vec<T, A, vl_embed> *new_vec = NULL;
|
|
unsigned len = length ();
|
|
if (len)
|
|
{
|
|
vec_alloc (new_vec, len PASS_MEM_STAT);
|
|
new_vec->embedded_init (len, len);
|
|
vec_copy_construct (new_vec->address (), m_vecdata, len);
|
|
}
|
|
return new_vec;
|
|
}
|
|
|
|
|
|
/* Copy the elements from SRC to the end of this vector as if by memcpy.
|
|
The vector must have sufficient headroom available. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
|
|
{
|
|
unsigned len = src.length ();
|
|
if (len)
|
|
{
|
|
gcc_checking_assert (space (len));
|
|
vec_copy_construct (end (), src.address (), len);
|
|
m_vecpfx.m_num += len;
|
|
}
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
|
|
{
|
|
if (src)
|
|
splice (*src);
|
|
}
|
|
|
|
|
|
/* Push OBJ (a new element) onto the end of the vector. There must be
|
|
sufficient space in the vector. Return a pointer to the slot
|
|
where OBJ was inserted. */
|
|
|
|
template<typename T, typename A>
|
|
inline T *
|
|
vec<T, A, vl_embed>::quick_push (const T &obj)
|
|
{
|
|
gcc_checking_assert (space (1));
|
|
T *slot = &m_vecdata[m_vecpfx.m_num++];
|
|
*slot = obj;
|
|
return slot;
|
|
}
|
|
|
|
|
|
/* Pop and return the last element off the end of the vector. */
|
|
|
|
template<typename T, typename A>
|
|
inline T &
|
|
vec<T, A, vl_embed>::pop (void)
|
|
{
|
|
gcc_checking_assert (length () > 0);
|
|
return m_vecdata[--m_vecpfx.m_num];
|
|
}
|
|
|
|
|
|
/* Set the length of the vector to SIZE. The new length must be less
|
|
than or equal to the current length. This is an O(1) operation. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::truncate (unsigned size)
|
|
{
|
|
gcc_checking_assert (length () >= size);
|
|
m_vecpfx.m_num = size;
|
|
}
|
|
|
|
|
|
/* Insert an element, OBJ, at the IXth position of this vector. There
|
|
must be sufficient space. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
|
|
{
|
|
gcc_checking_assert (length () < allocated ());
|
|
gcc_checking_assert (ix <= length ());
|
|
T *slot = &m_vecdata[ix];
|
|
memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
|
|
*slot = obj;
|
|
}
|
|
|
|
|
|
/* Remove an element from the IXth position of this vector. Ordering of
|
|
remaining elements is preserved. This is an O(N) operation due to
|
|
memmove. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::ordered_remove (unsigned ix)
|
|
{
|
|
gcc_checking_assert (ix < length ());
|
|
T *slot = &m_vecdata[ix];
|
|
memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
|
|
}
|
|
|
|
|
|
/* Remove elements in [START, END) from VEC for which COND holds. Ordering of
|
|
remaining elements is preserved. This is an O(N) operation. */
|
|
|
|
#define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
|
|
elem_ptr, start, end, cond) \
|
|
{ \
|
|
gcc_assert ((end) <= (vec).length ()); \
|
|
for (read_index = write_index = (start); read_index < (end); \
|
|
++read_index) \
|
|
{ \
|
|
elem_ptr = &(vec)[read_index]; \
|
|
bool remove_p = (cond); \
|
|
if (remove_p) \
|
|
continue; \
|
|
\
|
|
if (read_index != write_index) \
|
|
(vec)[write_index] = (vec)[read_index]; \
|
|
\
|
|
write_index++; \
|
|
} \
|
|
\
|
|
if (read_index - write_index > 0) \
|
|
(vec).block_remove (write_index, read_index - write_index); \
|
|
}
|
|
|
|
|
|
/* Remove elements from VEC for which COND holds. Ordering of remaining
|
|
elements is preserved. This is an O(N) operation. */
|
|
|
|
#define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
|
|
cond) \
|
|
VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
|
|
elem_ptr, 0, (vec).length (), (cond))
|
|
|
|
/* Remove an element from the IXth position of this vector. Ordering of
|
|
remaining elements is destroyed. This is an O(1) operation. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::unordered_remove (unsigned ix)
|
|
{
|
|
gcc_checking_assert (ix < length ());
|
|
m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
|
|
}
|
|
|
|
|
|
/* Remove LEN elements starting at the IXth. Ordering is retained.
|
|
This is an O(N) operation due to memmove. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
|
|
{
|
|
gcc_checking_assert (ix + len <= length ());
|
|
T *slot = &m_vecdata[ix];
|
|
m_vecpfx.m_num -= len;
|
|
memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
|
|
}
|
|
|
|
|
|
/* Sort the contents of this vector with qsort. CMP is the comparison
|
|
function to pass to qsort. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
|
|
{
|
|
if (length () > 1)
|
|
gcc_qsort (address (), length (), sizeof (T), cmp);
|
|
}
|
|
|
|
/* Sort the contents of this vector with qsort. CMP is the comparison
|
|
function to pass to qsort. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
|
|
void *data)
|
|
{
|
|
if (length () > 1)
|
|
gcc_sort_r (address (), length (), sizeof (T), cmp, data);
|
|
}
|
|
|
|
|
|
/* Search the contents of the sorted vector with a binary search.
|
|
CMP is the comparison function to pass to bsearch. */
|
|
|
|
template<typename T, typename A>
|
|
inline T *
|
|
vec<T, A, vl_embed>::bsearch (const void *key,
|
|
int (*compar) (const void *, const void *))
|
|
{
|
|
const void *base = this->address ();
|
|
size_t nmemb = this->length ();
|
|
size_t size = sizeof (T);
|
|
/* The following is a copy of glibc stdlib-bsearch.h. */
|
|
size_t l, u, idx;
|
|
const void *p;
|
|
int comparison;
|
|
|
|
l = 0;
|
|
u = nmemb;
|
|
while (l < u)
|
|
{
|
|
idx = (l + u) / 2;
|
|
p = (const void *) (((const char *) base) + (idx * size));
|
|
comparison = (*compar) (key, p);
|
|
if (comparison < 0)
|
|
u = idx;
|
|
else if (comparison > 0)
|
|
l = idx + 1;
|
|
else
|
|
return (T *)const_cast<void *>(p);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Search the contents of the sorted vector with a binary search.
|
|
CMP is the comparison function to pass to bsearch. */
|
|
|
|
template<typename T, typename A>
|
|
inline T *
|
|
vec<T, A, vl_embed>::bsearch (const void *key,
|
|
int (*compar) (const void *, const void *,
|
|
void *), void *data)
|
|
{
|
|
const void *base = this->address ();
|
|
size_t nmemb = this->length ();
|
|
size_t size = sizeof (T);
|
|
/* The following is a copy of glibc stdlib-bsearch.h. */
|
|
size_t l, u, idx;
|
|
const void *p;
|
|
int comparison;
|
|
|
|
l = 0;
|
|
u = nmemb;
|
|
while (l < u)
|
|
{
|
|
idx = (l + u) / 2;
|
|
p = (const void *) (((const char *) base) + (idx * size));
|
|
comparison = (*compar) (key, p, data);
|
|
if (comparison < 0)
|
|
u = idx;
|
|
else if (comparison > 0)
|
|
l = idx + 1;
|
|
else
|
|
return (T *)const_cast<void *>(p);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
|
|
size of the vector and so should be used with care. */
|
|
|
|
template<typename T, typename A>
|
|
inline bool
|
|
vec<T, A, vl_embed>::contains (const T &search) const
|
|
{
|
|
unsigned int len = length ();
|
|
for (unsigned int i = 0; i < len; i++)
|
|
if ((*this)[i] == search)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Find and return the first position in which OBJ could be inserted
|
|
without changing the ordering of this vector. LESSTHAN is a
|
|
function that returns true if the first argument is strictly less
|
|
than the second. */
|
|
|
|
template<typename T, typename A>
|
|
unsigned
|
|
vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
|
|
const
|
|
{
|
|
unsigned int len = length ();
|
|
unsigned int half, middle;
|
|
unsigned int first = 0;
|
|
while (len > 0)
|
|
{
|
|
half = len / 2;
|
|
middle = first;
|
|
middle += half;
|
|
T middle_elem = (*this)[middle];
|
|
if (lessthan (middle_elem, obj))
|
|
{
|
|
first = middle;
|
|
++first;
|
|
len = len - half - 1;
|
|
}
|
|
else
|
|
len = half;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
|
|
/* Return the number of bytes needed to embed an instance of an
|
|
embeddable vec inside another data structure.
|
|
|
|
Use these methods to determine the required size and initialization
|
|
of a vector V of type T embedded within another structure (as the
|
|
final member):
|
|
|
|
size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
|
|
void v->embedded_init (unsigned alloc, unsigned num);
|
|
|
|
These allow the caller to perform the memory allocation. */
|
|
|
|
template<typename T, typename A>
|
|
inline size_t
|
|
vec<T, A, vl_embed>::embedded_size (unsigned alloc)
|
|
{
|
|
struct alignas (T) U { char data[sizeof (T)]; };
|
|
typedef vec<U, A, vl_embed> vec_embedded;
|
|
typedef typename std::conditional<std::is_standard_layout<T>::value,
|
|
vec, vec_embedded>::type vec_stdlayout;
|
|
static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
|
|
static_assert (alignof (vec_stdlayout) == alignof (vec), "");
|
|
return offsetof (vec_stdlayout, m_vecdata) + alloc * sizeof (T);
|
|
}
|
|
|
|
|
|
/* Initialize the vector to contain room for ALLOC elements and
|
|
NUM active elements. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
|
|
{
|
|
m_vecpfx.m_alloc = alloc;
|
|
m_vecpfx.m_using_auto_storage = aut;
|
|
m_vecpfx.m_num = num;
|
|
}
|
|
|
|
|
|
/* Grow the vector to a specific length. LEN must be as long or longer than
|
|
the current length. The new elements are uninitialized. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::quick_grow (unsigned len)
|
|
{
|
|
gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
|
|
m_vecpfx.m_num = len;
|
|
}
|
|
|
|
|
|
/* Grow the vector to a specific length. LEN must be as long or longer than
|
|
the current length. The new elements are initialized to zero. */
|
|
|
|
template<typename T, typename A>
|
|
inline void
|
|
vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
|
|
{
|
|
unsigned oldlen = length ();
|
|
size_t growby = len - oldlen;
|
|
quick_grow (len);
|
|
if (growby != 0)
|
|
vec_default_construct (address () + oldlen, growby);
|
|
}
|
|
|
|
/* Garbage collection support for vec<T, A, vl_embed>. */
|
|
|
|
template<typename T>
|
|
void
|
|
gt_ggc_mx (vec<T, va_gc> *v)
|
|
{
|
|
extern void gt_ggc_mx (T &);
|
|
for (unsigned i = 0; i < v->length (); i++)
|
|
gt_ggc_mx ((*v)[i]);
|
|
}
|
|
|
|
template<typename T>
|
|
void
|
|
gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
|
|
{
|
|
/* Nothing to do. Vectors of atomic types wrt GC do not need to
|
|
be traversed. */
|
|
}
|
|
|
|
|
|
/* PCH support for vec<T, A, vl_embed>. */
|
|
|
|
template<typename T, typename A>
|
|
void
|
|
gt_pch_nx (vec<T, A, vl_embed> *v)
|
|
{
|
|
extern void gt_pch_nx (T &);
|
|
for (unsigned i = 0; i < v->length (); i++)
|
|
gt_pch_nx ((*v)[i]);
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
void
|
|
gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
|
|
{
|
|
for (unsigned i = 0; i < v->length (); i++)
|
|
op (&((*v)[i]), cookie);
|
|
}
|
|
|
|
template<typename T, typename A>
|
|
void
|
|
gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
|
|
{
|
|
extern void gt_pch_nx (T *, gt_pointer_operator, void *);
|
|
for (unsigned i = 0; i < v->length (); i++)
|
|
gt_pch_nx (&((*v)[i]), op, cookie);
|
|
}
|
|
|
|
|
|
/* Space efficient vector. These vectors can grow dynamically and are
|
|
allocated together with their control data. They are suited to be
|
|
included in data structures. Prior to initial allocation, they
|
|
only take a single word of storage.
|
|
|
|
These vectors are implemented as a pointer to an embeddable vector.
|
|
The semantics allow for this pointer to be NULL to represent empty
|
|
vectors. This way, empty vectors occupy minimal space in the
|
|
structure containing them.
|
|
|
|
Properties:
|
|
|
|
- The whole vector and control data are allocated in a single
|
|
contiguous block.
|
|
- The whole vector may be re-allocated.
|
|
- Vector data may grow and shrink.
|
|
- Access and manipulation requires a pointer test and
|
|
indirection.
|
|
- It requires 1 word of storage (prior to vector allocation).
|
|
|
|
|
|
Limitations:
|
|
|
|
These vectors must be PODs because they are stored in unions.
|
|
(http://en.wikipedia.org/wiki/Plain_old_data_structures).
|
|
As long as we use C++03, we cannot have constructors nor
|
|
destructors in classes that are stored in unions. */
|
|
|
|
template<typename T>
|
|
struct vec<T, va_heap, vl_ptr>
|
|
{
|
|
public:
|
|
/* Memory allocation and deallocation for the embedded vector.
|
|
Needed because we cannot have proper ctors/dtors defined. */
|
|
void create (unsigned nelems CXX_MEM_STAT_INFO);
|
|
void release (void);
|
|
|
|
/* Vector operations. */
|
|
bool exists (void) const
|
|
{ return m_vec != NULL; }
|
|
|
|
bool is_empty (void) const
|
|
{ return m_vec ? m_vec->is_empty () : true; }
|
|
|
|
unsigned length (void) const
|
|
{ return m_vec ? m_vec->length () : 0; }
|
|
|
|
T *address (void)
|
|
{ return m_vec ? m_vec->m_vecdata : NULL; }
|
|
|
|
const T *address (void) const
|
|
{ return m_vec ? m_vec->m_vecdata : NULL; }
|
|
|
|
T *begin () { return address (); }
|
|
const T *begin () const { return address (); }
|
|
T *end () { return begin () + length (); }
|
|
const T *end () const { return begin () + length (); }
|
|
const T &operator[] (unsigned ix) const
|
|
{ return (*m_vec)[ix]; }
|
|
|
|
bool operator!=(const vec &other) const
|
|
{ return !(*this == other); }
|
|
|
|
bool operator==(const vec &other) const
|
|
{ return address () == other.address (); }
|
|
|
|
T &operator[] (unsigned ix)
|
|
{ return (*m_vec)[ix]; }
|
|
|
|
T &last (void)
|
|
{ return m_vec->last (); }
|
|
|
|
bool space (int nelems) const
|
|
{ return m_vec ? m_vec->space (nelems) : nelems == 0; }
|
|
|
|
bool iterate (unsigned ix, T *p) const;
|
|
bool iterate (unsigned ix, T **p) const;
|
|
vec copy (ALONE_CXX_MEM_STAT_INFO) const;
|
|
bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
|
|
bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
|
|
void splice (const vec &);
|
|
void safe_splice (const vec & CXX_MEM_STAT_INFO);
|
|
T *quick_push (const T &);
|
|
T *safe_push (const T &CXX_MEM_STAT_INFO);
|
|
T &pop (void);
|
|
void truncate (unsigned);
|
|
void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
|
|
void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
|
|
void quick_grow (unsigned);
|
|
void quick_grow_cleared (unsigned);
|
|
void quick_insert (unsigned, const T &);
|
|
void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
|
|
void ordered_remove (unsigned);
|
|
void unordered_remove (unsigned);
|
|
void block_remove (unsigned, unsigned);
|
|
void qsort (int (*) (const void *, const void *));
|
|
void sort (int (*) (const void *, const void *, void *), void *);
|
|
T *bsearch (const void *key, int (*compar)(const void *, const void *));
|
|
T *bsearch (const void *key,
|
|
int (*compar)(const void *, const void *, void *), void *);
|
|
unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
|
|
bool contains (const T &search) const;
|
|
void reverse (void);
|
|
|
|
bool using_auto_storage () const;
|
|
|
|
/* FIXME - This field should be private, but we need to cater to
|
|
compilers that have stricter notions of PODness for types. */
|
|
vec<T, va_heap, vl_embed> *m_vec;
|
|
};
|
|
|
|
|
|
/* auto_vec is a subclass of vec that automatically manages creating and
|
|
releasing the internal vector. If N is non zero then it has N elements of
|
|
internal storage. The default is no internal storage, and you probably only
|
|
want to ask for internal storage for vectors on the stack because if the
|
|
size of the vector is larger than the internal storage that space is wasted.
|
|
*/
|
|
template<typename T, size_t N = 0>
|
|
class auto_vec : public vec<T, va_heap>
|
|
{
|
|
public:
|
|
auto_vec ()
|
|
{
|
|
m_auto.embedded_init (MAX (N, 2), 0, 1);
|
|
this->m_vec = &m_auto;
|
|
}
|
|
|
|
auto_vec (size_t s CXX_MEM_STAT_INFO)
|
|
{
|
|
if (s > N)
|
|
{
|
|
this->create (s PASS_MEM_STAT);
|
|
return;
|
|
}
|
|
|
|
m_auto.embedded_init (MAX (N, 2), 0, 1);
|
|
this->m_vec = &m_auto;
|
|
}
|
|
|
|
~auto_vec ()
|
|
{
|
|
this->release ();
|
|
}
|
|
|
|
private:
|
|
vec<T, va_heap, vl_embed> m_auto;
|
|
T m_data[MAX (N - 1, 1)];
|
|
};
|
|
|
|
/* auto_vec is a sub class of vec whose storage is released when it is
|
|
destroyed. */
|
|
template<typename T>
|
|
class auto_vec<T, 0> : public vec<T, va_heap>
|
|
{
|
|
public:
|
|
auto_vec () { this->m_vec = NULL; }
|
|
auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
|
|
~auto_vec () { this->release (); }
|
|
|
|
auto_vec (vec<T, va_heap>&& r)
|
|
{
|
|
gcc_assert (!r.using_auto_storage ());
|
|
this->m_vec = r.m_vec;
|
|
r.m_vec = NULL;
|
|
}
|
|
auto_vec& operator= (vec<T, va_heap>&& r)
|
|
{
|
|
gcc_assert (!r.using_auto_storage ());
|
|
this->release ();
|
|
this->m_vec = r.m_vec;
|
|
r.m_vec = NULL;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
|
|
/* Allocate heap memory for pointer V and create the internal vector
|
|
with space for NELEMS elements. If NELEMS is 0, the internal
|
|
vector is initialized to empty. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
|
|
{
|
|
v = new vec<T>;
|
|
v->create (nelems PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* A subclass of auto_vec <char *> that frees all of its elements on
|
|
deletion. */
|
|
|
|
class auto_string_vec : public auto_vec <char *>
|
|
{
|
|
public:
|
|
~auto_string_vec ();
|
|
};
|
|
|
|
/* A subclass of auto_vec <T *> that deletes all of its elements on
|
|
destruction.
|
|
|
|
This is a crude way for a vec to "own" the objects it points to
|
|
and clean up automatically.
|
|
|
|
For example, no attempt is made to delete elements when an item
|
|
within the vec is overwritten.
|
|
|
|
We can't rely on gnu::unique_ptr within a container,
|
|
since we can't rely on move semantics in C++98. */
|
|
|
|
template <typename T>
|
|
class auto_delete_vec : public auto_vec <T *>
|
|
{
|
|
public:
|
|
auto_delete_vec () {}
|
|
auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
|
|
|
|
~auto_delete_vec ();
|
|
|
|
private:
|
|
DISABLE_COPY_AND_ASSIGN(auto_delete_vec);
|
|
};
|
|
|
|
/* Conditionally allocate heap memory for VEC and its internal vector. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
|
|
{
|
|
if (!vec)
|
|
vec_alloc (vec, nelems PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* Free the heap memory allocated by vector V and set it to NULL. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec_free (vec<T> *&v)
|
|
{
|
|
if (v == NULL)
|
|
return;
|
|
|
|
v->release ();
|
|
delete v;
|
|
v = NULL;
|
|
}
|
|
|
|
|
|
/* Return iteration condition and update PTR to point to the IX'th
|
|
element of this vector. Use this to iterate over the elements of a
|
|
vector as follows,
|
|
|
|
for (ix = 0; v.iterate (ix, &ptr); ix++)
|
|
continue; */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
|
|
{
|
|
if (m_vec)
|
|
return m_vec->iterate (ix, ptr);
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return iteration condition and update *PTR to point to the
|
|
IX'th element of this vector. Use this to iterate over the
|
|
elements of a vector as follows,
|
|
|
|
for (ix = 0; v->iterate (ix, &ptr); ix++)
|
|
continue;
|
|
|
|
This variant is for vectors of objects. */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
|
|
{
|
|
if (m_vec)
|
|
return m_vec->iterate (ix, ptr);
|
|
else
|
|
{
|
|
*ptr = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
/* Convenience macro for forward iteration. */
|
|
#define FOR_EACH_VEC_ELT(V, I, P) \
|
|
for (I = 0; (V).iterate ((I), &(P)); ++(I))
|
|
|
|
#define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
|
|
for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
|
|
|
|
/* Likewise, but start from FROM rather than 0. */
|
|
#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
|
|
for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
|
|
|
|
/* Convenience macro for reverse iteration. */
|
|
#define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
|
|
for (I = (V).length () - 1; \
|
|
(V).iterate ((I), &(P)); \
|
|
(I)--)
|
|
|
|
#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
|
|
for (I = vec_safe_length (V) - 1; \
|
|
vec_safe_iterate ((V), (I), &(P)); \
|
|
(I)--)
|
|
|
|
/* auto_string_vec's dtor, freeing all contained strings, automatically
|
|
chaining up to ~auto_vec <char *>, which frees the internal buffer. */
|
|
|
|
inline
|
|
auto_string_vec::~auto_string_vec ()
|
|
{
|
|
int i;
|
|
char *str;
|
|
FOR_EACH_VEC_ELT (*this, i, str)
|
|
free (str);
|
|
}
|
|
|
|
/* auto_delete_vec's dtor, deleting all contained items, automatically
|
|
chaining up to ~auto_vec <T*>, which frees the internal buffer. */
|
|
|
|
template <typename T>
|
|
inline
|
|
auto_delete_vec<T>::~auto_delete_vec ()
|
|
{
|
|
int i;
|
|
T *item;
|
|
FOR_EACH_VEC_ELT (*this, i, item)
|
|
delete item;
|
|
}
|
|
|
|
|
|
/* Return a copy of this vector. */
|
|
|
|
template<typename T>
|
|
inline vec<T, va_heap, vl_ptr>
|
|
vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
|
|
{
|
|
vec<T, va_heap, vl_ptr> new_vec = vNULL;
|
|
if (length ())
|
|
new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
|
|
return new_vec;
|
|
}
|
|
|
|
|
|
/* Ensure that the vector has at least RESERVE slots available (if
|
|
EXACT is false), or exactly RESERVE slots available (if EXACT is
|
|
true).
|
|
|
|
This may create additional headroom if EXACT is false.
|
|
|
|
Note that this can cause the embedded vector to be reallocated.
|
|
Returns true iff reallocation actually occurred. */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
|
|
{
|
|
if (space (nelems))
|
|
return false;
|
|
|
|
/* For now play a game with va_heap::reserve to hide our auto storage if any,
|
|
this is necessary because it doesn't have enough information to know the
|
|
embedded vector is in auto storage, and so should not be freed. */
|
|
vec<T, va_heap, vl_embed> *oldvec = m_vec;
|
|
unsigned int oldsize = 0;
|
|
bool handle_auto_vec = m_vec && using_auto_storage ();
|
|
if (handle_auto_vec)
|
|
{
|
|
m_vec = NULL;
|
|
oldsize = oldvec->length ();
|
|
nelems += oldsize;
|
|
}
|
|
|
|
va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
|
|
if (handle_auto_vec)
|
|
{
|
|
vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
|
|
m_vec->m_vecpfx.m_num = oldsize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Ensure that this vector has exactly NELEMS slots available. This
|
|
will not create additional headroom. Note this can cause the
|
|
embedded vector to be reallocated. Returns true iff reallocation
|
|
actually occurred. */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
|
|
{
|
|
return reserve (nelems, true PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* Create the internal vector and reserve NELEMS for it. This is
|
|
exactly like vec::reserve, but the internal vector is
|
|
unconditionally allocated from scratch. The old one, if it
|
|
existed, is lost. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
|
|
{
|
|
m_vec = NULL;
|
|
if (nelems > 0)
|
|
reserve_exact (nelems PASS_MEM_STAT);
|
|
}
|
|
|
|
|
|
/* Free the memory occupied by the embedded vector. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::release (void)
|
|
{
|
|
if (!m_vec)
|
|
return;
|
|
|
|
if (using_auto_storage ())
|
|
{
|
|
m_vec->m_vecpfx.m_num = 0;
|
|
return;
|
|
}
|
|
|
|
va_heap::release (m_vec);
|
|
}
|
|
|
|
/* Copy the elements from SRC to the end of this vector as if by memcpy.
|
|
SRC and this vector must be allocated with the same memory
|
|
allocation mechanism. This vector is assumed to have sufficient
|
|
headroom available. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
|
|
{
|
|
if (src.length ())
|
|
m_vec->splice (*(src.m_vec));
|
|
}
|
|
|
|
|
|
/* Copy the elements in SRC to the end of this vector as if by memcpy.
|
|
SRC and this vector must be allocated with the same mechanism.
|
|
If there is not enough headroom in this vector, it will be reallocated
|
|
as needed. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
|
|
MEM_STAT_DECL)
|
|
{
|
|
if (src.length ())
|
|
{
|
|
reserve_exact (src.length ());
|
|
splice (src);
|
|
}
|
|
}
|
|
|
|
|
|
/* Push OBJ (a new element) onto the end of the vector. There must be
|
|
sufficient space in the vector. Return a pointer to the slot
|
|
where OBJ was inserted. */
|
|
|
|
template<typename T>
|
|
inline T *
|
|
vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
|
|
{
|
|
return m_vec->quick_push (obj);
|
|
}
|
|
|
|
|
|
/* Push a new element OBJ onto the end of this vector. Reallocates
|
|
the embedded vector, if needed. Return a pointer to the slot where
|
|
OBJ was inserted. */
|
|
|
|
template<typename T>
|
|
inline T *
|
|
vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
|
|
{
|
|
reserve (1, false PASS_MEM_STAT);
|
|
return quick_push (obj);
|
|
}
|
|
|
|
|
|
/* Pop and return the last element off the end of the vector. */
|
|
|
|
template<typename T>
|
|
inline T &
|
|
vec<T, va_heap, vl_ptr>::pop (void)
|
|
{
|
|
return m_vec->pop ();
|
|
}
|
|
|
|
|
|
/* Set the length of the vector to LEN. The new length must be less
|
|
than or equal to the current length. This is an O(1) operation. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::truncate (unsigned size)
|
|
{
|
|
if (m_vec)
|
|
m_vec->truncate (size);
|
|
else
|
|
gcc_checking_assert (size == 0);
|
|
}
|
|
|
|
|
|
/* Grow the vector to a specific length. LEN must be as long or
|
|
longer than the current length. The new elements are
|
|
uninitialized. Reallocate the internal vector, if needed. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
|
|
{
|
|
unsigned oldlen = length ();
|
|
gcc_checking_assert (oldlen <= len);
|
|
reserve (len - oldlen, exact PASS_MEM_STAT);
|
|
if (m_vec)
|
|
m_vec->quick_grow (len);
|
|
else
|
|
gcc_checking_assert (len == 0);
|
|
}
|
|
|
|
|
|
/* Grow the embedded vector to a specific length. LEN must be as
|
|
long or longer than the current length. The new elements are
|
|
initialized to zero. Reallocate the internal vector, if needed. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
|
|
MEM_STAT_DECL)
|
|
{
|
|
unsigned oldlen = length ();
|
|
size_t growby = len - oldlen;
|
|
safe_grow (len, exact PASS_MEM_STAT);
|
|
if (growby != 0)
|
|
vec_default_construct (address () + oldlen, growby);
|
|
}
|
|
|
|
|
|
/* Same as vec::safe_grow but without reallocation of the internal vector.
|
|
If the vector cannot be extended, a runtime assertion will be triggered. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
|
|
{
|
|
gcc_checking_assert (m_vec);
|
|
m_vec->quick_grow (len);
|
|
}
|
|
|
|
|
|
/* Same as vec::quick_grow_cleared but without reallocation of the
|
|
internal vector. If the vector cannot be extended, a runtime
|
|
assertion will be triggered. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
|
|
{
|
|
gcc_checking_assert (m_vec);
|
|
m_vec->quick_grow_cleared (len);
|
|
}
|
|
|
|
|
|
/* Insert an element, OBJ, at the IXth position of this vector. There
|
|
must be sufficient space. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
|
|
{
|
|
m_vec->quick_insert (ix, obj);
|
|
}
|
|
|
|
|
|
/* Insert an element, OBJ, at the IXth position of the vector.
|
|
Reallocate the embedded vector, if necessary. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
|
|
{
|
|
reserve (1, false PASS_MEM_STAT);
|
|
quick_insert (ix, obj);
|
|
}
|
|
|
|
|
|
/* Remove an element from the IXth position of this vector. Ordering of
|
|
remaining elements is preserved. This is an O(N) operation due to
|
|
a memmove. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
|
|
{
|
|
m_vec->ordered_remove (ix);
|
|
}
|
|
|
|
|
|
/* Remove an element from the IXth position of this vector. Ordering
|
|
of remaining elements is destroyed. This is an O(1) operation. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
|
|
{
|
|
m_vec->unordered_remove (ix);
|
|
}
|
|
|
|
|
|
/* Remove LEN elements starting at the IXth. Ordering is retained.
|
|
This is an O(N) operation due to memmove. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
|
|
{
|
|
m_vec->block_remove (ix, len);
|
|
}
|
|
|
|
|
|
/* Sort the contents of this vector with qsort. CMP is the comparison
|
|
function to pass to qsort. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
|
|
{
|
|
if (m_vec)
|
|
m_vec->qsort (cmp);
|
|
}
|
|
|
|
/* Sort the contents of this vector with qsort. CMP is the comparison
|
|
function to pass to qsort. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
|
|
void *), void *data)
|
|
{
|
|
if (m_vec)
|
|
m_vec->sort (cmp, data);
|
|
}
|
|
|
|
|
|
/* Search the contents of the sorted vector with a binary search.
|
|
CMP is the comparison function to pass to bsearch. */
|
|
|
|
template<typename T>
|
|
inline T *
|
|
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
|
|
int (*cmp) (const void *, const void *))
|
|
{
|
|
if (m_vec)
|
|
return m_vec->bsearch (key, cmp);
|
|
return NULL;
|
|
}
|
|
|
|
/* Search the contents of the sorted vector with a binary search.
|
|
CMP is the comparison function to pass to bsearch. */
|
|
|
|
template<typename T>
|
|
inline T *
|
|
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
|
|
int (*cmp) (const void *, const void *,
|
|
void *), void *data)
|
|
{
|
|
if (m_vec)
|
|
return m_vec->bsearch (key, cmp, data);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find and return the first position in which OBJ could be inserted
|
|
without changing the ordering of this vector. LESSTHAN is a
|
|
function that returns true if the first argument is strictly less
|
|
than the second. */
|
|
|
|
template<typename T>
|
|
inline unsigned
|
|
vec<T, va_heap, vl_ptr>::lower_bound (T obj,
|
|
bool (*lessthan)(const T &, const T &))
|
|
const
|
|
{
|
|
return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
|
|
}
|
|
|
|
/* Return true if SEARCH is an element of V. Note that this is O(N) in the
|
|
size of the vector and so should be used with care. */
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::contains (const T &search) const
|
|
{
|
|
return m_vec ? m_vec->contains (search) : false;
|
|
}
|
|
|
|
/* Reverse content of the vector. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
vec<T, va_heap, vl_ptr>::reverse (void)
|
|
{
|
|
unsigned l = length ();
|
|
T *ptr = address ();
|
|
|
|
for (unsigned i = 0; i < l / 2; i++)
|
|
std::swap (ptr[i], ptr[l - i - 1]);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool
|
|
vec<T, va_heap, vl_ptr>::using_auto_storage () const
|
|
{
|
|
return m_vec->m_vecpfx.m_using_auto_storage;
|
|
}
|
|
|
|
/* Release VEC and call release of all element vectors. */
|
|
|
|
template<typename T>
|
|
inline void
|
|
release_vec_vec (vec<vec<T> > &vec)
|
|
{
|
|
for (unsigned i = 0; i < vec.length (); i++)
|
|
vec[i].release ();
|
|
|
|
vec.release ();
|
|
}
|
|
|
|
// Provide a subset of the std::span functionality. (We can't use std::span
|
|
// itself because it's a C++20 feature.)
|
|
//
|
|
// In addition, provide an invalid value that is distinct from all valid
|
|
// sequences (including the empty sequence). This can be used to return
|
|
// failure without having to use std::optional.
|
|
//
|
|
// There is no operator bool because it would be ambiguous whether it is
|
|
// testing for a valid value or an empty sequence.
|
|
template<typename T>
|
|
class array_slice
|
|
{
|
|
template<typename OtherT> friend class array_slice;
|
|
|
|
public:
|
|
using value_type = T;
|
|
using iterator = T *;
|
|
using const_iterator = const T *;
|
|
|
|
array_slice () : m_base (nullptr), m_size (0) {}
|
|
|
|
template<typename OtherT>
|
|
array_slice (array_slice<OtherT> other)
|
|
: m_base (other.m_base), m_size (other.m_size) {}
|
|
|
|
array_slice (iterator base, unsigned int size)
|
|
: m_base (base), m_size (size) {}
|
|
|
|
template<size_t N>
|
|
array_slice (T (&array)[N]) : m_base (array), m_size (N) {}
|
|
|
|
template<typename OtherT>
|
|
array_slice (const vec<OtherT> &v)
|
|
: m_base (v.address ()), m_size (v.length ()) {}
|
|
|
|
iterator begin () { return m_base; }
|
|
iterator end () { return m_base + m_size; }
|
|
|
|
const_iterator begin () const { return m_base; }
|
|
const_iterator end () const { return m_base + m_size; }
|
|
|
|
value_type &front ();
|
|
value_type &back ();
|
|
value_type &operator[] (unsigned int i);
|
|
|
|
const value_type &front () const;
|
|
const value_type &back () const;
|
|
const value_type &operator[] (unsigned int i) const;
|
|
|
|
size_t size () const { return m_size; }
|
|
size_t size_bytes () const { return m_size * sizeof (T); }
|
|
bool empty () const { return m_size == 0; }
|
|
|
|
// An invalid array_slice that represents a failed operation. This is
|
|
// distinct from an empty slice, which is a valid result in some contexts.
|
|
static array_slice invalid () { return { nullptr, ~0U }; }
|
|
|
|
// True if the array is valid, false if it is an array like INVALID.
|
|
bool is_valid () const { return m_base || m_size == 0; }
|
|
|
|
private:
|
|
iterator m_base;
|
|
unsigned int m_size;
|
|
};
|
|
|
|
template<typename T>
|
|
inline typename array_slice<T>::value_type &
|
|
array_slice<T>::front ()
|
|
{
|
|
gcc_checking_assert (m_size);
|
|
return m_base[0];
|
|
}
|
|
|
|
template<typename T>
|
|
inline const typename array_slice<T>::value_type &
|
|
array_slice<T>::front () const
|
|
{
|
|
gcc_checking_assert (m_size);
|
|
return m_base[0];
|
|
}
|
|
|
|
template<typename T>
|
|
inline typename array_slice<T>::value_type &
|
|
array_slice<T>::back ()
|
|
{
|
|
gcc_checking_assert (m_size);
|
|
return m_base[m_size - 1];
|
|
}
|
|
|
|
template<typename T>
|
|
inline const typename array_slice<T>::value_type &
|
|
array_slice<T>::back () const
|
|
{
|
|
gcc_checking_assert (m_size);
|
|
return m_base[m_size - 1];
|
|
}
|
|
|
|
template<typename T>
|
|
inline typename array_slice<T>::value_type &
|
|
array_slice<T>::operator[] (unsigned int i)
|
|
{
|
|
gcc_checking_assert (i < m_size);
|
|
return m_base[i];
|
|
}
|
|
|
|
template<typename T>
|
|
inline const typename array_slice<T>::value_type &
|
|
array_slice<T>::operator[] (unsigned int i) const
|
|
{
|
|
gcc_checking_assert (i < m_size);
|
|
return m_base[i];
|
|
}
|
|
|
|
template<typename T>
|
|
array_slice<T>
|
|
make_array_slice (T *base, unsigned int size)
|
|
{
|
|
return array_slice<T> (base, size);
|
|
}
|
|
|
|
#if (GCC_VERSION >= 3000)
|
|
# pragma GCC poison m_vec m_vecpfx m_vecdata
|
|
#endif
|
|
|
|
#endif // GCC_VEC_H
|