d11bcbe166
This avoids (again) the C++ pitfall of pushing a reference to sth being reallocated. 2021-04-07 Richard Biener <rguenther@suse.de> PR tree-optimization/99947 * tree-vect-loop.c (vectorizable_induction): Pre-allocate steps vector to avoid pushing elements from the reallocated vector. * gcc.dg/torture/pr99947.c: New testcase.
10071 lines
340 KiB
C
10071 lines
340 KiB
C
/* Loop Vectorization
|
|
Copyright (C) 2003-2021 Free Software Foundation, Inc.
|
|
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
|
|
Ira Rosen <irar@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "cfganal.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-ssa-loop-ivopts.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-ssa-loop-niter.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "gimple-fold.h"
|
|
#include "cgraph.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-if-conv.h"
|
|
#include "internal-fn.h"
|
|
#include "tree-vector-builder.h"
|
|
#include "vec-perm-indices.h"
|
|
#include "tree-eh.h"
|
|
|
|
/* Loop Vectorization Pass.
|
|
|
|
This pass tries to vectorize loops.
|
|
|
|
For example, the vectorizer transforms the following simple loop:
|
|
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
as if it was manually vectorized by rewriting the source code into:
|
|
|
|
typedef int __attribute__((mode(V8HI))) v8hi;
|
|
short a[N]; short b[N]; short c[N]; int i;
|
|
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
|
|
v8hi va, vb, vc;
|
|
|
|
for (i=0; i<N/8; i++){
|
|
vb = pb[i];
|
|
vc = pc[i];
|
|
va = vb + vc;
|
|
pa[i] = va;
|
|
}
|
|
|
|
The main entry to this pass is vectorize_loops(), in which
|
|
the vectorizer applies a set of analyses on a given set of loops,
|
|
followed by the actual vectorization transformation for the loops that
|
|
had successfully passed the analysis phase.
|
|
Throughout this pass we make a distinction between two types of
|
|
data: scalars (which are represented by SSA_NAMES), and memory references
|
|
("data-refs"). These two types of data require different handling both
|
|
during analysis and transformation. The types of data-refs that the
|
|
vectorizer currently supports are ARRAY_REFS which base is an array DECL
|
|
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
|
|
accesses are required to have a simple (consecutive) access pattern.
|
|
|
|
Analysis phase:
|
|
===============
|
|
The driver for the analysis phase is vect_analyze_loop().
|
|
It applies a set of analyses, some of which rely on the scalar evolution
|
|
analyzer (scev) developed by Sebastian Pop.
|
|
|
|
During the analysis phase the vectorizer records some information
|
|
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
|
|
loop, as well as general information about the loop as a whole, which is
|
|
recorded in a "loop_vec_info" struct attached to each loop.
|
|
|
|
Transformation phase:
|
|
=====================
|
|
The loop transformation phase scans all the stmts in the loop, and
|
|
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
|
|
the loop that needs to be vectorized. It inserts the vector code sequence
|
|
just before the scalar stmt S, and records a pointer to the vector code
|
|
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
|
|
attached to S). This pointer will be used for the vectorization of following
|
|
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
|
|
otherwise, we rely on dead code elimination for removing it.
|
|
|
|
For example, say stmt S1 was vectorized into stmt VS1:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
S2: a = b;
|
|
|
|
To vectorize stmt S2, the vectorizer first finds the stmt that defines
|
|
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
|
|
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
|
|
resulting sequence would be:
|
|
|
|
VS1: vb = px[i];
|
|
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
|
|
VS2: va = vb;
|
|
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
|
|
|
|
Operands that are not SSA_NAMEs, are data-refs that appear in
|
|
load/store operations (like 'x[i]' in S1), and are handled differently.
|
|
|
|
Target modeling:
|
|
=================
|
|
Currently the only target specific information that is used is the
|
|
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
|
|
Targets that can support different sizes of vectors, for now will need
|
|
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
|
|
flexibility will be added in the future.
|
|
|
|
Since we only vectorize operations which vector form can be
|
|
expressed using existing tree codes, to verify that an operation is
|
|
supported, the vectorizer checks the relevant optab at the relevant
|
|
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
|
|
the value found is CODE_FOR_nothing, then there's no target support, and
|
|
we can't vectorize the stmt.
|
|
|
|
For additional information on this project see:
|
|
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
|
|
*/
|
|
|
|
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
|
|
static stmt_vec_info vect_is_simple_reduction (loop_vec_info, stmt_vec_info,
|
|
bool *, bool *);
|
|
|
|
/* Subroutine of vect_determine_vf_for_stmt that handles only one
|
|
statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
|
|
may already be set for general statements (not just data refs). */
|
|
|
|
static opt_result
|
|
vect_determine_vf_for_stmt_1 (vec_info *vinfo, stmt_vec_info stmt_info,
|
|
bool vectype_maybe_set_p,
|
|
poly_uint64 *vf)
|
|
{
|
|
gimple *stmt = stmt_info->stmt;
|
|
|
|
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
|| gimple_clobber_p (stmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
|
|
return opt_result::success ();
|
|
}
|
|
|
|
tree stmt_vectype, nunits_vectype;
|
|
opt_result res = vect_get_vector_types_for_stmt (vinfo, stmt_info,
|
|
&stmt_vectype,
|
|
&nunits_vectype);
|
|
if (!res)
|
|
return res;
|
|
|
|
if (stmt_vectype)
|
|
{
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
/* The only case when a vectype had been already set is for stmts
|
|
that contain a data ref, or for "pattern-stmts" (stmts generated
|
|
by the vectorizer to represent/replace a certain idiom). */
|
|
gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
|
|
|| vectype_maybe_set_p)
|
|
&& STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
|
|
else
|
|
STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
|
|
}
|
|
|
|
if (nunits_vectype)
|
|
vect_update_max_nunits (vf, nunits_vectype);
|
|
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Subroutine of vect_determine_vectorization_factor. Set the vector
|
|
types of STMT_INFO and all attached pattern statements and update
|
|
the vectorization factor VF accordingly. Return true on success
|
|
or false if something prevented vectorization. */
|
|
|
|
static opt_result
|
|
vect_determine_vf_for_stmt (vec_info *vinfo,
|
|
stmt_vec_info stmt_info, poly_uint64 *vf)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G",
|
|
stmt_info->stmt);
|
|
opt_result res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, false, vf);
|
|
if (!res)
|
|
return res;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
|
|
&& STMT_VINFO_RELATED_STMT (stmt_info))
|
|
{
|
|
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
|
|
/* If a pattern statement has def stmts, analyze them too. */
|
|
for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern def stmt: %G",
|
|
def_stmt_info->stmt);
|
|
res = vect_determine_vf_for_stmt_1 (vinfo, def_stmt_info, true, vf);
|
|
if (!res)
|
|
return res;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"==> examining pattern statement: %G",
|
|
stmt_info->stmt);
|
|
res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, true, vf);
|
|
if (!res)
|
|
return res;
|
|
}
|
|
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Function vect_determine_vectorization_factor
|
|
|
|
Determine the vectorization factor (VF). VF is the number of data elements
|
|
that are operated upon in parallel in a single iteration of the vectorized
|
|
loop. For example, when vectorizing a loop that operates on 4byte elements,
|
|
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
|
|
elements can fit in a single vector register.
|
|
|
|
We currently support vectorization of loops in which all types operated upon
|
|
are of the same size. Therefore this function currently sets VF according to
|
|
the size of the types operated upon, and fails if there are multiple sizes
|
|
in the loop.
|
|
|
|
VF is also the factor by which the loop iterations are strip-mined, e.g.:
|
|
original loop:
|
|
for (i=0; i<N; i++){
|
|
a[i] = b[i] + c[i];
|
|
}
|
|
|
|
vectorized loop:
|
|
for (i=0; i<N; i+=VF){
|
|
a[i:VF] = b[i:VF] + c[i:VF];
|
|
}
|
|
*/
|
|
|
|
static opt_result
|
|
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
unsigned nbbs = loop->num_nodes;
|
|
poly_uint64 vectorization_factor = 1;
|
|
tree scalar_type = NULL_TREE;
|
|
gphi *phi;
|
|
tree vectype;
|
|
stmt_vec_info stmt_info;
|
|
unsigned i;
|
|
|
|
DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
phi = si.phi ();
|
|
stmt_info = loop_vinfo->lookup_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: %G",
|
|
phi);
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
|
{
|
|
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
|
|
scalar_type = TREE_TYPE (PHI_RESULT (phi));
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"get vectype for scalar type: %T\n",
|
|
scalar_type);
|
|
|
|
vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
|
|
if (!vectype)
|
|
return opt_result::failure_at (phi,
|
|
"not vectorized: unsupported "
|
|
"data-type %T\n",
|
|
scalar_type);
|
|
STMT_VINFO_VECTYPE (stmt_info) = vectype;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n",
|
|
vectype);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
|
|
dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
vect_update_max_nunits (&vectorization_factor, vectype);
|
|
}
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
if (is_gimple_debug (gsi_stmt (si)))
|
|
continue;
|
|
stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
|
|
opt_result res
|
|
= vect_determine_vf_for_stmt (loop_vinfo,
|
|
stmt_info, &vectorization_factor);
|
|
if (!res)
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/* TODO: Analyze cost. Decide if worth while to vectorize. */
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
if (known_le (vectorization_factor, 1U))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: unsupported data-type\n");
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
return opt_result::success ();
|
|
}
|
|
|
|
|
|
/* Function vect_is_simple_iv_evolution.
|
|
|
|
FORNOW: A simple evolution of an induction variables in the loop is
|
|
considered a polynomial evolution. */
|
|
|
|
static bool
|
|
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
|
|
tree * step)
|
|
{
|
|
tree init_expr;
|
|
tree step_expr;
|
|
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
|
|
basic_block bb;
|
|
|
|
/* When there is no evolution in this loop, the evolution function
|
|
is not "simple". */
|
|
if (evolution_part == NULL_TREE)
|
|
return false;
|
|
|
|
/* When the evolution is a polynomial of degree >= 2
|
|
the evolution function is not "simple". */
|
|
if (tree_is_chrec (evolution_part))
|
|
return false;
|
|
|
|
step_expr = evolution_part;
|
|
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "step: %T, init: %T\n",
|
|
step_expr, init_expr);
|
|
|
|
*init = init_expr;
|
|
*step = step_expr;
|
|
|
|
if (TREE_CODE (step_expr) != INTEGER_CST
|
|
&& (TREE_CODE (step_expr) != SSA_NAME
|
|
|| ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
|
|
&& flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
|
|
|| (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
|
|
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
|
|
|| !flag_associative_math)))
|
|
&& (TREE_CODE (step_expr) != REAL_CST
|
|
|| !flag_associative_math))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"step unknown.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if PHI, described by STMT_INFO, is the inner PHI in
|
|
what we are assuming is a double reduction. For example, given
|
|
a structure like this:
|
|
|
|
outer1:
|
|
x_1 = PHI <x_4(outer2), ...>;
|
|
...
|
|
|
|
inner:
|
|
x_2 = PHI <x_1(outer1), ...>;
|
|
...
|
|
x_3 = ...;
|
|
...
|
|
|
|
outer2:
|
|
x_4 = PHI <x_3(inner)>;
|
|
...
|
|
|
|
outer loop analysis would treat x_1 as a double reduction phi and
|
|
this function would then return true for x_2. */
|
|
|
|
static bool
|
|
vect_inner_phi_in_double_reduction_p (loop_vec_info loop_vinfo, gphi *phi)
|
|
{
|
|
use_operand_p use_p;
|
|
ssa_op_iter op_iter;
|
|
FOR_EACH_PHI_ARG (use_p, phi, op_iter, SSA_OP_USE)
|
|
if (stmt_vec_info def_info = loop_vinfo->lookup_def (USE_FROM_PTR (use_p)))
|
|
if (STMT_VINFO_DEF_TYPE (def_info) == vect_double_reduction_def)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Function vect_analyze_scalar_cycles_1.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables
|
|
in LOOP. LOOP_VINFO represents the loop that is now being
|
|
considered for vectorization (can be LOOP, or an outer-loop
|
|
enclosing LOOP). */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, class loop *loop)
|
|
{
|
|
basic_block bb = loop->header;
|
|
tree init, step;
|
|
auto_vec<stmt_vec_info, 64> worklist;
|
|
gphi_iterator gsi;
|
|
bool double_reduc, reduc_chain;
|
|
|
|
DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
|
|
|
|
/* First - identify all inductions. Reduction detection assumes that all the
|
|
inductions have been identified, therefore, this order must not be
|
|
changed. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
tree access_fn = NULL;
|
|
tree def = PHI_RESULT (phi);
|
|
stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
|
|
|
|
/* Skip virtual phi's. The data dependences that are associated with
|
|
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
|
|
if (virtual_operand_p (def))
|
|
continue;
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
|
|
|
|
/* Analyze the evolution function. */
|
|
access_fn = analyze_scalar_evolution (loop, def);
|
|
if (access_fn)
|
|
{
|
|
STRIP_NOPS (access_fn);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Access function of PHI: %T\n", access_fn);
|
|
STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
|
|
= initial_condition_in_loop_num (access_fn, loop->num);
|
|
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
|
|
= evolution_part_in_loop_num (access_fn, loop->num);
|
|
}
|
|
|
|
if (!access_fn
|
|
|| vect_inner_phi_in_double_reduction_p (loop_vinfo, phi)
|
|
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
|
|
|| (LOOP_VINFO_LOOP (loop_vinfo) != loop
|
|
&& TREE_CODE (step) != INTEGER_CST))
|
|
{
|
|
worklist.safe_push (stmt_vinfo);
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
|
|
!= NULL_TREE);
|
|
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
|
|
}
|
|
|
|
|
|
/* Second - identify all reductions and nested cycles. */
|
|
while (worklist.length () > 0)
|
|
{
|
|
stmt_vec_info stmt_vinfo = worklist.pop ();
|
|
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
|
|
tree def = PHI_RESULT (phi);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
|
|
|
|
gcc_assert (!virtual_operand_p (def)
|
|
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
|
|
|
|
stmt_vec_info reduc_stmt_info
|
|
= vect_is_simple_reduction (loop_vinfo, stmt_vinfo, &double_reduc,
|
|
&reduc_chain);
|
|
if (reduc_stmt_info)
|
|
{
|
|
STMT_VINFO_REDUC_DEF (stmt_vinfo) = reduc_stmt_info;
|
|
STMT_VINFO_REDUC_DEF (reduc_stmt_info) = stmt_vinfo;
|
|
if (double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected double reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_double_reduction_def;
|
|
}
|
|
else
|
|
{
|
|
if (loop != LOOP_VINFO_LOOP (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected vectorizable nested cycle.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Detected reduction.\n");
|
|
|
|
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
|
|
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_reduction_def;
|
|
/* Store the reduction cycles for possible vectorization in
|
|
loop-aware SLP if it was not detected as reduction
|
|
chain. */
|
|
if (! reduc_chain)
|
|
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push
|
|
(reduc_stmt_info);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Unknown def-use cycle pattern.\n");
|
|
}
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_scalar_cycles.
|
|
|
|
Examine the cross iteration def-use cycles of scalar variables, by
|
|
analyzing the loop-header PHIs of scalar variables. Classify each
|
|
cycle as one of the following: invariant, induction, reduction, unknown.
|
|
We do that for the loop represented by LOOP_VINFO, and also to its
|
|
inner-loop, if exists.
|
|
Examples for scalar cycles:
|
|
|
|
Example1: reduction:
|
|
|
|
loop1:
|
|
for (i=0; i<N; i++)
|
|
sum += a[i];
|
|
|
|
Example2: induction:
|
|
|
|
loop2:
|
|
for (i=0; i<N; i++)
|
|
a[i] = i; */
|
|
|
|
static void
|
|
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
|
|
|
|
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
|
|
Reductions in such inner-loop therefore have different properties than
|
|
the reductions in the nest that gets vectorized:
|
|
1. When vectorized, they are executed in the same order as in the original
|
|
scalar loop, so we can't change the order of computation when
|
|
vectorizing them.
|
|
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
|
|
current checks are too strict. */
|
|
|
|
if (loop->inner)
|
|
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
|
|
}
|
|
|
|
/* Transfer group and reduction information from STMT_INFO to its
|
|
pattern stmt. */
|
|
|
|
static void
|
|
vect_fixup_reduc_chain (stmt_vec_info stmt_info)
|
|
{
|
|
stmt_vec_info firstp = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
stmt_vec_info stmtp;
|
|
gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (firstp)
|
|
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info));
|
|
REDUC_GROUP_SIZE (firstp) = REDUC_GROUP_SIZE (stmt_info);
|
|
do
|
|
{
|
|
stmtp = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
gcc_checking_assert (STMT_VINFO_DEF_TYPE (stmtp)
|
|
== STMT_VINFO_DEF_TYPE (stmt_info));
|
|
REDUC_GROUP_FIRST_ELEMENT (stmtp) = firstp;
|
|
stmt_info = REDUC_GROUP_NEXT_ELEMENT (stmt_info);
|
|
if (stmt_info)
|
|
REDUC_GROUP_NEXT_ELEMENT (stmtp)
|
|
= STMT_VINFO_RELATED_STMT (stmt_info);
|
|
}
|
|
while (stmt_info);
|
|
}
|
|
|
|
/* Fixup scalar cycles that now have their stmts detected as patterns. */
|
|
|
|
static void
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
|
|
{
|
|
stmt_vec_info first;
|
|
unsigned i;
|
|
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
|
|
{
|
|
stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (first);
|
|
while (next)
|
|
{
|
|
if ((STMT_VINFO_IN_PATTERN_P (next)
|
|
!= STMT_VINFO_IN_PATTERN_P (first))
|
|
|| STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (next)) == -1)
|
|
break;
|
|
next = REDUC_GROUP_NEXT_ELEMENT (next);
|
|
}
|
|
/* If all reduction chain members are well-formed patterns adjust
|
|
the group to group the pattern stmts instead. */
|
|
if (! next
|
|
&& STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (first)) != -1)
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (first))
|
|
{
|
|
vect_fixup_reduc_chain (first);
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
|
|
= STMT_VINFO_RELATED_STMT (first);
|
|
}
|
|
}
|
|
/* If not all stmt in the chain are patterns or if we failed
|
|
to update STMT_VINFO_REDUC_IDX dissolve the chain and handle
|
|
it as regular reduction instead. */
|
|
else
|
|
{
|
|
stmt_vec_info vinfo = first;
|
|
stmt_vec_info last = NULL;
|
|
while (vinfo)
|
|
{
|
|
next = REDUC_GROUP_NEXT_ELEMENT (vinfo);
|
|
REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL;
|
|
REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL;
|
|
last = vinfo;
|
|
vinfo = next;
|
|
}
|
|
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize (first))
|
|
= vect_internal_def;
|
|
loop_vinfo->reductions.safe_push (vect_stmt_to_vectorize (last));
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).unordered_remove (i);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function vect_get_loop_niters.
|
|
|
|
Determine how many iterations the loop is executed and place it
|
|
in NUMBER_OF_ITERATIONS. Place the number of latch iterations
|
|
in NUMBER_OF_ITERATIONSM1. Place the condition under which the
|
|
niter information holds in ASSUMPTIONS.
|
|
|
|
Return the loop exit condition. */
|
|
|
|
|
|
static gcond *
|
|
vect_get_loop_niters (class loop *loop, tree *assumptions,
|
|
tree *number_of_iterations, tree *number_of_iterationsm1)
|
|
{
|
|
edge exit = single_exit (loop);
|
|
class tree_niter_desc niter_desc;
|
|
tree niter_assumptions, niter, may_be_zero;
|
|
gcond *cond = get_loop_exit_condition (loop);
|
|
|
|
*assumptions = boolean_true_node;
|
|
*number_of_iterationsm1 = chrec_dont_know;
|
|
*number_of_iterations = chrec_dont_know;
|
|
DUMP_VECT_SCOPE ("get_loop_niters");
|
|
|
|
if (!exit)
|
|
return cond;
|
|
|
|
may_be_zero = NULL_TREE;
|
|
if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
|
|
|| chrec_contains_undetermined (niter_desc.niter))
|
|
return cond;
|
|
|
|
niter_assumptions = niter_desc.assumptions;
|
|
may_be_zero = niter_desc.may_be_zero;
|
|
niter = niter_desc.niter;
|
|
|
|
if (may_be_zero && integer_zerop (may_be_zero))
|
|
may_be_zero = NULL_TREE;
|
|
|
|
if (may_be_zero)
|
|
{
|
|
if (COMPARISON_CLASS_P (may_be_zero))
|
|
{
|
|
/* Try to combine may_be_zero with assumptions, this can simplify
|
|
computation of niter expression. */
|
|
if (niter_assumptions && !integer_nonzerop (niter_assumptions))
|
|
niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
niter_assumptions,
|
|
fold_build1 (TRUTH_NOT_EXPR,
|
|
boolean_type_node,
|
|
may_be_zero));
|
|
else
|
|
niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
|
|
build_int_cst (TREE_TYPE (niter), 0),
|
|
rewrite_to_non_trapping_overflow (niter));
|
|
|
|
may_be_zero = NULL_TREE;
|
|
}
|
|
else if (integer_nonzerop (may_be_zero))
|
|
{
|
|
*number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
|
|
*number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
|
|
return cond;
|
|
}
|
|
else
|
|
return cond;
|
|
}
|
|
|
|
*assumptions = niter_assumptions;
|
|
*number_of_iterationsm1 = niter;
|
|
|
|
/* We want the number of loop header executions which is the number
|
|
of latch executions plus one.
|
|
??? For UINT_MAX latch executions this number overflows to zero
|
|
for loops like do { n++; } while (n != 0); */
|
|
if (niter && !chrec_contains_undetermined (niter))
|
|
niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
|
|
build_int_cst (TREE_TYPE (niter), 1));
|
|
*number_of_iterations = niter;
|
|
|
|
return cond;
|
|
}
|
|
|
|
/* Function bb_in_loop_p
|
|
|
|
Used as predicate for dfs order traversal of the loop bbs. */
|
|
|
|
static bool
|
|
bb_in_loop_p (const_basic_block bb, const void *data)
|
|
{
|
|
const class loop *const loop = (const class loop *)data;
|
|
if (flow_bb_inside_loop_p (loop, bb))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
|
|
stmt_vec_info structs for all the stmts in LOOP_IN. */
|
|
|
|
_loop_vec_info::_loop_vec_info (class loop *loop_in, vec_info_shared *shared)
|
|
: vec_info (vec_info::loop, init_cost (loop_in), shared),
|
|
loop (loop_in),
|
|
bbs (XCNEWVEC (basic_block, loop->num_nodes)),
|
|
num_itersm1 (NULL_TREE),
|
|
num_iters (NULL_TREE),
|
|
num_iters_unchanged (NULL_TREE),
|
|
num_iters_assumptions (NULL_TREE),
|
|
th (0),
|
|
versioning_threshold (0),
|
|
vectorization_factor (0),
|
|
max_vectorization_factor (0),
|
|
mask_skip_niters (NULL_TREE),
|
|
rgroup_compare_type (NULL_TREE),
|
|
simd_if_cond (NULL_TREE),
|
|
unaligned_dr (NULL),
|
|
peeling_for_alignment (0),
|
|
ptr_mask (0),
|
|
ivexpr_map (NULL),
|
|
scan_map (NULL),
|
|
slp_unrolling_factor (1),
|
|
single_scalar_iteration_cost (0),
|
|
vec_outside_cost (0),
|
|
vec_inside_cost (0),
|
|
vectorizable (false),
|
|
can_use_partial_vectors_p (param_vect_partial_vector_usage != 0),
|
|
using_partial_vectors_p (false),
|
|
epil_using_partial_vectors_p (false),
|
|
peeling_for_gaps (false),
|
|
peeling_for_niter (false),
|
|
no_data_dependencies (false),
|
|
has_mask_store (false),
|
|
scalar_loop_scaling (profile_probability::uninitialized ()),
|
|
scalar_loop (NULL),
|
|
orig_loop_info (NULL)
|
|
{
|
|
/* CHECKME: We want to visit all BBs before their successors (except for
|
|
latch blocks, for which this assertion wouldn't hold). In the simple
|
|
case of the loop forms we allow, a dfs order of the BBs would the same
|
|
as reversed postorder traversal, so we are safe. */
|
|
|
|
unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
|
|
bbs, loop->num_nodes, loop);
|
|
gcc_assert (nbbs == loop->num_nodes);
|
|
|
|
for (unsigned int i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
gimple_stmt_iterator si;
|
|
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *phi = gsi_stmt (si);
|
|
gimple_set_uid (phi, 0);
|
|
add_stmt (phi);
|
|
}
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
gimple_set_uid (stmt, 0);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
add_stmt (stmt);
|
|
/* If .GOMP_SIMD_LANE call for the current loop has 3 arguments, the
|
|
third argument is the #pragma omp simd if (x) condition, when 0,
|
|
loop shouldn't be vectorized, when non-zero constant, it should
|
|
be vectorized normally, otherwise versioned with vectorized loop
|
|
done if the condition is non-zero at runtime. */
|
|
if (loop_in->simduid
|
|
&& is_gimple_call (stmt)
|
|
&& gimple_call_internal_p (stmt)
|
|
&& gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
|
|
&& gimple_call_num_args (stmt) >= 3
|
|
&& TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
|
|
&& (loop_in->simduid
|
|
== SSA_NAME_VAR (gimple_call_arg (stmt, 0))))
|
|
{
|
|
tree arg = gimple_call_arg (stmt, 2);
|
|
if (integer_zerop (arg) || TREE_CODE (arg) == SSA_NAME)
|
|
simd_if_cond = arg;
|
|
else
|
|
gcc_assert (integer_nonzerop (arg));
|
|
}
|
|
}
|
|
}
|
|
|
|
epilogue_vinfos.create (6);
|
|
}
|
|
|
|
/* Free all levels of rgroup CONTROLS. */
|
|
|
|
void
|
|
release_vec_loop_controls (vec<rgroup_controls> *controls)
|
|
{
|
|
rgroup_controls *rgc;
|
|
unsigned int i;
|
|
FOR_EACH_VEC_ELT (*controls, i, rgc)
|
|
rgc->controls.release ();
|
|
controls->release ();
|
|
}
|
|
|
|
/* Free all memory used by the _loop_vec_info, as well as all the
|
|
stmt_vec_info structs of all the stmts in the loop. */
|
|
|
|
_loop_vec_info::~_loop_vec_info ()
|
|
{
|
|
free (bbs);
|
|
|
|
release_vec_loop_controls (&masks);
|
|
release_vec_loop_controls (&lens);
|
|
delete ivexpr_map;
|
|
delete scan_map;
|
|
epilogue_vinfos.release ();
|
|
|
|
/* When we release an epiloge vinfo that we do not intend to use
|
|
avoid clearing AUX of the main loop which should continue to
|
|
point to the main loop vinfo since otherwise we'll leak that. */
|
|
if (loop->aux == this)
|
|
loop->aux = NULL;
|
|
}
|
|
|
|
/* Return an invariant or register for EXPR and emit necessary
|
|
computations in the LOOP_VINFO loop preheader. */
|
|
|
|
tree
|
|
cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
|
|
{
|
|
if (is_gimple_reg (expr)
|
|
|| is_gimple_min_invariant (expr))
|
|
return expr;
|
|
|
|
if (! loop_vinfo->ivexpr_map)
|
|
loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
|
|
tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
|
|
if (! cached)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
cached = force_gimple_operand (unshare_expr (expr),
|
|
&stmts, true, NULL_TREE);
|
|
if (stmts)
|
|
{
|
|
edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
|
|
gsi_insert_seq_on_edge_immediate (e, stmts);
|
|
}
|
|
}
|
|
return cached;
|
|
}
|
|
|
|
/* Return true if we can use CMP_TYPE as the comparison type to produce
|
|
all masks required to mask LOOP_VINFO. */
|
|
|
|
static bool
|
|
can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
|
|
{
|
|
rgroup_controls *rgm;
|
|
unsigned int i;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
|
|
if (rgm->type != NULL_TREE
|
|
&& !direct_internal_fn_supported_p (IFN_WHILE_ULT,
|
|
cmp_type, rgm->type,
|
|
OPTIMIZE_FOR_SPEED))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Calculate the maximum number of scalars per iteration for every
|
|
rgroup in LOOP_VINFO. */
|
|
|
|
static unsigned int
|
|
vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int res = 1;
|
|
unsigned int i;
|
|
rgroup_controls *rgm;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
|
|
res = MAX (res, rgm->max_nscalars_per_iter);
|
|
return res;
|
|
}
|
|
|
|
/* Calculate the minimum precision necessary to represent:
|
|
|
|
MAX_NITERS * FACTOR
|
|
|
|
as an unsigned integer, where MAX_NITERS is the maximum number of
|
|
loop header iterations for the original scalar form of LOOP_VINFO. */
|
|
|
|
static unsigned
|
|
vect_min_prec_for_max_niters (loop_vec_info loop_vinfo, unsigned int factor)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Get the maximum number of iterations that is representable
|
|
in the counter type. */
|
|
tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
|
|
widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
|
|
|
|
/* Get a more refined estimate for the number of iterations. */
|
|
widest_int max_back_edges;
|
|
if (max_loop_iterations (loop, &max_back_edges))
|
|
max_ni = wi::smin (max_ni, max_back_edges + 1);
|
|
|
|
/* Work out how many bits we need to represent the limit. */
|
|
return wi::min_precision (max_ni * factor, UNSIGNED);
|
|
}
|
|
|
|
/* True if the loop needs peeling or partial vectors when vectorized. */
|
|
|
|
static bool
|
|
vect_need_peeling_or_partial_vectors_p (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned HOST_WIDE_INT const_vf;
|
|
HOST_WIDE_INT max_niter
|
|
= likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
|
|
|
|
unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
if (!th && LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo))
|
|
th = LOOP_VINFO_COST_MODEL_THRESHOLD (LOOP_VINFO_ORIG_LOOP_INFO
|
|
(loop_vinfo));
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
|
|
{
|
|
/* Work out the (constant) number of iterations that need to be
|
|
peeled for reasons other than niters. */
|
|
unsigned int peel_niter = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
peel_niter += 1;
|
|
if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo) - peel_niter,
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
|
|
return true;
|
|
}
|
|
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
/* ??? When peeling for gaps but not alignment, we could
|
|
try to check whether the (variable) niters is known to be
|
|
VF * N + 1. That's something of a niche case though. */
|
|
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
|
|
|| ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
|
|
< (unsigned) exact_log2 (const_vf))
|
|
/* In case of versioning, check if the maximum number of
|
|
iterations is greater than th. If they are identical,
|
|
the epilogue is unnecessary. */
|
|
&& (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|
|
|| ((unsigned HOST_WIDE_INT) max_niter
|
|
> (th / const_vf) * const_vf))))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Each statement in LOOP_VINFO can be masked where necessary. Check
|
|
whether we can actually generate the masks required. Return true if so,
|
|
storing the type of the scalar IV in LOOP_VINFO_RGROUP_COMPARE_TYPE. */
|
|
|
|
static bool
|
|
vect_verify_full_masking (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int min_ni_width;
|
|
unsigned int max_nscalars_per_iter
|
|
= vect_get_max_nscalars_per_iter (loop_vinfo);
|
|
|
|
/* Use a normal loop if there are no statements that need masking.
|
|
This only happens in rare degenerate cases: it means that the loop
|
|
has no loads, no stores, and no live-out values. */
|
|
if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
|
|
return false;
|
|
|
|
/* Work out how many bits we need to represent the limit. */
|
|
min_ni_width
|
|
= vect_min_prec_for_max_niters (loop_vinfo, max_nscalars_per_iter);
|
|
|
|
/* Find a scalar mode for which WHILE_ULT is supported. */
|
|
opt_scalar_int_mode cmp_mode_iter;
|
|
tree cmp_type = NULL_TREE;
|
|
tree iv_type = NULL_TREE;
|
|
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
|
|
unsigned int iv_precision = UINT_MAX;
|
|
|
|
if (iv_limit != -1)
|
|
iv_precision = wi::min_precision (iv_limit * max_nscalars_per_iter,
|
|
UNSIGNED);
|
|
|
|
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
|
|
{
|
|
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
|
|
if (cmp_bits >= min_ni_width
|
|
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
|
|
{
|
|
tree this_type = build_nonstandard_integer_type (cmp_bits, true);
|
|
if (this_type
|
|
&& can_produce_all_loop_masks_p (loop_vinfo, this_type))
|
|
{
|
|
/* Although we could stop as soon as we find a valid mode,
|
|
there are at least two reasons why that's not always the
|
|
best choice:
|
|
|
|
- An IV that's Pmode or wider is more likely to be reusable
|
|
in address calculations than an IV that's narrower than
|
|
Pmode.
|
|
|
|
- Doing the comparison in IV_PRECISION or wider allows
|
|
a natural 0-based IV, whereas using a narrower comparison
|
|
type requires mitigations against wrap-around.
|
|
|
|
Conversely, if the IV limit is variable, doing the comparison
|
|
in a wider type than the original type can introduce
|
|
unnecessary extensions, so picking the widest valid mode
|
|
is not always a good choice either.
|
|
|
|
Here we prefer the first IV type that's Pmode or wider,
|
|
and the first comparison type that's IV_PRECISION or wider.
|
|
(The comparison type must be no wider than the IV type,
|
|
to avoid extensions in the vector loop.)
|
|
|
|
??? We might want to try continuing beyond Pmode for ILP32
|
|
targets if CMP_BITS < IV_PRECISION. */
|
|
iv_type = this_type;
|
|
if (!cmp_type || iv_precision > TYPE_PRECISION (cmp_type))
|
|
cmp_type = this_type;
|
|
if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cmp_type)
|
|
return false;
|
|
|
|
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = cmp_type;
|
|
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
|
|
return true;
|
|
}
|
|
|
|
/* Check whether we can use vector access with length based on precison
|
|
comparison. So far, to keep it simple, we only allow the case that the
|
|
precision of the target supported length is larger than the precision
|
|
required by loop niters. */
|
|
|
|
static bool
|
|
vect_verify_loop_lens (loop_vec_info loop_vinfo)
|
|
{
|
|
if (LOOP_VINFO_LENS (loop_vinfo).is_empty ())
|
|
return false;
|
|
|
|
unsigned int max_nitems_per_iter = 1;
|
|
unsigned int i;
|
|
rgroup_controls *rgl;
|
|
/* Find the maximum number of items per iteration for every rgroup. */
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), i, rgl)
|
|
{
|
|
unsigned nitems_per_iter = rgl->max_nscalars_per_iter * rgl->factor;
|
|
max_nitems_per_iter = MAX (max_nitems_per_iter, nitems_per_iter);
|
|
}
|
|
|
|
/* Work out how many bits we need to represent the length limit. */
|
|
unsigned int min_ni_prec
|
|
= vect_min_prec_for_max_niters (loop_vinfo, max_nitems_per_iter);
|
|
|
|
/* Now use the maximum of below precisions for one suitable IV type:
|
|
- the IV's natural precision
|
|
- the precision needed to hold: the maximum number of scalar
|
|
iterations multiplied by the scale factor (min_ni_prec above)
|
|
- the Pmode precision
|
|
|
|
If min_ni_prec is less than the precision of the current niters,
|
|
we perfer to still use the niters type. Prefer to use Pmode and
|
|
wider IV to avoid narrow conversions. */
|
|
|
|
unsigned int ni_prec
|
|
= TYPE_PRECISION (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)));
|
|
min_ni_prec = MAX (min_ni_prec, ni_prec);
|
|
min_ni_prec = MAX (min_ni_prec, GET_MODE_BITSIZE (Pmode));
|
|
|
|
tree iv_type = NULL_TREE;
|
|
opt_scalar_int_mode tmode_iter;
|
|
FOR_EACH_MODE_IN_CLASS (tmode_iter, MODE_INT)
|
|
{
|
|
scalar_mode tmode = tmode_iter.require ();
|
|
unsigned int tbits = GET_MODE_BITSIZE (tmode);
|
|
|
|
/* ??? Do we really want to construct one IV whose precision exceeds
|
|
BITS_PER_WORD? */
|
|
if (tbits > BITS_PER_WORD)
|
|
break;
|
|
|
|
/* Find the first available standard integral type. */
|
|
if (tbits >= min_ni_prec && targetm.scalar_mode_supported_p (tmode))
|
|
{
|
|
iv_type = build_nonstandard_integer_type (tbits, true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!iv_type)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't vectorize with length-based partial vectors"
|
|
" because there is no suitable iv type.\n");
|
|
return false;
|
|
}
|
|
|
|
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = iv_type;
|
|
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Calculate the cost of one scalar iteration of the loop. */
|
|
static void
|
|
vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes, factor;
|
|
int innerloop_iters, i;
|
|
|
|
DUMP_VECT_SCOPE ("vect_compute_single_scalar_iteration_cost");
|
|
|
|
/* Gather costs for statements in the scalar loop. */
|
|
|
|
/* FORNOW. */
|
|
innerloop_iters = 1;
|
|
if (loop->inner)
|
|
innerloop_iters = 50; /* FIXME */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
gimple_stmt_iterator si;
|
|
basic_block bb = bbs[i];
|
|
|
|
if (bb->loop_father == loop->inner)
|
|
factor = innerloop_iters;
|
|
else
|
|
factor = 1;
|
|
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
|
|
|
|
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
|
|
continue;
|
|
|
|
/* Skip stmts that are not vectorized inside the loop. */
|
|
stmt_vec_info vstmt_info = vect_stmt_to_vectorize (stmt_info);
|
|
if (!STMT_VINFO_RELEVANT_P (vstmt_info)
|
|
&& (!STMT_VINFO_LIVE_P (vstmt_info)
|
|
|| !VECTORIZABLE_CYCLE_DEF
|
|
(STMT_VINFO_DEF_TYPE (vstmt_info))))
|
|
continue;
|
|
|
|
vect_cost_for_stmt kind;
|
|
if (STMT_VINFO_DATA_REF (stmt_info))
|
|
{
|
|
if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
|
|
kind = scalar_load;
|
|
else
|
|
kind = scalar_store;
|
|
}
|
|
else if (vect_nop_conversion_p (stmt_info))
|
|
continue;
|
|
else
|
|
kind = scalar_stmt;
|
|
|
|
record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
factor, kind, stmt_info, 0, vect_prologue);
|
|
}
|
|
}
|
|
|
|
/* Now accumulate cost. */
|
|
void *target_cost_data = init_cost (loop);
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
|
|
j, si)
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, si->count,
|
|
si->kind, si->stmt_info, si->vectype,
|
|
si->misalign, vect_body);
|
|
unsigned dummy, body_cost = 0;
|
|
finish_cost (target_cost_data, &dummy, &body_cost, &dummy);
|
|
destroy_cost_data (target_cost_data);
|
|
LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo) = body_cost;
|
|
}
|
|
|
|
|
|
/* Function vect_analyze_loop_form_1.
|
|
|
|
Verify that certain CFG restrictions hold, including:
|
|
- the loop has a pre-header
|
|
- the loop has a single entry and exit
|
|
- the loop exit condition is simple enough
|
|
- the number of iterations can be analyzed, i.e, a countable loop. The
|
|
niter could be analyzed under some assumptions. */
|
|
|
|
opt_result
|
|
vect_analyze_loop_form_1 (class loop *loop, gcond **loop_cond,
|
|
tree *assumptions, tree *number_of_iterationsm1,
|
|
tree *number_of_iterations, gcond **inner_loop_cond)
|
|
{
|
|
DUMP_VECT_SCOPE ("vect_analyze_loop_form");
|
|
|
|
/* Different restrictions apply when we are considering an inner-most loop,
|
|
vs. an outer (nested) loop.
|
|
(FORNOW. May want to relax some of these restrictions in the future). */
|
|
|
|
if (!loop->inner)
|
|
{
|
|
/* Inner-most loop. We currently require that the number of BBs is
|
|
exactly 2 (the header and latch). Vectorizable inner-most loops
|
|
look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <--------+
|
|
| | |
|
|
| +--> latch --+
|
|
|
|
|
(exit-bb) */
|
|
|
|
if (loop->num_nodes != 2)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" control flow in loop.\n");
|
|
|
|
if (empty_block_p (loop->header))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: empty loop.\n");
|
|
}
|
|
else
|
|
{
|
|
class loop *innerloop = loop->inner;
|
|
edge entryedge;
|
|
|
|
/* Nested loop. We currently require that the loop is doubly-nested,
|
|
contains a single inner loop, and the number of BBs is exactly 5.
|
|
Vectorizable outer-loops look like this:
|
|
|
|
(pre-header)
|
|
|
|
|
header <---+
|
|
| |
|
|
inner-loop |
|
|
| |
|
|
tail ------+
|
|
|
|
|
(exit-bb)
|
|
|
|
The inner-loop has the properties expected of inner-most loops
|
|
as described above. */
|
|
|
|
if ((loop->inner)->inner || (loop->inner)->next)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" multiple nested loops.\n");
|
|
|
|
if (loop->num_nodes != 5)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" control flow in loop.\n");
|
|
|
|
entryedge = loop_preheader_edge (innerloop);
|
|
if (entryedge->src != loop->header
|
|
|| !single_exit (innerloop)
|
|
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" unsupported outerloop form.\n");
|
|
|
|
/* Analyze the inner-loop. */
|
|
tree inner_niterm1, inner_niter, inner_assumptions;
|
|
opt_result res
|
|
= vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
|
|
&inner_assumptions, &inner_niterm1,
|
|
&inner_niter, NULL);
|
|
if (!res)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: Bad inner loop.\n");
|
|
return res;
|
|
}
|
|
|
|
/* Don't support analyzing niter under assumptions for inner
|
|
loop. */
|
|
if (!integer_onep (inner_assumptions))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: Bad inner loop.\n");
|
|
|
|
if (!expr_invariant_in_loop_p (loop, inner_niter))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: inner-loop count not"
|
|
" invariant.\n");
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Considering outer-loop vectorization.\n");
|
|
}
|
|
|
|
if (!single_exit (loop))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: multiple exits.\n");
|
|
if (EDGE_COUNT (loop->header->preds) != 2)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" too many incoming edges.\n");
|
|
|
|
/* We assume that the loop exit condition is at the end of the loop. i.e,
|
|
that the loop is represented as a do-while (with a proper if-guard
|
|
before the loop if needed), where the loop header contains all the
|
|
executable statements, and the latch is empty. */
|
|
if (!empty_block_p (loop->latch)
|
|
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: latch block not empty.\n");
|
|
|
|
/* Make sure the exit is not abnormal. */
|
|
edge e = single_exit (loop);
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized:"
|
|
" abnormal loop exit edge.\n");
|
|
|
|
*loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
|
|
number_of_iterationsm1);
|
|
if (!*loop_cond)
|
|
return opt_result::failure_at
|
|
(vect_location,
|
|
"not vectorized: complicated exit condition.\n");
|
|
|
|
if (integer_zerop (*assumptions)
|
|
|| !*number_of_iterations
|
|
|| chrec_contains_undetermined (*number_of_iterations))
|
|
return opt_result::failure_at
|
|
(*loop_cond,
|
|
"not vectorized: number of iterations cannot be computed.\n");
|
|
|
|
if (integer_zerop (*number_of_iterations))
|
|
return opt_result::failure_at
|
|
(*loop_cond,
|
|
"not vectorized: number of iterations = 0.\n");
|
|
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
|
|
|
|
opt_loop_vec_info
|
|
vect_analyze_loop_form (class loop *loop, vec_info_shared *shared)
|
|
{
|
|
tree assumptions, number_of_iterations, number_of_iterationsm1;
|
|
gcond *loop_cond, *inner_loop_cond = NULL;
|
|
|
|
opt_result res
|
|
= vect_analyze_loop_form_1 (loop, &loop_cond,
|
|
&assumptions, &number_of_iterationsm1,
|
|
&number_of_iterations, &inner_loop_cond);
|
|
if (!res)
|
|
return opt_loop_vec_info::propagate_failure (res);
|
|
|
|
loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
|
|
LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
|
|
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
|
|
if (!integer_onep (assumptions))
|
|
{
|
|
/* We consider to vectorize this loop by versioning it under
|
|
some assumptions. In order to do this, we need to clear
|
|
existing information computed by scev and niter analyzer. */
|
|
scev_reset_htab ();
|
|
free_numbers_of_iterations_estimates (loop);
|
|
/* Also set flag for this loop so that following scev and niter
|
|
analysis are done under the assumptions. */
|
|
loop_constraint_set (loop, LOOP_C_FINITE);
|
|
/* Also record the assumptions for versioning. */
|
|
LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
|
|
}
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Symbolic number of iterations is ");
|
|
dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
}
|
|
|
|
stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (loop_cond);
|
|
STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
|
|
if (inner_loop_cond)
|
|
{
|
|
stmt_vec_info inner_loop_cond_info
|
|
= loop_vinfo->lookup_stmt (inner_loop_cond);
|
|
STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
|
|
}
|
|
|
|
gcc_assert (!loop->aux);
|
|
loop->aux = loop_vinfo;
|
|
return opt_loop_vec_info::success (loop_vinfo);
|
|
}
|
|
|
|
|
|
|
|
/* Scan the loop stmts and dependent on whether there are any (non-)SLP
|
|
statements update the vectorization factor. */
|
|
|
|
static void
|
|
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
poly_uint64 vectorization_factor;
|
|
int i;
|
|
|
|
DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
|
|
|
|
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (known_ne (vectorization_factor, 0U));
|
|
|
|
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
|
|
vectorization factor of the loop is the unrolling factor required by
|
|
the SLP instances. If that unrolling factor is 1, we say, that we
|
|
perform pure SLP on loop - cross iteration parallelism is not
|
|
exploited. */
|
|
bool only_slp_in_loop = true;
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (si.phi ());
|
|
if (!stmt_info)
|
|
continue;
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
|
only_slp_in_loop = false;
|
|
}
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
if (is_gimple_debug (gsi_stmt (si)))
|
|
continue;
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
|
|
stmt_info = vect_stmt_to_vectorize (stmt_info);
|
|
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|
|
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
/* STMT needs both SLP and loop-based vectorization. */
|
|
only_slp_in_loop = false;
|
|
}
|
|
}
|
|
|
|
if (only_slp_in_loop)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Loop contains only SLP stmts\n");
|
|
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
|
|
}
|
|
else
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Loop contains SLP and non-SLP stmts\n");
|
|
/* Both the vectorization factor and unroll factor have the form
|
|
GET_MODE_SIZE (loop_vinfo->vector_mode) * X for some rational X,
|
|
so they must have a common multiple. */
|
|
vectorization_factor
|
|
= force_common_multiple (vectorization_factor,
|
|
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
|
|
}
|
|
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Updating vectorization factor to ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, ".\n");
|
|
}
|
|
}
|
|
|
|
/* Return true if STMT_INFO describes a double reduction phi and if
|
|
the other phi in the reduction is also relevant for vectorization.
|
|
This rejects cases such as:
|
|
|
|
outer1:
|
|
x_1 = PHI <x_3(outer2), ...>;
|
|
...
|
|
|
|
inner:
|
|
x_2 = ...;
|
|
...
|
|
|
|
outer2:
|
|
x_3 = PHI <x_2(inner)>;
|
|
|
|
if nothing in x_2 or elsewhere makes x_1 relevant. */
|
|
|
|
static bool
|
|
vect_active_double_reduction_p (stmt_vec_info stmt_info)
|
|
{
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
|
|
return false;
|
|
|
|
return STMT_VINFO_RELEVANT_P (STMT_VINFO_REDUC_DEF (stmt_info));
|
|
}
|
|
|
|
/* Function vect_analyze_loop_operations.
|
|
|
|
Scan the loop stmts and make sure they are all vectorizable. */
|
|
|
|
static opt_result
|
|
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
int i;
|
|
stmt_vec_info stmt_info;
|
|
bool need_to_vectorize = false;
|
|
bool ok;
|
|
|
|
DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
|
|
|
|
auto_vec<stmt_info_for_cost> cost_vec;
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
ok = true;
|
|
|
|
stmt_info = loop_vinfo->lookup_stmt (phi);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: %G", phi);
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
continue;
|
|
|
|
/* Inner-loop loop-closed exit phi in outer-loop vectorization
|
|
(i.e., a phi in the tail of the outer-loop). */
|
|
if (! is_loop_header_bb_p (bb))
|
|
{
|
|
/* FORNOW: we currently don't support the case that these phis
|
|
are not used in the outerloop (unless it is double reduction,
|
|
i.e., this phi is vect_reduction_def), cause this case
|
|
requires to actually do something here. */
|
|
if (STMT_VINFO_LIVE_P (stmt_info)
|
|
&& !vect_active_double_reduction_p (stmt_info))
|
|
return opt_result::failure_at (phi,
|
|
"Unsupported loop-closed phi"
|
|
" in outer-loop.\n");
|
|
|
|
/* If PHI is used in the outer loop, we check that its operand
|
|
is defined in the inner loop. */
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
tree phi_op;
|
|
|
|
if (gimple_phi_num_args (phi) != 1)
|
|
return opt_result::failure_at (phi, "unsupported phi");
|
|
|
|
phi_op = PHI_ARG_DEF (phi, 0);
|
|
stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
|
|
if (!op_def_info)
|
|
return opt_result::failure_at (phi, "unsupported phi\n");
|
|
|
|
if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
|
|
&& (STMT_VINFO_RELEVANT (op_def_info)
|
|
!= vect_used_in_outer_by_reduction))
|
|
return opt_result::failure_at (phi, "unsupported phi\n");
|
|
|
|
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
|
|
|| (STMT_VINFO_DEF_TYPE (stmt_info)
|
|
== vect_double_reduction_def))
|
|
&& !vectorizable_lc_phi (loop_vinfo,
|
|
stmt_info, NULL, NULL))
|
|
return opt_result::failure_at (phi, "unsupported phi\n");
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
gcc_assert (stmt_info);
|
|
|
|
if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|
|
|| STMT_VINFO_LIVE_P (stmt_info))
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
|
/* A scalar-dependence cycle that we don't support. */
|
|
return opt_result::failure_at (phi,
|
|
"not vectorized:"
|
|
" scalar dependence cycle.\n");
|
|
|
|
if (STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
need_to_vectorize = true;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_induction (loop_vinfo,
|
|
stmt_info, NULL, NULL,
|
|
&cost_vec);
|
|
else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| (STMT_VINFO_DEF_TYPE (stmt_info)
|
|
== vect_double_reduction_def)
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_reduction (loop_vinfo,
|
|
stmt_info, NULL, NULL, &cost_vec);
|
|
}
|
|
|
|
/* SLP PHIs are tested by vect_slp_analyze_node_operations. */
|
|
if (ok
|
|
&& STMT_VINFO_LIVE_P (stmt_info)
|
|
&& !PURE_SLP_STMT (stmt_info))
|
|
ok = vectorizable_live_operation (loop_vinfo,
|
|
stmt_info, NULL, NULL, NULL,
|
|
-1, false, &cost_vec);
|
|
|
|
if (!ok)
|
|
return opt_result::failure_at (phi,
|
|
"not vectorized: relevant phi not "
|
|
"supported: %G",
|
|
static_cast <gimple *> (phi));
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gimple *stmt = gsi_stmt (si);
|
|
if (!gimple_clobber_p (stmt)
|
|
&& !is_gimple_debug (stmt))
|
|
{
|
|
opt_result res
|
|
= vect_analyze_stmt (loop_vinfo,
|
|
loop_vinfo->lookup_stmt (stmt),
|
|
&need_to_vectorize,
|
|
NULL, NULL, &cost_vec);
|
|
if (!res)
|
|
return res;
|
|
}
|
|
}
|
|
} /* bbs */
|
|
|
|
add_stmt_costs (loop_vinfo, loop_vinfo->target_cost_data, &cost_vec);
|
|
|
|
/* All operations in the loop are either irrelevant (deal with loop
|
|
control, or dead), or only used outside the loop and can be moved
|
|
out of the loop (e.g. invariants, inductions). The loop can be
|
|
optimized away by scalar optimizations. We're better off not
|
|
touching this loop. */
|
|
if (!need_to_vectorize)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"All the computation can be taken out of the loop.\n");
|
|
return opt_result::failure_at
|
|
(vect_location,
|
|
"not vectorized: redundant loop. no profit to vectorize.\n");
|
|
}
|
|
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Return true if we know that the iteration count is smaller than the
|
|
vectorization factor. Return false if it isn't, or if we can't be sure
|
|
either way. */
|
|
|
|
static bool
|
|
vect_known_niters_smaller_than_vf (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
|
|
HOST_WIDE_INT max_niter;
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
else
|
|
max_niter = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
|
|
|
|
if (max_niter != -1 && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
|
|
is worthwhile to vectorize. Return 1 if definitely yes, 0 if
|
|
definitely no, or -1 if it's worth retrying. */
|
|
|
|
static int
|
|
vect_analyze_loop_costing (loop_vec_info loop_vinfo)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
|
|
/* Only loops that can handle partially-populated vectors can have iteration
|
|
counts less than the vectorization factor. */
|
|
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
if (vect_known_niters_smaller_than_vf (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: iteration count smaller than "
|
|
"vectorization factor.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* If using the "very cheap" model. reject cases in which we'd keep
|
|
a copy of the scalar code (even if we might be able to vectorize it). */
|
|
if (flag_vect_cost_model == VECT_COST_MODEL_VERY_CHEAP
|
|
&& (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"some scalar iterations would need to be peeled\n");
|
|
return 0;
|
|
}
|
|
|
|
int min_profitable_iters, min_profitable_estimate;
|
|
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
|
|
&min_profitable_estimate);
|
|
|
|
if (min_profitable_iters < 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vector version will never be "
|
|
"profitable.\n");
|
|
return -1;
|
|
}
|
|
|
|
int min_scalar_loop_bound = (param_min_vect_loop_bound
|
|
* assumed_vf);
|
|
|
|
/* Use the cost model only if it is more conservative than user specified
|
|
threshold. */
|
|
unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
|
|
min_profitable_iters);
|
|
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: vectorization not profitable.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: iteration count smaller than user "
|
|
"specified loop bound parameter or minimum profitable "
|
|
"iterations (whichever is more conservative).\n");
|
|
return 0;
|
|
}
|
|
|
|
/* The static profitablity threshold min_profitable_estimate includes
|
|
the cost of having to check at runtime whether the scalar loop
|
|
should be used instead. If it turns out that we don't need or want
|
|
such a check, the threshold we should use for the static estimate
|
|
is simply the point at which the vector loop becomes more profitable
|
|
than the scalar loop. */
|
|
if (min_profitable_estimate > min_profitable_iters
|
|
&& !LOOP_REQUIRES_VERSIONING (loop_vinfo)
|
|
&& !LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
|
|
&& !LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|
|
&& !vect_apply_runtime_profitability_check_p (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "no need for a runtime"
|
|
" choice between the scalar and vector loops\n");
|
|
min_profitable_estimate = min_profitable_iters;
|
|
}
|
|
|
|
/* If the vector loop needs multiple iterations to be beneficial then
|
|
things are probably too close to call, and the conservative thing
|
|
would be to stick with the scalar code. */
|
|
if (flag_vect_cost_model == VECT_COST_MODEL_VERY_CHEAP
|
|
&& min_profitable_estimate > (int) vect_vf_for_cost (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"one iteration of the vector loop would be"
|
|
" more expensive than the equivalent number of"
|
|
" iterations of the scalar loop\n");
|
|
return 0;
|
|
}
|
|
|
|
HOST_WIDE_INT estimated_niter;
|
|
|
|
/* If we are vectorizing an epilogue then we know the maximum number of
|
|
scalar iterations it will cover is at least one lower than the
|
|
vectorization factor of the main loop. */
|
|
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
estimated_niter
|
|
= vect_vf_for_cost (LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo)) - 1;
|
|
else
|
|
{
|
|
estimated_niter = estimated_stmt_executions_int (loop);
|
|
if (estimated_niter == -1)
|
|
estimated_niter = likely_max_stmt_executions_int (loop);
|
|
}
|
|
if (estimated_niter != -1
|
|
&& ((unsigned HOST_WIDE_INT) estimated_niter
|
|
< MAX (th, (unsigned) min_profitable_estimate)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: estimated iteration count too "
|
|
"small.\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"not vectorized: estimated iteration count smaller "
|
|
"than specified loop bound parameter or minimum "
|
|
"profitable iterations (whichever is more "
|
|
"conservative).\n");
|
|
return -1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static opt_result
|
|
vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
|
|
vec<data_reference_p> *datarefs,
|
|
unsigned int *n_stmts)
|
|
{
|
|
*n_stmts = 0;
|
|
for (unsigned i = 0; i < loop->num_nodes; i++)
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
++(*n_stmts);
|
|
opt_result res = vect_find_stmt_data_reference (loop, stmt, datarefs,
|
|
NULL, 0);
|
|
if (!res)
|
|
{
|
|
if (is_gimple_call (stmt) && loop->safelen)
|
|
{
|
|
tree fndecl = gimple_call_fndecl (stmt), op;
|
|
if (fndecl != NULL_TREE)
|
|
{
|
|
cgraph_node *node = cgraph_node::get (fndecl);
|
|
if (node != NULL && node->simd_clones != NULL)
|
|
{
|
|
unsigned int j, n = gimple_call_num_args (stmt);
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
op = gimple_call_arg (stmt, j);
|
|
if (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))
|
|
break;
|
|
}
|
|
op = gimple_call_lhs (stmt);
|
|
/* Ignore #pragma omp declare simd functions
|
|
if they don't have data references in the
|
|
call stmt itself. */
|
|
if (j == n
|
|
&& !(op
|
|
&& (DECL_P (op)
|
|
|| (REFERENCE_CLASS_P (op)
|
|
&& get_base_address (op)))))
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
/* If dependence analysis will give up due to the limit on the
|
|
number of datarefs stop here and fail fatally. */
|
|
if (datarefs->length ()
|
|
> (unsigned)param_loop_max_datarefs_for_datadeps)
|
|
return opt_result::failure_at (stmt, "exceeded param "
|
|
"loop-max-datarefs-for-datadeps\n");
|
|
}
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Look for SLP-only access groups and turn each individual access into its own
|
|
group. */
|
|
static void
|
|
vect_dissolve_slp_only_groups (loop_vec_info loop_vinfo)
|
|
{
|
|
unsigned int i;
|
|
struct data_reference *dr;
|
|
|
|
DUMP_VECT_SCOPE ("vect_dissolve_slp_only_groups");
|
|
|
|
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
gcc_assert (DR_REF (dr));
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (DR_STMT (dr));
|
|
|
|
/* Check if the load is a part of an interleaving chain. */
|
|
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
|
|
{
|
|
stmt_vec_info first_element = DR_GROUP_FIRST_ELEMENT (stmt_info);
|
|
unsigned int group_size = DR_GROUP_SIZE (first_element);
|
|
|
|
/* Check if SLP-only groups. */
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
|
&& STMT_VINFO_SLP_VECT_ONLY (first_element))
|
|
{
|
|
/* Dissolve the group. */
|
|
STMT_VINFO_SLP_VECT_ONLY (first_element) = false;
|
|
|
|
stmt_vec_info vinfo = first_element;
|
|
while (vinfo)
|
|
{
|
|
stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (vinfo);
|
|
DR_GROUP_FIRST_ELEMENT (vinfo) = vinfo;
|
|
DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
|
|
DR_GROUP_SIZE (vinfo) = 1;
|
|
if (STMT_VINFO_STRIDED_P (first_element))
|
|
DR_GROUP_GAP (vinfo) = 0;
|
|
else
|
|
DR_GROUP_GAP (vinfo) = group_size - 1;
|
|
vinfo = next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Determine if operating on full vectors for LOOP_VINFO might leave
|
|
some scalar iterations still to do. If so, decide how we should
|
|
handle those scalar iterations. The possibilities are:
|
|
|
|
(1) Make LOOP_VINFO operate on partial vectors instead of full vectors.
|
|
In this case:
|
|
|
|
LOOP_VINFO_USING_PARTIAL_VECTORS_P == true
|
|
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
|
|
LOOP_VINFO_PEELING_FOR_NITER == false
|
|
|
|
(2) Make LOOP_VINFO operate on full vectors and use an epilogue loop
|
|
to handle the remaining scalar iterations. In this case:
|
|
|
|
LOOP_VINFO_USING_PARTIAL_VECTORS_P == false
|
|
LOOP_VINFO_PEELING_FOR_NITER == true
|
|
|
|
There are two choices:
|
|
|
|
(2a) Consider vectorizing the epilogue loop at the same VF as the
|
|
main loop, but using partial vectors instead of full vectors.
|
|
In this case:
|
|
|
|
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == true
|
|
|
|
(2b) Consider vectorizing the epilogue loop at lower VFs only.
|
|
In this case:
|
|
|
|
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
|
|
|
|
When FOR_EPILOGUE_P is true, make this determination based on the
|
|
assumption that LOOP_VINFO is an epilogue loop, otherwise make it
|
|
based on the assumption that LOOP_VINFO is the main loop. The caller
|
|
has made sure that the number of iterations is set appropriately for
|
|
this value of FOR_EPILOGUE_P. */
|
|
|
|
opt_result
|
|
vect_determine_partial_vectors_and_peeling (loop_vec_info loop_vinfo,
|
|
bool for_epilogue_p)
|
|
{
|
|
/* Determine whether there would be any scalar iterations left over. */
|
|
bool need_peeling_or_partial_vectors_p
|
|
= vect_need_peeling_or_partial_vectors_p (loop_vinfo);
|
|
|
|
/* Decide whether to vectorize the loop with partial vectors. */
|
|
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& need_peeling_or_partial_vectors_p)
|
|
{
|
|
/* For partial-vector-usage=1, try to push the handling of partial
|
|
vectors to the epilogue, with the main loop continuing to operate
|
|
on full vectors.
|
|
|
|
??? We could then end up failing to use partial vectors if we
|
|
decide to peel iterations into a prologue, and if the main loop
|
|
then ends up processing fewer than VF iterations. */
|
|
if (param_vect_partial_vector_usage == 1
|
|
&& !LOOP_VINFO_EPILOGUE_P (loop_vinfo)
|
|
&& !vect_known_niters_smaller_than_vf (loop_vinfo))
|
|
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
|
|
else
|
|
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"operating on partial vectors%s.\n",
|
|
for_epilogue_p ? " for epilogue loop" : "");
|
|
else
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"operating only on full vectors%s.\n",
|
|
for_epilogue_p ? " for epilogue loop" : "");
|
|
}
|
|
|
|
if (for_epilogue_p)
|
|
{
|
|
loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
|
|
gcc_assert (orig_loop_vinfo);
|
|
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
gcc_assert (known_lt (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
|
|
LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)));
|
|
}
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
/* Check that the loop processes at least one full vector. */
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
tree scalar_niters = LOOP_VINFO_NITERS (loop_vinfo);
|
|
if (known_lt (wi::to_widest (scalar_niters), vf))
|
|
return opt_result::failure_at (vect_location,
|
|
"loop does not have enough iterations"
|
|
" to support vectorization.\n");
|
|
|
|
/* If we need to peel an extra epilogue iteration to handle data
|
|
accesses with gaps, check that there are enough scalar iterations
|
|
available.
|
|
|
|
The check above is redundant with this one when peeling for gaps,
|
|
but the distinction is useful for diagnostics. */
|
|
tree scalar_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
&& known_lt (wi::to_widest (scalar_nitersm1), vf))
|
|
return opt_result::failure_at (vect_location,
|
|
"loop does not have enough iterations"
|
|
" to support peeling for gaps.\n");
|
|
}
|
|
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
|
|
= (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& need_peeling_or_partial_vectors_p);
|
|
|
|
return opt_result::success ();
|
|
}
|
|
|
|
/* Function vect_analyze_loop_2.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. */
|
|
static opt_result
|
|
vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal, unsigned *n_stmts)
|
|
{
|
|
opt_result ok = opt_result::success ();
|
|
int res;
|
|
unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
|
|
poly_uint64 min_vf = 2;
|
|
loop_vec_info orig_loop_vinfo = NULL;
|
|
|
|
/* If we are dealing with an epilogue then orig_loop_vinfo points to the
|
|
loop_vec_info of the first vectorized loop. */
|
|
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
|
|
else
|
|
orig_loop_vinfo = loop_vinfo;
|
|
gcc_assert (orig_loop_vinfo);
|
|
|
|
/* The first group of checks is independent of the vector size. */
|
|
fatal = true;
|
|
|
|
if (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)
|
|
&& integer_zerop (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)))
|
|
return opt_result::failure_at (vect_location,
|
|
"not vectorized: simd if(0)\n");
|
|
|
|
/* Find all data references in the loop (which correspond to vdefs/vuses)
|
|
and analyze their evolution in the loop. */
|
|
|
|
loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Gather the data references and count stmts in the loop. */
|
|
if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
|
|
{
|
|
opt_result res
|
|
= vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
|
|
&LOOP_VINFO_DATAREFS (loop_vinfo),
|
|
n_stmts);
|
|
if (!res)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not vectorized: loop contains function "
|
|
"calls or data references that cannot "
|
|
"be analyzed\n");
|
|
return res;
|
|
}
|
|
loop_vinfo->shared->save_datarefs ();
|
|
}
|
|
else
|
|
loop_vinfo->shared->check_datarefs ();
|
|
|
|
/* Analyze the data references and also adjust the minimal
|
|
vectorization factor according to the loads and stores. */
|
|
|
|
ok = vect_analyze_data_refs (loop_vinfo, &min_vf, &fatal);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data references.\n");
|
|
return ok;
|
|
}
|
|
|
|
/* Classify all cross-iteration scalar data-flow cycles.
|
|
Cross-iteration cycles caused by virtual phis are analyzed separately. */
|
|
vect_analyze_scalar_cycles (loop_vinfo);
|
|
|
|
vect_pattern_recog (loop_vinfo);
|
|
|
|
vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
|
|
|
|
/* Analyze the access patterns of the data-refs in the loop (consecutive,
|
|
complex, etc.). FORNOW: Only handle consecutive access pattern. */
|
|
|
|
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data access.\n");
|
|
return ok;
|
|
}
|
|
|
|
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
|
|
|
|
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo, &fatal);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unexpected pattern.\n");
|
|
return ok;
|
|
}
|
|
|
|
/* While the rest of the analysis below depends on it in some way. */
|
|
fatal = false;
|
|
|
|
/* Analyze data dependences between the data-refs in the loop
|
|
and adjust the maximum vectorization factor according to
|
|
the dependences.
|
|
FORNOW: fail at the first data dependence that we encounter. */
|
|
|
|
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data dependence.\n");
|
|
return ok;
|
|
}
|
|
if (max_vf != MAX_VECTORIZATION_FACTOR
|
|
&& maybe_lt (max_vf, min_vf))
|
|
return opt_result::failure_at (vect_location, "bad data dependence.\n");
|
|
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
|
|
|
|
ok = vect_determine_vectorization_factor (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't determine vectorization factor.\n");
|
|
return ok;
|
|
}
|
|
if (max_vf != MAX_VECTORIZATION_FACTOR
|
|
&& maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
|
|
return opt_result::failure_at (vect_location, "bad data dependence.\n");
|
|
|
|
/* Compute the scalar iteration cost. */
|
|
vect_compute_single_scalar_iteration_cost (loop_vinfo);
|
|
|
|
poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
|
|
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
|
|
ok = vect_analyze_slp (loop_vinfo, *n_stmts);
|
|
if (!ok)
|
|
return ok;
|
|
|
|
/* If there are any SLP instances mark them as pure_slp. */
|
|
bool slp = vect_make_slp_decision (loop_vinfo);
|
|
if (slp)
|
|
{
|
|
/* Find stmts that need to be both vectorized and SLPed. */
|
|
vect_detect_hybrid_slp (loop_vinfo);
|
|
|
|
/* Update the vectorization factor based on the SLP decision. */
|
|
vect_update_vf_for_slp (loop_vinfo);
|
|
|
|
/* Optimize the SLP graph with the vectorization factor fixed. */
|
|
vect_optimize_slp (loop_vinfo);
|
|
|
|
/* Gather the loads reachable from the SLP graph entries. */
|
|
vect_gather_slp_loads (loop_vinfo);
|
|
}
|
|
|
|
bool saved_can_use_partial_vectors_p
|
|
= LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo);
|
|
|
|
/* We don't expect to have to roll back to anything other than an empty
|
|
set of rgroups. */
|
|
gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
|
|
|
|
/* This is the point where we can re-start analysis with SLP forced off. */
|
|
start_over:
|
|
|
|
/* Now the vectorization factor is final. */
|
|
poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
gcc_assert (known_ne (vectorization_factor, 0U));
|
|
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vectorization_factor = ");
|
|
dump_dec (MSG_NOTE, vectorization_factor);
|
|
dump_printf (MSG_NOTE, ", niters = %wd\n",
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo));
|
|
}
|
|
|
|
/* Analyze the alignment of the data-refs in the loop.
|
|
Fail if a data reference is found that cannot be vectorized. */
|
|
|
|
ok = vect_analyze_data_refs_alignment (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad data alignment.\n");
|
|
return ok;
|
|
}
|
|
|
|
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
|
|
It is important to call pruning after vect_analyze_data_ref_accesses,
|
|
since we use grouping information gathered by interleaving analysis. */
|
|
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
|
|
if (!ok)
|
|
return ok;
|
|
|
|
/* Do not invoke vect_enhance_data_refs_alignment for epilogue
|
|
vectorization, since we do not want to add extra peeling or
|
|
add versioning for alignment. */
|
|
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
/* This pass will decide on using loop versioning and/or loop peeling in
|
|
order to enhance the alignment of data references in the loop. */
|
|
ok = vect_enhance_data_refs_alignment (loop_vinfo);
|
|
if (!ok)
|
|
return ok;
|
|
|
|
if (slp)
|
|
{
|
|
/* Analyze operations in the SLP instances. Note this may
|
|
remove unsupported SLP instances which makes the above
|
|
SLP kind detection invalid. */
|
|
unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
|
|
vect_slp_analyze_operations (loop_vinfo);
|
|
if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
|
|
{
|
|
ok = opt_result::failure_at (vect_location,
|
|
"unsupported SLP instances\n");
|
|
goto again;
|
|
}
|
|
|
|
/* Check whether any load in ALL SLP instances is possibly permuted. */
|
|
slp_tree load_node, slp_root;
|
|
unsigned i, x;
|
|
slp_instance instance;
|
|
bool can_use_lanes = true;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), x, instance)
|
|
{
|
|
slp_root = SLP_INSTANCE_TREE (instance);
|
|
int group_size = SLP_TREE_LANES (slp_root);
|
|
tree vectype = SLP_TREE_VECTYPE (slp_root);
|
|
bool loads_permuted = false;
|
|
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
|
|
{
|
|
if (!SLP_TREE_LOAD_PERMUTATION (load_node).exists ())
|
|
continue;
|
|
unsigned j;
|
|
stmt_vec_info load_info;
|
|
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load_info)
|
|
if (SLP_TREE_LOAD_PERMUTATION (load_node)[j] != j)
|
|
{
|
|
loads_permuted = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the loads and stores can be handled with load/store-lane
|
|
instructions record it and move on to the next instance. */
|
|
if (loads_permuted
|
|
&& SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
|
|
&& vect_store_lanes_supported (vectype, group_size, false))
|
|
{
|
|
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
|
|
{
|
|
stmt_vec_info stmt_vinfo = DR_GROUP_FIRST_ELEMENT
|
|
(SLP_TREE_SCALAR_STMTS (load_node)[0]);
|
|
/* Use SLP for strided accesses (or if we can't
|
|
load-lanes). */
|
|
if (STMT_VINFO_STRIDED_P (stmt_vinfo)
|
|
|| ! vect_load_lanes_supported
|
|
(STMT_VINFO_VECTYPE (stmt_vinfo),
|
|
DR_GROUP_SIZE (stmt_vinfo), false))
|
|
break;
|
|
}
|
|
|
|
can_use_lanes
|
|
= can_use_lanes && i == SLP_INSTANCE_LOADS (instance).length ();
|
|
|
|
if (can_use_lanes && dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"SLP instance %p can use load/store-lanes\n",
|
|
instance);
|
|
}
|
|
else
|
|
{
|
|
can_use_lanes = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If all SLP instances can use load/store-lanes abort SLP and try again
|
|
with SLP disabled. */
|
|
if (can_use_lanes)
|
|
{
|
|
ok = opt_result::failure_at (vect_location,
|
|
"Built SLP cancelled: can use "
|
|
"load/store-lanes\n");
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Built SLP cancelled: all SLP instances support "
|
|
"load/store-lanes\n");
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/* Dissolve SLP-only groups. */
|
|
vect_dissolve_slp_only_groups (loop_vinfo);
|
|
|
|
/* Scan all the remaining operations in the loop that are not subject
|
|
to SLP and make sure they are vectorizable. */
|
|
ok = vect_analyze_loop_operations (loop_vinfo);
|
|
if (!ok)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad operation or unsupported loop bound.\n");
|
|
return ok;
|
|
}
|
|
|
|
/* For now, we don't expect to mix both masking and length approaches for one
|
|
loop, disable it if both are recorded. */
|
|
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& !LOOP_VINFO_MASKS (loop_vinfo).is_empty ()
|
|
&& !LOOP_VINFO_LENS (loop_vinfo).is_empty ())
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't vectorize a loop with partial vectors"
|
|
" because we don't expect to mix different"
|
|
" approaches with partial vectors for the"
|
|
" same loop.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
|
|
/* If we still have the option of using partial vectors,
|
|
check whether we can generate the necessary loop controls. */
|
|
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& !vect_verify_full_masking (loop_vinfo)
|
|
&& !vect_verify_loop_lens (loop_vinfo))
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
|
|
/* If we're vectorizing an epilogue loop, the vectorized loop either needs
|
|
to be able to handle fewer than VF scalars, or needs to have a lower VF
|
|
than the main loop. */
|
|
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)
|
|
&& !LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& maybe_ge (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
|
|
LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)))
|
|
return opt_result::failure_at (vect_location,
|
|
"Vectorization factor too high for"
|
|
" epilogue loop.\n");
|
|
|
|
/* Decide whether this loop_vinfo should use partial vectors or peeling,
|
|
assuming that the loop will be used as a main loop. We will redo
|
|
this analysis later if we instead decide to use the loop as an
|
|
epilogue loop. */
|
|
ok = vect_determine_partial_vectors_and_peeling (loop_vinfo, false);
|
|
if (!ok)
|
|
return ok;
|
|
|
|
/* Check the costings of the loop make vectorizing worthwhile. */
|
|
res = vect_analyze_loop_costing (loop_vinfo);
|
|
if (res < 0)
|
|
{
|
|
ok = opt_result::failure_at (vect_location,
|
|
"Loop costings may not be worthwhile.\n");
|
|
goto again;
|
|
}
|
|
if (!res)
|
|
return opt_result::failure_at (vect_location,
|
|
"Loop costings not worthwhile.\n");
|
|
|
|
/* If an epilogue loop is required make sure we can create one. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|
|
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
|
|
if (!vect_can_advance_ivs_p (loop_vinfo)
|
|
|| !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
|
|
single_exit (LOOP_VINFO_LOOP
|
|
(loop_vinfo))))
|
|
{
|
|
ok = opt_result::failure_at (vect_location,
|
|
"not vectorized: can't create required "
|
|
"epilog loop\n");
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/* During peeling, we need to check if number of loop iterations is
|
|
enough for both peeled prolog loop and vector loop. This check
|
|
can be merged along with threshold check of loop versioning, so
|
|
increase threshold for this case if necessary.
|
|
|
|
If we are analyzing an epilogue we still want to check what its
|
|
versioning threshold would be. If we decide to vectorize the epilogues we
|
|
will want to use the lowest versioning threshold of all epilogues and main
|
|
loop. This will enable us to enter a vectorized epilogue even when
|
|
versioning the loop. We can't simply check whether the epilogue requires
|
|
versioning though since we may have skipped some versioning checks when
|
|
analyzing the epilogue. For instance, checks for alias versioning will be
|
|
skipped when dealing with epilogues as we assume we already checked them
|
|
for the main loop. So instead we always check the 'orig_loop_vinfo'. */
|
|
if (LOOP_REQUIRES_VERSIONING (orig_loop_vinfo))
|
|
{
|
|
poly_uint64 niters_th = 0;
|
|
unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
|
|
if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
{
|
|
/* Niters for peeled prolog loop. */
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
|
{
|
|
dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
|
|
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
|
|
niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
|
|
}
|
|
else
|
|
niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
}
|
|
|
|
/* Niters for at least one iteration of vectorized loop. */
|
|
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
/* One additional iteration because of peeling for gap. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
|
|
niters_th += 1;
|
|
|
|
/* Use the same condition as vect_transform_loop to decide when to use
|
|
the cost to determine a versioning threshold. */
|
|
if (vect_apply_runtime_profitability_check_p (loop_vinfo)
|
|
&& ordered_p (th, niters_th))
|
|
niters_th = ordered_max (poly_uint64 (th), niters_th);
|
|
|
|
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
|
|
}
|
|
|
|
gcc_assert (known_eq (vectorization_factor,
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
|
|
|
|
/* Ok to vectorize! */
|
|
return opt_result::success ();
|
|
|
|
again:
|
|
/* Ensure that "ok" is false (with an opt_problem if dumping is enabled). */
|
|
gcc_assert (!ok);
|
|
|
|
/* Try again with SLP forced off but if we didn't do any SLP there is
|
|
no point in re-trying. */
|
|
if (!slp)
|
|
return ok;
|
|
|
|
/* If there are reduction chains re-trying will fail anyway. */
|
|
if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
|
|
return ok;
|
|
|
|
/* Likewise if the grouped loads or stores in the SLP cannot be handled
|
|
via interleaving or lane instructions. */
|
|
slp_instance instance;
|
|
slp_tree node;
|
|
unsigned i, j;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
|
|
{
|
|
stmt_vec_info vinfo;
|
|
vinfo = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
|
|
if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
|
|
continue;
|
|
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
|
|
unsigned int size = DR_GROUP_SIZE (vinfo);
|
|
tree vectype = STMT_VINFO_VECTYPE (vinfo);
|
|
if (! vect_store_lanes_supported (vectype, size, false)
|
|
&& ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
|
|
&& ! vect_grouped_store_supported (vectype, size))
|
|
return opt_result::failure_at (vinfo->stmt,
|
|
"unsupported grouped store\n");
|
|
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
|
|
{
|
|
vinfo = SLP_TREE_SCALAR_STMTS (node)[0];
|
|
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
|
|
bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
|
|
size = DR_GROUP_SIZE (vinfo);
|
|
vectype = STMT_VINFO_VECTYPE (vinfo);
|
|
if (! vect_load_lanes_supported (vectype, size, false)
|
|
&& ! vect_grouped_load_supported (vectype, single_element_p,
|
|
size))
|
|
return opt_result::failure_at (vinfo->stmt,
|
|
"unsupported grouped load\n");
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"re-trying with SLP disabled\n");
|
|
|
|
/* Roll back state appropriately. No SLP this time. */
|
|
slp = false;
|
|
/* Restore vectorization factor as it were without SLP. */
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
|
|
/* Free the SLP instances. */
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
|
|
vect_free_slp_instance (instance);
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
|
|
/* Reset SLP type to loop_vect on all stmts. */
|
|
for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
|
|
{
|
|
basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
|
|
for (gimple_stmt_iterator si = gsi_start_phis (bb);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
|
|
STMT_SLP_TYPE (stmt_info) = loop_vect;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
|
|
{
|
|
/* vectorizable_reduction adjusts reduction stmt def-types,
|
|
restore them to that of the PHI. */
|
|
STMT_VINFO_DEF_TYPE (STMT_VINFO_REDUC_DEF (stmt_info))
|
|
= STMT_VINFO_DEF_TYPE (stmt_info);
|
|
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize
|
|
(STMT_VINFO_REDUC_DEF (stmt_info)))
|
|
= STMT_VINFO_DEF_TYPE (stmt_info);
|
|
}
|
|
}
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
if (is_gimple_debug (gsi_stmt (si)))
|
|
continue;
|
|
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
|
|
STMT_SLP_TYPE (stmt_info) = loop_vect;
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
{
|
|
stmt_vec_info pattern_stmt_info
|
|
= STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (STMT_VINFO_SLP_VECT_ONLY_PATTERN (pattern_stmt_info))
|
|
STMT_VINFO_IN_PATTERN_P (stmt_info) = false;
|
|
|
|
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
STMT_SLP_TYPE (pattern_stmt_info) = loop_vect;
|
|
for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
|
|
!gsi_end_p (pi); gsi_next (&pi))
|
|
STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
|
|
= loop_vect;
|
|
}
|
|
}
|
|
}
|
|
/* Free optimized alias test DDRS. */
|
|
LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
|
|
LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
|
|
LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
|
|
/* Reset target cost data. */
|
|
destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
|
|
LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
|
|
= init_cost (LOOP_VINFO_LOOP (loop_vinfo));
|
|
/* Reset accumulated rgroup information. */
|
|
release_vec_loop_controls (&LOOP_VINFO_MASKS (loop_vinfo));
|
|
release_vec_loop_controls (&LOOP_VINFO_LENS (loop_vinfo));
|
|
/* Reset assorted flags. */
|
|
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
|
|
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
|
|
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
|
|
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
= saved_can_use_partial_vectors_p;
|
|
|
|
goto start_over;
|
|
}
|
|
|
|
/* Return true if vectorizing a loop using NEW_LOOP_VINFO appears
|
|
to be better than vectorizing it using OLD_LOOP_VINFO. Assume that
|
|
OLD_LOOP_VINFO is better unless something specifically indicates
|
|
otherwise.
|
|
|
|
Note that this deliberately isn't a partial order. */
|
|
|
|
static bool
|
|
vect_better_loop_vinfo_p (loop_vec_info new_loop_vinfo,
|
|
loop_vec_info old_loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (new_loop_vinfo);
|
|
gcc_assert (LOOP_VINFO_LOOP (old_loop_vinfo) == loop);
|
|
|
|
poly_int64 new_vf = LOOP_VINFO_VECT_FACTOR (new_loop_vinfo);
|
|
poly_int64 old_vf = LOOP_VINFO_VECT_FACTOR (old_loop_vinfo);
|
|
|
|
/* Always prefer a VF of loop->simdlen over any other VF. */
|
|
if (loop->simdlen)
|
|
{
|
|
bool new_simdlen_p = known_eq (new_vf, loop->simdlen);
|
|
bool old_simdlen_p = known_eq (old_vf, loop->simdlen);
|
|
if (new_simdlen_p != old_simdlen_p)
|
|
return new_simdlen_p;
|
|
}
|
|
|
|
/* Limit the VFs to what is likely to be the maximum number of iterations,
|
|
to handle cases in which at least one loop_vinfo is fully-masked. */
|
|
HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop);
|
|
if (estimated_max_niter != -1)
|
|
{
|
|
if (known_le (estimated_max_niter, new_vf))
|
|
new_vf = estimated_max_niter;
|
|
if (known_le (estimated_max_niter, old_vf))
|
|
old_vf = estimated_max_niter;
|
|
}
|
|
|
|
/* Check whether the (fractional) cost per scalar iteration is lower
|
|
or higher: new_inside_cost / new_vf vs. old_inside_cost / old_vf. */
|
|
poly_int64 rel_new = new_loop_vinfo->vec_inside_cost * old_vf;
|
|
poly_int64 rel_old = old_loop_vinfo->vec_inside_cost * new_vf;
|
|
|
|
HOST_WIDE_INT est_rel_new_min
|
|
= estimated_poly_value (rel_new, POLY_VALUE_MIN);
|
|
HOST_WIDE_INT est_rel_new_max
|
|
= estimated_poly_value (rel_new, POLY_VALUE_MAX);
|
|
|
|
HOST_WIDE_INT est_rel_old_min
|
|
= estimated_poly_value (rel_old, POLY_VALUE_MIN);
|
|
HOST_WIDE_INT est_rel_old_max
|
|
= estimated_poly_value (rel_old, POLY_VALUE_MAX);
|
|
|
|
/* Check first if we can make out an unambigous total order from the minimum
|
|
and maximum estimates. */
|
|
if (est_rel_new_min < est_rel_old_min
|
|
&& est_rel_new_max < est_rel_old_max)
|
|
return true;
|
|
else if (est_rel_old_min < est_rel_new_min
|
|
&& est_rel_old_max < est_rel_new_max)
|
|
return false;
|
|
/* When old_loop_vinfo uses a variable vectorization factor,
|
|
we know that it has a lower cost for at least one runtime VF.
|
|
However, we don't know how likely that VF is.
|
|
|
|
One option would be to compare the costs for the estimated VFs.
|
|
The problem is that that can put too much pressure on the cost
|
|
model. E.g. if the estimated VF is also the lowest possible VF,
|
|
and if old_loop_vinfo is 1 unit worse than new_loop_vinfo
|
|
for the estimated VF, we'd then choose new_loop_vinfo even
|
|
though (a) new_loop_vinfo might not actually be better than
|
|
old_loop_vinfo for that VF and (b) it would be significantly
|
|
worse at larger VFs.
|
|
|
|
Here we go for a hacky compromise: pick new_loop_vinfo if it is
|
|
no more expensive than old_loop_vinfo even after doubling the
|
|
estimated old_loop_vinfo VF. For all but trivial loops, this
|
|
ensures that we only pick new_loop_vinfo if it is significantly
|
|
better than old_loop_vinfo at the estimated VF. */
|
|
|
|
if (est_rel_old_min != est_rel_new_min
|
|
|| est_rel_old_max != est_rel_new_max)
|
|
{
|
|
HOST_WIDE_INT est_rel_new_likely
|
|
= estimated_poly_value (rel_new, POLY_VALUE_LIKELY);
|
|
HOST_WIDE_INT est_rel_old_likely
|
|
= estimated_poly_value (rel_old, POLY_VALUE_LIKELY);
|
|
|
|
return est_rel_new_likely * 2 <= est_rel_old_likely;
|
|
}
|
|
|
|
/* If there's nothing to choose between the loop bodies, see whether
|
|
there's a difference in the prologue and epilogue costs. */
|
|
if (new_loop_vinfo->vec_outside_cost != old_loop_vinfo->vec_outside_cost)
|
|
return new_loop_vinfo->vec_outside_cost < old_loop_vinfo->vec_outside_cost;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Decide whether to replace OLD_LOOP_VINFO with NEW_LOOP_VINFO. Return
|
|
true if we should. */
|
|
|
|
static bool
|
|
vect_joust_loop_vinfos (loop_vec_info new_loop_vinfo,
|
|
loop_vec_info old_loop_vinfo)
|
|
{
|
|
if (!vect_better_loop_vinfo_p (new_loop_vinfo, old_loop_vinfo))
|
|
return false;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Preferring vector mode %s to vector mode %s\n",
|
|
GET_MODE_NAME (new_loop_vinfo->vector_mode),
|
|
GET_MODE_NAME (old_loop_vinfo->vector_mode));
|
|
return true;
|
|
}
|
|
|
|
/* If LOOP_VINFO is already a main loop, return it unmodified. Otherwise
|
|
try to reanalyze it as a main loop. Return the loop_vinfo on success
|
|
and null on failure. */
|
|
|
|
static loop_vec_info
|
|
vect_reanalyze_as_main_loop (loop_vec_info loop_vinfo, unsigned int *n_stmts)
|
|
{
|
|
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
return loop_vinfo;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Reanalyzing as a main loop with vector mode %s\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
vec_info_shared *shared = loop_vinfo->shared;
|
|
opt_loop_vec_info main_loop_vinfo = vect_analyze_loop_form (loop, shared);
|
|
gcc_assert (main_loop_vinfo);
|
|
|
|
main_loop_vinfo->vector_mode = loop_vinfo->vector_mode;
|
|
|
|
bool fatal = false;
|
|
bool res = vect_analyze_loop_2 (main_loop_vinfo, fatal, n_stmts);
|
|
loop->aux = NULL;
|
|
if (!res)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Failed to analyze main loop with vector"
|
|
" mode %s\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
delete main_loop_vinfo;
|
|
return NULL;
|
|
}
|
|
LOOP_VINFO_VECTORIZABLE_P (main_loop_vinfo) = 1;
|
|
return main_loop_vinfo;
|
|
}
|
|
|
|
/* Function vect_analyze_loop.
|
|
|
|
Apply a set of analyses on LOOP, and create a loop_vec_info struct
|
|
for it. The different analyses will record information in the
|
|
loop_vec_info struct. */
|
|
opt_loop_vec_info
|
|
vect_analyze_loop (class loop *loop, vec_info_shared *shared)
|
|
{
|
|
auto_vector_modes vector_modes;
|
|
|
|
/* Autodetect first vector size we try. */
|
|
unsigned int autovec_flags
|
|
= targetm.vectorize.autovectorize_vector_modes (&vector_modes,
|
|
loop->simdlen != 0);
|
|
unsigned int mode_i = 0;
|
|
|
|
DUMP_VECT_SCOPE ("analyze_loop_nest");
|
|
|
|
if (loop_outer (loop)
|
|
&& loop_vec_info_for_loop (loop_outer (loop))
|
|
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
|
|
return opt_loop_vec_info::failure_at (vect_location,
|
|
"outer-loop already vectorized.\n");
|
|
|
|
if (!find_loop_nest (loop, &shared->loop_nest))
|
|
return opt_loop_vec_info::failure_at
|
|
(vect_location,
|
|
"not vectorized: loop nest containing two or more consecutive inner"
|
|
" loops cannot be vectorized\n");
|
|
|
|
unsigned n_stmts = 0;
|
|
machine_mode autodetected_vector_mode = VOIDmode;
|
|
opt_loop_vec_info first_loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
machine_mode next_vector_mode = VOIDmode;
|
|
poly_uint64 lowest_th = 0;
|
|
unsigned vectorized_loops = 0;
|
|
bool pick_lowest_cost_p = ((autovec_flags & VECT_COMPARE_COSTS)
|
|
&& !unlimited_cost_model (loop));
|
|
|
|
bool vect_epilogues = false;
|
|
opt_result res = opt_result::success ();
|
|
unsigned HOST_WIDE_INT simdlen = loop->simdlen;
|
|
while (1)
|
|
{
|
|
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
|
|
opt_loop_vec_info loop_vinfo = vect_analyze_loop_form (loop, shared);
|
|
if (!loop_vinfo)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"bad loop form.\n");
|
|
gcc_checking_assert (first_loop_vinfo == NULL);
|
|
return loop_vinfo;
|
|
}
|
|
loop_vinfo->vector_mode = next_vector_mode;
|
|
|
|
bool fatal = false;
|
|
|
|
/* When pick_lowest_cost_p is true, we should in principle iterate
|
|
over all the loop_vec_infos that LOOP_VINFO could replace and
|
|
try to vectorize LOOP_VINFO under the same conditions.
|
|
E.g. when trying to replace an epilogue loop, we should vectorize
|
|
LOOP_VINFO as an epilogue loop with the same VF limit. When trying
|
|
to replace the main loop, we should vectorize LOOP_VINFO as a main
|
|
loop too.
|
|
|
|
However, autovectorize_vector_modes is usually sorted as follows:
|
|
|
|
- Modes that naturally produce lower VFs usually follow modes that
|
|
naturally produce higher VFs.
|
|
|
|
- When modes naturally produce the same VF, maskable modes
|
|
usually follow unmaskable ones, so that the maskable mode
|
|
can be used to vectorize the epilogue of the unmaskable mode.
|
|
|
|
This order is preferred because it leads to the maximum
|
|
epilogue vectorization opportunities. Targets should only use
|
|
a different order if they want to make wide modes available while
|
|
disparaging them relative to earlier, smaller modes. The assumption
|
|
in that case is that the wider modes are more expensive in some
|
|
way that isn't reflected directly in the costs.
|
|
|
|
There should therefore be few interesting cases in which
|
|
LOOP_VINFO fails when treated as an epilogue loop, succeeds when
|
|
treated as a standalone loop, and ends up being genuinely cheaper
|
|
than FIRST_LOOP_VINFO. */
|
|
if (vect_epilogues)
|
|
LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = first_loop_vinfo;
|
|
|
|
res = vect_analyze_loop_2 (loop_vinfo, fatal, &n_stmts);
|
|
if (mode_i == 0)
|
|
autodetected_vector_mode = loop_vinfo->vector_mode;
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (res)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Analysis succeeded with vector mode %s\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
else
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Analysis failed with vector mode %s\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
}
|
|
|
|
loop->aux = NULL;
|
|
|
|
if (!fatal)
|
|
while (mode_i < vector_modes.length ()
|
|
&& vect_chooses_same_modes_p (loop_vinfo, vector_modes[mode_i]))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** The result for vector mode %s would"
|
|
" be the same\n",
|
|
GET_MODE_NAME (vector_modes[mode_i]));
|
|
mode_i += 1;
|
|
}
|
|
|
|
if (res)
|
|
{
|
|
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
|
|
vectorized_loops++;
|
|
|
|
/* Once we hit the desired simdlen for the first time,
|
|
discard any previous attempts. */
|
|
if (simdlen
|
|
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), simdlen))
|
|
{
|
|
delete first_loop_vinfo;
|
|
first_loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = NULL;
|
|
simdlen = 0;
|
|
}
|
|
else if (pick_lowest_cost_p && first_loop_vinfo)
|
|
{
|
|
/* Keep trying to roll back vectorization attempts while the
|
|
loop_vec_infos they produced were worse than this one. */
|
|
vec<loop_vec_info> &vinfos = first_loop_vinfo->epilogue_vinfos;
|
|
while (!vinfos.is_empty ()
|
|
&& vect_joust_loop_vinfos (loop_vinfo, vinfos.last ()))
|
|
{
|
|
gcc_assert (vect_epilogues);
|
|
delete vinfos.pop ();
|
|
}
|
|
if (vinfos.is_empty ()
|
|
&& vect_joust_loop_vinfos (loop_vinfo, first_loop_vinfo))
|
|
{
|
|
loop_vec_info main_loop_vinfo
|
|
= vect_reanalyze_as_main_loop (loop_vinfo, &n_stmts);
|
|
if (main_loop_vinfo == loop_vinfo)
|
|
{
|
|
delete first_loop_vinfo;
|
|
first_loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
}
|
|
else if (main_loop_vinfo
|
|
&& vect_joust_loop_vinfos (main_loop_vinfo,
|
|
first_loop_vinfo))
|
|
{
|
|
delete first_loop_vinfo;
|
|
first_loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
delete loop_vinfo;
|
|
loop_vinfo
|
|
= opt_loop_vec_info::success (main_loop_vinfo);
|
|
}
|
|
else
|
|
delete main_loop_vinfo;
|
|
}
|
|
}
|
|
|
|
if (first_loop_vinfo == NULL)
|
|
{
|
|
first_loop_vinfo = loop_vinfo;
|
|
lowest_th = LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo);
|
|
}
|
|
else if (vect_epilogues
|
|
/* For now only allow one epilogue loop. */
|
|
&& first_loop_vinfo->epilogue_vinfos.is_empty ())
|
|
{
|
|
first_loop_vinfo->epilogue_vinfos.safe_push (loop_vinfo);
|
|
poly_uint64 th = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
|
|
gcc_assert (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|
|
|| maybe_ne (lowest_th, 0U));
|
|
/* Keep track of the known smallest versioning
|
|
threshold. */
|
|
if (ordered_p (lowest_th, th))
|
|
lowest_th = ordered_min (lowest_th, th);
|
|
}
|
|
else
|
|
{
|
|
delete loop_vinfo;
|
|
loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
}
|
|
|
|
/* Only vectorize epilogues if PARAM_VECT_EPILOGUES_NOMASK is
|
|
enabled, SIMDUID is not set, it is the innermost loop and we have
|
|
either already found the loop's SIMDLEN or there was no SIMDLEN to
|
|
begin with.
|
|
TODO: Enable epilogue vectorization for loops with SIMDUID set. */
|
|
vect_epilogues = (!simdlen
|
|
&& loop->inner == NULL
|
|
&& param_vect_epilogues_nomask
|
|
&& LOOP_VINFO_PEELING_FOR_NITER (first_loop_vinfo)
|
|
&& !loop->simduid
|
|
/* For now only allow one epilogue loop, but allow
|
|
pick_lowest_cost_p to replace it. */
|
|
&& (first_loop_vinfo->epilogue_vinfos.is_empty ()
|
|
|| pick_lowest_cost_p));
|
|
|
|
/* Commit to first_loop_vinfo if we have no reason to try
|
|
alternatives. */
|
|
if (!simdlen && !vect_epilogues && !pick_lowest_cost_p)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
delete loop_vinfo;
|
|
loop_vinfo = opt_loop_vec_info::success (NULL);
|
|
if (fatal)
|
|
{
|
|
gcc_checking_assert (first_loop_vinfo == NULL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Handle the case that the original loop can use partial
|
|
vectorization, but want to only adopt it for the epilogue.
|
|
The retry should be in the same mode as original. */
|
|
if (vect_epilogues
|
|
&& loop_vinfo
|
|
&& LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
gcc_assert (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Re-trying analysis with same vector mode"
|
|
" %s for epilogue with partial vectors.\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
continue;
|
|
}
|
|
|
|
if (mode_i < vector_modes.length ()
|
|
&& VECTOR_MODE_P (autodetected_vector_mode)
|
|
&& (related_vector_mode (vector_modes[mode_i],
|
|
GET_MODE_INNER (autodetected_vector_mode))
|
|
== autodetected_vector_mode)
|
|
&& (related_vector_mode (autodetected_vector_mode,
|
|
GET_MODE_INNER (vector_modes[mode_i]))
|
|
== vector_modes[mode_i]))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Skipping vector mode %s, which would"
|
|
" repeat the analysis for %s\n",
|
|
GET_MODE_NAME (vector_modes[mode_i]),
|
|
GET_MODE_NAME (autodetected_vector_mode));
|
|
mode_i += 1;
|
|
}
|
|
|
|
if (mode_i == vector_modes.length ()
|
|
|| autodetected_vector_mode == VOIDmode)
|
|
break;
|
|
|
|
/* Try the next biggest vector size. */
|
|
next_vector_mode = vector_modes[mode_i++];
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Re-trying analysis with vector mode %s\n",
|
|
GET_MODE_NAME (next_vector_mode));
|
|
}
|
|
|
|
if (first_loop_vinfo)
|
|
{
|
|
loop->aux = (loop_vec_info) first_loop_vinfo;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"***** Choosing vector mode %s\n",
|
|
GET_MODE_NAME (first_loop_vinfo->vector_mode));
|
|
LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo) = lowest_th;
|
|
return first_loop_vinfo;
|
|
}
|
|
|
|
return opt_loop_vec_info::propagate_failure (res);
|
|
}
|
|
|
|
/* Return true if there is an in-order reduction function for CODE, storing
|
|
it in *REDUC_FN if so. */
|
|
|
|
static bool
|
|
fold_left_reduction_fn (tree_code code, internal_fn *reduc_fn)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
*reduc_fn = IFN_FOLD_LEFT_PLUS;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Function reduction_fn_for_scalar_code
|
|
|
|
Input:
|
|
CODE - tree_code of a reduction operations.
|
|
|
|
Output:
|
|
REDUC_FN - the corresponding internal function to be used to reduce the
|
|
vector of partial results into a single scalar result, or IFN_LAST
|
|
if the operation is a supported reduction operation, but does not have
|
|
such an internal function.
|
|
|
|
Return FALSE if CODE currently cannot be vectorized as reduction. */
|
|
|
|
static bool
|
|
reduction_fn_for_scalar_code (enum tree_code code, internal_fn *reduc_fn)
|
|
{
|
|
switch (code)
|
|
{
|
|
case MAX_EXPR:
|
|
*reduc_fn = IFN_REDUC_MAX;
|
|
return true;
|
|
|
|
case MIN_EXPR:
|
|
*reduc_fn = IFN_REDUC_MIN;
|
|
return true;
|
|
|
|
case PLUS_EXPR:
|
|
*reduc_fn = IFN_REDUC_PLUS;
|
|
return true;
|
|
|
|
case BIT_AND_EXPR:
|
|
*reduc_fn = IFN_REDUC_AND;
|
|
return true;
|
|
|
|
case BIT_IOR_EXPR:
|
|
*reduc_fn = IFN_REDUC_IOR;
|
|
return true;
|
|
|
|
case BIT_XOR_EXPR:
|
|
*reduc_fn = IFN_REDUC_XOR;
|
|
return true;
|
|
|
|
case MULT_EXPR:
|
|
case MINUS_EXPR:
|
|
*reduc_fn = IFN_LAST;
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If there is a neutral value X such that SLP reduction NODE would not
|
|
be affected by the introduction of additional X elements, return that X,
|
|
otherwise return null. CODE is the code of the reduction and VECTOR_TYPE
|
|
is the vector type that would hold element X. REDUC_CHAIN is true if
|
|
the SLP statements perform a single reduction, false if each statement
|
|
performs an independent reduction. */
|
|
|
|
static tree
|
|
neutral_op_for_slp_reduction (slp_tree slp_node, tree vector_type,
|
|
tree_code code, bool reduc_chain)
|
|
{
|
|
vec<stmt_vec_info> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
|
stmt_vec_info stmt_vinfo = stmts[0];
|
|
tree scalar_type = TREE_TYPE (vector_type);
|
|
class loop *loop = gimple_bb (stmt_vinfo->stmt)->loop_father;
|
|
gcc_assert (loop);
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_SUM_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
return build_zero_cst (scalar_type);
|
|
|
|
case MULT_EXPR:
|
|
return build_one_cst (scalar_type);
|
|
|
|
case BIT_AND_EXPR:
|
|
return build_all_ones_cst (scalar_type);
|
|
|
|
case MAX_EXPR:
|
|
case MIN_EXPR:
|
|
/* For MIN/MAX the initial values are neutral. A reduction chain
|
|
has only a single initial value, so that value is neutral for
|
|
all statements. */
|
|
if (reduc_chain)
|
|
return PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt,
|
|
loop_preheader_edge (loop));
|
|
return NULL_TREE;
|
|
|
|
default:
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
|
|
STMT is printed with a message MSG. */
|
|
|
|
static void
|
|
report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
|
|
{
|
|
dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
|
|
}
|
|
|
|
/* Return true if we need an in-order reduction for operation CODE
|
|
on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
|
|
overflow must wrap. */
|
|
|
|
bool
|
|
needs_fold_left_reduction_p (tree type, tree_code code)
|
|
{
|
|
/* CHECKME: check for !flag_finite_math_only too? */
|
|
if (SCALAR_FLOAT_TYPE_P (type))
|
|
switch (code)
|
|
{
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
return false;
|
|
|
|
default:
|
|
return !flag_associative_math;
|
|
}
|
|
|
|
if (INTEGRAL_TYPE_P (type))
|
|
{
|
|
if (!operation_no_trapping_overflow (type, code))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (SAT_FIXED_POINT_TYPE_P (type))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
|
|
has a handled computation expression. Store the main reduction
|
|
operation in *CODE. */
|
|
|
|
static bool
|
|
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
|
|
tree loop_arg, enum tree_code *code,
|
|
vec<std::pair<ssa_op_iter, use_operand_p> > &path)
|
|
{
|
|
auto_bitmap visited;
|
|
tree lookfor = PHI_RESULT (phi);
|
|
ssa_op_iter curri;
|
|
use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
|
|
while (USE_FROM_PTR (curr) != loop_arg)
|
|
curr = op_iter_next_use (&curri);
|
|
curri.i = curri.numops;
|
|
do
|
|
{
|
|
path.safe_push (std::make_pair (curri, curr));
|
|
tree use = USE_FROM_PTR (curr);
|
|
if (use == lookfor)
|
|
break;
|
|
gimple *def = SSA_NAME_DEF_STMT (use);
|
|
if (gimple_nop_p (def)
|
|
|| ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
|
|
{
|
|
pop:
|
|
do
|
|
{
|
|
std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
|
|
curri = x.first;
|
|
curr = x.second;
|
|
do
|
|
curr = op_iter_next_use (&curri);
|
|
/* Skip already visited or non-SSA operands (from iterating
|
|
over PHI args). */
|
|
while (curr != NULL_USE_OPERAND_P
|
|
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|
|
|| ! bitmap_set_bit (visited,
|
|
SSA_NAME_VERSION
|
|
(USE_FROM_PTR (curr)))));
|
|
}
|
|
while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
|
|
if (curr == NULL_USE_OPERAND_P)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (gimple_code (def) == GIMPLE_PHI)
|
|
curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
|
|
else
|
|
curr = op_iter_init_use (&curri, def, SSA_OP_USE);
|
|
while (curr != NULL_USE_OPERAND_P
|
|
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|
|
|| ! bitmap_set_bit (visited,
|
|
SSA_NAME_VERSION
|
|
(USE_FROM_PTR (curr)))))
|
|
curr = op_iter_next_use (&curri);
|
|
if (curr == NULL_USE_OPERAND_P)
|
|
goto pop;
|
|
}
|
|
}
|
|
while (1);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
|
|
unsigned i;
|
|
std::pair<ssa_op_iter, use_operand_p> *x;
|
|
FOR_EACH_VEC_ELT (path, i, x)
|
|
dump_printf (MSG_NOTE, "%T ", USE_FROM_PTR (x->second));
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
|
|
/* Check whether the reduction path detected is valid. */
|
|
bool fail = path.length () == 0;
|
|
bool neg = false;
|
|
int sign = -1;
|
|
*code = ERROR_MARK;
|
|
for (unsigned i = 1; i < path.length (); ++i)
|
|
{
|
|
gimple *use_stmt = USE_STMT (path[i].second);
|
|
tree op = USE_FROM_PTR (path[i].second);
|
|
if (! is_gimple_assign (use_stmt)
|
|
/* The following make sure we can compute the operand index
|
|
easily plus it mostly disallows chaining via COND_EXPR condition
|
|
operands. */
|
|
|| (gimple_assign_rhs1_ptr (use_stmt) != path[i].second->use
|
|
&& (gimple_num_ops (use_stmt) <= 2
|
|
|| gimple_assign_rhs2_ptr (use_stmt) != path[i].second->use)
|
|
&& (gimple_num_ops (use_stmt) <= 3
|
|
|| gimple_assign_rhs3_ptr (use_stmt) != path[i].second->use)))
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
tree_code use_code = gimple_assign_rhs_code (use_stmt);
|
|
if (use_code == MINUS_EXPR)
|
|
{
|
|
use_code = PLUS_EXPR;
|
|
/* Track whether we negate the reduction value each iteration. */
|
|
if (gimple_assign_rhs2 (use_stmt) == op)
|
|
neg = ! neg;
|
|
}
|
|
if (CONVERT_EXPR_CODE_P (use_code)
|
|
&& tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (use_stmt)),
|
|
TREE_TYPE (gimple_assign_rhs1 (use_stmt))))
|
|
;
|
|
else if (*code == ERROR_MARK)
|
|
{
|
|
*code = use_code;
|
|
sign = TYPE_SIGN (TREE_TYPE (gimple_assign_lhs (use_stmt)));
|
|
}
|
|
else if (use_code != *code)
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
else if ((use_code == MIN_EXPR
|
|
|| use_code == MAX_EXPR)
|
|
&& sign != TYPE_SIGN (TREE_TYPE (gimple_assign_lhs (use_stmt))))
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
/* Check there's only a single stmt the op is used on. For the
|
|
not value-changing tail and the last stmt allow out-of-loop uses.
|
|
??? We could relax this and handle arbitrary live stmts by
|
|
forcing a scalar epilogue for example. */
|
|
imm_use_iterator imm_iter;
|
|
gimple *op_use_stmt;
|
|
unsigned cnt = 0;
|
|
FOR_EACH_IMM_USE_STMT (op_use_stmt, imm_iter, op)
|
|
if (!is_gimple_debug (op_use_stmt)
|
|
&& (*code != ERROR_MARK
|
|
|| flow_bb_inside_loop_p (loop, gimple_bb (op_use_stmt))))
|
|
{
|
|
/* We want to allow x + x but not x < 1 ? x : 2. */
|
|
if (is_gimple_assign (op_use_stmt)
|
|
&& gimple_assign_rhs_code (op_use_stmt) == COND_EXPR)
|
|
{
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
cnt++;
|
|
}
|
|
else
|
|
cnt++;
|
|
}
|
|
if (cnt != 1)
|
|
{
|
|
fail = true;
|
|
break;
|
|
}
|
|
}
|
|
return ! fail && ! neg && *code != ERROR_MARK;
|
|
}
|
|
|
|
bool
|
|
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
|
|
tree loop_arg, enum tree_code code)
|
|
{
|
|
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
|
|
enum tree_code code_;
|
|
return (check_reduction_path (loc, loop, phi, loop_arg, &code_, path)
|
|
&& code_ == code);
|
|
}
|
|
|
|
|
|
|
|
/* Function vect_is_simple_reduction
|
|
|
|
(1) Detect a cross-iteration def-use cycle that represents a simple
|
|
reduction computation. We look for the following pattern:
|
|
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a3 = ...
|
|
a2 = operation (a3, a1)
|
|
|
|
or
|
|
|
|
a3 = ...
|
|
loop_header:
|
|
a1 = phi < a0, a2 >
|
|
a2 = operation (a3, a1)
|
|
|
|
such that:
|
|
1. operation is commutative and associative and it is safe to
|
|
change the order of the computation
|
|
2. no uses for a2 in the loop (a2 is used out of the loop)
|
|
3. no uses of a1 in the loop besides the reduction operation
|
|
4. no uses of a1 outside the loop.
|
|
|
|
Conditions 1,4 are tested here.
|
|
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
|
|
|
|
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
|
|
nested cycles.
|
|
|
|
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
|
|
reductions:
|
|
|
|
a1 = phi < a0, a2 >
|
|
inner loop (def of a3)
|
|
a2 = phi < a3 >
|
|
|
|
(4) Detect condition expressions, ie:
|
|
for (int i = 0; i < N; i++)
|
|
if (a[i] < val)
|
|
ret_val = a[i];
|
|
|
|
*/
|
|
|
|
static stmt_vec_info
|
|
vect_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
|
|
bool *double_reduc, bool *reduc_chain_p)
|
|
{
|
|
gphi *phi = as_a <gphi *> (phi_info->stmt);
|
|
gimple *phi_use_stmt = NULL;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
|
|
*double_reduc = false;
|
|
*reduc_chain_p = false;
|
|
STMT_VINFO_REDUC_TYPE (phi_info) = TREE_CODE_REDUCTION;
|
|
|
|
tree phi_name = PHI_RESULT (phi);
|
|
/* ??? If there are no uses of the PHI result the inner loop reduction
|
|
won't be detected as possibly double-reduction by vectorizable_reduction
|
|
because that tries to walk the PHI arg from the preheader edge which
|
|
can be constant. See PR60382. */
|
|
if (has_zero_uses (phi_name))
|
|
return NULL;
|
|
class loop *loop = (gimple_bb (phi))->loop_father;
|
|
unsigned nphi_def_loop_uses = 0;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"intermediate value used outside loop.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
nphi_def_loop_uses++;
|
|
phi_use_stmt = use_stmt;
|
|
}
|
|
|
|
tree latch_def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
|
if (TREE_CODE (latch_def) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: not ssa_name: %T\n", latch_def);
|
|
return NULL;
|
|
}
|
|
|
|
stmt_vec_info def_stmt_info = loop_info->lookup_def (latch_def);
|
|
if (!def_stmt_info
|
|
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
|
|
return NULL;
|
|
|
|
bool nested_in_vect_loop
|
|
= flow_loop_nested_p (LOOP_VINFO_LOOP (loop_info), loop);
|
|
unsigned nlatch_def_loop_uses = 0;
|
|
auto_vec<gphi *, 3> lcphis;
|
|
bool inner_loop_of_double_reduc = false;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, latch_def)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
|
|
nlatch_def_loop_uses++;
|
|
else
|
|
{
|
|
/* We can have more than one loop-closed PHI. */
|
|
lcphis.safe_push (as_a <gphi *> (use_stmt));
|
|
if (nested_in_vect_loop
|
|
&& (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
|
|
== vect_double_reduction_def))
|
|
inner_loop_of_double_reduc = true;
|
|
}
|
|
}
|
|
|
|
/* If we are vectorizing an inner reduction we are executing that
|
|
in the original order only in case we are not dealing with a
|
|
double reduction. */
|
|
if (nested_in_vect_loop && !inner_loop_of_double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt_info->stmt,
|
|
"detected nested cycle: ");
|
|
return def_stmt_info;
|
|
}
|
|
|
|
/* If this isn't a nested cycle or if the nested cycle reduction value
|
|
is used ouside of the inner loop we cannot handle uses of the reduction
|
|
value. */
|
|
if (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction used in loop.\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
|
|
defined in the inner loop. */
|
|
if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
|
|
{
|
|
tree op1 = PHI_ARG_DEF (def_stmt, 0);
|
|
if (gimple_phi_num_args (def_stmt) != 1
|
|
|| TREE_CODE (op1) != SSA_NAME)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported phi node definition.\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
gimple *def1 = SSA_NAME_DEF_STMT (op1);
|
|
if (gimple_bb (def1)
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|
|
&& loop->inner
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
|
|
&& is_gimple_assign (def1)
|
|
&& is_a <gphi *> (phi_use_stmt)
|
|
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
report_vect_op (MSG_NOTE, def_stmt,
|
|
"detected double reduction: ");
|
|
|
|
*double_reduc = true;
|
|
return def_stmt_info;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Look for the expression computing latch_def from then loop PHI result. */
|
|
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
|
|
enum tree_code code;
|
|
if (check_reduction_path (vect_location, loop, phi, latch_def, &code,
|
|
path))
|
|
{
|
|
STMT_VINFO_REDUC_CODE (phi_info) = code;
|
|
if (code == COND_EXPR && !nested_in_vect_loop)
|
|
STMT_VINFO_REDUC_TYPE (phi_info) = COND_REDUCTION;
|
|
|
|
/* Fill in STMT_VINFO_REDUC_IDX and gather stmts for an SLP
|
|
reduction chain for which the additional restriction is that
|
|
all operations in the chain are the same. */
|
|
auto_vec<stmt_vec_info, 8> reduc_chain;
|
|
unsigned i;
|
|
bool is_slp_reduc = !nested_in_vect_loop && code != COND_EXPR;
|
|
for (i = path.length () - 1; i >= 1; --i)
|
|
{
|
|
gimple *stmt = USE_STMT (path[i].second);
|
|
stmt_vec_info stmt_info = loop_info->lookup_stmt (stmt);
|
|
STMT_VINFO_REDUC_IDX (stmt_info)
|
|
= path[i].second->use - gimple_assign_rhs1_ptr (stmt);
|
|
enum tree_code stmt_code = gimple_assign_rhs_code (stmt);
|
|
bool leading_conversion = (CONVERT_EXPR_CODE_P (stmt_code)
|
|
&& (i == 1 || i == path.length () - 1));
|
|
if ((stmt_code != code && !leading_conversion)
|
|
/* We can only handle the final value in epilogue
|
|
generation for reduction chains. */
|
|
|| (i != 1 && !has_single_use (gimple_assign_lhs (stmt))))
|
|
is_slp_reduc = false;
|
|
/* For reduction chains we support a trailing/leading
|
|
conversions. We do not store those in the actual chain. */
|
|
if (leading_conversion)
|
|
continue;
|
|
reduc_chain.safe_push (stmt_info);
|
|
}
|
|
if (is_slp_reduc && reduc_chain.length () > 1)
|
|
{
|
|
for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
|
|
{
|
|
REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
|
|
REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
|
|
}
|
|
REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
|
|
REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
|
|
|
|
/* Save the chain for further analysis in SLP detection. */
|
|
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
|
|
REDUC_GROUP_SIZE (reduc_chain[0]) = reduc_chain.length ();
|
|
|
|
*reduc_chain_p = true;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"reduction: detected reduction chain\n");
|
|
}
|
|
else if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"reduction: detected reduction\n");
|
|
|
|
return def_stmt_info;
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"reduction: unknown pattern\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Estimate the number of peeled epilogue iterations for LOOP_VINFO.
|
|
PEEL_ITERS_PROLOGUE is the number of peeled prologue iterations,
|
|
or -1 if not known. */
|
|
|
|
static int
|
|
vect_get_peel_iters_epilogue (loop_vec_info loop_vinfo, int peel_iters_prologue)
|
|
{
|
|
int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) || peel_iters_prologue == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"cost model: epilogue peel iters set to vf/2 "
|
|
"because loop iterations are unknown .\n");
|
|
return assumed_vf / 2;
|
|
}
|
|
else
|
|
{
|
|
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
|
|
peel_iters_prologue = MIN (niters, peel_iters_prologue);
|
|
int peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
|
|
/* If we need to peel for gaps, but no peeling is required, we have to
|
|
peel VF iterations. */
|
|
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !peel_iters_epilogue)
|
|
peel_iters_epilogue = assumed_vf;
|
|
return peel_iters_epilogue;
|
|
}
|
|
}
|
|
|
|
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
|
|
int
|
|
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
|
|
int *peel_iters_epilogue,
|
|
stmt_vector_for_cost *scalar_cost_vec,
|
|
stmt_vector_for_cost *prologue_cost_vec,
|
|
stmt_vector_for_cost *epilogue_cost_vec)
|
|
{
|
|
int retval = 0;
|
|
|
|
*peel_iters_epilogue
|
|
= vect_get_peel_iters_epilogue (loop_vinfo, peel_iters_prologue);
|
|
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
/* If peeled iterations are known but number of scalar loop
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
|
if (peel_iters_prologue > 0)
|
|
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
if (*peel_iters_epilogue > 0)
|
|
retval += record_stmt_cost (epilogue_cost_vec, 1, cond_branch_taken,
|
|
NULL, NULL_TREE, 0, vect_epilogue);
|
|
}
|
|
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
if (peel_iters_prologue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
retval += record_stmt_cost (prologue_cost_vec,
|
|
si->count * peel_iters_prologue,
|
|
si->kind, si->stmt_info, si->misalign,
|
|
vect_prologue);
|
|
if (*peel_iters_epilogue)
|
|
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
|
|
retval += record_stmt_cost (epilogue_cost_vec,
|
|
si->count * *peel_iters_epilogue,
|
|
si->kind, si->stmt_info, si->misalign,
|
|
vect_epilogue);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Function vect_estimate_min_profitable_iters
|
|
|
|
Return the number of iterations required for the vector version of the
|
|
loop to be profitable relative to the cost of the scalar version of the
|
|
loop.
|
|
|
|
*RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
|
|
of iterations for vectorization. -1 value means loop vectorization
|
|
is not profitable. This returned value may be used for dynamic
|
|
profitability check.
|
|
|
|
*RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
|
|
for static check against estimated number of iterations. */
|
|
|
|
static void
|
|
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
|
|
int *ret_min_profitable_niters,
|
|
int *ret_min_profitable_estimate)
|
|
{
|
|
int min_profitable_iters;
|
|
int min_profitable_estimate;
|
|
int peel_iters_prologue;
|
|
int peel_iters_epilogue;
|
|
unsigned vec_inside_cost = 0;
|
|
int vec_outside_cost = 0;
|
|
unsigned vec_prologue_cost = 0;
|
|
unsigned vec_epilogue_cost = 0;
|
|
int scalar_single_iter_cost = 0;
|
|
int scalar_outside_cost = 0;
|
|
int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
|
|
|
|
/* Cost model disabled. */
|
|
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
|
|
*ret_min_profitable_niters = 0;
|
|
*ret_min_profitable_estimate = 0;
|
|
return;
|
|
}
|
|
|
|
/* Requires loop versioning tests to handle misalignment. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, len, vector_stmt,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning to treat misalignment.\n");
|
|
}
|
|
|
|
/* Requires loop versioning with alias checks. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, len, vector_stmt,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
|
|
if (len)
|
|
/* Count LEN - 1 ANDs and LEN comparisons. */
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, len * 2 - 1,
|
|
scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
|
|
len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
|
|
if (len)
|
|
{
|
|
/* Count LEN - 1 ANDs and LEN comparisons. */
|
|
unsigned int nstmts = len * 2 - 1;
|
|
/* +1 for each bias that needs adding. */
|
|
for (unsigned int i = 0; i < len; ++i)
|
|
if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
|
|
nstmts += 1;
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, nstmts,
|
|
scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
|
|
}
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning aliasing.\n");
|
|
}
|
|
|
|
/* Requires loop versioning with niter checks. */
|
|
if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
|
|
{
|
|
/* FIXME: Make cost depend on complexity of individual check. */
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1, vector_stmt,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"cost model: Adding cost of checks for loop "
|
|
"versioning niters.\n");
|
|
}
|
|
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1, cond_branch_taken,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
|
|
/* Count statements in scalar loop. Using this as scalar cost for a single
|
|
iteration for now.
|
|
|
|
TODO: Add outer loop support.
|
|
|
|
TODO: Consider assigning different costs to different scalar
|
|
statements. */
|
|
|
|
scalar_single_iter_cost
|
|
= LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
|
|
|
|
/* Add additional cost for the peeled instructions in prologue and epilogue
|
|
loop. (For fully-masked loops there will be no peeling.)
|
|
|
|
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
|
|
at compile-time - we assume it's vf/2 (the worst would be vf-1).
|
|
|
|
TODO: Build an expression that represents peel_iters for prologue and
|
|
epilogue to be used in a run-time test. */
|
|
|
|
bool prologue_need_br_taken_cost = false;
|
|
bool prologue_need_br_not_taken_cost = false;
|
|
|
|
/* Calculate peel_iters_prologue. */
|
|
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
peel_iters_prologue = 0;
|
|
else if (npeel < 0)
|
|
{
|
|
peel_iters_prologue = assumed_vf / 2;
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"prologue peel iters set to vf/2.\n");
|
|
|
|
/* If peeled iterations are unknown, count a taken branch and a not taken
|
|
branch per peeled loop. Even if scalar loop iterations are known,
|
|
vector iterations are not known since peeled prologue iterations are
|
|
not known. Hence guards remain the same. */
|
|
prologue_need_br_taken_cost = true;
|
|
prologue_need_br_not_taken_cost = true;
|
|
}
|
|
else
|
|
{
|
|
peel_iters_prologue = npeel;
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_prologue > 0)
|
|
/* If peeled iterations are known but number of scalar loop
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
|
prologue_need_br_taken_cost = true;
|
|
}
|
|
|
|
bool epilogue_need_br_taken_cost = false;
|
|
bool epilogue_need_br_not_taken_cost = false;
|
|
|
|
/* Calculate peel_iters_epilogue. */
|
|
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
/* We need to peel exactly one iteration for gaps. */
|
|
peel_iters_epilogue = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
|
|
else if (npeel < 0)
|
|
{
|
|
/* If peeling for alignment is unknown, loop bound of main loop
|
|
becomes unknown. */
|
|
peel_iters_epilogue = assumed_vf / 2;
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "cost model: "
|
|
"epilogue peel iters set to vf/2 because "
|
|
"peeling for alignment is unknown.\n");
|
|
|
|
/* See the same reason above in peel_iters_prologue calculation. */
|
|
epilogue_need_br_taken_cost = true;
|
|
epilogue_need_br_not_taken_cost = true;
|
|
}
|
|
else
|
|
{
|
|
peel_iters_epilogue = vect_get_peel_iters_epilogue (loop_vinfo, npeel);
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_epilogue > 0)
|
|
/* If peeled iterations are known but number of scalar loop
|
|
iterations are unknown, count a taken branch per peeled loop. */
|
|
epilogue_need_br_taken_cost = true;
|
|
}
|
|
|
|
stmt_info_for_cost *si;
|
|
int j;
|
|
/* Add costs associated with peel_iters_prologue. */
|
|
if (peel_iters_prologue)
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
|
|
{
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data,
|
|
si->count * peel_iters_prologue, si->kind,
|
|
si->stmt_info, si->vectype, si->misalign,
|
|
vect_prologue);
|
|
}
|
|
|
|
/* Add costs associated with peel_iters_epilogue. */
|
|
if (peel_iters_epilogue)
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
|
|
{
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data,
|
|
si->count * peel_iters_epilogue, si->kind,
|
|
si->stmt_info, si->vectype, si->misalign,
|
|
vect_epilogue);
|
|
}
|
|
|
|
/* Add possible cond_branch_taken/cond_branch_not_taken cost. */
|
|
|
|
if (prologue_need_br_taken_cost)
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1, cond_branch_taken,
|
|
NULL, NULL_TREE, 0, vect_prologue);
|
|
|
|
if (prologue_need_br_not_taken_cost)
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1,
|
|
cond_branch_not_taken, NULL, NULL_TREE, 0,
|
|
vect_prologue);
|
|
|
|
if (epilogue_need_br_taken_cost)
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1, cond_branch_taken,
|
|
NULL, NULL_TREE, 0, vect_epilogue);
|
|
|
|
if (epilogue_need_br_not_taken_cost)
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, 1,
|
|
cond_branch_not_taken, NULL, NULL_TREE, 0,
|
|
vect_epilogue);
|
|
|
|
/* Take care of special costs for rgroup controls of partial vectors. */
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
/* Calculate how many masks we need to generate. */
|
|
unsigned int num_masks = 0;
|
|
rgroup_controls *rgm;
|
|
unsigned int num_vectors_m1;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), num_vectors_m1, rgm)
|
|
if (rgm->type)
|
|
num_masks += num_vectors_m1 + 1;
|
|
gcc_assert (num_masks > 0);
|
|
|
|
/* In the worst case, we need to generate each mask in the prologue
|
|
and in the loop body. One of the loop body mask instructions
|
|
replaces the comparison in the scalar loop, and since we don't
|
|
count the scalar comparison against the scalar body, we shouldn't
|
|
count that vector instruction against the vector body either.
|
|
|
|
Sometimes we can use unpacks instead of generating prologue
|
|
masks and sometimes the prologue mask will fold to a constant,
|
|
so the actual prologue cost might be smaller. However, it's
|
|
simpler and safer to use the worst-case cost; if this ends up
|
|
being the tie-breaker between vectorizing or not, then it's
|
|
probably better not to vectorize. */
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, num_masks,
|
|
vector_stmt, NULL, NULL_TREE, 0, vect_prologue);
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, num_masks - 1,
|
|
vector_stmt, NULL, NULL_TREE, 0, vect_body);
|
|
}
|
|
else if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
|
|
{
|
|
/* Referring to the functions vect_set_loop_condition_partial_vectors
|
|
and vect_set_loop_controls_directly, we need to generate each
|
|
length in the prologue and in the loop body if required. Although
|
|
there are some possible optimizations, we consider the worst case
|
|
here. */
|
|
|
|
bool niters_known_p = LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo);
|
|
bool need_iterate_p
|
|
= (!LOOP_VINFO_EPILOGUE_P (loop_vinfo)
|
|
&& !vect_known_niters_smaller_than_vf (loop_vinfo));
|
|
|
|
/* Calculate how many statements to be added. */
|
|
unsigned int prologue_stmts = 0;
|
|
unsigned int body_stmts = 0;
|
|
|
|
rgroup_controls *rgc;
|
|
unsigned int num_vectors_m1;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), num_vectors_m1, rgc)
|
|
if (rgc->type)
|
|
{
|
|
/* May need one SHIFT for nitems_total computation. */
|
|
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
|
|
if (nitems != 1 && !niters_known_p)
|
|
prologue_stmts += 1;
|
|
|
|
/* May need one MAX and one MINUS for wrap around. */
|
|
if (vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc))
|
|
prologue_stmts += 2;
|
|
|
|
/* Need one MAX and one MINUS for each batch limit excepting for
|
|
the 1st one. */
|
|
prologue_stmts += num_vectors_m1 * 2;
|
|
|
|
unsigned int num_vectors = num_vectors_m1 + 1;
|
|
|
|
/* Need to set up lengths in prologue, only one MIN required
|
|
for each since start index is zero. */
|
|
prologue_stmts += num_vectors;
|
|
|
|
/* Each may need two MINs and one MINUS to update lengths in body
|
|
for next iteration. */
|
|
if (need_iterate_p)
|
|
body_stmts += 3 * num_vectors;
|
|
}
|
|
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, prologue_stmts,
|
|
scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
|
|
(void) add_stmt_cost (loop_vinfo, target_cost_data, body_stmts,
|
|
scalar_stmt, NULL, NULL_TREE, 0, vect_body);
|
|
}
|
|
|
|
/* FORNOW: The scalar outside cost is incremented in one of the
|
|
following ways:
|
|
|
|
1. The vectorizer checks for alignment and aliasing and generates
|
|
a condition that allows dynamic vectorization. A cost model
|
|
check is ANDED with the versioning condition. Hence scalar code
|
|
path now has the added cost of the versioning check.
|
|
|
|
if (cost > th & versioning_check)
|
|
jmp to vector code
|
|
|
|
Hence run-time scalar is incremented by not-taken branch cost.
|
|
|
|
2. The vectorizer then checks if a prologue is required. If the
|
|
cost model check was not done before during versioning, it has to
|
|
be done before the prologue check.
|
|
|
|
if (cost <= th)
|
|
prologue = scalar_iters
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
|
|
Hence the run-time scalar cost is incremented by a taken branch,
|
|
plus a not-taken branch, plus a taken branch cost.
|
|
|
|
3. The vectorizer then checks if an epilogue is required. If the
|
|
cost model check was not done before during prologue check, it
|
|
has to be done with the epilogue check.
|
|
|
|
if (prologue == 0)
|
|
jmp to vector code
|
|
else
|
|
execute prologue
|
|
if (prologue == num_iters)
|
|
go to exit
|
|
vector code:
|
|
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
|
|
jmp to epilogue
|
|
|
|
Hence the run-time scalar cost should be incremented by 2 taken
|
|
branches.
|
|
|
|
TODO: The back end may reorder the BBS's differently and reverse
|
|
conditions/branch directions. Change the estimates below to
|
|
something more reasonable. */
|
|
|
|
/* If the number of iterations is known and we do not do versioning, we can
|
|
decide whether to vectorize at compile time. Hence the scalar version
|
|
do not carry cost model guard costs. */
|
|
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
|| LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
{
|
|
/* Cost model check occurs at versioning. */
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
|
|
else
|
|
{
|
|
/* Cost model check occurs at prologue generation. */
|
|
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
|
|
+ vect_get_stmt_cost (cond_branch_not_taken);
|
|
/* Cost model check occurs at epilogue generation. */
|
|
else
|
|
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
|
|
}
|
|
}
|
|
|
|
/* Complete the target-specific cost calculations. */
|
|
finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
|
|
&vec_inside_cost, &vec_epilogue_cost);
|
|
|
|
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
|
|
|
|
/* Stash the costs so that we can compare two loop_vec_infos. */
|
|
loop_vinfo->vec_inside_cost = vec_inside_cost;
|
|
loop_vinfo->vec_outside_cost = vec_outside_cost;
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
|
|
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
|
|
vec_inside_cost);
|
|
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
|
|
vec_prologue_cost);
|
|
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
|
|
vec_epilogue_cost);
|
|
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
|
|
scalar_single_iter_cost);
|
|
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
|
|
scalar_outside_cost);
|
|
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
|
|
vec_outside_cost);
|
|
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
|
|
peel_iters_prologue);
|
|
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
|
|
peel_iters_epilogue);
|
|
}
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only. The following condition
|
|
must hold true:
|
|
SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
|
|
where
|
|
SIC = scalar iteration cost, VIC = vector iteration cost,
|
|
VOC = vector outside cost, VF = vectorization factor,
|
|
NPEEL = prologue iterations + epilogue iterations,
|
|
SOC = scalar outside cost for run time cost model check. */
|
|
|
|
int saving_per_viter = (scalar_single_iter_cost * assumed_vf
|
|
- vec_inside_cost);
|
|
if (saving_per_viter <= 0)
|
|
{
|
|
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
|
|
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
|
|
"vectorization did not happen for a simd loop");
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"cost model: the vector iteration cost = %d "
|
|
"divided by the scalar iteration cost = %d "
|
|
"is greater or equal to the vectorization factor = %d"
|
|
".\n",
|
|
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
|
|
*ret_min_profitable_niters = -1;
|
|
*ret_min_profitable_estimate = -1;
|
|
return;
|
|
}
|
|
|
|
/* ??? The "if" arm is written to handle all cases; see below for what
|
|
we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
|
|
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
/* Rewriting the condition above in terms of the number of
|
|
vector iterations (vniters) rather than the number of
|
|
scalar iterations (niters) gives:
|
|
|
|
SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC
|
|
|
|
<==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC
|
|
|
|
For integer N, X and Y when X > 0:
|
|
|
|
N * X > Y <==> N >= (Y /[floor] X) + 1. */
|
|
int outside_overhead = (vec_outside_cost
|
|
- scalar_single_iter_cost * peel_iters_prologue
|
|
- scalar_single_iter_cost * peel_iters_epilogue
|
|
- scalar_outside_cost);
|
|
/* We're only interested in cases that require at least one
|
|
vector iteration. */
|
|
int min_vec_niters = 1;
|
|
if (outside_overhead > 0)
|
|
min_vec_niters = outside_overhead / saving_per_viter + 1;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, " Minimum number of vector iterations: %d\n",
|
|
min_vec_niters);
|
|
|
|
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
/* Now that we know the minimum number of vector iterations,
|
|
find the minimum niters for which the scalar cost is larger:
|
|
|
|
SIC * niters > VIC * vniters + VOC - SOC
|
|
|
|
We know that the minimum niters is no more than
|
|
vniters * VF + NPEEL, but it might be (and often is) less
|
|
than that if a partial vector iteration is cheaper than the
|
|
equivalent scalar code. */
|
|
int threshold = (vec_inside_cost * min_vec_niters
|
|
+ vec_outside_cost
|
|
- scalar_outside_cost);
|
|
if (threshold <= 0)
|
|
min_profitable_iters = 1;
|
|
else
|
|
min_profitable_iters = threshold / scalar_single_iter_cost + 1;
|
|
}
|
|
else
|
|
/* Convert the number of vector iterations into a number of
|
|
scalar iterations. */
|
|
min_profitable_iters = (min_vec_niters * assumed_vf
|
|
+ peel_iters_prologue
|
|
+ peel_iters_epilogue);
|
|
}
|
|
else
|
|
{
|
|
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
|
|
* assumed_vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue);
|
|
if (min_profitable_iters <= 0)
|
|
min_profitable_iters = 0;
|
|
else
|
|
{
|
|
min_profitable_iters /= saving_per_viter;
|
|
|
|
if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
|
|
<= (((int) vec_inside_cost * min_profitable_iters)
|
|
+ (((int) vec_outside_cost - scalar_outside_cost)
|
|
* assumed_vf)))
|
|
min_profitable_iters++;
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
" Calculated minimum iters for profitability: %d\n",
|
|
min_profitable_iters);
|
|
|
|
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& min_profitable_iters < (assumed_vf + peel_iters_prologue))
|
|
/* We want the vectorized loop to execute at least once. */
|
|
min_profitable_iters = assumed_vf + peel_iters_prologue;
|
|
else if (min_profitable_iters < peel_iters_prologue)
|
|
/* For LOOP_VINFO_USING_PARTIAL_VECTORS_P, we need to ensure the
|
|
vectorized loop executes at least once. */
|
|
min_profitable_iters = peel_iters_prologue;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Runtime profitability threshold = %d\n",
|
|
min_profitable_iters);
|
|
|
|
*ret_min_profitable_niters = min_profitable_iters;
|
|
|
|
/* Calculate number of iterations required to make the vector version
|
|
profitable, relative to the loop bodies only.
|
|
|
|
Non-vectorized variant is SIC * niters and it must win over vector
|
|
variant on the expected loop trip count. The following condition must hold true:
|
|
SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC */
|
|
|
|
if (vec_outside_cost <= 0)
|
|
min_profitable_estimate = 0;
|
|
/* ??? This "else if" arm is written to handle all cases; see below for
|
|
what we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
|
|
else if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
/* This is a repeat of the code above, but with + SOC rather
|
|
than - SOC. */
|
|
int outside_overhead = (vec_outside_cost
|
|
- scalar_single_iter_cost * peel_iters_prologue
|
|
- scalar_single_iter_cost * peel_iters_epilogue
|
|
+ scalar_outside_cost);
|
|
int min_vec_niters = 1;
|
|
if (outside_overhead > 0)
|
|
min_vec_niters = outside_overhead / saving_per_viter + 1;
|
|
|
|
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
int threshold = (vec_inside_cost * min_vec_niters
|
|
+ vec_outside_cost
|
|
+ scalar_outside_cost);
|
|
min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
|
|
}
|
|
else
|
|
min_profitable_estimate = (min_vec_niters * assumed_vf
|
|
+ peel_iters_prologue
|
|
+ peel_iters_epilogue);
|
|
}
|
|
else
|
|
{
|
|
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
|
|
* assumed_vf
|
|
- vec_inside_cost * peel_iters_prologue
|
|
- vec_inside_cost * peel_iters_epilogue)
|
|
/ ((scalar_single_iter_cost * assumed_vf)
|
|
- vec_inside_cost);
|
|
}
|
|
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
" Static estimate profitability threshold = %d\n",
|
|
min_profitable_estimate);
|
|
|
|
*ret_min_profitable_estimate = min_profitable_estimate;
|
|
}
|
|
|
|
/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
|
|
vector elements (not bits) for a vector with NELT elements. */
|
|
static void
|
|
calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
|
|
vec_perm_builder *sel)
|
|
{
|
|
/* The encoding is a single stepped pattern. Any wrap-around is handled
|
|
by vec_perm_indices. */
|
|
sel->new_vector (nelt, 1, 3);
|
|
for (unsigned int i = 0; i < 3; i++)
|
|
sel->quick_push (i + offset);
|
|
}
|
|
|
|
/* Checks whether the target supports whole-vector shifts for vectors of mode
|
|
MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
|
|
it supports vec_perm_const with masks for all necessary shift amounts. */
|
|
static bool
|
|
have_whole_vector_shift (machine_mode mode)
|
|
{
|
|
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
|
|
return true;
|
|
|
|
/* Variable-length vectors should be handled via the optab. */
|
|
unsigned int nelt;
|
|
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
|
|
return false;
|
|
|
|
vec_perm_builder sel;
|
|
vec_perm_indices indices;
|
|
for (unsigned int i = nelt / 2; i >= 1; i /= 2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (i, nelt, &sel);
|
|
indices.new_vector (sel, 2, nelt);
|
|
if (!can_vec_perm_const_p (mode, indices, false))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
|
|
functions. Design better to avoid maintenance issues. */
|
|
|
|
/* Function vect_model_reduction_cost.
|
|
|
|
Models cost for a reduction operation, including the vector ops
|
|
generated within the strip-mine loop in some cases, the initial
|
|
definition before the loop, and the epilogue code that must be generated. */
|
|
|
|
static void
|
|
vect_model_reduction_cost (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info, internal_fn reduc_fn,
|
|
vect_reduction_type reduction_type,
|
|
int ncopies, stmt_vector_for_cost *cost_vec)
|
|
{
|
|
int prologue_cost = 0, epilogue_cost = 0, inside_cost = 0;
|
|
enum tree_code code;
|
|
optab optab;
|
|
tree vectype;
|
|
machine_mode mode;
|
|
class loop *loop = NULL;
|
|
|
|
if (loop_vinfo)
|
|
loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
|
|
/* Condition reductions generate two reductions in the loop. */
|
|
if (reduction_type == COND_REDUCTION)
|
|
ncopies *= 2;
|
|
|
|
vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
mode = TYPE_MODE (vectype);
|
|
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
|
|
|
|
code = gimple_assign_rhs_code (orig_stmt_info->stmt);
|
|
|
|
if (reduction_type == EXTRACT_LAST_REDUCTION)
|
|
/* No extra instructions are needed in the prologue. The loop body
|
|
operations are costed in vectorizable_condition. */
|
|
inside_cost = 0;
|
|
else if (reduction_type == FOLD_LEFT_REDUCTION)
|
|
{
|
|
/* No extra instructions needed in the prologue. */
|
|
prologue_cost = 0;
|
|
|
|
if (reduc_fn != IFN_LAST)
|
|
/* Count one reduction-like operation per vector. */
|
|
inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
|
|
stmt_info, 0, vect_body);
|
|
else
|
|
{
|
|
/* Use NELEMENTS extracts and NELEMENTS scalar ops. */
|
|
unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
|
|
inside_cost = record_stmt_cost (cost_vec, nelements,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_body);
|
|
inside_cost += record_stmt_cost (cost_vec, nelements,
|
|
scalar_stmt, stmt_info, 0,
|
|
vect_body);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Add in cost for initial definition.
|
|
For cond reduction we have four vectors: initial index, step,
|
|
initial result of the data reduction, initial value of the index
|
|
reduction. */
|
|
int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
|
|
prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
|
|
scalar_to_vec, stmt_info, 0,
|
|
vect_prologue);
|
|
}
|
|
|
|
/* Determine cost of epilogue code.
|
|
|
|
We have a reduction operator that will reduce the vector in one statement.
|
|
Also requires scalar extract. */
|
|
|
|
if (!loop || !nested_in_vect_loop_p (loop, orig_stmt_info))
|
|
{
|
|
if (reduc_fn != IFN_LAST)
|
|
{
|
|
if (reduction_type == COND_REDUCTION)
|
|
{
|
|
/* An EQ stmt and an COND_EXPR stmt. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 2,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* Reduction of the max index and a reduction of the found
|
|
values. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 2,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* A broadcast of the max value. */
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
scalar_to_vec, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else
|
|
{
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
|
|
stmt_info, 0, vect_epilogue);
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
else if (reduction_type == COND_REDUCTION)
|
|
{
|
|
unsigned estimated_nunits = vect_nunits_for_cost (vectype);
|
|
/* Extraction of scalar elements. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
2 * estimated_nunits,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
/* Scalar max reductions via COND_EXPR / MAX_EXPR. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
2 * estimated_nunits - 3,
|
|
scalar_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else if (reduction_type == EXTRACT_LAST_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION)
|
|
/* No extra instructions need in the epilogue. */
|
|
;
|
|
else
|
|
{
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
tree bitsize =
|
|
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt_info->stmt)));
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
|
|
if (code == COND_EXPR)
|
|
code = MAX_EXPR;
|
|
|
|
optab = optab_for_tree_code (code, vectype, optab_default);
|
|
|
|
/* We have a whole vector shift available. */
|
|
if (optab != unknown_optab
|
|
&& VECTOR_MODE_P (mode)
|
|
&& optab_handler (optab, mode) != CODE_FOR_nothing
|
|
&& have_whole_vector_shift (mode))
|
|
{
|
|
/* Final reduction via vector shifts and the reduction operator.
|
|
Also requires scalar extract. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
exact_log2 (nelements) * 2,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
epilogue_cost += record_stmt_cost (cost_vec, 1,
|
|
vec_to_scalar, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
else
|
|
/* Use extracts and reduction op for final reduction. For N
|
|
elements, we have N extracts and N-1 reduction ops. */
|
|
epilogue_cost += record_stmt_cost (cost_vec,
|
|
nelements + nelements - 1,
|
|
vector_stmt, stmt_info, 0,
|
|
vect_epilogue);
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE,
|
|
"vect_model_reduction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
|
|
prologue_cost, epilogue_cost);
|
|
}
|
|
|
|
|
|
|
|
/* Function get_initial_def_for_reduction
|
|
|
|
Input:
|
|
STMT_VINFO - a stmt that performs a reduction operation in the loop.
|
|
INIT_VAL - the initial value of the reduction variable
|
|
|
|
Output:
|
|
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
|
|
of the reduction (used for adjusting the epilog - see below).
|
|
Return a vector variable, initialized according to the operation that
|
|
STMT_VINFO performs. This vector will be used as the initial value
|
|
of the vector of partial results.
|
|
|
|
Option1 (adjust in epilog): Initialize the vector as follows:
|
|
add/bit or/xor: [0,0,...,0,0]
|
|
mult/bit and: [1,1,...,1,1]
|
|
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
|
|
and when necessary (e.g. add/mult case) let the caller know
|
|
that it needs to adjust the result by init_val.
|
|
|
|
Option2: Initialize the vector as follows:
|
|
add/bit or/xor: [init_val,0,0,...,0]
|
|
mult/bit and: [init_val,1,1,...,1]
|
|
min/max/cond_expr: [init_val,init_val,...,init_val]
|
|
and no adjustments are needed.
|
|
|
|
For example, for the following code:
|
|
|
|
s = init_val;
|
|
for (i=0;i<n;i++)
|
|
s = s + a[i];
|
|
|
|
STMT_VINFO is 's = s + a[i]', and the reduction variable is 's'.
|
|
For a vector of 4 units, we want to return either [0,0,0,init_val],
|
|
or [0,0,0,0] and let the caller know that it needs to adjust
|
|
the result at the end by 'init_val'.
|
|
|
|
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
|
|
initialization vector is simpler (same element in all entries), if
|
|
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
|
|
|
|
A cost model should help decide between these two schemes. */
|
|
|
|
static tree
|
|
get_initial_def_for_reduction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_vinfo,
|
|
enum tree_code code, tree init_val,
|
|
tree *adjustment_def)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree scalar_type = TREE_TYPE (init_val);
|
|
tree vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
|
|
tree def_for_init;
|
|
tree init_def;
|
|
REAL_VALUE_TYPE real_init_val = dconst0;
|
|
int int_init_val = 0;
|
|
gimple_seq stmts = NULL;
|
|
|
|
gcc_assert (vectype);
|
|
|
|
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|
|
|| SCALAR_FLOAT_TYPE_P (scalar_type));
|
|
|
|
gcc_assert (nested_in_vect_loop_p (loop, stmt_vinfo)
|
|
|| loop == (gimple_bb (stmt_vinfo->stmt))->loop_father);
|
|
|
|
/* ADJUSTMENT_DEF is NULL when called from
|
|
vect_create_epilog_for_reduction to vectorize double reduction. */
|
|
if (adjustment_def)
|
|
*adjustment_def = NULL;
|
|
|
|
switch (code)
|
|
{
|
|
case WIDEN_SUM_EXPR:
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case MULT_EXPR:
|
|
case BIT_AND_EXPR:
|
|
{
|
|
if (code == MULT_EXPR)
|
|
{
|
|
real_init_val = dconst1;
|
|
int_init_val = 1;
|
|
}
|
|
|
|
if (code == BIT_AND_EXPR)
|
|
int_init_val = -1;
|
|
|
|
if (SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
def_for_init = build_real (scalar_type, real_init_val);
|
|
else
|
|
def_for_init = build_int_cst (scalar_type, int_init_val);
|
|
|
|
if (adjustment_def || operand_equal_p (def_for_init, init_val, 0))
|
|
{
|
|
/* Option1: the first element is '0' or '1' as well. */
|
|
if (!operand_equal_p (def_for_init, init_val, 0))
|
|
*adjustment_def = init_val;
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype,
|
|
def_for_init);
|
|
}
|
|
else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
|
|
{
|
|
/* Option2 (variable length): the first element is INIT_VAL. */
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype,
|
|
def_for_init);
|
|
init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
|
|
vectype, init_def, init_val);
|
|
}
|
|
else
|
|
{
|
|
/* Option2: the first element is INIT_VAL. */
|
|
tree_vector_builder elts (vectype, 1, 2);
|
|
elts.quick_push (init_val);
|
|
elts.quick_push (def_for_init);
|
|
init_def = gimple_build_vector (&stmts, &elts);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
case COND_EXPR:
|
|
{
|
|
init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
|
|
init_def = gimple_build_vector_from_val (&stmts, vectype, init_val);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (stmts)
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
return init_def;
|
|
}
|
|
|
|
/* Get at the initial defs for the reduction PHIs in SLP_NODE.
|
|
NUMBER_OF_VECTORS is the number of vector defs to create.
|
|
If NEUTRAL_OP is nonnull, introducing extra elements of that
|
|
value will not change the result. */
|
|
|
|
static void
|
|
get_initial_defs_for_reduction (vec_info *vinfo,
|
|
slp_tree slp_node,
|
|
vec<tree> *vec_oprnds,
|
|
unsigned int number_of_vectors,
|
|
bool reduc_chain, tree neutral_op)
|
|
{
|
|
vec<stmt_vec_info> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
|
|
stmt_vec_info stmt_vinfo = stmts[0];
|
|
unsigned HOST_WIDE_INT nunits;
|
|
unsigned j, number_of_places_left_in_vector;
|
|
tree vector_type;
|
|
unsigned int group_size = stmts.length ();
|
|
unsigned int i;
|
|
class loop *loop;
|
|
|
|
vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
|
|
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
|
|
|
|
loop = (gimple_bb (stmt_vinfo->stmt))->loop_father;
|
|
gcc_assert (loop);
|
|
edge pe = loop_preheader_edge (loop);
|
|
|
|
gcc_assert (!reduc_chain || neutral_op);
|
|
|
|
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
|
|
created vectors. It is greater than 1 if unrolling is performed.
|
|
|
|
For example, we have two scalar operands, s1 and s2 (e.g., group of
|
|
strided accesses of size two), while NUNITS is four (i.e., four scalars
|
|
of this type can be packed in a vector). The output vector will contain
|
|
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
|
|
will be 2).
|
|
|
|
If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
|
|
vectors containing the operands.
|
|
|
|
For example, NUNITS is four as before, and the group size is 8
|
|
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
|
|
{s5, s6, s7, s8}. */
|
|
|
|
if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
|
|
nunits = group_size;
|
|
|
|
number_of_places_left_in_vector = nunits;
|
|
bool constant_p = true;
|
|
tree_vector_builder elts (vector_type, nunits, 1);
|
|
elts.quick_grow (nunits);
|
|
gimple_seq ctor_seq = NULL;
|
|
for (j = 0; j < nunits * number_of_vectors; ++j)
|
|
{
|
|
tree op;
|
|
i = j % group_size;
|
|
stmt_vinfo = stmts[i];
|
|
|
|
/* Get the def before the loop. In reduction chain we have only
|
|
one initial value. Else we have as many as PHIs in the group. */
|
|
if (reduc_chain)
|
|
op = j != 0 ? neutral_op : PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt, pe);
|
|
else if (((vec_oprnds->length () + 1) * nunits
|
|
- number_of_places_left_in_vector >= group_size)
|
|
&& neutral_op)
|
|
op = neutral_op;
|
|
else
|
|
op = PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt, pe);
|
|
|
|
/* Create 'vect_ = {op0,op1,...,opn}'. */
|
|
number_of_places_left_in_vector--;
|
|
elts[nunits - number_of_places_left_in_vector - 1] = op;
|
|
if (!CONSTANT_CLASS_P (op))
|
|
constant_p = false;
|
|
|
|
if (number_of_places_left_in_vector == 0)
|
|
{
|
|
tree init;
|
|
if (constant_p && !neutral_op
|
|
? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
|
|
: known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
|
|
/* Build the vector directly from ELTS. */
|
|
init = gimple_build_vector (&ctor_seq, &elts);
|
|
else if (neutral_op)
|
|
{
|
|
/* Build a vector of the neutral value and shift the
|
|
other elements into place. */
|
|
init = gimple_build_vector_from_val (&ctor_seq, vector_type,
|
|
neutral_op);
|
|
int k = nunits;
|
|
while (k > 0 && elts[k - 1] == neutral_op)
|
|
k -= 1;
|
|
while (k > 0)
|
|
{
|
|
k -= 1;
|
|
init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
|
|
vector_type, init, elts[k]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First time round, duplicate ELTS to fill the
|
|
required number of vectors. */
|
|
duplicate_and_interleave (vinfo, &ctor_seq, vector_type, elts,
|
|
number_of_vectors, *vec_oprnds);
|
|
break;
|
|
}
|
|
vec_oprnds->quick_push (init);
|
|
|
|
number_of_places_left_in_vector = nunits;
|
|
elts.new_vector (vector_type, nunits, 1);
|
|
elts.quick_grow (nunits);
|
|
constant_p = true;
|
|
}
|
|
}
|
|
if (ctor_seq != NULL)
|
|
gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
|
|
}
|
|
|
|
/* For a statement STMT_INFO taking part in a reduction operation return
|
|
the stmt_vec_info the meta information is stored on. */
|
|
|
|
stmt_vec_info
|
|
info_for_reduction (vec_info *vinfo, stmt_vec_info stmt_info)
|
|
{
|
|
stmt_info = vect_orig_stmt (stmt_info);
|
|
gcc_assert (STMT_VINFO_REDUC_DEF (stmt_info));
|
|
if (!is_a <gphi *> (stmt_info->stmt)
|
|
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
|
|
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
gphi *phi = as_a <gphi *> (stmt_info->stmt);
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
|
|
{
|
|
if (gimple_phi_num_args (phi) == 1)
|
|
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
}
|
|
else if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
|
|
{
|
|
edge pe = loop_preheader_edge (gimple_bb (phi)->loop_father);
|
|
stmt_vec_info info
|
|
= vinfo->lookup_def (PHI_ARG_DEF_FROM_EDGE (phi, pe));
|
|
if (info && STMT_VINFO_DEF_TYPE (info) == vect_double_reduction_def)
|
|
stmt_info = info;
|
|
}
|
|
return stmt_info;
|
|
}
|
|
|
|
/* Function vect_create_epilog_for_reduction
|
|
|
|
Create code at the loop-epilog to finalize the result of a reduction
|
|
computation.
|
|
|
|
STMT_INFO is the scalar reduction stmt that is being vectorized.
|
|
SLP_NODE is an SLP node containing a group of reduction statements. The
|
|
first one in this group is STMT_INFO.
|
|
SLP_NODE_INSTANCE is the SLP node instance containing SLP_NODE
|
|
REDUC_INDEX says which rhs operand of the STMT_INFO is the reduction phi
|
|
(counting from 0)
|
|
|
|
This function:
|
|
1. Completes the reduction def-use cycles.
|
|
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
|
|
by calling the function specified by REDUC_FN if available, or by
|
|
other means (whole-vector shifts or a scalar loop).
|
|
The function also creates a new phi node at the loop exit to preserve
|
|
loop-closed form, as illustrated below.
|
|
|
|
The flow at the entry to this function:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, null> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
|
|
s_loop = scalar_stmt # (scalar) STMT_INFO
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
The above is transformed by this function into:
|
|
|
|
loop:
|
|
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
|
|
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
|
|
s_loop = scalar_stmt # (scalar) STMT_INFO
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4>
|
|
*/
|
|
|
|
static void
|
|
vect_create_epilog_for_reduction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info,
|
|
slp_tree slp_node,
|
|
slp_instance slp_node_instance)
|
|
{
|
|
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
|
|
gcc_assert (reduc_info->is_reduc_info);
|
|
/* For double reductions we need to get at the inner loop reduction
|
|
stmt which has the meta info attached. Our stmt_info is that of the
|
|
loop-closed PHI of the inner loop which we remember as
|
|
def for the reduction PHI generation. */
|
|
bool double_reduc = false;
|
|
stmt_vec_info rdef_info = stmt_info;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
|
|
{
|
|
gcc_assert (!slp_node);
|
|
double_reduc = true;
|
|
stmt_info = loop_vinfo->lookup_def (gimple_phi_arg_def
|
|
(stmt_info->stmt, 0));
|
|
stmt_info = vect_stmt_to_vectorize (stmt_info);
|
|
}
|
|
gphi *reduc_def_stmt
|
|
= as_a <gphi *> (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info))->stmt);
|
|
enum tree_code code = STMT_VINFO_REDUC_CODE (reduc_info);
|
|
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
|
|
tree vectype;
|
|
machine_mode mode;
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
|
|
basic_block exit_bb;
|
|
tree scalar_dest;
|
|
tree scalar_type;
|
|
gimple *new_phi = NULL, *phi;
|
|
gimple_stmt_iterator exit_gsi;
|
|
tree new_temp = NULL_TREE, new_name, new_scalar_dest;
|
|
gimple *epilog_stmt = NULL;
|
|
gimple *exit_phi;
|
|
tree bitsize;
|
|
tree def;
|
|
tree orig_name, scalar_result;
|
|
imm_use_iterator imm_iter, phi_imm_iter;
|
|
use_operand_p use_p, phi_use_p;
|
|
gimple *use_stmt;
|
|
bool nested_in_vect_loop = false;
|
|
auto_vec<gimple *> new_phis;
|
|
int j, i;
|
|
auto_vec<tree> scalar_results;
|
|
unsigned int group_size = 1, k;
|
|
auto_vec<gimple *> phis;
|
|
bool slp_reduc = false;
|
|
bool direct_slp_reduc;
|
|
tree new_phi_result;
|
|
tree induction_index = NULL_TREE;
|
|
|
|
if (slp_node)
|
|
group_size = SLP_TREE_LANES (slp_node);
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt_info))
|
|
{
|
|
outer_loop = loop;
|
|
loop = loop->inner;
|
|
nested_in_vect_loop = true;
|
|
gcc_assert (!slp_node);
|
|
}
|
|
gcc_assert (!nested_in_vect_loop || double_reduc);
|
|
|
|
vectype = STMT_VINFO_REDUC_VECTYPE (reduc_info);
|
|
gcc_assert (vectype);
|
|
mode = TYPE_MODE (vectype);
|
|
|
|
tree initial_def = NULL;
|
|
tree induc_val = NULL_TREE;
|
|
tree adjustment_def = NULL;
|
|
if (slp_node)
|
|
;
|
|
else
|
|
{
|
|
/* Get at the scalar def before the loop, that defines the initial value
|
|
of the reduction variable. */
|
|
initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
|
|
loop_preheader_edge (loop));
|
|
/* Optimize: for induction condition reduction, if we can't use zero
|
|
for induc_val, use initial_def. */
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
|
|
induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
|
|
else if (double_reduc)
|
|
;
|
|
else if (nested_in_vect_loop)
|
|
;
|
|
else
|
|
adjustment_def = STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info);
|
|
}
|
|
|
|
unsigned vec_num;
|
|
int ncopies;
|
|
if (slp_node)
|
|
{
|
|
vec_num = SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis).length ();
|
|
ncopies = 1;
|
|
}
|
|
else
|
|
{
|
|
stmt_vec_info reduc_info = loop_vinfo->lookup_stmt (reduc_def_stmt);
|
|
vec_num = 1;
|
|
ncopies = STMT_VINFO_VEC_STMTS (reduc_info).length ();
|
|
}
|
|
|
|
/* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
|
|
which is updated with the current index of the loop for every match of
|
|
the original loop's cond_expr (VEC_STMT). This results in a vector
|
|
containing the last time the condition passed for that vector lane.
|
|
The first match will be a 1 to allow 0 to be used for non-matching
|
|
indexes. If there are no matches at all then the vector will be all
|
|
zeroes.
|
|
|
|
PR92772: This algorithm is broken for architectures that support
|
|
masked vectors, but do not provide fold_extract_last. */
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
|
|
{
|
|
auto_vec<std::pair<tree, bool>, 2> ccompares;
|
|
stmt_vec_info cond_info = STMT_VINFO_REDUC_DEF (reduc_info);
|
|
cond_info = vect_stmt_to_vectorize (cond_info);
|
|
while (cond_info != reduc_info)
|
|
{
|
|
if (gimple_assign_rhs_code (cond_info->stmt) == COND_EXPR)
|
|
{
|
|
gimple *vec_stmt = STMT_VINFO_VEC_STMTS (cond_info)[0];
|
|
gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
|
|
ccompares.safe_push
|
|
(std::make_pair (unshare_expr (gimple_assign_rhs1 (vec_stmt)),
|
|
STMT_VINFO_REDUC_IDX (cond_info) == 2));
|
|
}
|
|
cond_info
|
|
= loop_vinfo->lookup_def (gimple_op (cond_info->stmt,
|
|
1 + STMT_VINFO_REDUC_IDX
|
|
(cond_info)));
|
|
cond_info = vect_stmt_to_vectorize (cond_info);
|
|
}
|
|
gcc_assert (ccompares.length () != 0);
|
|
|
|
tree indx_before_incr, indx_after_incr;
|
|
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
|
|
tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
|
|
tree cr_index_vector_type = get_related_vectype_for_scalar_type
|
|
(TYPE_MODE (vectype), cr_index_scalar_type,
|
|
TYPE_VECTOR_SUBPARTS (vectype));
|
|
|
|
/* First we create a simple vector induction variable which starts
|
|
with the values {1,2,3,...} (SERIES_VECT) and increments by the
|
|
vector size (STEP). */
|
|
|
|
/* Create a {1,2,3,...} vector. */
|
|
tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
|
|
|
|
/* Create a vector of the step value. */
|
|
tree step = build_int_cst (cr_index_scalar_type, nunits_out);
|
|
tree vec_step = build_vector_from_val (cr_index_vector_type, step);
|
|
|
|
/* Create an induction variable. */
|
|
gimple_stmt_iterator incr_gsi;
|
|
bool insert_after;
|
|
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
|
|
create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
|
|
insert_after, &indx_before_incr, &indx_after_incr);
|
|
|
|
/* Next create a new phi node vector (NEW_PHI_TREE) which starts
|
|
filled with zeros (VEC_ZERO). */
|
|
|
|
/* Create a vector of 0s. */
|
|
tree zero = build_zero_cst (cr_index_scalar_type);
|
|
tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
|
|
|
|
/* Create a vector phi node. */
|
|
tree new_phi_tree = make_ssa_name (cr_index_vector_type);
|
|
new_phi = create_phi_node (new_phi_tree, loop->header);
|
|
add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
|
|
loop_preheader_edge (loop), UNKNOWN_LOCATION);
|
|
|
|
/* Now take the condition from the loops original cond_exprs
|
|
and produce a new cond_exprs (INDEX_COND_EXPR) which for
|
|
every match uses values from the induction variable
|
|
(INDEX_BEFORE_INCR) otherwise uses values from the phi node
|
|
(NEW_PHI_TREE).
|
|
Finally, we update the phi (NEW_PHI_TREE) to take the value of
|
|
the new cond_expr (INDEX_COND_EXPR). */
|
|
gimple_seq stmts = NULL;
|
|
for (int i = ccompares.length () - 1; i != -1; --i)
|
|
{
|
|
tree ccompare = ccompares[i].first;
|
|
if (ccompares[i].second)
|
|
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
|
|
cr_index_vector_type,
|
|
ccompare,
|
|
indx_before_incr, new_phi_tree);
|
|
else
|
|
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
|
|
cr_index_vector_type,
|
|
ccompare,
|
|
new_phi_tree, indx_before_incr);
|
|
}
|
|
gsi_insert_seq_before (&incr_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
/* Update the phi with the vec cond. */
|
|
induction_index = new_phi_tree;
|
|
add_phi_arg (as_a <gphi *> (new_phi), induction_index,
|
|
loop_latch_edge (loop), UNKNOWN_LOCATION);
|
|
}
|
|
|
|
/* 2. Create epilog code.
|
|
The reduction epilog code operates across the elements of the vector
|
|
of partial results computed by the vectorized loop.
|
|
The reduction epilog code consists of:
|
|
|
|
step 1: compute the scalar result in a vector (v_out2)
|
|
step 2: extract the scalar result (s_out3) from the vector (v_out2)
|
|
step 3: adjust the scalar result (s_out3) if needed.
|
|
|
|
Step 1 can be accomplished using one the following three schemes:
|
|
(scheme 1) using reduc_fn, if available.
|
|
(scheme 2) using whole-vector shifts, if available.
|
|
(scheme 3) using a scalar loop. In this case steps 1+2 above are
|
|
combined.
|
|
|
|
The overall epilog code looks like this:
|
|
|
|
s_out0 = phi <s_loop> # original EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1> # step 1
|
|
s_out3 = extract_field <v_out2, 0> # step 2
|
|
s_out4 = adjust_result <s_out3> # step 3
|
|
|
|
(step 3 is optional, and steps 1 and 2 may be combined).
|
|
Lastly, the uses of s_out0 are replaced by s_out4. */
|
|
|
|
|
|
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
|
|
v_out1 = phi <VECT_DEF>
|
|
Store them in NEW_PHIS. */
|
|
if (double_reduc)
|
|
loop = outer_loop;
|
|
exit_bb = single_exit (loop)->dest;
|
|
new_phis.create (slp_node ? vec_num : ncopies);
|
|
for (unsigned i = 0; i < vec_num; i++)
|
|
{
|
|
if (slp_node)
|
|
def = vect_get_slp_vect_def (slp_node, i);
|
|
else
|
|
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[0]);
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
tree new_def = copy_ssa_name (def);
|
|
phi = create_phi_node (new_def, exit_bb);
|
|
if (j == 0)
|
|
new_phis.quick_push (phi);
|
|
else
|
|
{
|
|
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[j]);
|
|
new_phis.quick_push (phi);
|
|
}
|
|
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
|
|
}
|
|
}
|
|
|
|
exit_gsi = gsi_after_labels (exit_bb);
|
|
|
|
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
|
|
(i.e. when reduc_fn is not available) and in the final adjustment
|
|
code (if needed). Also get the original scalar reduction variable as
|
|
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
|
|
represents a reduction pattern), the tree-code and scalar-def are
|
|
taken from the original stmt that the pattern-stmt (STMT) replaces.
|
|
Otherwise (it is a regular reduction) - the tree-code and scalar-def
|
|
are taken from STMT. */
|
|
|
|
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
|
|
if (orig_stmt_info != stmt_info)
|
|
{
|
|
/* Reduction pattern */
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
|
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt_info);
|
|
}
|
|
|
|
scalar_dest = gimple_assign_lhs (orig_stmt_info->stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
scalar_results.create (group_size);
|
|
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
|
|
bitsize = TYPE_SIZE (scalar_type);
|
|
|
|
/* SLP reduction without reduction chain, e.g.,
|
|
# a1 = phi <a2, a0>
|
|
# b1 = phi <b2, b0>
|
|
a2 = operation (a1)
|
|
b2 = operation (b1) */
|
|
slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (stmt_info));
|
|
|
|
/* True if we should implement SLP_REDUC using native reduction operations
|
|
instead of scalar operations. */
|
|
direct_slp_reduc = (reduc_fn != IFN_LAST
|
|
&& slp_reduc
|
|
&& !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
|
|
|
|
/* In case of reduction chain, e.g.,
|
|
# a1 = phi <a3, a0>
|
|
a2 = operation (a1)
|
|
a3 = operation (a2),
|
|
|
|
we may end up with more than one vector result. Here we reduce them to
|
|
one vector. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) || direct_slp_reduc)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree first_vect = PHI_RESULT (new_phis[0]);
|
|
first_vect = gimple_convert (&stmts, vectype, first_vect);
|
|
for (k = 1; k < new_phis.length (); k++)
|
|
{
|
|
gimple *next_phi = new_phis[k];
|
|
tree second_vect = PHI_RESULT (next_phi);
|
|
second_vect = gimple_convert (&stmts, vectype, second_vect);
|
|
first_vect = gimple_build (&stmts, code, vectype,
|
|
first_vect, second_vect);
|
|
}
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
new_phi_result = first_vect;
|
|
new_phis.truncate (0);
|
|
new_phis.safe_push (SSA_NAME_DEF_STMT (first_vect));
|
|
}
|
|
/* Likewise if we couldn't use a single defuse cycle. */
|
|
else if (ncopies > 1)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree first_vect = PHI_RESULT (new_phis[0]);
|
|
first_vect = gimple_convert (&stmts, vectype, first_vect);
|
|
for (int k = 1; k < ncopies; ++k)
|
|
{
|
|
tree second_vect = PHI_RESULT (new_phis[k]);
|
|
second_vect = gimple_convert (&stmts, vectype, second_vect);
|
|
first_vect = gimple_build (&stmts, code, vectype,
|
|
first_vect, second_vect);
|
|
}
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
new_phi_result = first_vect;
|
|
new_phis.truncate (0);
|
|
new_phis.safe_push (SSA_NAME_DEF_STMT (first_vect));
|
|
}
|
|
else
|
|
new_phi_result = PHI_RESULT (new_phis[0]);
|
|
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
|
|
&& reduc_fn != IFN_LAST)
|
|
{
|
|
/* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
|
|
various data values where the condition matched and another vector
|
|
(INDUCTION_INDEX) containing all the indexes of those matches. We
|
|
need to extract the last matching index (which will be the index with
|
|
highest value) and use this to index into the data vector.
|
|
For the case where there were no matches, the data vector will contain
|
|
all default values and the index vector will be all zeros. */
|
|
|
|
/* Get various versions of the type of the vector of indexes. */
|
|
tree index_vec_type = TREE_TYPE (induction_index);
|
|
gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
|
|
tree index_scalar_type = TREE_TYPE (index_vec_type);
|
|
tree index_vec_cmp_type = truth_type_for (index_vec_type);
|
|
|
|
/* Get an unsigned integer version of the type of the data vector. */
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
|
|
tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
|
|
tree vectype_unsigned = get_same_sized_vectype (scalar_type_unsigned,
|
|
vectype);
|
|
|
|
/* First we need to create a vector (ZERO_VEC) of zeros and another
|
|
vector (MAX_INDEX_VEC) filled with the last matching index, which we
|
|
can create using a MAX reduction and then expanding.
|
|
In the case where the loop never made any matches, the max index will
|
|
be zero. */
|
|
|
|
/* Vector of {0, 0, 0,...}. */
|
|
tree zero_vec = build_zero_cst (vectype);
|
|
|
|
gimple_seq stmts = NULL;
|
|
new_phi_result = gimple_convert (&stmts, vectype, new_phi_result);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
/* Find maximum value from the vector of found indexes. */
|
|
tree max_index = make_ssa_name (index_scalar_type);
|
|
gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
|
|
1, induction_index);
|
|
gimple_call_set_lhs (max_index_stmt, max_index);
|
|
gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
|
|
|
|
/* Vector of {max_index, max_index, max_index,...}. */
|
|
tree max_index_vec = make_ssa_name (index_vec_type);
|
|
tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
|
|
max_index);
|
|
gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
|
|
max_index_vec_rhs);
|
|
gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
|
|
|
|
/* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
|
|
with the vector (INDUCTION_INDEX) of found indexes, choosing values
|
|
from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
|
|
otherwise. Only one value should match, resulting in a vector
|
|
(VEC_COND) with one data value and the rest zeros.
|
|
In the case where the loop never made any matches, every index will
|
|
match, resulting in a vector with all data values (which will all be
|
|
the default value). */
|
|
|
|
/* Compare the max index vector to the vector of found indexes to find
|
|
the position of the max value. */
|
|
tree vec_compare = make_ssa_name (index_vec_cmp_type);
|
|
gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
|
|
induction_index,
|
|
max_index_vec);
|
|
gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
|
|
|
|
/* Use the compare to choose either values from the data vector or
|
|
zero. */
|
|
tree vec_cond = make_ssa_name (vectype);
|
|
gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
|
|
vec_compare, new_phi_result,
|
|
zero_vec);
|
|
gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
|
|
|
|
/* Finally we need to extract the data value from the vector (VEC_COND)
|
|
into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
|
|
reduction, but because this doesn't exist, we can use a MAX reduction
|
|
instead. The data value might be signed or a float so we need to cast
|
|
it first.
|
|
In the case where the loop never made any matches, the data values are
|
|
all identical, and so will reduce down correctly. */
|
|
|
|
/* Make the matched data values unsigned. */
|
|
tree vec_cond_cast = make_ssa_name (vectype_unsigned);
|
|
tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
|
|
vec_cond);
|
|
gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
|
|
VIEW_CONVERT_EXPR,
|
|
vec_cond_cast_rhs);
|
|
gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
|
|
|
|
/* Reduce down to a scalar value. */
|
|
tree data_reduc = make_ssa_name (scalar_type_unsigned);
|
|
gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
|
|
1, vec_cond_cast);
|
|
gimple_call_set_lhs (data_reduc_stmt, data_reduc);
|
|
gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
|
|
|
|
/* Convert the reduced value back to the result type and set as the
|
|
result. */
|
|
stmts = NULL;
|
|
new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
|
|
data_reduc);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
|
|
&& reduc_fn == IFN_LAST)
|
|
{
|
|
/* Condition reduction without supported IFN_REDUC_MAX. Generate
|
|
idx = 0;
|
|
idx_val = induction_index[0];
|
|
val = data_reduc[0];
|
|
for (idx = 0, val = init, i = 0; i < nelts; ++i)
|
|
if (induction_index[i] > idx_val)
|
|
val = data_reduc[i], idx_val = induction_index[i];
|
|
return val; */
|
|
|
|
tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
|
|
tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
|
|
unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
|
|
/* Enforced by vectorizable_reduction, which ensures we have target
|
|
support before allowing a conditional reduction on variable-length
|
|
vectors. */
|
|
unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
|
|
tree idx_val = NULL_TREE, val = NULL_TREE;
|
|
for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
|
|
{
|
|
tree old_idx_val = idx_val;
|
|
tree old_val = val;
|
|
idx_val = make_ssa_name (idx_eltype);
|
|
epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, idx_eltype,
|
|
induction_index,
|
|
bitsize_int (el_size),
|
|
bitsize_int (off)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
val = make_ssa_name (data_eltype);
|
|
epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF,
|
|
data_eltype,
|
|
new_phi_result,
|
|
bitsize_int (el_size),
|
|
bitsize_int (off)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
if (off != 0)
|
|
{
|
|
tree new_idx_val = idx_val;
|
|
if (off != v_size - el_size)
|
|
{
|
|
new_idx_val = make_ssa_name (idx_eltype);
|
|
epilog_stmt = gimple_build_assign (new_idx_val,
|
|
MAX_EXPR, idx_val,
|
|
old_idx_val);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
tree new_val = make_ssa_name (data_eltype);
|
|
epilog_stmt = gimple_build_assign (new_val,
|
|
COND_EXPR,
|
|
build2 (GT_EXPR,
|
|
boolean_type_node,
|
|
idx_val,
|
|
old_idx_val),
|
|
val, old_val);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
idx_val = new_idx_val;
|
|
val = new_val;
|
|
}
|
|
}
|
|
/* Convert the reduced value back to the result type and set as the
|
|
result. */
|
|
gimple_seq stmts = NULL;
|
|
val = gimple_convert (&stmts, scalar_type, val);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
scalar_results.safe_push (val);
|
|
}
|
|
|
|
/* 2.3 Create the reduction code, using one of the three schemes described
|
|
above. In SLP we simply need to extract all the elements from the
|
|
vector (without reducing them), so we use scalar shifts. */
|
|
else if (reduc_fn != IFN_LAST && !slp_reduc)
|
|
{
|
|
tree tmp;
|
|
tree vec_elem_type;
|
|
|
|
/* Case 1: Create:
|
|
v_out2 = reduc_expr <v_out1> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using direct vector reduction.\n");
|
|
|
|
gimple_seq stmts = NULL;
|
|
new_phi_result = gimple_convert (&stmts, vectype, new_phi_result);
|
|
vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
|
|
new_temp = gimple_build (&stmts, as_combined_fn (reduc_fn),
|
|
vec_elem_type, new_phi_result);
|
|
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
|
|
&& induc_val)
|
|
{
|
|
/* Earlier we set the initial value to be a vector if induc_val
|
|
values. Check the result and if it is induc_val then replace
|
|
with the original initial value, unless induc_val is
|
|
the same as initial_def already. */
|
|
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
|
|
induc_val);
|
|
|
|
tmp = make_ssa_name (new_scalar_dest);
|
|
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
|
|
initial_def, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
new_temp = tmp;
|
|
}
|
|
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else if (direct_slp_reduc)
|
|
{
|
|
/* Here we create one vector for each of the REDUC_GROUP_SIZE results,
|
|
with the elements for other SLP statements replaced with the
|
|
neutral value. We can then do a normal reduction on each vector. */
|
|
|
|
/* Enforced by vectorizable_reduction. */
|
|
gcc_assert (new_phis.length () == 1);
|
|
gcc_assert (pow2p_hwi (group_size));
|
|
|
|
slp_tree orig_phis_slp_node = slp_node_instance->reduc_phis;
|
|
vec<stmt_vec_info> orig_phis
|
|
= SLP_TREE_SCALAR_STMTS (orig_phis_slp_node);
|
|
gimple_seq seq = NULL;
|
|
|
|
/* Build a vector {0, 1, 2, ...}, with the same number of elements
|
|
and the same element size as VECTYPE. */
|
|
tree index = build_index_vector (vectype, 0, 1);
|
|
tree index_type = TREE_TYPE (index);
|
|
tree index_elt_type = TREE_TYPE (index_type);
|
|
tree mask_type = truth_type_for (index_type);
|
|
|
|
/* Create a vector that, for each element, identifies which of
|
|
the REDUC_GROUP_SIZE results should use it. */
|
|
tree index_mask = build_int_cst (index_elt_type, group_size - 1);
|
|
index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
|
|
build_vector_from_val (index_type, index_mask));
|
|
|
|
/* Get a neutral vector value. This is simply a splat of the neutral
|
|
scalar value if we have one, otherwise the initial scalar value
|
|
is itself a neutral value. */
|
|
tree vector_identity = NULL_TREE;
|
|
tree neutral_op = NULL_TREE;
|
|
if (slp_node)
|
|
{
|
|
stmt_vec_info first = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
|
|
neutral_op
|
|
= neutral_op_for_slp_reduction (slp_node_instance->reduc_phis,
|
|
vectype, code, first != NULL);
|
|
}
|
|
if (neutral_op)
|
|
vector_identity = gimple_build_vector_from_val (&seq, vectype,
|
|
neutral_op);
|
|
for (unsigned int i = 0; i < group_size; ++i)
|
|
{
|
|
/* If there's no univeral neutral value, we can use the
|
|
initial scalar value from the original PHI. This is used
|
|
for MIN and MAX reduction, for example. */
|
|
if (!neutral_op)
|
|
{
|
|
tree scalar_value
|
|
= PHI_ARG_DEF_FROM_EDGE (orig_phis[i]->stmt,
|
|
loop_preheader_edge (loop));
|
|
scalar_value = gimple_convert (&seq, TREE_TYPE (vectype),
|
|
scalar_value);
|
|
vector_identity = gimple_build_vector_from_val (&seq, vectype,
|
|
scalar_value);
|
|
}
|
|
|
|
/* Calculate the equivalent of:
|
|
|
|
sel[j] = (index[j] == i);
|
|
|
|
which selects the elements of NEW_PHI_RESULT that should
|
|
be included in the result. */
|
|
tree compare_val = build_int_cst (index_elt_type, i);
|
|
compare_val = build_vector_from_val (index_type, compare_val);
|
|
tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
|
|
index, compare_val);
|
|
|
|
/* Calculate the equivalent of:
|
|
|
|
vec = seq ? new_phi_result : vector_identity;
|
|
|
|
VEC is now suitable for a full vector reduction. */
|
|
tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
|
|
sel, new_phi_result, vector_identity);
|
|
|
|
/* Do the reduction and convert it to the appropriate type. */
|
|
tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
|
|
TREE_TYPE (vectype), vec);
|
|
scalar = gimple_convert (&seq, scalar_type, scalar);
|
|
scalar_results.safe_push (scalar);
|
|
}
|
|
gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
bool reduce_with_shift;
|
|
tree vec_temp;
|
|
|
|
gcc_assert (slp_reduc || new_phis.length () == 1);
|
|
|
|
/* See if the target wants to do the final (shift) reduction
|
|
in a vector mode of smaller size and first reduce upper/lower
|
|
halves against each other. */
|
|
enum machine_mode mode1 = mode;
|
|
tree stype = TREE_TYPE (vectype);
|
|
unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
|
|
unsigned nunits1 = nunits;
|
|
if ((mode1 = targetm.vectorize.split_reduction (mode)) != mode
|
|
&& new_phis.length () == 1)
|
|
{
|
|
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
|
|
/* For SLP reductions we have to make sure lanes match up, but
|
|
since we're doing individual element final reduction reducing
|
|
vector width here is even more important.
|
|
??? We can also separate lanes with permutes, for the common
|
|
case of power-of-two group-size odd/even extracts would work. */
|
|
if (slp_reduc && nunits != nunits1)
|
|
{
|
|
nunits1 = least_common_multiple (nunits1, group_size);
|
|
gcc_assert (exact_log2 (nunits1) != -1 && nunits1 <= nunits);
|
|
}
|
|
}
|
|
if (!slp_reduc
|
|
&& (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
|
|
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
|
|
|
|
tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
|
|
stype, nunits1);
|
|
reduce_with_shift = have_whole_vector_shift (mode1);
|
|
if (!VECTOR_MODE_P (mode1))
|
|
reduce_with_shift = false;
|
|
else
|
|
{
|
|
optab optab = optab_for_tree_code (code, vectype1, optab_default);
|
|
if (optab_handler (optab, mode1) == CODE_FOR_nothing)
|
|
reduce_with_shift = false;
|
|
}
|
|
|
|
/* First reduce the vector to the desired vector size we should
|
|
do shift reduction on by combining upper and lower halves. */
|
|
new_temp = new_phi_result;
|
|
while (nunits > nunits1)
|
|
{
|
|
nunits /= 2;
|
|
vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
|
|
stype, nunits);
|
|
unsigned int bitsize = tree_to_uhwi (TYPE_SIZE (vectype1));
|
|
|
|
/* The target has to make sure we support lowpart/highpart
|
|
extraction, either via direct vector extract or through
|
|
an integer mode punning. */
|
|
tree dst1, dst2;
|
|
if (convert_optab_handler (vec_extract_optab,
|
|
TYPE_MODE (TREE_TYPE (new_temp)),
|
|
TYPE_MODE (vectype1))
|
|
!= CODE_FOR_nothing)
|
|
{
|
|
/* Extract sub-vectors directly once vec_extract becomes
|
|
a conversion optab. */
|
|
dst1 = make_ssa_name (vectype1);
|
|
epilog_stmt
|
|
= gimple_build_assign (dst1, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, vectype1,
|
|
new_temp, TYPE_SIZE (vectype1),
|
|
bitsize_int (0)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst2 = make_ssa_name (vectype1);
|
|
epilog_stmt
|
|
= gimple_build_assign (dst2, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, vectype1,
|
|
new_temp, TYPE_SIZE (vectype1),
|
|
bitsize_int (bitsize)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
/* Extract via punning to appropriately sized integer mode
|
|
vector. */
|
|
tree eltype = build_nonstandard_integer_type (bitsize, 1);
|
|
tree etype = build_vector_type (eltype, 2);
|
|
gcc_assert (convert_optab_handler (vec_extract_optab,
|
|
TYPE_MODE (etype),
|
|
TYPE_MODE (eltype))
|
|
!= CODE_FOR_nothing);
|
|
tree tem = make_ssa_name (etype);
|
|
epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
etype, new_temp));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
new_temp = tem;
|
|
tem = make_ssa_name (eltype);
|
|
epilog_stmt
|
|
= gimple_build_assign (tem, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, eltype,
|
|
new_temp, TYPE_SIZE (eltype),
|
|
bitsize_int (0)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst1 = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
vectype1, tem));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
tem = make_ssa_name (eltype);
|
|
epilog_stmt
|
|
= gimple_build_assign (tem, BIT_FIELD_REF,
|
|
build3 (BIT_FIELD_REF, eltype,
|
|
new_temp, TYPE_SIZE (eltype),
|
|
bitsize_int (bitsize)));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
dst2 = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR,
|
|
vectype1, tem));
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
}
|
|
|
|
new_temp = make_ssa_name (vectype1);
|
|
epilog_stmt = gimple_build_assign (new_temp, code, dst1, dst2);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
new_phis[0] = epilog_stmt;
|
|
}
|
|
|
|
if (reduce_with_shift && !slp_reduc)
|
|
{
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
/* Enforced by vectorizable_reduction, which disallows SLP reductions
|
|
for variable-length vectors and also requires direct target support
|
|
for loop reductions. */
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
|
|
int nelements = vec_size_in_bits / element_bitsize;
|
|
vec_perm_builder sel;
|
|
vec_perm_indices indices;
|
|
|
|
int elt_offset;
|
|
|
|
tree zero_vec = build_zero_cst (vectype1);
|
|
/* Case 2: Create:
|
|
for (offset = nelements/2; offset >= 1; offset/=2)
|
|
{
|
|
Create: va' = vec_shift <va, offset>
|
|
Create: va = vop <va, va'>
|
|
} */
|
|
|
|
tree rhs;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using vector shifts\n");
|
|
|
|
gimple_seq stmts = NULL;
|
|
new_temp = gimple_convert (&stmts, vectype1, new_temp);
|
|
for (elt_offset = nelements / 2;
|
|
elt_offset >= 1;
|
|
elt_offset /= 2)
|
|
{
|
|
calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
|
|
indices.new_vector (sel, 2, nelements);
|
|
tree mask = vect_gen_perm_mask_any (vectype1, indices);
|
|
new_name = gimple_build (&stmts, VEC_PERM_EXPR, vectype1,
|
|
new_temp, zero_vec, mask);
|
|
new_temp = gimple_build (&stmts, code,
|
|
vectype1, new_name, new_temp);
|
|
}
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
/* 2.4 Extract the final scalar result. Create:
|
|
s_out3 = extract_field <v_out2, bitpos> */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"extract scalar result\n");
|
|
|
|
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
|
|
bitsize, bitsize_zero_node);
|
|
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
|
|
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
|
|
gimple_assign_set_lhs (epilog_stmt, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
else
|
|
{
|
|
/* Case 3: Create:
|
|
s = extract_field <v_out2, 0>
|
|
for (offset = element_size;
|
|
offset < vector_size;
|
|
offset += element_size;)
|
|
{
|
|
Create: s' = extract_field <v_out2, offset>
|
|
Create: s = op <s, s'> // For non SLP cases
|
|
} */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Reduce using scalar code.\n");
|
|
|
|
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
|
|
int element_bitsize = tree_to_uhwi (bitsize);
|
|
tree compute_type = TREE_TYPE (vectype);
|
|
gimple_seq stmts = NULL;
|
|
FOR_EACH_VEC_ELT (new_phis, i, new_phi)
|
|
{
|
|
int bit_offset;
|
|
if (gimple_code (new_phi) == GIMPLE_PHI)
|
|
vec_temp = PHI_RESULT (new_phi);
|
|
else
|
|
vec_temp = gimple_assign_lhs (new_phi);
|
|
new_temp = gimple_build (&stmts, BIT_FIELD_REF, compute_type,
|
|
vec_temp, bitsize, bitsize_zero_node);
|
|
|
|
/* In SLP we don't need to apply reduction operation, so we just
|
|
collect s' values in SCALAR_RESULTS. */
|
|
if (slp_reduc)
|
|
scalar_results.safe_push (new_temp);
|
|
|
|
for (bit_offset = element_bitsize;
|
|
bit_offset < vec_size_in_bits;
|
|
bit_offset += element_bitsize)
|
|
{
|
|
tree bitpos = bitsize_int (bit_offset);
|
|
new_name = gimple_build (&stmts, BIT_FIELD_REF,
|
|
compute_type, vec_temp,
|
|
bitsize, bitpos);
|
|
if (slp_reduc)
|
|
{
|
|
/* In SLP we don't need to apply reduction operation, so
|
|
we just collect s' values in SCALAR_RESULTS. */
|
|
new_temp = new_name;
|
|
scalar_results.safe_push (new_name);
|
|
}
|
|
else
|
|
new_temp = gimple_build (&stmts, code, compute_type,
|
|
new_name, new_temp);
|
|
}
|
|
}
|
|
|
|
/* The only case where we need to reduce scalar results in SLP, is
|
|
unrolling. If the size of SCALAR_RESULTS is greater than
|
|
REDUC_GROUP_SIZE, we reduce them combining elements modulo
|
|
REDUC_GROUP_SIZE. */
|
|
if (slp_reduc)
|
|
{
|
|
tree res, first_res, new_res;
|
|
|
|
/* Reduce multiple scalar results in case of SLP unrolling. */
|
|
for (j = group_size; scalar_results.iterate (j, &res);
|
|
j++)
|
|
{
|
|
first_res = scalar_results[j % group_size];
|
|
new_res = gimple_build (&stmts, code, compute_type,
|
|
first_res, res);
|
|
scalar_results[j % group_size] = new_res;
|
|
}
|
|
for (k = 0; k < group_size; k++)
|
|
scalar_results[k] = gimple_convert (&stmts, scalar_type,
|
|
scalar_results[k]);
|
|
}
|
|
else
|
|
{
|
|
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
|
|
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
|
|
scalar_results.safe_push (new_temp);
|
|
}
|
|
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
|
|
&& induc_val)
|
|
{
|
|
/* Earlier we set the initial value to be a vector if induc_val
|
|
values. Check the result and if it is induc_val then replace
|
|
with the original initial value, unless induc_val is
|
|
the same as initial_def already. */
|
|
tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
|
|
induc_val);
|
|
|
|
tree tmp = make_ssa_name (new_scalar_dest);
|
|
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
|
|
initial_def, new_temp);
|
|
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
|
|
scalar_results[0] = tmp;
|
|
}
|
|
}
|
|
|
|
/* 2.5 Adjust the final result by the initial value of the reduction
|
|
variable. (When such adjustment is not needed, then
|
|
'adjustment_def' is zero). For example, if code is PLUS we create:
|
|
new_temp = loop_exit_def + adjustment_def */
|
|
|
|
if (adjustment_def)
|
|
{
|
|
gcc_assert (!slp_reduc);
|
|
gimple_seq stmts = NULL;
|
|
if (nested_in_vect_loop)
|
|
{
|
|
new_phi = new_phis[0];
|
|
gcc_assert (VECTOR_TYPE_P (TREE_TYPE (adjustment_def)));
|
|
adjustment_def = gimple_convert (&stmts, vectype, adjustment_def);
|
|
new_temp = gimple_build (&stmts, code, vectype,
|
|
PHI_RESULT (new_phi), adjustment_def);
|
|
}
|
|
else
|
|
{
|
|
new_temp = scalar_results[0];
|
|
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
|
|
adjustment_def = gimple_convert (&stmts, scalar_type, adjustment_def);
|
|
new_temp = gimple_build (&stmts, code, scalar_type,
|
|
new_temp, adjustment_def);
|
|
}
|
|
|
|
epilog_stmt = gimple_seq_last_stmt (stmts);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
if (nested_in_vect_loop)
|
|
{
|
|
if (!double_reduc)
|
|
scalar_results.quick_push (new_temp);
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
}
|
|
else
|
|
scalar_results[0] = new_temp;
|
|
|
|
new_phis[0] = epilog_stmt;
|
|
}
|
|
|
|
if (double_reduc)
|
|
loop = loop->inner;
|
|
|
|
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
|
|
phis with new adjusted scalar results, i.e., replace use <s_out0>
|
|
with use <s_out4>.
|
|
|
|
Transform:
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out0>
|
|
use <s_out0>
|
|
|
|
into:
|
|
|
|
loop_exit:
|
|
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
|
|
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
|
|
v_out2 = reduce <v_out1>
|
|
s_out3 = extract_field <v_out2, 0>
|
|
s_out4 = adjust_result <s_out3>
|
|
use <s_out4>
|
|
use <s_out4> */
|
|
|
|
|
|
/* In SLP reduction chain we reduce vector results into one vector if
|
|
necessary, hence we set here REDUC_GROUP_SIZE to 1. SCALAR_DEST is the
|
|
LHS of the last stmt in the reduction chain, since we are looking for
|
|
the loop exit phi node. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
{
|
|
stmt_vec_info dest_stmt_info
|
|
= vect_orig_stmt (SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
|
|
scalar_dest = gimple_assign_lhs (dest_stmt_info->stmt);
|
|
group_size = 1;
|
|
}
|
|
|
|
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
|
|
case that REDUC_GROUP_SIZE is greater than vectorization factor).
|
|
Therefore, we need to match SCALAR_RESULTS with corresponding statements.
|
|
The first (REDUC_GROUP_SIZE / number of new vector stmts) scalar results
|
|
correspond to the first vector stmt, etc.
|
|
(RATIO is equal to (REDUC_GROUP_SIZE / number of new vector stmts)). */
|
|
if (group_size > new_phis.length ())
|
|
gcc_assert (!(group_size % new_phis.length ()));
|
|
|
|
for (k = 0; k < group_size; k++)
|
|
{
|
|
if (slp_reduc)
|
|
{
|
|
stmt_vec_info scalar_stmt_info = SLP_TREE_SCALAR_STMTS (slp_node)[k];
|
|
|
|
orig_stmt_info = STMT_VINFO_RELATED_STMT (scalar_stmt_info);
|
|
/* SLP statements can't participate in patterns. */
|
|
gcc_assert (!orig_stmt_info);
|
|
scalar_dest = gimple_assign_lhs (scalar_stmt_info->stmt);
|
|
}
|
|
|
|
if (nested_in_vect_loop)
|
|
{
|
|
if (double_reduc)
|
|
loop = outer_loop;
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
phis.create (3);
|
|
/* Find the loop-closed-use at the loop exit of the original scalar
|
|
result. (The reduction result is expected to have two immediate uses,
|
|
one at the latch block, and one at the loop exit). For double
|
|
reductions we are looking for exit phis of the outer loop. */
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
|
{
|
|
if (!is_gimple_debug (USE_STMT (use_p)))
|
|
phis.safe_push (USE_STMT (use_p));
|
|
}
|
|
else
|
|
{
|
|
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
|
|
{
|
|
tree phi_res = PHI_RESULT (USE_STMT (use_p));
|
|
|
|
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
|
|
{
|
|
if (!flow_bb_inside_loop_p (loop,
|
|
gimple_bb (USE_STMT (phi_use_p)))
|
|
&& !is_gimple_debug (USE_STMT (phi_use_p)))
|
|
phis.safe_push (USE_STMT (phi_use_p));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (phis, i, exit_phi)
|
|
{
|
|
/* Replace the uses: */
|
|
orig_name = PHI_RESULT (exit_phi);
|
|
scalar_result = scalar_results[k];
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, scalar_result);
|
|
update_stmt (use_stmt);
|
|
}
|
|
}
|
|
|
|
phis.release ();
|
|
}
|
|
}
|
|
|
|
/* Return a vector of type VECTYPE that is equal to the vector select
|
|
operation "MASK ? VEC : IDENTITY". Insert the select statements
|
|
before GSI. */
|
|
|
|
static tree
|
|
merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
|
|
tree vec, tree identity)
|
|
{
|
|
tree cond = make_temp_ssa_name (vectype, NULL, "cond");
|
|
gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
|
|
mask, vec, identity);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
return cond;
|
|
}
|
|
|
|
/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
|
|
order, starting with LHS. Insert the extraction statements before GSI and
|
|
associate the new scalar SSA names with variable SCALAR_DEST.
|
|
Return the SSA name for the result. */
|
|
|
|
static tree
|
|
vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
|
|
tree_code code, tree lhs, tree vector_rhs)
|
|
{
|
|
tree vectype = TREE_TYPE (vector_rhs);
|
|
tree scalar_type = TREE_TYPE (vectype);
|
|
tree bitsize = TYPE_SIZE (scalar_type);
|
|
unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
|
|
unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
|
|
|
|
for (unsigned HOST_WIDE_INT bit_offset = 0;
|
|
bit_offset < vec_size_in_bits;
|
|
bit_offset += element_bitsize)
|
|
{
|
|
tree bitpos = bitsize_int (bit_offset);
|
|
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
|
|
bitsize, bitpos);
|
|
|
|
gassign *stmt = gimple_build_assign (scalar_dest, rhs);
|
|
rhs = make_ssa_name (scalar_dest, stmt);
|
|
gimple_assign_set_lhs (stmt, rhs);
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
|
|
stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
|
|
tree new_name = make_ssa_name (scalar_dest, stmt);
|
|
gimple_assign_set_lhs (stmt, new_name);
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
|
lhs = new_name;
|
|
}
|
|
return lhs;
|
|
}
|
|
|
|
/* Get a masked internal function equivalent to REDUC_FN. VECTYPE_IN is the
|
|
type of the vector input. */
|
|
|
|
static internal_fn
|
|
get_masked_reduction_fn (internal_fn reduc_fn, tree vectype_in)
|
|
{
|
|
internal_fn mask_reduc_fn;
|
|
|
|
switch (reduc_fn)
|
|
{
|
|
case IFN_FOLD_LEFT_PLUS:
|
|
mask_reduc_fn = IFN_MASK_FOLD_LEFT_PLUS;
|
|
break;
|
|
|
|
default:
|
|
return IFN_LAST;
|
|
}
|
|
|
|
if (direct_internal_fn_supported_p (mask_reduc_fn, vectype_in,
|
|
OPTIMIZE_FOR_SPEED))
|
|
return mask_reduc_fn;
|
|
return IFN_LAST;
|
|
}
|
|
|
|
/* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT_INFO is the
|
|
statement that sets the live-out value. REDUC_DEF_STMT is the phi
|
|
statement. CODE is the operation performed by STMT_INFO and OPS are
|
|
its scalar operands. REDUC_INDEX is the index of the operand in
|
|
OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
|
|
implements in-order reduction, or IFN_LAST if we should open-code it.
|
|
VECTYPE_IN is the type of the vector input. MASKS specifies the masks
|
|
that should be used to control the operation in a fully-masked loop. */
|
|
|
|
static bool
|
|
vectorize_fold_left_reduction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info,
|
|
gimple_stmt_iterator *gsi,
|
|
gimple **vec_stmt, slp_tree slp_node,
|
|
gimple *reduc_def_stmt,
|
|
tree_code code, internal_fn reduc_fn,
|
|
tree ops[3], tree vectype_in,
|
|
int reduc_index, vec_loop_masks *masks)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
internal_fn mask_reduc_fn = get_masked_reduction_fn (reduc_fn, vectype_in);
|
|
|
|
int ncopies;
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
|
|
gcc_assert (!nested_in_vect_loop_p (loop, stmt_info));
|
|
gcc_assert (ncopies == 1);
|
|
gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
|
|
|
|
if (slp_node)
|
|
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
|
|
TYPE_VECTOR_SUBPARTS (vectype_in)));
|
|
|
|
tree op0 = ops[1 - reduc_index];
|
|
|
|
int group_size = 1;
|
|
stmt_vec_info scalar_dest_def_info;
|
|
auto_vec<tree> vec_oprnds0;
|
|
if (slp_node)
|
|
{
|
|
auto_vec<vec<tree> > vec_defs (2);
|
|
vect_get_slp_defs (loop_vinfo, slp_node, &vec_defs);
|
|
vec_oprnds0.safe_splice (vec_defs[1 - reduc_index]);
|
|
vec_defs[0].release ();
|
|
vec_defs[1].release ();
|
|
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
|
|
scalar_dest_def_info = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
|
|
}
|
|
else
|
|
{
|
|
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
|
|
op0, &vec_oprnds0);
|
|
scalar_dest_def_info = stmt_info;
|
|
}
|
|
|
|
tree scalar_dest = gimple_assign_lhs (scalar_dest_def_info->stmt);
|
|
tree scalar_type = TREE_TYPE (scalar_dest);
|
|
tree reduc_var = gimple_phi_result (reduc_def_stmt);
|
|
|
|
int vec_num = vec_oprnds0.length ();
|
|
gcc_assert (vec_num == 1 || slp_node);
|
|
tree vec_elem_type = TREE_TYPE (vectype_out);
|
|
gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
|
|
|
|
tree vector_identity = NULL_TREE;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
vector_identity = build_zero_cst (vectype_out);
|
|
|
|
tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
|
|
int i;
|
|
tree def0;
|
|
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
|
|
{
|
|
gimple *new_stmt;
|
|
tree mask = NULL_TREE;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);
|
|
|
|
/* Handle MINUS by adding the negative. */
|
|
if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
|
|
{
|
|
tree negated = make_ssa_name (vectype_out);
|
|
new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
|
def0 = negated;
|
|
}
|
|
|
|
if (mask && mask_reduc_fn == IFN_LAST)
|
|
def0 = merge_with_identity (gsi, mask, vectype_out, def0,
|
|
vector_identity);
|
|
|
|
/* On the first iteration the input is simply the scalar phi
|
|
result, and for subsequent iterations it is the output of
|
|
the preceding operation. */
|
|
if (reduc_fn != IFN_LAST || (mask && mask_reduc_fn != IFN_LAST))
|
|
{
|
|
if (mask && mask_reduc_fn != IFN_LAST)
|
|
new_stmt = gimple_build_call_internal (mask_reduc_fn, 3, reduc_var,
|
|
def0, mask);
|
|
else
|
|
new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var,
|
|
def0);
|
|
/* For chained SLP reductions the output of the previous reduction
|
|
operation serves as the input of the next. For the final statement
|
|
the output cannot be a temporary - we reuse the original
|
|
scalar destination of the last statement. */
|
|
if (i != vec_num - 1)
|
|
{
|
|
gimple_set_lhs (new_stmt, scalar_dest_var);
|
|
reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
|
|
gimple_set_lhs (new_stmt, reduc_var);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
|
|
reduc_var, def0);
|
|
new_stmt = SSA_NAME_DEF_STMT (reduc_var);
|
|
/* Remove the statement, so that we can use the same code paths
|
|
as for statements that we've just created. */
|
|
gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
|
|
gsi_remove (&tmp_gsi, true);
|
|
}
|
|
|
|
if (i == vec_num - 1)
|
|
{
|
|
gimple_set_lhs (new_stmt, scalar_dest);
|
|
vect_finish_replace_stmt (loop_vinfo,
|
|
scalar_dest_def_info,
|
|
new_stmt);
|
|
}
|
|
else
|
|
vect_finish_stmt_generation (loop_vinfo,
|
|
scalar_dest_def_info,
|
|
new_stmt, gsi);
|
|
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
else
|
|
{
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
|
|
*vec_stmt = new_stmt;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function is_nonwrapping_integer_induction.
|
|
|
|
Check if STMT_VINO (which is part of loop LOOP) both increments and
|
|
does not cause overflow. */
|
|
|
|
static bool
|
|
is_nonwrapping_integer_induction (stmt_vec_info stmt_vinfo, class loop *loop)
|
|
{
|
|
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
|
|
tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
|
|
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
|
|
tree lhs_type = TREE_TYPE (gimple_phi_result (phi));
|
|
widest_int ni, max_loop_value, lhs_max;
|
|
wi::overflow_type overflow = wi::OVF_NONE;
|
|
|
|
/* Make sure the loop is integer based. */
|
|
if (TREE_CODE (base) != INTEGER_CST
|
|
|| TREE_CODE (step) != INTEGER_CST)
|
|
return false;
|
|
|
|
/* Check that the max size of the loop will not wrap. */
|
|
|
|
if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
|
|
return true;
|
|
|
|
if (! max_stmt_executions (loop, &ni))
|
|
return false;
|
|
|
|
max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
|
|
&overflow);
|
|
if (overflow)
|
|
return false;
|
|
|
|
max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
|
|
TYPE_SIGN (lhs_type), &overflow);
|
|
if (overflow)
|
|
return false;
|
|
|
|
return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
|
|
<= TYPE_PRECISION (lhs_type));
|
|
}
|
|
|
|
/* Check if masking can be supported by inserting a conditional expression.
|
|
CODE is the code for the operation. COND_FN is the conditional internal
|
|
function, if it exists. VECTYPE_IN is the type of the vector input. */
|
|
static bool
|
|
use_mask_by_cond_expr_p (enum tree_code code, internal_fn cond_fn,
|
|
tree vectype_in)
|
|
{
|
|
if (cond_fn != IFN_LAST
|
|
&& direct_internal_fn_supported_p (cond_fn, vectype_in,
|
|
OPTIMIZE_FOR_SPEED))
|
|
return false;
|
|
|
|
switch (code)
|
|
{
|
|
case DOT_PROD_EXPR:
|
|
case SAD_EXPR:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Insert a conditional expression to enable masked vectorization. CODE is the
|
|
code for the operation. VOP is the array of operands. MASK is the loop
|
|
mask. GSI is a statement iterator used to place the new conditional
|
|
expression. */
|
|
static void
|
|
build_vect_cond_expr (enum tree_code code, tree vop[3], tree mask,
|
|
gimple_stmt_iterator *gsi)
|
|
{
|
|
switch (code)
|
|
{
|
|
case DOT_PROD_EXPR:
|
|
{
|
|
tree vectype = TREE_TYPE (vop[1]);
|
|
tree zero = build_zero_cst (vectype);
|
|
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
|
|
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
|
|
mask, vop[1], zero);
|
|
gsi_insert_before (gsi, select, GSI_SAME_STMT);
|
|
vop[1] = masked_op1;
|
|
break;
|
|
}
|
|
|
|
case SAD_EXPR:
|
|
{
|
|
tree vectype = TREE_TYPE (vop[1]);
|
|
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
|
|
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
|
|
mask, vop[1], vop[0]);
|
|
gsi_insert_before (gsi, select, GSI_SAME_STMT);
|
|
vop[1] = masked_op1;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Function vectorizable_reduction.
|
|
|
|
Check if STMT_INFO performs a reduction operation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
|
|
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
|
|
Return true if STMT_INFO is vectorizable in this way.
|
|
|
|
This function also handles reduction idioms (patterns) that have been
|
|
recognized in advance during vect_pattern_recog. In this case, STMT_INFO
|
|
may be of this form:
|
|
X = pattern_expr (arg0, arg1, ..., X)
|
|
and its STMT_VINFO_RELATED_STMT points to the last stmt in the original
|
|
sequence that had been detected and replaced by the pattern-stmt
|
|
(STMT_INFO).
|
|
|
|
This function also handles reduction of condition expressions, for example:
|
|
for (int i = 0; i < N; i++)
|
|
if (a[i] < value)
|
|
last = a[i];
|
|
This is handled by vectorising the loop and creating an additional vector
|
|
containing the loop indexes for which "a[i] < value" was true. In the
|
|
function epilogue this is reduced to a single max value and then used to
|
|
index into the vector of results.
|
|
|
|
In some cases of reduction patterns, the type of the reduction variable X is
|
|
different than the type of the other arguments of STMT_INFO.
|
|
In such cases, the vectype that is used when transforming STMT_INFO into
|
|
a vector stmt is different than the vectype that is used to determine the
|
|
vectorization factor, because it consists of a different number of elements
|
|
than the actual number of elements that are being operated upon in parallel.
|
|
|
|
For example, consider an accumulation of shorts into an int accumulator.
|
|
On some targets it's possible to vectorize this pattern operating on 8
|
|
shorts at a time (hence, the vectype for purposes of determining the
|
|
vectorization factor should be V8HI); on the other hand, the vectype that
|
|
is used to create the vector form is actually V4SI (the type of the result).
|
|
|
|
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
|
|
indicates what is the actual level of parallelism (V8HI in the example), so
|
|
that the right vectorization factor would be derived. This vectype
|
|
corresponds to the type of arguments to the reduction stmt, and should *NOT*
|
|
be used to create the vectorized stmt. The right vectype for the vectorized
|
|
stmt is obtained from the type of the result X:
|
|
get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
|
|
|
|
This means that, contrary to "regular" reductions (or "regular" stmts in
|
|
general), the following equation:
|
|
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
|
|
does *NOT* necessarily hold for reduction patterns. */
|
|
|
|
bool
|
|
vectorizable_reduction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info, slp_tree slp_node,
|
|
slp_instance slp_node_instance,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
tree scalar_dest;
|
|
tree vectype_in = NULL_TREE;
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
enum vect_def_type cond_reduc_dt = vect_unknown_def_type;
|
|
stmt_vec_info cond_stmt_vinfo = NULL;
|
|
tree scalar_type;
|
|
int i;
|
|
int ncopies;
|
|
bool single_defuse_cycle = false;
|
|
bool nested_cycle = false;
|
|
bool double_reduc = false;
|
|
int vec_num;
|
|
tree tem;
|
|
tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
|
|
tree cond_reduc_val = NULL_TREE;
|
|
|
|
/* Make sure it was already recognized as a reduction computation. */
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
|
|
return false;
|
|
|
|
/* The stmt we store reduction analysis meta on. */
|
|
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
|
|
reduc_info->is_reduc_info = true;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
|
|
{
|
|
if (is_a <gphi *> (stmt_info->stmt))
|
|
{
|
|
if (slp_node)
|
|
{
|
|
/* We eventually need to set a vector type on invariant
|
|
arguments. */
|
|
unsigned j;
|
|
slp_tree child;
|
|
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
|
|
if (!vect_maybe_update_slp_op_vectype
|
|
(child, SLP_TREE_VECTYPE (slp_node)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"incompatible vector types for "
|
|
"invariants\n");
|
|
return false;
|
|
}
|
|
}
|
|
/* Analysis for double-reduction is done on the outer
|
|
loop PHI, nested cycles have no further restrictions. */
|
|
STMT_VINFO_TYPE (stmt_info) = cycle_phi_info_type;
|
|
}
|
|
else
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
|
return true;
|
|
}
|
|
|
|
stmt_vec_info orig_stmt_of_analysis = stmt_info;
|
|
stmt_vec_info phi_info = stmt_info;
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
|
|
{
|
|
if (!is_a <gphi *> (stmt_info->stmt))
|
|
{
|
|
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
|
|
return true;
|
|
}
|
|
if (slp_node)
|
|
{
|
|
slp_node_instance->reduc_phis = slp_node;
|
|
/* ??? We're leaving slp_node to point to the PHIs, we only
|
|
need it to get at the number of vector stmts which wasn't
|
|
yet initialized for the instance root. */
|
|
}
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
|
|
stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (stmt_info));
|
|
else /* STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def */
|
|
{
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
bool res = single_imm_use (gimple_phi_result (stmt_info->stmt),
|
|
&use_p, &use_stmt);
|
|
gcc_assert (res);
|
|
phi_info = loop_vinfo->lookup_stmt (use_stmt);
|
|
stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
|
|
}
|
|
}
|
|
|
|
/* PHIs should not participate in patterns. */
|
|
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
|
|
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
|
|
|
|
/* Verify following REDUC_IDX from the latch def leads us back to the PHI
|
|
and compute the reduction chain length. Discover the real
|
|
reduction operation stmt on the way (stmt_info and slp_for_stmt_info). */
|
|
tree reduc_def
|
|
= PHI_ARG_DEF_FROM_EDGE (reduc_def_phi,
|
|
loop_latch_edge
|
|
(gimple_bb (reduc_def_phi)->loop_father));
|
|
unsigned reduc_chain_length = 0;
|
|
bool only_slp_reduc_chain = true;
|
|
stmt_info = NULL;
|
|
slp_tree slp_for_stmt_info = slp_node ? slp_node_instance->root : NULL;
|
|
while (reduc_def != PHI_RESULT (reduc_def_phi))
|
|
{
|
|
stmt_vec_info def = loop_vinfo->lookup_def (reduc_def);
|
|
stmt_vec_info vdef = vect_stmt_to_vectorize (def);
|
|
if (STMT_VINFO_REDUC_IDX (vdef) == -1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction chain broken by patterns.\n");
|
|
return false;
|
|
}
|
|
if (!REDUC_GROUP_FIRST_ELEMENT (vdef))
|
|
only_slp_reduc_chain = false;
|
|
/* ??? For epilogue generation live members of the chain need
|
|
to point back to the PHI via their original stmt for
|
|
info_for_reduction to work. */
|
|
if (STMT_VINFO_LIVE_P (vdef))
|
|
STMT_VINFO_REDUC_DEF (def) = phi_info;
|
|
gassign *assign = dyn_cast <gassign *> (vdef->stmt);
|
|
if (!assign)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction chain includes calls.\n");
|
|
return false;
|
|
}
|
|
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
|
|
{
|
|
if (!tree_nop_conversion_p (TREE_TYPE (gimple_assign_lhs (assign)),
|
|
TREE_TYPE (gimple_assign_rhs1 (assign))))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"conversion in the reduction chain.\n");
|
|
return false;
|
|
}
|
|
}
|
|
else if (!stmt_info)
|
|
/* First non-conversion stmt. */
|
|
stmt_info = vdef;
|
|
reduc_def = gimple_op (vdef->stmt, 1 + STMT_VINFO_REDUC_IDX (vdef));
|
|
reduc_chain_length++;
|
|
if (!stmt_info && slp_node)
|
|
slp_for_stmt_info = SLP_TREE_CHILDREN (slp_for_stmt_info)[0];
|
|
}
|
|
/* PHIs should not participate in patterns. */
|
|
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt_info))
|
|
{
|
|
loop = loop->inner;
|
|
nested_cycle = true;
|
|
}
|
|
|
|
/* STMT_VINFO_REDUC_DEF doesn't point to the first but the last
|
|
element. */
|
|
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
{
|
|
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (stmt_info));
|
|
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
|
|
}
|
|
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
gcc_assert (slp_node
|
|
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info);
|
|
|
|
/* 1. Is vectorizable reduction? */
|
|
/* Not supportable if the reduction variable is used in the loop, unless
|
|
it's a reduction chain. */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
return false;
|
|
|
|
/* Reductions that are not used even in an enclosing outer-loop,
|
|
are expected to be "live" (used out of the loop). */
|
|
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
return false;
|
|
|
|
/* 2. Has this been recognized as a reduction pattern?
|
|
|
|
Check if STMT represents a pattern that has been recognized
|
|
in earlier analysis stages. For stmts that represent a pattern,
|
|
the STMT_VINFO_RELATED_STMT field records the last stmt in
|
|
the original sequence that constitutes the pattern. */
|
|
|
|
stmt_vec_info orig_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (orig_stmt_info)
|
|
{
|
|
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
|
|
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
|
|
}
|
|
|
|
/* 3. Check the operands of the operation. The first operands are defined
|
|
inside the loop body. The last operand is the reduction variable,
|
|
which is defined by the loop-header-phi. */
|
|
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
STMT_VINFO_REDUC_VECTYPE (reduc_info) = vectype_out;
|
|
gassign *stmt = as_a <gassign *> (stmt_info->stmt);
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
bool lane_reduc_code_p
|
|
= (code == DOT_PROD_EXPR || code == WIDEN_SUM_EXPR || code == SAD_EXPR);
|
|
int op_type = TREE_CODE_LENGTH (code);
|
|
|
|
scalar_dest = gimple_assign_lhs (stmt);
|
|
scalar_type = TREE_TYPE (scalar_dest);
|
|
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
|
|
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
|
|
return false;
|
|
|
|
/* Do not try to vectorize bit-precision reductions. */
|
|
if (!type_has_mode_precision_p (scalar_type))
|
|
return false;
|
|
|
|
/* For lane-reducing ops we're reducing the number of reduction PHIs
|
|
which means the only use of that may be in the lane-reducing operation. */
|
|
if (lane_reduc_code_p
|
|
&& reduc_chain_length != 1
|
|
&& !only_slp_reduc_chain)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"lane-reducing reduction with extra stmts.\n");
|
|
return false;
|
|
}
|
|
|
|
/* All uses but the last are expected to be defined in the loop.
|
|
The last use is the reduction variable. In case of nested cycle this
|
|
assumption is not true: we use reduc_index to record the index of the
|
|
reduction variable. */
|
|
slp_tree *slp_op = XALLOCAVEC (slp_tree, op_type);
|
|
/* We need to skip an extra operand for COND_EXPRs with embedded
|
|
comparison. */
|
|
unsigned opno_adjust = 0;
|
|
if (code == COND_EXPR
|
|
&& COMPARISON_CLASS_P (gimple_assign_rhs1 (stmt)))
|
|
opno_adjust = 1;
|
|
for (i = 0; i < op_type; i++)
|
|
{
|
|
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
|
|
if (i == 0 && code == COND_EXPR)
|
|
continue;
|
|
|
|
stmt_vec_info def_stmt_info;
|
|
enum vect_def_type dt;
|
|
tree op;
|
|
if (!vect_is_simple_use (loop_vinfo, stmt_info, slp_for_stmt_info,
|
|
i + opno_adjust, &op, &slp_op[i], &dt, &tem,
|
|
&def_stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"use not simple.\n");
|
|
return false;
|
|
}
|
|
if (i == STMT_VINFO_REDUC_IDX (stmt_info))
|
|
continue;
|
|
|
|
/* There should be only one cycle def in the stmt, the one
|
|
leading to reduc_def. */
|
|
if (VECTORIZABLE_CYCLE_DEF (dt))
|
|
return false;
|
|
|
|
/* To properly compute ncopies we are interested in the widest
|
|
non-reduction input type in case we're looking at a widening
|
|
accumulation that we later handle in vect_transform_reduction. */
|
|
if (lane_reduc_code_p
|
|
&& tem
|
|
&& (!vectype_in
|
|
|| (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
|
|
< GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem))))))
|
|
vectype_in = tem;
|
|
|
|
if (code == COND_EXPR)
|
|
{
|
|
/* Record how the non-reduction-def value of COND_EXPR is defined. */
|
|
if (dt == vect_constant_def)
|
|
{
|
|
cond_reduc_dt = dt;
|
|
cond_reduc_val = op;
|
|
}
|
|
if (dt == vect_induction_def
|
|
&& def_stmt_info
|
|
&& is_nonwrapping_integer_induction (def_stmt_info, loop))
|
|
{
|
|
cond_reduc_dt = dt;
|
|
cond_stmt_vinfo = def_stmt_info;
|
|
}
|
|
}
|
|
}
|
|
if (!vectype_in)
|
|
vectype_in = STMT_VINFO_VECTYPE (phi_info);
|
|
STMT_VINFO_REDUC_VECTYPE_IN (reduc_info) = vectype_in;
|
|
|
|
enum vect_reduction_type v_reduc_type = STMT_VINFO_REDUC_TYPE (phi_info);
|
|
STMT_VINFO_REDUC_TYPE (reduc_info) = v_reduc_type;
|
|
/* If we have a condition reduction, see if we can simplify it further. */
|
|
if (v_reduc_type == COND_REDUCTION)
|
|
{
|
|
if (slp_node)
|
|
return false;
|
|
|
|
/* When the condition uses the reduction value in the condition, fail. */
|
|
if (STMT_VINFO_REDUC_IDX (stmt_info) == 0)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"condition depends on previous iteration\n");
|
|
return false;
|
|
}
|
|
|
|
if (reduc_chain_length == 1
|
|
&& direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
|
|
vectype_in, OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"optimizing condition reduction with"
|
|
" FOLD_EXTRACT_LAST.\n");
|
|
STMT_VINFO_REDUC_TYPE (reduc_info) = EXTRACT_LAST_REDUCTION;
|
|
}
|
|
else if (cond_reduc_dt == vect_induction_def)
|
|
{
|
|
tree base
|
|
= STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
|
|
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
|
|
|
|
gcc_assert (TREE_CODE (base) == INTEGER_CST
|
|
&& TREE_CODE (step) == INTEGER_CST);
|
|
cond_reduc_val = NULL_TREE;
|
|
enum tree_code cond_reduc_op_code = ERROR_MARK;
|
|
tree res = PHI_RESULT (STMT_VINFO_STMT (cond_stmt_vinfo));
|
|
if (!types_compatible_p (TREE_TYPE (res), TREE_TYPE (base)))
|
|
;
|
|
/* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
|
|
above base; punt if base is the minimum value of the type for
|
|
MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
|
|
else if (tree_int_cst_sgn (step) == -1)
|
|
{
|
|
cond_reduc_op_code = MIN_EXPR;
|
|
if (tree_int_cst_sgn (base) == -1)
|
|
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
|
|
else if (tree_int_cst_lt (base,
|
|
TYPE_MAX_VALUE (TREE_TYPE (base))))
|
|
cond_reduc_val
|
|
= int_const_binop (PLUS_EXPR, base, integer_one_node);
|
|
}
|
|
else
|
|
{
|
|
cond_reduc_op_code = MAX_EXPR;
|
|
if (tree_int_cst_sgn (base) == 1)
|
|
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
|
|
else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
|
|
base))
|
|
cond_reduc_val
|
|
= int_const_binop (MINUS_EXPR, base, integer_one_node);
|
|
}
|
|
if (cond_reduc_val)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"condition expression based on "
|
|
"integer induction.\n");
|
|
STMT_VINFO_REDUC_CODE (reduc_info) = cond_reduc_op_code;
|
|
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info)
|
|
= cond_reduc_val;
|
|
STMT_VINFO_REDUC_TYPE (reduc_info) = INTEGER_INDUC_COND_REDUCTION;
|
|
}
|
|
}
|
|
else if (cond_reduc_dt == vect_constant_def)
|
|
{
|
|
enum vect_def_type cond_initial_dt;
|
|
tree cond_initial_val
|
|
= PHI_ARG_DEF_FROM_EDGE (reduc_def_phi, loop_preheader_edge (loop));
|
|
|
|
gcc_assert (cond_reduc_val != NULL_TREE);
|
|
vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
|
|
if (cond_initial_dt == vect_constant_def
|
|
&& types_compatible_p (TREE_TYPE (cond_initial_val),
|
|
TREE_TYPE (cond_reduc_val)))
|
|
{
|
|
tree e = fold_binary (LE_EXPR, boolean_type_node,
|
|
cond_initial_val, cond_reduc_val);
|
|
if (e && (integer_onep (e) || integer_zerop (e)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"condition expression based on "
|
|
"compile time constant.\n");
|
|
/* Record reduction code at analysis stage. */
|
|
STMT_VINFO_REDUC_CODE (reduc_info)
|
|
= integer_onep (e) ? MAX_EXPR : MIN_EXPR;
|
|
STMT_VINFO_REDUC_TYPE (reduc_info) = CONST_COND_REDUCTION;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (STMT_VINFO_LIVE_P (phi_info))
|
|
return false;
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
|
|
|
|
if (nested_cycle)
|
|
{
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info)
|
|
== vect_double_reduction_def);
|
|
double_reduc = true;
|
|
}
|
|
|
|
/* 4.2. Check support for the epilog operation.
|
|
|
|
If STMT represents a reduction pattern, then the type of the
|
|
reduction variable may be different than the type of the rest
|
|
of the arguments. For example, consider the case of accumulation
|
|
of shorts into an int accumulator; The original code:
|
|
S1: int_a = (int) short_a;
|
|
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
|
|
|
|
was replaced with:
|
|
STMT: int_acc = widen_sum <short_a, int_acc>
|
|
|
|
This means that:
|
|
1. The tree-code that is used to create the vector operation in the
|
|
epilog code (that reduces the partial results) is not the
|
|
tree-code of STMT, but is rather the tree-code of the original
|
|
stmt from the pattern that STMT is replacing. I.e, in the example
|
|
above we want to use 'widen_sum' in the loop, but 'plus' in the
|
|
epilog.
|
|
2. The type (mode) we use to check available target support
|
|
for the vector operation to be created in the *epilog*, is
|
|
determined by the type of the reduction variable (in the example
|
|
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
|
|
However the type (mode) we use to check available target support
|
|
for the vector operation to be created *inside the loop*, is
|
|
determined by the type of the other arguments to STMT (in the
|
|
example we'd check this: optab_handler (widen_sum_optab,
|
|
vect_short_mode)).
|
|
|
|
This is contrary to "regular" reductions, in which the types of all
|
|
the arguments are the same as the type of the reduction variable.
|
|
For "regular" reductions we can therefore use the same vector type
|
|
(and also the same tree-code) when generating the epilog code and
|
|
when generating the code inside the loop. */
|
|
|
|
enum tree_code orig_code = STMT_VINFO_REDUC_CODE (phi_info);
|
|
STMT_VINFO_REDUC_CODE (reduc_info) = orig_code;
|
|
|
|
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
|
|
if (reduction_type == TREE_CODE_REDUCTION)
|
|
{
|
|
/* Check whether it's ok to change the order of the computation.
|
|
Generally, when vectorizing a reduction we change the order of the
|
|
computation. This may change the behavior of the program in some
|
|
cases, so we need to check that this is ok. One exception is when
|
|
vectorizing an outer-loop: the inner-loop is executed sequentially,
|
|
and therefore vectorizing reductions in the inner-loop during
|
|
outer-loop vectorization is safe. Likewise when we are vectorizing
|
|
a series of reductions using SLP and the VF is one the reductions
|
|
are performed in scalar order. */
|
|
if (slp_node
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
|
|
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1u))
|
|
;
|
|
else if (needs_fold_left_reduction_p (scalar_type, orig_code))
|
|
{
|
|
/* When vectorizing a reduction chain w/o SLP the reduction PHI
|
|
is not directy used in stmt. */
|
|
if (!only_slp_reduc_chain
|
|
&& reduc_chain_length != 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order reduction chain without SLP.\n");
|
|
return false;
|
|
}
|
|
STMT_VINFO_REDUC_TYPE (reduc_info)
|
|
= reduction_type = FOLD_LEFT_REDUCTION;
|
|
}
|
|
else if (!commutative_tree_code (orig_code)
|
|
|| !associative_tree_code (orig_code))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction: not commutative/associative");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
|
|
&& ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in double reduction or condition "
|
|
"reduction or fold-left reduction.\n");
|
|
return false;
|
|
}
|
|
|
|
internal_fn reduc_fn = IFN_LAST;
|
|
if (reduction_type == TREE_CODE_REDUCTION
|
|
|| reduction_type == FOLD_LEFT_REDUCTION
|
|
|| reduction_type == INTEGER_INDUC_COND_REDUCTION
|
|
|| reduction_type == CONST_COND_REDUCTION)
|
|
{
|
|
if (reduction_type == FOLD_LEFT_REDUCTION
|
|
? fold_left_reduction_fn (orig_code, &reduc_fn)
|
|
: reduction_fn_for_scalar_code (orig_code, &reduc_fn))
|
|
{
|
|
if (reduc_fn != IFN_LAST
|
|
&& !direct_internal_fn_supported_p (reduc_fn, vectype_out,
|
|
OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduc op not supported by target.\n");
|
|
|
|
reduc_fn = IFN_LAST;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!nested_cycle || double_reduc)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no reduc code for scalar code.\n");
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else if (reduction_type == COND_REDUCTION)
|
|
{
|
|
int scalar_precision
|
|
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
|
|
cr_index_scalar_type = make_unsigned_type (scalar_precision);
|
|
cr_index_vector_type = get_same_sized_vectype (cr_index_scalar_type,
|
|
vectype_out);
|
|
|
|
if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
|
|
OPTIMIZE_FOR_SPEED))
|
|
reduc_fn = IFN_REDUC_MAX;
|
|
}
|
|
STMT_VINFO_REDUC_FN (reduc_info) = reduc_fn;
|
|
|
|
if (reduction_type != EXTRACT_LAST_REDUCTION
|
|
&& (!nested_cycle || double_reduc)
|
|
&& reduc_fn == IFN_LAST
|
|
&& !nunits_out.is_constant ())
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"missing target support for reduction on"
|
|
" variable-length vectors.\n");
|
|
return false;
|
|
}
|
|
|
|
/* For SLP reductions, see if there is a neutral value we can use. */
|
|
tree neutral_op = NULL_TREE;
|
|
if (slp_node)
|
|
neutral_op = neutral_op_for_slp_reduction
|
|
(slp_node_instance->reduc_phis, vectype_out, orig_code,
|
|
REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL);
|
|
|
|
if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
|
|
{
|
|
/* We can't support in-order reductions of code such as this:
|
|
|
|
for (int i = 0; i < n1; ++i)
|
|
for (int j = 0; j < n2; ++j)
|
|
l += a[j];
|
|
|
|
since GCC effectively transforms the loop when vectorizing:
|
|
|
|
for (int i = 0; i < n1 / VF; ++i)
|
|
for (int j = 0; j < n2; ++j)
|
|
for (int k = 0; k < VF; ++k)
|
|
l += a[j];
|
|
|
|
which is a reassociation of the original operation. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order double reduction not supported.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
if (reduction_type == FOLD_LEFT_REDUCTION
|
|
&& slp_node
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
{
|
|
/* We cannot use in-order reductions in this case because there is
|
|
an implicit reassociation of the operations involved. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"in-order unchained SLP reductions not supported.\n");
|
|
return false;
|
|
}
|
|
|
|
/* For double reductions, and for SLP reductions with a neutral value,
|
|
we construct a variable-length initial vector by loading a vector
|
|
full of the neutral value and then shift-and-inserting the start
|
|
values into the low-numbered elements. */
|
|
if ((double_reduc || neutral_op)
|
|
&& !nunits_out.is_constant ()
|
|
&& !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
|
|
vectype_out, OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"reduction on variable-length vectors requires"
|
|
" target support for a vector-shift-and-insert"
|
|
" operation.\n");
|
|
return false;
|
|
}
|
|
|
|
/* Check extra constraints for variable-length unchained SLP reductions. */
|
|
if (STMT_SLP_TYPE (stmt_info)
|
|
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
|
|
&& !nunits_out.is_constant ())
|
|
{
|
|
/* We checked above that we could build the initial vector when
|
|
there's a neutral element value. Check here for the case in
|
|
which each SLP statement has its own initial value and in which
|
|
that value needs to be repeated for every instance of the
|
|
statement within the initial vector. */
|
|
unsigned int group_size = SLP_TREE_LANES (slp_node);
|
|
if (!neutral_op
|
|
&& !can_duplicate_and_interleave_p (loop_vinfo, group_size,
|
|
TREE_TYPE (vectype_out)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported form of SLP reduction for"
|
|
" variable-length vectors: cannot build"
|
|
" initial vector.\n");
|
|
return false;
|
|
}
|
|
/* The epilogue code relies on the number of elements being a multiple
|
|
of the group size. The duplicate-and-interleave approach to setting
|
|
up the initial vector does too. */
|
|
if (!multiple_p (nunits_out, group_size))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"unsupported form of SLP reduction for"
|
|
" variable-length vectors: the vector size"
|
|
" is not a multiple of the number of results.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (reduction_type == COND_REDUCTION)
|
|
{
|
|
widest_int ni;
|
|
|
|
if (! max_loop_iterations (loop, &ni))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"loop count not known, cannot create cond "
|
|
"reduction.\n");
|
|
return false;
|
|
}
|
|
/* Convert backedges to iterations. */
|
|
ni += 1;
|
|
|
|
/* The additional index will be the same type as the condition. Check
|
|
that the loop can fit into this less one (because we'll use up the
|
|
zero slot for when there are no matches). */
|
|
tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
|
|
if (wi::geu_p (ni, wi::to_widest (max_index)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"loop size is greater than data size.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* In case the vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
/* If the reduction is used in an outer loop we need to generate
|
|
VF intermediate results, like so (e.g. for ncopies=2):
|
|
r0 = phi (init, r0)
|
|
r1 = phi (init, r1)
|
|
r0 = x0 + r0;
|
|
r1 = x1 + r1;
|
|
(i.e. we generate VF results in 2 registers).
|
|
In this case we have a separate def-use cycle for each copy, and therefore
|
|
for each copy we get the vector def for the reduction variable from the
|
|
respective phi node created for this copy.
|
|
|
|
Otherwise (the reduction is unused in the loop nest), we can combine
|
|
together intermediate results, like so (e.g. for ncopies=2):
|
|
r = phi (init, r)
|
|
r = x0 + r;
|
|
r = x1 + r;
|
|
(i.e. we generate VF/2 results in a single register).
|
|
In this case for each copy we get the vector def for the reduction variable
|
|
from the vectorized reduction operation generated in the previous iteration.
|
|
|
|
This only works when we see both the reduction PHI and its only consumer
|
|
in vectorizable_reduction and there are no intermediate stmts
|
|
participating. */
|
|
if (ncopies > 1
|
|
&& (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
|
|
&& reduc_chain_length == 1)
|
|
single_defuse_cycle = true;
|
|
|
|
if (single_defuse_cycle || lane_reduc_code_p)
|
|
{
|
|
gcc_assert (code != COND_EXPR);
|
|
|
|
/* 4. Supportable by target? */
|
|
bool ok = true;
|
|
|
|
/* 4.1. check support for the operation in the loop */
|
|
optab optab = optab_for_tree_code (code, vectype_in, optab_vector);
|
|
if (!optab)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"no optab.\n");
|
|
ok = false;
|
|
}
|
|
|
|
machine_mode vec_mode = TYPE_MODE (vectype_in);
|
|
if (ok && optab_handler (optab, vec_mode) == CODE_FOR_nothing)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "op not supported by target.\n");
|
|
if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
|
|
|| !vect_worthwhile_without_simd_p (loop_vinfo, code))
|
|
ok = false;
|
|
else
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "proceeding using word mode.\n");
|
|
}
|
|
|
|
/* Worthwhile without SIMD support? */
|
|
if (ok
|
|
&& !VECTOR_MODE_P (TYPE_MODE (vectype_in))
|
|
&& !vect_worthwhile_without_simd_p (loop_vinfo, code))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"not worthwhile without SIMD support.\n");
|
|
ok = false;
|
|
}
|
|
|
|
/* lane-reducing operations have to go through vect_transform_reduction.
|
|
For the other cases try without the single cycle optimization. */
|
|
if (!ok)
|
|
{
|
|
if (lane_reduc_code_p)
|
|
return false;
|
|
else
|
|
single_defuse_cycle = false;
|
|
}
|
|
}
|
|
STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info) = single_defuse_cycle;
|
|
|
|
/* If the reduction stmt is one of the patterns that have lane
|
|
reduction embedded we cannot handle the case of ! single_defuse_cycle. */
|
|
if ((ncopies > 1 && ! single_defuse_cycle)
|
|
&& lane_reduc_code_p)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multi def-use cycle not possible for lane-reducing "
|
|
"reduction operation\n");
|
|
return false;
|
|
}
|
|
|
|
if (slp_node
|
|
&& !(!single_defuse_cycle
|
|
&& code != DOT_PROD_EXPR
|
|
&& code != WIDEN_SUM_EXPR
|
|
&& code != SAD_EXPR
|
|
&& reduction_type != FOLD_LEFT_REDUCTION))
|
|
for (i = 0; i < op_type; i++)
|
|
if (!vect_maybe_update_slp_op_vectype (slp_op[i], vectype_in))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"incompatible vector types for invariants\n");
|
|
return false;
|
|
}
|
|
|
|
if (slp_node)
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
else
|
|
vec_num = 1;
|
|
|
|
vect_model_reduction_cost (loop_vinfo, stmt_info, reduc_fn,
|
|
reduction_type, ncopies, cost_vec);
|
|
/* Cost the reduction op inside the loop if transformed via
|
|
vect_transform_reduction. Otherwise this is costed by the
|
|
separate vectorizable_* routines. */
|
|
if (single_defuse_cycle
|
|
|| code == DOT_PROD_EXPR
|
|
|| code == WIDEN_SUM_EXPR
|
|
|| code == SAD_EXPR)
|
|
record_stmt_cost (cost_vec, ncopies, vector_stmt, stmt_info, 0, vect_body);
|
|
|
|
if (dump_enabled_p ()
|
|
&& reduction_type == FOLD_LEFT_REDUCTION)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"using an in-order (fold-left) reduction.\n");
|
|
STMT_VINFO_TYPE (orig_stmt_of_analysis) = cycle_phi_info_type;
|
|
/* All but single defuse-cycle optimized, lane-reducing and fold-left
|
|
reductions go through their own vectorizable_* routines. */
|
|
if (!single_defuse_cycle
|
|
&& code != DOT_PROD_EXPR
|
|
&& code != WIDEN_SUM_EXPR
|
|
&& code != SAD_EXPR
|
|
&& reduction_type != FOLD_LEFT_REDUCTION)
|
|
{
|
|
stmt_vec_info tem
|
|
= vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
|
|
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (tem))
|
|
{
|
|
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (tem));
|
|
tem = REDUC_GROUP_FIRST_ELEMENT (tem);
|
|
}
|
|
STMT_VINFO_DEF_TYPE (vect_orig_stmt (tem)) = vect_internal_def;
|
|
STMT_VINFO_DEF_TYPE (tem) = vect_internal_def;
|
|
}
|
|
else if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
|
|
internal_fn cond_fn = get_conditional_internal_fn (code);
|
|
|
|
if (reduction_type != FOLD_LEFT_REDUCTION
|
|
&& !use_mask_by_cond_expr_p (code, cond_fn, vectype_in)
|
|
&& (cond_fn == IFN_LAST
|
|
|| !direct_internal_fn_supported_p (cond_fn, vectype_in,
|
|
OPTIMIZE_FOR_SPEED)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't operate on partial vectors because"
|
|
" no conditional operation is available.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
else if (reduction_type == FOLD_LEFT_REDUCTION
|
|
&& reduc_fn == IFN_LAST
|
|
&& !expand_vec_cond_expr_p (vectype_in,
|
|
truth_type_for (vectype_in),
|
|
SSA_NAME))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't operate on partial vectors because"
|
|
" no conditional operation is available.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
else
|
|
vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
|
|
vectype_in, NULL);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Transform the definition stmt STMT_INFO of a reduction PHI backedge
|
|
value. */
|
|
|
|
bool
|
|
vect_transform_reduction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info, gimple_stmt_iterator *gsi,
|
|
gimple **vec_stmt, slp_tree slp_node)
|
|
{
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
int i;
|
|
int ncopies;
|
|
int vec_num;
|
|
|
|
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
|
|
gcc_assert (reduc_info->is_reduc_info);
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt_info))
|
|
{
|
|
loop = loop->inner;
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info) == vect_double_reduction_def);
|
|
}
|
|
|
|
gassign *stmt = as_a <gassign *> (stmt_info->stmt);
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
int op_type = TREE_CODE_LENGTH (code);
|
|
|
|
/* Flatten RHS. */
|
|
tree ops[3];
|
|
switch (get_gimple_rhs_class (code))
|
|
{
|
|
case GIMPLE_TERNARY_RHS:
|
|
ops[2] = gimple_assign_rhs3 (stmt);
|
|
/* Fall thru. */
|
|
case GIMPLE_BINARY_RHS:
|
|
ops[0] = gimple_assign_rhs1 (stmt);
|
|
ops[1] = gimple_assign_rhs2 (stmt);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* All uses but the last are expected to be defined in the loop.
|
|
The last use is the reduction variable. In case of nested cycle this
|
|
assumption is not true: we use reduc_index to record the index of the
|
|
reduction variable. */
|
|
stmt_vec_info phi_info = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
|
|
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
|
|
int reduc_index = STMT_VINFO_REDUC_IDX (stmt_info);
|
|
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
|
|
|
|
if (slp_node)
|
|
{
|
|
ncopies = 1;
|
|
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
}
|
|
else
|
|
{
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
vec_num = 1;
|
|
}
|
|
|
|
internal_fn cond_fn = get_conditional_internal_fn (code);
|
|
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
|
|
bool mask_by_cond_expr = use_mask_by_cond_expr_p (code, cond_fn, vectype_in);
|
|
|
|
/* Transform. */
|
|
tree new_temp = NULL_TREE;
|
|
auto_vec<tree> vec_oprnds0;
|
|
auto_vec<tree> vec_oprnds1;
|
|
auto_vec<tree> vec_oprnds2;
|
|
tree def0;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
|
|
|
|
/* FORNOW: Multiple types are not supported for condition. */
|
|
if (code == COND_EXPR)
|
|
gcc_assert (ncopies == 1);
|
|
|
|
bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
|
|
|
|
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
|
|
if (reduction_type == FOLD_LEFT_REDUCTION)
|
|
{
|
|
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
|
|
return vectorize_fold_left_reduction
|
|
(loop_vinfo, stmt_info, gsi, vec_stmt, slp_node, reduc_def_phi, code,
|
|
reduc_fn, ops, vectype_in, reduc_index, masks);
|
|
}
|
|
|
|
bool single_defuse_cycle = STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info);
|
|
gcc_assert (single_defuse_cycle
|
|
|| code == DOT_PROD_EXPR
|
|
|| code == WIDEN_SUM_EXPR
|
|
|| code == SAD_EXPR);
|
|
|
|
/* Create the destination vector */
|
|
tree scalar_dest = gimple_assign_lhs (stmt);
|
|
tree vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
|
|
|
|
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node, ncopies,
|
|
single_defuse_cycle && reduc_index == 0
|
|
? NULL_TREE : ops[0], &vec_oprnds0,
|
|
single_defuse_cycle && reduc_index == 1
|
|
? NULL_TREE : ops[1], &vec_oprnds1,
|
|
op_type == ternary_op
|
|
&& !(single_defuse_cycle && reduc_index == 2)
|
|
? ops[2] : NULL_TREE, &vec_oprnds2);
|
|
if (single_defuse_cycle)
|
|
{
|
|
gcc_assert (!slp_node);
|
|
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
|
|
ops[reduc_index],
|
|
reduc_index == 0 ? &vec_oprnds0
|
|
: (reduc_index == 1 ? &vec_oprnds1
|
|
: &vec_oprnds2));
|
|
}
|
|
|
|
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
|
|
{
|
|
gimple *new_stmt;
|
|
tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
|
|
if (masked_loop_p && !mask_by_cond_expr)
|
|
{
|
|
/* Make sure that the reduction accumulator is vop[0]. */
|
|
if (reduc_index == 1)
|
|
{
|
|
gcc_assert (commutative_tree_code (code));
|
|
std::swap (vop[0], vop[1]);
|
|
}
|
|
tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
|
|
vectype_in, i);
|
|
gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
|
|
vop[0], vop[1], vop[0]);
|
|
new_temp = make_ssa_name (vec_dest, call);
|
|
gimple_call_set_lhs (call, new_temp);
|
|
gimple_call_set_nothrow (call, true);
|
|
vect_finish_stmt_generation (loop_vinfo, stmt_info, call, gsi);
|
|
new_stmt = call;
|
|
}
|
|
else
|
|
{
|
|
if (op_type == ternary_op)
|
|
vop[2] = vec_oprnds2[i];
|
|
|
|
if (masked_loop_p && mask_by_cond_expr)
|
|
{
|
|
tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
|
|
vectype_in, i);
|
|
build_vect_cond_expr (code, vop, mask, gsi);
|
|
}
|
|
|
|
new_stmt = gimple_build_assign (vec_dest, code,
|
|
vop[0], vop[1], vop[2]);
|
|
new_temp = make_ssa_name (vec_dest, new_stmt);
|
|
gimple_assign_set_lhs (new_stmt, new_temp);
|
|
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
|
|
}
|
|
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
|
|
else if (single_defuse_cycle
|
|
&& i < ncopies - 1)
|
|
{
|
|
if (reduc_index == 0)
|
|
vec_oprnds0.safe_push (gimple_get_lhs (new_stmt));
|
|
else if (reduc_index == 1)
|
|
vec_oprnds1.safe_push (gimple_get_lhs (new_stmt));
|
|
else if (reduc_index == 2)
|
|
vec_oprnds2.safe_push (gimple_get_lhs (new_stmt));
|
|
}
|
|
else
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
|
|
}
|
|
|
|
if (!slp_node)
|
|
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Transform phase of a cycle PHI. */
|
|
|
|
bool
|
|
vect_transform_cycle_phi (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info, gimple **vec_stmt,
|
|
slp_tree slp_node, slp_instance slp_node_instance)
|
|
{
|
|
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
int i;
|
|
int ncopies;
|
|
int j;
|
|
bool nested_cycle = false;
|
|
int vec_num;
|
|
|
|
if (nested_in_vect_loop_p (loop, stmt_info))
|
|
{
|
|
loop = loop->inner;
|
|
nested_cycle = true;
|
|
}
|
|
|
|
stmt_vec_info reduc_stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
|
|
reduc_stmt_info = vect_stmt_to_vectorize (reduc_stmt_info);
|
|
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
|
|
gcc_assert (reduc_info->is_reduc_info);
|
|
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION
|
|
|| STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION)
|
|
/* Leave the scalar phi in place. */
|
|
return true;
|
|
|
|
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
|
|
/* For a nested cycle we do not fill the above. */
|
|
if (!vectype_in)
|
|
vectype_in = STMT_VINFO_VECTYPE (stmt_info);
|
|
gcc_assert (vectype_in);
|
|
|
|
if (slp_node)
|
|
{
|
|
/* The size vect_schedule_slp_instance computes is off for us. */
|
|
vec_num = vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
|
|
* SLP_TREE_LANES (slp_node), vectype_in);
|
|
ncopies = 1;
|
|
}
|
|
else
|
|
{
|
|
vec_num = 1;
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
|
|
}
|
|
|
|
/* Check whether we should use a single PHI node and accumulate
|
|
vectors to one before the backedge. */
|
|
if (STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info))
|
|
ncopies = 1;
|
|
|
|
/* Create the destination vector */
|
|
gphi *phi = as_a <gphi *> (stmt_info->stmt);
|
|
tree vec_dest = vect_create_destination_var (gimple_phi_result (phi),
|
|
vectype_out);
|
|
|
|
/* Get the loop-entry arguments. */
|
|
tree vec_initial_def;
|
|
auto_vec<tree> vec_initial_defs;
|
|
if (slp_node)
|
|
{
|
|
vec_initial_defs.reserve (vec_num);
|
|
if (nested_cycle)
|
|
{
|
|
unsigned phi_idx = loop_preheader_edge (loop)->dest_idx;
|
|
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[phi_idx],
|
|
&vec_initial_defs);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (slp_node == slp_node_instance->reduc_phis);
|
|
stmt_vec_info first = REDUC_GROUP_FIRST_ELEMENT (reduc_stmt_info);
|
|
tree neutral_op
|
|
= neutral_op_for_slp_reduction (slp_node, vectype_out,
|
|
STMT_VINFO_REDUC_CODE (reduc_info),
|
|
first != NULL);
|
|
get_initial_defs_for_reduction (loop_vinfo, slp_node_instance->reduc_phis,
|
|
&vec_initial_defs, vec_num,
|
|
first != NULL, neutral_op);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Get at the scalar def before the loop, that defines the initial
|
|
value of the reduction variable. */
|
|
tree initial_def = PHI_ARG_DEF_FROM_EDGE (phi,
|
|
loop_preheader_edge (loop));
|
|
/* Optimize: if initial_def is for REDUC_MAX smaller than the base
|
|
and we can't use zero for induc_val, use initial_def. Similarly
|
|
for REDUC_MIN and initial_def larger than the base. */
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
|
|
{
|
|
tree induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
|
|
if (TREE_CODE (initial_def) == INTEGER_CST
|
|
&& !integer_zerop (induc_val)
|
|
&& ((STMT_VINFO_REDUC_CODE (reduc_info) == MAX_EXPR
|
|
&& tree_int_cst_lt (initial_def, induc_val))
|
|
|| (STMT_VINFO_REDUC_CODE (reduc_info) == MIN_EXPR
|
|
&& tree_int_cst_lt (induc_val, initial_def))))
|
|
{
|
|
induc_val = initial_def;
|
|
/* Communicate we used the initial_def to epilouge
|
|
generation. */
|
|
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info) = NULL_TREE;
|
|
}
|
|
vec_initial_def = build_vector_from_val (vectype_out, induc_val);
|
|
vec_initial_defs.create (ncopies);
|
|
for (i = 0; i < ncopies; ++i)
|
|
vec_initial_defs.quick_push (vec_initial_def);
|
|
}
|
|
else if (nested_cycle)
|
|
{
|
|
/* Do not use an adjustment def as that case is not supported
|
|
correctly if ncopies is not one. */
|
|
vect_get_vec_defs_for_operand (loop_vinfo, reduc_stmt_info,
|
|
ncopies, initial_def,
|
|
&vec_initial_defs);
|
|
}
|
|
else
|
|
{
|
|
tree adjustment_def = NULL_TREE;
|
|
tree *adjustment_defp = &adjustment_def;
|
|
enum tree_code code = STMT_VINFO_REDUC_CODE (reduc_info);
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
|
|
adjustment_defp = NULL;
|
|
vec_initial_def
|
|
= get_initial_def_for_reduction (loop_vinfo, reduc_stmt_info, code,
|
|
initial_def, adjustment_defp);
|
|
STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info) = adjustment_def;
|
|
vec_initial_defs.create (ncopies);
|
|
for (i = 0; i < ncopies; ++i)
|
|
vec_initial_defs.quick_push (vec_initial_def);
|
|
}
|
|
}
|
|
|
|
/* Generate the reduction PHIs upfront. */
|
|
for (i = 0; i < vec_num; i++)
|
|
{
|
|
tree vec_init_def = vec_initial_defs[i];
|
|
for (j = 0; j < ncopies; j++)
|
|
{
|
|
/* Create the reduction-phi that defines the reduction
|
|
operand. */
|
|
gphi *new_phi = create_phi_node (vec_dest, loop->header);
|
|
|
|
/* Set the loop-entry arg of the reduction-phi. */
|
|
if (j != 0 && nested_cycle)
|
|
vec_init_def = vec_initial_defs[j];
|
|
add_phi_arg (new_phi, vec_init_def, loop_preheader_edge (loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
/* The loop-latch arg is set in epilogue processing. */
|
|
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
|
|
else
|
|
{
|
|
if (j == 0)
|
|
*vec_stmt = new_phi;
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Vectorizes LC PHIs. */
|
|
|
|
bool
|
|
vectorizable_lc_phi (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info, gimple **vec_stmt,
|
|
slp_tree slp_node)
|
|
{
|
|
if (!loop_vinfo
|
|
|| !is_a <gphi *> (stmt_info->stmt)
|
|
|| gimple_phi_num_args (stmt_info->stmt) != 1)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
|
|
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
|
|
return false;
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
/* Deal with copies from externs or constants that disguise as
|
|
loop-closed PHI nodes (PR97886). */
|
|
if (slp_node
|
|
&& !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0],
|
|
SLP_TREE_VECTYPE (slp_node)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"incompatible vector types for invariants\n");
|
|
return false;
|
|
}
|
|
STMT_VINFO_TYPE (stmt_info) = lc_phi_info_type;
|
|
return true;
|
|
}
|
|
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
|
|
basic_block bb = gimple_bb (stmt_info->stmt);
|
|
edge e = single_pred_edge (bb);
|
|
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
auto_vec<tree> vec_oprnds;
|
|
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node,
|
|
!slp_node ? vect_get_num_copies (loop_vinfo, vectype) : 1,
|
|
gimple_phi_arg_def (stmt_info->stmt, 0), &vec_oprnds);
|
|
for (unsigned i = 0; i < vec_oprnds.length (); i++)
|
|
{
|
|
/* Create the vectorized LC PHI node. */
|
|
gphi *new_phi = create_phi_node (vec_dest, bb);
|
|
add_phi_arg (new_phi, vec_oprnds[i], e, UNKNOWN_LOCATION);
|
|
if (slp_node)
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
|
|
else
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
|
|
}
|
|
if (!slp_node)
|
|
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Vectorizes PHIs. */
|
|
|
|
bool
|
|
vectorizable_phi (vec_info *,
|
|
stmt_vec_info stmt_info, gimple **vec_stmt,
|
|
slp_tree slp_node, stmt_vector_for_cost *cost_vec)
|
|
{
|
|
if (!is_a <gphi *> (stmt_info->stmt) || !slp_node)
|
|
return false;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
|
|
return false;
|
|
|
|
tree vectype = SLP_TREE_VECTYPE (slp_node);
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
slp_tree child;
|
|
unsigned i;
|
|
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), i, child)
|
|
if (!child)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"PHI node with unvectorized backedge def\n");
|
|
return false;
|
|
}
|
|
else if (!vect_maybe_update_slp_op_vectype (child, vectype))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"incompatible vector types for invariants\n");
|
|
return false;
|
|
}
|
|
/* For single-argument PHIs assume coalescing which means zero cost
|
|
for the scalar and the vector PHIs. This avoids artificially
|
|
favoring the vector path (but may pessimize it in some cases). */
|
|
if (gimple_phi_num_args (as_a <gphi *> (stmt_info->stmt)) > 1)
|
|
record_stmt_cost (cost_vec, SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
|
|
vector_stmt, stmt_info, vectype, 0, vect_body);
|
|
STMT_VINFO_TYPE (stmt_info) = phi_info_type;
|
|
return true;
|
|
}
|
|
|
|
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
|
|
basic_block bb = gimple_bb (stmt_info->stmt);
|
|
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
|
|
auto_vec<gphi *> new_phis;
|
|
for (unsigned i = 0; i < gimple_phi_num_args (stmt_info->stmt); ++i)
|
|
{
|
|
slp_tree child = SLP_TREE_CHILDREN (slp_node)[i];
|
|
|
|
/* Skip not yet vectorized defs. */
|
|
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
|
|
&& SLP_TREE_VEC_STMTS (child).is_empty ())
|
|
continue;
|
|
|
|
auto_vec<tree> vec_oprnds;
|
|
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[i], &vec_oprnds);
|
|
if (!new_phis.exists ())
|
|
{
|
|
new_phis.create (vec_oprnds.length ());
|
|
for (unsigned j = 0; j < vec_oprnds.length (); j++)
|
|
{
|
|
/* Create the vectorized LC PHI node. */
|
|
new_phis.quick_push (create_phi_node (vec_dest, bb));
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phis[j]);
|
|
}
|
|
}
|
|
edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt_info->stmt), i);
|
|
for (unsigned j = 0; j < vec_oprnds.length (); j++)
|
|
add_phi_arg (new_phis[j], vec_oprnds[j], e, UNKNOWN_LOCATION);
|
|
}
|
|
/* We should have at least one already vectorized child. */
|
|
gcc_assert (new_phis.exists ());
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Function vect_min_worthwhile_factor.
|
|
|
|
For a loop where we could vectorize the operation indicated by CODE,
|
|
return the minimum vectorization factor that makes it worthwhile
|
|
to use generic vectors. */
|
|
static unsigned int
|
|
vect_min_worthwhile_factor (enum tree_code code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case PLUS_EXPR:
|
|
case MINUS_EXPR:
|
|
case NEGATE_EXPR:
|
|
return 4;
|
|
|
|
case BIT_AND_EXPR:
|
|
case BIT_IOR_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case BIT_NOT_EXPR:
|
|
return 2;
|
|
|
|
default:
|
|
return INT_MAX;
|
|
}
|
|
}
|
|
|
|
/* Return true if VINFO indicates we are doing loop vectorization and if
|
|
it is worth decomposing CODE operations into scalar operations for
|
|
that loop's vectorization factor. */
|
|
|
|
bool
|
|
vect_worthwhile_without_simd_p (vec_info *vinfo, tree_code code)
|
|
{
|
|
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
|
|
unsigned HOST_WIDE_INT value;
|
|
return (loop_vinfo
|
|
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&value)
|
|
&& value >= vect_min_worthwhile_factor (code));
|
|
}
|
|
|
|
/* Function vectorizable_induction
|
|
|
|
Check if STMT_INFO performs an induction computation that can be vectorized.
|
|
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
|
|
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
|
|
Return true if STMT_INFO is vectorizable in this way. */
|
|
|
|
bool
|
|
vectorizable_induction (loop_vec_info loop_vinfo,
|
|
stmt_vec_info stmt_info,
|
|
gimple **vec_stmt, slp_tree slp_node,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned ncopies;
|
|
bool nested_in_vect_loop = false;
|
|
class loop *iv_loop;
|
|
tree vec_def;
|
|
edge pe = loop_preheader_edge (loop);
|
|
basic_block new_bb;
|
|
tree new_vec, vec_init, vec_step, t;
|
|
tree new_name;
|
|
gimple *new_stmt;
|
|
gphi *induction_phi;
|
|
tree induc_def, vec_dest;
|
|
tree init_expr, step_expr;
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned i;
|
|
tree expr;
|
|
gimple_stmt_iterator si;
|
|
|
|
gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
|
|
if (!phi)
|
|
return false;
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
return false;
|
|
|
|
/* Make sure it was recognized as induction computation. */
|
|
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
|
|
return false;
|
|
|
|
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype);
|
|
gcc_assert (ncopies >= 1);
|
|
|
|
/* FORNOW. These restrictions should be relaxed. */
|
|
if (nested_in_vect_loop_p (loop, stmt_info))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
gimple *exit_phi;
|
|
edge latch_e;
|
|
tree loop_arg;
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"multiple types in nested loop.\n");
|
|
return false;
|
|
}
|
|
|
|
exit_phi = NULL;
|
|
latch_e = loop_latch_edge (loop->inner);
|
|
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
|
|
{
|
|
gimple *use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
|
|
{
|
|
exit_phi = use_stmt;
|
|
break;
|
|
}
|
|
}
|
|
if (exit_phi)
|
|
{
|
|
stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
|
|
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
|
|
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"inner-loop induction only used outside "
|
|
"of the outer vectorized loop.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
nested_in_vect_loop = true;
|
|
iv_loop = loop->inner;
|
|
}
|
|
else
|
|
iv_loop = loop;
|
|
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
|
|
|
|
if (slp_node && !nunits.is_constant ())
|
|
{
|
|
/* The current SLP code creates the step value element-by-element. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"SLP induction not supported for variable-length"
|
|
" vectors.\n");
|
|
return false;
|
|
}
|
|
|
|
if (!vec_stmt) /* transformation not required. */
|
|
{
|
|
unsigned inside_cost = 0, prologue_cost = 0;
|
|
if (slp_node)
|
|
{
|
|
/* We eventually need to set a vector type on invariant
|
|
arguments. */
|
|
unsigned j;
|
|
slp_tree child;
|
|
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
|
|
if (!vect_maybe_update_slp_op_vectype
|
|
(child, SLP_TREE_VECTYPE (slp_node)))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"incompatible vector types for "
|
|
"invariants\n");
|
|
return false;
|
|
}
|
|
/* loop cost for vec_loop. */
|
|
inside_cost
|
|
= record_stmt_cost (cost_vec,
|
|
SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
|
|
vector_stmt, stmt_info, 0, vect_body);
|
|
/* prologue cost for vec_init (if not nested) and step. */
|
|
prologue_cost = record_stmt_cost (cost_vec, 1 + !nested_in_vect_loop,
|
|
scalar_to_vec,
|
|
stmt_info, 0, vect_prologue);
|
|
}
|
|
else /* if (!slp_node) */
|
|
{
|
|
/* loop cost for vec_loop. */
|
|
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
|
|
stmt_info, 0, vect_body);
|
|
/* prologue cost for vec_init and vec_step. */
|
|
prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
|
|
stmt_info, 0, vect_prologue);
|
|
}
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"vect_model_induction_cost: inside_cost = %d, "
|
|
"prologue_cost = %d .\n", inside_cost,
|
|
prologue_cost);
|
|
|
|
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
|
|
DUMP_VECT_SCOPE ("vectorizable_induction");
|
|
return true;
|
|
}
|
|
|
|
/* Transform. */
|
|
|
|
/* Compute a vector variable, initialized with the first VF values of
|
|
the induction variable. E.g., for an iv with IV_PHI='X' and
|
|
evolution S, for a vector of 4 units, we want to compute:
|
|
[X, X + S, X + 2*S, X + 3*S]. */
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
|
|
|
|
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
|
|
gcc_assert (step_expr != NULL_TREE);
|
|
tree step_vectype = get_same_sized_vectype (TREE_TYPE (step_expr), vectype);
|
|
|
|
pe = loop_preheader_edge (iv_loop);
|
|
/* Find the first insertion point in the BB. */
|
|
basic_block bb = gimple_bb (phi);
|
|
si = gsi_after_labels (bb);
|
|
|
|
/* For SLP induction we have to generate several IVs as for example
|
|
with group size 3 we need
|
|
[i0, i1, i2, i0 + S0] [i1 + S1, i2 + S2, i0 + 2*S0, i1 + 2*S1]
|
|
[i2 + 2*S2, i0 + 3*S0, i1 + 3*S1, i2 + 3*S2]. */
|
|
if (slp_node)
|
|
{
|
|
/* Enforced above. */
|
|
unsigned int const_nunits = nunits.to_constant ();
|
|
|
|
/* The initial values are vectorized, but any lanes > group_size
|
|
need adjustment. */
|
|
slp_tree init_node
|
|
= SLP_TREE_CHILDREN (slp_node)[pe->dest_idx];
|
|
|
|
/* Gather steps. Since we do not vectorize inductions as
|
|
cycles we have to reconstruct the step from SCEV data. */
|
|
unsigned group_size = SLP_TREE_LANES (slp_node);
|
|
tree *steps = XALLOCAVEC (tree, group_size);
|
|
tree *inits = XALLOCAVEC (tree, group_size);
|
|
stmt_vec_info phi_info;
|
|
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, phi_info)
|
|
{
|
|
steps[i] = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
|
|
if (!init_node)
|
|
inits[i] = gimple_phi_arg_def (as_a<gphi *> (phi_info->stmt),
|
|
pe->dest_idx);
|
|
}
|
|
|
|
/* Now generate the IVs. */
|
|
unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
gcc_assert ((const_nunits * nvects) % group_size == 0);
|
|
unsigned nivs;
|
|
if (nested_in_vect_loop)
|
|
nivs = nvects;
|
|
else
|
|
{
|
|
/* Compute the number of distinct IVs we need. First reduce
|
|
group_size if it is a multiple of const_nunits so we get
|
|
one IV for a group_size of 4 but const_nunits 2. */
|
|
unsigned group_sizep = group_size;
|
|
if (group_sizep % const_nunits == 0)
|
|
group_sizep = group_sizep / const_nunits;
|
|
nivs = least_common_multiple (group_sizep,
|
|
const_nunits) / const_nunits;
|
|
}
|
|
tree stept = TREE_TYPE (step_vectype);
|
|
tree lupdate_mul = NULL_TREE;
|
|
if (!nested_in_vect_loop)
|
|
{
|
|
/* The number of iterations covered in one vector iteration. */
|
|
unsigned lup_mul = (nvects * const_nunits) / group_size;
|
|
lupdate_mul
|
|
= build_vector_from_val (step_vectype,
|
|
SCALAR_FLOAT_TYPE_P (stept)
|
|
? build_real_from_wide (stept, lup_mul,
|
|
UNSIGNED)
|
|
: build_int_cstu (stept, lup_mul));
|
|
}
|
|
tree peel_mul = NULL_TREE;
|
|
gimple_seq init_stmts = NULL;
|
|
if (LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo))
|
|
{
|
|
if (SCALAR_FLOAT_TYPE_P (stept))
|
|
peel_mul = gimple_build (&init_stmts, FLOAT_EXPR, stept,
|
|
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
|
|
else
|
|
peel_mul = gimple_convert (&init_stmts, stept,
|
|
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
|
|
peel_mul = gimple_build_vector_from_val (&init_stmts,
|
|
step_vectype, peel_mul);
|
|
}
|
|
unsigned ivn;
|
|
auto_vec<tree> vec_steps;
|
|
for (ivn = 0; ivn < nivs; ++ivn)
|
|
{
|
|
tree_vector_builder step_elts (step_vectype, const_nunits, 1);
|
|
tree_vector_builder init_elts (vectype, const_nunits, 1);
|
|
tree_vector_builder mul_elts (step_vectype, const_nunits, 1);
|
|
for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
|
|
{
|
|
/* The scalar steps of the IVs. */
|
|
tree elt = steps[(ivn*const_nunits + eltn) % group_size];
|
|
elt = gimple_convert (&init_stmts, TREE_TYPE (step_vectype), elt);
|
|
step_elts.quick_push (elt);
|
|
if (!init_node)
|
|
{
|
|
/* The scalar inits of the IVs if not vectorized. */
|
|
elt = inits[(ivn*const_nunits + eltn) % group_size];
|
|
if (!useless_type_conversion_p (TREE_TYPE (vectype),
|
|
TREE_TYPE (elt)))
|
|
elt = gimple_build (&init_stmts, VIEW_CONVERT_EXPR,
|
|
TREE_TYPE (vectype), elt);
|
|
init_elts.quick_push (elt);
|
|
}
|
|
/* The number of steps to add to the initial values. */
|
|
unsigned mul_elt = (ivn*const_nunits + eltn) / group_size;
|
|
mul_elts.quick_push (SCALAR_FLOAT_TYPE_P (stept)
|
|
? build_real_from_wide (stept,
|
|
mul_elt, UNSIGNED)
|
|
: build_int_cstu (stept, mul_elt));
|
|
}
|
|
vec_step = gimple_build_vector (&init_stmts, &step_elts);
|
|
vec_steps.safe_push (vec_step);
|
|
tree step_mul = gimple_build_vector (&init_stmts, &mul_elts);
|
|
if (peel_mul)
|
|
step_mul = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
|
|
step_mul, peel_mul);
|
|
if (!init_node)
|
|
vec_init = gimple_build_vector (&init_stmts, &init_elts);
|
|
|
|
/* Create the induction-phi that defines the induction-operand. */
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var,
|
|
"vec_iv_");
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
|
induc_def = PHI_RESULT (induction_phi);
|
|
|
|
/* Create the iv update inside the loop */
|
|
tree up = vec_step;
|
|
if (lupdate_mul)
|
|
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
|
|
vec_step, lupdate_mul);
|
|
gimple_seq stmts = NULL;
|
|
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
|
|
vec_def = gimple_build (&stmts,
|
|
PLUS_EXPR, step_vectype, vec_def, up);
|
|
vec_def = gimple_convert (&stmts, vectype, vec_def);
|
|
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
if (init_node)
|
|
vec_init = vect_get_slp_vect_def (init_node, ivn);
|
|
if (!nested_in_vect_loop
|
|
&& !integer_zerop (step_mul))
|
|
{
|
|
vec_def = gimple_convert (&init_stmts, step_vectype, vec_init);
|
|
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
|
|
vec_step, step_mul);
|
|
vec_def = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
|
|
vec_def, up);
|
|
vec_init = gimple_convert (&init_stmts, vectype, vec_def);
|
|
}
|
|
|
|
/* Set the arguments of the phi node: */
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
|
|
|
SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
|
|
}
|
|
if (!nested_in_vect_loop)
|
|
{
|
|
/* Fill up to the number of vectors we need for the whole group. */
|
|
nivs = least_common_multiple (group_size,
|
|
const_nunits) / const_nunits;
|
|
vec_steps.reserve (nivs-ivn);
|
|
for (; ivn < nivs; ++ivn)
|
|
{
|
|
SLP_TREE_VEC_STMTS (slp_node)
|
|
.quick_push (SLP_TREE_VEC_STMTS (slp_node)[0]);
|
|
vec_steps.quick_push (vec_steps[0]);
|
|
}
|
|
}
|
|
|
|
/* Re-use IVs when we can. We are generating further vector
|
|
stmts by adding VF' * stride to the IVs generated above. */
|
|
if (ivn < nvects)
|
|
{
|
|
unsigned vfp
|
|
= least_common_multiple (group_size, const_nunits) / group_size;
|
|
tree lupdate_mul
|
|
= build_vector_from_val (step_vectype,
|
|
SCALAR_FLOAT_TYPE_P (stept)
|
|
? build_real_from_wide (stept,
|
|
vfp, UNSIGNED)
|
|
: build_int_cstu (stept, vfp));
|
|
for (; ivn < nvects; ++ivn)
|
|
{
|
|
gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
|
|
tree def = gimple_get_lhs (iv);
|
|
if (ivn < 2*nivs)
|
|
vec_steps[ivn - nivs]
|
|
= gimple_build (&init_stmts, MULT_EXPR, step_vectype,
|
|
vec_steps[ivn - nivs], lupdate_mul);
|
|
gimple_seq stmts = NULL;
|
|
def = gimple_convert (&stmts, step_vectype, def);
|
|
def = gimple_build (&stmts, PLUS_EXPR, step_vectype,
|
|
def, vec_steps[ivn % nivs]);
|
|
def = gimple_convert (&stmts, vectype, def);
|
|
if (gimple_code (iv) == GIMPLE_PHI)
|
|
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
|
|
else
|
|
{
|
|
gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
|
|
gsi_insert_seq_after (&tgsi, stmts, GSI_CONTINUE_LINKING);
|
|
}
|
|
SLP_TREE_VEC_STMTS (slp_node)
|
|
.quick_push (SSA_NAME_DEF_STMT (def));
|
|
}
|
|
}
|
|
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, init_stmts);
|
|
gcc_assert (!new_bb);
|
|
|
|
return true;
|
|
}
|
|
|
|
init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
|
|
loop_preheader_edge (iv_loop));
|
|
|
|
gimple_seq stmts = NULL;
|
|
if (!nested_in_vect_loop)
|
|
{
|
|
/* Convert the initial value to the IV update type. */
|
|
tree new_type = TREE_TYPE (step_expr);
|
|
init_expr = gimple_convert (&stmts, new_type, init_expr);
|
|
|
|
/* If we are using the loop mask to "peel" for alignment then we need
|
|
to adjust the start value here. */
|
|
tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
|
|
if (skip_niters != NULL_TREE)
|
|
{
|
|
if (FLOAT_TYPE_P (vectype))
|
|
skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
|
|
skip_niters);
|
|
else
|
|
skip_niters = gimple_convert (&stmts, new_type, skip_niters);
|
|
tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
|
|
skip_niters, step_expr);
|
|
init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
|
|
init_expr, skip_step);
|
|
}
|
|
}
|
|
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
/* Create the vector that holds the initial_value of the induction. */
|
|
if (nested_in_vect_loop)
|
|
{
|
|
/* iv_loop is nested in the loop to be vectorized. init_expr had already
|
|
been created during vectorization of previous stmts. We obtain it
|
|
from the STMT_VINFO_VEC_STMT of the defining stmt. */
|
|
auto_vec<tree> vec_inits;
|
|
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
|
|
init_expr, &vec_inits);
|
|
vec_init = vec_inits[0];
|
|
/* If the initial value is not of proper type, convert it. */
|
|
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
|
|
{
|
|
new_stmt
|
|
= gimple_build_assign (vect_get_new_ssa_name (vectype,
|
|
vect_simple_var,
|
|
"vec_iv_"),
|
|
VIEW_CONVERT_EXPR,
|
|
build1 (VIEW_CONVERT_EXPR, vectype,
|
|
vec_init));
|
|
vec_init = gimple_assign_lhs (new_stmt);
|
|
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
|
|
new_stmt);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* iv_loop is the loop to be vectorized. Create:
|
|
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
|
|
stmts = NULL;
|
|
new_name = gimple_convert (&stmts, TREE_TYPE (step_expr), init_expr);
|
|
|
|
unsigned HOST_WIDE_INT const_nunits;
|
|
if (nunits.is_constant (&const_nunits))
|
|
{
|
|
tree_vector_builder elts (step_vectype, const_nunits, 1);
|
|
elts.quick_push (new_name);
|
|
for (i = 1; i < const_nunits; i++)
|
|
{
|
|
/* Create: new_name_i = new_name + step_expr */
|
|
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
|
|
new_name, step_expr);
|
|
elts.quick_push (new_name);
|
|
}
|
|
/* Create a vector from [new_name_0, new_name_1, ...,
|
|
new_name_nunits-1] */
|
|
vec_init = gimple_build_vector (&stmts, &elts);
|
|
}
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
|
|
/* Build the initial value directly from a VEC_SERIES_EXPR. */
|
|
vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, step_vectype,
|
|
new_name, step_expr);
|
|
else
|
|
{
|
|
/* Build:
|
|
[base, base, base, ...]
|
|
+ (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
|
|
gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
|
|
gcc_assert (flag_associative_math);
|
|
tree index = build_index_vector (step_vectype, 0, 1);
|
|
tree base_vec = gimple_build_vector_from_val (&stmts, step_vectype,
|
|
new_name);
|
|
tree step_vec = gimple_build_vector_from_val (&stmts, step_vectype,
|
|
step_expr);
|
|
vec_init = gimple_build (&stmts, FLOAT_EXPR, step_vectype, index);
|
|
vec_init = gimple_build (&stmts, MULT_EXPR, step_vectype,
|
|
vec_init, step_vec);
|
|
vec_init = gimple_build (&stmts, PLUS_EXPR, step_vectype,
|
|
vec_init, base_vec);
|
|
}
|
|
vec_init = gimple_convert (&stmts, vectype, vec_init);
|
|
|
|
if (stmts)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (nested_in_vect_loop)
|
|
/* iv_loop is nested in the loop to be vectorized. Generate:
|
|
vec_step = [S, S, S, S] */
|
|
new_name = step_expr;
|
|
else
|
|
{
|
|
/* iv_loop is the loop to be vectorized. Generate:
|
|
vec_step = [VF*S, VF*S, VF*S, VF*S] */
|
|
gimple_seq seq = NULL;
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, vf);
|
|
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), vf);
|
|
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (seq)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
}
|
|
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
new_vec = build_vector_from_val (step_vectype, t);
|
|
vec_step = vect_init_vector (loop_vinfo, stmt_info,
|
|
new_vec, step_vectype, NULL);
|
|
|
|
|
|
/* Create the following def-use cycle:
|
|
loop prolog:
|
|
vec_init = ...
|
|
vec_step = ...
|
|
loop:
|
|
vec_iv = PHI <vec_init, vec_loop>
|
|
...
|
|
STMT
|
|
...
|
|
vec_loop = vec_iv + vec_step; */
|
|
|
|
/* Create the induction-phi that defines the induction-operand. */
|
|
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
|
|
induction_phi = create_phi_node (vec_dest, iv_loop->header);
|
|
induc_def = PHI_RESULT (induction_phi);
|
|
|
|
/* Create the iv update inside the loop */
|
|
stmts = NULL;
|
|
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
|
|
vec_def = gimple_build (&stmts, PLUS_EXPR, step_vectype, vec_def, vec_step);
|
|
vec_def = gimple_convert (&stmts, vectype, vec_def);
|
|
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
|
|
new_stmt = SSA_NAME_DEF_STMT (vec_def);
|
|
|
|
/* Set the arguments of the phi node: */
|
|
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
|
|
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
|
|
UNKNOWN_LOCATION);
|
|
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (induction_phi);
|
|
*vec_stmt = induction_phi;
|
|
|
|
/* In case that vectorization factor (VF) is bigger than the number
|
|
of elements that we can fit in a vectype (nunits), we have to generate
|
|
more than one vector stmt - i.e - we need to "unroll" the
|
|
vector stmt by a factor VF/nunits. For more details see documentation
|
|
in vectorizable_operation. */
|
|
|
|
if (ncopies > 1)
|
|
{
|
|
gimple_seq seq = NULL;
|
|
/* FORNOW. This restriction should be relaxed. */
|
|
gcc_assert (!nested_in_vect_loop);
|
|
|
|
/* Create the vector that holds the step of the induction. */
|
|
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
|
|
{
|
|
expr = build_int_cst (integer_type_node, nunits);
|
|
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
|
|
}
|
|
else
|
|
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
|
|
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
|
|
expr, step_expr);
|
|
if (seq)
|
|
{
|
|
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
|
|
gcc_assert (!new_bb);
|
|
}
|
|
|
|
t = unshare_expr (new_name);
|
|
gcc_assert (CONSTANT_CLASS_P (new_name)
|
|
|| TREE_CODE (new_name) == SSA_NAME);
|
|
new_vec = build_vector_from_val (step_vectype, t);
|
|
vec_step = vect_init_vector (loop_vinfo, stmt_info,
|
|
new_vec, step_vectype, NULL);
|
|
|
|
vec_def = induc_def;
|
|
for (i = 1; i < ncopies; i++)
|
|
{
|
|
/* vec_i = vec_prev + vec_step */
|
|
gimple_seq stmts = NULL;
|
|
vec_def = gimple_convert (&stmts, step_vectype, vec_def);
|
|
vec_def = gimple_build (&stmts,
|
|
PLUS_EXPR, step_vectype, vec_def, vec_step);
|
|
vec_def = gimple_convert (&stmts, vectype, vec_def);
|
|
|
|
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
|
|
new_stmt = SSA_NAME_DEF_STMT (vec_def);
|
|
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
|
|
}
|
|
}
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"transform induction: created def-use cycle: %G%G",
|
|
induction_phi, SSA_NAME_DEF_STMT (vec_def));
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Function vectorizable_live_operation.
|
|
|
|
STMT_INFO computes a value that is used outside the loop. Check if
|
|
it can be supported. */
|
|
|
|
bool
|
|
vectorizable_live_operation (vec_info *vinfo,
|
|
stmt_vec_info stmt_info,
|
|
gimple_stmt_iterator *gsi,
|
|
slp_tree slp_node, slp_instance slp_node_instance,
|
|
int slp_index, bool vec_stmt_p,
|
|
stmt_vector_for_cost *cost_vec)
|
|
{
|
|
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
|
|
imm_use_iterator imm_iter;
|
|
tree lhs, lhs_type, bitsize;
|
|
tree vectype = (slp_node
|
|
? SLP_TREE_VECTYPE (slp_node)
|
|
: STMT_VINFO_VECTYPE (stmt_info));
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
|
|
int ncopies;
|
|
gimple *use_stmt;
|
|
auto_vec<tree> vec_oprnds;
|
|
int vec_entry = 0;
|
|
poly_uint64 vec_index = 0;
|
|
|
|
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
|
|
|
|
/* If a stmt of a reduction is live, vectorize it via
|
|
vect_create_epilog_for_reduction. vectorizable_reduction assessed
|
|
validity so just trigger the transform here. */
|
|
if (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)))
|
|
{
|
|
if (!vec_stmt_p)
|
|
return true;
|
|
if (slp_node)
|
|
{
|
|
/* For reduction chains the meta-info is attached to
|
|
the group leader. */
|
|
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
|
|
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
|
|
/* For SLP reductions we vectorize the epilogue for
|
|
all involved stmts together. */
|
|
else if (slp_index != 0)
|
|
return true;
|
|
else
|
|
/* For SLP reductions the meta-info is attached to
|
|
the representative. */
|
|
stmt_info = SLP_TREE_REPRESENTATIVE (slp_node);
|
|
}
|
|
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
|
|
gcc_assert (reduc_info->is_reduc_info);
|
|
if (STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION
|
|
|| STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION)
|
|
return true;
|
|
vect_create_epilog_for_reduction (loop_vinfo, stmt_info, slp_node,
|
|
slp_node_instance);
|
|
return true;
|
|
}
|
|
|
|
/* If STMT is not relevant and it is a simple assignment and its inputs are
|
|
invariant then it can remain in place, unvectorized. The original last
|
|
scalar value that it computes will be used. */
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info))
|
|
{
|
|
gcc_assert (is_simple_and_all_uses_invariant (stmt_info, loop_vinfo));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"statement is simple and uses invariant. Leaving in "
|
|
"place.\n");
|
|
return true;
|
|
}
|
|
|
|
if (slp_node)
|
|
ncopies = 1;
|
|
else
|
|
ncopies = vect_get_num_copies (loop_vinfo, vectype);
|
|
|
|
if (slp_node)
|
|
{
|
|
gcc_assert (slp_index >= 0);
|
|
|
|
/* Get the last occurrence of the scalar index from the concatenation of
|
|
all the slp vectors. Calculate which slp vector it is and the index
|
|
within. */
|
|
int num_scalar = SLP_TREE_LANES (slp_node);
|
|
int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
|
|
poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
|
|
|
|
/* Calculate which vector contains the result, and which lane of
|
|
that vector we need. */
|
|
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Cannot determine which vector holds the"
|
|
" final result.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!vec_stmt_p)
|
|
{
|
|
/* No transformation required. */
|
|
if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
|
|
OPTIMIZE_FOR_SPEED))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't operate on partial vectors "
|
|
"because the target doesn't support extract "
|
|
"last reduction.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
else if (slp_node)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't operate on partial vectors "
|
|
"because an SLP statement is live after "
|
|
"the loop.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
else if (ncopies > 1)
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"can't operate on partial vectors "
|
|
"because ncopies is greater than 1.\n");
|
|
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (ncopies == 1 && !slp_node);
|
|
vect_record_loop_mask (loop_vinfo,
|
|
&LOOP_VINFO_MASKS (loop_vinfo),
|
|
1, vectype, NULL);
|
|
}
|
|
}
|
|
/* ??? Enable for loop costing as well. */
|
|
if (!loop_vinfo)
|
|
record_stmt_cost (cost_vec, 1, vec_to_scalar, stmt_info, NULL_TREE,
|
|
0, vect_epilogue);
|
|
return true;
|
|
}
|
|
|
|
/* Use the lhs of the original scalar statement. */
|
|
gimple *stmt = vect_orig_stmt (stmt_info)->stmt;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "extracting lane for live "
|
|
"stmt %G", stmt);
|
|
|
|
lhs = gimple_get_lhs (stmt);
|
|
lhs_type = TREE_TYPE (lhs);
|
|
|
|
bitsize = vector_element_bits_tree (vectype);
|
|
|
|
/* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
|
|
tree vec_lhs, bitstart;
|
|
gimple *vec_stmt;
|
|
if (slp_node)
|
|
{
|
|
gcc_assert (!loop_vinfo || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
|
|
|
|
/* Get the correct slp vectorized stmt. */
|
|
vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry];
|
|
vec_lhs = gimple_get_lhs (vec_stmt);
|
|
|
|
/* Get entry to use. */
|
|
bitstart = bitsize_int (vec_index);
|
|
bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
|
|
}
|
|
else
|
|
{
|
|
/* For multiple copies, get the last copy. */
|
|
vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info).last ();
|
|
vec_lhs = gimple_get_lhs (vec_stmt);
|
|
|
|
/* Get the last lane in the vector. */
|
|
bitstart = int_const_binop (MULT_EXPR, bitsize, bitsize_int (nunits - 1));
|
|
}
|
|
|
|
if (loop_vinfo)
|
|
{
|
|
/* Ensure the VEC_LHS for lane extraction stmts satisfy loop-closed PHI
|
|
requirement, insert one phi node for it. It looks like:
|
|
loop;
|
|
BB:
|
|
# lhs' = PHI <lhs>
|
|
==>
|
|
loop;
|
|
BB:
|
|
# vec_lhs' = PHI <vec_lhs>
|
|
new_tree = lane_extract <vec_lhs', ...>;
|
|
lhs' = new_tree; */
|
|
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block exit_bb = single_exit (loop)->dest;
|
|
gcc_assert (single_pred_p (exit_bb));
|
|
|
|
tree vec_lhs_phi = copy_ssa_name (vec_lhs);
|
|
gimple *phi = create_phi_node (vec_lhs_phi, exit_bb);
|
|
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, vec_lhs);
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree new_tree;
|
|
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
|
|
{
|
|
/* Emit:
|
|
|
|
SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
|
|
|
|
where VEC_LHS is the vectorized live-out result and MASK is
|
|
the loop mask for the final iteration. */
|
|
gcc_assert (ncopies == 1 && !slp_node);
|
|
tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
|
|
tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
|
|
1, vectype, 0);
|
|
tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST, scalar_type,
|
|
mask, vec_lhs_phi);
|
|
|
|
/* Convert the extracted vector element to the scalar type. */
|
|
new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
|
|
}
|
|
else
|
|
{
|
|
tree bftype = TREE_TYPE (vectype);
|
|
if (VECTOR_BOOLEAN_TYPE_P (vectype))
|
|
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
|
|
new_tree = build3 (BIT_FIELD_REF, bftype,
|
|
vec_lhs_phi, bitsize, bitstart);
|
|
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
|
|
&stmts, true, NULL_TREE);
|
|
}
|
|
|
|
if (stmts)
|
|
{
|
|
gimple_stmt_iterator exit_gsi = gsi_after_labels (exit_bb);
|
|
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
|
|
|
|
/* Remove existing phi from lhs and create one copy from new_tree. */
|
|
tree lhs_phi = NULL_TREE;
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_phis (exit_bb);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *phi = gsi_stmt (gsi);
|
|
if ((gimple_phi_arg_def (phi, 0) == lhs))
|
|
{
|
|
remove_phi_node (&gsi, false);
|
|
lhs_phi = gimple_phi_result (phi);
|
|
gimple *copy = gimple_build_assign (lhs_phi, new_tree);
|
|
gsi_insert_before (&exit_gsi, copy, GSI_SAME_STMT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Replace use of lhs with newly computed result. If the use stmt is a
|
|
single arg PHI, just replace all uses of PHI result. It's necessary
|
|
because lcssa PHI defining lhs may be before newly inserted stmt. */
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
|
|
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
|
|
&& !is_gimple_debug (use_stmt))
|
|
{
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
|
&& gimple_phi_num_args (use_stmt) == 1)
|
|
{
|
|
replace_uses_by (gimple_phi_result (use_stmt), new_tree);
|
|
}
|
|
else
|
|
{
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, new_tree);
|
|
}
|
|
update_stmt (use_stmt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For basic-block vectorization simply insert the lane-extraction. */
|
|
tree bftype = TREE_TYPE (vectype);
|
|
if (VECTOR_BOOLEAN_TYPE_P (vectype))
|
|
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
|
|
tree new_tree = build3 (BIT_FIELD_REF, bftype,
|
|
vec_lhs, bitsize, bitstart);
|
|
gimple_seq stmts = NULL;
|
|
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
|
|
&stmts, true, NULL_TREE);
|
|
if (TREE_CODE (new_tree) == SSA_NAME
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = 1;
|
|
if (is_a <gphi *> (vec_stmt))
|
|
{
|
|
gimple_stmt_iterator si = gsi_after_labels (gimple_bb (vec_stmt));
|
|
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
|
|
}
|
|
else
|
|
{
|
|
gimple_stmt_iterator si = gsi_for_stmt (vec_stmt);
|
|
gsi_insert_seq_after (&si, stmts, GSI_SAME_STMT);
|
|
}
|
|
|
|
/* Replace use of lhs with newly computed result. If the use stmt is a
|
|
single arg PHI, just replace all uses of PHI result. It's necessary
|
|
because lcssa PHI defining lhs may be before newly inserted stmt. */
|
|
use_operand_p use_p;
|
|
stmt_vec_info use_stmt_info;
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
|
|
if (!is_gimple_debug (use_stmt)
|
|
&& (!(use_stmt_info = vinfo->lookup_stmt (use_stmt))
|
|
|| !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info))))
|
|
{
|
|
/* ??? This can happen when the live lane ends up being
|
|
used in a vector construction code-generated by an
|
|
external SLP node (and code-generation for that already
|
|
happened). See gcc.dg/vect/bb-slp-47.c.
|
|
Doing this is what would happen if that vector CTOR
|
|
were not code-generated yet so it is not too bad.
|
|
??? In fact we'd likely want to avoid this situation
|
|
in the first place. */
|
|
if (TREE_CODE (new_tree) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
|
|
&& gimple_code (use_stmt) != GIMPLE_PHI
|
|
&& !vect_stmt_dominates_stmt_p (SSA_NAME_DEF_STMT (new_tree),
|
|
use_stmt))
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (use_stmt);
|
|
gcc_assert (code == CONSTRUCTOR
|
|
|| code == VIEW_CONVERT_EXPR
|
|
|| CONVERT_EXPR_CODE_P (code));
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Using original scalar computation for "
|
|
"live lane because use preceeds vector "
|
|
"def\n");
|
|
continue;
|
|
}
|
|
/* ??? It can also happen that we end up pulling a def into
|
|
a loop where replacing out-of-loop uses would require
|
|
a new LC SSA PHI node. Retain the original scalar in
|
|
those cases as well. PR98064. */
|
|
if (TREE_CODE (new_tree) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
|
|
&& (gimple_bb (use_stmt)->loop_father
|
|
!= gimple_bb (vec_stmt)->loop_father)
|
|
&& !flow_loop_nested_p (gimple_bb (vec_stmt)->loop_father,
|
|
gimple_bb (use_stmt)->loop_father))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
|
|
"Using original scalar computation for "
|
|
"live lane because there is an out-of-loop "
|
|
"definition for it\n");
|
|
continue;
|
|
}
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
|
SET_USE (use_p, new_tree);
|
|
update_stmt (use_stmt);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Kill any debug uses outside LOOP of SSA names defined in STMT_INFO. */
|
|
|
|
static void
|
|
vect_loop_kill_debug_uses (class loop *loop, stmt_vec_info stmt_info)
|
|
{
|
|
ssa_op_iter op_iter;
|
|
imm_use_iterator imm_iter;
|
|
def_operand_p def_p;
|
|
gimple *ustmt;
|
|
|
|
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF)
|
|
{
|
|
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
|
|
{
|
|
basic_block bb;
|
|
|
|
if (!is_gimple_debug (ustmt))
|
|
continue;
|
|
|
|
bb = gimple_bb (ustmt);
|
|
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
|
{
|
|
if (gimple_debug_bind_p (ustmt))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"killing debug use\n");
|
|
|
|
gimple_debug_bind_reset_value (ustmt);
|
|
update_stmt (ustmt);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given loop represented by LOOP_VINFO, return true if computation of
|
|
LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
|
|
otherwise. */
|
|
|
|
static bool
|
|
loop_niters_no_overflow (loop_vec_info loop_vinfo)
|
|
{
|
|
/* Constant case. */
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
|
|
{
|
|
tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
|
|
tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
|
|
|
|
gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
|
|
gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
|
|
if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
|
|
return true;
|
|
}
|
|
|
|
widest_int max;
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
/* Check the upper bound of loop niters. */
|
|
if (get_max_loop_iterations (loop, &max))
|
|
{
|
|
tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
|
|
signop sgn = TYPE_SIGN (type);
|
|
widest_int type_max = widest_int::from (wi::max_value (type), sgn);
|
|
if (max < type_max)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return a mask type with half the number of elements as OLD_TYPE,
|
|
given that it should have mode NEW_MODE. */
|
|
|
|
tree
|
|
vect_halve_mask_nunits (tree old_type, machine_mode new_mode)
|
|
{
|
|
poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (old_type), 2);
|
|
return build_truth_vector_type_for_mode (nunits, new_mode);
|
|
}
|
|
|
|
/* Return a mask type with twice as many elements as OLD_TYPE,
|
|
given that it should have mode NEW_MODE. */
|
|
|
|
tree
|
|
vect_double_mask_nunits (tree old_type, machine_mode new_mode)
|
|
{
|
|
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (old_type) * 2;
|
|
return build_truth_vector_type_for_mode (nunits, new_mode);
|
|
}
|
|
|
|
/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
|
|
contain a sequence of NVECTORS masks that each control a vector of type
|
|
VECTYPE. If SCALAR_MASK is nonnull, the fully-masked loop would AND
|
|
these vector masks with the vector version of SCALAR_MASK. */
|
|
|
|
void
|
|
vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
|
|
unsigned int nvectors, tree vectype, tree scalar_mask)
|
|
{
|
|
gcc_assert (nvectors != 0);
|
|
if (masks->length () < nvectors)
|
|
masks->safe_grow_cleared (nvectors, true);
|
|
rgroup_controls *rgm = &(*masks)[nvectors - 1];
|
|
/* The number of scalars per iteration and the number of vectors are
|
|
both compile-time constants. */
|
|
unsigned int nscalars_per_iter
|
|
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
|
|
|
|
if (scalar_mask)
|
|
{
|
|
scalar_cond_masked_key cond (scalar_mask, nvectors);
|
|
loop_vinfo->scalar_cond_masked_set.add (cond);
|
|
}
|
|
|
|
if (rgm->max_nscalars_per_iter < nscalars_per_iter)
|
|
{
|
|
rgm->max_nscalars_per_iter = nscalars_per_iter;
|
|
rgm->type = truth_type_for (vectype);
|
|
rgm->factor = 1;
|
|
}
|
|
}
|
|
|
|
/* Given a complete set of masks MASKS, extract mask number INDEX
|
|
for an rgroup that operates on NVECTORS vectors of type VECTYPE,
|
|
where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
|
|
|
|
See the comment above vec_loop_masks for more details about the mask
|
|
arrangement. */
|
|
|
|
tree
|
|
vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
|
|
unsigned int nvectors, tree vectype, unsigned int index)
|
|
{
|
|
rgroup_controls *rgm = &(*masks)[nvectors - 1];
|
|
tree mask_type = rgm->type;
|
|
|
|
/* Populate the rgroup's mask array, if this is the first time we've
|
|
used it. */
|
|
if (rgm->controls.is_empty ())
|
|
{
|
|
rgm->controls.safe_grow_cleared (nvectors, true);
|
|
for (unsigned int i = 0; i < nvectors; ++i)
|
|
{
|
|
tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
|
|
/* Provide a dummy definition until the real one is available. */
|
|
SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
|
|
rgm->controls[i] = mask;
|
|
}
|
|
}
|
|
|
|
tree mask = rgm->controls[index];
|
|
if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
|
|
TYPE_VECTOR_SUBPARTS (vectype)))
|
|
{
|
|
/* A loop mask for data type X can be reused for data type Y
|
|
if X has N times more elements than Y and if Y's elements
|
|
are N times bigger than X's. In this case each sequence
|
|
of N elements in the loop mask will be all-zero or all-one.
|
|
We can then view-convert the mask so that each sequence of
|
|
N elements is replaced by a single element. */
|
|
gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
|
|
TYPE_VECTOR_SUBPARTS (vectype)));
|
|
gimple_seq seq = NULL;
|
|
mask_type = truth_type_for (vectype);
|
|
mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
|
|
if (seq)
|
|
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/* Record that LOOP_VINFO would need LENS to contain a sequence of NVECTORS
|
|
lengths for controlling an operation on VECTYPE. The operation splits
|
|
each element of VECTYPE into FACTOR separate subelements, measuring the
|
|
length as a number of these subelements. */
|
|
|
|
void
|
|
vect_record_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
|
|
unsigned int nvectors, tree vectype, unsigned int factor)
|
|
{
|
|
gcc_assert (nvectors != 0);
|
|
if (lens->length () < nvectors)
|
|
lens->safe_grow_cleared (nvectors, true);
|
|
rgroup_controls *rgl = &(*lens)[nvectors - 1];
|
|
|
|
/* The number of scalars per iteration, scalar occupied bytes and
|
|
the number of vectors are both compile-time constants. */
|
|
unsigned int nscalars_per_iter
|
|
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
|
|
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
|
|
|
|
if (rgl->max_nscalars_per_iter < nscalars_per_iter)
|
|
{
|
|
/* For now, we only support cases in which all loads and stores fall back
|
|
to VnQI or none do. */
|
|
gcc_assert (!rgl->max_nscalars_per_iter
|
|
|| (rgl->factor == 1 && factor == 1)
|
|
|| (rgl->max_nscalars_per_iter * rgl->factor
|
|
== nscalars_per_iter * factor));
|
|
rgl->max_nscalars_per_iter = nscalars_per_iter;
|
|
rgl->type = vectype;
|
|
rgl->factor = factor;
|
|
}
|
|
}
|
|
|
|
/* Given a complete set of length LENS, extract length number INDEX for an
|
|
rgroup that operates on NVECTORS vectors, where 0 <= INDEX < NVECTORS. */
|
|
|
|
tree
|
|
vect_get_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
|
|
unsigned int nvectors, unsigned int index)
|
|
{
|
|
rgroup_controls *rgl = &(*lens)[nvectors - 1];
|
|
|
|
/* Populate the rgroup's len array, if this is the first time we've
|
|
used it. */
|
|
if (rgl->controls.is_empty ())
|
|
{
|
|
rgl->controls.safe_grow_cleared (nvectors, true);
|
|
for (unsigned int i = 0; i < nvectors; ++i)
|
|
{
|
|
tree len_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
|
|
gcc_assert (len_type != NULL_TREE);
|
|
tree len = make_temp_ssa_name (len_type, NULL, "loop_len");
|
|
|
|
/* Provide a dummy definition until the real one is available. */
|
|
SSA_NAME_DEF_STMT (len) = gimple_build_nop ();
|
|
rgl->controls[i] = len;
|
|
}
|
|
}
|
|
|
|
return rgl->controls[index];
|
|
}
|
|
|
|
/* Scale profiling counters by estimation for LOOP which is vectorized
|
|
by factor VF. */
|
|
|
|
static void
|
|
scale_profile_for_vect_loop (class loop *loop, unsigned vf)
|
|
{
|
|
edge preheader = loop_preheader_edge (loop);
|
|
/* Reduce loop iterations by the vectorization factor. */
|
|
gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
|
|
profile_count freq_h = loop->header->count, freq_e = preheader->count ();
|
|
|
|
if (freq_h.nonzero_p ())
|
|
{
|
|
profile_probability p;
|
|
|
|
/* Avoid dropping loop body profile counter to 0 because of zero count
|
|
in loop's preheader. */
|
|
if (!(freq_e == profile_count::zero ()))
|
|
freq_e = freq_e.force_nonzero ();
|
|
p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
|
|
scale_loop_frequencies (loop, p);
|
|
}
|
|
|
|
edge exit_e = single_exit (loop);
|
|
exit_e->probability = profile_probability::always ()
|
|
.apply_scale (1, new_est_niter + 1);
|
|
|
|
edge exit_l = single_pred_edge (loop->latch);
|
|
profile_probability prob = exit_l->probability;
|
|
exit_l->probability = exit_e->probability.invert ();
|
|
if (prob.initialized_p () && exit_l->probability.initialized_p ())
|
|
scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
|
|
}
|
|
|
|
/* For a vectorized stmt DEF_STMT_INFO adjust all vectorized PHI
|
|
latch edge values originally defined by it. */
|
|
|
|
static void
|
|
maybe_set_vectorized_backedge_value (loop_vec_info loop_vinfo,
|
|
stmt_vec_info def_stmt_info)
|
|
{
|
|
tree def = gimple_get_lhs (vect_orig_stmt (def_stmt_info)->stmt);
|
|
if (!def || TREE_CODE (def) != SSA_NAME)
|
|
return;
|
|
stmt_vec_info phi_info;
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
|
|
if (gphi *phi = dyn_cast <gphi *> (USE_STMT (use_p)))
|
|
if (gimple_bb (phi)->loop_father->header == gimple_bb (phi)
|
|
&& (phi_info = loop_vinfo->lookup_stmt (phi))
|
|
&& STMT_VINFO_RELEVANT_P (phi_info)
|
|
&& VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (phi_info))
|
|
&& STMT_VINFO_REDUC_TYPE (phi_info) != FOLD_LEFT_REDUCTION
|
|
&& STMT_VINFO_REDUC_TYPE (phi_info) != EXTRACT_LAST_REDUCTION)
|
|
{
|
|
loop_p loop = gimple_bb (phi)->loop_father;
|
|
edge e = loop_latch_edge (loop);
|
|
if (PHI_ARG_DEF_FROM_EDGE (phi, e) == def)
|
|
{
|
|
vec<gimple *> &phi_defs = STMT_VINFO_VEC_STMTS (phi_info);
|
|
vec<gimple *> &latch_defs = STMT_VINFO_VEC_STMTS (def_stmt_info);
|
|
gcc_assert (phi_defs.length () == latch_defs.length ());
|
|
for (unsigned i = 0; i < phi_defs.length (); ++i)
|
|
add_phi_arg (as_a <gphi *> (phi_defs[i]),
|
|
gimple_get_lhs (latch_defs[i]), e,
|
|
gimple_phi_arg_location (phi, e->dest_idx));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Vectorize STMT_INFO if relevant, inserting any new instructions before GSI.
|
|
When vectorizing STMT_INFO as a store, set *SEEN_STORE to its
|
|
stmt_vec_info. */
|
|
|
|
static bool
|
|
vect_transform_loop_stmt (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
|
|
gimple_stmt_iterator *gsi, stmt_vec_info *seen_store)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing statement: %G", stmt_info->stmt);
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, stmt_info);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
return false;
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info))
|
|
{
|
|
poly_uint64 nunits
|
|
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
|
|
if (!STMT_SLP_TYPE (stmt_info)
|
|
&& maybe_ne (nunits, vf)
|
|
&& dump_enabled_p ())
|
|
/* For SLP VF is set according to unrolling factor, and not
|
|
to vector size, hence for SLP this print is not valid. */
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
}
|
|
|
|
/* Pure SLP statements have already been vectorized. We still need
|
|
to apply loop vectorization to hybrid SLP statements. */
|
|
if (PURE_SLP_STMT (stmt_info))
|
|
return false;
|
|
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
|
|
|
|
if (vect_transform_stmt (loop_vinfo, stmt_info, gsi, NULL, NULL))
|
|
*seen_store = stmt_info;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Helper function to pass to simplify_replace_tree to enable replacing tree's
|
|
in the hash_map with its corresponding values. */
|
|
|
|
static tree
|
|
find_in_mapping (tree t, void *context)
|
|
{
|
|
hash_map<tree,tree>* mapping = (hash_map<tree, tree>*) context;
|
|
|
|
tree *value = mapping->get (t);
|
|
return value ? *value : t;
|
|
}
|
|
|
|
/* Update EPILOGUE's loop_vec_info. EPILOGUE was constructed as a copy of the
|
|
original loop that has now been vectorized.
|
|
|
|
The inits of the data_references need to be advanced with the number of
|
|
iterations of the main loop. This has been computed in vect_do_peeling and
|
|
is stored in parameter ADVANCE. We first restore the data_references
|
|
initial offset with the values recored in ORIG_DRS_INIT.
|
|
|
|
Since the loop_vec_info of this EPILOGUE was constructed for the original
|
|
loop, its stmt_vec_infos all point to the original statements. These need
|
|
to be updated to point to their corresponding copies as well as the SSA_NAMES
|
|
in their PATTERN_DEF_SEQs and RELATED_STMTs.
|
|
|
|
The data_reference's connections also need to be updated. Their
|
|
corresponding dr_vec_info need to be reconnected to the EPILOGUE's
|
|
stmt_vec_infos, their statements need to point to their corresponding copy,
|
|
if they are gather loads or scatter stores then their reference needs to be
|
|
updated to point to its corresponding copy and finally we set
|
|
'base_misaligned' to false as we have already peeled for alignment in the
|
|
prologue of the main loop. */
|
|
|
|
static void
|
|
update_epilogue_loop_vinfo (class loop *epilogue, tree advance)
|
|
{
|
|
loop_vec_info epilogue_vinfo = loop_vec_info_for_loop (epilogue);
|
|
auto_vec<gimple *> stmt_worklist;
|
|
hash_map<tree,tree> mapping;
|
|
gimple *orig_stmt, *new_stmt;
|
|
gimple_stmt_iterator epilogue_gsi;
|
|
gphi_iterator epilogue_phi_gsi;
|
|
stmt_vec_info stmt_vinfo = NULL, related_vinfo;
|
|
basic_block *epilogue_bbs = get_loop_body (epilogue);
|
|
unsigned i;
|
|
|
|
free (LOOP_VINFO_BBS (epilogue_vinfo));
|
|
LOOP_VINFO_BBS (epilogue_vinfo) = epilogue_bbs;
|
|
|
|
/* Advance data_reference's with the number of iterations of the previous
|
|
loop and its prologue. */
|
|
vect_update_inits_of_drs (epilogue_vinfo, advance, PLUS_EXPR);
|
|
|
|
|
|
/* The EPILOGUE loop is a copy of the original loop so they share the same
|
|
gimple UIDs. In this loop we update the loop_vec_info of the EPILOGUE to
|
|
point to the copied statements. We also create a mapping of all LHS' in
|
|
the original loop and all the LHS' in the EPILOGUE and create worklists to
|
|
update teh STMT_VINFO_PATTERN_DEF_SEQs and STMT_VINFO_RELATED_STMTs. */
|
|
for (unsigned i = 0; i < epilogue->num_nodes; ++i)
|
|
{
|
|
for (epilogue_phi_gsi = gsi_start_phis (epilogue_bbs[i]);
|
|
!gsi_end_p (epilogue_phi_gsi); gsi_next (&epilogue_phi_gsi))
|
|
{
|
|
new_stmt = epilogue_phi_gsi.phi ();
|
|
|
|
gcc_assert (gimple_uid (new_stmt) > 0);
|
|
stmt_vinfo
|
|
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
|
|
|
|
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
|
|
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
|
|
|
|
mapping.put (gimple_phi_result (orig_stmt),
|
|
gimple_phi_result (new_stmt));
|
|
/* PHI nodes can not have patterns or related statements. */
|
|
gcc_assert (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) == NULL
|
|
&& STMT_VINFO_RELATED_STMT (stmt_vinfo) == NULL);
|
|
}
|
|
|
|
for (epilogue_gsi = gsi_start_bb (epilogue_bbs[i]);
|
|
!gsi_end_p (epilogue_gsi); gsi_next (&epilogue_gsi))
|
|
{
|
|
new_stmt = gsi_stmt (epilogue_gsi);
|
|
if (is_gimple_debug (new_stmt))
|
|
continue;
|
|
|
|
gcc_assert (gimple_uid (new_stmt) > 0);
|
|
stmt_vinfo
|
|
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
|
|
|
|
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
|
|
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
|
|
|
|
if (tree old_lhs = gimple_get_lhs (orig_stmt))
|
|
mapping.put (old_lhs, gimple_get_lhs (new_stmt));
|
|
|
|
if (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo))
|
|
{
|
|
gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
|
|
for (gimple_stmt_iterator gsi = gsi_start (seq);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
stmt_worklist.safe_push (gsi_stmt (gsi));
|
|
}
|
|
|
|
related_vinfo = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
if (related_vinfo != NULL && related_vinfo != stmt_vinfo)
|
|
{
|
|
gimple *stmt = STMT_VINFO_STMT (related_vinfo);
|
|
stmt_worklist.safe_push (stmt);
|
|
/* Set BB such that the assert in
|
|
'get_initial_def_for_reduction' is able to determine that
|
|
the BB of the related stmt is inside this loop. */
|
|
gimple_set_bb (stmt,
|
|
gimple_bb (new_stmt));
|
|
related_vinfo = STMT_VINFO_RELATED_STMT (related_vinfo);
|
|
gcc_assert (related_vinfo == NULL
|
|
|| related_vinfo == stmt_vinfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The PATTERN_DEF_SEQs and RELATED_STMTs in the epilogue were constructed
|
|
using the original main loop and thus need to be updated to refer to the
|
|
cloned variables used in the epilogue. */
|
|
for (unsigned i = 0; i < stmt_worklist.length (); ++i)
|
|
{
|
|
gimple *stmt = stmt_worklist[i];
|
|
tree *new_op;
|
|
|
|
for (unsigned j = 1; j < gimple_num_ops (stmt); ++j)
|
|
{
|
|
tree op = gimple_op (stmt, j);
|
|
if ((new_op = mapping.get(op)))
|
|
gimple_set_op (stmt, j, *new_op);
|
|
else
|
|
{
|
|
/* PR92429: The last argument of simplify_replace_tree disables
|
|
folding when replacing arguments. This is required as
|
|
otherwise you might end up with different statements than the
|
|
ones analyzed in vect_loop_analyze, leading to different
|
|
vectorization. */
|
|
op = simplify_replace_tree (op, NULL_TREE, NULL_TREE,
|
|
&find_in_mapping, &mapping, false);
|
|
gimple_set_op (stmt, j, op);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct data_reference *dr;
|
|
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (epilogue_vinfo);
|
|
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
|
{
|
|
orig_stmt = DR_STMT (dr);
|
|
gcc_assert (gimple_uid (orig_stmt) > 0);
|
|
stmt_vinfo = epilogue_vinfo->stmt_vec_infos[gimple_uid (orig_stmt) - 1];
|
|
/* Data references for gather loads and scatter stores do not use the
|
|
updated offset we set using ADVANCE. Instead we have to make sure the
|
|
reference in the data references point to the corresponding copy of
|
|
the original in the epilogue. */
|
|
if (STMT_VINFO_MEMORY_ACCESS_TYPE (vect_stmt_to_vectorize (stmt_vinfo))
|
|
== VMAT_GATHER_SCATTER)
|
|
{
|
|
DR_REF (dr)
|
|
= simplify_replace_tree (DR_REF (dr), NULL_TREE, NULL_TREE,
|
|
&find_in_mapping, &mapping);
|
|
DR_BASE_ADDRESS (dr)
|
|
= simplify_replace_tree (DR_BASE_ADDRESS (dr), NULL_TREE, NULL_TREE,
|
|
&find_in_mapping, &mapping);
|
|
}
|
|
DR_STMT (dr) = STMT_VINFO_STMT (stmt_vinfo);
|
|
stmt_vinfo->dr_aux.stmt = stmt_vinfo;
|
|
/* The vector size of the epilogue is smaller than that of the main loop
|
|
so the alignment is either the same or lower. This means the dr will
|
|
thus by definition be aligned. */
|
|
STMT_VINFO_DR_INFO (stmt_vinfo)->base_misaligned = false;
|
|
}
|
|
|
|
epilogue_vinfo->shared->datarefs_copy.release ();
|
|
epilogue_vinfo->shared->save_datarefs ();
|
|
}
|
|
|
|
/* Function vect_transform_loop.
|
|
|
|
The analysis phase has determined that the loop is vectorizable.
|
|
Vectorize the loop - created vectorized stmts to replace the scalar
|
|
stmts in the loop, and update the loop exit condition.
|
|
Returns scalar epilogue loop if any. */
|
|
|
|
class loop *
|
|
vect_transform_loop (loop_vec_info loop_vinfo, gimple *loop_vectorized_call)
|
|
{
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
class loop *epilogue = NULL;
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
int nbbs = loop->num_nodes;
|
|
int i;
|
|
tree niters_vector = NULL_TREE;
|
|
tree step_vector = NULL_TREE;
|
|
tree niters_vector_mult_vf = NULL_TREE;
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
unsigned int lowest_vf = constant_lower_bound (vf);
|
|
gimple *stmt;
|
|
bool check_profitability = false;
|
|
unsigned int th;
|
|
|
|
DUMP_VECT_SCOPE ("vec_transform_loop");
|
|
|
|
loop_vinfo->shared->check_datarefs ();
|
|
|
|
/* Use the more conservative vectorization threshold. If the number
|
|
of iterations is constant assume the cost check has been performed
|
|
by our caller. If the threshold makes all loops profitable that
|
|
run at least the (estimated) vectorization factor number of times
|
|
checking is pointless, too. */
|
|
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
|
|
if (vect_apply_runtime_profitability_check_p (loop_vinfo))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Profitability threshold is %d loop iterations.\n",
|
|
th);
|
|
check_profitability = true;
|
|
}
|
|
|
|
/* Make sure there exists a single-predecessor exit bb. Do this before
|
|
versioning. */
|
|
edge e = single_exit (loop);
|
|
if (! single_pred_p (e->dest))
|
|
{
|
|
split_loop_exit_edge (e, true);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "split exit edge\n");
|
|
}
|
|
|
|
/* Version the loop first, if required, so the profitability check
|
|
comes first. */
|
|
|
|
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
|
|
{
|
|
class loop *sloop
|
|
= vect_loop_versioning (loop_vinfo, loop_vectorized_call);
|
|
sloop->force_vectorize = false;
|
|
check_profitability = false;
|
|
}
|
|
|
|
/* Make sure there exists a single-predecessor exit bb also on the
|
|
scalar loop copy. Do this after versioning but before peeling
|
|
so CFG structure is fine for both scalar and if-converted loop
|
|
to make slpeel_duplicate_current_defs_from_edges face matched
|
|
loop closed PHI nodes on the exit. */
|
|
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
|
|
{
|
|
e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
|
|
if (! single_pred_p (e->dest))
|
|
{
|
|
split_loop_exit_edge (e, true);
|
|
if (dump_enabled_p ())
|
|
dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
|
|
}
|
|
}
|
|
|
|
tree niters = vect_build_loop_niters (loop_vinfo);
|
|
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
|
|
tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
|
|
bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
|
|
tree advance;
|
|
drs_init_vec orig_drs_init;
|
|
|
|
epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
|
|
&step_vector, &niters_vector_mult_vf, th,
|
|
check_profitability, niters_no_overflow,
|
|
&advance);
|
|
|
|
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo)
|
|
&& LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo).initialized_p ())
|
|
scale_loop_frequencies (LOOP_VINFO_SCALAR_LOOP (loop_vinfo),
|
|
LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo));
|
|
|
|
if (niters_vector == NULL_TREE)
|
|
{
|
|
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|
|
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
|
|
&& known_eq (lowest_vf, vf))
|
|
{
|
|
niters_vector
|
|
= build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
|
|
LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
|
|
step_vector = build_one_cst (TREE_TYPE (niters));
|
|
}
|
|
else if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
|
|
&step_vector, niters_no_overflow);
|
|
else
|
|
/* vect_do_peeling subtracted the number of peeled prologue
|
|
iterations from LOOP_VINFO_NITERS. */
|
|
vect_gen_vector_loop_niters (loop_vinfo, LOOP_VINFO_NITERS (loop_vinfo),
|
|
&niters_vector, &step_vector,
|
|
niters_no_overflow);
|
|
}
|
|
|
|
/* 1) Make sure the loop header has exactly two entries
|
|
2) Make sure we have a preheader basic block. */
|
|
|
|
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
|
|
|
|
split_edge (loop_preheader_edge (loop));
|
|
|
|
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
|
|
/* This will deal with any possible peeling. */
|
|
vect_prepare_for_masked_peels (loop_vinfo);
|
|
|
|
/* Schedule the SLP instances first, then handle loop vectorization
|
|
below. */
|
|
if (!loop_vinfo->slp_instances.is_empty ())
|
|
{
|
|
DUMP_VECT_SCOPE ("scheduling SLP instances");
|
|
vect_schedule_slp (loop_vinfo, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
|
|
}
|
|
|
|
/* FORNOW: the vectorizer supports only loops which body consist
|
|
of one basic block (header + empty latch). When the vectorizer will
|
|
support more involved loop forms, the order by which the BBs are
|
|
traversed need to be reconsidered. */
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
stmt_vec_info stmt_info;
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"------>vectorizing phi: %G", phi);
|
|
stmt_info = loop_vinfo->lookup_stmt (phi);
|
|
if (!stmt_info)
|
|
continue;
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
|
|
vect_loop_kill_debug_uses (loop, stmt_info);
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
continue;
|
|
|
|
if (STMT_VINFO_VECTYPE (stmt_info)
|
|
&& (maybe_ne
|
|
(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
|
|
&& dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
|
|
|
|
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
{
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
|
|
vect_transform_stmt (loop_vinfo, stmt_info, NULL, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
|
|
gsi_next (&si))
|
|
{
|
|
gphi *phi = si.phi ();
|
|
stmt_info = loop_vinfo->lookup_stmt (phi);
|
|
if (!stmt_info)
|
|
continue;
|
|
|
|
if (!STMT_VINFO_RELEVANT_P (stmt_info)
|
|
&& !STMT_VINFO_LIVE_P (stmt_info))
|
|
continue;
|
|
|
|
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|
|
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
|
|
&& ! PURE_SLP_STMT (stmt_info))
|
|
maybe_set_vectorized_backedge_value (loop_vinfo, stmt_info);
|
|
}
|
|
|
|
for (gimple_stmt_iterator si = gsi_start_bb (bb);
|
|
!gsi_end_p (si);)
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
/* During vectorization remove existing clobber stmts. */
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&si, true);
|
|
release_defs (stmt);
|
|
}
|
|
else
|
|
{
|
|
/* Ignore vector stmts created in the outer loop. */
|
|
stmt_info = loop_vinfo->lookup_stmt (stmt);
|
|
|
|
/* vector stmts created in the outer-loop during vectorization of
|
|
stmts in an inner-loop may not have a stmt_info, and do not
|
|
need to be vectorized. */
|
|
stmt_vec_info seen_store = NULL;
|
|
if (stmt_info)
|
|
{
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
|
|
{
|
|
gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
|
|
for (gimple_stmt_iterator subsi = gsi_start (def_seq);
|
|
!gsi_end_p (subsi); gsi_next (&subsi))
|
|
{
|
|
stmt_vec_info pat_stmt_info
|
|
= loop_vinfo->lookup_stmt (gsi_stmt (subsi));
|
|
vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
|
|
&si, &seen_store);
|
|
}
|
|
stmt_vec_info pat_stmt_info
|
|
= STMT_VINFO_RELATED_STMT (stmt_info);
|
|
if (vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
|
|
&si, &seen_store))
|
|
maybe_set_vectorized_backedge_value (loop_vinfo,
|
|
pat_stmt_info);
|
|
}
|
|
else
|
|
{
|
|
if (vect_transform_loop_stmt (loop_vinfo, stmt_info, &si,
|
|
&seen_store))
|
|
maybe_set_vectorized_backedge_value (loop_vinfo,
|
|
stmt_info);
|
|
}
|
|
}
|
|
gsi_next (&si);
|
|
if (seen_store)
|
|
{
|
|
if (STMT_VINFO_GROUPED_ACCESS (seen_store))
|
|
/* Interleaving. If IS_STORE is TRUE, the
|
|
vectorization of the interleaving chain was
|
|
completed - free all the stores in the chain. */
|
|
vect_remove_stores (loop_vinfo,
|
|
DR_GROUP_FIRST_ELEMENT (seen_store));
|
|
else
|
|
/* Free the attached stmt_vec_info and remove the stmt. */
|
|
loop_vinfo->remove_stmt (stmt_info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stub out scalar statements that must not survive vectorization.
|
|
Doing this here helps with grouped statements, or statements that
|
|
are involved in patterns. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
|
|
if (call && gimple_call_internal_p (call, IFN_MASK_LOAD))
|
|
{
|
|
tree lhs = gimple_get_lhs (call);
|
|
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
tree zero = build_zero_cst (TREE_TYPE (lhs));
|
|
gimple *new_stmt = gimple_build_assign (lhs, zero);
|
|
gsi_replace (&gsi, new_stmt, true);
|
|
}
|
|
}
|
|
}
|
|
} /* BBs in loop */
|
|
|
|
/* The vectorization factor is always > 1, so if we use an IV increment of 1.
|
|
a zero NITERS becomes a nonzero NITERS_VECTOR. */
|
|
if (integer_onep (step_vector))
|
|
niters_no_overflow = true;
|
|
vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
|
|
niters_vector_mult_vf, !niters_no_overflow);
|
|
|
|
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
|
|
scale_profile_for_vect_loop (loop, assumed_vf);
|
|
|
|
/* True if the final iteration might not handle a full vector's
|
|
worth of scalar iterations. */
|
|
bool final_iter_may_be_partial
|
|
= LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo);
|
|
/* The minimum number of iterations performed by the epilogue. This
|
|
is 1 when peeling for gaps because we always need a final scalar
|
|
iteration. */
|
|
int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
|
|
/* +1 to convert latch counts to loop iteration counts,
|
|
-min_epilogue_iters to remove iterations that cannot be performed
|
|
by the vector code. */
|
|
int bias_for_lowest = 1 - min_epilogue_iters;
|
|
int bias_for_assumed = bias_for_lowest;
|
|
int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
|
|
if (alignment_npeels && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
|
|
{
|
|
/* When the amount of peeling is known at compile time, the first
|
|
iteration will have exactly alignment_npeels active elements.
|
|
In the worst case it will have at least one. */
|
|
int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
|
|
bias_for_lowest += lowest_vf - min_first_active;
|
|
bias_for_assumed += assumed_vf - min_first_active;
|
|
}
|
|
/* In these calculations the "- 1" converts loop iteration counts
|
|
back to latch counts. */
|
|
if (loop->any_upper_bound)
|
|
loop->nb_iterations_upper_bound
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
|
|
lowest_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
|
|
lowest_vf) - 1);
|
|
if (loop->any_likely_upper_bound)
|
|
loop->nb_iterations_likely_upper_bound
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
|
|
+ bias_for_lowest, lowest_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_likely_upper_bound
|
|
+ bias_for_lowest, lowest_vf) - 1);
|
|
if (loop->any_estimate)
|
|
loop->nb_iterations_estimate
|
|
= (final_iter_may_be_partial
|
|
? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
|
|
assumed_vf) - 1
|
|
: wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
|
|
assumed_vf) - 1);
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
|
|
{
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"LOOP VECTORIZED\n");
|
|
if (loop->inner)
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"OUTER LOOP VECTORIZED\n");
|
|
dump_printf (MSG_NOTE, "\n");
|
|
}
|
|
else
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"LOOP EPILOGUE VECTORIZED (MODE=%s)\n",
|
|
GET_MODE_NAME (loop_vinfo->vector_mode));
|
|
}
|
|
|
|
/* Loops vectorized with a variable factor won't benefit from
|
|
unrolling/peeling. */
|
|
if (!vf.is_constant ())
|
|
{
|
|
loop->unroll = 1;
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location, "Disabling unrolling due to"
|
|
" variable-length vectorization factor\n");
|
|
}
|
|
/* Free SLP instances here because otherwise stmt reference counting
|
|
won't work. */
|
|
slp_instance instance;
|
|
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
|
|
vect_free_slp_instance (instance);
|
|
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
|
|
/* Clear-up safelen field since its value is invalid after vectorization
|
|
since vectorized loop can have loop-carried dependencies. */
|
|
loop->safelen = 0;
|
|
|
|
if (epilogue)
|
|
{
|
|
update_epilogue_loop_vinfo (epilogue, advance);
|
|
|
|
epilogue->simduid = loop->simduid;
|
|
epilogue->force_vectorize = loop->force_vectorize;
|
|
epilogue->dont_vectorize = false;
|
|
}
|
|
|
|
return epilogue;
|
|
}
|
|
|
|
/* The code below is trying to perform simple optimization - revert
|
|
if-conversion for masked stores, i.e. if the mask of a store is zero
|
|
do not perform it and all stored value producers also if possible.
|
|
For example,
|
|
for (i=0; i<n; i++)
|
|
if (c[i])
|
|
{
|
|
p1[i] += 1;
|
|
p2[i] = p3[i] +2;
|
|
}
|
|
this transformation will produce the following semi-hammock:
|
|
|
|
if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
|
|
{
|
|
vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
|
|
vect__12.22_172 = vect__11.19_170 + vect_cst__171;
|
|
MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
|
|
vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
|
|
vect__19.28_184 = vect__18.25_182 + vect_cst__183;
|
|
MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
|
|
}
|
|
*/
|
|
|
|
void
|
|
optimize_mask_stores (class loop *loop)
|
|
{
|
|
basic_block *bbs = get_loop_body (loop);
|
|
unsigned nbbs = loop->num_nodes;
|
|
unsigned i;
|
|
basic_block bb;
|
|
class loop *bb_loop;
|
|
gimple_stmt_iterator gsi;
|
|
gimple *stmt;
|
|
auto_vec<gimple *> worklist;
|
|
auto_purge_vect_location sentinel;
|
|
|
|
vect_location = find_loop_location (loop);
|
|
/* Pick up all masked stores in loop if any. */
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
bb = bbs[i];
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
stmt = gsi_stmt (gsi);
|
|
if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
|
|
worklist.safe_push (stmt);
|
|
}
|
|
}
|
|
|
|
free (bbs);
|
|
if (worklist.is_empty ())
|
|
return;
|
|
|
|
/* Loop has masked stores. */
|
|
while (!worklist.is_empty ())
|
|
{
|
|
gimple *last, *last_store;
|
|
edge e, efalse;
|
|
tree mask;
|
|
basic_block store_bb, join_bb;
|
|
gimple_stmt_iterator gsi_to;
|
|
tree vdef, new_vdef;
|
|
gphi *phi;
|
|
tree vectype;
|
|
tree zero;
|
|
|
|
last = worklist.pop ();
|
|
mask = gimple_call_arg (last, 2);
|
|
bb = gimple_bb (last);
|
|
/* Create then_bb and if-then structure in CFG, then_bb belongs to
|
|
the same loop as if_bb. It could be different to LOOP when two
|
|
level loop-nest is vectorized and mask_store belongs to the inner
|
|
one. */
|
|
e = split_block (bb, last);
|
|
bb_loop = bb->loop_father;
|
|
gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
|
|
join_bb = e->dest;
|
|
store_bb = create_empty_bb (bb);
|
|
add_bb_to_loop (store_bb, bb_loop);
|
|
e->flags = EDGE_TRUE_VALUE;
|
|
efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
|
|
/* Put STORE_BB to likely part. */
|
|
efalse->probability = profile_probability::unlikely ();
|
|
store_bb->count = efalse->count ();
|
|
make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
|
|
if (dom_info_available_p (CDI_DOMINATORS))
|
|
set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Create new block %d to sink mask stores.",
|
|
store_bb->index);
|
|
/* Create vector comparison with boolean result. */
|
|
vectype = TREE_TYPE (mask);
|
|
zero = build_zero_cst (vectype);
|
|
stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
|
|
gsi = gsi_last_bb (bb);
|
|
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
|
|
/* Create new PHI node for vdef of the last masked store:
|
|
.MEM_2 = VDEF <.MEM_1>
|
|
will be converted to
|
|
.MEM.3 = VDEF <.MEM_1>
|
|
and new PHI node will be created in join bb
|
|
.MEM_2 = PHI <.MEM_1, .MEM_3>
|
|
*/
|
|
vdef = gimple_vdef (last);
|
|
new_vdef = make_ssa_name (gimple_vop (cfun), last);
|
|
gimple_set_vdef (last, new_vdef);
|
|
phi = create_phi_node (vdef, join_bb);
|
|
add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
|
|
|
|
/* Put all masked stores with the same mask to STORE_BB if possible. */
|
|
while (true)
|
|
{
|
|
gimple_stmt_iterator gsi_from;
|
|
gimple *stmt1 = NULL;
|
|
|
|
/* Move masked store to STORE_BB. */
|
|
last_store = last;
|
|
gsi = gsi_for_stmt (last);
|
|
gsi_from = gsi;
|
|
/* Shift GSI to the previous stmt for further traversal. */
|
|
gsi_prev (&gsi);
|
|
gsi_to = gsi_start_bb (store_bb);
|
|
gsi_move_before (&gsi_from, &gsi_to);
|
|
/* Setup GSI_TO to the non-empty block start. */
|
|
gsi_to = gsi_start_bb (store_bb);
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Move stmt to created bb\n%G", last);
|
|
/* Move all stored value producers if possible. */
|
|
while (!gsi_end_p (gsi))
|
|
{
|
|
tree lhs;
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
bool res;
|
|
|
|
/* Skip debug statements. */
|
|
if (is_gimple_debug (gsi_stmt (gsi)))
|
|
{
|
|
gsi_prev (&gsi);
|
|
continue;
|
|
}
|
|
stmt1 = gsi_stmt (gsi);
|
|
/* Do not consider statements writing to memory or having
|
|
volatile operand. */
|
|
if (gimple_vdef (stmt1)
|
|
|| gimple_has_volatile_ops (stmt1))
|
|
break;
|
|
gsi_from = gsi;
|
|
gsi_prev (&gsi);
|
|
lhs = gimple_get_lhs (stmt1);
|
|
if (!lhs)
|
|
break;
|
|
|
|
/* LHS of vectorized stmt must be SSA_NAME. */
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
|
break;
|
|
|
|
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
/* Remove dead scalar statement. */
|
|
if (has_zero_uses (lhs))
|
|
{
|
|
gsi_remove (&gsi_from, true);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Check that LHS does not have uses outside of STORE_BB. */
|
|
res = true;
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
|
|
{
|
|
gimple *use_stmt;
|
|
use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
if (gimple_bb (use_stmt) != store_bb)
|
|
{
|
|
res = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!res)
|
|
break;
|
|
|
|
if (gimple_vuse (stmt1)
|
|
&& gimple_vuse (stmt1) != gimple_vuse (last_store))
|
|
break;
|
|
|
|
/* Can move STMT1 to STORE_BB. */
|
|
if (dump_enabled_p ())
|
|
dump_printf_loc (MSG_NOTE, vect_location,
|
|
"Move stmt to created bb\n%G", stmt1);
|
|
gsi_move_before (&gsi_from, &gsi_to);
|
|
/* Shift GSI_TO for further insertion. */
|
|
gsi_prev (&gsi_to);
|
|
}
|
|
/* Put other masked stores with the same mask to STORE_BB. */
|
|
if (worklist.is_empty ()
|
|
|| gimple_call_arg (worklist.last (), 2) != mask
|
|
|| worklist.last () != stmt1)
|
|
break;
|
|
last = worklist.pop ();
|
|
}
|
|
add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
|
|
}
|
|
}
|
|
|
|
/* Decide whether it is possible to use a zero-based induction variable
|
|
when vectorizing LOOP_VINFO with partial vectors. If it is, return
|
|
the value that the induction variable must be able to hold in order
|
|
to ensure that the rgroups eventually have no active vector elements.
|
|
Return -1 otherwise. */
|
|
|
|
widest_int
|
|
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo)
|
|
{
|
|
tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
|
|
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
|
|
|
|
/* Calculate the value that the induction variable must be able
|
|
to hit in order to ensure that we end the loop with an all-false mask.
|
|
This involves adding the maximum number of inactive trailing scalar
|
|
iterations. */
|
|
widest_int iv_limit = -1;
|
|
if (max_loop_iterations (loop, &iv_limit))
|
|
{
|
|
if (niters_skip)
|
|
{
|
|
/* Add the maximum number of skipped iterations to the
|
|
maximum iteration count. */
|
|
if (TREE_CODE (niters_skip) == INTEGER_CST)
|
|
iv_limit += wi::to_widest (niters_skip);
|
|
else
|
|
iv_limit += max_vf - 1;
|
|
}
|
|
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
|
|
/* Make a conservatively-correct assumption. */
|
|
iv_limit += max_vf - 1;
|
|
|
|
/* IV_LIMIT is the maximum number of latch iterations, which is also
|
|
the maximum in-range IV value. Round this value down to the previous
|
|
vector alignment boundary and then add an extra full iteration. */
|
|
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
|
|
iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
|
|
}
|
|
return iv_limit;
|
|
}
|
|
|
|
/* For the given rgroup_controls RGC, check whether an induction variable
|
|
would ever hit a value that produces a set of all-false masks or zero
|
|
lengths before wrapping around. Return true if it's possible to wrap
|
|
around before hitting the desirable value, otherwise return false. */
|
|
|
|
bool
|
|
vect_rgroup_iv_might_wrap_p (loop_vec_info loop_vinfo, rgroup_controls *rgc)
|
|
{
|
|
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
|
|
|
|
if (iv_limit == -1)
|
|
return true;
|
|
|
|
tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
|
|
unsigned int compare_precision = TYPE_PRECISION (compare_type);
|
|
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
|
|
|
|
if (wi::min_precision (iv_limit * nitems, UNSIGNED) > compare_precision)
|
|
return true;
|
|
|
|
return false;
|
|
}
|