3136 lines
84 KiB
C
3136 lines
84 KiB
C
/* Predicate aware uninitialized variable warning.
|
|
Copyright (C) 2001-2021 Free Software Foundation, Inc.
|
|
Contributed by Xinliang David Li <davidxl@google.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#define INCLUDE_STRING
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "diagnostic-core.h"
|
|
#include "fold-const.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-cfg.h"
|
|
#include "cfghooks.h"
|
|
#include "attribs.h"
|
|
#include "builtins.h"
|
|
#include "calls.h"
|
|
|
|
/* This implements the pass that does predicate aware warning on uses of
|
|
possibly uninitialized variables. The pass first collects the set of
|
|
possibly uninitialized SSA names. For each such name, it walks through
|
|
all its immediate uses. For each immediate use, it rebuilds the condition
|
|
expression (the predicate) that guards the use. The predicate is then
|
|
examined to see if the variable is always defined under that same condition.
|
|
This is done either by pruning the unrealizable paths that lead to the
|
|
default definitions or by checking if the predicate set that guards the
|
|
defining paths is a superset of the use predicate. */
|
|
|
|
/* Max PHI args we can handle in pass. */
|
|
const unsigned max_phi_args = 32;
|
|
|
|
/* Pointer set of potentially undefined ssa names, i.e.,
|
|
ssa names that are defined by phi with operands that
|
|
are not defined or potentially undefined. */
|
|
static hash_set<tree> *possibly_undefined_names = 0;
|
|
|
|
/* Bit mask handling macros. */
|
|
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
|
|
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
|
|
#define MASK_EMPTY(mask) (mask == 0)
|
|
|
|
/* Returns the first bit position (starting from LSB)
|
|
in mask that is non zero. Returns -1 if the mask is empty. */
|
|
static int
|
|
get_mask_first_set_bit (unsigned mask)
|
|
{
|
|
int pos = 0;
|
|
if (mask == 0)
|
|
return -1;
|
|
|
|
while ((mask & (1 << pos)) == 0)
|
|
pos++;
|
|
|
|
return pos;
|
|
}
|
|
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
|
|
|
|
/* Return true if T, an SSA_NAME, has an undefined value. */
|
|
static bool
|
|
has_undefined_value_p (tree t)
|
|
{
|
|
return (ssa_undefined_value_p (t)
|
|
|| (possibly_undefined_names
|
|
&& possibly_undefined_names->contains (t)));
|
|
}
|
|
|
|
/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
|
|
is set on SSA_NAME_VAR. */
|
|
|
|
static inline bool
|
|
uninit_undefined_value_p (tree t)
|
|
{
|
|
if (!has_undefined_value_p (t))
|
|
return false;
|
|
if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Emit warnings for uninitialized variables. This is done in two passes.
|
|
|
|
The first pass notices real uses of SSA names with undefined values.
|
|
Such uses are unconditionally uninitialized, and we can be certain that
|
|
such a use is a mistake. This pass is run before most optimizations,
|
|
so that we catch as many as we can.
|
|
|
|
The second pass follows PHI nodes to find uses that are potentially
|
|
uninitialized. In this case we can't necessarily prove that the use
|
|
is really uninitialized. This pass is run after most optimizations,
|
|
so that we thread as many jumps and possible, and delete as much dead
|
|
code as possible, in order to reduce false positives. We also look
|
|
again for plain uninitialized variables, since optimization may have
|
|
changed conditionally uninitialized to unconditionally uninitialized. */
|
|
|
|
/* Emit a warning for EXPR based on variable VAR at the point in the
|
|
program T, an SSA_NAME, is used being uninitialized. The exact
|
|
warning text is in MSGID and DATA is the gimple stmt with info about
|
|
the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
|
|
gives which argument of the phi node to take the location from. WC
|
|
is the warning code. */
|
|
|
|
static void
|
|
warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
|
|
const char *gmsgid, void *data, location_t phiarg_loc)
|
|
{
|
|
gimple *context = (gimple *) data;
|
|
location_t location, cfun_loc;
|
|
expanded_location xloc, floc;
|
|
|
|
/* Ignore COMPLEX_EXPR as initializing only a part of a complex
|
|
turns in a COMPLEX_EXPR with the not initialized part being
|
|
set to its previous (undefined) value. */
|
|
if (is_gimple_assign (context)
|
|
&& gimple_assign_rhs_code (context) == COMPLEX_EXPR)
|
|
return;
|
|
if (!has_undefined_value_p (t))
|
|
return;
|
|
|
|
/* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
|
|
can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
|
|
created for conversion from scalar to complex. Use the underlying var of
|
|
the COMPLEX_EXPRs real part in that case. See PR71581. */
|
|
if (expr == NULL_TREE
|
|
&& var == NULL_TREE
|
|
&& SSA_NAME_VAR (t) == NULL_TREE
|
|
&& is_gimple_assign (SSA_NAME_DEF_STMT (t))
|
|
&& gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
|
|
{
|
|
tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
|
|
if (TREE_CODE (v) == SSA_NAME
|
|
&& has_undefined_value_p (v)
|
|
&& zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
|
|
{
|
|
expr = SSA_NAME_VAR (v);
|
|
var = expr;
|
|
}
|
|
}
|
|
|
|
if (expr == NULL_TREE)
|
|
return;
|
|
|
|
/* TREE_NO_WARNING either means we already warned, or the front end
|
|
wishes to suppress the warning. */
|
|
if ((context
|
|
&& (gimple_no_warning_p (context)
|
|
|| (gimple_assign_single_p (context)
|
|
&& TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
|
|
|| TREE_NO_WARNING (expr))
|
|
return;
|
|
|
|
if (context != NULL && gimple_has_location (context))
|
|
location = gimple_location (context);
|
|
else if (phiarg_loc != UNKNOWN_LOCATION)
|
|
location = phiarg_loc;
|
|
else
|
|
location = DECL_SOURCE_LOCATION (var);
|
|
location = linemap_resolve_location (line_table, location,
|
|
LRK_SPELLING_LOCATION, NULL);
|
|
cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
|
|
xloc = expand_location (location);
|
|
floc = expand_location (cfun_loc);
|
|
auto_diagnostic_group d;
|
|
if (warning_at (location, wc, gmsgid, expr))
|
|
{
|
|
TREE_NO_WARNING (expr) = 1;
|
|
|
|
if (location == DECL_SOURCE_LOCATION (var))
|
|
return;
|
|
if (xloc.file != floc.file
|
|
|| linemap_location_before_p (line_table, location, cfun_loc)
|
|
|| linemap_location_before_p (line_table, cfun->function_end_locus,
|
|
location))
|
|
inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
|
|
}
|
|
}
|
|
|
|
struct check_defs_data
|
|
{
|
|
/* If we found any may-defs besides must-def clobbers. */
|
|
bool found_may_defs;
|
|
};
|
|
|
|
/* Callback for walk_aliased_vdefs. */
|
|
|
|
static bool
|
|
check_defs (ao_ref *ref, tree vdef, void *data_)
|
|
{
|
|
check_defs_data *data = (check_defs_data *)data_;
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
|
|
/* If this is a clobber then if it is not a kill walk past it. */
|
|
if (gimple_clobber_p (def_stmt))
|
|
{
|
|
if (stmt_kills_ref_p (def_stmt, ref))
|
|
return true;
|
|
return false;
|
|
}
|
|
/* Found a may-def on this path. */
|
|
data->found_may_defs = true;
|
|
return true;
|
|
}
|
|
|
|
/* Counters and limits controlling the the depth of analysis and
|
|
strictness of the warning. */
|
|
struct wlimits
|
|
{
|
|
/* Number of VDEFs encountered. */
|
|
unsigned int vdef_cnt;
|
|
/* Number of statements examined by walk_aliased_vdefs. */
|
|
unsigned int oracle_cnt;
|
|
/* Limit on the number of statements visited by walk_aliased_vdefs. */
|
|
unsigned limit;
|
|
/* Set when basic block with statement is executed unconditionally. */
|
|
bool always_executed;
|
|
/* Set to issue -Wmaybe-uninitialized. */
|
|
bool wmaybe_uninit;
|
|
};
|
|
|
|
/* Determine if REF references an uninitialized operand and diagnose
|
|
it if so. */
|
|
|
|
static tree
|
|
maybe_warn_operand (ao_ref &ref, gimple *stmt, tree lhs, tree rhs,
|
|
wlimits &wlims)
|
|
{
|
|
bool has_bit_insert = false;
|
|
use_operand_p luse_p;
|
|
imm_use_iterator liter;
|
|
|
|
if (TREE_NO_WARNING (rhs))
|
|
return NULL_TREE;
|
|
|
|
/* Do not warn if the base was marked so or this is a
|
|
hard register var. */
|
|
tree base = ao_ref_base (&ref);
|
|
if ((VAR_P (base)
|
|
&& DECL_HARD_REGISTER (base))
|
|
|| TREE_NO_WARNING (base))
|
|
return NULL_TREE;
|
|
|
|
/* Do not warn if the access is fully outside of the variable. */
|
|
poly_int64 decl_size;
|
|
if (DECL_P (base)
|
|
&& ((known_size_p (ref.size)
|
|
&& known_eq (ref.max_size, ref.size)
|
|
&& known_le (ref.offset + ref.size, 0))
|
|
|| (known_ge (ref.offset, 0)
|
|
&& DECL_SIZE (base)
|
|
&& poly_int_tree_p (DECL_SIZE (base), &decl_size)
|
|
&& known_le (decl_size, ref.offset))))
|
|
return NULL_TREE;
|
|
|
|
/* Do not warn if the result of the access is then used for
|
|
a BIT_INSERT_EXPR. */
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
|
FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
|
|
{
|
|
gimple *use_stmt = USE_STMT (luse_p);
|
|
/* BIT_INSERT_EXPR first operand should not be considered
|
|
a use for the purpose of uninit warnings. */
|
|
if (gassign *ass = dyn_cast <gassign *> (use_stmt))
|
|
{
|
|
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
|
|
&& luse_p->use == gimple_assign_rhs1_ptr (ass))
|
|
{
|
|
has_bit_insert = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (has_bit_insert)
|
|
return NULL_TREE;
|
|
|
|
/* Limit the walking to a constant number of stmts after
|
|
we overcommit quadratic behavior for small functions
|
|
and O(n) behavior. */
|
|
if (wlims.oracle_cnt > 128 * 128
|
|
&& wlims.oracle_cnt > wlims.vdef_cnt * 2)
|
|
wlims.limit = 32;
|
|
|
|
check_defs_data data;
|
|
bool fentry_reached = false;
|
|
data.found_may_defs = false;
|
|
tree use = gimple_vuse (stmt);
|
|
if (!use)
|
|
return NULL_TREE;
|
|
int res = walk_aliased_vdefs (&ref, use,
|
|
check_defs, &data, NULL,
|
|
&fentry_reached, wlims.limit);
|
|
if (res == -1)
|
|
{
|
|
wlims.oracle_cnt += wlims.limit;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
wlims.oracle_cnt += res;
|
|
if (data.found_may_defs)
|
|
return NULL_TREE;
|
|
|
|
bool found_alloc = false;
|
|
|
|
if (fentry_reached)
|
|
{
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
base = TREE_OPERAND (base, 0);
|
|
|
|
/* Follow the chain of SSA_NAME assignments looking for an alloca
|
|
call (or VLA) or malloc/realloc, or for decls. If any is found
|
|
(and in the latter case, the operand is a local variable) issue
|
|
a warning. */
|
|
while (TREE_CODE (base) == SSA_NAME)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (base);
|
|
|
|
if (is_gimple_call (def_stmt)
|
|
&& gimple_call_builtin_p (def_stmt))
|
|
{
|
|
/* Detect uses of uninitialized alloca/VLAs. */
|
|
tree fndecl = gimple_call_fndecl (def_stmt);
|
|
const built_in_function fncode = DECL_FUNCTION_CODE (fndecl);
|
|
if (fncode == BUILT_IN_ALLOCA
|
|
|| fncode == BUILT_IN_ALLOCA_WITH_ALIGN
|
|
|| fncode == BUILT_IN_MALLOC)
|
|
found_alloc = true;
|
|
break;
|
|
}
|
|
|
|
if (!is_gimple_assign (def_stmt))
|
|
break;
|
|
|
|
tree_code code = gimple_assign_rhs_code (def_stmt);
|
|
if (code != ADDR_EXPR && code != POINTER_PLUS_EXPR)
|
|
break;
|
|
|
|
base = gimple_assign_rhs1 (def_stmt);
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
base = TREE_OPERAND (base, 0);
|
|
|
|
if (DECL_P (base)
|
|
|| TREE_CODE (base) == COMPONENT_REF)
|
|
rhs = base;
|
|
|
|
if (TREE_CODE (base) == MEM_REF)
|
|
base = TREE_OPERAND (base, 0);
|
|
|
|
if (tree ba = get_base_address (base))
|
|
base = ba;
|
|
}
|
|
|
|
/* Replace the RHS expression with BASE so that it
|
|
refers to it in the diagnostic (instead of to
|
|
'<unknown>'). */
|
|
if (DECL_P (base)
|
|
&& EXPR_P (rhs)
|
|
&& TREE_CODE (rhs) != COMPONENT_REF)
|
|
rhs = base;
|
|
}
|
|
|
|
/* Do not warn if it can be initialized outside this function.
|
|
If we did not reach function entry then we found killing
|
|
clobbers on all paths to entry. */
|
|
if (!found_alloc
|
|
&& fentry_reached
|
|
/* ??? We'd like to use ref_may_alias_global_p but that
|
|
excludes global readonly memory and thus we get bogus
|
|
warnings from p = cond ? "a" : "b" for example. */
|
|
&& (!VAR_P (base)
|
|
|| is_global_var (base)))
|
|
return NULL_TREE;
|
|
|
|
/* Strip the address-of expression from arrays passed to functions. */
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
|
rhs = TREE_OPERAND (rhs, 0);
|
|
|
|
/* Check again since RHS may have changed above. */
|
|
if (TREE_NO_WARNING (rhs))
|
|
return NULL_TREE;
|
|
|
|
/* Avoid warning about empty types such as structs with no members.
|
|
The first_field() test is important for C++ where the predicate
|
|
alone isn't always sufficient. */
|
|
tree rhstype = TREE_TYPE (rhs);
|
|
if (POINTER_TYPE_P (rhstype))
|
|
rhstype = TREE_TYPE (rhstype);
|
|
if (is_empty_type (rhstype))
|
|
return NULL_TREE;
|
|
|
|
bool warned = false;
|
|
/* We didn't find any may-defs so on all paths either
|
|
reached function entry or a killing clobber. */
|
|
location_t location
|
|
= linemap_resolve_location (line_table, gimple_location (stmt),
|
|
LRK_SPELLING_LOCATION, NULL);
|
|
if (wlims.always_executed)
|
|
{
|
|
if (warning_at (location, OPT_Wuninitialized,
|
|
"%G%qE is used uninitialized", stmt, rhs))
|
|
{
|
|
/* ??? This is only effective for decls as in
|
|
gcc.dg/uninit-B-O0.c. Avoid doing this for maybe-uninit
|
|
uses or accesses by functions as it may hide important
|
|
locations. */
|
|
if (lhs)
|
|
TREE_NO_WARNING (rhs) = 1;
|
|
warned = true;
|
|
}
|
|
}
|
|
else if (wlims.wmaybe_uninit)
|
|
warned = warning_at (location, OPT_Wmaybe_uninitialized,
|
|
"%G%qE may be used uninitialized", stmt, rhs);
|
|
|
|
return warned ? base : NULL_TREE;
|
|
}
|
|
|
|
|
|
/* Diagnose passing addresses of uninitialized objects to either const
|
|
pointer arguments to functions, or to functions declared with attribute
|
|
access implying read access to those objects. */
|
|
|
|
static void
|
|
maybe_warn_pass_by_reference (gcall *stmt, wlimits &wlims)
|
|
{
|
|
if (!wlims.wmaybe_uninit)
|
|
return;
|
|
|
|
unsigned nargs = gimple_call_num_args (stmt);
|
|
if (!nargs)
|
|
return;
|
|
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
|
tree fntype = gimple_call_fntype (stmt);
|
|
if (!fntype)
|
|
return;
|
|
|
|
/* Const function do not read their arguments. */
|
|
if (gimple_call_flags (stmt) & ECF_CONST)
|
|
return;
|
|
|
|
const built_in_function fncode
|
|
= (fndecl && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
|
|
? DECL_FUNCTION_CODE (fndecl) : (built_in_function)BUILT_IN_LAST);
|
|
|
|
if (fncode == BUILT_IN_MEMCPY || fncode == BUILT_IN_MEMMOVE)
|
|
/* Avoid diagnosing calls to raw memory functions (this is overly
|
|
permissive; consider tightening it up). */
|
|
return;
|
|
|
|
/* Save the current warning setting and replace it either a "maybe"
|
|
when passing addresses of uninitialized variables to const-qualified
|
|
pointers or arguments declared with attribute read_write, or with
|
|
a "certain" when passing them to arguments declared with attribute
|
|
read_only. */
|
|
const bool save_always_executed = wlims.always_executed;
|
|
|
|
/* Initialize a map of attribute access specifications for arguments
|
|
to the function function call. */
|
|
rdwr_map rdwr_idx;
|
|
init_attr_rdwr_indices (&rdwr_idx, TYPE_ATTRIBUTES (fntype));
|
|
|
|
tree argtype;
|
|
unsigned argno = 0;
|
|
function_args_iterator it;
|
|
|
|
FOREACH_FUNCTION_ARGS (fntype, argtype, it)
|
|
{
|
|
++argno;
|
|
|
|
if (!POINTER_TYPE_P (argtype))
|
|
continue;
|
|
|
|
tree access_size = NULL_TREE;
|
|
const attr_access* access = rdwr_idx.get (argno - 1);
|
|
if (access)
|
|
{
|
|
if (access->mode == access_none
|
|
|| access->mode == access_write_only)
|
|
continue;
|
|
|
|
if (access->mode == access_deferred
|
|
&& !TYPE_READONLY (TREE_TYPE (argtype)))
|
|
continue;
|
|
|
|
if (save_always_executed && access->mode == access_read_only)
|
|
/* Attribute read_only arguments imply read access. */
|
|
wlims.always_executed = true;
|
|
else
|
|
/* Attribute read_write arguments are documented as requiring
|
|
initialized objects but it's expected that aggregates may
|
|
be only partially initialized regardless. */
|
|
wlims.always_executed = false;
|
|
|
|
if (access->sizarg < nargs)
|
|
access_size = gimple_call_arg (stmt, access->sizarg);
|
|
}
|
|
else if (!TYPE_READONLY (TREE_TYPE (argtype)))
|
|
continue;
|
|
else if (save_always_executed && fncode != BUILT_IN_LAST)
|
|
/* Const-qualified arguments to built-ins imply read access. */
|
|
wlims.always_executed = true;
|
|
else
|
|
/* Const-qualified arguments to ordinary functions imply a likely
|
|
(but not definitive) read access. */
|
|
wlims.always_executed = false;
|
|
|
|
/* Ignore args we are not going to read from. */
|
|
if (gimple_call_arg_flags (stmt, argno - 1) & EAF_UNUSED)
|
|
continue;
|
|
|
|
tree arg = gimple_call_arg (stmt, argno - 1);
|
|
|
|
ao_ref ref;
|
|
ao_ref_init_from_ptr_and_size (&ref, arg, access_size);
|
|
tree argbase = maybe_warn_operand (ref, stmt, NULL_TREE, arg, wlims);
|
|
if (!argbase)
|
|
continue;
|
|
|
|
if (access && access->mode != access_deferred)
|
|
{
|
|
const char* const access_str =
|
|
TREE_STRING_POINTER (access->to_external_string ());
|
|
|
|
if (fndecl)
|
|
{
|
|
location_t loc = DECL_SOURCE_LOCATION (fndecl);
|
|
inform (loc, "in a call to %qD declared with "
|
|
"attribute %<%s%> here", fndecl, access_str);
|
|
}
|
|
else
|
|
{
|
|
/* Handle calls through function pointers. */
|
|
location_t loc = gimple_location (stmt);
|
|
inform (loc, "in a call to %qT declared with "
|
|
"attribute %<%s%>", fntype, access_str);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* For a declaration with no relevant attribute access create
|
|
a dummy object and use the formatting function to avoid
|
|
having to complicate things here. */
|
|
attr_access ptr_access = { };
|
|
if (!access)
|
|
access = &ptr_access;
|
|
const std::string argtypestr = access->array_as_string (argtype);
|
|
if (fndecl)
|
|
{
|
|
location_t loc (DECL_SOURCE_LOCATION (fndecl));
|
|
inform (loc, "by argument %u of type %s to %qD "
|
|
"declared here",
|
|
argno, argtypestr.c_str (), fndecl);
|
|
}
|
|
else
|
|
{
|
|
/* Handle calls through function pointers. */
|
|
location_t loc (gimple_location (stmt));
|
|
inform (loc, "by argument %u of type %s to %qT",
|
|
argno, argtypestr.c_str (), fntype);
|
|
}
|
|
}
|
|
|
|
if (DECL_P (argbase))
|
|
{
|
|
location_t loc = DECL_SOURCE_LOCATION (argbase);
|
|
inform (loc, "%qD declared here", argbase);
|
|
}
|
|
}
|
|
|
|
wlims.always_executed = save_always_executed;
|
|
}
|
|
|
|
|
|
static unsigned int
|
|
warn_uninitialized_vars (bool wmaybe_uninit)
|
|
{
|
|
/* Counters and limits controlling the the depth of the warning. */
|
|
wlimits wlims = { };
|
|
wlims.wmaybe_uninit = wmaybe_uninit;
|
|
|
|
gimple_stmt_iterator gsi;
|
|
basic_block bb;
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
wlims.always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
use_operand_p use_p;
|
|
ssa_op_iter op_iter;
|
|
tree use;
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
/* We only do data flow with SSA_NAMEs, so that's all we
|
|
can warn about. */
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
|
|
{
|
|
/* BIT_INSERT_EXPR first operand should not be considered
|
|
a use for the purpose of uninit warnings. */
|
|
if (gassign *ass = dyn_cast <gassign *> (stmt))
|
|
{
|
|
if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
|
|
&& use_p->use == gimple_assign_rhs1_ptr (ass))
|
|
continue;
|
|
}
|
|
use = USE_FROM_PTR (use_p);
|
|
if (wlims.always_executed)
|
|
warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
|
|
SSA_NAME_VAR (use),
|
|
"%qD is used uninitialized", stmt,
|
|
UNKNOWN_LOCATION);
|
|
else if (wmaybe_uninit)
|
|
warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
|
|
SSA_NAME_VAR (use),
|
|
"%qD may be used uninitialized",
|
|
stmt, UNKNOWN_LOCATION);
|
|
}
|
|
|
|
/* For limiting the alias walk below we count all
|
|
vdefs in the function. */
|
|
if (gimple_vdef (stmt))
|
|
wlims.vdef_cnt++;
|
|
|
|
if (gcall *call = dyn_cast <gcall *> (stmt))
|
|
maybe_warn_pass_by_reference (call, wlims);
|
|
else if (gimple_assign_load_p (stmt)
|
|
&& gimple_has_location (stmt))
|
|
{
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
ao_ref ref;
|
|
ao_ref_init (&ref, rhs);
|
|
tree var = maybe_warn_operand (ref, stmt, lhs, rhs, wlims);
|
|
if (!var)
|
|
continue;
|
|
|
|
if (DECL_P (var))
|
|
{
|
|
location_t loc = DECL_SOURCE_LOCATION (var);
|
|
inform (loc, "%qD declared here", var);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Checks if the operand OPND of PHI is defined by
|
|
another phi with one operand defined by this PHI,
|
|
but the rest operands are all defined. If yes,
|
|
returns true to skip this operand as being
|
|
redundant. Can be enhanced to be more general. */
|
|
|
|
static bool
|
|
can_skip_redundant_opnd (tree opnd, gimple *phi)
|
|
{
|
|
gimple *op_def;
|
|
tree phi_def;
|
|
int i, n;
|
|
|
|
phi_def = gimple_phi_result (phi);
|
|
op_def = SSA_NAME_DEF_STMT (opnd);
|
|
if (gimple_code (op_def) != GIMPLE_PHI)
|
|
return false;
|
|
n = gimple_phi_num_args (op_def);
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (op_def, i);
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
if (op != phi_def && uninit_undefined_value_p (op))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns a bit mask holding the positions of arguments in PHI
|
|
that have empty (or possibly empty) definitions. */
|
|
|
|
static unsigned
|
|
compute_uninit_opnds_pos (gphi *phi)
|
|
{
|
|
size_t i, n;
|
|
unsigned uninit_opnds = 0;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
/* Bail out for phi with too many args. */
|
|
if (n > max_phi_args)
|
|
return 0;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (op) == SSA_NAME
|
|
&& uninit_undefined_value_p (op)
|
|
&& !can_skip_redundant_opnd (op, phi))
|
|
{
|
|
if (cfun->has_nonlocal_label || cfun->calls_setjmp)
|
|
{
|
|
/* Ignore SSA_NAMEs that appear on abnormal edges
|
|
somewhere. */
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
|
|
continue;
|
|
}
|
|
MASK_SET_BIT (uninit_opnds, i);
|
|
}
|
|
}
|
|
return uninit_opnds;
|
|
}
|
|
|
|
/* Find the immediate postdominator PDOM of the specified
|
|
basic block BLOCK. */
|
|
|
|
static inline basic_block
|
|
find_pdom (basic_block block)
|
|
{
|
|
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
|
else
|
|
{
|
|
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
|
if (!bb)
|
|
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
|
return bb;
|
|
}
|
|
}
|
|
|
|
/* Find the immediate DOM of the specified basic block BLOCK. */
|
|
|
|
static inline basic_block
|
|
find_dom (basic_block block)
|
|
{
|
|
if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
else
|
|
{
|
|
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
|
|
if (!bb)
|
|
return ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
return bb;
|
|
}
|
|
}
|
|
|
|
/* Returns true if BB1 is postdominating BB2 and BB1 is
|
|
not a loop exit bb. The loop exit bb check is simple and does
|
|
not cover all cases. */
|
|
|
|
static bool
|
|
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
|
|
{
|
|
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
|
|
return false;
|
|
|
|
if (single_pred_p (bb1) && !single_succ_p (bb2))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find the closest postdominator of a specified BB, which is control
|
|
equivalent to BB. */
|
|
|
|
static inline basic_block
|
|
find_control_equiv_block (basic_block bb)
|
|
{
|
|
basic_block pdom;
|
|
|
|
pdom = find_pdom (bb);
|
|
|
|
/* Skip the postdominating bb that is also loop exit. */
|
|
if (!is_non_loop_exit_postdominating (pdom, bb))
|
|
return NULL;
|
|
|
|
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
|
|
return pdom;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define MAX_NUM_CHAINS 8
|
|
#define MAX_CHAIN_LEN 5
|
|
#define MAX_POSTDOM_CHECK 8
|
|
#define MAX_SWITCH_CASES 40
|
|
|
|
/* Computes the control dependence chains (paths of edges)
|
|
for DEP_BB up to the dominating basic block BB (the head node of a
|
|
chain should be dominated by it). CD_CHAINS is pointer to an
|
|
array holding the result chains. CUR_CD_CHAIN is the current
|
|
chain being computed. *NUM_CHAINS is total number of chains. The
|
|
function returns true if the information is successfully computed,
|
|
return false if there is no control dependence or not computed. */
|
|
|
|
static bool
|
|
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
|
|
vec<edge> *cd_chains,
|
|
size_t *num_chains,
|
|
vec<edge> *cur_cd_chain,
|
|
int *num_calls)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
size_t i;
|
|
bool found_cd_chain = false;
|
|
size_t cur_chain_len = 0;
|
|
|
|
if (*num_calls > param_uninit_control_dep_attempts)
|
|
return false;
|
|
++*num_calls;
|
|
|
|
/* Could use a set instead. */
|
|
cur_chain_len = cur_cd_chain->length ();
|
|
if (cur_chain_len > MAX_CHAIN_LEN)
|
|
return false;
|
|
|
|
for (i = 0; i < cur_chain_len; i++)
|
|
{
|
|
edge e = (*cur_cd_chain)[i];
|
|
/* Cycle detected. */
|
|
if (e->src == bb)
|
|
return false;
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
basic_block cd_bb;
|
|
int post_dom_check = 0;
|
|
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
|
|
continue;
|
|
|
|
cd_bb = e->dest;
|
|
cur_cd_chain->safe_push (e);
|
|
while (!is_non_loop_exit_postdominating (cd_bb, bb))
|
|
{
|
|
if (cd_bb == dep_bb)
|
|
{
|
|
/* Found a direct control dependence. */
|
|
if (*num_chains < MAX_NUM_CHAINS)
|
|
{
|
|
cd_chains[*num_chains] = cur_cd_chain->copy ();
|
|
(*num_chains)++;
|
|
}
|
|
found_cd_chain = true;
|
|
/* Check path from next edge. */
|
|
break;
|
|
}
|
|
|
|
/* Now check if DEP_BB is indirectly control dependent on BB. */
|
|
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
|
|
cur_cd_chain, num_calls))
|
|
{
|
|
found_cd_chain = true;
|
|
break;
|
|
}
|
|
|
|
cd_bb = find_pdom (cd_bb);
|
|
post_dom_check++;
|
|
if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
|
|| post_dom_check > MAX_POSTDOM_CHECK)
|
|
break;
|
|
}
|
|
cur_cd_chain->pop ();
|
|
gcc_assert (cur_cd_chain->length () == cur_chain_len);
|
|
}
|
|
gcc_assert (cur_cd_chain->length () == cur_chain_len);
|
|
|
|
return found_cd_chain;
|
|
}
|
|
|
|
/* The type to represent a simple predicate. */
|
|
|
|
struct pred_info
|
|
{
|
|
tree pred_lhs;
|
|
tree pred_rhs;
|
|
enum tree_code cond_code;
|
|
bool invert;
|
|
};
|
|
|
|
/* The type to represent a sequence of predicates grouped
|
|
with .AND. operation. */
|
|
|
|
typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
|
|
|
|
/* The type to represent a sequence of pred_chains grouped
|
|
with .OR. operation. */
|
|
|
|
typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
|
|
|
|
/* Converts the chains of control dependence edges into a set of
|
|
predicates. A control dependence chain is represented by a vector
|
|
edges. DEP_CHAINS points to an array of dependence chains.
|
|
NUM_CHAINS is the size of the chain array. One edge in a dependence
|
|
chain is mapped to predicate expression represented by pred_info
|
|
type. One dependence chain is converted to a composite predicate that
|
|
is the result of AND operation of pred_info mapped to each edge.
|
|
A composite predicate is presented by a vector of pred_info. On
|
|
return, *PREDS points to the resulting array of composite predicates.
|
|
*NUM_PREDS is the number of composite predictes. */
|
|
|
|
static bool
|
|
convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
|
|
size_t num_chains,
|
|
pred_chain_union *preds)
|
|
{
|
|
bool has_valid_pred = false;
|
|
size_t i, j;
|
|
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
|
|
return false;
|
|
|
|
/* Now convert the control dep chain into a set
|
|
of predicates. */
|
|
preds->reserve (num_chains);
|
|
|
|
for (i = 0; i < num_chains; i++)
|
|
{
|
|
vec<edge> one_cd_chain = dep_chains[i];
|
|
|
|
has_valid_pred = false;
|
|
pred_chain t_chain = vNULL;
|
|
for (j = 0; j < one_cd_chain.length (); j++)
|
|
{
|
|
gimple *cond_stmt;
|
|
gimple_stmt_iterator gsi;
|
|
basic_block guard_bb;
|
|
pred_info one_pred;
|
|
edge e;
|
|
|
|
e = one_cd_chain[j];
|
|
guard_bb = e->src;
|
|
gsi = gsi_last_bb (guard_bb);
|
|
/* Ignore empty forwarder blocks. */
|
|
if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
|
|
continue;
|
|
/* An empty basic block here is likely a PHI, and is not one
|
|
of the cases we handle below. */
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
cond_stmt = gsi_stmt (gsi);
|
|
if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
|
|
/* Ignore EH edge. Can add assertion on the other edge's flag. */
|
|
continue;
|
|
/* Skip if there is essentially one succesor. */
|
|
if (EDGE_COUNT (e->src->succs) == 2)
|
|
{
|
|
edge e1;
|
|
edge_iterator ei1;
|
|
bool skip = false;
|
|
|
|
FOR_EACH_EDGE (e1, ei1, e->src->succs)
|
|
{
|
|
if (EDGE_COUNT (e1->dest->succs) == 0)
|
|
{
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (skip)
|
|
continue;
|
|
}
|
|
if (gimple_code (cond_stmt) == GIMPLE_COND)
|
|
{
|
|
one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
|
|
one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
|
|
one_pred.cond_code = gimple_cond_code (cond_stmt);
|
|
one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
|
|
t_chain.safe_push (one_pred);
|
|
has_valid_pred = true;
|
|
}
|
|
else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
|
|
{
|
|
/* Avoid quadratic behavior. */
|
|
if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
/* Find the case label. */
|
|
tree l = NULL_TREE;
|
|
unsigned idx;
|
|
for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
|
|
{
|
|
tree tl = gimple_switch_label (gs, idx);
|
|
if (e->dest == label_to_block (cfun, CASE_LABEL (tl)))
|
|
{
|
|
if (!l)
|
|
l = tl;
|
|
else
|
|
{
|
|
l = NULL_TREE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* If more than one label reaches this block or the case
|
|
label doesn't have a single value (like the default one)
|
|
fail. */
|
|
if (!l
|
|
|| !CASE_LOW (l)
|
|
|| (CASE_HIGH (l)
|
|
&& !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
one_pred.pred_lhs = gimple_switch_index (gs);
|
|
one_pred.pred_rhs = CASE_LOW (l);
|
|
one_pred.cond_code = EQ_EXPR;
|
|
one_pred.invert = false;
|
|
t_chain.safe_push (one_pred);
|
|
has_valid_pred = true;
|
|
}
|
|
else
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!has_valid_pred)
|
|
break;
|
|
else
|
|
preds->safe_push (t_chain);
|
|
}
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Computes all control dependence chains for USE_BB. The control
|
|
dependence chains are then converted to an array of composite
|
|
predicates pointed to by PREDS. PHI_BB is the basic block of
|
|
the phi whose result is used in USE_BB. */
|
|
|
|
static bool
|
|
find_predicates (pred_chain_union *preds,
|
|
basic_block phi_bb,
|
|
basic_block use_bb)
|
|
{
|
|
size_t num_chains = 0, i;
|
|
int num_calls = 0;
|
|
vec<edge> dep_chains[MAX_NUM_CHAINS];
|
|
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
|
|
bool has_valid_pred = false;
|
|
basic_block cd_root = 0;
|
|
|
|
/* First find the closest bb that is control equivalent to PHI_BB
|
|
that also dominates USE_BB. */
|
|
cd_root = phi_bb;
|
|
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
|
|
{
|
|
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
|
|
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
|
|
cd_root = ctrl_eq_bb;
|
|
else
|
|
break;
|
|
}
|
|
|
|
compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
|
|
&cur_chain, &num_calls);
|
|
|
|
has_valid_pred
|
|
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
|
|
for (i = 0; i < num_chains; i++)
|
|
dep_chains[i].release ();
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Computes the set of incoming edges of PHI that have non empty
|
|
definitions of a phi chain. The collection will be done
|
|
recursively on operands that are defined by phis. CD_ROOT
|
|
is the control dependence root. *EDGES holds the result, and
|
|
VISITED_PHIS is a pointer set for detecting cycles. */
|
|
|
|
static void
|
|
collect_phi_def_edges (gphi *phi, basic_block cd_root,
|
|
auto_vec<edge> *edges,
|
|
hash_set<gimple *> *visited_phis)
|
|
{
|
|
size_t i, n;
|
|
edge opnd_edge;
|
|
tree opnd;
|
|
|
|
if (visited_phis->add (phi))
|
|
return;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
|
opnd = gimple_phi_arg_def (phi, i);
|
|
|
|
if (TREE_CODE (opnd) != SSA_NAME)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
|
|
print_gimple_stmt (dump_file, phi, 0);
|
|
}
|
|
edges->safe_push (opnd_edge);
|
|
}
|
|
else
|
|
{
|
|
gimple *def = SSA_NAME_DEF_STMT (opnd);
|
|
|
|
if (gimple_code (def) == GIMPLE_PHI
|
|
&& dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
|
|
collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
|
|
visited_phis);
|
|
else if (!uninit_undefined_value_p (opnd))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
|
|
(int) i);
|
|
print_gimple_stmt (dump_file, phi, 0);
|
|
}
|
|
edges->safe_push (opnd_edge);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For each use edge of PHI, computes all control dependence chains.
|
|
The control dependence chains are then converted to an array of
|
|
composite predicates pointed to by PREDS. */
|
|
|
|
static bool
|
|
find_def_preds (pred_chain_union *preds, gphi *phi)
|
|
{
|
|
size_t num_chains = 0, i, n;
|
|
vec<edge> dep_chains[MAX_NUM_CHAINS];
|
|
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
|
|
auto_vec<edge> def_edges;
|
|
bool has_valid_pred = false;
|
|
basic_block phi_bb, cd_root = 0;
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
/* First find the closest dominating bb to be
|
|
the control dependence root. */
|
|
cd_root = find_dom (phi_bb);
|
|
if (!cd_root)
|
|
return false;
|
|
|
|
hash_set<gimple *> visited_phis;
|
|
collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
|
|
|
|
n = def_edges.length ();
|
|
if (n == 0)
|
|
return false;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
size_t prev_nc, j;
|
|
int num_calls = 0;
|
|
edge opnd_edge;
|
|
|
|
opnd_edge = def_edges[i];
|
|
prev_nc = num_chains;
|
|
compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
|
|
&num_chains, &cur_chain, &num_calls);
|
|
|
|
/* Now update the newly added chains with
|
|
the phi operand edge: */
|
|
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
|
|
{
|
|
if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
|
|
dep_chains[num_chains++] = vNULL;
|
|
for (j = prev_nc; j < num_chains; j++)
|
|
dep_chains[j].safe_push (opnd_edge);
|
|
}
|
|
}
|
|
|
|
has_valid_pred
|
|
= convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
|
|
for (i = 0; i < num_chains; i++)
|
|
dep_chains[i].release ();
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Dump a pred_info. */
|
|
|
|
static void
|
|
dump_pred_info (pred_info one_pred)
|
|
{
|
|
if (one_pred.invert)
|
|
fprintf (dump_file, " (.NOT.) ");
|
|
print_generic_expr (dump_file, one_pred.pred_lhs);
|
|
fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
|
|
print_generic_expr (dump_file, one_pred.pred_rhs);
|
|
}
|
|
|
|
/* Dump a pred_chain. */
|
|
|
|
static void
|
|
dump_pred_chain (pred_chain one_pred_chain)
|
|
{
|
|
size_t np = one_pred_chain.length ();
|
|
for (size_t j = 0; j < np; j++)
|
|
{
|
|
dump_pred_info (one_pred_chain[j]);
|
|
if (j < np - 1)
|
|
fprintf (dump_file, " (.AND.) ");
|
|
else
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Dumps the predicates (PREDS) for USESTMT. */
|
|
|
|
static void
|
|
dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
|
|
{
|
|
fprintf (dump_file, "%s", msg);
|
|
if (usestmt)
|
|
{
|
|
print_gimple_stmt (dump_file, usestmt, 0);
|
|
fprintf (dump_file, "is guarded by :\n\n");
|
|
}
|
|
size_t num_preds = preds.length ();
|
|
for (size_t i = 0; i < num_preds; i++)
|
|
{
|
|
dump_pred_chain (preds[i]);
|
|
if (i < num_preds - 1)
|
|
fprintf (dump_file, "(.OR.)\n");
|
|
else
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
}
|
|
|
|
/* Destroys the predicate set *PREDS. */
|
|
|
|
static void
|
|
destroy_predicate_vecs (pred_chain_union *preds)
|
|
{
|
|
size_t i;
|
|
|
|
size_t n = preds->length ();
|
|
for (i = 0; i < n; i++)
|
|
(*preds)[i].release ();
|
|
preds->release ();
|
|
}
|
|
|
|
/* Computes the 'normalized' conditional code with operand
|
|
swapping and condition inversion. */
|
|
|
|
static enum tree_code
|
|
get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
|
|
{
|
|
enum tree_code tc = orig_cmp_code;
|
|
|
|
if (swap_cond)
|
|
tc = swap_tree_comparison (orig_cmp_code);
|
|
if (invert)
|
|
tc = invert_tree_comparison (tc, false);
|
|
|
|
switch (tc)
|
|
{
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
case GT_EXPR:
|
|
case GE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
break;
|
|
default:
|
|
return ERROR_MARK;
|
|
}
|
|
return tc;
|
|
}
|
|
|
|
/* Returns whether VAL CMPC BOUNDARY is true. */
|
|
|
|
static bool
|
|
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
|
|
{
|
|
bool inverted = false;
|
|
bool result;
|
|
|
|
/* Only handle integer constant here. */
|
|
if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
|
|
return true;
|
|
|
|
if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
|
|
{
|
|
cmpc = invert_tree_comparison (cmpc, false);
|
|
inverted = true;
|
|
}
|
|
|
|
if (cmpc == EQ_EXPR)
|
|
result = tree_int_cst_equal (val, boundary);
|
|
else if (cmpc == LT_EXPR)
|
|
result = tree_int_cst_lt (val, boundary);
|
|
else
|
|
{
|
|
gcc_assert (cmpc == LE_EXPR);
|
|
result = tree_int_cst_le (val, boundary);
|
|
}
|
|
|
|
if (inverted)
|
|
result ^= 1;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Returns whether VAL satisfies (x CMPC BOUNDARY) predicate. CMPC can be
|
|
either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and the like),
|
|
or BIT_AND_EXPR. EXACT_P is only meaningful for the latter. It modifies the
|
|
question from whether VAL & BOUNDARY != 0 to whether VAL & BOUNDARY == VAL.
|
|
For other values of CMPC, EXACT_P is ignored. */
|
|
|
|
static bool
|
|
value_sat_pred_p (tree val, tree boundary, enum tree_code cmpc,
|
|
bool exact_p = false)
|
|
{
|
|
if (cmpc != BIT_AND_EXPR)
|
|
return is_value_included_in (val, boundary, cmpc);
|
|
|
|
wide_int andw = wi::to_wide (val) & wi::to_wide (boundary);
|
|
if (exact_p)
|
|
return andw == wi::to_wide (val);
|
|
else
|
|
return andw.to_uhwi ();
|
|
}
|
|
|
|
/* Returns true if PRED is common among all the predicate
|
|
chains (PREDS) (and therefore can be factored out). */
|
|
|
|
static bool
|
|
find_matching_predicate_in_rest_chains (pred_info pred, pred_chain_union preds)
|
|
{
|
|
size_t i, j, n;
|
|
|
|
/* Trival case. */
|
|
if (preds.length () == 1)
|
|
return true;
|
|
|
|
for (i = 1; i < preds.length (); i++)
|
|
{
|
|
bool found = false;
|
|
pred_chain one_chain = preds[i];
|
|
n = one_chain.length ();
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
pred_info pred2 = one_chain[j];
|
|
/* Can relax the condition comparison to not
|
|
use address comparison. However, the most common
|
|
case is that multiple control dependent paths share
|
|
a common path prefix, so address comparison should
|
|
be ok. */
|
|
|
|
if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
|
|
&& operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
|
|
&& pred2.invert == pred.invert)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Forward declaration. */
|
|
static bool is_use_properly_guarded (gimple *use_stmt,
|
|
basic_block use_bb,
|
|
gphi *phi,
|
|
unsigned uninit_opnds,
|
|
pred_chain_union *def_preds,
|
|
hash_set<gphi *> *visited_phis);
|
|
|
|
/* Returns true if all uninitialized opnds are pruned. Returns false
|
|
otherwise. PHI is the phi node with uninitialized operands,
|
|
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
|
|
FLAG_DEF is the statement defining the flag guarding the use of the
|
|
PHI output, BOUNDARY_CST is the const value used in the predicate
|
|
associated with the flag, CMP_CODE is the comparison code used in
|
|
the predicate, VISITED_PHIS is the pointer set of phis visited, and
|
|
VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
|
|
that are also phis.
|
|
|
|
Example scenario:
|
|
|
|
BB1:
|
|
flag_1 = phi <0, 1> // (1)
|
|
var_1 = phi <undef, some_val>
|
|
|
|
|
|
BB2:
|
|
flag_2 = phi <0, flag_1, flag_1> // (2)
|
|
var_2 = phi <undef, var_1, var_1>
|
|
if (flag_2 == 1)
|
|
goto BB3;
|
|
|
|
BB3:
|
|
use of var_2 // (3)
|
|
|
|
Because some flag arg in (1) is not constant, if we do not look into the
|
|
flag phis recursively, it is conservatively treated as unknown and var_1
|
|
is thought to be flowed into use at (3). Since var_1 is potentially
|
|
uninitialized a false warning will be emitted.
|
|
Checking recursively into (1), the compiler can find out that only some_val
|
|
(which is defined) can flow into (3) which is OK. */
|
|
|
|
static bool
|
|
prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
|
|
tree boundary_cst, enum tree_code cmp_code,
|
|
hash_set<gphi *> *visited_phis,
|
|
bitmap *visited_flag_phis)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
|
|
{
|
|
tree flag_arg;
|
|
|
|
if (!MASK_TEST_BIT (uninit_opnds, i))
|
|
continue;
|
|
|
|
flag_arg = gimple_phi_arg_def (flag_def, i);
|
|
if (!is_gimple_constant (flag_arg))
|
|
{
|
|
gphi *flag_arg_def, *phi_arg_def;
|
|
tree phi_arg;
|
|
unsigned uninit_opnds_arg_phi;
|
|
|
|
if (TREE_CODE (flag_arg) != SSA_NAME)
|
|
return false;
|
|
flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
|
|
if (!flag_arg_def)
|
|
return false;
|
|
|
|
phi_arg = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (phi_arg) != SSA_NAME)
|
|
return false;
|
|
|
|
phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
|
|
if (!phi_arg_def)
|
|
return false;
|
|
|
|
if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
|
|
return false;
|
|
|
|
if (!*visited_flag_phis)
|
|
*visited_flag_phis = BITMAP_ALLOC (NULL);
|
|
|
|
tree phi_result = gimple_phi_result (flag_arg_def);
|
|
if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
|
|
return false;
|
|
|
|
bitmap_set_bit (*visited_flag_phis,
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
|
|
|
|
/* Now recursively prune the uninitialized phi args. */
|
|
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
|
|
if (!prune_uninit_phi_opnds
|
|
(phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
|
|
cmp_code, visited_phis, visited_flag_phis))
|
|
return false;
|
|
|
|
phi_result = gimple_phi_result (flag_arg_def);
|
|
bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
|
|
continue;
|
|
}
|
|
|
|
/* Now check if the constant is in the guarded range. */
|
|
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
|
|
{
|
|
tree opnd;
|
|
gimple *opnd_def;
|
|
|
|
/* Now that we know that this undefined edge is not
|
|
pruned. If the operand is defined by another phi,
|
|
we can further prune the incoming edges of that
|
|
phi by checking the predicates of this operands. */
|
|
|
|
opnd = gimple_phi_arg_def (phi, i);
|
|
opnd_def = SSA_NAME_DEF_STMT (opnd);
|
|
if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
|
|
{
|
|
edge opnd_edge;
|
|
unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
|
|
if (!MASK_EMPTY (uninit_opnds2))
|
|
{
|
|
pred_chain_union def_preds = vNULL;
|
|
bool ok;
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
|
ok = is_use_properly_guarded (phi,
|
|
opnd_edge->src,
|
|
opnd_def_phi,
|
|
uninit_opnds2,
|
|
&def_preds,
|
|
visited_phis);
|
|
destroy_predicate_vecs (&def_preds);
|
|
if (!ok)
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* A helper function finds predicate which will be examined against uninit
|
|
paths. If there is no "flag_var cmp const" form predicate, the function
|
|
tries to find predicate of form like "flag_var cmp flag_var" with value
|
|
range info. PHI is the phi node whose incoming (undefined) paths need to
|
|
be examined. On success, the function returns the comparsion code, sets
|
|
defintion gimple of the flag_var to FLAG_DEF, sets boundary_cst to
|
|
BOUNDARY_CST. On fail, the function returns ERROR_MARK. */
|
|
|
|
static enum tree_code
|
|
find_var_cmp_const (pred_chain_union preds, gphi *phi, gimple **flag_def,
|
|
tree *boundary_cst)
|
|
{
|
|
enum tree_code vrinfo_code = ERROR_MARK, code;
|
|
gimple *vrinfo_def = NULL;
|
|
tree vrinfo_cst = NULL, cond_lhs, cond_rhs;
|
|
|
|
gcc_assert (preds.length () > 0);
|
|
pred_chain the_pred_chain = preds[0];
|
|
for (unsigned i = 0; i < the_pred_chain.length (); i++)
|
|
{
|
|
bool use_vrinfo_p = false;
|
|
pred_info the_pred = the_pred_chain[i];
|
|
cond_lhs = the_pred.pred_lhs;
|
|
cond_rhs = the_pred.pred_rhs;
|
|
if (cond_lhs == NULL_TREE || cond_rhs == NULL_TREE)
|
|
continue;
|
|
|
|
code = get_cmp_code (the_pred.cond_code, false, the_pred.invert);
|
|
if (code == ERROR_MARK)
|
|
continue;
|
|
|
|
if (TREE_CODE (cond_lhs) == SSA_NAME && is_gimple_constant (cond_rhs))
|
|
;
|
|
else if (TREE_CODE (cond_rhs) == SSA_NAME
|
|
&& is_gimple_constant (cond_lhs))
|
|
{
|
|
std::swap (cond_lhs, cond_rhs);
|
|
if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
|
|
continue;
|
|
}
|
|
/* Check if we can take advantage of "flag_var comp flag_var" predicate
|
|
with value range info. Note only first of such case is handled. */
|
|
else if (vrinfo_code == ERROR_MARK
|
|
&& TREE_CODE (cond_lhs) == SSA_NAME
|
|
&& TREE_CODE (cond_rhs) == SSA_NAME)
|
|
{
|
|
gimple* lhs_def = SSA_NAME_DEF_STMT (cond_lhs);
|
|
if (!lhs_def || gimple_code (lhs_def) != GIMPLE_PHI
|
|
|| gimple_bb (lhs_def) != gimple_bb (phi))
|
|
{
|
|
std::swap (cond_lhs, cond_rhs);
|
|
if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
|
|
continue;
|
|
}
|
|
|
|
/* Check value range info of rhs, do following transforms:
|
|
flag_var < [min, max] -> flag_var < max
|
|
flag_var > [min, max] -> flag_var > min
|
|
|
|
We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
|
|
flag_var <= [min, max] -> flag_var < [min, max+1]
|
|
flag_var >= [min, max] -> flag_var > [min-1, max]
|
|
if no overflow/wrap. */
|
|
wide_int min, max;
|
|
tree type = TREE_TYPE (cond_lhs);
|
|
if (!INTEGRAL_TYPE_P (type)
|
|
|| get_range_info (cond_rhs, &min, &max) != VR_RANGE)
|
|
continue;
|
|
if (code == LE_EXPR
|
|
&& max != wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
|
|
{
|
|
code = LT_EXPR;
|
|
max = max + 1;
|
|
}
|
|
if (code == GE_EXPR
|
|
&& min != wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
|
|
{
|
|
code = GT_EXPR;
|
|
min = min - 1;
|
|
}
|
|
if (code == LT_EXPR)
|
|
cond_rhs = wide_int_to_tree (type, max);
|
|
else if (code == GT_EXPR)
|
|
cond_rhs = wide_int_to_tree (type, min);
|
|
else
|
|
continue;
|
|
|
|
use_vrinfo_p = true;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if ((*flag_def = SSA_NAME_DEF_STMT (cond_lhs)) == NULL)
|
|
continue;
|
|
|
|
if (gimple_code (*flag_def) != GIMPLE_PHI
|
|
|| gimple_bb (*flag_def) != gimple_bb (phi)
|
|
|| !find_matching_predicate_in_rest_chains (the_pred, preds))
|
|
continue;
|
|
|
|
/* Return if any "flag_var comp const" predicate is found. */
|
|
if (!use_vrinfo_p)
|
|
{
|
|
*boundary_cst = cond_rhs;
|
|
return code;
|
|
}
|
|
/* Record if any "flag_var comp flag_var[vinfo]" predicate is found. */
|
|
else if (vrinfo_code == ERROR_MARK)
|
|
{
|
|
vrinfo_code = code;
|
|
vrinfo_def = *flag_def;
|
|
vrinfo_cst = cond_rhs;
|
|
}
|
|
}
|
|
/* Return the "flag_var cmp flag_var[vinfo]" predicate we found. */
|
|
if (vrinfo_code != ERROR_MARK)
|
|
{
|
|
*flag_def = vrinfo_def;
|
|
*boundary_cst = vrinfo_cst;
|
|
}
|
|
return vrinfo_code;
|
|
}
|
|
|
|
/* A helper function that determines if the predicate set
|
|
of the use is not overlapping with that of the uninit paths.
|
|
The most common senario of guarded use is in Example 1:
|
|
Example 1:
|
|
if (some_cond)
|
|
{
|
|
x = ...;
|
|
flag = true;
|
|
}
|
|
|
|
... some code ...
|
|
|
|
if (flag)
|
|
use (x);
|
|
|
|
The real world examples are usually more complicated, but similar
|
|
and usually result from inlining:
|
|
|
|
bool init_func (int * x)
|
|
{
|
|
if (some_cond)
|
|
return false;
|
|
*x = ..
|
|
return true;
|
|
}
|
|
|
|
void foo (..)
|
|
{
|
|
int x;
|
|
|
|
if (!init_func (&x))
|
|
return;
|
|
|
|
.. some_code ...
|
|
use (x);
|
|
}
|
|
|
|
Another possible use scenario is in the following trivial example:
|
|
|
|
Example 2:
|
|
if (n > 0)
|
|
x = 1;
|
|
...
|
|
if (n > 0)
|
|
{
|
|
if (m < 2)
|
|
.. = x;
|
|
}
|
|
|
|
Predicate analysis needs to compute the composite predicate:
|
|
|
|
1) 'x' use predicate: (n > 0) .AND. (m < 2)
|
|
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
|
|
(the predicate chain for phi operand defs can be computed
|
|
starting from a bb that is control equivalent to the phi's
|
|
bb and is dominating the operand def.)
|
|
|
|
and check overlapping:
|
|
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
|
|
<==> false
|
|
|
|
This implementation provides framework that can handle
|
|
scenarios. (Note that many simple cases are handled properly
|
|
without the predicate analysis -- this is due to jump threading
|
|
transformation which eliminates the merge point thus makes
|
|
path sensitive analysis unnecessary.)
|
|
|
|
PHI is the phi node whose incoming (undefined) paths need to be
|
|
pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
|
|
positions. VISITED_PHIS is the pointer set of phi stmts being
|
|
checked. */
|
|
|
|
static bool
|
|
use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
|
|
gphi *phi, unsigned uninit_opnds,
|
|
hash_set<gphi *> *visited_phis)
|
|
{
|
|
gimple *flag_def = 0;
|
|
tree boundary_cst = 0;
|
|
enum tree_code cmp_code;
|
|
bitmap visited_flag_phis = NULL;
|
|
bool all_pruned = false;
|
|
|
|
/* Find within the common prefix of multiple predicate chains
|
|
a predicate that is a comparison of a flag variable against
|
|
a constant. */
|
|
cmp_code = find_var_cmp_const (preds, phi, &flag_def, &boundary_cst);
|
|
if (cmp_code == ERROR_MARK)
|
|
return false;
|
|
|
|
/* Now check all the uninit incoming edge has a constant flag value
|
|
that is in conflict with the use guard/predicate. */
|
|
all_pruned = prune_uninit_phi_opnds
|
|
(phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
|
|
visited_phis, &visited_flag_phis);
|
|
|
|
if (visited_flag_phis)
|
|
BITMAP_FREE (visited_flag_phis);
|
|
|
|
return all_pruned;
|
|
}
|
|
|
|
/* The helper function returns true if two predicates X1 and X2
|
|
are equivalent. It assumes the expressions have already
|
|
properly re-associated. */
|
|
|
|
static inline bool
|
|
pred_equal_p (pred_info x1, pred_info x2)
|
|
{
|
|
enum tree_code c1, c2;
|
|
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|
|
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
|
|
return false;
|
|
|
|
c1 = x1.cond_code;
|
|
if (x1.invert != x2.invert
|
|
&& TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
|
|
c2 = invert_tree_comparison (x2.cond_code, false);
|
|
else
|
|
c2 = x2.cond_code;
|
|
|
|
return c1 == c2;
|
|
}
|
|
|
|
/* Returns true if the predication is testing !=. */
|
|
|
|
static inline bool
|
|
is_neq_relop_p (pred_info pred)
|
|
{
|
|
|
|
return ((pred.cond_code == NE_EXPR && !pred.invert)
|
|
|| (pred.cond_code == EQ_EXPR && pred.invert));
|
|
}
|
|
|
|
/* Returns true if pred is of the form X != 0. */
|
|
|
|
static inline bool
|
|
is_neq_zero_form_p (pred_info pred)
|
|
{
|
|
if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
|
|
|| TREE_CODE (pred.pred_lhs) != SSA_NAME)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* The helper function returns true if two predicates X1
|
|
is equivalent to X2 != 0. */
|
|
|
|
static inline bool
|
|
pred_expr_equal_p (pred_info x1, tree x2)
|
|
{
|
|
if (!is_neq_zero_form_p (x1))
|
|
return false;
|
|
|
|
return operand_equal_p (x1.pred_lhs, x2, 0);
|
|
}
|
|
|
|
/* Returns true of the domain of single predicate expression
|
|
EXPR1 is a subset of that of EXPR2. Returns false if it
|
|
cannot be proved. */
|
|
|
|
static bool
|
|
is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
|
|
{
|
|
enum tree_code code1, code2;
|
|
|
|
if (pred_equal_p (expr1, expr2))
|
|
return true;
|
|
|
|
if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
|
|
|| (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
|
|
return false;
|
|
|
|
if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
|
|
return false;
|
|
|
|
code1 = expr1.cond_code;
|
|
if (expr1.invert)
|
|
code1 = invert_tree_comparison (code1, false);
|
|
code2 = expr2.cond_code;
|
|
if (expr2.invert)
|
|
code2 = invert_tree_comparison (code2, false);
|
|
|
|
if (code2 == NE_EXPR && code1 == NE_EXPR)
|
|
return false;
|
|
|
|
if (code2 == NE_EXPR)
|
|
return !value_sat_pred_p (expr2.pred_rhs, expr1.pred_rhs, code1);
|
|
|
|
if (code1 == EQ_EXPR)
|
|
return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2);
|
|
|
|
if (code1 == code2)
|
|
return value_sat_pred_p (expr1.pred_rhs, expr2.pred_rhs, code2,
|
|
code1 == BIT_AND_EXPR);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if the domain of PRED1 is a subset
|
|
of that of PRED2. Returns false if it cannot be proved so. */
|
|
|
|
static bool
|
|
is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
|
|
{
|
|
size_t np1, np2, i1, i2;
|
|
|
|
np1 = pred1.length ();
|
|
np2 = pred2.length ();
|
|
|
|
for (i2 = 0; i2 < np2; i2++)
|
|
{
|
|
bool found = false;
|
|
pred_info info2 = pred2[i2];
|
|
for (i1 = 0; i1 < np1; i1++)
|
|
{
|
|
pred_info info1 = pred1[i1];
|
|
if (is_pred_expr_subset_of (info1, info2))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if the domain defined by
|
|
one pred chain ONE_PRED is a subset of the domain
|
|
of *PREDS. It returns false if ONE_PRED's domain is
|
|
not a subset of any of the sub-domains of PREDS
|
|
(corresponding to each individual chains in it), even
|
|
though it may be still be a subset of whole domain
|
|
of PREDS which is the union (ORed) of all its subdomains.
|
|
In other words, the result is conservative. */
|
|
|
|
static bool
|
|
is_included_in (pred_chain one_pred, pred_chain_union preds)
|
|
{
|
|
size_t i;
|
|
size_t n = preds.length ();
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (is_pred_chain_subset_of (one_pred, preds[i]))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Compares two predicate sets PREDS1 and PREDS2 and returns
|
|
true if the domain defined by PREDS1 is a superset
|
|
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
|
|
PREDS2 respectively. The implementation chooses not to build
|
|
generic trees (and relying on the folding capability of the
|
|
compiler), but instead performs brute force comparison of
|
|
individual predicate chains (won't be a compile time problem
|
|
as the chains are pretty short). When the function returns
|
|
false, it does not necessarily mean *PREDS1 is not a superset
|
|
of *PREDS2, but mean it may not be so since the analysis cannot
|
|
prove it. In such cases, false warnings may still be
|
|
emitted. */
|
|
|
|
static bool
|
|
is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
|
|
{
|
|
size_t i, n2;
|
|
pred_chain one_pred_chain = vNULL;
|
|
|
|
n2 = preds2.length ();
|
|
|
|
for (i = 0; i < n2; i++)
|
|
{
|
|
one_pred_chain = preds2[i];
|
|
if (!is_included_in (one_pred_chain, preds1))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if X1 is the negate of X2. */
|
|
|
|
static inline bool
|
|
pred_neg_p (pred_info x1, pred_info x2)
|
|
{
|
|
enum tree_code c1, c2;
|
|
if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
|
|
|| !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
|
|
return false;
|
|
|
|
c1 = x1.cond_code;
|
|
if (x1.invert == x2.invert)
|
|
c2 = invert_tree_comparison (x2.cond_code, false);
|
|
else
|
|
c2 = x2.cond_code;
|
|
|
|
return c1 == c2;
|
|
}
|
|
|
|
/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
|
|
2) (X AND Y) OR (!X AND Y) is equivalent to Y;
|
|
3) X OR (!X AND Y) is equivalent to (X OR Y);
|
|
4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
|
|
(x != 0 AND y != 0)
|
|
5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
|
|
(X AND Y) OR Z
|
|
|
|
PREDS is the predicate chains, and N is the number of chains. */
|
|
|
|
/* Helper function to implement rule 1 above. ONE_CHAIN is
|
|
the AND predication to be simplified. */
|
|
|
|
static void
|
|
simplify_pred (pred_chain *one_chain)
|
|
{
|
|
size_t i, j, n;
|
|
bool simplified = false;
|
|
pred_chain s_chain = vNULL;
|
|
|
|
n = one_chain->length ();
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
pred_info *a_pred = &(*one_chain)[i];
|
|
|
|
if (!a_pred->pred_lhs)
|
|
continue;
|
|
if (!is_neq_zero_form_p (*a_pred))
|
|
continue;
|
|
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
|
|
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
|
continue;
|
|
if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
|
|
{
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
pred_info *b_pred = &(*one_chain)[j];
|
|
|
|
if (!b_pred->pred_lhs)
|
|
continue;
|
|
if (!is_neq_zero_form_p (*b_pred))
|
|
continue;
|
|
|
|
if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
|
|
|| pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
|
|
{
|
|
/* Mark a_pred for removal. */
|
|
a_pred->pred_lhs = NULL;
|
|
a_pred->pred_rhs = NULL;
|
|
simplified = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!simplified)
|
|
return;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
pred_info *a_pred = &(*one_chain)[i];
|
|
if (!a_pred->pred_lhs)
|
|
continue;
|
|
s_chain.safe_push (*a_pred);
|
|
}
|
|
|
|
one_chain->release ();
|
|
*one_chain = s_chain;
|
|
}
|
|
|
|
/* The helper function implements the rule 2 for the
|
|
OR predicate PREDS.
|
|
|
|
2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
|
|
|
|
static bool
|
|
simplify_preds_2 (pred_chain_union *preds)
|
|
{
|
|
size_t i, j, n;
|
|
bool simplified = false;
|
|
pred_chain_union s_preds = vNULL;
|
|
|
|
/* (X AND Y) OR (!X AND Y) is equivalent to Y.
|
|
(X AND Y) OR (X AND !Y) is equivalent to X. */
|
|
|
|
n = preds->length ();
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
pred_info x, y;
|
|
pred_chain *a_chain = &(*preds)[i];
|
|
|
|
if (a_chain->length () != 2)
|
|
continue;
|
|
|
|
x = (*a_chain)[0];
|
|
y = (*a_chain)[1];
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
pred_chain *b_chain;
|
|
pred_info x2, y2;
|
|
|
|
if (j == i)
|
|
continue;
|
|
|
|
b_chain = &(*preds)[j];
|
|
if (b_chain->length () != 2)
|
|
continue;
|
|
|
|
x2 = (*b_chain)[0];
|
|
y2 = (*b_chain)[1];
|
|
|
|
if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
|
|
{
|
|
/* Kill a_chain. */
|
|
a_chain->release ();
|
|
b_chain->release ();
|
|
b_chain->safe_push (x);
|
|
simplified = true;
|
|
break;
|
|
}
|
|
if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
|
|
{
|
|
/* Kill a_chain. */
|
|
a_chain->release ();
|
|
b_chain->release ();
|
|
b_chain->safe_push (y);
|
|
simplified = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Now clean up the chain. */
|
|
if (simplified)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if ((*preds)[i].is_empty ())
|
|
continue;
|
|
s_preds.safe_push ((*preds)[i]);
|
|
}
|
|
preds->release ();
|
|
(*preds) = s_preds;
|
|
s_preds = vNULL;
|
|
}
|
|
|
|
return simplified;
|
|
}
|
|
|
|
/* The helper function implements the rule 2 for the
|
|
OR predicate PREDS.
|
|
|
|
3) x OR (!x AND y) is equivalent to x OR y. */
|
|
|
|
static bool
|
|
simplify_preds_3 (pred_chain_union *preds)
|
|
{
|
|
size_t i, j, n;
|
|
bool simplified = false;
|
|
|
|
/* Now iteratively simplify X OR (!X AND Z ..)
|
|
into X OR (Z ...). */
|
|
|
|
n = preds->length ();
|
|
if (n < 2)
|
|
return false;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
pred_info x;
|
|
pred_chain *a_chain = &(*preds)[i];
|
|
|
|
if (a_chain->length () != 1)
|
|
continue;
|
|
|
|
x = (*a_chain)[0];
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
pred_chain *b_chain;
|
|
pred_info x2;
|
|
size_t k;
|
|
|
|
if (j == i)
|
|
continue;
|
|
|
|
b_chain = &(*preds)[j];
|
|
if (b_chain->length () < 2)
|
|
continue;
|
|
|
|
for (k = 0; k < b_chain->length (); k++)
|
|
{
|
|
x2 = (*b_chain)[k];
|
|
if (pred_neg_p (x, x2))
|
|
{
|
|
b_chain->unordered_remove (k);
|
|
simplified = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return simplified;
|
|
}
|
|
|
|
/* The helper function implements the rule 4 for the
|
|
OR predicate PREDS.
|
|
|
|
2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
|
|
(x != 0 ANd y != 0). */
|
|
|
|
static bool
|
|
simplify_preds_4 (pred_chain_union *preds)
|
|
{
|
|
size_t i, j, n;
|
|
bool simplified = false;
|
|
pred_chain_union s_preds = vNULL;
|
|
gimple *def_stmt;
|
|
|
|
n = preds->length ();
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
pred_info z;
|
|
pred_chain *a_chain = &(*preds)[i];
|
|
|
|
if (a_chain->length () != 1)
|
|
continue;
|
|
|
|
z = (*a_chain)[0];
|
|
|
|
if (!is_neq_zero_form_p (z))
|
|
continue;
|
|
|
|
def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
|
|
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
|
continue;
|
|
|
|
if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
|
|
continue;
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
pred_chain *b_chain;
|
|
pred_info x2, y2;
|
|
|
|
if (j == i)
|
|
continue;
|
|
|
|
b_chain = &(*preds)[j];
|
|
if (b_chain->length () != 2)
|
|
continue;
|
|
|
|
x2 = (*b_chain)[0];
|
|
y2 = (*b_chain)[1];
|
|
if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
|
|
continue;
|
|
|
|
if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
|
|
&& pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
|
|
|| (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
|
|
&& pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
|
|
{
|
|
/* Kill a_chain. */
|
|
a_chain->release ();
|
|
simplified = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Now clean up the chain. */
|
|
if (simplified)
|
|
{
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if ((*preds)[i].is_empty ())
|
|
continue;
|
|
s_preds.safe_push ((*preds)[i]);
|
|
}
|
|
|
|
preds->release ();
|
|
(*preds) = s_preds;
|
|
s_preds = vNULL;
|
|
}
|
|
|
|
return simplified;
|
|
}
|
|
|
|
/* This function simplifies predicates in PREDS. */
|
|
|
|
static void
|
|
simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
|
|
{
|
|
size_t i, n;
|
|
bool changed = false;
|
|
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
|
|
dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
|
|
}
|
|
|
|
for (i = 0; i < preds->length (); i++)
|
|
simplify_pred (&(*preds)[i]);
|
|
|
|
n = preds->length ();
|
|
if (n < 2)
|
|
return;
|
|
|
|
do
|
|
{
|
|
changed = false;
|
|
if (simplify_preds_2 (preds))
|
|
changed = true;
|
|
|
|
/* Now iteratively simplify X OR (!X AND Z ..)
|
|
into X OR (Z ...). */
|
|
if (simplify_preds_3 (preds))
|
|
changed = true;
|
|
|
|
if (simplify_preds_4 (preds))
|
|
changed = true;
|
|
}
|
|
while (changed);
|
|
|
|
return;
|
|
}
|
|
|
|
/* This is a helper function which attempts to normalize predicate chains
|
|
by following UD chains. It basically builds up a big tree of either IOR
|
|
operations or AND operations, and convert the IOR tree into a
|
|
pred_chain_union or BIT_AND tree into a pred_chain.
|
|
Example:
|
|
|
|
_3 = _2 RELOP1 _1;
|
|
_6 = _5 RELOP2 _4;
|
|
_9 = _8 RELOP3 _7;
|
|
_10 = _3 | _6;
|
|
_12 = _9 | _0;
|
|
_t = _10 | _12;
|
|
|
|
then _t != 0 will be normalized into a pred_chain_union
|
|
|
|
(_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
|
|
|
|
Similarly given,
|
|
|
|
_3 = _2 RELOP1 _1;
|
|
_6 = _5 RELOP2 _4;
|
|
_9 = _8 RELOP3 _7;
|
|
_10 = _3 & _6;
|
|
_12 = _9 & _0;
|
|
|
|
then _t != 0 will be normalized into a pred_chain:
|
|
(_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
|
|
|
|
*/
|
|
|
|
/* This is a helper function that stores a PRED into NORM_PREDS. */
|
|
|
|
inline static void
|
|
push_pred (pred_chain_union *norm_preds, pred_info pred)
|
|
{
|
|
pred_chain pred_chain = vNULL;
|
|
pred_chain.safe_push (pred);
|
|
norm_preds->safe_push (pred_chain);
|
|
}
|
|
|
|
/* A helper function that creates a predicate of the form
|
|
OP != 0 and push it WORK_LIST. */
|
|
|
|
inline static void
|
|
push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
|
|
hash_set<tree> *mark_set)
|
|
{
|
|
if (mark_set->contains (op))
|
|
return;
|
|
mark_set->add (op);
|
|
|
|
pred_info arg_pred;
|
|
arg_pred.pred_lhs = op;
|
|
arg_pred.pred_rhs = integer_zero_node;
|
|
arg_pred.cond_code = NE_EXPR;
|
|
arg_pred.invert = false;
|
|
work_list->safe_push (arg_pred);
|
|
}
|
|
|
|
/* A helper that generates a pred_info from a gimple assignment
|
|
CMP_ASSIGN with comparison rhs. */
|
|
|
|
static pred_info
|
|
get_pred_info_from_cmp (gimple *cmp_assign)
|
|
{
|
|
pred_info n_pred;
|
|
n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
|
|
n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
|
|
n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
|
|
n_pred.invert = false;
|
|
return n_pred;
|
|
}
|
|
|
|
/* Returns true if the PHI is a degenerated phi with
|
|
all args with the same value (relop). In that case, *PRED
|
|
will be updated to that value. */
|
|
|
|
static bool
|
|
is_degenerated_phi (gimple *phi, pred_info *pred_p)
|
|
{
|
|
int i, n;
|
|
tree op0;
|
|
gimple *def0;
|
|
pred_info pred0;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
op0 = gimple_phi_arg_def (phi, 0);
|
|
|
|
if (TREE_CODE (op0) != SSA_NAME)
|
|
return false;
|
|
|
|
def0 = SSA_NAME_DEF_STMT (op0);
|
|
if (gimple_code (def0) != GIMPLE_ASSIGN)
|
|
return false;
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
|
|
return false;
|
|
pred0 = get_pred_info_from_cmp (def0);
|
|
|
|
for (i = 1; i < n; ++i)
|
|
{
|
|
gimple *def;
|
|
pred_info pred;
|
|
tree op = gimple_phi_arg_def (phi, i);
|
|
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
return false;
|
|
|
|
def = SSA_NAME_DEF_STMT (op);
|
|
if (gimple_code (def) != GIMPLE_ASSIGN)
|
|
return false;
|
|
if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
|
|
return false;
|
|
pred = get_pred_info_from_cmp (def);
|
|
if (!pred_equal_p (pred, pred0))
|
|
return false;
|
|
}
|
|
|
|
*pred_p = pred0;
|
|
return true;
|
|
}
|
|
|
|
/* Normalize one predicate PRED
|
|
1) if PRED can no longer be normlized, put it into NORM_PREDS.
|
|
2) otherwise if PRED is of the form x != 0, follow x's definition
|
|
and put normalized predicates into WORK_LIST. */
|
|
|
|
static void
|
|
normalize_one_pred_1 (pred_chain_union *norm_preds,
|
|
pred_chain *norm_chain,
|
|
pred_info pred,
|
|
enum tree_code and_or_code,
|
|
vec<pred_info, va_heap, vl_ptr> *work_list,
|
|
hash_set<tree> *mark_set)
|
|
{
|
|
if (!is_neq_zero_form_p (pred))
|
|
{
|
|
if (and_or_code == BIT_IOR_EXPR)
|
|
push_pred (norm_preds, pred);
|
|
else
|
|
norm_chain->safe_push (pred);
|
|
return;
|
|
}
|
|
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
|
|
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& is_degenerated_phi (def_stmt, &pred))
|
|
work_list->safe_push (pred);
|
|
else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
|
|
{
|
|
int i, n;
|
|
n = gimple_phi_num_args (def_stmt);
|
|
|
|
/* If we see non zero constant, we should punt. The predicate
|
|
* should be one guarding the phi edge. */
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (def_stmt, i);
|
|
if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
|
|
{
|
|
push_pred (norm_preds, pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (def_stmt, i);
|
|
if (integer_zerop (op))
|
|
continue;
|
|
|
|
push_to_worklist (op, work_list, mark_set);
|
|
}
|
|
}
|
|
else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
|
{
|
|
if (and_or_code == BIT_IOR_EXPR)
|
|
push_pred (norm_preds, pred);
|
|
else
|
|
norm_chain->safe_push (pred);
|
|
}
|
|
else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
|
|
{
|
|
/* Avoid splitting up bit manipulations like x & 3 or y | 1. */
|
|
if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
|
|
{
|
|
/* But treat x & 3 as condition. */
|
|
if (and_or_code == BIT_AND_EXPR)
|
|
{
|
|
pred_info n_pred;
|
|
n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
|
|
n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
|
|
n_pred.cond_code = and_or_code;
|
|
n_pred.invert = false;
|
|
norm_chain->safe_push (n_pred);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
|
|
push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
|
|
}
|
|
}
|
|
else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
|
|
== tcc_comparison)
|
|
{
|
|
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
|
|
if (and_or_code == BIT_IOR_EXPR)
|
|
push_pred (norm_preds, n_pred);
|
|
else
|
|
norm_chain->safe_push (n_pred);
|
|
}
|
|
else
|
|
{
|
|
if (and_or_code == BIT_IOR_EXPR)
|
|
push_pred (norm_preds, pred);
|
|
else
|
|
norm_chain->safe_push (pred);
|
|
}
|
|
}
|
|
|
|
/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
|
|
|
|
static void
|
|
normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
|
|
{
|
|
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
|
|
enum tree_code and_or_code = ERROR_MARK;
|
|
pred_chain norm_chain = vNULL;
|
|
|
|
if (!is_neq_zero_form_p (pred))
|
|
{
|
|
push_pred (norm_preds, pred);
|
|
return;
|
|
}
|
|
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
|
|
if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
|
|
and_or_code = gimple_assign_rhs_code (def_stmt);
|
|
if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
|
|
{
|
|
if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
|
|
{
|
|
pred_info n_pred = get_pred_info_from_cmp (def_stmt);
|
|
push_pred (norm_preds, n_pred);
|
|
}
|
|
else
|
|
push_pred (norm_preds, pred);
|
|
return;
|
|
}
|
|
|
|
work_list.safe_push (pred);
|
|
hash_set<tree> mark_set;
|
|
|
|
while (!work_list.is_empty ())
|
|
{
|
|
pred_info a_pred = work_list.pop ();
|
|
normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
|
|
&work_list, &mark_set);
|
|
}
|
|
if (and_or_code == BIT_AND_EXPR)
|
|
norm_preds->safe_push (norm_chain);
|
|
|
|
work_list.release ();
|
|
}
|
|
|
|
static void
|
|
normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
|
|
{
|
|
vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
|
|
hash_set<tree> mark_set;
|
|
pred_chain norm_chain = vNULL;
|
|
size_t i;
|
|
|
|
for (i = 0; i < one_chain.length (); i++)
|
|
{
|
|
work_list.safe_push (one_chain[i]);
|
|
mark_set.add (one_chain[i].pred_lhs);
|
|
}
|
|
|
|
while (!work_list.is_empty ())
|
|
{
|
|
pred_info a_pred = work_list.pop ();
|
|
normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
|
|
&mark_set);
|
|
}
|
|
|
|
norm_preds->safe_push (norm_chain);
|
|
work_list.release ();
|
|
}
|
|
|
|
/* Normalize predicate chains PREDS and returns the normalized one. */
|
|
|
|
static pred_chain_union
|
|
normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
|
|
{
|
|
pred_chain_union norm_preds = vNULL;
|
|
size_t n = preds.length ();
|
|
size_t i;
|
|
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "[BEFORE NORMALIZATION --");
|
|
dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
|
|
}
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (preds[i].length () != 1)
|
|
normalize_one_pred_chain (&norm_preds, preds[i]);
|
|
else
|
|
{
|
|
normalize_one_pred (&norm_preds, preds[i][0]);
|
|
preds[i].release ();
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "[AFTER NORMALIZATION -- ");
|
|
dump_predicates (use_or_def, norm_preds,
|
|
is_use ? "[USE]:\n" : "[DEF]:\n");
|
|
}
|
|
|
|
destroy_predicate_vecs (&preds);
|
|
return norm_preds;
|
|
}
|
|
|
|
/* Return TRUE if PREDICATE can be invalidated by any individual
|
|
predicate in USE_GUARD. */
|
|
|
|
static bool
|
|
can_one_predicate_be_invalidated_p (pred_info predicate,
|
|
pred_chain use_guard)
|
|
{
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, "Testing if this predicate: ");
|
|
dump_pred_info (predicate);
|
|
fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
|
|
dump_pred_chain (use_guard);
|
|
}
|
|
for (size_t i = 0; i < use_guard.length (); ++i)
|
|
{
|
|
/* NOTE: This is a very simple check, and only understands an
|
|
exact opposite. So, [i == 0] is currently only invalidated
|
|
by [.NOT. i == 0] or [i != 0]. Ideally we should also
|
|
invalidate with say [i > 5] or [i == 8]. There is certainly
|
|
room for improvement here. */
|
|
if (pred_neg_p (predicate, use_guard[i]))
|
|
{
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
{
|
|
fprintf (dump_file, " Predicate was invalidated by: ");
|
|
dump_pred_info (use_guard[i]);
|
|
fputc ('\n', dump_file);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return TRUE if all predicates in UNINIT_PRED are invalidated by
|
|
USE_GUARD being true. */
|
|
|
|
static bool
|
|
can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
|
|
pred_chain use_guard)
|
|
{
|
|
if (uninit_pred.is_empty ())
|
|
return false;
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
dump_predicates (NULL, uninit_pred,
|
|
"Testing if anything here can be invalidated: ");
|
|
for (size_t i = 0; i < uninit_pred.length (); ++i)
|
|
{
|
|
pred_chain c = uninit_pred[i];
|
|
size_t j;
|
|
for (j = 0; j < c.length (); ++j)
|
|
if (can_one_predicate_be_invalidated_p (c[j], use_guard))
|
|
break;
|
|
|
|
/* If we were unable to invalidate any predicate in C, then there
|
|
is a viable path from entry to the PHI where the PHI takes
|
|
an uninitialized value and continues to a use of the PHI. */
|
|
if (j == c.length ())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
|
|
can actually happen if we arrived at a use for PHI.
|
|
|
|
PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
|
|
|
|
static bool
|
|
uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
|
|
pred_chain_union phi_use_guards)
|
|
{
|
|
unsigned phi_args = gimple_phi_num_args (phi);
|
|
if (phi_args > max_phi_args)
|
|
return false;
|
|
|
|
/* PHI_USE_GUARDS are OR'ed together. If we have more than one
|
|
possible guard, there's no way of knowing which guard was true.
|
|
Since we need to be absolutely sure that the uninitialized
|
|
operands will be invalidated, bail. */
|
|
if (phi_use_guards.length () != 1)
|
|
return false;
|
|
|
|
/* Look for the control dependencies of all the uninitialized
|
|
operands and build guard predicates describing them. */
|
|
pred_chain_union uninit_preds;
|
|
bool ret = true;
|
|
for (unsigned i = 0; i < phi_args; ++i)
|
|
{
|
|
if (!MASK_TEST_BIT (uninit_opnds, i))
|
|
continue;
|
|
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
|
vec<edge> dep_chains[MAX_NUM_CHAINS];
|
|
auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
|
|
size_t num_chains = 0;
|
|
int num_calls = 0;
|
|
|
|
/* Build the control dependency chain for uninit operand `i'... */
|
|
uninit_preds = vNULL;
|
|
if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
|
e->src, dep_chains, &num_chains,
|
|
&cur_chain, &num_calls))
|
|
{
|
|
ret = false;
|
|
break;
|
|
}
|
|
/* ...and convert it into a set of predicates. */
|
|
bool has_valid_preds
|
|
= convert_control_dep_chain_into_preds (dep_chains, num_chains,
|
|
&uninit_preds);
|
|
for (size_t j = 0; j < num_chains; ++j)
|
|
dep_chains[j].release ();
|
|
if (!has_valid_preds)
|
|
{
|
|
ret = false;
|
|
break;
|
|
}
|
|
simplify_preds (&uninit_preds, NULL, false);
|
|
uninit_preds = normalize_preds (uninit_preds, NULL, false);
|
|
|
|
/* Can the guard for this uninitialized operand be invalidated
|
|
by the PHI use? */
|
|
if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
|
|
{
|
|
ret = false;
|
|
break;
|
|
}
|
|
}
|
|
destroy_predicate_vecs (&uninit_preds);
|
|
return ret;
|
|
}
|
|
|
|
/* Computes the predicates that guard the use and checks
|
|
if the incoming paths that have empty (or possibly
|
|
empty) definition can be pruned/filtered. The function returns
|
|
true if it can be determined that the use of PHI's def in
|
|
USE_STMT is guarded with a predicate set not overlapping with
|
|
predicate sets of all runtime paths that do not have a definition.
|
|
|
|
Returns false if it is not or it cannot be determined. USE_BB is
|
|
the bb of the use (for phi operand use, the bb is not the bb of
|
|
the phi stmt, but the src bb of the operand edge).
|
|
|
|
UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
|
|
corresponding bit in the vector is 1. VISITED_PHIS is a pointer
|
|
set of phis being visited.
|
|
|
|
*DEF_PREDS contains the (memoized) defining predicate chains of PHI.
|
|
If *DEF_PREDS is the empty vector, the defining predicate chains of
|
|
PHI will be computed and stored into *DEF_PREDS as needed.
|
|
|
|
VISITED_PHIS is a pointer set of phis being visited. */
|
|
|
|
static bool
|
|
is_use_properly_guarded (gimple *use_stmt,
|
|
basic_block use_bb,
|
|
gphi *phi,
|
|
unsigned uninit_opnds,
|
|
pred_chain_union *def_preds,
|
|
hash_set<gphi *> *visited_phis)
|
|
{
|
|
basic_block phi_bb;
|
|
pred_chain_union preds = vNULL;
|
|
bool has_valid_preds = false;
|
|
bool is_properly_guarded = false;
|
|
|
|
if (visited_phis->add (phi))
|
|
return false;
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
|
|
if (is_non_loop_exit_postdominating (use_bb, phi_bb))
|
|
return false;
|
|
|
|
has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
|
|
|
|
if (!has_valid_preds)
|
|
{
|
|
destroy_predicate_vecs (&preds);
|
|
return false;
|
|
}
|
|
|
|
/* Try to prune the dead incoming phi edges. */
|
|
is_properly_guarded
|
|
= use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
|
|
visited_phis);
|
|
|
|
/* We might be able to prove that if the control dependencies
|
|
for UNINIT_OPNDS are true, that the control dependencies for
|
|
USE_STMT can never be true. */
|
|
if (!is_properly_guarded)
|
|
is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
|
|
preds);
|
|
|
|
if (is_properly_guarded)
|
|
{
|
|
destroy_predicate_vecs (&preds);
|
|
return true;
|
|
}
|
|
|
|
if (def_preds->is_empty ())
|
|
{
|
|
has_valid_preds = find_def_preds (def_preds, phi);
|
|
|
|
if (!has_valid_preds)
|
|
{
|
|
destroy_predicate_vecs (&preds);
|
|
return false;
|
|
}
|
|
|
|
simplify_preds (def_preds, phi, false);
|
|
*def_preds = normalize_preds (*def_preds, phi, false);
|
|
}
|
|
|
|
simplify_preds (&preds, use_stmt, true);
|
|
preds = normalize_preds (preds, use_stmt, true);
|
|
|
|
is_properly_guarded = is_superset_of (*def_preds, preds);
|
|
|
|
destroy_predicate_vecs (&preds);
|
|
return is_properly_guarded;
|
|
}
|
|
|
|
/* Searches through all uses of a potentially
|
|
uninitialized variable defined by PHI and returns a use
|
|
statement if the use is not properly guarded. It returns
|
|
NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
|
|
holding the position(s) of uninit PHI operands. WORKLIST
|
|
is the vector of candidate phis that may be updated by this
|
|
function. ADDED_TO_WORKLIST is the pointer set tracking
|
|
if the new phi is already in the worklist. */
|
|
|
|
static gimple *
|
|
find_uninit_use (gphi *phi, unsigned uninit_opnds,
|
|
vec<gphi *> *worklist,
|
|
hash_set<gphi *> *added_to_worklist)
|
|
{
|
|
tree phi_result;
|
|
use_operand_p use_p;
|
|
gimple *use_stmt;
|
|
imm_use_iterator iter;
|
|
pred_chain_union def_preds = vNULL;
|
|
gimple *ret = NULL;
|
|
|
|
phi_result = gimple_phi_result (phi);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
|
|
{
|
|
basic_block use_bb;
|
|
|
|
use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
|
|
use_bb = gimple_phi_arg_edge (use_phi,
|
|
PHI_ARG_INDEX_FROM_USE (use_p))->src;
|
|
else
|
|
use_bb = gimple_bb (use_stmt);
|
|
|
|
hash_set<gphi *> visited_phis;
|
|
if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
|
|
&def_preds, &visited_phis))
|
|
continue;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[CHECK]: Found unguarded use: ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0);
|
|
}
|
|
/* Found one real use, return. */
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI)
|
|
{
|
|
ret = use_stmt;
|
|
break;
|
|
}
|
|
|
|
/* Found a phi use that is not guarded,
|
|
add the phi to the worklist. */
|
|
if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0);
|
|
}
|
|
|
|
worklist->safe_push (as_a<gphi *> (use_stmt));
|
|
possibly_undefined_names->add (phi_result);
|
|
}
|
|
}
|
|
|
|
destroy_predicate_vecs (&def_preds);
|
|
return ret;
|
|
}
|
|
|
|
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
|
and gives warning if there exists a runtime path from the entry to a
|
|
use of the PHI def that does not contain a definition. In other words,
|
|
the warning is on the real use. The more dead paths that can be pruned
|
|
by the compiler, the fewer false positives the warning is. WORKLIST
|
|
is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
|
|
a pointer set tracking if the new phi is added to the worklist or not. */
|
|
|
|
static void
|
|
warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
|
|
hash_set<gphi *> *added_to_worklist)
|
|
{
|
|
unsigned uninit_opnds;
|
|
gimple *uninit_use_stmt = 0;
|
|
tree uninit_op;
|
|
int phiarg_index;
|
|
location_t loc;
|
|
|
|
/* Don't look at virtual operands. */
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
return;
|
|
|
|
uninit_opnds = compute_uninit_opnds_pos (phi);
|
|
|
|
if (MASK_EMPTY (uninit_opnds))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[CHECK]: examining phi: ");
|
|
print_gimple_stmt (dump_file, phi, 0);
|
|
}
|
|
|
|
/* Now check if we have any use of the value without proper guard. */
|
|
uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
|
|
worklist, added_to_worklist);
|
|
|
|
/* All uses are properly guarded. */
|
|
if (!uninit_use_stmt)
|
|
return;
|
|
|
|
phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
|
|
uninit_op = gimple_phi_arg_def (phi, phiarg_index);
|
|
if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
|
|
return;
|
|
if (gimple_phi_arg_has_location (phi, phiarg_index))
|
|
loc = gimple_phi_arg_location (phi, phiarg_index);
|
|
else
|
|
loc = UNKNOWN_LOCATION;
|
|
warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
|
|
SSA_NAME_VAR (uninit_op),
|
|
"%qD may be used uninitialized in this function",
|
|
uninit_use_stmt, loc);
|
|
}
|
|
|
|
static bool
|
|
gate_warn_uninitialized (void)
|
|
{
|
|
return warn_uninitialized || warn_maybe_uninitialized;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_late_warn_uninitialized =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"uninit", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_NONE, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_late_warn_uninitialized : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_late_warn_uninitialized (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
|
|
virtual bool gate (function *) { return gate_warn_uninitialized (); }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_late_warn_uninitialized
|
|
|
|
unsigned int
|
|
pass_late_warn_uninitialized::execute (function *fun)
|
|
{
|
|
basic_block bb;
|
|
gphi_iterator gsi;
|
|
vec<gphi *> worklist = vNULL;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
/* Re-do the plain uninitialized variable check, as optimization may have
|
|
straightened control flow. Do this first so that we don't accidentally
|
|
get a "may be" warning when we'd have seen an "is" warning later. */
|
|
warn_uninitialized_vars (/*warn_maybe_uninitialized=*/1);
|
|
|
|
timevar_push (TV_TREE_UNINIT);
|
|
|
|
possibly_undefined_names = new hash_set<tree>;
|
|
hash_set<gphi *> added_to_worklist;
|
|
|
|
/* Initialize worklist */
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
size_t n, i;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
|
|
/* Don't look at virtual operands. */
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
continue;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
|
|
{
|
|
worklist.safe_push (phi);
|
|
added_to_worklist.add (phi);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[WORKLIST]: add to initial list: ");
|
|
print_gimple_stmt (dump_file, phi, 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (worklist.length () != 0)
|
|
{
|
|
gphi *cur_phi = 0;
|
|
cur_phi = worklist.pop ();
|
|
warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
|
|
}
|
|
|
|
worklist.release ();
|
|
delete possibly_undefined_names;
|
|
possibly_undefined_names = NULL;
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
timevar_pop (TV_TREE_UNINIT);
|
|
return 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_late_warn_uninitialized (gcc::context *ctxt)
|
|
{
|
|
return new pass_late_warn_uninitialized (ctxt);
|
|
}
|
|
|
|
static unsigned int
|
|
execute_early_warn_uninitialized (void)
|
|
{
|
|
/* Currently, this pass runs always but
|
|
execute_late_warn_uninitialized only runs with optimization. With
|
|
optimization we want to warn about possible uninitialized as late
|
|
as possible, thus don't do it here. However, without
|
|
optimization we need to warn here about "may be uninitialized". */
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
|
|
warn_uninitialized_vars (/*warn_maybe_uninitialized=*/!optimize);
|
|
|
|
/* Post-dominator information cannot be reliably updated. Free it
|
|
after the use. */
|
|
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_early_warn_uninitialized =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"*early_warn_uninitialized", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_UNINIT, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_early_warn_uninitialized : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_early_warn_uninitialized (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *) { return gate_warn_uninitialized (); }
|
|
virtual unsigned int execute (function *)
|
|
{
|
|
return execute_early_warn_uninitialized ();
|
|
}
|
|
|
|
}; // class pass_early_warn_uninitialized
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_early_warn_uninitialized (gcc::context *ctxt)
|
|
{
|
|
return new pass_early_warn_uninitialized (ctxt);
|
|
}
|