1773 lines
48 KiB
C
1773 lines
48 KiB
C
/* Chains of recurrences.
|
||
Copyright (C) 2003-2021 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file implements operations on chains of recurrences. Chains
|
||
of recurrences are used for modeling evolution functions of scalar
|
||
variables.
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "tree.h"
|
||
#include "gimple-expr.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "fold-const.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-ssa-loop-ivopts.h"
|
||
#include "tree-ssa-loop-niter.h"
|
||
#include "tree-chrec.h"
|
||
#include "gimple.h"
|
||
#include "tree-ssa-loop.h"
|
||
#include "dumpfile.h"
|
||
#include "tree-scalar-evolution.h"
|
||
|
||
/* Extended folder for chrecs. */
|
||
|
||
/* Fold the addition of two polynomial functions. */
|
||
|
||
static inline tree
|
||
chrec_fold_plus_poly_poly (enum tree_code code,
|
||
tree type,
|
||
tree poly0,
|
||
tree poly1)
|
||
{
|
||
tree left, right;
|
||
class loop *loop0 = get_chrec_loop (poly0);
|
||
class loop *loop1 = get_chrec_loop (poly1);
|
||
tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
|
||
|
||
gcc_assert (poly0);
|
||
gcc_assert (poly1);
|
||
gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
|
||
gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
|
||
if (POINTER_TYPE_P (chrec_type (poly0)))
|
||
gcc_checking_assert (ptrofftype_p (chrec_type (poly1))
|
||
&& useless_type_conversion_p (type, chrec_type (poly0)));
|
||
else
|
||
gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
|
||
&& useless_type_conversion_p (type, chrec_type (poly1)));
|
||
|
||
/*
|
||
{a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
|
||
{a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
|
||
{a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
|
||
if (flow_loop_nested_p (loop0, loop1))
|
||
{
|
||
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly1),
|
||
chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
|
||
CHREC_RIGHT (poly1));
|
||
else
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly1),
|
||
chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
|
||
chrec_fold_multiply (type, CHREC_RIGHT (poly1),
|
||
SCALAR_FLOAT_TYPE_P (type)
|
||
? build_real (type, dconstm1)
|
||
: build_int_cst_type (type, -1)));
|
||
}
|
||
|
||
if (flow_loop_nested_p (loop1, loop0))
|
||
{
|
||
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly0),
|
||
chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
|
||
CHREC_RIGHT (poly0));
|
||
else
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly0),
|
||
chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
|
||
CHREC_RIGHT (poly0));
|
||
}
|
||
|
||
/* This function should never be called for chrecs of loops that
|
||
do not belong to the same loop nest. */
|
||
if (loop0 != loop1)
|
||
{
|
||
/* It still can happen if we are not in loop-closed SSA form. */
|
||
gcc_assert (! loops_state_satisfies_p (LOOP_CLOSED_SSA));
|
||
return chrec_dont_know;
|
||
}
|
||
|
||
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
|
||
{
|
||
left = chrec_fold_plus
|
||
(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
|
||
right = chrec_fold_plus
|
||
(rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
|
||
}
|
||
else
|
||
{
|
||
left = chrec_fold_minus
|
||
(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
|
||
right = chrec_fold_minus
|
||
(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
|
||
}
|
||
|
||
if (chrec_zerop (right))
|
||
return left;
|
||
else
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly0), left, right);
|
||
}
|
||
|
||
|
||
|
||
/* Fold the multiplication of two polynomial functions. */
|
||
|
||
static inline tree
|
||
chrec_fold_multiply_poly_poly (tree type,
|
||
tree poly0,
|
||
tree poly1)
|
||
{
|
||
tree t0, t1, t2;
|
||
int var;
|
||
class loop *loop0 = get_chrec_loop (poly0);
|
||
class loop *loop1 = get_chrec_loop (poly1);
|
||
|
||
gcc_assert (poly0);
|
||
gcc_assert (poly1);
|
||
gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
|
||
gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
|
||
gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
|
||
&& useless_type_conversion_p (type, chrec_type (poly1)));
|
||
|
||
/* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
|
||
{a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
|
||
{a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
|
||
if (flow_loop_nested_p (loop0, loop1))
|
||
/* poly0 is a constant wrt. poly1. */
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly1),
|
||
chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
|
||
CHREC_RIGHT (poly1));
|
||
|
||
if (flow_loop_nested_p (loop1, loop0))
|
||
/* poly1 is a constant wrt. poly0. */
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (poly0),
|
||
chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
|
||
CHREC_RIGHT (poly0));
|
||
|
||
if (loop0 != loop1)
|
||
{
|
||
/* It still can happen if we are not in loop-closed SSA form. */
|
||
gcc_assert (! loops_state_satisfies_p (LOOP_CLOSED_SSA));
|
||
return chrec_dont_know;
|
||
}
|
||
|
||
/* poly0 and poly1 are two polynomials in the same variable,
|
||
{a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
|
||
|
||
/* "a*c". */
|
||
t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
|
||
|
||
/* "a*d + b*c". */
|
||
t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
|
||
t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
|
||
CHREC_RIGHT (poly0),
|
||
CHREC_LEFT (poly1)));
|
||
/* "b*d". */
|
||
t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
|
||
/* "a*d + b*c + b*d". */
|
||
t1 = chrec_fold_plus (type, t1, t2);
|
||
/* "2*b*d". */
|
||
t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
|
||
? build_real (type, dconst2)
|
||
: build_int_cst (type, 2), t2);
|
||
|
||
var = CHREC_VARIABLE (poly0);
|
||
return build_polynomial_chrec (var, t0,
|
||
build_polynomial_chrec (var, t1, t2));
|
||
}
|
||
|
||
/* When the operands are automatically_generated_chrec_p, the fold has
|
||
to respect the semantics of the operands. */
|
||
|
||
static inline tree
|
||
chrec_fold_automatically_generated_operands (tree op0,
|
||
tree op1)
|
||
{
|
||
if (op0 == chrec_dont_know
|
||
|| op1 == chrec_dont_know)
|
||
return chrec_dont_know;
|
||
|
||
if (op0 == chrec_known
|
||
|| op1 == chrec_known)
|
||
return chrec_known;
|
||
|
||
if (op0 == chrec_not_analyzed_yet
|
||
|| op1 == chrec_not_analyzed_yet)
|
||
return chrec_not_analyzed_yet;
|
||
|
||
/* The default case produces a safe result. */
|
||
return chrec_dont_know;
|
||
}
|
||
|
||
/* Fold the addition of two chrecs. */
|
||
|
||
static tree
|
||
chrec_fold_plus_1 (enum tree_code code, tree type,
|
||
tree op0, tree op1)
|
||
{
|
||
if (automatically_generated_chrec_p (op0)
|
||
|| automatically_generated_chrec_p (op1))
|
||
return chrec_fold_automatically_generated_operands (op0, op1);
|
||
|
||
switch (TREE_CODE (op0))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
|
||
switch (TREE_CODE (op1))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op1,
|
||
CHREC_VARIABLE (op1)));
|
||
return chrec_fold_plus_poly_poly (code, type, op0, op1);
|
||
|
||
CASE_CONVERT:
|
||
{
|
||
/* We can strip sign-conversions to signed by performing the
|
||
operation in unsigned. */
|
||
tree optype = TREE_TYPE (TREE_OPERAND (op1, 0));
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& INTEGRAL_TYPE_P (optype)
|
||
&& tree_nop_conversion_p (type, optype)
|
||
&& TYPE_UNSIGNED (optype))
|
||
return chrec_convert (type,
|
||
chrec_fold_plus_1 (code, optype,
|
||
chrec_convert (optype,
|
||
op0, NULL),
|
||
TREE_OPERAND (op1, 0)),
|
||
NULL);
|
||
if (tree_contains_chrecs (op1, NULL))
|
||
return chrec_dont_know;
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op0),
|
||
chrec_fold_plus (type, CHREC_LEFT (op0), op1),
|
||
CHREC_RIGHT (op0));
|
||
else
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op0),
|
||
chrec_fold_minus (type, CHREC_LEFT (op0), op1),
|
||
CHREC_RIGHT (op0));
|
||
}
|
||
|
||
CASE_CONVERT:
|
||
{
|
||
/* We can strip sign-conversions to signed by performing the
|
||
operation in unsigned. */
|
||
tree optype = TREE_TYPE (TREE_OPERAND (op0, 0));
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& INTEGRAL_TYPE_P (optype)
|
||
&& tree_nop_conversion_p (type, optype)
|
||
&& TYPE_UNSIGNED (optype))
|
||
return chrec_convert (type,
|
||
chrec_fold_plus_1 (code, optype,
|
||
TREE_OPERAND (op0, 0),
|
||
chrec_convert (optype,
|
||
op1, NULL)),
|
||
NULL);
|
||
if (tree_contains_chrecs (op0, NULL))
|
||
return chrec_dont_know;
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
switch (TREE_CODE (op1))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op1,
|
||
CHREC_VARIABLE (op1)));
|
||
if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op1),
|
||
chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
|
||
CHREC_RIGHT (op1));
|
||
else
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op1),
|
||
chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
|
||
chrec_fold_multiply (type, CHREC_RIGHT (op1),
|
||
SCALAR_FLOAT_TYPE_P (type)
|
||
? build_real (type, dconstm1)
|
||
: build_int_cst_type (type, -1)));
|
||
|
||
CASE_CONVERT:
|
||
if (tree_contains_chrecs (op1, NULL))
|
||
return chrec_dont_know;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
{
|
||
int size = 0;
|
||
if ((tree_contains_chrecs (op0, &size)
|
||
|| tree_contains_chrecs (op1, &size))
|
||
&& size < param_scev_max_expr_size)
|
||
return build2 (code, type, op0, op1);
|
||
else if (size < param_scev_max_expr_size)
|
||
{
|
||
if (code == POINTER_PLUS_EXPR)
|
||
return fold_build_pointer_plus (fold_convert (type, op0),
|
||
op1);
|
||
else
|
||
return fold_build2 (code, type,
|
||
fold_convert (type, op0),
|
||
fold_convert (type, op1));
|
||
}
|
||
else
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fold the addition of two chrecs. */
|
||
|
||
tree
|
||
chrec_fold_plus (tree type,
|
||
tree op0,
|
||
tree op1)
|
||
{
|
||
enum tree_code code;
|
||
if (automatically_generated_chrec_p (op0)
|
||
|| automatically_generated_chrec_p (op1))
|
||
return chrec_fold_automatically_generated_operands (op0, op1);
|
||
|
||
if (integer_zerop (op0))
|
||
return chrec_convert (type, op1, NULL);
|
||
if (integer_zerop (op1))
|
||
return chrec_convert (type, op0, NULL);
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
code = POINTER_PLUS_EXPR;
|
||
else
|
||
code = PLUS_EXPR;
|
||
|
||
return chrec_fold_plus_1 (code, type, op0, op1);
|
||
}
|
||
|
||
/* Fold the subtraction of two chrecs. */
|
||
|
||
tree
|
||
chrec_fold_minus (tree type,
|
||
tree op0,
|
||
tree op1)
|
||
{
|
||
if (automatically_generated_chrec_p (op0)
|
||
|| automatically_generated_chrec_p (op1))
|
||
return chrec_fold_automatically_generated_operands (op0, op1);
|
||
|
||
if (integer_zerop (op1))
|
||
return op0;
|
||
|
||
return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
|
||
}
|
||
|
||
/* Fold the multiplication of two chrecs. */
|
||
|
||
tree
|
||
chrec_fold_multiply (tree type,
|
||
tree op0,
|
||
tree op1)
|
||
{
|
||
if (automatically_generated_chrec_p (op0)
|
||
|| automatically_generated_chrec_p (op1))
|
||
return chrec_fold_automatically_generated_operands (op0, op1);
|
||
|
||
switch (TREE_CODE (op0))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
|
||
switch (TREE_CODE (op1))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op1,
|
||
CHREC_VARIABLE (op1)));
|
||
return chrec_fold_multiply_poly_poly (type, op0, op1);
|
||
|
||
CASE_CONVERT:
|
||
if (tree_contains_chrecs (op1, NULL))
|
||
return chrec_dont_know;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (integer_onep (op1))
|
||
return op0;
|
||
if (integer_zerop (op1))
|
||
return build_int_cst (type, 0);
|
||
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op0),
|
||
chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
|
||
chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
|
||
}
|
||
|
||
CASE_CONVERT:
|
||
if (tree_contains_chrecs (op0, NULL))
|
||
return chrec_dont_know;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (integer_onep (op0))
|
||
return op1;
|
||
|
||
if (integer_zerop (op0))
|
||
return build_int_cst (type, 0);
|
||
|
||
switch (TREE_CODE (op1))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
gcc_checking_assert
|
||
(!chrec_contains_symbols_defined_in_loop (op1,
|
||
CHREC_VARIABLE (op1)));
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (op1),
|
||
chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
|
||
chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
|
||
|
||
CASE_CONVERT:
|
||
if (tree_contains_chrecs (op1, NULL))
|
||
return chrec_dont_know;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (integer_onep (op1))
|
||
return op0;
|
||
if (integer_zerop (op1))
|
||
return build_int_cst (type, 0);
|
||
return fold_build2 (MULT_EXPR, type, op0, op1);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Operations. */
|
||
|
||
/* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
|
||
calculation overflows, otherwise return C(n,k) with type TYPE. */
|
||
|
||
static tree
|
||
tree_fold_binomial (tree type, tree n, unsigned int k)
|
||
{
|
||
wi::overflow_type overflow;
|
||
unsigned int i;
|
||
|
||
/* Handle the most frequent cases. */
|
||
if (k == 0)
|
||
return build_int_cst (type, 1);
|
||
if (k == 1)
|
||
return fold_convert (type, n);
|
||
|
||
widest_int num = wi::to_widest (n);
|
||
|
||
/* Check that k <= n. */
|
||
if (wi::ltu_p (num, k))
|
||
return NULL_TREE;
|
||
|
||
/* Denominator = 2. */
|
||
widest_int denom = 2;
|
||
|
||
/* Index = Numerator-1. */
|
||
widest_int idx = num - 1;
|
||
|
||
/* Numerator = Numerator*Index = n*(n-1). */
|
||
num = wi::smul (num, idx, &overflow);
|
||
if (overflow)
|
||
return NULL_TREE;
|
||
|
||
for (i = 3; i <= k; i++)
|
||
{
|
||
/* Index--. */
|
||
--idx;
|
||
|
||
/* Numerator *= Index. */
|
||
num = wi::smul (num, idx, &overflow);
|
||
if (overflow)
|
||
return NULL_TREE;
|
||
|
||
/* Denominator *= i. */
|
||
denom *= i;
|
||
}
|
||
|
||
/* Result = Numerator / Denominator. */
|
||
num = wi::udiv_trunc (num, denom);
|
||
if (! wi::fits_to_tree_p (num, type))
|
||
return NULL_TREE;
|
||
return wide_int_to_tree (type, num);
|
||
}
|
||
|
||
/* Helper function. Use the Newton's interpolating formula for
|
||
evaluating the value of the evolution function.
|
||
The result may be in an unsigned type of CHREC. */
|
||
|
||
static tree
|
||
chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
|
||
{
|
||
tree arg0, arg1, binomial_n_k;
|
||
tree type = TREE_TYPE (chrec);
|
||
class loop *var_loop = get_loop (cfun, var);
|
||
|
||
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
|
||
chrec = CHREC_LEFT (chrec);
|
||
|
||
/* The formula associates the expression and thus we have to make
|
||
sure to not introduce undefined overflow. */
|
||
tree ctype = type;
|
||
if (INTEGRAL_TYPE_P (type)
|
||
&& ! TYPE_OVERFLOW_WRAPS (type))
|
||
ctype = unsigned_type_for (type);
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& CHREC_VARIABLE (chrec) == var)
|
||
{
|
||
arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
|
||
if (arg1 == chrec_dont_know)
|
||
return chrec_dont_know;
|
||
binomial_n_k = tree_fold_binomial (ctype, n, k);
|
||
if (!binomial_n_k)
|
||
return chrec_dont_know;
|
||
tree l = chrec_convert (ctype, CHREC_LEFT (chrec), NULL);
|
||
arg0 = fold_build2 (MULT_EXPR, ctype, l, binomial_n_k);
|
||
return chrec_fold_plus (ctype, arg0, arg1);
|
||
}
|
||
|
||
binomial_n_k = tree_fold_binomial (ctype, n, k);
|
||
if (!binomial_n_k)
|
||
return chrec_dont_know;
|
||
|
||
return fold_build2 (MULT_EXPR, ctype,
|
||
chrec_convert (ctype, chrec, NULL), binomial_n_k);
|
||
}
|
||
|
||
/* Evaluates "CHREC (X)" when the varying variable is VAR.
|
||
Example: Given the following parameters,
|
||
|
||
var = 1
|
||
chrec = {3, +, 4}_1
|
||
x = 10
|
||
|
||
The result is given by the Newton's interpolating formula:
|
||
3 * \binom{10}{0} + 4 * \binom{10}{1}.
|
||
*/
|
||
|
||
tree
|
||
chrec_apply (unsigned var,
|
||
tree chrec,
|
||
tree x)
|
||
{
|
||
tree type = chrec_type (chrec);
|
||
tree res = chrec_dont_know;
|
||
|
||
if (automatically_generated_chrec_p (chrec)
|
||
|| automatically_generated_chrec_p (x)
|
||
|
||
/* When the symbols are defined in an outer loop, it is possible
|
||
to symbolically compute the apply, since the symbols are
|
||
constants with respect to the varying loop. */
|
||
|| chrec_contains_symbols_defined_in_loop (chrec, var))
|
||
return chrec_dont_know;
|
||
|
||
if (dump_file && (dump_flags & TDF_SCEV))
|
||
fprintf (dump_file, "(chrec_apply \n");
|
||
|
||
if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
|
||
x = build_real_from_int_cst (type, x);
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (evolution_function_is_affine_p (chrec))
|
||
{
|
||
if (CHREC_VARIABLE (chrec) != var)
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec),
|
||
chrec_apply (var, CHREC_LEFT (chrec), x),
|
||
chrec_apply (var, CHREC_RIGHT (chrec), x));
|
||
|
||
/* "{a, +, b} (x)" -> "a + b*x". */
|
||
x = chrec_convert_rhs (type, x, NULL);
|
||
res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
|
||
res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
|
||
}
|
||
else if (TREE_CODE (x) == INTEGER_CST
|
||
&& tree_int_cst_sgn (x) == 1)
|
||
/* testsuite/.../ssa-chrec-38.c. */
|
||
res = chrec_convert (type, chrec_evaluate (var, chrec, x, 0), NULL);
|
||
else
|
||
res = chrec_dont_know;
|
||
break;
|
||
|
||
CASE_CONVERT:
|
||
res = chrec_convert (TREE_TYPE (chrec),
|
||
chrec_apply (var, TREE_OPERAND (chrec, 0), x),
|
||
NULL);
|
||
break;
|
||
|
||
default:
|
||
res = chrec;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_SCEV))
|
||
{
|
||
fprintf (dump_file, " (varying_loop = %d\n", var);
|
||
fprintf (dump_file, ")\n (chrec = ");
|
||
print_generic_expr (dump_file, chrec);
|
||
fprintf (dump_file, ")\n (x = ");
|
||
print_generic_expr (dump_file, x);
|
||
fprintf (dump_file, ")\n (res = ");
|
||
print_generic_expr (dump_file, res);
|
||
fprintf (dump_file, "))\n");
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* For a given CHREC and an induction variable map IV_MAP that maps
|
||
(loop->num, expr) for every loop number of the current_loops an
|
||
expression, calls chrec_apply when the expression is not NULL. */
|
||
|
||
tree
|
||
chrec_apply_map (tree chrec, vec<tree> iv_map)
|
||
{
|
||
int i;
|
||
tree expr;
|
||
|
||
FOR_EACH_VEC_ELT (iv_map, i, expr)
|
||
if (expr)
|
||
chrec = chrec_apply (i, chrec, expr);
|
||
|
||
return chrec;
|
||
}
|
||
|
||
/* Replaces the initial condition in CHREC with INIT_COND. */
|
||
|
||
tree
|
||
chrec_replace_initial_condition (tree chrec,
|
||
tree init_cond)
|
||
{
|
||
if (automatically_generated_chrec_p (chrec))
|
||
return chrec;
|
||
|
||
gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec),
|
||
chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
|
||
CHREC_RIGHT (chrec));
|
||
|
||
default:
|
||
return init_cond;
|
||
}
|
||
}
|
||
|
||
/* Returns the initial condition of a given CHREC. */
|
||
|
||
tree
|
||
initial_condition (tree chrec)
|
||
{
|
||
if (automatically_generated_chrec_p (chrec))
|
||
return chrec;
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
return initial_condition (CHREC_LEFT (chrec));
|
||
else
|
||
return chrec;
|
||
}
|
||
|
||
/* Returns a univariate function that represents the evolution in
|
||
LOOP_NUM. Mask the evolution of any other loop. */
|
||
|
||
tree
|
||
hide_evolution_in_other_loops_than_loop (tree chrec,
|
||
unsigned loop_num)
|
||
{
|
||
class loop *loop = get_loop (cfun, loop_num), *chloop;
|
||
if (automatically_generated_chrec_p (chrec))
|
||
return chrec;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
chloop = get_chrec_loop (chrec);
|
||
|
||
if (chloop == loop)
|
||
return build_polynomial_chrec
|
||
(loop_num,
|
||
hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
|
||
loop_num),
|
||
CHREC_RIGHT (chrec));
|
||
|
||
else if (flow_loop_nested_p (chloop, loop))
|
||
/* There is no evolution in this loop. */
|
||
return initial_condition (chrec);
|
||
|
||
else if (flow_loop_nested_p (loop, chloop))
|
||
return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
|
||
loop_num);
|
||
|
||
else
|
||
return chrec_dont_know;
|
||
|
||
default:
|
||
return chrec;
|
||
}
|
||
}
|
||
|
||
/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
|
||
true, otherwise returns the initial condition in LOOP_NUM. */
|
||
|
||
static tree
|
||
chrec_component_in_loop_num (tree chrec,
|
||
unsigned loop_num,
|
||
bool right)
|
||
{
|
||
tree component;
|
||
class loop *loop = get_loop (cfun, loop_num), *chloop;
|
||
|
||
if (automatically_generated_chrec_p (chrec))
|
||
return chrec;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
chloop = get_chrec_loop (chrec);
|
||
|
||
if (chloop == loop)
|
||
{
|
||
if (right)
|
||
component = CHREC_RIGHT (chrec);
|
||
else
|
||
component = CHREC_LEFT (chrec);
|
||
|
||
if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
|
||
|| CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
|
||
return component;
|
||
|
||
else
|
||
return build_polynomial_chrec
|
||
(loop_num,
|
||
chrec_component_in_loop_num (CHREC_LEFT (chrec),
|
||
loop_num,
|
||
right),
|
||
component);
|
||
}
|
||
|
||
else if (flow_loop_nested_p (chloop, loop))
|
||
/* There is no evolution part in this loop. */
|
||
return NULL_TREE;
|
||
|
||
else
|
||
{
|
||
gcc_assert (flow_loop_nested_p (loop, chloop));
|
||
return chrec_component_in_loop_num (CHREC_LEFT (chrec),
|
||
loop_num,
|
||
right);
|
||
}
|
||
|
||
default:
|
||
if (right)
|
||
return NULL_TREE;
|
||
else
|
||
return chrec;
|
||
}
|
||
}
|
||
|
||
/* Returns the evolution part in LOOP_NUM. Example: the call
|
||
evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
|
||
{1, +, 2}_1 */
|
||
|
||
tree
|
||
evolution_part_in_loop_num (tree chrec,
|
||
unsigned loop_num)
|
||
{
|
||
return chrec_component_in_loop_num (chrec, loop_num, true);
|
||
}
|
||
|
||
/* Returns the initial condition in LOOP_NUM. Example: the call
|
||
initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
|
||
{0, +, 1}_1 */
|
||
|
||
tree
|
||
initial_condition_in_loop_num (tree chrec,
|
||
unsigned loop_num)
|
||
{
|
||
return chrec_component_in_loop_num (chrec, loop_num, false);
|
||
}
|
||
|
||
/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
|
||
This function is essentially used for setting the evolution to
|
||
chrec_dont_know, for example after having determined that it is
|
||
impossible to say how many times a loop will execute. */
|
||
|
||
tree
|
||
reset_evolution_in_loop (unsigned loop_num,
|
||
tree chrec,
|
||
tree new_evol)
|
||
{
|
||
class loop *loop = get_loop (cfun, loop_num);
|
||
|
||
if (POINTER_TYPE_P (chrec_type (chrec)))
|
||
gcc_assert (ptrofftype_p (chrec_type (new_evol)));
|
||
else
|
||
gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& flow_loop_nested_p (loop, get_chrec_loop (chrec)))
|
||
{
|
||
tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
|
||
new_evol);
|
||
tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
|
||
new_evol);
|
||
return build_polynomial_chrec (CHREC_VARIABLE (chrec), left, right);
|
||
}
|
||
|
||
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& CHREC_VARIABLE (chrec) == loop_num)
|
||
chrec = CHREC_LEFT (chrec);
|
||
|
||
return build_polynomial_chrec (loop_num, chrec, new_evol);
|
||
}
|
||
|
||
/* Merges two evolution functions that were found by following two
|
||
alternate paths of a conditional expression. */
|
||
|
||
tree
|
||
chrec_merge (tree chrec1,
|
||
tree chrec2)
|
||
{
|
||
if (chrec1 == chrec_dont_know
|
||
|| chrec2 == chrec_dont_know)
|
||
return chrec_dont_know;
|
||
|
||
if (chrec1 == chrec_known
|
||
|| chrec2 == chrec_known)
|
||
return chrec_known;
|
||
|
||
if (chrec1 == chrec_not_analyzed_yet)
|
||
return chrec2;
|
||
if (chrec2 == chrec_not_analyzed_yet)
|
||
return chrec1;
|
||
|
||
if (eq_evolutions_p (chrec1, chrec2))
|
||
return chrec1;
|
||
|
||
return chrec_dont_know;
|
||
}
|
||
|
||
|
||
|
||
/* Observers. */
|
||
|
||
/* Helper function for is_multivariate_chrec. */
|
||
|
||
static bool
|
||
is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
{
|
||
if (CHREC_VARIABLE (chrec) != rec_var)
|
||
return true;
|
||
else
|
||
return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
|
||
|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Determine whether the given chrec is multivariate or not. */
|
||
|
||
bool
|
||
is_multivariate_chrec (const_tree chrec)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
|
||
CHREC_VARIABLE (chrec))
|
||
|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
|
||
CHREC_VARIABLE (chrec)));
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Determines whether the chrec contains symbolic names or not. If LOOP isn't
|
||
NULL, we also consider chrec wrto outer loops of LOOP as symbol. */
|
||
|
||
static bool
|
||
chrec_contains_symbols (const_tree chrec, hash_set<const_tree> &visited,
|
||
class loop *loop)
|
||
{
|
||
int i, n;
|
||
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
if (TREE_CODE (chrec) == SSA_NAME
|
||
|| VAR_P (chrec)
|
||
|| TREE_CODE (chrec) == POLY_INT_CST
|
||
|| TREE_CODE (chrec) == PARM_DECL
|
||
|| TREE_CODE (chrec) == FUNCTION_DECL
|
||
|| TREE_CODE (chrec) == LABEL_DECL
|
||
|| TREE_CODE (chrec) == RESULT_DECL
|
||
|| TREE_CODE (chrec) == FIELD_DECL)
|
||
return true;
|
||
|
||
if (loop != NULL
|
||
&& TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& flow_loop_nested_p (get_chrec_loop (chrec), loop))
|
||
return true;
|
||
|
||
if (visited.add (chrec))
|
||
return false;
|
||
|
||
n = TREE_OPERAND_LENGTH (chrec);
|
||
for (i = 0; i < n; i++)
|
||
if (chrec_contains_symbols (TREE_OPERAND (chrec, i), visited, loop))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CHREC contains any symbols. If LOOP is not NULL, check if
|
||
CHREC contains any chrec which is invariant wrto the loop (nest), in other
|
||
words, chrec defined by outer loops of loop, so from LOOP's point of view,
|
||
the chrec is considered as a SYMBOL. */
|
||
|
||
bool
|
||
chrec_contains_symbols (const_tree chrec, class loop* loop)
|
||
{
|
||
hash_set<const_tree> visited;
|
||
return chrec_contains_symbols (chrec, visited, loop);
|
||
}
|
||
|
||
/* Return true when CHREC contains symbolic names defined in
|
||
LOOP_NB. */
|
||
|
||
static bool
|
||
chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb,
|
||
hash_set<const_tree> &visited)
|
||
{
|
||
int i, n;
|
||
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
if (is_gimple_min_invariant (chrec))
|
||
return false;
|
||
|
||
if (TREE_CODE (chrec) == SSA_NAME)
|
||
{
|
||
gimple *def;
|
||
loop_p def_loop, loop;
|
||
|
||
if (SSA_NAME_IS_DEFAULT_DEF (chrec))
|
||
return false;
|
||
|
||
def = SSA_NAME_DEF_STMT (chrec);
|
||
def_loop = loop_containing_stmt (def);
|
||
loop = get_loop (cfun, loop_nb);
|
||
|
||
if (def_loop == NULL)
|
||
return false;
|
||
|
||
if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
if (visited.add (chrec))
|
||
return false;
|
||
|
||
n = TREE_OPERAND_LENGTH (chrec);
|
||
for (i = 0; i < n; i++)
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
|
||
loop_nb, visited))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true when CHREC contains symbolic names defined in
|
||
LOOP_NB. */
|
||
|
||
bool
|
||
chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
|
||
{
|
||
hash_set<const_tree> visited;
|
||
return chrec_contains_symbols_defined_in_loop (chrec, loop_nb, visited);
|
||
}
|
||
|
||
/* Determines whether the chrec contains undetermined coefficients. */
|
||
|
||
static bool
|
||
chrec_contains_undetermined (const_tree chrec, hash_set<const_tree> &visited)
|
||
{
|
||
int i, n;
|
||
|
||
if (chrec == chrec_dont_know)
|
||
return true;
|
||
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
if (visited.add (chrec))
|
||
return false;
|
||
|
||
n = TREE_OPERAND_LENGTH (chrec);
|
||
for (i = 0; i < n; i++)
|
||
if (chrec_contains_undetermined (TREE_OPERAND (chrec, i), visited))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
bool
|
||
chrec_contains_undetermined (const_tree chrec)
|
||
{
|
||
hash_set<const_tree> visited;
|
||
return chrec_contains_undetermined (chrec, visited);
|
||
}
|
||
|
||
/* Determines whether the tree EXPR contains chrecs, and increment
|
||
SIZE if it is not a NULL pointer by an estimation of the depth of
|
||
the tree. */
|
||
|
||
static bool
|
||
tree_contains_chrecs (const_tree expr, int *size, hash_set<const_tree> &visited)
|
||
{
|
||
int i, n;
|
||
|
||
if (expr == NULL_TREE)
|
||
return false;
|
||
|
||
if (size)
|
||
(*size)++;
|
||
|
||
if (tree_is_chrec (expr))
|
||
return true;
|
||
|
||
if (visited.add (expr))
|
||
return false;
|
||
|
||
n = TREE_OPERAND_LENGTH (expr);
|
||
for (i = 0; i < n; i++)
|
||
if (tree_contains_chrecs (TREE_OPERAND (expr, i), size, visited))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
bool
|
||
tree_contains_chrecs (const_tree expr, int *size)
|
||
{
|
||
hash_set<const_tree> visited;
|
||
return tree_contains_chrecs (expr, size, visited);
|
||
}
|
||
|
||
|
||
/* Recursive helper function. */
|
||
|
||
static bool
|
||
evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
|
||
{
|
||
if (evolution_function_is_constant_p (chrec))
|
||
return true;
|
||
|
||
if (TREE_CODE (chrec) == SSA_NAME
|
||
&& (loopnum == 0
|
||
|| expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec)))
|
||
return true;
|
||
|
||
if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
{
|
||
if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
|
||
|| flow_loop_nested_p (get_loop (cfun, loopnum),
|
||
get_chrec_loop (chrec))
|
||
|| !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
|
||
loopnum)
|
||
|| !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
|
||
loopnum))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
switch (TREE_OPERAND_LENGTH (chrec))
|
||
{
|
||
case 2:
|
||
if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
|
||
loopnum))
|
||
return false;
|
||
/* FALLTHRU */
|
||
|
||
case 1:
|
||
if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
|
||
loopnum))
|
||
return false;
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
|
||
|
||
bool
|
||
evolution_function_is_invariant_p (tree chrec, int loopnum)
|
||
{
|
||
return evolution_function_is_invariant_rec_p (chrec, loopnum);
|
||
}
|
||
|
||
/* Determine whether the given tree is an affine multivariate
|
||
evolution. */
|
||
|
||
bool
|
||
evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
|
||
{
|
||
if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
|
||
return true;
|
||
else
|
||
{
|
||
if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
|
||
&& CHREC_VARIABLE (CHREC_RIGHT (chrec))
|
||
!= CHREC_VARIABLE (chrec)
|
||
&& evolution_function_is_affine_multivariate_p
|
||
(CHREC_RIGHT (chrec), loopnum))
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
|
||
&& TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
|
||
&& CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
|
||
&& evolution_function_is_affine_multivariate_p
|
||
(CHREC_LEFT (chrec), loopnum))
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Determine whether the given tree is a function in zero or one
|
||
variables with respect to loop specified by LOOPNUM. Note only positive
|
||
LOOPNUM stands for a real loop. */
|
||
|
||
bool
|
||
evolution_function_is_univariate_p (const_tree chrec, int loopnum)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return true;
|
||
|
||
tree sub_chrec;
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (CHREC_LEFT (chrec)))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
sub_chrec = CHREC_LEFT (chrec);
|
||
if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (sub_chrec)
|
||
&& (loopnum <= 0
|
||
|| CHREC_VARIABLE (sub_chrec) == (unsigned) loopnum
|
||
|| flow_loop_nested_p (get_loop (cfun, loopnum),
|
||
get_chrec_loop (sub_chrec))))
|
||
return false;
|
||
if (!evolution_function_is_univariate_p (sub_chrec, loopnum))
|
||
return false;
|
||
break;
|
||
|
||
default:
|
||
if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
|
||
return false;
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE (CHREC_RIGHT (chrec)))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
sub_chrec = CHREC_RIGHT (chrec);
|
||
if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (sub_chrec)
|
||
&& (loopnum <= 0
|
||
|| CHREC_VARIABLE (sub_chrec) == (unsigned) loopnum
|
||
|| flow_loop_nested_p (get_loop (cfun, loopnum),
|
||
get_chrec_loop (sub_chrec))))
|
||
return false;
|
||
if (!evolution_function_is_univariate_p (sub_chrec, loopnum))
|
||
return false;
|
||
break;
|
||
|
||
default:
|
||
if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
|
||
return false;
|
||
break;
|
||
}
|
||
return true;
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Returns the number of variables of CHREC. Example: the call
|
||
nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
|
||
|
||
unsigned
|
||
nb_vars_in_chrec (tree chrec)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return 0;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return 1 + nb_vars_in_chrec
|
||
(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
|
||
the scev corresponds to. AT_STMT is the statement at that the scev is
|
||
evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume
|
||
that the rules for overflow of the given language apply (e.g., that signed
|
||
arithmetics in C does not overflow) -- i.e., to use them to avoid
|
||
unnecessary tests, but also to enforce that the result follows them.
|
||
FROM is the source variable converted if it's not NULL. Returns true if
|
||
the conversion succeeded, false otherwise. */
|
||
|
||
bool
|
||
convert_affine_scev (class loop *loop, tree type,
|
||
tree *base, tree *step, gimple *at_stmt,
|
||
bool use_overflow_semantics, tree from)
|
||
{
|
||
tree ct = TREE_TYPE (*step);
|
||
bool enforce_overflow_semantics;
|
||
bool must_check_src_overflow, must_check_rslt_overflow;
|
||
tree new_base, new_step;
|
||
tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
|
||
|
||
/* In general,
|
||
(TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
|
||
but we must check some assumptions.
|
||
|
||
1) If [BASE, +, STEP] wraps, the equation is not valid when precision
|
||
of CT is smaller than the precision of TYPE. For example, when we
|
||
cast unsigned char [254, +, 1] to unsigned, the values on left side
|
||
are 254, 255, 0, 1, ..., but those on the right side are
|
||
254, 255, 256, 257, ...
|
||
2) In case that we must also preserve the fact that signed ivs do not
|
||
overflow, we must additionally check that the new iv does not wrap.
|
||
For example, unsigned char [125, +, 1] casted to signed char could
|
||
become a wrapping variable with values 125, 126, 127, -128, -127, ...,
|
||
which would confuse optimizers that assume that this does not
|
||
happen. */
|
||
must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
|
||
|
||
enforce_overflow_semantics = (use_overflow_semantics
|
||
&& nowrap_type_p (type));
|
||
if (enforce_overflow_semantics)
|
||
{
|
||
/* We can avoid checking whether the result overflows in the following
|
||
cases:
|
||
|
||
-- must_check_src_overflow is true, and the range of TYPE is superset
|
||
of the range of CT -- i.e., in all cases except if CT signed and
|
||
TYPE unsigned.
|
||
-- both CT and TYPE have the same precision and signedness, and we
|
||
verify instead that the source does not overflow (this may be
|
||
easier than verifying it for the result, as we may use the
|
||
information about the semantics of overflow in CT). */
|
||
if (must_check_src_overflow)
|
||
{
|
||
if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
|
||
must_check_rslt_overflow = true;
|
||
else
|
||
must_check_rslt_overflow = false;
|
||
}
|
||
else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
|
||
&& TYPE_PRECISION (ct) == TYPE_PRECISION (type))
|
||
{
|
||
must_check_rslt_overflow = false;
|
||
must_check_src_overflow = true;
|
||
}
|
||
else
|
||
must_check_rslt_overflow = true;
|
||
}
|
||
else
|
||
must_check_rslt_overflow = false;
|
||
|
||
if (must_check_src_overflow
|
||
&& scev_probably_wraps_p (from, *base, *step, at_stmt, loop,
|
||
use_overflow_semantics))
|
||
return false;
|
||
|
||
new_base = chrec_convert (type, *base, at_stmt, use_overflow_semantics);
|
||
/* The step must be sign extended, regardless of the signedness
|
||
of CT and TYPE. This only needs to be handled specially when
|
||
CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
|
||
(with values 100, 99, 98, ...) from becoming signed or unsigned
|
||
[100, +, 255] with values 100, 355, ...; the sign-extension is
|
||
performed by default when CT is signed. */
|
||
new_step = *step;
|
||
if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
|
||
{
|
||
tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
|
||
new_step = chrec_convert (signed_ct, new_step, at_stmt,
|
||
use_overflow_semantics);
|
||
}
|
||
new_step = chrec_convert (step_type, new_step, at_stmt,
|
||
use_overflow_semantics);
|
||
|
||
if (automatically_generated_chrec_p (new_base)
|
||
|| automatically_generated_chrec_p (new_step))
|
||
return false;
|
||
|
||
if (must_check_rslt_overflow
|
||
/* Note that in this case we cannot use the fact that signed variables
|
||
do not overflow, as this is what we are verifying for the new iv. */
|
||
&& scev_probably_wraps_p (NULL_TREE, new_base, new_step,
|
||
at_stmt, loop, false))
|
||
return false;
|
||
|
||
*base = new_base;
|
||
*step = new_step;
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Convert CHREC for the right hand side of a CHREC.
|
||
The increment for a pointer type is always sizetype. */
|
||
|
||
tree
|
||
chrec_convert_rhs (tree type, tree chrec, gimple *at_stmt)
|
||
{
|
||
if (POINTER_TYPE_P (type))
|
||
type = sizetype;
|
||
|
||
return chrec_convert (type, chrec, at_stmt);
|
||
}
|
||
|
||
/* Convert CHREC to TYPE. When the analyzer knows the context in
|
||
which the CHREC is built, it sets AT_STMT to the statement that
|
||
contains the definition of the analyzed variable, otherwise the
|
||
conversion is less accurate: the information is used for
|
||
determining a more accurate estimation of the number of iterations.
|
||
By default AT_STMT could be safely set to NULL_TREE.
|
||
|
||
USE_OVERFLOW_SEMANTICS is true if this function should assume that
|
||
the rules for overflow of the given language apply (e.g., that signed
|
||
arithmetics in C does not overflow) -- i.e., to use them to avoid
|
||
unnecessary tests, but also to enforce that the result follows them.
|
||
|
||
FROM is the source variable converted if it's not NULL. */
|
||
|
||
static tree
|
||
chrec_convert_1 (tree type, tree chrec, gimple *at_stmt,
|
||
bool use_overflow_semantics, tree from)
|
||
{
|
||
tree ct, res;
|
||
tree base, step;
|
||
class loop *loop;
|
||
|
||
if (automatically_generated_chrec_p (chrec))
|
||
return chrec;
|
||
|
||
ct = chrec_type (chrec);
|
||
if (useless_type_conversion_p (type, ct))
|
||
return chrec;
|
||
|
||
if (!evolution_function_is_affine_p (chrec))
|
||
goto keep_cast;
|
||
|
||
loop = get_chrec_loop (chrec);
|
||
base = CHREC_LEFT (chrec);
|
||
step = CHREC_RIGHT (chrec);
|
||
|
||
if (convert_affine_scev (loop, type, &base, &step, at_stmt,
|
||
use_overflow_semantics, from))
|
||
return build_polynomial_chrec (loop->num, base, step);
|
||
|
||
/* If we cannot propagate the cast inside the chrec, just keep the cast. */
|
||
keep_cast:
|
||
/* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
|
||
may be more expensive. We do want to perform this optimization here
|
||
though for canonicalization reasons. */
|
||
if (use_overflow_semantics
|
||
&& (TREE_CODE (chrec) == PLUS_EXPR
|
||
|| TREE_CODE (chrec) == MINUS_EXPR)
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_CODE (ct) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) > TYPE_PRECISION (ct)
|
||
&& TYPE_OVERFLOW_UNDEFINED (ct))
|
||
res = fold_build2 (TREE_CODE (chrec), type,
|
||
fold_convert (type, TREE_OPERAND (chrec, 0)),
|
||
fold_convert (type, TREE_OPERAND (chrec, 1)));
|
||
/* Similar perform the trick that (signed char)((int)x + 2) can be
|
||
narrowed to (signed char)((unsigned char)x + 2). */
|
||
else if (use_overflow_semantics
|
||
&& TREE_CODE (chrec) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (ct) == INTEGER_TYPE
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_OVERFLOW_UNDEFINED (type)
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (ct))
|
||
{
|
||
tree utype = unsigned_type_for (type);
|
||
res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
|
||
fold_convert (utype,
|
||
CHREC_LEFT (chrec)),
|
||
fold_convert (utype,
|
||
CHREC_RIGHT (chrec)));
|
||
res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics, from);
|
||
}
|
||
else
|
||
res = fold_convert (type, chrec);
|
||
|
||
/* Don't propagate overflows. */
|
||
if (CONSTANT_CLASS_P (res))
|
||
TREE_OVERFLOW (res) = 0;
|
||
|
||
/* But reject constants that don't fit in their type after conversion.
|
||
This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
|
||
natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
|
||
and can cause problems later when computing niters of loops. Note
|
||
that we don't do the check before converting because we don't want
|
||
to reject conversions of negative chrecs to unsigned types. */
|
||
if (TREE_CODE (res) == INTEGER_CST
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& !int_fits_type_p (res, type))
|
||
res = chrec_dont_know;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Convert CHREC to TYPE. When the analyzer knows the context in
|
||
which the CHREC is built, it sets AT_STMT to the statement that
|
||
contains the definition of the analyzed variable, otherwise the
|
||
conversion is less accurate: the information is used for
|
||
determining a more accurate estimation of the number of iterations.
|
||
By default AT_STMT could be safely set to NULL_TREE.
|
||
|
||
The following rule is always true: TREE_TYPE (chrec) ==
|
||
TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
|
||
An example of what could happen when adding two chrecs and the type
|
||
of the CHREC_RIGHT is different than CHREC_LEFT is:
|
||
|
||
{(uint) 0, +, (uchar) 10} +
|
||
{(uint) 0, +, (uchar) 250}
|
||
|
||
that would produce a wrong result if CHREC_RIGHT is not (uint):
|
||
|
||
{(uint) 0, +, (uchar) 4}
|
||
|
||
instead of
|
||
|
||
{(uint) 0, +, (uint) 260}
|
||
|
||
USE_OVERFLOW_SEMANTICS is true if this function should assume that
|
||
the rules for overflow of the given language apply (e.g., that signed
|
||
arithmetics in C does not overflow) -- i.e., to use them to avoid
|
||
unnecessary tests, but also to enforce that the result follows them.
|
||
|
||
FROM is the source variable converted if it's not NULL. */
|
||
|
||
tree
|
||
chrec_convert (tree type, tree chrec, gimple *at_stmt,
|
||
bool use_overflow_semantics, tree from)
|
||
{
|
||
return chrec_convert_1 (type, chrec, at_stmt, use_overflow_semantics, from);
|
||
}
|
||
|
||
/* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
|
||
chrec if something else than what chrec_convert would do happens, NULL_TREE
|
||
otherwise. This function set TRUE to variable pointed by FOLD_CONVERSIONS
|
||
if the result chrec may overflow. */
|
||
|
||
tree
|
||
chrec_convert_aggressive (tree type, tree chrec, bool *fold_conversions)
|
||
{
|
||
tree inner_type, left, right, lc, rc, rtype;
|
||
|
||
gcc_assert (fold_conversions != NULL);
|
||
|
||
if (automatically_generated_chrec_p (chrec)
|
||
|| TREE_CODE (chrec) != POLYNOMIAL_CHREC)
|
||
return NULL_TREE;
|
||
|
||
inner_type = TREE_TYPE (chrec);
|
||
if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
|
||
return NULL_TREE;
|
||
|
||
if (useless_type_conversion_p (type, inner_type))
|
||
return NULL_TREE;
|
||
|
||
if (!*fold_conversions && evolution_function_is_affine_p (chrec))
|
||
{
|
||
tree base, step;
|
||
class loop *loop;
|
||
|
||
loop = get_chrec_loop (chrec);
|
||
base = CHREC_LEFT (chrec);
|
||
step = CHREC_RIGHT (chrec);
|
||
if (convert_affine_scev (loop, type, &base, &step, NULL, true))
|
||
return build_polynomial_chrec (loop->num, base, step);
|
||
}
|
||
rtype = POINTER_TYPE_P (type) ? sizetype : type;
|
||
|
||
left = CHREC_LEFT (chrec);
|
||
right = CHREC_RIGHT (chrec);
|
||
lc = chrec_convert_aggressive (type, left, fold_conversions);
|
||
if (!lc)
|
||
lc = chrec_convert (type, left, NULL);
|
||
rc = chrec_convert_aggressive (rtype, right, fold_conversions);
|
||
if (!rc)
|
||
rc = chrec_convert (rtype, right, NULL);
|
||
|
||
*fold_conversions = true;
|
||
|
||
return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
|
||
}
|
||
|
||
/* Returns true when CHREC0 == CHREC1. */
|
||
|
||
bool
|
||
eq_evolutions_p (const_tree chrec0, const_tree chrec1)
|
||
{
|
||
if (chrec0 == NULL_TREE
|
||
|| chrec1 == NULL_TREE
|
||
|| TREE_CODE (chrec0) != TREE_CODE (chrec1))
|
||
return false;
|
||
|
||
if (chrec0 == chrec1)
|
||
return true;
|
||
|
||
if (! types_compatible_p (TREE_TYPE (chrec0), TREE_TYPE (chrec1)))
|
||
return false;
|
||
|
||
switch (TREE_CODE (chrec0))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
|
||
&& eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
|
||
&& eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
|
||
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
case POINTER_PLUS_EXPR:
|
||
return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
|
||
TREE_OPERAND (chrec1, 0))
|
||
&& eq_evolutions_p (TREE_OPERAND (chrec0, 1),
|
||
TREE_OPERAND (chrec1, 1));
|
||
|
||
CASE_CONVERT:
|
||
return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
|
||
TREE_OPERAND (chrec1, 0));
|
||
|
||
default:
|
||
return operand_equal_p (chrec0, chrec1, 0);
|
||
}
|
||
}
|
||
|
||
/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
|
||
EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
|
||
which of these cases happens. */
|
||
|
||
enum ev_direction
|
||
scev_direction (const_tree chrec)
|
||
{
|
||
const_tree step;
|
||
|
||
if (!evolution_function_is_affine_p (chrec))
|
||
return EV_DIR_UNKNOWN;
|
||
|
||
step = CHREC_RIGHT (chrec);
|
||
if (TREE_CODE (step) != INTEGER_CST)
|
||
return EV_DIR_UNKNOWN;
|
||
|
||
if (tree_int_cst_sign_bit (step))
|
||
return EV_DIR_DECREASES;
|
||
else
|
||
return EV_DIR_GROWS;
|
||
}
|
||
|
||
/* Iterates over all the components of SCEV, and calls CBCK. */
|
||
|
||
void
|
||
for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
|
||
{
|
||
switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
|
||
{
|
||
case 3:
|
||
for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
|
||
/* FALLTHRU */
|
||
|
||
case 2:
|
||
for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
|
||
/* FALLTHRU */
|
||
|
||
case 1:
|
||
for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
cbck (scev, data);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Returns true when the operation can be part of a linear
|
||
expression. */
|
||
|
||
static inline bool
|
||
operator_is_linear (tree scev)
|
||
{
|
||
switch (TREE_CODE (scev))
|
||
{
|
||
case INTEGER_CST:
|
||
case POLYNOMIAL_CHREC:
|
||
case PLUS_EXPR:
|
||
case POINTER_PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
case NEGATE_EXPR:
|
||
case SSA_NAME:
|
||
case NON_LVALUE_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
CASE_CONVERT:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return true when SCEV is a linear expression. Linear expressions
|
||
can contain additions, substractions and multiplications.
|
||
Multiplications are restricted to constant scaling: "cst * x". */
|
||
|
||
bool
|
||
scev_is_linear_expression (tree scev)
|
||
{
|
||
if (evolution_function_is_constant_p (scev))
|
||
return true;
|
||
|
||
if (scev == NULL
|
||
|| !operator_is_linear (scev))
|
||
return false;
|
||
|
||
if (TREE_CODE (scev) == MULT_EXPR)
|
||
return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
|
||
&& tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
|
||
|
||
if (TREE_CODE (scev) == POLYNOMIAL_CHREC
|
||
&& !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
|
||
return false;
|
||
|
||
switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
|
||
{
|
||
case 3:
|
||
return scev_is_linear_expression (TREE_OPERAND (scev, 0))
|
||
&& scev_is_linear_expression (TREE_OPERAND (scev, 1))
|
||
&& scev_is_linear_expression (TREE_OPERAND (scev, 2));
|
||
|
||
case 2:
|
||
return scev_is_linear_expression (TREE_OPERAND (scev, 0))
|
||
&& scev_is_linear_expression (TREE_OPERAND (scev, 1));
|
||
|
||
case 1:
|
||
return scev_is_linear_expression (TREE_OPERAND (scev, 0));
|
||
|
||
case 0:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Determines whether the expression CHREC contains only interger consts
|
||
in the right parts. */
|
||
|
||
bool
|
||
evolution_function_right_is_integer_cst (const_tree chrec)
|
||
{
|
||
if (chrec == NULL_TREE)
|
||
return false;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case INTEGER_CST:
|
||
return true;
|
||
|
||
case POLYNOMIAL_CHREC:
|
||
return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
|
||
&& (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
|
||
|| evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
|
||
|
||
CASE_CONVERT:
|
||
return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|