1321 lines
38 KiB
C
1321 lines
38 KiB
C
/* Compute different info about registers.
|
||
Copyright (C) 1987-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* This file contains regscan pass of the compiler and passes for
|
||
dealing with info about modes of pseudo-registers inside
|
||
subregisters. It also defines some tables of information about the
|
||
hardware registers, function init_reg_sets to initialize the
|
||
tables, and other auxiliary functions to deal with info about
|
||
registers and their classes. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "ira.h"
|
||
#include "recog.h"
|
||
#include "diagnostic-core.h"
|
||
#include "reload.h"
|
||
#include "output.h"
|
||
#include "tree-pass.h"
|
||
#include "function-abi.h"
|
||
|
||
/* Maximum register number used in this function, plus one. */
|
||
|
||
int max_regno;
|
||
|
||
/* Used to cache the results of simplifiable_subregs. SHAPE is the input
|
||
parameter and SIMPLIFIABLE_REGS is the result. */
|
||
class simplifiable_subreg
|
||
{
|
||
public:
|
||
simplifiable_subreg (const subreg_shape &);
|
||
|
||
subreg_shape shape;
|
||
HARD_REG_SET simplifiable_regs;
|
||
};
|
||
|
||
struct target_hard_regs default_target_hard_regs;
|
||
struct target_regs default_target_regs;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
|
||
struct target_regs *this_target_regs = &default_target_regs;
|
||
#endif
|
||
|
||
#define call_used_regs \
|
||
(this_target_hard_regs->x_call_used_regs)
|
||
#define regs_invalidated_by_call \
|
||
(this_target_hard_regs->x_regs_invalidated_by_call)
|
||
|
||
/* Data for initializing fixed_regs. */
|
||
static const char initial_fixed_regs[] = FIXED_REGISTERS;
|
||
|
||
/* Data for initializing call_used_regs. */
|
||
#ifdef CALL_REALLY_USED_REGISTERS
|
||
#ifdef CALL_USED_REGISTERS
|
||
#error CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS are both defined
|
||
#endif
|
||
static const char initial_call_used_regs[] = CALL_REALLY_USED_REGISTERS;
|
||
#else
|
||
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
|
||
#endif
|
||
|
||
/* Indexed by hard register number, contains 1 for registers
|
||
that are being used for global register decls.
|
||
These must be exempt from ordinary flow analysis
|
||
and are also considered fixed. */
|
||
char global_regs[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* The set of global registers. */
|
||
HARD_REG_SET global_reg_set;
|
||
|
||
/* Declaration for the global register. */
|
||
tree global_regs_decl[FIRST_PSEUDO_REGISTER];
|
||
|
||
/* Used to initialize reg_alloc_order. */
|
||
#ifdef REG_ALLOC_ORDER
|
||
static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
|
||
#endif
|
||
|
||
/* The same information, but as an array of unsigned ints. We copy from
|
||
these unsigned ints to the table above. We do this so the tm.h files
|
||
do not have to be aware of the wordsize for machines with <= 64 regs.
|
||
Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
||
#define N_REG_INTS \
|
||
((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
|
||
|
||
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
|
||
= REG_CLASS_CONTENTS;
|
||
|
||
/* Array containing all of the register names. */
|
||
static const char *const initial_reg_names[] = REGISTER_NAMES;
|
||
|
||
/* Array containing all of the register class names. */
|
||
const char * reg_class_names[] = REG_CLASS_NAMES;
|
||
|
||
/* No more global register variables may be declared; true once
|
||
reginfo has been initialized. */
|
||
static int no_global_reg_vars = 0;
|
||
|
||
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
|
||
correspond to the hard registers, if any, set in that map. This
|
||
could be done far more efficiently by having all sorts of special-cases
|
||
with moving single words, but probably isn't worth the trouble. */
|
||
void
|
||
reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
|
||
{
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
||
{
|
||
if (i >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
SET_HARD_REG_BIT (*to, i);
|
||
}
|
||
}
|
||
|
||
/* Function called only once per target_globals to initialize the
|
||
target_hard_regs structure. Once this is done, various switches
|
||
may override. */
|
||
void
|
||
init_reg_sets (void)
|
||
{
|
||
int i, j;
|
||
|
||
/* First copy the register information from the initial int form into
|
||
the regsets. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
CLEAR_HARD_REG_SET (reg_class_contents[i]);
|
||
|
||
/* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (int_reg_class_contents[i][j / 32]
|
||
& ((unsigned) 1 << (j % 32)))
|
||
SET_HARD_REG_BIT (reg_class_contents[i], j);
|
||
}
|
||
|
||
/* Sanity check: make sure the target macros FIXED_REGISTERS and
|
||
CALL_USED_REGISTERS had the right number of initializers. */
|
||
gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
|
||
gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
|
||
#ifdef REG_ALLOC_ORDER
|
||
gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
|
||
#endif
|
||
gcc_assert (sizeof reg_names == sizeof initial_reg_names);
|
||
|
||
memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
|
||
memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
|
||
#ifdef REG_ALLOC_ORDER
|
||
memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
|
||
#endif
|
||
memcpy (reg_names, initial_reg_names, sizeof reg_names);
|
||
|
||
SET_HARD_REG_SET (accessible_reg_set);
|
||
SET_HARD_REG_SET (operand_reg_set);
|
||
}
|
||
|
||
/* We need to save copies of some of the register information which
|
||
can be munged by command-line switches so we can restore it during
|
||
subsequent back-end reinitialization. */
|
||
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
|
||
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
|
||
static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
|
||
static HARD_REG_SET saved_accessible_reg_set;
|
||
static HARD_REG_SET saved_operand_reg_set;
|
||
|
||
/* Save the register information. */
|
||
void
|
||
save_register_info (void)
|
||
{
|
||
/* Sanity check: make sure the target macros FIXED_REGISTERS and
|
||
CALL_USED_REGISTERS had the right number of initializers. */
|
||
gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
|
||
gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
|
||
memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
|
||
memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
|
||
|
||
/* And similarly for reg_names. */
|
||
gcc_assert (sizeof reg_names == sizeof saved_reg_names);
|
||
memcpy (saved_reg_names, reg_names, sizeof reg_names);
|
||
saved_accessible_reg_set = accessible_reg_set;
|
||
saved_operand_reg_set = operand_reg_set;
|
||
}
|
||
|
||
/* Restore the register information. */
|
||
static void
|
||
restore_register_info (void)
|
||
{
|
||
memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
|
||
memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
|
||
|
||
memcpy (reg_names, saved_reg_names, sizeof reg_names);
|
||
accessible_reg_set = saved_accessible_reg_set;
|
||
operand_reg_set = saved_operand_reg_set;
|
||
}
|
||
|
||
/* After switches have been processed, which perhaps alter
|
||
`fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
|
||
static void
|
||
init_reg_sets_1 (void)
|
||
{
|
||
unsigned int i, j;
|
||
unsigned int /* machine_mode */ m;
|
||
|
||
restore_register_info ();
|
||
|
||
#ifdef REG_ALLOC_ORDER
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
inv_reg_alloc_order[reg_alloc_order[i]] = i;
|
||
#endif
|
||
|
||
/* Let the target tweak things if necessary. */
|
||
|
||
targetm.conditional_register_usage ();
|
||
|
||
/* Compute number of hard regs in each class. */
|
||
|
||
memset (reg_class_size, 0, sizeof reg_class_size);
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
bool any_nonfixed = false;
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
|
||
{
|
||
reg_class_size[i]++;
|
||
if (!fixed_regs[j])
|
||
any_nonfixed = true;
|
||
}
|
||
class_only_fixed_regs[i] = !any_nonfixed;
|
||
}
|
||
|
||
/* Initialize the table of subunions.
|
||
reg_class_subunion[I][J] gets the largest-numbered reg-class
|
||
that is contained in the union of classes I and J. */
|
||
|
||
memset (reg_class_subunion, 0, sizeof reg_class_subunion);
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
{
|
||
HARD_REG_SET c;
|
||
int k;
|
||
|
||
c = reg_class_contents[i] | reg_class_contents[j];
|
||
for (k = 0; k < N_REG_CLASSES; k++)
|
||
if (hard_reg_set_subset_p (reg_class_contents[k], c)
|
||
&& !hard_reg_set_subset_p (reg_class_contents[k],
|
||
reg_class_contents
|
||
[(int) reg_class_subunion[i][j]]))
|
||
reg_class_subunion[i][j] = (enum reg_class) k;
|
||
}
|
||
}
|
||
|
||
/* Initialize the table of superunions.
|
||
reg_class_superunion[I][J] gets the smallest-numbered reg-class
|
||
containing the union of classes I and J. */
|
||
|
||
memset (reg_class_superunion, 0, sizeof reg_class_superunion);
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
{
|
||
HARD_REG_SET c;
|
||
int k;
|
||
|
||
c = reg_class_contents[i] | reg_class_contents[j];
|
||
for (k = 0; k < N_REG_CLASSES; k++)
|
||
if (hard_reg_set_subset_p (c, reg_class_contents[k]))
|
||
break;
|
||
|
||
reg_class_superunion[i][j] = (enum reg_class) k;
|
||
}
|
||
}
|
||
|
||
/* Initialize the tables of subclasses and superclasses of each reg class.
|
||
First clear the whole table, then add the elements as they are found. */
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
for (j = 0; j < N_REG_CLASSES; j++)
|
||
reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
||
}
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
{
|
||
if (i == (int) NO_REGS)
|
||
continue;
|
||
|
||
for (j = i + 1; j < N_REG_CLASSES; j++)
|
||
if (hard_reg_set_subset_p (reg_class_contents[i],
|
||
reg_class_contents[j]))
|
||
{
|
||
/* Reg class I is a subclass of J.
|
||
Add J to the table of superclasses of I. */
|
||
enum reg_class *p;
|
||
|
||
/* Add I to the table of superclasses of J. */
|
||
p = ®_class_subclasses[j][0];
|
||
while (*p != LIM_REG_CLASSES) p++;
|
||
*p = (enum reg_class) i;
|
||
}
|
||
}
|
||
|
||
/* Initialize "constant" tables. */
|
||
|
||
CLEAR_HARD_REG_SET (fixed_reg_set);
|
||
CLEAR_HARD_REG_SET (regs_invalidated_by_call);
|
||
|
||
operand_reg_set &= accessible_reg_set;
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
/* As a special exception, registers whose class is NO_REGS are
|
||
not accepted by `register_operand'. The reason for this change
|
||
is to allow the representation of special architecture artifacts
|
||
(such as a condition code register) without extending the rtl
|
||
definitions. Since registers of class NO_REGS cannot be used
|
||
as registers in any case where register classes are examined,
|
||
it is better to apply this exception in a target-independent way. */
|
||
if (REGNO_REG_CLASS (i) == NO_REGS)
|
||
CLEAR_HARD_REG_BIT (operand_reg_set, i);
|
||
|
||
/* If a register is too limited to be treated as a register operand,
|
||
then it should never be allocated to a pseudo. */
|
||
if (!TEST_HARD_REG_BIT (operand_reg_set, i))
|
||
fixed_regs[i] = 1;
|
||
|
||
if (fixed_regs[i])
|
||
SET_HARD_REG_BIT (fixed_reg_set, i);
|
||
|
||
/* There are a couple of fixed registers that we know are safe to
|
||
exclude from being clobbered by calls:
|
||
|
||
The frame pointer is always preserved across calls. The arg
|
||
pointer is if it is fixed. The stack pointer usually is,
|
||
unless TARGET_RETURN_POPS_ARGS, in which case an explicit
|
||
CLOBBER will be present. If we are generating PIC code, the
|
||
PIC offset table register is preserved across calls, though the
|
||
target can override that. */
|
||
|
||
if (i == STACK_POINTER_REGNUM)
|
||
;
|
||
else if (global_regs[i])
|
||
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
||
else if (i == FRAME_POINTER_REGNUM)
|
||
;
|
||
else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
&& i == HARD_FRAME_POINTER_REGNUM)
|
||
;
|
||
else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& i == ARG_POINTER_REGNUM && fixed_regs[i])
|
||
;
|
||
else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
||
&& i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
|
||
;
|
||
else if (call_used_regs[i])
|
||
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
||
}
|
||
|
||
SET_HARD_REG_SET (savable_regs);
|
||
fixed_nonglobal_reg_set = fixed_reg_set;
|
||
|
||
/* Preserve global registers if called more than once. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (global_regs[i])
|
||
{
|
||
fixed_regs[i] = call_used_regs[i] = 1;
|
||
SET_HARD_REG_BIT (fixed_reg_set, i);
|
||
SET_HARD_REG_BIT (global_reg_set, i);
|
||
}
|
||
}
|
||
|
||
memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
|
||
memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
|
||
for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
|
||
{
|
||
HARD_REG_SET ok_regs, ok_regs2;
|
||
CLEAR_HARD_REG_SET (ok_regs);
|
||
CLEAR_HARD_REG_SET (ok_regs2);
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
|
||
&& targetm.hard_regno_mode_ok (j, (machine_mode) m))
|
||
{
|
||
SET_HARD_REG_BIT (ok_regs, j);
|
||
if (!fixed_regs[j])
|
||
SET_HARD_REG_BIT (ok_regs2, j);
|
||
}
|
||
|
||
for (i = 0; i < N_REG_CLASSES; i++)
|
||
if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
|
||
<= reg_class_size[i])
|
||
&& hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
|
||
{
|
||
contains_reg_of_mode[i][m] = 1;
|
||
if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
|
||
{
|
||
have_regs_of_mode[m] = 1;
|
||
contains_allocatable_reg_of_mode[i][m] = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
default_function_abi.initialize (0, regs_invalidated_by_call);
|
||
}
|
||
|
||
/* Compute the table of register modes.
|
||
These values are used to record death information for individual registers
|
||
(as opposed to a multi-register mode).
|
||
This function might be invoked more than once, if the target has support
|
||
for changing register usage conventions on a per-function basis.
|
||
*/
|
||
void
|
||
init_reg_modes_target (void)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
for (j = 0; j < MAX_MACHINE_MODE; j++)
|
||
this_target_regs->x_hard_regno_nregs[i][j]
|
||
= targetm.hard_regno_nregs (i, (machine_mode) j);
|
||
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
reg_raw_mode[i] = choose_hard_reg_mode (i, 1, NULL);
|
||
|
||
/* If we couldn't find a valid mode, just use the previous mode
|
||
if it is suitable, otherwise fall back on word_mode. */
|
||
if (reg_raw_mode[i] == VOIDmode)
|
||
{
|
||
if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
|
||
reg_raw_mode[i] = reg_raw_mode[i - 1];
|
||
else
|
||
reg_raw_mode[i] = word_mode;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Finish initializing the register sets and initialize the register modes.
|
||
This function might be invoked more than once, if the target has support
|
||
for changing register usage conventions on a per-function basis.
|
||
*/
|
||
void
|
||
init_regs (void)
|
||
{
|
||
/* This finishes what was started by init_reg_sets, but couldn't be done
|
||
until after register usage was specified. */
|
||
init_reg_sets_1 ();
|
||
}
|
||
|
||
/* The same as previous function plus initializing IRA. */
|
||
void
|
||
reinit_regs (void)
|
||
{
|
||
init_regs ();
|
||
/* caller_save needs to be re-initialized. */
|
||
caller_save_initialized_p = false;
|
||
if (this_target_rtl->target_specific_initialized)
|
||
{
|
||
ira_init ();
|
||
recog_init ();
|
||
}
|
||
}
|
||
|
||
/* Initialize some fake stack-frame MEM references for use in
|
||
memory_move_secondary_cost. */
|
||
void
|
||
init_fake_stack_mems (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
||
top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
|
||
}
|
||
|
||
|
||
/* Compute cost of moving data from a register of class FROM to one of
|
||
TO, using MODE. */
|
||
|
||
int
|
||
register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
|
||
{
|
||
return targetm.register_move_cost (mode, from, to);
|
||
}
|
||
|
||
/* Compute cost of moving registers to/from memory. */
|
||
|
||
int
|
||
memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
|
||
{
|
||
return targetm.memory_move_cost (mode, rclass, in);
|
||
}
|
||
|
||
/* Compute extra cost of moving registers to/from memory due to reloads.
|
||
Only needed if secondary reloads are required for memory moves. */
|
||
int
|
||
memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
|
||
bool in)
|
||
{
|
||
reg_class_t altclass;
|
||
int partial_cost = 0;
|
||
/* We need a memory reference to feed to SECONDARY... macros. */
|
||
/* mem may be unused even if the SECONDARY_ macros are defined. */
|
||
rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
|
||
|
||
altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
|
||
|
||
if (altclass == NO_REGS)
|
||
return 0;
|
||
|
||
if (in)
|
||
partial_cost = register_move_cost (mode, altclass, rclass);
|
||
else
|
||
partial_cost = register_move_cost (mode, rclass, altclass);
|
||
|
||
if (rclass == altclass)
|
||
/* This isn't simply a copy-to-temporary situation. Can't guess
|
||
what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
|
||
calling here in that case.
|
||
|
||
I'm tempted to put in an assert here, but returning this will
|
||
probably only give poor estimates, which is what we would've
|
||
had before this code anyways. */
|
||
return partial_cost;
|
||
|
||
/* Check if the secondary reload register will also need a
|
||
secondary reload. */
|
||
return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
|
||
}
|
||
|
||
/* Return a machine mode that is legitimate for hard reg REGNO and large
|
||
enough to save nregs. If we can't find one, return VOIDmode.
|
||
If ABI is nonnull, only consider modes that are preserved across
|
||
calls that use ABI. */
|
||
machine_mode
|
||
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
|
||
unsigned int nregs, const predefined_function_abi *abi)
|
||
{
|
||
unsigned int /* machine_mode */ m;
|
||
machine_mode found_mode = VOIDmode, mode;
|
||
|
||
/* We first look for the largest integer mode that can be validly
|
||
held in REGNO. If none, we look for the largest floating-point mode.
|
||
If we still didn't find a valid mode, try CCmode.
|
||
|
||
The tests use maybe_gt rather than known_gt because we want (for example)
|
||
N V4SFs to win over plain V4SF even though N might be 1. */
|
||
FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
|
||
if (hard_regno_nregs (regno, mode) == nregs
|
||
&& targetm.hard_regno_mode_ok (regno, mode)
|
||
&& (!abi || !abi->clobbers_reg_p (mode, regno))
|
||
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
|
||
found_mode = mode;
|
||
|
||
FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
|
||
if (hard_regno_nregs (regno, mode) == nregs
|
||
&& targetm.hard_regno_mode_ok (regno, mode)
|
||
&& (!abi || !abi->clobbers_reg_p (mode, regno))
|
||
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
|
||
found_mode = mode;
|
||
|
||
FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
|
||
if (hard_regno_nregs (regno, mode) == nregs
|
||
&& targetm.hard_regno_mode_ok (regno, mode)
|
||
&& (!abi || !abi->clobbers_reg_p (mode, regno))
|
||
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
|
||
found_mode = mode;
|
||
|
||
FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
|
||
if (hard_regno_nregs (regno, mode) == nregs
|
||
&& targetm.hard_regno_mode_ok (regno, mode)
|
||
&& (!abi || !abi->clobbers_reg_p (mode, regno))
|
||
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
|
||
found_mode = mode;
|
||
|
||
if (found_mode != VOIDmode)
|
||
return found_mode;
|
||
|
||
/* Iterate over all of the CCmodes. */
|
||
for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
|
||
{
|
||
mode = (machine_mode) m;
|
||
if (hard_regno_nregs (regno, mode) == nregs
|
||
&& targetm.hard_regno_mode_ok (regno, mode)
|
||
&& (!abi || !abi->clobbers_reg_p (mode, regno)))
|
||
return mode;
|
||
}
|
||
|
||
/* We can't find a mode valid for this register. */
|
||
return VOIDmode;
|
||
}
|
||
|
||
/* Specify the usage characteristics of the register named NAME.
|
||
It should be a fixed register if FIXED and a
|
||
call-used register if CALL_USED. */
|
||
void
|
||
fix_register (const char *name, int fixed, int call_used)
|
||
{
|
||
int i;
|
||
int reg, nregs;
|
||
|
||
/* Decode the name and update the primary form of
|
||
the register info. */
|
||
|
||
if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
|
||
{
|
||
gcc_assert (nregs >= 1);
|
||
for (i = reg; i < reg + nregs; i++)
|
||
{
|
||
if ((i == STACK_POINTER_REGNUM
|
||
#ifdef HARD_FRAME_POINTER_REGNUM
|
||
|| i == HARD_FRAME_POINTER_REGNUM
|
||
#else
|
||
|| i == FRAME_POINTER_REGNUM
|
||
#endif
|
||
)
|
||
&& (fixed == 0 || call_used == 0))
|
||
{
|
||
switch (fixed)
|
||
{
|
||
case 0:
|
||
switch (call_used)
|
||
{
|
||
case 0:
|
||
error ("cannot use %qs as a call-saved register", name);
|
||
break;
|
||
|
||
case 1:
|
||
error ("cannot use %qs as a call-used register", name);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case 1:
|
||
switch (call_used)
|
||
{
|
||
case 1:
|
||
error ("cannot use %qs as a fixed register", name);
|
||
break;
|
||
|
||
case 0:
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fixed_regs[i] = fixed;
|
||
#ifdef CALL_REALLY_USED_REGISTERS
|
||
if (fixed == 0)
|
||
call_used_regs[i] = call_used;
|
||
#else
|
||
call_used_regs[i] = call_used;
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
warning (0, "unknown register name: %s", name);
|
||
}
|
||
}
|
||
|
||
/* Mark register number I as global. */
|
||
void
|
||
globalize_reg (tree decl, int i)
|
||
{
|
||
location_t loc = DECL_SOURCE_LOCATION (decl);
|
||
|
||
#ifdef STACK_REGS
|
||
if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
|
||
{
|
||
error ("stack register used for global register variable");
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
if (fixed_regs[i] == 0 && no_global_reg_vars)
|
||
error_at (loc, "global register variable follows a function definition");
|
||
|
||
if (global_regs[i])
|
||
{
|
||
auto_diagnostic_group d;
|
||
warning_at (loc, 0,
|
||
"register of %qD used for multiple global register variables",
|
||
decl);
|
||
inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
|
||
"conflicts with %qD", global_regs_decl[i]);
|
||
return;
|
||
}
|
||
|
||
if (call_used_regs[i] && ! fixed_regs[i])
|
||
warning_at (loc, 0, "call-clobbered register used for global register variable");
|
||
|
||
global_regs[i] = 1;
|
||
global_regs_decl[i] = decl;
|
||
SET_HARD_REG_BIT (global_reg_set, i);
|
||
|
||
/* If we're globalizing the frame pointer, we need to set the
|
||
appropriate regs_invalidated_by_call bit, even if it's already
|
||
set in fixed_regs. */
|
||
if (i != STACK_POINTER_REGNUM)
|
||
{
|
||
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
||
for (unsigned int j = 0; j < NUM_ABI_IDS; ++j)
|
||
function_abis[j].add_full_reg_clobber (i);
|
||
}
|
||
|
||
/* If already fixed, nothing else to do. */
|
||
if (fixed_regs[i])
|
||
return;
|
||
|
||
fixed_regs[i] = call_used_regs[i] = 1;
|
||
|
||
SET_HARD_REG_BIT (fixed_reg_set, i);
|
||
|
||
reinit_regs ();
|
||
}
|
||
|
||
|
||
/* Structure used to record preferences of given pseudo. */
|
||
struct reg_pref
|
||
{
|
||
/* (enum reg_class) prefclass is the preferred class. May be
|
||
NO_REGS if no class is better than memory. */
|
||
char prefclass;
|
||
|
||
/* altclass is a register class that we should use for allocating
|
||
pseudo if no register in the preferred class is available.
|
||
If no register in this class is available, memory is preferred.
|
||
|
||
It might appear to be more general to have a bitmask of classes here,
|
||
but since it is recommended that there be a class corresponding to the
|
||
union of most major pair of classes, that generality is not required. */
|
||
char altclass;
|
||
|
||
/* allocnoclass is a register class that IRA uses for allocating
|
||
the pseudo. */
|
||
char allocnoclass;
|
||
};
|
||
|
||
/* Record preferences of each pseudo. This is available after RA is
|
||
run. */
|
||
static struct reg_pref *reg_pref;
|
||
|
||
/* Current size of reg_info. */
|
||
static int reg_info_size;
|
||
/* Max_reg_num still last resize_reg_info call. */
|
||
static int max_regno_since_last_resize;
|
||
|
||
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
|
||
This function is sometimes called before the info has been computed.
|
||
When that happens, just return GENERAL_REGS, which is innocuous. */
|
||
enum reg_class
|
||
reg_preferred_class (int regno)
|
||
{
|
||
if (reg_pref == 0)
|
||
return GENERAL_REGS;
|
||
|
||
gcc_assert (regno < reg_info_size);
|
||
return (enum reg_class) reg_pref[regno].prefclass;
|
||
}
|
||
|
||
enum reg_class
|
||
reg_alternate_class (int regno)
|
||
{
|
||
if (reg_pref == 0)
|
||
return ALL_REGS;
|
||
|
||
gcc_assert (regno < reg_info_size);
|
||
return (enum reg_class) reg_pref[regno].altclass;
|
||
}
|
||
|
||
/* Return the reg_class which is used by IRA for its allocation. */
|
||
enum reg_class
|
||
reg_allocno_class (int regno)
|
||
{
|
||
if (reg_pref == 0)
|
||
return NO_REGS;
|
||
|
||
gcc_assert (regno < reg_info_size);
|
||
return (enum reg_class) reg_pref[regno].allocnoclass;
|
||
}
|
||
|
||
|
||
|
||
/* Allocate space for reg info and initilize it. */
|
||
static void
|
||
allocate_reg_info (void)
|
||
{
|
||
int i;
|
||
|
||
max_regno_since_last_resize = max_reg_num ();
|
||
reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
|
||
gcc_assert (! reg_pref && ! reg_renumber);
|
||
reg_renumber = XNEWVEC (short, reg_info_size);
|
||
reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
|
||
memset (reg_renumber, -1, reg_info_size * sizeof (short));
|
||
for (i = 0; i < reg_info_size; i++)
|
||
{
|
||
reg_pref[i].prefclass = GENERAL_REGS;
|
||
reg_pref[i].altclass = ALL_REGS;
|
||
reg_pref[i].allocnoclass = GENERAL_REGS;
|
||
}
|
||
}
|
||
|
||
|
||
/* Resize reg info. The new elements will be initialized. Return TRUE
|
||
if new pseudos were added since the last call. */
|
||
bool
|
||
resize_reg_info (void)
|
||
{
|
||
int old, i;
|
||
bool change_p;
|
||
|
||
if (reg_pref == NULL)
|
||
{
|
||
allocate_reg_info ();
|
||
return true;
|
||
}
|
||
change_p = max_regno_since_last_resize != max_reg_num ();
|
||
max_regno_since_last_resize = max_reg_num ();
|
||
if (reg_info_size >= max_reg_num ())
|
||
return change_p;
|
||
old = reg_info_size;
|
||
reg_info_size = max_reg_num () * 3 / 2 + 1;
|
||
gcc_assert (reg_pref && reg_renumber);
|
||
reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
|
||
reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
|
||
memset (reg_pref + old, -1,
|
||
(reg_info_size - old) * sizeof (struct reg_pref));
|
||
memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
|
||
for (i = old; i < reg_info_size; i++)
|
||
{
|
||
reg_pref[i].prefclass = GENERAL_REGS;
|
||
reg_pref[i].altclass = ALL_REGS;
|
||
reg_pref[i].allocnoclass = GENERAL_REGS;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Free up the space allocated by allocate_reg_info. */
|
||
void
|
||
free_reg_info (void)
|
||
{
|
||
if (reg_pref)
|
||
{
|
||
free (reg_pref);
|
||
reg_pref = NULL;
|
||
}
|
||
|
||
if (reg_renumber)
|
||
{
|
||
free (reg_renumber);
|
||
reg_renumber = NULL;
|
||
}
|
||
}
|
||
|
||
/* Initialize some global data for this pass. */
|
||
static unsigned int
|
||
reginfo_init (void)
|
||
{
|
||
if (df)
|
||
df_compute_regs_ever_live (true);
|
||
|
||
/* This prevents dump_reg_info from losing if called
|
||
before reginfo is run. */
|
||
reg_pref = NULL;
|
||
reg_info_size = max_regno_since_last_resize = 0;
|
||
/* No more global register variables may be declared. */
|
||
no_global_reg_vars = 1;
|
||
return 1;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_reginfo_init =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"reginfo", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_NONE, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_reginfo_init : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_reginfo_init (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_reginfo_init, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *) { return reginfo_init (); }
|
||
|
||
}; // class pass_reginfo_init
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_reginfo_init (gcc::context *ctxt)
|
||
{
|
||
return new pass_reginfo_init (ctxt);
|
||
}
|
||
|
||
|
||
|
||
/* Set up preferred, alternate, and allocno classes for REGNO as
|
||
PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
|
||
void
|
||
setup_reg_classes (int regno,
|
||
enum reg_class prefclass, enum reg_class altclass,
|
||
enum reg_class allocnoclass)
|
||
{
|
||
if (reg_pref == NULL)
|
||
return;
|
||
gcc_assert (reg_info_size >= max_reg_num ());
|
||
reg_pref[regno].prefclass = prefclass;
|
||
reg_pref[regno].altclass = altclass;
|
||
reg_pref[regno].allocnoclass = allocnoclass;
|
||
}
|
||
|
||
|
||
/* This is the `regscan' pass of the compiler, run just before cse and
|
||
again just before loop. It finds the first and last use of each
|
||
pseudo-register. */
|
||
|
||
static void reg_scan_mark_refs (rtx, rtx_insn *);
|
||
|
||
void
|
||
reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
timevar_push (TV_REG_SCAN);
|
||
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
reg_scan_mark_refs (PATTERN (insn), insn);
|
||
if (REG_NOTES (insn))
|
||
reg_scan_mark_refs (REG_NOTES (insn), insn);
|
||
}
|
||
|
||
timevar_pop (TV_REG_SCAN);
|
||
}
|
||
|
||
|
||
/* X is the expression to scan. INSN is the insn it appears in.
|
||
NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
|
||
We should only record information for REGs with numbers
|
||
greater than or equal to MIN_REGNO. */
|
||
static void
|
||
reg_scan_mark_refs (rtx x, rtx_insn *insn)
|
||
{
|
||
enum rtx_code code;
|
||
rtx dest;
|
||
rtx note;
|
||
|
||
if (!x)
|
||
return;
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case CONST:
|
||
CASE_CONST_ANY:
|
||
case CC0:
|
||
case PC:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case REG:
|
||
return;
|
||
|
||
case EXPR_LIST:
|
||
if (XEXP (x, 0))
|
||
reg_scan_mark_refs (XEXP (x, 0), insn);
|
||
if (XEXP (x, 1))
|
||
reg_scan_mark_refs (XEXP (x, 1), insn);
|
||
break;
|
||
|
||
case INSN_LIST:
|
||
case INT_LIST:
|
||
if (XEXP (x, 1))
|
||
reg_scan_mark_refs (XEXP (x, 1), insn);
|
||
break;
|
||
|
||
case CLOBBER:
|
||
if (MEM_P (XEXP (x, 0)))
|
||
reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
|
||
break;
|
||
|
||
case SET:
|
||
/* Count a set of the destination if it is a register. */
|
||
for (dest = SET_DEST (x);
|
||
GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|
||
|| GET_CODE (dest) == ZERO_EXTRACT;
|
||
dest = XEXP (dest, 0))
|
||
;
|
||
|
||
/* If this is setting a pseudo from another pseudo or the sum of a
|
||
pseudo and a constant integer and the other pseudo is known to be
|
||
a pointer, set the destination to be a pointer as well.
|
||
|
||
Likewise if it is setting the destination from an address or from a
|
||
value equivalent to an address or to the sum of an address and
|
||
something else.
|
||
|
||
But don't do any of this if the pseudo corresponds to a user
|
||
variable since it should have already been set as a pointer based
|
||
on the type. */
|
||
|
||
if (REG_P (SET_DEST (x))
|
||
&& REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
|
||
/* If the destination pseudo is set more than once, then other
|
||
sets might not be to a pointer value (consider access to a
|
||
union in two threads of control in the presence of global
|
||
optimizations). So only set REG_POINTER on the destination
|
||
pseudo if this is the only set of that pseudo. */
|
||
&& DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
|
||
&& ! REG_USERVAR_P (SET_DEST (x))
|
||
&& ! REG_POINTER (SET_DEST (x))
|
||
&& ((REG_P (SET_SRC (x))
|
||
&& REG_POINTER (SET_SRC (x)))
|
||
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
||
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
||
&& CONST_INT_P (XEXP (SET_SRC (x), 1))
|
||
&& REG_P (XEXP (SET_SRC (x), 0))
|
||
&& REG_POINTER (XEXP (SET_SRC (x), 0)))
|
||
|| GET_CODE (SET_SRC (x)) == CONST
|
||
|| GET_CODE (SET_SRC (x)) == SYMBOL_REF
|
||
|| GET_CODE (SET_SRC (x)) == LABEL_REF
|
||
|| (GET_CODE (SET_SRC (x)) == HIGH
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
|
||
|| GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
|
||
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
||
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
||
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
|
||
|| ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
|
||
&& (GET_CODE (XEXP (note, 0)) == CONST
|
||
|| GET_CODE (XEXP (note, 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (note, 0)) == LABEL_REF))))
|
||
REG_POINTER (SET_DEST (x)) = 1;
|
||
|
||
/* If this is setting a register from a register or from a simple
|
||
conversion of a register, propagate REG_EXPR. */
|
||
if (REG_P (dest) && !REG_ATTRS (dest))
|
||
set_reg_attrs_from_value (dest, SET_SRC (x));
|
||
|
||
/* fall through */
|
||
|
||
default:
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
reg_scan_mark_refs (XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E' && XVEC (x, i) != 0)
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
reg_scan_mark_refs (XVECEXP (x, i, j), insn);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
|
||
is also in C2. */
|
||
int
|
||
reg_class_subset_p (reg_class_t c1, reg_class_t c2)
|
||
{
|
||
return (c1 == c2
|
||
|| c2 == ALL_REGS
|
||
|| hard_reg_set_subset_p (reg_class_contents[(int) c1],
|
||
reg_class_contents[(int) c2]));
|
||
}
|
||
|
||
/* Return nonzero if there is a register that is in both C1 and C2. */
|
||
int
|
||
reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
|
||
{
|
||
return (c1 == c2
|
||
|| c1 == ALL_REGS
|
||
|| c2 == ALL_REGS
|
||
|| hard_reg_set_intersect_p (reg_class_contents[(int) c1],
|
||
reg_class_contents[(int) c2]));
|
||
}
|
||
|
||
|
||
inline hashval_t
|
||
simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
|
||
{
|
||
inchash::hash h;
|
||
h.add_hwi (value->shape.unique_id ());
|
||
return h.end ();
|
||
}
|
||
|
||
inline bool
|
||
simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
|
||
const subreg_shape *compare)
|
||
{
|
||
return value->shape == *compare;
|
||
}
|
||
|
||
inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
|
||
: shape (shape_in)
|
||
{
|
||
CLEAR_HARD_REG_SET (simplifiable_regs);
|
||
}
|
||
|
||
/* Return the set of hard registers that are able to form the subreg
|
||
described by SHAPE. */
|
||
|
||
const HARD_REG_SET &
|
||
simplifiable_subregs (const subreg_shape &shape)
|
||
{
|
||
if (!this_target_hard_regs->x_simplifiable_subregs)
|
||
this_target_hard_regs->x_simplifiable_subregs
|
||
= new hash_table <simplifiable_subregs_hasher> (30);
|
||
inchash::hash h;
|
||
h.add_hwi (shape.unique_id ());
|
||
simplifiable_subreg **slot
|
||
= (this_target_hard_regs->x_simplifiable_subregs
|
||
->find_slot_with_hash (&shape, h.end (), INSERT));
|
||
|
||
if (!*slot)
|
||
{
|
||
simplifiable_subreg *info = new simplifiable_subreg (shape);
|
||
for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
|
||
if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
|
||
&& simplify_subreg_regno (i, shape.inner_mode, shape.offset,
|
||
shape.outer_mode) >= 0)
|
||
SET_HARD_REG_BIT (info->simplifiable_regs, i);
|
||
*slot = info;
|
||
}
|
||
return (*slot)->simplifiable_regs;
|
||
}
|
||
|
||
/* Passes for keeping and updating info about modes of registers
|
||
inside subregisters. */
|
||
|
||
static HARD_REG_SET **valid_mode_changes;
|
||
static obstack valid_mode_changes_obstack;
|
||
|
||
/* Restrict the choice of register for SUBREG_REG (SUBREG) based
|
||
on information about SUBREG.
|
||
|
||
If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
|
||
register and we want to ensure that the other parts of the inner
|
||
register are correctly preserved. If !PARTIAL_DEF we need to
|
||
ensure that SUBREG itself can be formed. */
|
||
|
||
static void
|
||
record_subregs_of_mode (rtx subreg, bool partial_def)
|
||
{
|
||
unsigned int regno;
|
||
|
||
if (!REG_P (SUBREG_REG (subreg)))
|
||
return;
|
||
|
||
regno = REGNO (SUBREG_REG (subreg));
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
|
||
subreg_shape shape (shape_of_subreg (subreg));
|
||
if (partial_def)
|
||
{
|
||
/* The number of independently-accessible SHAPE.outer_mode values
|
||
in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
|
||
We need to check that the assignment will preserve all the other
|
||
SIZE-byte chunks in the inner register besides the one that
|
||
includes SUBREG.
|
||
|
||
In practice it is enough to check whether an equivalent
|
||
SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
|
||
If the underlying registers are small enough, both subregs will
|
||
be valid. If the underlying registers are too large, one of the
|
||
subregs will be invalid.
|
||
|
||
This relies on the fact that we've already been passed
|
||
SUBREG with PARTIAL_DEF set to false.
|
||
|
||
The size of the outer mode must ordered wrt the size of the
|
||
inner mode's registers, since otherwise we wouldn't know at
|
||
compile time how many registers the outer mode occupies. */
|
||
poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
|
||
GET_MODE_SIZE (shape.outer_mode));
|
||
gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
|
||
if (known_ge (shape.offset, size))
|
||
shape.offset -= size;
|
||
else
|
||
shape.offset += size;
|
||
}
|
||
|
||
if (valid_mode_changes[regno])
|
||
*valid_mode_changes[regno] &= simplifiable_subregs (shape);
|
||
else
|
||
{
|
||
valid_mode_changes[regno]
|
||
= XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
|
||
*valid_mode_changes[regno] = simplifiable_subregs (shape);
|
||
}
|
||
}
|
||
|
||
/* Call record_subregs_of_mode for all the subregs in X. */
|
||
static void
|
||
find_subregs_of_mode (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char * const fmt = GET_RTX_FORMAT (code);
|
||
int i;
|
||
|
||
if (code == SUBREG)
|
||
record_subregs_of_mode (x, false);
|
||
|
||
/* Time for some deep diving. */
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
find_subregs_of_mode (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
find_subregs_of_mode (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
init_subregs_of_mode (void)
|
||
{
|
||
basic_block bb;
|
||
rtx_insn *insn;
|
||
|
||
gcc_obstack_init (&valid_mode_changes_obstack);
|
||
valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
find_subregs_of_mode (PATTERN (insn));
|
||
df_ref def;
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
|
||
&& read_modify_subreg_p (DF_REF_REG (def)))
|
||
record_subregs_of_mode (DF_REF_REG (def), true);
|
||
}
|
||
}
|
||
|
||
const HARD_REG_SET *
|
||
valid_mode_changes_for_regno (unsigned int regno)
|
||
{
|
||
return valid_mode_changes[regno];
|
||
}
|
||
|
||
void
|
||
finish_subregs_of_mode (void)
|
||
{
|
||
XDELETEVEC (valid_mode_changes);
|
||
obstack_free (&valid_mode_changes_obstack, NULL);
|
||
}
|
||
|
||
/* Free all data attached to the structure. This isn't a destructor because
|
||
we don't want to run on exit. */
|
||
|
||
void
|
||
target_hard_regs::finalize ()
|
||
{
|
||
delete x_simplifiable_subregs;
|
||
}
|