1562 lines
49 KiB
C
1562 lines
49 KiB
C
/* Translation of isl AST to Gimple.
|
|
Copyright (C) 2014-2021 Free Software Foundation, Inc.
|
|
Contributed by Roman Gareev <gareevroman@gmail.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#define INCLUDE_ISL
|
|
|
|
#include "config.h"
|
|
|
|
#ifdef HAVE_isl
|
|
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "cfghooks.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "fold-const.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-eh.h"
|
|
#include "tree-ssa-loop.h"
|
|
#include "tree-ssa-operands.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "tree-pass.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-ssa-loop-manip.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-phinodes.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "ssa-iterators.h"
|
|
#include "tree-cfg.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "cfganal.h"
|
|
#include "value-prof.h"
|
|
#include "tree-ssa.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "graphite.h"
|
|
|
|
struct ast_build_info
|
|
{
|
|
ast_build_info()
|
|
: is_parallelizable(false)
|
|
{ }
|
|
bool is_parallelizable;
|
|
};
|
|
|
|
/* IVS_PARAMS maps isl's scattering and parameter identifiers
|
|
to corresponding trees. */
|
|
|
|
typedef hash_map<isl_id *, tree> ivs_params;
|
|
|
|
/* Free all memory allocated for isl's identifiers. */
|
|
|
|
static void ivs_params_clear (ivs_params &ip)
|
|
{
|
|
for (auto it = ip.begin (); it != ip.end (); ++it)
|
|
isl_id_free ((*it).first);
|
|
}
|
|
|
|
/* Set the "separate" option for the schedule node. */
|
|
|
|
static isl_schedule_node *
|
|
set_separate_option (__isl_take isl_schedule_node *node, void *user)
|
|
{
|
|
if (user)
|
|
return node;
|
|
|
|
if (isl_schedule_node_get_type (node) != isl_schedule_node_band)
|
|
return node;
|
|
|
|
/* Set the "separate" option unless it is set earlier to another option. */
|
|
if (isl_schedule_node_band_member_get_ast_loop_type (node, 0)
|
|
== isl_ast_loop_default)
|
|
return isl_schedule_node_band_member_set_ast_loop_type
|
|
(node, 0, isl_ast_loop_separate);
|
|
|
|
return node;
|
|
}
|
|
|
|
/* Print SCHEDULE under an AST form on file F. */
|
|
|
|
void
|
|
print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop)
|
|
{
|
|
isl_set *set = isl_set_params (isl_set_copy (scop->param_context));
|
|
isl_ast_build *context = isl_ast_build_from_context (set);
|
|
isl_ast_node *ast
|
|
= isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule));
|
|
isl_ast_build_free (context);
|
|
print_isl_ast (f, ast);
|
|
isl_ast_node_free (ast);
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop)
|
|
{
|
|
print_schedule_ast (stderr, s, scop);
|
|
}
|
|
|
|
enum phi_node_kind
|
|
{
|
|
unknown_phi,
|
|
loop_phi,
|
|
close_phi,
|
|
cond_phi
|
|
};
|
|
|
|
class translate_isl_ast_to_gimple
|
|
{
|
|
public:
|
|
translate_isl_ast_to_gimple (sese_info_p r);
|
|
edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip);
|
|
edge translate_isl_ast_node_for (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip);
|
|
edge translate_isl_ast_for_loop (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node_for,
|
|
edge next_e,
|
|
tree type, tree lb, tree ub,
|
|
ivs_params &ip);
|
|
edge translate_isl_ast_node_if (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip);
|
|
edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip);
|
|
edge translate_isl_ast_node_block (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip);
|
|
tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip);
|
|
tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip);
|
|
tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip);
|
|
tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip);
|
|
tree gcc_expression_from_isl_expression (tree type,
|
|
__isl_take isl_ast_expr *,
|
|
ivs_params &ip);
|
|
tree gcc_expression_from_isl_ast_expr_id (tree type,
|
|
__isl_keep isl_ast_expr *expr_id,
|
|
ivs_params &ip);
|
|
widest_int widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr);
|
|
tree gcc_expression_from_isl_expr_int (tree type,
|
|
__isl_take isl_ast_expr *expr);
|
|
tree gcc_expression_from_isl_expr_op (tree type,
|
|
__isl_take isl_ast_expr *expr,
|
|
ivs_params &ip);
|
|
struct loop *graphite_create_new_loop (edge entry_edge,
|
|
__isl_keep isl_ast_node *node_for,
|
|
loop_p outer, tree type,
|
|
tree lb, tree ub, ivs_params &ip);
|
|
edge graphite_create_new_guard (edge entry_edge,
|
|
__isl_take isl_ast_expr *if_cond,
|
|
ivs_params &ip);
|
|
void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
|
|
__isl_keep isl_ast_expr *user_expr, ivs_params &ip,
|
|
sese_l ®ion);
|
|
void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip);
|
|
__isl_give isl_ast_build *generate_isl_context (scop_p scop);
|
|
|
|
__isl_give isl_ast_node * scop_to_isl_ast (scop_p scop);
|
|
|
|
tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
|
|
vec<tree> iv_map);
|
|
void graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
|
|
vec<tree> iv_map);
|
|
edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e,
|
|
vec<tree> iv_map);
|
|
void set_rename (tree old_name, tree expr);
|
|
void gsi_insert_earliest (gimple_seq seq);
|
|
bool codegen_error_p () const { return codegen_error; }
|
|
|
|
void set_codegen_error ()
|
|
{
|
|
codegen_error = true;
|
|
gcc_assert (! flag_checking
|
|
|| param_graphite_allow_codegen_errors);
|
|
}
|
|
|
|
bool is_constant (tree op) const
|
|
{
|
|
return TREE_CODE (op) == INTEGER_CST
|
|
|| TREE_CODE (op) == REAL_CST
|
|
|| TREE_CODE (op) == COMPLEX_CST
|
|
|| TREE_CODE (op) == VECTOR_CST;
|
|
}
|
|
|
|
private:
|
|
/* The region to be translated. */
|
|
sese_info_p region;
|
|
|
|
/* This flag is set when an error occurred during the translation of isl AST
|
|
to Gimple. */
|
|
bool codegen_error;
|
|
|
|
/* A vector of all the edges at if_condition merge points. */
|
|
auto_vec<edge, 2> merge_points;
|
|
|
|
tree graphite_expr_type;
|
|
};
|
|
|
|
translate_isl_ast_to_gimple::translate_isl_ast_to_gimple (sese_info_p r)
|
|
: region (r), codegen_error (false)
|
|
{
|
|
/* We always try to use signed 128 bit types, but fall back to smaller types
|
|
in case a platform does not provide types of these sizes. In the future we
|
|
should use isl to derive the optimal type for each subexpression. */
|
|
int max_mode_int_precision
|
|
= GET_MODE_PRECISION (int_mode_for_size (MAX_FIXED_MODE_SIZE, 0).require ());
|
|
int graphite_expr_type_precision
|
|
= 128 <= max_mode_int_precision ? 128 : max_mode_int_precision;
|
|
graphite_expr_type
|
|
= build_nonstandard_integer_type (graphite_expr_type_precision, 0);
|
|
}
|
|
|
|
/* Return the tree variable that corresponds to the given isl ast identifier
|
|
expression (an isl_ast_expr of type isl_ast_expr_id).
|
|
|
|
FIXME: We should replace blind conversion of id's type with derivation
|
|
of the optimal type when we get the corresponding isl support. Blindly
|
|
converting type sizes may be problematic when we switch to smaller
|
|
types. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
gcc_expression_from_isl_ast_expr_id (tree type,
|
|
__isl_take isl_ast_expr *expr_id,
|
|
ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id);
|
|
isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id);
|
|
tree *tp = ip.get (tmp_isl_id);
|
|
isl_id_free (tmp_isl_id);
|
|
gcc_assert (tp && "Could not map isl_id to tree expression");
|
|
isl_ast_expr_free (expr_id);
|
|
tree t = *tp;
|
|
if (useless_type_conversion_p (type, TREE_TYPE (t)))
|
|
return t;
|
|
if (POINTER_TYPE_P (TREE_TYPE (t))
|
|
&& !POINTER_TYPE_P (type) && !ptrofftype_p (type))
|
|
t = fold_convert (sizetype, t);
|
|
return fold_convert (type, t);
|
|
}
|
|
|
|
/* Converts an isl_ast_expr_int expression E to a widest_int.
|
|
Raises a code generation error when the constant doesn't fit. */
|
|
|
|
widest_int translate_isl_ast_to_gimple::
|
|
widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr)
|
|
{
|
|
gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int);
|
|
isl_val *val = isl_ast_expr_get_val (expr);
|
|
size_t n = isl_val_n_abs_num_chunks (val, sizeof (HOST_WIDE_INT));
|
|
HOST_WIDE_INT *chunks = XALLOCAVEC (HOST_WIDE_INT, n);
|
|
if (n > WIDE_INT_MAX_ELTS
|
|
|| isl_val_get_abs_num_chunks (val, sizeof (HOST_WIDE_INT), chunks) == -1)
|
|
{
|
|
isl_val_free (val);
|
|
set_codegen_error ();
|
|
return 0;
|
|
}
|
|
widest_int wi = widest_int::from_array (chunks, n, true);
|
|
if (isl_val_is_neg (val))
|
|
wi = -wi;
|
|
isl_val_free (val);
|
|
return wi;
|
|
}
|
|
|
|
/* Converts an isl_ast_expr_int expression E to a GCC expression tree of
|
|
type TYPE. Raises a code generation error when the constant doesn't fit. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr)
|
|
{
|
|
widest_int wi = widest_int_from_isl_expr_int (expr);
|
|
isl_ast_expr_free (expr);
|
|
if (codegen_error_p ())
|
|
return NULL_TREE;
|
|
if (wi::min_precision (wi, TYPE_SIGN (type)) > TYPE_PRECISION (type))
|
|
{
|
|
set_codegen_error ();
|
|
return NULL_TREE;
|
|
}
|
|
return wide_int_to_tree (type, wi);
|
|
}
|
|
|
|
/* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of
|
|
type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
|
|
{
|
|
enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr);
|
|
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
|
|
tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
arg_expr = isl_ast_expr_get_op_arg (expr, 1);
|
|
isl_ast_expr_free (expr);
|
|
|
|
/* From our constraint generation we may get modulo operations that
|
|
we cannot represent explicitely but that are no-ops for TYPE.
|
|
Elide those. */
|
|
if ((expr_type == isl_ast_op_pdiv_r
|
|
|| expr_type == isl_ast_op_zdiv_r
|
|
|| expr_type == isl_ast_op_add)
|
|
&& isl_ast_expr_get_type (arg_expr) == isl_ast_expr_int
|
|
&& (wi::exact_log2 (widest_int_from_isl_expr_int (arg_expr))
|
|
>= TYPE_PRECISION (type)))
|
|
{
|
|
isl_ast_expr_free (arg_expr);
|
|
return tree_lhs_expr;
|
|
}
|
|
|
|
tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
if (codegen_error_p ())
|
|
return NULL_TREE;
|
|
|
|
switch (expr_type)
|
|
{
|
|
case isl_ast_op_add:
|
|
return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_sub:
|
|
return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_mul:
|
|
return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_div:
|
|
return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_pdiv_q:
|
|
return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_zdiv_r:
|
|
case isl_ast_op_pdiv_r:
|
|
return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_fdiv_q:
|
|
return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_and:
|
|
return fold_build2 (TRUTH_ANDIF_EXPR, type,
|
|
tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_or:
|
|
return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_eq:
|
|
return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_le:
|
|
return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_lt:
|
|
return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_ge:
|
|
return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
case isl_ast_op_gt:
|
|
return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of
|
|
type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
|
|
{
|
|
enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr);
|
|
gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select);
|
|
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
|
|
tree a = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
arg_expr = isl_ast_expr_get_op_arg (expr, 1);
|
|
tree b = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
arg_expr = isl_ast_expr_get_op_arg (expr, 2);
|
|
tree c = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
isl_ast_expr_free (expr);
|
|
|
|
if (codegen_error_p ())
|
|
return NULL_TREE;
|
|
|
|
return fold_build3 (COND_EXPR, type, a,
|
|
rewrite_to_non_trapping_overflow (b),
|
|
rewrite_to_non_trapping_overflow (c));
|
|
}
|
|
|
|
/* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of
|
|
type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus);
|
|
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
|
|
tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
isl_ast_expr_free (expr);
|
|
return codegen_error_p () ? NULL_TREE
|
|
: fold_build1 (NEGATE_EXPR, type, tree_expr);
|
|
}
|
|
|
|
/* Converts an isl_ast_expr_op expression E with unknown number of arguments
|
|
to a GCC expression tree of type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
|
|
{
|
|
enum tree_code op_code;
|
|
switch (isl_ast_expr_get_op_type (expr))
|
|
{
|
|
case isl_ast_op_max:
|
|
op_code = MAX_EXPR;
|
|
break;
|
|
|
|
case isl_ast_op_min:
|
|
op_code = MIN_EXPR;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
|
|
tree res = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
|
|
if (codegen_error_p ())
|
|
{
|
|
isl_ast_expr_free (expr);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
int i;
|
|
for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++)
|
|
{
|
|
arg_expr = isl_ast_expr_get_op_arg (expr, i);
|
|
tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
|
|
if (codegen_error_p ())
|
|
{
|
|
isl_ast_expr_free (expr);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
res = fold_build2 (op_code, type, res, t);
|
|
}
|
|
isl_ast_expr_free (expr);
|
|
return res;
|
|
}
|
|
|
|
/* Converts an isl_ast_expr_op expression E to a GCC expression tree of
|
|
type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip)
|
|
{
|
|
if (codegen_error_p ())
|
|
{
|
|
isl_ast_expr_free (expr);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op);
|
|
switch (isl_ast_expr_get_op_type (expr))
|
|
{
|
|
/* These isl ast expressions are not supported yet. */
|
|
case isl_ast_op_error:
|
|
case isl_ast_op_call:
|
|
case isl_ast_op_and_then:
|
|
case isl_ast_op_or_else:
|
|
gcc_unreachable ();
|
|
|
|
case isl_ast_op_max:
|
|
case isl_ast_op_min:
|
|
return nary_op_to_tree (type, expr, ip);
|
|
|
|
case isl_ast_op_add:
|
|
case isl_ast_op_sub:
|
|
case isl_ast_op_mul:
|
|
case isl_ast_op_div:
|
|
case isl_ast_op_pdiv_q:
|
|
case isl_ast_op_pdiv_r:
|
|
case isl_ast_op_fdiv_q:
|
|
case isl_ast_op_zdiv_r:
|
|
case isl_ast_op_and:
|
|
case isl_ast_op_or:
|
|
case isl_ast_op_eq:
|
|
case isl_ast_op_le:
|
|
case isl_ast_op_lt:
|
|
case isl_ast_op_ge:
|
|
case isl_ast_op_gt:
|
|
return binary_op_to_tree (type, expr, ip);
|
|
|
|
case isl_ast_op_minus:
|
|
return unary_op_to_tree (type, expr, ip);
|
|
|
|
case isl_ast_op_cond:
|
|
case isl_ast_op_select:
|
|
return ternary_op_to_tree (type, expr, ip);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Converts an isl AST expression E back to a GCC expression tree of
|
|
type TYPE. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr,
|
|
ivs_params &ip)
|
|
{
|
|
if (codegen_error_p ())
|
|
{
|
|
isl_ast_expr_free (expr);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
switch (isl_ast_expr_get_type (expr))
|
|
{
|
|
case isl_ast_expr_id:
|
|
return gcc_expression_from_isl_ast_expr_id (type, expr, ip);
|
|
|
|
case isl_ast_expr_int:
|
|
return gcc_expression_from_isl_expr_int (type, expr);
|
|
|
|
case isl_ast_expr_op:
|
|
return gcc_expression_from_isl_expr_op (type, expr, ip);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Creates a new LOOP corresponding to isl_ast_node_for. Inserts an
|
|
induction variable for the new LOOP. New LOOP is attached to CFG
|
|
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
|
|
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
|
|
isl's scattering name to the induction variable created for the
|
|
loop of STMT. The new induction variable is inserted in the NEWIVS
|
|
vector and is of type TYPE. */
|
|
|
|
struct loop *translate_isl_ast_to_gimple::
|
|
graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for,
|
|
loop_p outer, tree type, tree lb, tree ub,
|
|
ivs_params &ip)
|
|
{
|
|
isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for);
|
|
tree stride = gcc_expression_from_isl_expression (type, for_inc, ip);
|
|
|
|
/* To fail code generation, we generate wrong code until we discard it. */
|
|
if (codegen_error_p ())
|
|
stride = integer_zero_node;
|
|
|
|
tree ivvar = create_tmp_var (type, "graphite_IV");
|
|
tree iv, iv_after_increment;
|
|
loop_p loop = create_empty_loop_on_edge
|
|
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
|
|
outer ? outer : entry_edge->src->loop_father);
|
|
|
|
isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for);
|
|
isl_id *id = isl_ast_expr_get_id (for_iterator);
|
|
bool existed_p = ip.put (id, iv);
|
|
if (existed_p)
|
|
isl_id_free (id);
|
|
isl_ast_expr_free (for_iterator);
|
|
return loop;
|
|
}
|
|
|
|
/* Create the loop for a isl_ast_node_for.
|
|
|
|
- NEXT_E is the edge where new generated code should be attached. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast_for_loop (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node_for, edge next_e,
|
|
tree type, tree lb, tree ub,
|
|
ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
|
|
struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop,
|
|
type, lb, ub, ip);
|
|
edge last_e = single_exit (loop);
|
|
edge to_body = single_succ_edge (loop->header);
|
|
basic_block after = to_body->dest;
|
|
|
|
/* Translate the body of the loop. */
|
|
isl_ast_node *for_body = isl_ast_node_for_get_body (node_for);
|
|
next_e = translate_isl_ast (loop, for_body, to_body, ip);
|
|
isl_ast_node_free (for_body);
|
|
|
|
/* Early return if we failed to translate loop body. */
|
|
if (!next_e || codegen_error_p ())
|
|
return NULL;
|
|
|
|
if (next_e->dest != after)
|
|
redirect_edge_succ_nodup (next_e, after);
|
|
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
|
|
|
|
if (flag_loop_parallelize_all)
|
|
{
|
|
isl_id *id = isl_ast_node_get_annotation (node_for);
|
|
gcc_assert (id);
|
|
ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
|
|
loop->can_be_parallel = for_info->is_parallelizable;
|
|
free (for_info);
|
|
isl_id_free (id);
|
|
}
|
|
|
|
return last_e;
|
|
}
|
|
|
|
/* We use this function to get the upper bound because of the form,
|
|
which is used by isl to represent loops:
|
|
|
|
for (iterator = init; cond; iterator += inc)
|
|
|
|
{
|
|
|
|
...
|
|
|
|
}
|
|
|
|
The loop condition is an arbitrary expression, which contains the
|
|
current loop iterator.
|
|
|
|
(e.g. iterator + 3 < B && C > iterator + A)
|
|
|
|
We have to know the upper bound of the iterator to generate a loop
|
|
in Gimple form. It can be obtained from the special representation
|
|
of the loop condition, which is generated by isl,
|
|
if the ast_build_atomic_upper_bound option is set. In this case,
|
|
isl generates a loop condition that consists of the current loop
|
|
iterator, + an operator (< or <=) and an expression not involving
|
|
the iterator, which is processed and returned by this function.
|
|
|
|
(e.g iterator <= upper-bound-expression-without-iterator) */
|
|
|
|
static __isl_give isl_ast_expr *
|
|
get_upper_bound (__isl_keep isl_ast_node *node_for)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
|
|
isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for);
|
|
gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op);
|
|
isl_ast_expr *res;
|
|
switch (isl_ast_expr_get_op_type (for_cond))
|
|
{
|
|
case isl_ast_op_le:
|
|
res = isl_ast_expr_get_op_arg (for_cond, 1);
|
|
break;
|
|
|
|
case isl_ast_op_lt:
|
|
{
|
|
/* (iterator < ub) => (iterator <= ub - 1). */
|
|
isl_val *one =
|
|
isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1);
|
|
isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1);
|
|
res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
isl_ast_expr_free (for_cond);
|
|
return res;
|
|
}
|
|
|
|
/* Translates an isl_ast_node_for to Gimple. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for);
|
|
tree type = graphite_expr_type;
|
|
|
|
isl_ast_expr *for_init = isl_ast_node_for_get_init (node);
|
|
tree lb = gcc_expression_from_isl_expression (type, for_init, ip);
|
|
/* To fail code generation, we generate wrong code until we discard it. */
|
|
if (codegen_error_p ())
|
|
lb = integer_zero_node;
|
|
|
|
isl_ast_expr *upper_bound = get_upper_bound (node);
|
|
tree ub = gcc_expression_from_isl_expression (type, upper_bound, ip);
|
|
/* To fail code generation, we generate wrong code until we discard it. */
|
|
if (codegen_error_p ())
|
|
ub = integer_zero_node;
|
|
|
|
edge last_e = single_succ_edge (split_edge (next_e));
|
|
|
|
/* Compensate for the fact that we emit a do { } while loop from
|
|
a for ISL AST.
|
|
??? We often miss constraints on niter because the SESE region
|
|
doesn't cover loop header copies. Ideally we'd add constraints
|
|
for all relevant dominating conditions. */
|
|
if (TREE_CODE (lb) == INTEGER_CST && TREE_CODE (ub) == INTEGER_CST
|
|
&& tree_int_cst_compare (lb, ub) <= 0)
|
|
;
|
|
else
|
|
{
|
|
tree one = build_one_cst (POINTER_TYPE_P (type) ? sizetype : type);
|
|
/* Adding +1 and using LT_EXPR helps with loop latches that have a
|
|
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this
|
|
becomes 2^k-1 due to integer overflow, and the condition lb <= ub
|
|
is true, even if we do not want this. However lb < ub + 1 is false,
|
|
as expected. */
|
|
tree ub_one = fold_build2 (POINTER_TYPE_P (type)
|
|
? POINTER_PLUS_EXPR : PLUS_EXPR,
|
|
type, unshare_expr (ub), one);
|
|
create_empty_if_region_on_edge (next_e,
|
|
fold_build2 (LT_EXPR, boolean_type_node,
|
|
unshare_expr (lb), ub_one));
|
|
next_e = get_true_edge_from_guard_bb (next_e->dest);
|
|
}
|
|
|
|
translate_isl_ast_for_loop (context_loop, node, next_e,
|
|
type, lb, ub, ip);
|
|
return last_e;
|
|
}
|
|
|
|
/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction
|
|
variables of the loops around GBB in SESE.
|
|
|
|
FIXME: Instead of using a vec<tree> that maps each loop id to a possible
|
|
chrec, we could consider using a map<int, tree> that maps loop ids to the
|
|
corresponding tree expressions. */
|
|
|
|
void translate_isl_ast_to_gimple::
|
|
build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
|
|
__isl_keep isl_ast_expr *user_expr, ivs_params &ip,
|
|
sese_l ®ion)
|
|
{
|
|
gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op &&
|
|
isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call);
|
|
int i;
|
|
isl_ast_expr *arg_expr;
|
|
for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++)
|
|
{
|
|
arg_expr = isl_ast_expr_get_op_arg (user_expr, i);
|
|
tree type = graphite_expr_type;
|
|
tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
|
|
|
|
/* To fail code generation, we generate wrong code until we discard it. */
|
|
if (codegen_error_p ())
|
|
t = integer_zero_node;
|
|
|
|
loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1);
|
|
iv_map[old_loop->num] = t;
|
|
}
|
|
}
|
|
|
|
/* Translates an isl_ast_node_user to Gimple.
|
|
|
|
FIXME: We should remove iv_map.create (loop->num + 1), if it is possible. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user);
|
|
|
|
isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node);
|
|
isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0);
|
|
gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id);
|
|
|
|
isl_id *name_id = isl_ast_expr_get_id (name_expr);
|
|
poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id);
|
|
gcc_assert (pbb);
|
|
|
|
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
|
|
|
|
isl_ast_expr_free (name_expr);
|
|
isl_id_free (name_id);
|
|
|
|
gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
|
|
"The entry block should not even appear within a scop");
|
|
|
|
const int nb_loops = number_of_loops (cfun);
|
|
vec<tree> iv_map;
|
|
iv_map.create (nb_loops);
|
|
iv_map.safe_grow_cleared (nb_loops, true);
|
|
|
|
build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region);
|
|
isl_ast_expr_free (user_expr);
|
|
|
|
basic_block old_bb = GBB_BB (gbb);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n",
|
|
old_bb->index, next_e->src->index, next_e->dest->index);
|
|
print_loops_bb (dump_file, GBB_BB (gbb), 0, 3);
|
|
}
|
|
|
|
next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map);
|
|
|
|
iv_map.release ();
|
|
|
|
if (codegen_error_p ())
|
|
return NULL;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[codegen] (after copy) new basic block\n");
|
|
print_loops_bb (dump_file, next_e->src, 0, 3);
|
|
}
|
|
|
|
return next_e;
|
|
}
|
|
|
|
/* Translates an isl_ast_node_block to Gimple. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast_node_block (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block);
|
|
isl_ast_node_list *node_list = isl_ast_node_block_get_children (node);
|
|
int i;
|
|
for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++)
|
|
{
|
|
isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i);
|
|
next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip);
|
|
isl_ast_node_free (tmp_node);
|
|
}
|
|
isl_ast_node_list_free (node_list);
|
|
return next_e;
|
|
}
|
|
|
|
/* Creates a new if region corresponding to isl's cond. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond,
|
|
ivs_params &ip)
|
|
{
|
|
tree type = graphite_expr_type;
|
|
tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip);
|
|
|
|
/* To fail code generation, we generate wrong code until we discard it. */
|
|
if (codegen_error_p ())
|
|
cond_expr = integer_zero_node;
|
|
|
|
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
|
|
return exit_edge;
|
|
}
|
|
|
|
/* Translates an isl_ast_node_if to Gimple. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast_node_if (loop_p context_loop,
|
|
__isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip)
|
|
{
|
|
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if);
|
|
isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node);
|
|
edge last_e = graphite_create_new_guard (next_e, if_cond, ip);
|
|
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
|
|
merge_points.safe_push (last_e);
|
|
|
|
isl_ast_node *then_node = isl_ast_node_if_get_then (node);
|
|
translate_isl_ast (context_loop, then_node, true_e, ip);
|
|
isl_ast_node_free (then_node);
|
|
|
|
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
|
|
isl_ast_node *else_node = isl_ast_node_if_get_else (node);
|
|
if (isl_ast_node_get_type (else_node) != isl_ast_node_error)
|
|
translate_isl_ast (context_loop, else_node, false_e, ip);
|
|
|
|
isl_ast_node_free (else_node);
|
|
return last_e;
|
|
}
|
|
|
|
/* Translates an isl AST node NODE to GCC representation in the
|
|
context of a SESE. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
|
|
edge next_e, ivs_params &ip)
|
|
{
|
|
if (codegen_error_p ())
|
|
return NULL;
|
|
|
|
switch (isl_ast_node_get_type (node))
|
|
{
|
|
case isl_ast_node_error:
|
|
gcc_unreachable ();
|
|
|
|
case isl_ast_node_for:
|
|
return translate_isl_ast_node_for (context_loop, node,
|
|
next_e, ip);
|
|
|
|
case isl_ast_node_if:
|
|
return translate_isl_ast_node_if (context_loop, node,
|
|
next_e, ip);
|
|
|
|
case isl_ast_node_user:
|
|
return translate_isl_ast_node_user (node, next_e, ip);
|
|
|
|
case isl_ast_node_block:
|
|
return translate_isl_ast_node_block (context_loop, node,
|
|
next_e, ip);
|
|
|
|
case isl_ast_node_mark:
|
|
{
|
|
isl_ast_node *n = isl_ast_node_mark_get_node (node);
|
|
edge e = translate_isl_ast (context_loop, n, next_e, ip);
|
|
isl_ast_node_free (n);
|
|
return e;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
|
|
When OLD_NAME and EXPR are the same we assert. */
|
|
|
|
void translate_isl_ast_to_gimple::
|
|
set_rename (tree old_name, tree expr)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "[codegen] setting rename: old_name = ");
|
|
print_generic_expr (dump_file, old_name);
|
|
fprintf (dump_file, ", new decl = ");
|
|
print_generic_expr (dump_file, expr);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
bool res = region->rename_map->put (old_name, expr);
|
|
gcc_assert (! res);
|
|
}
|
|
|
|
/* Return an iterator to the instructions comes last in the execution order.
|
|
Either GSI1 and GSI2 should belong to the same basic block or one of their
|
|
respective basic blocks should dominate the other. */
|
|
|
|
gimple_stmt_iterator
|
|
later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
|
|
{
|
|
basic_block bb1 = gsi_bb (gsi1);
|
|
basic_block bb2 = gsi_bb (gsi2);
|
|
|
|
/* Find the iterator which is the latest. */
|
|
if (bb1 == bb2)
|
|
{
|
|
gimple *stmt1 = gsi_stmt (gsi1);
|
|
gimple *stmt2 = gsi_stmt (gsi2);
|
|
|
|
if (stmt1 != NULL && stmt2 != NULL)
|
|
{
|
|
bool is_phi1 = gimple_code (stmt1) == GIMPLE_PHI;
|
|
bool is_phi2 = gimple_code (stmt2) == GIMPLE_PHI;
|
|
|
|
if (is_phi1 != is_phi2)
|
|
return is_phi1 ? gsi2 : gsi1;
|
|
}
|
|
|
|
/* For empty basic blocks gsis point to the end of the sequence. Since
|
|
there is no operator== defined for gimple_stmt_iterator and for gsis
|
|
not pointing to a valid statement gsi_next would assert. */
|
|
gimple_stmt_iterator gsi = gsi1;
|
|
do {
|
|
if (gsi_stmt (gsi) == gsi_stmt (gsi2))
|
|
return gsi2;
|
|
gsi_next (&gsi);
|
|
} while (!gsi_end_p (gsi));
|
|
|
|
return gsi1;
|
|
}
|
|
|
|
/* Find the basic block closest to the basic block which defines stmt. */
|
|
if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
|
|
return gsi1;
|
|
|
|
gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
|
|
return gsi2;
|
|
}
|
|
|
|
/* Insert each statement from SEQ at its earliest insertion p. */
|
|
|
|
void translate_isl_ast_to_gimple::
|
|
gsi_insert_earliest (gimple_seq seq)
|
|
{
|
|
update_modified_stmts (seq);
|
|
sese_l &codegen_region = region->if_region->true_region->region;
|
|
basic_block begin_bb = get_entry_bb (codegen_region);
|
|
|
|
/* Inserting the gimple statements in a vector because gimple_seq behave
|
|
in strage ways when inserting the stmts from it into different basic
|
|
blocks one at a time. */
|
|
auto_vec<gimple *, 3> stmts;
|
|
for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
stmts.safe_push (gsi_stmt (gsi));
|
|
|
|
int i;
|
|
gimple *use_stmt;
|
|
FOR_EACH_VEC_ELT (stmts, i, use_stmt)
|
|
{
|
|
gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
|
|
gimple_stmt_iterator gsi_def_stmt = gsi_start_nondebug_bb (begin_bb);
|
|
|
|
use_operand_p use_p;
|
|
ssa_op_iter op_iter;
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
|
|
{
|
|
/* Iterator to the current def of use_p. For function parameters or
|
|
anything where def is not found, insert at the beginning of the
|
|
generated region. */
|
|
gimple_stmt_iterator gsi_stmt = gsi_def_stmt;
|
|
|
|
tree op = USE_FROM_PTR (use_p);
|
|
gimple *stmt = SSA_NAME_DEF_STMT (op);
|
|
if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
|
|
gsi_stmt = gsi_for_stmt (stmt);
|
|
|
|
/* For region parameters, insert at the beginning of the generated
|
|
region. */
|
|
if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
|
|
gsi_stmt = gsi_def_stmt;
|
|
|
|
gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
|
|
}
|
|
|
|
if (!gsi_stmt (gsi_def_stmt))
|
|
{
|
|
gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
|
|
gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
|
|
}
|
|
else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
|
|
{
|
|
gimple_stmt_iterator bsi
|
|
= gsi_start_nondebug_bb (gsi_bb (gsi_def_stmt));
|
|
/* Insert right after the PHI statements. */
|
|
gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
|
|
}
|
|
else
|
|
gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "[codegen] inserting statement in BB %d: ",
|
|
gimple_bb (use_stmt)->index);
|
|
print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For ops which are scev_analyzeable, we can regenerate a new name from its
|
|
scalar evolution around LOOP. */
|
|
|
|
tree translate_isl_ast_to_gimple::
|
|
get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
|
|
vec<tree> iv_map)
|
|
{
|
|
tree scev = cached_scalar_evolution_in_region (region->region,
|
|
loop, old_name);
|
|
|
|
/* At this point we should know the exact scev for each
|
|
scalar SSA_NAME used in the scop: all the other scalar
|
|
SSA_NAMEs should have been translated out of SSA using
|
|
arrays with one element. */
|
|
tree new_expr;
|
|
if (chrec_contains_undetermined (scev))
|
|
{
|
|
set_codegen_error ();
|
|
return build_zero_cst (TREE_TYPE (old_name));
|
|
}
|
|
|
|
new_expr = chrec_apply_map (scev, iv_map);
|
|
|
|
/* The apply should produce an expression tree containing
|
|
the uses of the new induction variables. We should be
|
|
able to use new_expr instead of the old_name in the newly
|
|
generated loop nest. */
|
|
if (chrec_contains_undetermined (new_expr)
|
|
|| tree_contains_chrecs (new_expr, NULL))
|
|
{
|
|
set_codegen_error ();
|
|
return build_zero_cst (TREE_TYPE (old_name));
|
|
}
|
|
|
|
/* Replace the old_name with the new_expr. */
|
|
return force_gimple_operand (unshare_expr (new_expr), stmts,
|
|
true, NULL_TREE);
|
|
}
|
|
|
|
|
|
/* Return true if STMT should be copied from region to the new code-generated
|
|
region. LABELs, CONDITIONS, induction-variables and region parameters need
|
|
not be copied. */
|
|
|
|
static bool
|
|
should_copy_to_new_region (gimple *stmt, sese_info_p region)
|
|
{
|
|
/* Do not copy labels or conditions. */
|
|
if (gimple_code (stmt) == GIMPLE_LABEL
|
|
|| gimple_code (stmt) == GIMPLE_COND)
|
|
return false;
|
|
|
|
tree lhs;
|
|
/* Do not copy induction variables. */
|
|
if (is_gimple_assign (stmt)
|
|
&& (lhs = gimple_assign_lhs (stmt))
|
|
&& TREE_CODE (lhs) == SSA_NAME
|
|
&& scev_analyzable_p (lhs, region->region)
|
|
/* But to code-generate liveouts - liveout PHI generation is
|
|
in generic sese.c code that cannot do code generation. */
|
|
&& ! bitmap_bit_p (region->liveout, SSA_NAME_VERSION (lhs)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Duplicates the statements of basic block BB into basic block NEW_BB
|
|
and compute the new induction variables according to the IV_MAP. */
|
|
|
|
void translate_isl_ast_to_gimple::
|
|
graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
|
|
vec<tree> iv_map)
|
|
{
|
|
/* Iterator poining to the place where new statement (s) will be inserted. */
|
|
gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
|
|
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
if (!should_copy_to_new_region (stmt, region))
|
|
continue;
|
|
|
|
/* Create a new copy of STMT and duplicate STMT's virtual
|
|
operands. */
|
|
gimple *copy = gimple_copy (stmt);
|
|
|
|
/* Rather than not copying debug stmts we reset them.
|
|
??? Where we can rewrite uses without inserting new
|
|
stmts we could simply do that. */
|
|
if (is_gimple_debug (copy))
|
|
{
|
|
if (gimple_debug_bind_p (copy))
|
|
gimple_debug_bind_reset_value (copy);
|
|
else if (gimple_debug_source_bind_p (copy)
|
|
|| gimple_debug_nonbind_marker_p (copy))
|
|
;
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
maybe_duplicate_eh_stmt (copy, stmt);
|
|
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
|
|
|
|
/* Crete new names for each def in the copied stmt. */
|
|
def_operand_p def_p;
|
|
ssa_op_iter op_iter;
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
|
|
{
|
|
tree old_name = DEF_FROM_PTR (def_p);
|
|
create_new_def_for (old_name, copy, def_p);
|
|
}
|
|
|
|
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "[codegen] inserting statement: ");
|
|
print_gimple_stmt (dump_file, copy, 0);
|
|
}
|
|
|
|
/* For each SCEV analyzable SSA_NAME, rename their usage. */
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
if (!is_gimple_debug (copy))
|
|
{
|
|
bool changed = false;
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE)
|
|
{
|
|
tree old_name = USE_FROM_PTR (use_p);
|
|
|
|
if (TREE_CODE (old_name) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (old_name)
|
|
|| ! scev_analyzable_p (old_name, region->region))
|
|
continue;
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree new_name = get_rename_from_scev (old_name, &stmts,
|
|
bb->loop_father, iv_map);
|
|
if (! codegen_error_p ())
|
|
gsi_insert_earliest (stmts);
|
|
replace_exp (use_p, new_name);
|
|
changed = true;
|
|
}
|
|
if (changed)
|
|
fold_stmt_inplace (&gsi_tgt);
|
|
}
|
|
|
|
update_stmt (copy);
|
|
}
|
|
}
|
|
|
|
|
|
/* Copies BB and includes in the copied BB all the statements that can
|
|
be reached following the use-def chains from the memory accesses,
|
|
and returns the next edge following this new block. */
|
|
|
|
edge translate_isl_ast_to_gimple::
|
|
copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map)
|
|
{
|
|
basic_block new_bb = split_edge (next_e);
|
|
gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
|
|
for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
|
|
gsi_next (&psi))
|
|
{
|
|
gphi *phi = psi.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res)
|
|
|| scev_analyzable_p (res, region->region))
|
|
continue;
|
|
|
|
tree new_phi_def;
|
|
tree *rename = region->rename_map->get (res);
|
|
if (! rename)
|
|
{
|
|
new_phi_def = create_tmp_reg (TREE_TYPE (res));
|
|
set_rename (res, new_phi_def);
|
|
}
|
|
else
|
|
new_phi_def = *rename;
|
|
|
|
gassign *ass = gimple_build_assign (NULL_TREE, new_phi_def);
|
|
create_new_def_for (res, ass, NULL);
|
|
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
|
|
}
|
|
|
|
graphite_copy_stmts_from_block (bb, new_bb, iv_map);
|
|
|
|
/* Insert out-of SSA copies on the original BB outgoing edges. */
|
|
gsi_tgt = gsi_last_bb (new_bb);
|
|
basic_block bb_for_succs = bb;
|
|
if (bb_for_succs == bb_for_succs->loop_father->latch
|
|
&& bb_in_sese_p (bb_for_succs, region->region)
|
|
&& sese_trivially_empty_bb_p (bb_for_succs))
|
|
bb_for_succs = NULL;
|
|
while (bb_for_succs)
|
|
{
|
|
basic_block latch = NULL;
|
|
edge_iterator ei;
|
|
edge e;
|
|
FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
|
|
{
|
|
for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
|
|
gsi_next (&psi))
|
|
{
|
|
gphi *phi = psi.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res)
|
|
|| scev_analyzable_p (res, region->region))
|
|
continue;
|
|
|
|
tree new_phi_def;
|
|
tree *rename = region->rename_map->get (res);
|
|
if (! rename)
|
|
{
|
|
new_phi_def = create_tmp_reg (TREE_TYPE (res));
|
|
set_rename (res, new_phi_def);
|
|
}
|
|
else
|
|
new_phi_def = *rename;
|
|
|
|
tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& scev_analyzable_p (arg, region->region))
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree new_name = get_rename_from_scev (arg, &stmts,
|
|
bb->loop_father,
|
|
iv_map);
|
|
if (! codegen_error_p ())
|
|
gsi_insert_earliest (stmts);
|
|
arg = new_name;
|
|
}
|
|
gassign *ass = gimple_build_assign (new_phi_def, arg);
|
|
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
|
|
}
|
|
if (e->dest == bb_for_succs->loop_father->latch
|
|
&& bb_in_sese_p (e->dest, region->region)
|
|
&& sese_trivially_empty_bb_p (e->dest))
|
|
latch = e->dest;
|
|
}
|
|
bb_for_succs = latch;
|
|
}
|
|
|
|
return single_succ_edge (new_bb);
|
|
}
|
|
|
|
/* Add isl's parameter identifiers and corresponding trees to ivs_params. */
|
|
|
|
void translate_isl_ast_to_gimple::
|
|
add_parameters_to_ivs_params (scop_p scop, ivs_params &ip)
|
|
{
|
|
sese_info_p region = scop->scop_info;
|
|
unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
|
|
gcc_assert (nb_parameters == sese_nb_params (region));
|
|
unsigned i;
|
|
tree param;
|
|
FOR_EACH_VEC_ELT (region->params, i, param)
|
|
{
|
|
isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
|
|
isl_dim_param, i);
|
|
bool existed_p = ip.put (tmp_id, param);
|
|
gcc_assert (!existed_p);
|
|
}
|
|
}
|
|
|
|
|
|
/* Generates a build, which specifies the constraints on the parameters. */
|
|
|
|
__isl_give isl_ast_build *translate_isl_ast_to_gimple::
|
|
generate_isl_context (scop_p scop)
|
|
{
|
|
isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
|
|
return isl_ast_build_from_context (context_isl);
|
|
}
|
|
|
|
/* This method is executed before the construction of a for node. */
|
|
__isl_give isl_id *
|
|
ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
|
|
{
|
|
isl_union_map *dependences = (isl_union_map *) user;
|
|
ast_build_info *for_info = XNEW (struct ast_build_info);
|
|
isl_union_map *schedule = isl_ast_build_get_schedule (build);
|
|
isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
|
|
int dimension = isl_space_dim (schedule_space, isl_dim_out);
|
|
for_info->is_parallelizable =
|
|
!carries_deps (schedule, dependences, dimension);
|
|
isl_union_map_free (schedule);
|
|
isl_space_free (schedule_space);
|
|
isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
|
|
return id;
|
|
}
|
|
|
|
/* Generate isl AST from schedule of SCOP. */
|
|
|
|
__isl_give isl_ast_node *translate_isl_ast_to_gimple::
|
|
scop_to_isl_ast (scop_p scop)
|
|
{
|
|
int old_err = isl_options_get_on_error (scop->isl_context);
|
|
int old_max_operations = isl_ctx_get_max_operations (scop->isl_context);
|
|
int max_operations = param_max_isl_operations;
|
|
if (max_operations)
|
|
isl_ctx_set_max_operations (scop->isl_context, max_operations);
|
|
isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE);
|
|
|
|
gcc_assert (scop->transformed_schedule);
|
|
|
|
/* Set the separate option to reduce control flow overhead. */
|
|
isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up
|
|
(isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL);
|
|
isl_ast_build *context_isl = generate_isl_context (scop);
|
|
|
|
if (flag_loop_parallelize_all)
|
|
{
|
|
scop_get_dependences (scop);
|
|
context_isl =
|
|
isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
|
|
scop->dependence);
|
|
}
|
|
|
|
isl_ast_node *ast_isl = isl_ast_build_node_from_schedule
|
|
(context_isl, schedule);
|
|
isl_ast_build_free (context_isl);
|
|
|
|
isl_options_set_on_error (scop->isl_context, old_err);
|
|
isl_ctx_reset_operations (scop->isl_context);
|
|
isl_ctx_set_max_operations (scop->isl_context, old_max_operations);
|
|
if (isl_ctx_last_error (scop->isl_context) != isl_error_none)
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_user_location_t loc = find_loop_location
|
|
(scop->scop_info->region.entry->dest->loop_father);
|
|
if (isl_ctx_last_error (scop->isl_context) == isl_error_quota)
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
|
"loop nest not optimized, AST generation timed out "
|
|
"after %d operations [--param max-isl-operations]\n",
|
|
max_operations);
|
|
else
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
|
"loop nest not optimized, ISL AST generation "
|
|
"signalled an error\n");
|
|
}
|
|
isl_ast_node_free (ast_isl);
|
|
return NULL;
|
|
}
|
|
|
|
return ast_isl;
|
|
}
|
|
|
|
/* Generate out-of-SSA copies for the entry edge FALSE_ENTRY/TRUE_ENTRY
|
|
in REGION. */
|
|
|
|
static void
|
|
generate_entry_out_of_ssa_copies (edge false_entry,
|
|
edge true_entry,
|
|
sese_info_p region)
|
|
{
|
|
gimple_stmt_iterator gsi_tgt = gsi_start_bb (true_entry->dest);
|
|
for (gphi_iterator psi = gsi_start_phis (false_entry->dest);
|
|
!gsi_end_p (psi); gsi_next (&psi))
|
|
{
|
|
gphi *phi = psi.phi ();
|
|
tree res = gimple_phi_result (phi);
|
|
if (virtual_operand_p (res))
|
|
continue;
|
|
/* When there's no out-of-SSA var registered do not bother
|
|
to create one. */
|
|
tree *rename = region->rename_map->get (res);
|
|
if (! rename)
|
|
continue;
|
|
tree new_phi_def = *rename;
|
|
gassign *ass = gimple_build_assign (new_phi_def,
|
|
PHI_ARG_DEF_FROM_EDGE (phi,
|
|
false_entry));
|
|
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
|
|
}
|
|
}
|
|
|
|
/* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP.
|
|
Return true if code generation succeeded. */
|
|
|
|
bool
|
|
graphite_regenerate_ast_isl (scop_p scop)
|
|
{
|
|
sese_info_p region = scop->scop_info;
|
|
translate_isl_ast_to_gimple t (region);
|
|
|
|
ifsese if_region = NULL;
|
|
isl_ast_node *root_node;
|
|
ivs_params ip;
|
|
|
|
timevar_push (TV_GRAPHITE_CODE_GEN);
|
|
t.add_parameters_to_ivs_params (scop, ip);
|
|
root_node = t.scop_to_isl_ast (scop);
|
|
if (! root_node)
|
|
{
|
|
ivs_params_clear (ip);
|
|
timevar_pop (TV_GRAPHITE_CODE_GEN);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[scheduler] original schedule:\n");
|
|
print_isl_schedule (dump_file, scop->original_schedule);
|
|
fprintf (dump_file, "[scheduler] isl transformed schedule:\n");
|
|
print_isl_schedule (dump_file, scop->transformed_schedule);
|
|
|
|
fprintf (dump_file, "[scheduler] original ast:\n");
|
|
print_schedule_ast (dump_file, scop->original_schedule, scop);
|
|
fprintf (dump_file, "[scheduler] AST generated by isl:\n");
|
|
print_isl_ast (dump_file, root_node);
|
|
}
|
|
|
|
if_region = move_sese_in_condition (region);
|
|
region->if_region = if_region;
|
|
|
|
loop_p context_loop = region->region.entry->src->loop_father;
|
|
edge e = single_succ_edge (if_region->true_region->region.entry->dest);
|
|
basic_block bb = split_edge (e);
|
|
|
|
/* Update the true_region exit edge. */
|
|
region->if_region->true_region->region.exit = single_succ_edge (bb);
|
|
|
|
t.translate_isl_ast (context_loop, root_node, e, ip);
|
|
if (! t.codegen_error_p ())
|
|
{
|
|
generate_entry_out_of_ssa_copies (if_region->false_region->region.entry,
|
|
if_region->true_region->region.entry,
|
|
region);
|
|
sese_insert_phis_for_liveouts (region,
|
|
if_region->region->region.exit->src,
|
|
if_region->false_region->region.exit,
|
|
if_region->true_region->region.exit);
|
|
if (dump_file)
|
|
fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n");
|
|
}
|
|
|
|
if (t.codegen_error_p ())
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_user_location_t loc = find_loop_location
|
|
(scop->scop_info->region.entry->dest->loop_father);
|
|
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
|
"loop nest not optimized, code generation error\n");
|
|
}
|
|
|
|
/* Remove the unreachable region. */
|
|
remove_edge_and_dominated_blocks (if_region->true_region->region.entry);
|
|
basic_block ifb = if_region->false_region->region.entry->src;
|
|
gimple_stmt_iterator gsi = gsi_last_bb (ifb);
|
|
gsi_remove (&gsi, true);
|
|
if_region->false_region->region.entry->flags &= ~EDGE_FALSE_VALUE;
|
|
if_region->false_region->region.entry->flags |= EDGE_FALLTHRU;
|
|
/* remove_edge_and_dominated_blocks marks loops for removal but
|
|
doesn't actually remove them (fix that...). */
|
|
loop_p loop;
|
|
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
|
|
if (! loop->header)
|
|
delete_loop (loop);
|
|
}
|
|
|
|
/* We are delaying SSA update to after code-generating all SCOPs.
|
|
This is because we analyzed DRs and parameters on the unmodified
|
|
IL and thus rely on SSA update to pick up new dominating definitions
|
|
from for example SESE liveout PHIs. This is also for efficiency
|
|
as SSA update does work depending on the size of the function. */
|
|
|
|
free (if_region->true_region);
|
|
free (if_region->region);
|
|
free (if_region);
|
|
|
|
ivs_params_clear (ip);
|
|
isl_ast_node_free (root_node);
|
|
timevar_pop (TV_GRAPHITE_CODE_GEN);
|
|
|
|
return !t.codegen_error_p ();
|
|
}
|
|
|
|
#endif /* HAVE_isl */
|