1027 lines
29 KiB
C
1027 lines
29 KiB
C
/* Simple garbage collection for the GNU compiler.
|
||
Copyright (C) 1999-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* Generic garbage collection (GC) functions and data, not specific to
|
||
any particular GC implementation. */
|
||
|
||
#include "config.h"
|
||
#define INCLUDE_MALLOC_H
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "timevar.h"
|
||
#include "diagnostic-core.h"
|
||
#include "ggc-internal.h"
|
||
#include "hosthooks.h"
|
||
#include "plugin.h"
|
||
#include "options.h"
|
||
|
||
/* When set, ggc_collect will do collection. */
|
||
bool ggc_force_collect;
|
||
|
||
/* When true, protect the contents of the identifier hash table. */
|
||
bool ggc_protect_identifiers = true;
|
||
|
||
/* Statistics about the allocation. */
|
||
static ggc_statistics *ggc_stats;
|
||
|
||
struct traversal_state;
|
||
|
||
static int compare_ptr_data (const void *, const void *);
|
||
static void relocate_ptrs (void *, void *);
|
||
static void write_pch_globals (const struct ggc_root_tab * const *tab,
|
||
struct traversal_state *state);
|
||
|
||
/* Maintain global roots that are preserved during GC. */
|
||
|
||
/* This extra vector of dynamically registered root_tab-s is used by
|
||
ggc_mark_roots and gives the ability to dynamically add new GGC root
|
||
tables, for instance from some plugins; this vector is on the heap
|
||
since it is used by GGC internally. */
|
||
typedef const struct ggc_root_tab *const_ggc_root_tab_t;
|
||
static vec<const_ggc_root_tab_t> extra_root_vec;
|
||
|
||
/* Dynamically register a new GGC root table RT. This is useful for
|
||
plugins. */
|
||
|
||
void
|
||
ggc_register_root_tab (const struct ggc_root_tab* rt)
|
||
{
|
||
if (rt)
|
||
extra_root_vec.safe_push (rt);
|
||
}
|
||
|
||
/* Mark all the roots in the table RT. */
|
||
|
||
static void
|
||
ggc_mark_root_tab (const_ggc_root_tab_t rt)
|
||
{
|
||
size_t i;
|
||
|
||
for ( ; rt->base != NULL; rt++)
|
||
for (i = 0; i < rt->nelt; i++)
|
||
(*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
|
||
}
|
||
|
||
/* Iterate through all registered roots and mark each element. */
|
||
|
||
void
|
||
ggc_mark_roots (void)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const_ggc_root_tab_t rtp, rti;
|
||
size_t i;
|
||
|
||
for (rt = gt_ggc_deletable_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
memset (rti->base, 0, rti->stride);
|
||
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
ggc_mark_root_tab (*rt);
|
||
|
||
FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
|
||
ggc_mark_root_tab (rtp);
|
||
|
||
if (ggc_protect_identifiers)
|
||
ggc_mark_stringpool ();
|
||
|
||
gt_clear_caches ();
|
||
|
||
if (! ggc_protect_identifiers)
|
||
ggc_purge_stringpool ();
|
||
|
||
/* Some plugins may call ggc_set_mark from here. */
|
||
invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
|
||
}
|
||
|
||
/* Allocate a block of memory, then clear it. */
|
||
void *
|
||
ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n
|
||
MEM_STAT_DECL)
|
||
{
|
||
void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT);
|
||
memset (buf, 0, size);
|
||
return buf;
|
||
}
|
||
|
||
/* Resize a block of memory, possibly re-allocating it. */
|
||
void *
|
||
ggc_realloc (void *x, size_t size MEM_STAT_DECL)
|
||
{
|
||
void *r;
|
||
size_t old_size;
|
||
|
||
if (x == NULL)
|
||
return ggc_internal_alloc (size PASS_MEM_STAT);
|
||
|
||
old_size = ggc_get_size (x);
|
||
|
||
if (size <= old_size)
|
||
{
|
||
/* Mark the unwanted memory as unaccessible. We also need to make
|
||
the "new" size accessible, since ggc_get_size returns the size of
|
||
the pool, not the size of the individually allocated object, the
|
||
size which was previously made accessible. Unfortunately, we
|
||
don't know that previously allocated size. Without that
|
||
knowledge we have to lose some initialization-tracking for the
|
||
old parts of the object. An alternative is to mark the whole
|
||
old_size as reachable, but that would lose tracking of writes
|
||
after the end of the object (by small offsets). Discard the
|
||
handle to avoid handle leak. */
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
|
||
old_size - size));
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
|
||
return x;
|
||
}
|
||
|
||
r = ggc_internal_alloc (size PASS_MEM_STAT);
|
||
|
||
/* Since ggc_get_size returns the size of the pool, not the size of the
|
||
individually allocated object, we'd access parts of the old object
|
||
that were marked invalid with the memcpy below. We lose a bit of the
|
||
initialization-tracking since some of it may be uninitialized. */
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
|
||
|
||
memcpy (r, x, old_size);
|
||
|
||
/* The old object is not supposed to be used anymore. */
|
||
ggc_free (x);
|
||
|
||
return r;
|
||
}
|
||
|
||
void *
|
||
ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
|
||
size_t n ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (c * n == sizeof (struct htab));
|
||
return ggc_cleared_alloc<htab> ();
|
||
}
|
||
|
||
/* TODO: once we actually use type information in GGC, create a new tag
|
||
gt_gcc_ptr_array and use it for pointer arrays. */
|
||
void *
|
||
ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
|
||
{
|
||
gcc_assert (sizeof (PTR *) == n);
|
||
return ggc_cleared_vec_alloc<PTR *> (c);
|
||
}
|
||
|
||
/* These are for splay_tree_new_ggc. */
|
||
void *
|
||
ggc_splay_alloc (int sz, void *nl)
|
||
{
|
||
gcc_assert (!nl);
|
||
return ggc_internal_alloc (sz);
|
||
}
|
||
|
||
void
|
||
ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
|
||
{
|
||
gcc_assert (!nl);
|
||
}
|
||
|
||
void
|
||
ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
|
||
ggc_statistics *stats)
|
||
{
|
||
/* Set the pointer so that during collection we will actually gather
|
||
the statistics. */
|
||
ggc_stats = stats;
|
||
|
||
/* Then do one collection to fill in the statistics. */
|
||
ggc_collect ();
|
||
|
||
/* At present, we don't really gather any interesting statistics. */
|
||
|
||
/* Don't gather statistics any more. */
|
||
ggc_stats = NULL;
|
||
}
|
||
|
||
/* Functions for saving and restoring GCable memory to disk. */
|
||
|
||
struct ptr_data
|
||
{
|
||
void *obj;
|
||
void *note_ptr_cookie;
|
||
gt_note_pointers note_ptr_fn;
|
||
gt_handle_reorder reorder_fn;
|
||
size_t size;
|
||
void *new_addr;
|
||
};
|
||
|
||
#define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
|
||
|
||
/* Helper for hashing saving_htab. */
|
||
|
||
struct saving_hasher : free_ptr_hash <ptr_data>
|
||
{
|
||
typedef void *compare_type;
|
||
static inline hashval_t hash (const ptr_data *);
|
||
static inline bool equal (const ptr_data *, const void *);
|
||
};
|
||
|
||
inline hashval_t
|
||
saving_hasher::hash (const ptr_data *p)
|
||
{
|
||
return POINTER_HASH (p->obj);
|
||
}
|
||
|
||
inline bool
|
||
saving_hasher::equal (const ptr_data *p1, const void *p2)
|
||
{
|
||
return p1->obj == p2;
|
||
}
|
||
|
||
static hash_table<saving_hasher> *saving_htab;
|
||
|
||
/* Register an object in the hash table. */
|
||
|
||
int
|
||
gt_pch_note_object (void *obj, void *note_ptr_cookie,
|
||
gt_note_pointers note_ptr_fn)
|
||
{
|
||
struct ptr_data **slot;
|
||
|
||
if (obj == NULL || obj == (void *) 1)
|
||
return 0;
|
||
|
||
slot = (struct ptr_data **)
|
||
saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
|
||
&& (*slot)->note_ptr_cookie == note_ptr_cookie);
|
||
return 0;
|
||
}
|
||
|
||
*slot = XCNEW (struct ptr_data);
|
||
(*slot)->obj = obj;
|
||
(*slot)->note_ptr_fn = note_ptr_fn;
|
||
(*slot)->note_ptr_cookie = note_ptr_cookie;
|
||
if (note_ptr_fn == gt_pch_p_S)
|
||
(*slot)->size = strlen ((const char *)obj) + 1;
|
||
else
|
||
(*slot)->size = ggc_get_size (obj);
|
||
return 1;
|
||
}
|
||
|
||
/* Register an object in the hash table. */
|
||
|
||
void
|
||
gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
|
||
gt_handle_reorder reorder_fn)
|
||
{
|
||
struct ptr_data *data;
|
||
|
||
if (obj == NULL || obj == (void *) 1)
|
||
return;
|
||
|
||
data = (struct ptr_data *)
|
||
saving_htab->find_with_hash (obj, POINTER_HASH (obj));
|
||
gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
|
||
|
||
data->reorder_fn = reorder_fn;
|
||
}
|
||
|
||
/* Handy state for the traversal functions. */
|
||
|
||
struct traversal_state
|
||
{
|
||
FILE *f;
|
||
struct ggc_pch_data *d;
|
||
size_t count;
|
||
struct ptr_data **ptrs;
|
||
size_t ptrs_i;
|
||
};
|
||
|
||
/* Callbacks for htab_traverse. */
|
||
|
||
int
|
||
ggc_call_count (ptr_data **slot, traversal_state *state)
|
||
{
|
||
struct ptr_data *d = *slot;
|
||
|
||
ggc_pch_count_object (state->d, d->obj, d->size,
|
||
d->note_ptr_fn == gt_pch_p_S);
|
||
state->count++;
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
ggc_call_alloc (ptr_data **slot, traversal_state *state)
|
||
{
|
||
struct ptr_data *d = *slot;
|
||
|
||
d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
|
||
d->note_ptr_fn == gt_pch_p_S);
|
||
state->ptrs[state->ptrs_i++] = d;
|
||
return 1;
|
||
}
|
||
|
||
/* Callback for qsort. */
|
||
|
||
static int
|
||
compare_ptr_data (const void *p1_p, const void *p2_p)
|
||
{
|
||
const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
|
||
const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
|
||
return (((size_t)p1->new_addr > (size_t)p2->new_addr)
|
||
- ((size_t)p1->new_addr < (size_t)p2->new_addr));
|
||
}
|
||
|
||
/* Callbacks for note_ptr_fn. */
|
||
|
||
static void
|
||
relocate_ptrs (void *ptr_p, void *state_p)
|
||
{
|
||
void **ptr = (void **)ptr_p;
|
||
struct traversal_state *state ATTRIBUTE_UNUSED
|
||
= (struct traversal_state *)state_p;
|
||
struct ptr_data *result;
|
||
|
||
if (*ptr == NULL || *ptr == (void *)1)
|
||
return;
|
||
|
||
result = (struct ptr_data *)
|
||
saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr));
|
||
gcc_assert (result);
|
||
*ptr = result->new_addr;
|
||
}
|
||
|
||
/* Write out, after relocation, the pointers in TAB. */
|
||
static void
|
||
write_pch_globals (const struct ggc_root_tab * const *tab,
|
||
struct traversal_state *state)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
|
||
for (rt = tab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
{
|
||
void *ptr = *(void **)((char *)rti->base + rti->stride * i);
|
||
struct ptr_data *new_ptr;
|
||
if (ptr == NULL || ptr == (void *)1)
|
||
{
|
||
if (fwrite (&ptr, sizeof (void *), 1, state->f)
|
||
!= 1)
|
||
fatal_error (input_location, "cannot write PCH file: %m");
|
||
}
|
||
else
|
||
{
|
||
new_ptr = (struct ptr_data *)
|
||
saving_htab->find_with_hash (ptr, POINTER_HASH (ptr));
|
||
if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
|
||
!= 1)
|
||
fatal_error (input_location, "cannot write PCH file: %m");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Hold the information we need to mmap the file back in. */
|
||
|
||
struct mmap_info
|
||
{
|
||
size_t offset;
|
||
size_t size;
|
||
void *preferred_base;
|
||
};
|
||
|
||
/* Write out the state of the compiler to F. */
|
||
|
||
void
|
||
gt_pch_save (FILE *f)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
struct traversal_state state;
|
||
char *this_object = NULL;
|
||
size_t this_object_size = 0;
|
||
struct mmap_info mmi;
|
||
const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();
|
||
|
||
gt_pch_save_stringpool ();
|
||
|
||
timevar_push (TV_PCH_PTR_REALLOC);
|
||
saving_htab = new hash_table<saving_hasher> (50000);
|
||
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
|
||
|
||
/* Prepare the objects for writing, determine addresses and such. */
|
||
state.f = f;
|
||
state.d = init_ggc_pch ();
|
||
state.count = 0;
|
||
saving_htab->traverse <traversal_state *, ggc_call_count> (&state);
|
||
|
||
mmi.size = ggc_pch_total_size (state.d);
|
||
|
||
/* Try to arrange things so that no relocation is necessary, but
|
||
don't try very hard. On most platforms, this will always work,
|
||
and on the rest it's a lot of work to do better.
|
||
(The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
|
||
HOST_HOOKS_GT_PCH_USE_ADDRESS.) */
|
||
mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
|
||
|
||
ggc_pch_this_base (state.d, mmi.preferred_base);
|
||
|
||
state.ptrs = XNEWVEC (struct ptr_data *, state.count);
|
||
state.ptrs_i = 0;
|
||
|
||
saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state);
|
||
timevar_pop (TV_PCH_PTR_REALLOC);
|
||
|
||
timevar_push (TV_PCH_PTR_SORT);
|
||
qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
|
||
timevar_pop (TV_PCH_PTR_SORT);
|
||
|
||
/* Write out all the scalar variables. */
|
||
for (rt = gt_pch_scalar_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
if (fwrite (rti->base, rti->stride, 1, f) != 1)
|
||
fatal_error (input_location, "cannot write PCH file: %m");
|
||
|
||
/* Write out all the global pointers, after translation. */
|
||
write_pch_globals (gt_ggc_rtab, &state);
|
||
|
||
/* Pad the PCH file so that the mmapped area starts on an allocation
|
||
granularity (usually page) boundary. */
|
||
{
|
||
long o;
|
||
o = ftell (state.f) + sizeof (mmi);
|
||
if (o == -1)
|
||
fatal_error (input_location, "cannot get position in PCH file: %m");
|
||
mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
|
||
if (mmi.offset == mmap_offset_alignment)
|
||
mmi.offset = 0;
|
||
mmi.offset += o;
|
||
}
|
||
if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
|
||
fatal_error (input_location, "cannot write PCH file: %m");
|
||
if (mmi.offset != 0
|
||
&& fseek (state.f, mmi.offset, SEEK_SET) != 0)
|
||
fatal_error (input_location, "cannot write padding to PCH file: %m");
|
||
|
||
ggc_pch_prepare_write (state.d, state.f);
|
||
|
||
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
|
||
vec<char> vbits = vNULL;
|
||
#endif
|
||
|
||
/* Actually write out the objects. */
|
||
for (i = 0; i < state.count; i++)
|
||
{
|
||
if (this_object_size < state.ptrs[i]->size)
|
||
{
|
||
this_object_size = state.ptrs[i]->size;
|
||
this_object = XRESIZEVAR (char, this_object, this_object_size);
|
||
}
|
||
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
|
||
/* obj might contain uninitialized bytes, e.g. in the trailing
|
||
padding of the object. Avoid warnings by making the memory
|
||
temporarily defined and then restoring previous state. */
|
||
int get_vbits = 0;
|
||
size_t valid_size = state.ptrs[i]->size;
|
||
if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
|
||
{
|
||
if (vbits.length () < valid_size)
|
||
vbits.safe_grow (valid_size, true);
|
||
get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
|
||
vbits.address (), valid_size);
|
||
if (get_vbits == 3)
|
||
{
|
||
/* We assume that first part of obj is addressable, and
|
||
the rest is unaddressable. Find out where the boundary is
|
||
using binary search. */
|
||
size_t lo = 0, hi = valid_size;
|
||
while (hi > lo)
|
||
{
|
||
size_t mid = (lo + hi) / 2;
|
||
get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
|
||
+ mid, vbits.address (),
|
||
1);
|
||
if (get_vbits == 3)
|
||
hi = mid;
|
||
else if (get_vbits == 1)
|
||
lo = mid + 1;
|
||
else
|
||
break;
|
||
}
|
||
if (get_vbits == 1 || get_vbits == 3)
|
||
{
|
||
valid_size = lo;
|
||
get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
|
||
vbits.address (),
|
||
valid_size);
|
||
}
|
||
}
|
||
if (get_vbits == 1)
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
|
||
state.ptrs[i]->size));
|
||
}
|
||
#endif
|
||
memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
|
||
if (state.ptrs[i]->reorder_fn != NULL)
|
||
state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
|
||
state.ptrs[i]->note_ptr_cookie,
|
||
relocate_ptrs, &state);
|
||
state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
|
||
state.ptrs[i]->note_ptr_cookie,
|
||
relocate_ptrs, &state);
|
||
ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
|
||
state.ptrs[i]->new_addr, state.ptrs[i]->size,
|
||
state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
|
||
if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
|
||
memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
|
||
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
|
||
if (__builtin_expect (get_vbits == 1, 0))
|
||
{
|
||
(void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
|
||
valid_size);
|
||
if (valid_size != state.ptrs[i]->size)
|
||
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
|
||
state.ptrs[i]->obj
|
||
+ valid_size,
|
||
state.ptrs[i]->size
|
||
- valid_size));
|
||
}
|
||
#endif
|
||
}
|
||
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
|
||
vbits.release ();
|
||
#endif
|
||
|
||
ggc_pch_finish (state.d, state.f);
|
||
gt_pch_fixup_stringpool ();
|
||
|
||
XDELETE (state.ptrs);
|
||
XDELETE (this_object);
|
||
delete saving_htab;
|
||
saving_htab = NULL;
|
||
}
|
||
|
||
/* Read the state of the compiler back in from F. */
|
||
|
||
void
|
||
gt_pch_restore (FILE *f)
|
||
{
|
||
const struct ggc_root_tab *const *rt;
|
||
const struct ggc_root_tab *rti;
|
||
size_t i;
|
||
struct mmap_info mmi;
|
||
int result;
|
||
|
||
/* Delete any deletable objects. This makes ggc_pch_read much
|
||
faster, as it can be sure that no GCable objects remain other
|
||
than the ones just read in. */
|
||
for (rt = gt_ggc_deletable_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
memset (rti->base, 0, rti->stride);
|
||
|
||
/* Read in all the scalar variables. */
|
||
for (rt = gt_pch_scalar_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
if (fread (rti->base, rti->stride, 1, f) != 1)
|
||
fatal_error (input_location, "cannot read PCH file: %m");
|
||
|
||
/* Read in all the global pointers, in 6 easy loops. */
|
||
for (rt = gt_ggc_rtab; *rt; rt++)
|
||
for (rti = *rt; rti->base != NULL; rti++)
|
||
for (i = 0; i < rti->nelt; i++)
|
||
if (fread ((char *)rti->base + rti->stride * i,
|
||
sizeof (void *), 1, f) != 1)
|
||
fatal_error (input_location, "cannot read PCH file: %m");
|
||
|
||
if (fread (&mmi, sizeof (mmi), 1, f) != 1)
|
||
fatal_error (input_location, "cannot read PCH file: %m");
|
||
|
||
result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
|
||
fileno (f), mmi.offset);
|
||
if (result < 0)
|
||
fatal_error (input_location, "had to relocate PCH");
|
||
if (result == 0)
|
||
{
|
||
if (fseek (f, mmi.offset, SEEK_SET) != 0
|
||
|| fread (mmi.preferred_base, mmi.size, 1, f) != 1)
|
||
fatal_error (input_location, "cannot read PCH file: %m");
|
||
}
|
||
else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
|
||
fatal_error (input_location, "cannot read PCH file: %m");
|
||
|
||
ggc_pch_read (f, mmi.preferred_base);
|
||
|
||
gt_pch_restore_stringpool ();
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
|
||
Select no address whatsoever, and let gt_pch_save choose what it will with
|
||
malloc, presumably. */
|
||
|
||
void *
|
||
default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
|
||
int fd ATTRIBUTE_UNUSED)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
|
||
Allocate SIZE bytes with malloc. Return 0 if the address we got is the
|
||
same as base, indicating that the memory has been allocated but needs to
|
||
be read in from the file. Return -1 if the address differs, to relocation
|
||
of the PCH file would be required. */
|
||
|
||
int
|
||
default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
|
||
size_t offset ATTRIBUTE_UNUSED)
|
||
{
|
||
void *addr = xmalloc (size);
|
||
return (addr == base) - 1;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the
|
||
alignment required for allocating virtual memory. Usually this is the
|
||
same as pagesize. */
|
||
|
||
size_t
|
||
default_gt_pch_alloc_granularity (void)
|
||
{
|
||
return getpagesize ();
|
||
}
|
||
|
||
#if HAVE_MMAP_FILE
|
||
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
|
||
We temporarily allocate SIZE bytes, and let the kernel place the data
|
||
wherever it will. If it worked, that's our spot, if not we're likely
|
||
to be in trouble. */
|
||
|
||
void *
|
||
mmap_gt_pch_get_address (size_t size, int fd)
|
||
{
|
||
void *ret;
|
||
|
||
ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
||
if (ret == (void *) MAP_FAILED)
|
||
ret = NULL;
|
||
else
|
||
munmap ((caddr_t) ret, size);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
|
||
Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at
|
||
mapping the data at BASE, -1 if we couldn't.
|
||
|
||
This version assumes that the kernel honors the START operand of mmap
|
||
even without MAP_FIXED if START through START+SIZE are not currently
|
||
mapped with something. */
|
||
|
||
int
|
||
mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
|
||
{
|
||
void *addr;
|
||
|
||
/* We're called with size == 0 if we're not planning to load a PCH
|
||
file at all. This allows the hook to free any static space that
|
||
we might have allocated at link time. */
|
||
if (size == 0)
|
||
return -1;
|
||
|
||
addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
|
||
fd, offset);
|
||
|
||
return addr == base ? 1 : -1;
|
||
}
|
||
#endif /* HAVE_MMAP_FILE */
|
||
|
||
#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
|
||
|
||
/* Modify the bound based on rlimits. */
|
||
static double
|
||
ggc_rlimit_bound (double limit)
|
||
{
|
||
#if defined(HAVE_GETRLIMIT)
|
||
struct rlimit rlim;
|
||
# if defined (RLIMIT_AS)
|
||
/* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably
|
||
any OS which has RLIMIT_AS also has a working mmap that GCC will use. */
|
||
if (getrlimit (RLIMIT_AS, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY
|
||
&& rlim.rlim_cur < limit)
|
||
limit = rlim.rlim_cur;
|
||
# elif defined (RLIMIT_DATA)
|
||
/* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
|
||
might be on an OS that has a broken mmap. (Others don't bound
|
||
mmap at all, apparently.) */
|
||
if (getrlimit (RLIMIT_DATA, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY
|
||
&& rlim.rlim_cur < limit
|
||
/* Darwin has this horribly bogus default setting of
|
||
RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA
|
||
appears to be ignored. Ignore such silliness. If a limit
|
||
this small was actually effective for mmap, GCC wouldn't even
|
||
start up. */
|
||
&& rlim.rlim_cur >= 8 * ONE_M)
|
||
limit = rlim.rlim_cur;
|
||
# endif /* RLIMIT_AS or RLIMIT_DATA */
|
||
#endif /* HAVE_GETRLIMIT */
|
||
|
||
return limit;
|
||
}
|
||
|
||
/* Heuristic to set a default for GGC_MIN_EXPAND. */
|
||
static int
|
||
ggc_min_expand_heuristic (void)
|
||
{
|
||
double min_expand = physmem_total ();
|
||
|
||
/* Adjust for rlimits. */
|
||
min_expand = ggc_rlimit_bound (min_expand);
|
||
|
||
/* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
|
||
a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */
|
||
min_expand /= ONE_G;
|
||
min_expand *= 70;
|
||
min_expand = MIN (min_expand, 70);
|
||
min_expand += 30;
|
||
|
||
return min_expand;
|
||
}
|
||
|
||
/* Heuristic to set a default for GGC_MIN_HEAPSIZE. */
|
||
static int
|
||
ggc_min_heapsize_heuristic (void)
|
||
{
|
||
double phys_kbytes = physmem_total ();
|
||
double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
|
||
|
||
phys_kbytes /= ONE_K; /* Convert to Kbytes. */
|
||
limit_kbytes /= ONE_K;
|
||
|
||
/* The heuristic is RAM/8, with a lower bound of 4M and an upper
|
||
bound of 128M (when RAM >= 1GB). */
|
||
phys_kbytes /= 8;
|
||
|
||
#if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
|
||
/* Try not to overrun the RSS limit while doing garbage collection.
|
||
The RSS limit is only advisory, so no margin is subtracted. */
|
||
{
|
||
struct rlimit rlim;
|
||
if (getrlimit (RLIMIT_RSS, &rlim) == 0
|
||
&& rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
|
||
phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / ONE_K);
|
||
}
|
||
# endif
|
||
|
||
/* Don't blindly run over our data limit; do GC at least when the
|
||
*next* GC would be within 20Mb of the limit or within a quarter of
|
||
the limit, whichever is larger. If GCC does hit the data limit,
|
||
compilation will fail, so this tries to be conservative. */
|
||
limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * ONE_K));
|
||
limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
|
||
phys_kbytes = MIN (phys_kbytes, limit_kbytes);
|
||
|
||
phys_kbytes = MAX (phys_kbytes, 4 * ONE_K);
|
||
phys_kbytes = MIN (phys_kbytes, 128 * ONE_K);
|
||
|
||
return phys_kbytes;
|
||
}
|
||
#endif
|
||
|
||
void
|
||
init_ggc_heuristics (void)
|
||
{
|
||
#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
|
||
param_ggc_min_expand = ggc_min_expand_heuristic ();
|
||
param_ggc_min_heapsize = ggc_min_heapsize_heuristic ();
|
||
#endif
|
||
}
|
||
|
||
/* GGC memory usage. */
|
||
class ggc_usage: public mem_usage
|
||
{
|
||
public:
|
||
/* Default constructor. */
|
||
ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
|
||
/* Constructor. */
|
||
ggc_usage (size_t allocated, size_t times, size_t peak,
|
||
size_t freed, size_t collected, size_t overhead)
|
||
: mem_usage (allocated, times, peak),
|
||
m_freed (freed), m_collected (collected), m_overhead (overhead) {}
|
||
|
||
/* Equality operator. */
|
||
inline bool
|
||
operator== (const ggc_usage &second) const
|
||
{
|
||
return (get_balance () == second.get_balance ()
|
||
&& m_peak == second.m_peak
|
||
&& m_times == second.m_times);
|
||
}
|
||
|
||
/* Comparison operator. */
|
||
inline bool
|
||
operator< (const ggc_usage &second) const
|
||
{
|
||
if (*this == second)
|
||
return false;
|
||
|
||
return (get_balance () == second.get_balance () ?
|
||
(m_peak == second.m_peak ? m_times < second.m_times
|
||
: m_peak < second.m_peak)
|
||
: get_balance () < second.get_balance ());
|
||
}
|
||
|
||
/* Register overhead of ALLOCATED and OVERHEAD bytes. */
|
||
inline void
|
||
register_overhead (size_t allocated, size_t overhead)
|
||
{
|
||
m_allocated += allocated;
|
||
m_overhead += overhead;
|
||
m_times++;
|
||
}
|
||
|
||
/* Release overhead of SIZE bytes. */
|
||
inline void
|
||
release_overhead (size_t size)
|
||
{
|
||
m_freed += size;
|
||
}
|
||
|
||
/* Sum the usage with SECOND usage. */
|
||
ggc_usage
|
||
operator+ (const ggc_usage &second)
|
||
{
|
||
return ggc_usage (m_allocated + second.m_allocated,
|
||
m_times + second.m_times,
|
||
m_peak + second.m_peak,
|
||
m_freed + second.m_freed,
|
||
m_collected + second.m_collected,
|
||
m_overhead + second.m_overhead);
|
||
}
|
||
|
||
/* Dump usage with PREFIX, where TOTAL is sum of all rows. */
|
||
inline void
|
||
dump (const char *prefix, ggc_usage &total) const
|
||
{
|
||
size_t balance = get_balance ();
|
||
fprintf (stderr,
|
||
"%-48s " PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%"
|
||
PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" PRsa (9) "\n",
|
||
prefix,
|
||
SIZE_AMOUNT (balance), get_percent (balance, total.get_balance ()),
|
||
SIZE_AMOUNT (m_collected),
|
||
get_percent (m_collected, total.m_collected),
|
||
SIZE_AMOUNT (m_freed), get_percent (m_freed, total.m_freed),
|
||
SIZE_AMOUNT (m_overhead),
|
||
get_percent (m_overhead, total.m_overhead),
|
||
SIZE_AMOUNT (m_times));
|
||
}
|
||
|
||
/* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
|
||
inline void
|
||
dump (mem_location *loc, ggc_usage &total) const
|
||
{
|
||
char *location_string = loc->to_string ();
|
||
|
||
dump (location_string, total);
|
||
|
||
free (location_string);
|
||
}
|
||
|
||
/* Dump footer. */
|
||
inline void
|
||
dump_footer ()
|
||
{
|
||
dump ("Total", *this);
|
||
}
|
||
|
||
/* Get balance which is GGC allocation leak. */
|
||
inline size_t
|
||
get_balance () const
|
||
{
|
||
return m_allocated + m_overhead - m_collected - m_freed;
|
||
}
|
||
|
||
typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;
|
||
|
||
/* Compare wrapper used by qsort method. */
|
||
static int
|
||
compare (const void *first, const void *second)
|
||
{
|
||
const mem_pair_t mem1 = *(const mem_pair_t *) first;
|
||
const mem_pair_t mem2 = *(const mem_pair_t *) second;
|
||
|
||
size_t balance1 = mem1.second->get_balance ();
|
||
size_t balance2 = mem2.second->get_balance ();
|
||
|
||
return balance1 == balance2 ? 0 : (balance1 < balance2 ? 1 : -1);
|
||
}
|
||
|
||
/* Dump header with NAME. */
|
||
static inline void
|
||
dump_header (const char *name)
|
||
{
|
||
fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Leak", "Garbage",
|
||
"Freed", "Overhead", "Times");
|
||
}
|
||
|
||
/* Freed memory in bytes. */
|
||
size_t m_freed;
|
||
/* Collected memory in bytes. */
|
||
size_t m_collected;
|
||
/* Overhead memory in bytes. */
|
||
size_t m_overhead;
|
||
};
|
||
|
||
/* GCC memory description. */
|
||
static mem_alloc_description<ggc_usage> ggc_mem_desc;
|
||
|
||
/* Dump per-site memory statistics. */
|
||
|
||
void
|
||
dump_ggc_loc_statistics ()
|
||
{
|
||
if (! GATHER_STATISTICS)
|
||
return;
|
||
|
||
ggc_force_collect = true;
|
||
ggc_collect ();
|
||
|
||
ggc_mem_desc.dump (GGC_ORIGIN);
|
||
|
||
ggc_force_collect = false;
|
||
}
|
||
|
||
/* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */
|
||
void
|
||
ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL)
|
||
{
|
||
ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false
|
||
FINAL_PASS_MEM_STAT);
|
||
|
||
ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr);
|
||
usage->register_overhead (allocated, overhead);
|
||
}
|
||
|
||
/* Notice that the pointer has been freed. */
|
||
void
|
||
ggc_free_overhead (void *ptr)
|
||
{
|
||
ggc_mem_desc.release_object_overhead (ptr);
|
||
}
|
||
|
||
/* After live values has been marked, walk all recorded pointers and see if
|
||
they are still live. */
|
||
void
|
||
ggc_prune_overhead_list (void)
|
||
{
|
||
typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t;
|
||
|
||
map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin ();
|
||
|
||
for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it)
|
||
if (!ggc_marked_p ((*it).first))
|
||
{
|
||
(*it).second.first->m_collected += (*it).second.second;
|
||
ggc_mem_desc.m_reverse_object_map->remove ((*it).first);
|
||
}
|
||
}
|
||
|
||
/* Print memory used by heap if this info is available. */
|
||
|
||
void
|
||
report_heap_memory_use ()
|
||
{
|
||
#if defined(HAVE_MALLINFO) || defined(HAVE_MALLINFO2)
|
||
#ifdef HAVE_MALLINFO2
|
||
#define MALLINFO_FN mallinfo2
|
||
#else
|
||
#define MALLINFO_FN mallinfo
|
||
#endif
|
||
if (!quiet_flag)
|
||
fprintf (stderr, " {heap " PRsa (0) "}",
|
||
SIZE_AMOUNT (MALLINFO_FN ().arena));
|
||
#endif
|
||
}
|