b61461ac7f
Commit efb6bc55a9
("fwprop: Allow (subreg (mem)) simplifications")
introduced a check that was supposed to look at the propagated def's
number of uses. It uses insn_info::num_uses (), which in reality
returns the number of uses def's insn has. The whole change therefore
works only by accident.
Fix by looking at set_info's uses instead of insn_info's uses. This
requires passing around set_info instead of insn_info.
gcc/ChangeLog:
2021-03-02 Ilya Leoshkevich <iii@linux.ibm.com>
* fwprop.c (fwprop_propagation::fwprop_propagation): Look at
set_info's uses.
(try_fwprop_subst_note): Use set_info instead of insn_info.
(try_fwprop_subst_pattern): Likewise.
(try_fwprop_subst_notes): Likewise.
(try_fwprop_subst): Likewise.
(forward_propagate_subreg): Likewise.
(forward_propagate_and_simplify): Likewise.
(forward_propagate_into): Likewise.
* rtl-ssa/accesses.h (set_info::single_nondebug_use) New
method.
(set_info::single_nondebug_insn_use): Likewise.
(set_info::single_phi_use): Likewise.
* rtl-ssa/member-fns.inl (set_info::single_nondebug_use) New
method.
(set_info::single_nondebug_insn_use): Likewise.
(set_info::single_phi_use): Likewise.
gcc/testsuite/ChangeLog:
* gcc.target/s390/vector/long-double-asm-abi.c: New test.
1076 lines
33 KiB
C
1076 lines
33 KiB
C
/* RTL-based forward propagation pass for GNU compiler.
|
||
Copyright (C) 2005-2021 Free Software Foundation, Inc.
|
||
Contributed by Paolo Bonzini and Steven Bosscher.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#define INCLUDE_ALGORITHM
|
||
#define INCLUDE_FUNCTIONAL
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "df.h"
|
||
#include "rtl-ssa.h"
|
||
|
||
#include "predict.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfgcleanup.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-pass.h"
|
||
#include "rtl-iter.h"
|
||
#include "target.h"
|
||
|
||
/* This pass does simple forward propagation and simplification when an
|
||
operand of an insn can only come from a single def. This pass uses
|
||
RTL SSA, so it is global. However, we only do limited analysis of
|
||
available expressions.
|
||
|
||
1) The pass tries to propagate the source of the def into the use,
|
||
and checks if the result is independent of the substituted value.
|
||
For example, the high word of a (zero_extend:DI (reg:SI M)) is always
|
||
zero, independent of the source register.
|
||
|
||
In particular, we propagate constants into the use site. Sometimes
|
||
RTL expansion did not put the constant in the same insn on purpose,
|
||
to satisfy a predicate, and the result will fail to be recognized;
|
||
but this happens rarely and in this case we can still create a
|
||
REG_EQUAL note. For multi-word operations, this
|
||
|
||
(set (subreg:SI (reg:DI 120) 0) (const_int 0))
|
||
(set (subreg:SI (reg:DI 120) 4) (const_int -1))
|
||
(set (subreg:SI (reg:DI 122) 0)
|
||
(ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
|
||
(set (subreg:SI (reg:DI 122) 4)
|
||
(ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
|
||
|
||
can be simplified to the much simpler
|
||
|
||
(set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
|
||
(set (subreg:SI (reg:DI 122) 4) (const_int -1))
|
||
|
||
This particular propagation is also effective at putting together
|
||
complex addressing modes. We are more aggressive inside MEMs, in
|
||
that all definitions are propagated if the use is in a MEM; if the
|
||
result is a valid memory address we check address_cost to decide
|
||
whether the substitution is worthwhile.
|
||
|
||
2) The pass propagates register copies. This is not as effective as
|
||
the copy propagation done by CSE's canon_reg, which works by walking
|
||
the instruction chain, it can help the other transformations.
|
||
|
||
We should consider removing this optimization, and instead reorder the
|
||
RTL passes, because GCSE does this transformation too. With some luck,
|
||
the CSE pass at the end of rest_of_handle_gcse could also go away.
|
||
|
||
3) The pass looks for paradoxical subregs that are actually unnecessary.
|
||
Things like this:
|
||
|
||
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
||
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
||
(set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
|
||
(subreg:SI (reg:QI 121) 0)))
|
||
|
||
are very common on machines that can only do word-sized operations.
|
||
For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
|
||
if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
|
||
we can replace the paradoxical subreg with simply (reg:WIDE M). The
|
||
above will simplify this to
|
||
|
||
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
||
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
||
(set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
|
||
|
||
where the first two insns are now dead. */
|
||
|
||
using namespace rtl_ssa;
|
||
|
||
static int num_changes;
|
||
|
||
/* Do not try to replace constant addresses or addresses of local and
|
||
argument slots. These MEM expressions are made only once and inserted
|
||
in many instructions, as well as being used to control symbol table
|
||
output. It is not safe to clobber them.
|
||
|
||
There are some uncommon cases where the address is already in a register
|
||
for some reason, but we cannot take advantage of that because we have
|
||
no easy way to unshare the MEM. In addition, looking up all stack
|
||
addresses is costly. */
|
||
|
||
static bool
|
||
can_simplify_addr (rtx addr)
|
||
{
|
||
rtx reg;
|
||
|
||
if (CONSTANT_ADDRESS_P (addr))
|
||
return false;
|
||
|
||
if (GET_CODE (addr) == PLUS)
|
||
reg = XEXP (addr, 0);
|
||
else
|
||
reg = addr;
|
||
|
||
return (!REG_P (reg)
|
||
|| (REGNO (reg) != FRAME_POINTER_REGNUM
|
||
&& REGNO (reg) != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (reg) != ARG_POINTER_REGNUM));
|
||
}
|
||
|
||
/* MEM is the result of an address simplification, and temporarily
|
||
undoing changes OLD_NUM_CHANGES onwards restores the original address.
|
||
Return whether it is good to use the new address instead of the
|
||
old one. INSN is the containing instruction. */
|
||
|
||
static bool
|
||
should_replace_address (int old_num_changes, rtx mem, rtx_insn *insn)
|
||
{
|
||
int gain;
|
||
|
||
/* Prefer the new address if it is less expensive. */
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
||
temporarily_undo_changes (old_num_changes);
|
||
gain = address_cost (XEXP (mem, 0), GET_MODE (mem),
|
||
MEM_ADDR_SPACE (mem), speed);
|
||
redo_changes (old_num_changes);
|
||
gain -= address_cost (XEXP (mem, 0), GET_MODE (mem),
|
||
MEM_ADDR_SPACE (mem), speed);
|
||
|
||
/* If the addresses have equivalent cost, prefer the new address
|
||
if it has the highest `set_src_cost'. That has the potential of
|
||
eliminating the most insns without additional costs, and it
|
||
is the same that cse.c used to do. */
|
||
if (gain == 0)
|
||
{
|
||
gain = set_src_cost (XEXP (mem, 0), VOIDmode, speed);
|
||
temporarily_undo_changes (old_num_changes);
|
||
gain -= set_src_cost (XEXP (mem, 0), VOIDmode, speed);
|
||
redo_changes (old_num_changes);
|
||
}
|
||
|
||
return (gain > 0);
|
||
}
|
||
|
||
|
||
namespace
|
||
{
|
||
class fwprop_propagation : public insn_propagation
|
||
{
|
||
public:
|
||
static const uint16_t CHANGED_MEM = FIRST_SPARE_RESULT;
|
||
static const uint16_t CONSTANT = FIRST_SPARE_RESULT << 1;
|
||
static const uint16_t PROFITABLE = FIRST_SPARE_RESULT << 2;
|
||
|
||
fwprop_propagation (insn_info *, set_info *, rtx, rtx);
|
||
|
||
bool changed_mem_p () const { return result_flags & CHANGED_MEM; }
|
||
bool folded_to_constants_p () const;
|
||
bool profitable_p () const;
|
||
|
||
bool check_mem (int, rtx) final override;
|
||
void note_simplification (int, uint16_t, rtx, rtx) final override;
|
||
uint16_t classify_result (rtx, rtx);
|
||
|
||
private:
|
||
const bool single_use_p;
|
||
const bool single_ebb_p;
|
||
};
|
||
}
|
||
|
||
/* Prepare to replace FROM with TO in USE_INSN. */
|
||
|
||
fwprop_propagation::fwprop_propagation (insn_info *use_insn,
|
||
set_info *def, rtx from, rtx to)
|
||
: insn_propagation (use_insn->rtl (), from, to),
|
||
single_use_p (def->single_nondebug_use ()),
|
||
single_ebb_p (use_insn->ebb () == def->ebb ())
|
||
{
|
||
should_check_mems = true;
|
||
should_note_simplifications = true;
|
||
}
|
||
|
||
/* MEM is the result of an address simplification, and temporarily
|
||
undoing changes OLD_NUM_CHANGES onwards restores the original address.
|
||
Return true if the propagation should continue, false if it has failed. */
|
||
|
||
bool
|
||
fwprop_propagation::check_mem (int old_num_changes, rtx mem)
|
||
{
|
||
if (!memory_address_addr_space_p (GET_MODE (mem), XEXP (mem, 0),
|
||
MEM_ADDR_SPACE (mem)))
|
||
{
|
||
failure_reason = "would create an invalid MEM";
|
||
return false;
|
||
}
|
||
|
||
temporarily_undo_changes (old_num_changes);
|
||
bool can_simplify = can_simplify_addr (XEXP (mem, 0));
|
||
redo_changes (old_num_changes);
|
||
if (!can_simplify)
|
||
{
|
||
failure_reason = "would replace a frame address";
|
||
return false;
|
||
}
|
||
|
||
/* Copy propagations are always ok. Otherwise check the costs. */
|
||
if (!(REG_P (from) && REG_P (to))
|
||
&& !should_replace_address (old_num_changes, mem, insn))
|
||
{
|
||
failure_reason = "would increase the cost of a MEM";
|
||
return false;
|
||
}
|
||
|
||
result_flags |= CHANGED_MEM;
|
||
return true;
|
||
}
|
||
|
||
/* OLDX has been simplified to NEWX. Describe the change in terms of
|
||
result_flags. */
|
||
|
||
uint16_t
|
||
fwprop_propagation::classify_result (rtx old_rtx, rtx new_rtx)
|
||
{
|
||
if (CONSTANT_P (new_rtx))
|
||
{
|
||
/* If OLD_RTX is a LO_SUM, then it presumably exists for a reason,
|
||
and NEW_RTX is likely not a legitimate address. We want it to
|
||
disappear if it is invalid.
|
||
|
||
??? Using the mode of the LO_SUM as the mode of the address
|
||
seems odd, but it was what the pre-SSA code did. */
|
||
if (GET_CODE (old_rtx) == LO_SUM
|
||
&& !memory_address_p (GET_MODE (old_rtx), new_rtx))
|
||
return CONSTANT;
|
||
return CONSTANT | PROFITABLE;
|
||
}
|
||
|
||
/* Allow replacements that simplify operations on a vector or complex
|
||
value to a component. The most prominent case is
|
||
(subreg ([vec_]concat ...)). */
|
||
if (REG_P (new_rtx)
|
||
&& !HARD_REGISTER_P (new_rtx)
|
||
&& (VECTOR_MODE_P (GET_MODE (from))
|
||
|| COMPLEX_MODE_P (GET_MODE (from)))
|
||
&& GET_MODE (new_rtx) == GET_MODE_INNER (GET_MODE (from)))
|
||
return PROFITABLE;
|
||
|
||
/* Allow (subreg (mem)) -> (mem) simplifications with the following
|
||
exceptions:
|
||
1) Propagating (mem)s into multiple uses is not profitable.
|
||
2) Propagating (mem)s across EBBs may not be profitable if the source EBB
|
||
runs less frequently.
|
||
3) Propagating (mem)s into paradoxical (subreg)s is not profitable.
|
||
4) Creating new (mem/v)s is not correct, since DCE will not remove the old
|
||
ones. */
|
||
if (single_use_p
|
||
&& single_ebb_p
|
||
&& SUBREG_P (old_rtx)
|
||
&& !paradoxical_subreg_p (old_rtx)
|
||
&& MEM_P (new_rtx)
|
||
&& !MEM_VOLATILE_P (new_rtx))
|
||
return PROFITABLE;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Record that OLD_RTX has been simplified to NEW_RTX. OLD_NUM_CHANGES
|
||
is the number of unrelated changes that had been made before processing
|
||
OLD_RTX and its subrtxes. OLD_RESULT_FLAGS is the value that result_flags
|
||
had at that point. */
|
||
|
||
void
|
||
fwprop_propagation::note_simplification (int old_num_changes,
|
||
uint16_t old_result_flags,
|
||
rtx old_rtx, rtx new_rtx)
|
||
{
|
||
result_flags &= ~(CONSTANT | PROFITABLE);
|
||
uint16_t new_flags = classify_result (old_rtx, new_rtx);
|
||
if (old_num_changes)
|
||
new_flags &= old_result_flags;
|
||
result_flags |= new_flags;
|
||
}
|
||
|
||
/* Return true if all substitutions eventually folded to constants. */
|
||
|
||
bool
|
||
fwprop_propagation::folded_to_constants_p () const
|
||
{
|
||
/* If we're propagating a HIGH, require it to be folded with a
|
||
partnering LO_SUM. For example, a REG_EQUAL note with a register
|
||
replaced by an unfolded HIGH is not useful. */
|
||
if (CONSTANT_P (to) && GET_CODE (to) != HIGH)
|
||
return true;
|
||
return !(result_flags & UNSIMPLIFIED) && (result_flags & CONSTANT);
|
||
}
|
||
|
||
|
||
/* Return true if it is worth keeping the result of the propagation,
|
||
false if it would increase the complexity of the pattern too much. */
|
||
|
||
bool
|
||
fwprop_propagation::profitable_p () const
|
||
{
|
||
if (changed_mem_p ())
|
||
return true;
|
||
|
||
if (!(result_flags & UNSIMPLIFIED)
|
||
&& (result_flags & PROFITABLE))
|
||
return true;
|
||
|
||
if (REG_P (to))
|
||
return true;
|
||
|
||
if (GET_CODE (to) == SUBREG
|
||
&& REG_P (SUBREG_REG (to))
|
||
&& !paradoxical_subreg_p (to))
|
||
return true;
|
||
|
||
if (CONSTANT_P (to))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check that X has a single def. */
|
||
|
||
static bool
|
||
reg_single_def_p (rtx x)
|
||
{
|
||
return REG_P (x) && crtl->ssa->single_dominating_def (REGNO (x));
|
||
}
|
||
|
||
/* Return true if X contains a paradoxical subreg. */
|
||
|
||
static bool
|
||
contains_paradoxical_subreg_p (rtx x)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
|
||
{
|
||
x = *iter;
|
||
if (SUBREG_P (x) && paradoxical_subreg_p (x))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Try to substitute (set DEST SRC), which defines DEF, into note NOTE of
|
||
USE_INSN. Return the number of substitutions on success, otherwise return
|
||
-1 and leave USE_INSN unchanged.
|
||
|
||
If REQUIRE_CONSTANT is true, require all substituted occurrences of SRC
|
||
to fold to a constant, so that the note does not use any more registers
|
||
than it did previously. If REQUIRE_CONSTANT is false, also allow the
|
||
substitution if it's something we'd normally allow for the main
|
||
instruction pattern. */
|
||
|
||
static int
|
||
try_fwprop_subst_note (insn_info *use_insn, set_info *def,
|
||
rtx note, rtx dest, rtx src, bool require_constant)
|
||
{
|
||
rtx_insn *use_rtl = use_insn->rtl ();
|
||
insn_info *def_insn = def->insn ();
|
||
|
||
insn_change_watermark watermark;
|
||
fwprop_propagation prop (use_insn, def, dest, src);
|
||
if (!prop.apply_to_rvalue (&XEXP (note, 0)))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "cannot propagate from insn %d into"
|
||
" notes of insn %d: %s\n", def_insn->uid (),
|
||
use_insn->uid (), prop.failure_reason);
|
||
return -1;
|
||
}
|
||
|
||
if (prop.num_replacements == 0)
|
||
return 0;
|
||
|
||
if (require_constant)
|
||
{
|
||
if (!prop.folded_to_constants_p ())
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "cannot propagate from insn %d into"
|
||
" notes of insn %d: %s\n", def_insn->uid (),
|
||
use_insn->uid (), "wouldn't fold to constants");
|
||
return -1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!prop.folded_to_constants_p () && !prop.profitable_p ())
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "cannot propagate from insn %d into"
|
||
" notes of insn %d: %s\n", def_insn->uid (),
|
||
use_insn->uid (), "would increase complexity of node");
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\nin notes of insn %d, replacing:\n ",
|
||
INSN_UID (use_rtl));
|
||
temporarily_undo_changes (0);
|
||
print_inline_rtx (dump_file, note, 2);
|
||
redo_changes (0);
|
||
fprintf (dump_file, "\n with:\n ");
|
||
print_inline_rtx (dump_file, note, 2);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
watermark.keep ();
|
||
return prop.num_replacements;
|
||
}
|
||
|
||
/* Try to substitute (set DEST SRC), which defines DEF, into location LOC of
|
||
USE_INSN's pattern. Return true on success, otherwise leave USE_INSN
|
||
unchanged. */
|
||
|
||
static bool
|
||
try_fwprop_subst_pattern (obstack_watermark &attempt, insn_change &use_change,
|
||
set_info *def, rtx *loc, rtx dest, rtx src)
|
||
{
|
||
insn_info *use_insn = use_change.insn ();
|
||
rtx_insn *use_rtl = use_insn->rtl ();
|
||
insn_info *def_insn = def->insn ();
|
||
|
||
insn_change_watermark watermark;
|
||
fwprop_propagation prop (use_insn, def, dest, src);
|
||
if (!prop.apply_to_pattern (loc))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "cannot propagate from insn %d into"
|
||
" insn %d: %s\n", def_insn->uid (), use_insn->uid (),
|
||
prop.failure_reason);
|
||
return false;
|
||
}
|
||
|
||
if (prop.num_replacements == 0)
|
||
return false;
|
||
|
||
if (!prop.profitable_p ())
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "cannot propagate from insn %d into"
|
||
" insn %d: %s\n", def_insn->uid (), use_insn->uid (),
|
||
"would increase complexity of pattern");
|
||
return false;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "\npropagating insn %d into insn %d, replacing:\n",
|
||
def_insn->uid (), use_insn->uid ());
|
||
temporarily_undo_changes (0);
|
||
print_rtl_single (dump_file, PATTERN (use_rtl));
|
||
redo_changes (0);
|
||
}
|
||
|
||
/* ??? In theory, it should be better to use insn costs rather than
|
||
set_src_costs here. That would involve replacing this code with
|
||
change_is_worthwhile. */
|
||
bool ok = recog (attempt, use_change);
|
||
if (ok && !prop.changed_mem_p () && !use_insn->is_asm ())
|
||
if (rtx use_set = single_set (use_rtl))
|
||
{
|
||
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_rtl));
|
||
temporarily_undo_changes (0);
|
||
auto old_cost = set_src_cost (SET_SRC (use_set),
|
||
GET_MODE (SET_DEST (use_set)), speed);
|
||
redo_changes (0);
|
||
auto new_cost = set_src_cost (SET_SRC (use_set),
|
||
GET_MODE (SET_DEST (use_set)), speed);
|
||
if (new_cost > old_cost)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "change not profitable"
|
||
" (cost %d -> cost %d)\n", old_cost, new_cost);
|
||
ok = false;
|
||
}
|
||
}
|
||
|
||
if (!ok)
|
||
{
|
||
/* The pattern didn't match, but if all uses of SRC folded to
|
||
constants, we can add a REG_EQUAL note for the result, if there
|
||
isn't one already. */
|
||
if (!prop.folded_to_constants_p ())
|
||
return false;
|
||
|
||
/* Test this first to avoid creating an unnecessary copy of SRC. */
|
||
if (find_reg_note (use_rtl, REG_EQUAL, NULL_RTX))
|
||
return false;
|
||
|
||
rtx set = set_for_reg_notes (use_rtl);
|
||
if (!set || !REG_P (SET_DEST (set)))
|
||
return false;
|
||
|
||
rtx value = copy_rtx (SET_SRC (set));
|
||
cancel_changes (0);
|
||
|
||
/* If there are any paradoxical SUBREGs, drop the REG_EQUAL note,
|
||
because the bits in there can be anything and so might not
|
||
match the REG_EQUAL note content. See PR70574. */
|
||
if (contains_paradoxical_subreg_p (SET_SRC (set)))
|
||
return false;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, " Setting REG_EQUAL note\n");
|
||
|
||
return set_unique_reg_note (use_rtl, REG_EQUAL, value);
|
||
}
|
||
|
||
rtx *note_ptr = ®_NOTES (use_rtl);
|
||
while (rtx note = *note_ptr)
|
||
{
|
||
if ((REG_NOTE_KIND (note) == REG_EQUAL
|
||
|| REG_NOTE_KIND (note) == REG_EQUIV)
|
||
&& try_fwprop_subst_note (use_insn, def, note, dest, src, false) < 0)
|
||
{
|
||
*note_ptr = XEXP (note, 1);
|
||
free_EXPR_LIST_node (note);
|
||
}
|
||
else
|
||
note_ptr = &XEXP (note, 1);
|
||
}
|
||
|
||
confirm_change_group ();
|
||
crtl->ssa->change_insn (use_change);
|
||
num_changes++;
|
||
return true;
|
||
}
|
||
|
||
/* Try to substitute (set DEST SRC), which defines DEF, into USE_INSN's notes,
|
||
given that it was not possible to do this for USE_INSN's main pattern.
|
||
Return true on success, otherwise leave USE_INSN unchanged. */
|
||
|
||
static bool
|
||
try_fwprop_subst_notes (insn_info *use_insn, set_info *def,
|
||
rtx dest, rtx src)
|
||
{
|
||
rtx_insn *use_rtl = use_insn->rtl ();
|
||
for (rtx note = REG_NOTES (use_rtl); note; note = XEXP (note, 1))
|
||
if ((REG_NOTE_KIND (note) == REG_EQUAL
|
||
|| REG_NOTE_KIND (note) == REG_EQUIV)
|
||
&& try_fwprop_subst_note (use_insn, def, note, dest, src, true) > 0)
|
||
{
|
||
confirm_change_group ();
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check whether we could validly substitute (set DEST SRC), which defines DEF,
|
||
into USE. If so, first try performing the substitution in location LOC
|
||
of USE->insn ()'s pattern. If that fails, try instead to substitute
|
||
into the notes.
|
||
|
||
Return true on success, otherwise leave USE_INSN unchanged. */
|
||
|
||
static bool
|
||
try_fwprop_subst (use_info *use, set_info *def,
|
||
rtx *loc, rtx dest, rtx src)
|
||
{
|
||
insn_info *use_insn = use->insn ();
|
||
insn_info *def_insn = def->insn ();
|
||
|
||
auto attempt = crtl->ssa->new_change_attempt ();
|
||
use_array src_uses = remove_note_accesses (attempt, def_insn->uses ());
|
||
|
||
/* ??? Not really a meaningful test: it means we can propagate arithmetic
|
||
involving hard registers but not bare references to them. A better
|
||
test would be to iterate over src_uses looking for hard registers
|
||
that are not fixed. */
|
||
if (REG_P (src) && HARD_REGISTER_P (src))
|
||
return false;
|
||
|
||
/* ??? It would be better to make this EBB-based instead. That would
|
||
involve checking for equal EBBs rather than equal BBs and trying
|
||
to make the uses available at use_insn->ebb ()->first_bb (). */
|
||
if (def_insn->bb () != use_insn->bb ())
|
||
{
|
||
src_uses = crtl->ssa->make_uses_available (attempt, src_uses,
|
||
use_insn->bb ());
|
||
if (!src_uses.is_valid ())
|
||
return false;
|
||
}
|
||
|
||
insn_change use_change (use_insn);
|
||
use_change.new_uses = merge_access_arrays (attempt, use_change.new_uses,
|
||
src_uses);
|
||
if (!use_change.new_uses.is_valid ())
|
||
return false;
|
||
|
||
/* ??? We could allow movement within the EBB by adding:
|
||
|
||
use_change.move_range = use_insn->ebb ()->insn_range (); */
|
||
if (!restrict_movement (use_change))
|
||
return false;
|
||
|
||
return (try_fwprop_subst_pattern (attempt, use_change, def, loc, dest, src)
|
||
|| try_fwprop_subst_notes (use_insn, def, dest, src));
|
||
}
|
||
|
||
/* For the given single_set INSN, containing SRC known to be a
|
||
ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
|
||
is redundant due to the register being set by a LOAD_EXTEND_OP
|
||
load from memory. */
|
||
|
||
static bool
|
||
free_load_extend (rtx src, insn_info *insn)
|
||
{
|
||
rtx reg = XEXP (src, 0);
|
||
if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
|
||
return false;
|
||
|
||
def_info *def = nullptr;
|
||
for (use_info *use : insn->uses ())
|
||
if (use->regno () == REGNO (reg))
|
||
{
|
||
def = use->def ();
|
||
break;
|
||
}
|
||
|
||
if (!def)
|
||
return false;
|
||
|
||
insn_info *def_insn = def->insn ();
|
||
if (def_insn->is_artificial ())
|
||
return false;
|
||
|
||
rtx_insn *def_rtl = def_insn->rtl ();
|
||
if (NONJUMP_INSN_P (def_rtl))
|
||
{
|
||
rtx patt = PATTERN (def_rtl);
|
||
|
||
if (GET_CODE (patt) == SET
|
||
&& GET_CODE (SET_SRC (patt)) == MEM
|
||
&& rtx_equal_p (SET_DEST (patt), reg))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Subroutine of forward_propagate_subreg that handles a use of DEST
|
||
in REF. The other parameters are the same. */
|
||
|
||
static bool
|
||
forward_propagate_subreg (use_info *use, set_info *def,
|
||
rtx dest, rtx src, df_ref ref)
|
||
{
|
||
scalar_int_mode int_use_mode, src_mode;
|
||
|
||
/* Only consider subregs... */
|
||
rtx use_reg = DF_REF_REG (ref);
|
||
machine_mode use_mode = GET_MODE (use_reg);
|
||
if (GET_CODE (use_reg) != SUBREG
|
||
|| GET_MODE (SUBREG_REG (use_reg)) != GET_MODE (dest))
|
||
return false;
|
||
|
||
/* ??? Replacing throughout the pattern would help for match_dups. */
|
||
rtx *loc = DF_REF_LOC (ref);
|
||
if (paradoxical_subreg_p (use_reg))
|
||
{
|
||
/* If this is a paradoxical SUBREG, we have no idea what value the
|
||
extra bits would have. However, if the operand is equivalent to
|
||
a SUBREG whose operand is the same as our mode, and all the modes
|
||
are within a word, we can just use the inner operand because
|
||
these SUBREGs just say how to treat the register. */
|
||
if (GET_CODE (src) == SUBREG
|
||
&& REG_P (SUBREG_REG (src))
|
||
&& REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
|
||
&& GET_MODE (SUBREG_REG (src)) == use_mode
|
||
&& subreg_lowpart_p (src))
|
||
return try_fwprop_subst (use, def, loc, use_reg, SUBREG_REG (src));
|
||
}
|
||
|
||
/* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
|
||
is the low part of the reg being extended then just use the inner
|
||
operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
|
||
be removed due to it matching a LOAD_EXTEND_OP load from memory,
|
||
or due to the operation being a no-op when applied to registers.
|
||
For example, if we have:
|
||
|
||
A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
|
||
B: (... (subreg:SI (reg:DI X)) ...)
|
||
|
||
and mode_rep_extended says that Y is already sign-extended,
|
||
the backend will typically allow A to be combined with the
|
||
definition of Y or, failing that, allow A to be deleted after
|
||
reload through register tying. Introducing more uses of Y
|
||
prevents both optimisations. */
|
||
else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
|
||
&& subreg_lowpart_p (use_reg))
|
||
{
|
||
if ((GET_CODE (src) == ZERO_EXTEND
|
||
|| GET_CODE (src) == SIGN_EXTEND)
|
||
&& is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
|
||
&& REG_P (XEXP (src, 0))
|
||
&& REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
|
||
&& GET_MODE (XEXP (src, 0)) == use_mode
|
||
&& !free_load_extend (src, def->insn ())
|
||
&& (targetm.mode_rep_extended (int_use_mode, src_mode)
|
||
!= (int) GET_CODE (src)))
|
||
return try_fwprop_subst (use, def, loc, use_reg, XEXP (src, 0));
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Try to substitute (set DEST SRC), which defines DEF, into USE and simplify
|
||
the result, handling cases where DEST is used in a subreg and where
|
||
applying that subreg to SRC results in a useful simplification. */
|
||
|
||
static bool
|
||
forward_propagate_subreg (use_info *use, set_info *def, rtx dest, rtx src)
|
||
{
|
||
if (!use->includes_subregs () || !REG_P (dest))
|
||
return false;
|
||
|
||
if (GET_CODE (src) != SUBREG
|
||
&& GET_CODE (src) != ZERO_EXTEND
|
||
&& GET_CODE (src) != SIGN_EXTEND)
|
||
return false;
|
||
|
||
rtx_insn *use_rtl = use->insn ()->rtl ();
|
||
df_ref ref;
|
||
|
||
FOR_EACH_INSN_USE (ref, use_rtl)
|
||
if (DF_REF_REGNO (ref) == use->regno ()
|
||
&& forward_propagate_subreg (use, def, dest, src, ref))
|
||
return true;
|
||
|
||
FOR_EACH_INSN_EQ_USE (ref, use_rtl)
|
||
if (DF_REF_REGNO (ref) == use->regno ()
|
||
&& forward_propagate_subreg (use, def, dest, src, ref))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Try to substitute (set DEST SRC), which defines DEF, into USE and
|
||
simplify the result. */
|
||
|
||
static bool
|
||
forward_propagate_and_simplify (use_info *use, set_info *def,
|
||
rtx dest, rtx src)
|
||
{
|
||
insn_info *use_insn = use->insn ();
|
||
rtx_insn *use_rtl = use_insn->rtl ();
|
||
insn_info *def_insn = def->insn ();
|
||
|
||
/* ??? This check seems unnecessary. We should be able to propagate
|
||
into any kind of instruction, regardless of whether it's a single set.
|
||
It seems odd to be more permissive with asms than normal instructions. */
|
||
bool need_single_set = (!use_insn->is_asm () && !use_insn->is_debug_insn ());
|
||
rtx use_set = single_set (use_rtl);
|
||
if (need_single_set && !use_set)
|
||
return false;
|
||
|
||
/* Do not propagate into PC, CC0, etc.
|
||
|
||
??? This too seems unnecessary. The current code should work correctly
|
||
without it, including cases where jumps become unconditional. */
|
||
if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
|
||
return false;
|
||
|
||
/* In __asm don't replace if src might need more registers than
|
||
reg, as that could increase register pressure on the __asm. */
|
||
if (use_insn->is_asm () && def_insn->uses ().size () > 1)
|
||
return false;
|
||
|
||
/* Check if the def is loading something from the constant pool; in this
|
||
case we would undo optimization such as compress_float_constant.
|
||
Still, we can set a REG_EQUAL note. */
|
||
if (MEM_P (src) && MEM_READONLY_P (src))
|
||
{
|
||
rtx x = avoid_constant_pool_reference (src);
|
||
rtx note_set;
|
||
if (x != src
|
||
&& (note_set = set_for_reg_notes (use_rtl))
|
||
&& REG_P (SET_DEST (note_set))
|
||
&& !contains_paradoxical_subreg_p (SET_SRC (note_set)))
|
||
{
|
||
rtx note = find_reg_note (use_rtl, REG_EQUAL, NULL_RTX);
|
||
rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (note_set);
|
||
rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
|
||
if (old_rtx != new_rtx)
|
||
set_unique_reg_note (use_rtl, REG_EQUAL, copy_rtx (new_rtx));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* ??? Unconditionally propagating into PATTERN would work better
|
||
for instructions that have match_dups. */
|
||
rtx *loc = need_single_set ? &use_set : &PATTERN (use_rtl);
|
||
return try_fwprop_subst (use, def, loc, dest, src);
|
||
}
|
||
|
||
/* Given a use USE of an insn, if it has a single reaching
|
||
definition, try to forward propagate it into that insn.
|
||
Return true if something changed.
|
||
|
||
REG_PROP_ONLY is true if we should only propagate register copies. */
|
||
|
||
static bool
|
||
forward_propagate_into (use_info *use, bool reg_prop_only = false)
|
||
{
|
||
if (use->includes_read_writes ())
|
||
return false;
|
||
|
||
/* Disregard uninitialized uses. */
|
||
set_info *def = use->def ();
|
||
if (!def)
|
||
return false;
|
||
|
||
/* Only consider single-register definitions. This could be relaxed,
|
||
but it should rarely be needed before RA. */
|
||
def = look_through_degenerate_phi (def);
|
||
if (def->includes_multiregs ())
|
||
return false;
|
||
|
||
/* Only consider uses whose definition comes from a real instruction. */
|
||
insn_info *def_insn = def->insn ();
|
||
if (def_insn->is_artificial ())
|
||
return false;
|
||
|
||
rtx_insn *def_rtl = def_insn->rtl ();
|
||
if (!NONJUMP_INSN_P (def_rtl))
|
||
return false;
|
||
/* ??? This seems an unnecessary restriction. We can easily tell
|
||
which set the definition comes from. */
|
||
if (multiple_sets (def_rtl))
|
||
return false;
|
||
rtx def_set = simple_regno_set (PATTERN (def_rtl), def->regno ());
|
||
if (!def_set)
|
||
return false;
|
||
|
||
rtx dest = SET_DEST (def_set);
|
||
rtx src = SET_SRC (def_set);
|
||
|
||
/* Allow propagations into a loop only for reg-to-reg copies, since
|
||
replacing one register by another shouldn't increase the cost. */
|
||
struct loop *def_loop = def_insn->bb ()->cfg_bb ()->loop_father;
|
||
struct loop *use_loop = use->bb ()->cfg_bb ()->loop_father;
|
||
if ((reg_prop_only || def_loop != use_loop)
|
||
&& (!reg_single_def_p (dest) || !reg_single_def_p (src)))
|
||
return false;
|
||
|
||
/* Don't substitute into a non-local goto, this confuses CFG. */
|
||
insn_info *use_insn = use->insn ();
|
||
rtx_insn *use_rtl = use_insn->rtl ();
|
||
if (JUMP_P (use_rtl)
|
||
&& find_reg_note (use_rtl, REG_NON_LOCAL_GOTO, NULL_RTX))
|
||
return false;
|
||
|
||
if (forward_propagate_and_simplify (use, def, dest, src)
|
||
|| forward_propagate_subreg (use, def, dest, src))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
fwprop_init (void)
|
||
{
|
||
num_changes = 0;
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* We do not always want to propagate into loops, so we have to find
|
||
loops and be careful about them. Avoid CFG modifications so that
|
||
we don't have to update dominance information afterwards for
|
||
build_single_def_use_links. */
|
||
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
|
||
|
||
df_analyze ();
|
||
crtl->ssa = new rtl_ssa::function_info (cfun);
|
||
}
|
||
|
||
static void
|
||
fwprop_done (void)
|
||
{
|
||
loop_optimizer_finalize ();
|
||
|
||
crtl->ssa->perform_pending_updates ();
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
cleanup_cfg (0);
|
||
|
||
delete crtl->ssa;
|
||
crtl->ssa = nullptr;
|
||
|
||
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"\nNumber of successful forward propagations: %d\n\n",
|
||
num_changes);
|
||
}
|
||
|
||
/* Try to optimize INSN, returning true if something changes.
|
||
FWPROP_ADDR_P is true if we are running fwprop_addr rather than
|
||
the full fwprop. */
|
||
|
||
static bool
|
||
fwprop_insn (insn_info *insn, bool fwprop_addr_p)
|
||
{
|
||
for (use_info *use : insn->uses ())
|
||
{
|
||
if (use->is_mem ())
|
||
continue;
|
||
/* ??? The choices here follow those in the pre-SSA code. */
|
||
if (!use->includes_address_uses ())
|
||
{
|
||
if (forward_propagate_into (use, fwprop_addr_p))
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
struct loop *loop = insn->bb ()->cfg_bb ()->loop_father;
|
||
/* The outermost loop is not really a loop. */
|
||
if (loop == NULL || loop_outer (loop) == NULL)
|
||
{
|
||
if (forward_propagate_into (use, fwprop_addr_p))
|
||
return true;
|
||
}
|
||
else if (fwprop_addr_p)
|
||
{
|
||
if (forward_propagate_into (use, false))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Main entry point. */
|
||
|
||
static bool
|
||
gate_fwprop (void)
|
||
{
|
||
return optimize > 0 && flag_forward_propagate;
|
||
}
|
||
|
||
static unsigned int
|
||
fwprop (bool fwprop_addr_p)
|
||
{
|
||
fwprop_init ();
|
||
|
||
/* Go through all the instructions (including debug instructions) looking
|
||
for uses that we could propagate into.
|
||
|
||
Do not forward propagate addresses into loops until after unrolling.
|
||
CSE did so because it was able to fix its own mess, but we are not. */
|
||
|
||
insn_info *next;
|
||
|
||
/* ??? This code uses a worklist in order to preserve the behavior
|
||
of the pre-SSA implementation. It would be better to instead
|
||
iterate on each instruction until no more propagations are
|
||
possible, then move on to the next. */
|
||
auto_vec<insn_info *> worklist;
|
||
for (insn_info *insn = crtl->ssa->first_insn (); insn; insn = next)
|
||
{
|
||
next = insn->next_any_insn ();
|
||
if (insn->can_be_optimized () || insn->is_debug_insn ())
|
||
if (fwprop_insn (insn, fwprop_addr_p))
|
||
worklist.safe_push (insn);
|
||
}
|
||
for (unsigned int i = 0; i < worklist.length (); ++i)
|
||
{
|
||
insn_info *insn = worklist[i];
|
||
if (fwprop_insn (insn, fwprop_addr_p))
|
||
worklist.safe_push (insn);
|
||
}
|
||
|
||
fwprop_done ();
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_rtl_fwprop =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"fwprop1", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_FWPROP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_rtl_fwprop : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_rtl_fwprop (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return gate_fwprop (); }
|
||
virtual unsigned int execute (function *) { return fwprop (false); }
|
||
|
||
}; // class pass_rtl_fwprop
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_rtl_fwprop (gcc::context *ctxt)
|
||
{
|
||
return new pass_rtl_fwprop (ctxt);
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_rtl_fwprop_addr =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"fwprop2", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_FWPROP, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_rtl_fwprop_addr : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_rtl_fwprop_addr (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return gate_fwprop (); }
|
||
virtual unsigned int execute (function *) { return fwprop (true); }
|
||
|
||
}; // class pass_rtl_fwprop_addr
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_rtl_fwprop_addr (gcc::context *ctxt)
|
||
{
|
||
return new pass_rtl_fwprop_addr (ctxt);
|
||
}
|