1301 lines
40 KiB
C
1301 lines
40 KiB
C
/* Convert tree expression to rtl instructions, for GNU compiler.
|
||
Copyright (C) 1988-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "predict.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "optabs.h"
|
||
#include "emit-rtl.h"
|
||
#include "fold-const.h"
|
||
#include "stor-layout.h"
|
||
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
|
||
#include "dojump.h"
|
||
#include "explow.h"
|
||
#include "expr.h"
|
||
#include "langhooks.h"
|
||
|
||
static bool prefer_and_bit_test (scalar_int_mode, int);
|
||
static void do_jump (tree, rtx_code_label *, rtx_code_label *,
|
||
profile_probability);
|
||
static void do_jump_by_parts_greater (scalar_int_mode, tree, tree, int,
|
||
rtx_code_label *, rtx_code_label *,
|
||
profile_probability);
|
||
static void do_jump_by_parts_equality (scalar_int_mode, tree, tree,
|
||
rtx_code_label *, rtx_code_label *,
|
||
profile_probability);
|
||
static void do_compare_and_jump (tree, tree, enum rtx_code, enum rtx_code,
|
||
rtx_code_label *, rtx_code_label *,
|
||
profile_probability);
|
||
|
||
/* At the start of a function, record that we have no previously-pushed
|
||
arguments waiting to be popped. */
|
||
|
||
void
|
||
init_pending_stack_adjust (void)
|
||
{
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
/* Discard any pending stack adjustment. This avoid relying on the
|
||
RTL optimizers to remove useless adjustments when we know the
|
||
stack pointer value is dead. */
|
||
void
|
||
discard_pending_stack_adjust (void)
|
||
{
|
||
stack_pointer_delta -= pending_stack_adjust;
|
||
pending_stack_adjust = 0;
|
||
}
|
||
|
||
/* When exiting from function, if safe, clear out any pending stack adjust
|
||
so the adjustment won't get done.
|
||
|
||
Note, if the current function calls alloca, then it must have a
|
||
frame pointer regardless of the value of flag_omit_frame_pointer. */
|
||
|
||
void
|
||
clear_pending_stack_adjust (void)
|
||
{
|
||
if (optimize > 0
|
||
&& (! flag_omit_frame_pointer || cfun->calls_alloca)
|
||
&& EXIT_IGNORE_STACK)
|
||
discard_pending_stack_adjust ();
|
||
}
|
||
|
||
/* Pop any previously-pushed arguments that have not been popped yet. */
|
||
|
||
void
|
||
do_pending_stack_adjust (void)
|
||
{
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
if (maybe_ne (pending_stack_adjust, 0))
|
||
adjust_stack (gen_int_mode (pending_stack_adjust, Pmode));
|
||
pending_stack_adjust = 0;
|
||
}
|
||
}
|
||
|
||
/* Remember pending_stack_adjust/stack_pointer_delta.
|
||
To be used around code that may call do_pending_stack_adjust (),
|
||
but the generated code could be discarded e.g. using delete_insns_since. */
|
||
|
||
void
|
||
save_pending_stack_adjust (saved_pending_stack_adjust *save)
|
||
{
|
||
save->x_pending_stack_adjust = pending_stack_adjust;
|
||
save->x_stack_pointer_delta = stack_pointer_delta;
|
||
}
|
||
|
||
/* Restore the saved pending_stack_adjust/stack_pointer_delta. */
|
||
|
||
void
|
||
restore_pending_stack_adjust (saved_pending_stack_adjust *save)
|
||
{
|
||
if (inhibit_defer_pop == 0)
|
||
{
|
||
pending_stack_adjust = save->x_pending_stack_adjust;
|
||
stack_pointer_delta = save->x_stack_pointer_delta;
|
||
}
|
||
}
|
||
|
||
/* Used internally by prefer_and_bit_test. */
|
||
|
||
static GTY(()) rtx and_reg;
|
||
static GTY(()) rtx and_test;
|
||
static GTY(()) rtx shift_test;
|
||
|
||
/* Compare the relative costs of "(X & (1 << BITNUM))" and "(X >> BITNUM) & 1",
|
||
where X is an arbitrary register of mode MODE. Return true if the former
|
||
is preferred. */
|
||
|
||
static bool
|
||
prefer_and_bit_test (scalar_int_mode mode, int bitnum)
|
||
{
|
||
bool speed_p;
|
||
wide_int mask = wi::set_bit_in_zero (bitnum, GET_MODE_PRECISION (mode));
|
||
|
||
if (and_test == 0)
|
||
{
|
||
/* Set up rtxes for the two variations. Use NULL as a placeholder
|
||
for the BITNUM-based constants. */
|
||
and_reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
||
and_test = gen_rtx_AND (mode, and_reg, NULL);
|
||
shift_test = gen_rtx_AND (mode, gen_rtx_ASHIFTRT (mode, and_reg, NULL),
|
||
const1_rtx);
|
||
}
|
||
else
|
||
{
|
||
/* Change the mode of the previously-created rtxes. */
|
||
PUT_MODE (and_reg, mode);
|
||
PUT_MODE (and_test, mode);
|
||
PUT_MODE (shift_test, mode);
|
||
PUT_MODE (XEXP (shift_test, 0), mode);
|
||
}
|
||
|
||
/* Fill in the integers. */
|
||
XEXP (and_test, 1) = immed_wide_int_const (mask, mode);
|
||
XEXP (XEXP (shift_test, 0), 1) = GEN_INT (bitnum);
|
||
|
||
speed_p = optimize_insn_for_speed_p ();
|
||
return (rtx_cost (and_test, mode, IF_THEN_ELSE, 0, speed_p)
|
||
<= rtx_cost (shift_test, mode, IF_THEN_ELSE, 0, speed_p));
|
||
}
|
||
|
||
/* Subroutine of do_jump, dealing with exploded comparisons of the type
|
||
OP0 CODE OP1 . IF_FALSE_LABEL and IF_TRUE_LABEL like in do_jump.
|
||
PROB is probability of jump to if_true_label. */
|
||
|
||
static void
|
||
do_jump_1 (enum tree_code code, tree op0, tree op1,
|
||
rtx_code_label *if_false_label, rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
machine_mode mode;
|
||
rtx_code_label *drop_through_label = 0;
|
||
scalar_int_mode int_mode;
|
||
|
||
switch (code)
|
||
{
|
||
case EQ_EXPR:
|
||
{
|
||
tree inner_type = TREE_TYPE (op0);
|
||
|
||
gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type))
|
||
!= MODE_COMPLEX_FLOAT);
|
||
gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type))
|
||
!= MODE_COMPLEX_INT);
|
||
|
||
if (integer_zerop (op1))
|
||
do_jump (op0, if_true_label, if_false_label,
|
||
prob.invert ());
|
||
else if (is_int_mode (TYPE_MODE (inner_type), &int_mode)
|
||
&& !can_compare_p (EQ, int_mode, ccp_jump))
|
||
do_jump_by_parts_equality (int_mode, op0, op1, if_false_label,
|
||
if_true_label, prob);
|
||
else
|
||
do_compare_and_jump (op0, op1, EQ, EQ, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
}
|
||
|
||
case NE_EXPR:
|
||
{
|
||
tree inner_type = TREE_TYPE (op0);
|
||
|
||
gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type))
|
||
!= MODE_COMPLEX_FLOAT);
|
||
gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type))
|
||
!= MODE_COMPLEX_INT);
|
||
|
||
if (integer_zerop (op1))
|
||
do_jump (op0, if_false_label, if_true_label, prob);
|
||
else if (is_int_mode (TYPE_MODE (inner_type), &int_mode)
|
||
&& !can_compare_p (NE, int_mode, ccp_jump))
|
||
do_jump_by_parts_equality (int_mode, op0, op1, if_true_label,
|
||
if_false_label, prob.invert ());
|
||
else
|
||
do_compare_and_jump (op0, op1, NE, NE, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
}
|
||
|
||
case LT_EXPR:
|
||
mode = TYPE_MODE (TREE_TYPE (op0));
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& ! can_compare_p (LT, int_mode, ccp_jump))
|
||
do_jump_by_parts_greater (int_mode, op0, op1, 1, if_false_label,
|
||
if_true_label, prob);
|
||
else
|
||
do_compare_and_jump (op0, op1, LT, LTU, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
mode = TYPE_MODE (TREE_TYPE (op0));
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& ! can_compare_p (LE, int_mode, ccp_jump))
|
||
do_jump_by_parts_greater (int_mode, op0, op1, 0, if_true_label,
|
||
if_false_label, prob.invert ());
|
||
else
|
||
do_compare_and_jump (op0, op1, LE, LEU, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case GT_EXPR:
|
||
mode = TYPE_MODE (TREE_TYPE (op0));
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& ! can_compare_p (GT, int_mode, ccp_jump))
|
||
do_jump_by_parts_greater (int_mode, op0, op1, 0, if_false_label,
|
||
if_true_label, prob);
|
||
else
|
||
do_compare_and_jump (op0, op1, GT, GTU, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case GE_EXPR:
|
||
mode = TYPE_MODE (TREE_TYPE (op0));
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& ! can_compare_p (GE, int_mode, ccp_jump))
|
||
do_jump_by_parts_greater (int_mode, op0, op1, 1, if_true_label,
|
||
if_false_label, prob.invert ());
|
||
else
|
||
do_compare_and_jump (op0, op1, GE, GEU, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case ORDERED_EXPR:
|
||
do_compare_and_jump (op0, op1, ORDERED, ORDERED,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case UNORDERED_EXPR:
|
||
do_compare_and_jump (op0, op1, UNORDERED, UNORDERED,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case UNLT_EXPR:
|
||
do_compare_and_jump (op0, op1, UNLT, UNLT, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case UNLE_EXPR:
|
||
do_compare_and_jump (op0, op1, UNLE, UNLE, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case UNGT_EXPR:
|
||
do_compare_and_jump (op0, op1, UNGT, UNGT, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case UNGE_EXPR:
|
||
do_compare_and_jump (op0, op1, UNGE, UNGE, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case UNEQ_EXPR:
|
||
do_compare_and_jump (op0, op1, UNEQ, UNEQ, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case LTGT_EXPR:
|
||
do_compare_and_jump (op0, op1, LTGT, LTGT, if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
{
|
||
/* Spread the probability that the expression is false evenly between
|
||
the two conditions. So the first condition is false half the total
|
||
probability of being false. The second condition is false the other
|
||
half of the total probability of being false, so its jump has a false
|
||
probability of half the total, relative to the probability we
|
||
reached it (i.e. the first condition was true). */
|
||
profile_probability op0_prob = profile_probability::uninitialized ();
|
||
profile_probability op1_prob = profile_probability::uninitialized ();
|
||
if (prob.initialized_p ())
|
||
{
|
||
op1_prob = prob.invert ();
|
||
op0_prob = op1_prob.split (profile_probability::even ());
|
||
/* Get the probability that each jump below is true. */
|
||
op0_prob = op0_prob.invert ();
|
||
op1_prob = op1_prob.invert ();
|
||
}
|
||
if (if_false_label == NULL)
|
||
{
|
||
drop_through_label = gen_label_rtx ();
|
||
do_jump (op0, drop_through_label, NULL, op0_prob);
|
||
do_jump (op1, NULL, if_true_label, op1_prob);
|
||
}
|
||
else
|
||
{
|
||
do_jump (op0, if_false_label, NULL, op0_prob);
|
||
do_jump (op1, if_false_label, if_true_label, op1_prob);
|
||
}
|
||
break;
|
||
}
|
||
|
||
case TRUTH_ORIF_EXPR:
|
||
{
|
||
/* Spread the probability evenly between the two conditions. So
|
||
the first condition has half the total probability of being true.
|
||
The second condition has the other half of the total probability,
|
||
so its jump has a probability of half the total, relative to
|
||
the probability we reached it (i.e. the first condition was false). */
|
||
profile_probability op0_prob = profile_probability::uninitialized ();
|
||
profile_probability op1_prob = profile_probability::uninitialized ();
|
||
if (prob.initialized_p ())
|
||
{
|
||
op1_prob = prob;
|
||
op0_prob = op1_prob.split (profile_probability::even ());
|
||
}
|
||
if (if_true_label == NULL)
|
||
{
|
||
drop_through_label = gen_label_rtx ();
|
||
do_jump (op0, NULL, drop_through_label, op0_prob);
|
||
do_jump (op1, if_false_label, NULL, op1_prob);
|
||
}
|
||
else
|
||
{
|
||
do_jump (op0, NULL, if_true_label, op0_prob);
|
||
do_jump (op1, if_false_label, if_true_label, op1_prob);
|
||
}
|
||
break;
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (drop_through_label)
|
||
{
|
||
do_pending_stack_adjust ();
|
||
emit_label (drop_through_label);
|
||
}
|
||
}
|
||
|
||
/* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
|
||
the result is zero, or IF_TRUE_LABEL if the result is one.
|
||
Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
|
||
meaning fall through in that case.
|
||
|
||
do_jump always does any pending stack adjust except when it does not
|
||
actually perform a jump. An example where there is no jump
|
||
is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
|
||
|
||
PROB is probability of jump to if_true_label. */
|
||
|
||
static void
|
||
do_jump (tree exp, rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label, profile_probability prob)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
rtx temp;
|
||
int i;
|
||
tree type;
|
||
scalar_int_mode mode;
|
||
rtx_code_label *drop_through_label = NULL;
|
||
|
||
switch (code)
|
||
{
|
||
case ERROR_MARK:
|
||
break;
|
||
|
||
case INTEGER_CST:
|
||
{
|
||
rtx_code_label *lab = integer_zerop (exp) ? if_false_label
|
||
: if_true_label;
|
||
if (lab)
|
||
emit_jump (lab);
|
||
break;
|
||
}
|
||
|
||
#if 0
|
||
/* This is not true with #pragma weak */
|
||
case ADDR_EXPR:
|
||
/* The address of something can never be zero. */
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
break;
|
||
#endif
|
||
|
||
case NOP_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
|
||
|| TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
|
||
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF
|
||
|| TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_RANGE_REF)
|
||
goto normal;
|
||
/* FALLTHRU */
|
||
case CONVERT_EXPR:
|
||
/* If we are narrowing the operand, we have to do the compare in the
|
||
narrower mode. */
|
||
if ((TYPE_PRECISION (TREE_TYPE (exp))
|
||
< TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
|
||
goto normal;
|
||
/* FALLTHRU */
|
||
case NON_LVALUE_EXPR:
|
||
case ABS_EXPR:
|
||
case ABSU_EXPR:
|
||
case NEGATE_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* These cannot change zero->nonzero or vice versa. */
|
||
do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
{
|
||
rtx_code_label *label1 = gen_label_rtx ();
|
||
if (!if_true_label || !if_false_label)
|
||
{
|
||
drop_through_label = gen_label_rtx ();
|
||
if (!if_true_label)
|
||
if_true_label = drop_through_label;
|
||
if (!if_false_label)
|
||
if_false_label = drop_through_label;
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
do_jump (TREE_OPERAND (exp, 0), label1, NULL,
|
||
profile_probability::uninitialized ());
|
||
do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label, prob);
|
||
emit_label (label1);
|
||
do_jump (TREE_OPERAND (exp, 2), if_false_label, if_true_label, prob);
|
||
break;
|
||
}
|
||
|
||
case COMPOUND_EXPR:
|
||
/* Lowered by gimplify.c. */
|
||
gcc_unreachable ();
|
||
|
||
case MINUS_EXPR:
|
||
/* Nonzero iff operands of minus differ. */
|
||
code = NE_EXPR;
|
||
|
||
/* FALLTHRU */
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case UNLT_EXPR:
|
||
case UNLE_EXPR:
|
||
case UNGT_EXPR:
|
||
case UNGE_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
other_code:
|
||
do_jump_1 (code, TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case BIT_AND_EXPR:
|
||
/* fold_single_bit_test() converts (X & (1 << C)) into (X >> C) & 1.
|
||
See if the former is preferred for jump tests and restore it
|
||
if so. */
|
||
if (integer_onep (TREE_OPERAND (exp, 1)))
|
||
{
|
||
tree exp0 = TREE_OPERAND (exp, 0);
|
||
rtx_code_label *set_label, *clr_label;
|
||
profile_probability setclr_prob = prob;
|
||
|
||
/* Strip narrowing integral type conversions. */
|
||
while (CONVERT_EXPR_P (exp0)
|
||
&& TREE_OPERAND (exp0, 0) != error_mark_node
|
||
&& TYPE_PRECISION (TREE_TYPE (exp0))
|
||
<= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp0, 0))))
|
||
exp0 = TREE_OPERAND (exp0, 0);
|
||
|
||
/* "exp0 ^ 1" inverts the sense of the single bit test. */
|
||
if (TREE_CODE (exp0) == BIT_XOR_EXPR
|
||
&& integer_onep (TREE_OPERAND (exp0, 1)))
|
||
{
|
||
exp0 = TREE_OPERAND (exp0, 0);
|
||
clr_label = if_true_label;
|
||
set_label = if_false_label;
|
||
setclr_prob = prob.invert ();
|
||
}
|
||
else
|
||
{
|
||
clr_label = if_false_label;
|
||
set_label = if_true_label;
|
||
}
|
||
|
||
if (TREE_CODE (exp0) == RSHIFT_EXPR)
|
||
{
|
||
tree arg = TREE_OPERAND (exp0, 0);
|
||
tree shift = TREE_OPERAND (exp0, 1);
|
||
tree argtype = TREE_TYPE (arg);
|
||
if (TREE_CODE (shift) == INTEGER_CST
|
||
&& compare_tree_int (shift, 0) >= 0
|
||
&& compare_tree_int (shift, HOST_BITS_PER_WIDE_INT) < 0
|
||
&& prefer_and_bit_test (SCALAR_INT_TYPE_MODE (argtype),
|
||
TREE_INT_CST_LOW (shift)))
|
||
{
|
||
unsigned HOST_WIDE_INT mask
|
||
= HOST_WIDE_INT_1U << TREE_INT_CST_LOW (shift);
|
||
do_jump (build2 (BIT_AND_EXPR, argtype, arg,
|
||
build_int_cstu (argtype, mask)),
|
||
clr_label, set_label, setclr_prob);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we are AND'ing with a small constant, do this comparison in the
|
||
smallest type that fits. If the machine doesn't have comparisons
|
||
that small, it will be converted back to the wider comparison.
|
||
This helps if we are testing the sign bit of a narrower object.
|
||
combine can't do this for us because it can't know whether a
|
||
ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
|
||
|
||
if (! SLOW_BYTE_ACCESS
|
||
&& TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
|
||
&& TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
|
||
&& (i = tree_floor_log2 (TREE_OPERAND (exp, 1))) >= 0
|
||
&& int_mode_for_size (i + 1, 0).exists (&mode)
|
||
&& (type = lang_hooks.types.type_for_mode (mode, 1)) != 0
|
||
&& TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
|
||
&& have_insn_for (COMPARE, TYPE_MODE (type)))
|
||
{
|
||
do_jump (fold_convert (type, exp), if_false_label, if_true_label,
|
||
prob);
|
||
break;
|
||
}
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (exp)) > 1
|
||
|| TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
|
||
goto normal;
|
||
|
||
/* Boolean comparisons can be compiled as TRUTH_AND_EXPR. */
|
||
/* FALLTHRU */
|
||
|
||
case TRUTH_AND_EXPR:
|
||
/* High branch cost, expand as the bitwise AND of the conditions.
|
||
Do the same if the RHS has side effects, because we're effectively
|
||
turning a TRUTH_AND_EXPR into a TRUTH_ANDIF_EXPR. */
|
||
if (BRANCH_COST (optimize_insn_for_speed_p (),
|
||
false) >= 4
|
||
|| TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
|
||
goto normal;
|
||
code = TRUTH_ANDIF_EXPR;
|
||
goto other_code;
|
||
|
||
case BIT_IOR_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
/* High branch cost, expand as the bitwise OR of the conditions.
|
||
Do the same if the RHS has side effects, because we're effectively
|
||
turning a TRUTH_OR_EXPR into a TRUTH_ORIF_EXPR. */
|
||
if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 4
|
||
|| TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
|
||
goto normal;
|
||
code = TRUTH_ORIF_EXPR;
|
||
goto other_code;
|
||
|
||
/* Fall through and generate the normal code. */
|
||
default:
|
||
normal:
|
||
temp = expand_normal (exp);
|
||
do_pending_stack_adjust ();
|
||
/* The RTL optimizers prefer comparisons against pseudos. */
|
||
if (GET_CODE (temp) == SUBREG)
|
||
{
|
||
/* Compare promoted variables in their promoted mode. */
|
||
if (SUBREG_PROMOTED_VAR_P (temp)
|
||
&& REG_P (XEXP (temp, 0)))
|
||
temp = XEXP (temp, 0);
|
||
else
|
||
temp = copy_to_reg (temp);
|
||
}
|
||
do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
|
||
NE, TYPE_UNSIGNED (TREE_TYPE (exp)),
|
||
GET_MODE (temp), NULL_RTX,
|
||
if_false_label, if_true_label, prob);
|
||
}
|
||
|
||
if (drop_through_label)
|
||
{
|
||
do_pending_stack_adjust ();
|
||
emit_label (drop_through_label);
|
||
}
|
||
}
|
||
|
||
/* Compare OP0 with OP1, word at a time, in mode MODE.
|
||
UNSIGNEDP says to do unsigned comparison.
|
||
Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
|
||
|
||
static void
|
||
do_jump_by_parts_greater_rtx (scalar_int_mode mode, int unsignedp, rtx op0,
|
||
rtx op1, rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
|
||
rtx_code_label *drop_through_label = 0;
|
||
bool drop_through_if_true = false, drop_through_if_false = false;
|
||
enum rtx_code code = GT;
|
||
int i;
|
||
|
||
if (! if_true_label || ! if_false_label)
|
||
drop_through_label = gen_label_rtx ();
|
||
if (! if_true_label)
|
||
{
|
||
if_true_label = drop_through_label;
|
||
drop_through_if_true = true;
|
||
}
|
||
if (! if_false_label)
|
||
{
|
||
if_false_label = drop_through_label;
|
||
drop_through_if_false = true;
|
||
}
|
||
|
||
/* Deal with the special case 0 > x: only one comparison is necessary and
|
||
we reverse it to avoid jumping to the drop-through label. */
|
||
if (op0 == const0_rtx && drop_through_if_true && !drop_through_if_false)
|
||
{
|
||
code = LE;
|
||
if_true_label = if_false_label;
|
||
if_false_label = drop_through_label;
|
||
prob = prob.invert ();
|
||
}
|
||
|
||
/* Compare a word at a time, high order first. */
|
||
for (i = 0; i < nwords; i++)
|
||
{
|
||
rtx op0_word, op1_word;
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
{
|
||
op0_word = operand_subword_force (op0, i, mode);
|
||
op1_word = operand_subword_force (op1, i, mode);
|
||
}
|
||
else
|
||
{
|
||
op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
|
||
op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
|
||
}
|
||
|
||
/* All but high-order word must be compared as unsigned. */
|
||
do_compare_rtx_and_jump (op0_word, op1_word, code, (unsignedp || i > 0),
|
||
word_mode, NULL_RTX, NULL, if_true_label,
|
||
prob);
|
||
|
||
/* Emit only one comparison for 0. Do not emit the last cond jump. */
|
||
if (op0 == const0_rtx || i == nwords - 1)
|
||
break;
|
||
|
||
/* Consider lower words only if these are equal. */
|
||
do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
|
||
NULL_RTX, NULL, if_false_label,
|
||
prob.invert ());
|
||
}
|
||
|
||
if (!drop_through_if_false)
|
||
emit_jump (if_false_label);
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Given a comparison expression EXP for values too wide to be compared
|
||
with one insn, test the comparison and jump to the appropriate label.
|
||
The code of EXP is ignored; we always test GT if SWAP is 0,
|
||
and LT if SWAP is 1. MODE is the mode of the two operands. */
|
||
|
||
static void
|
||
do_jump_by_parts_greater (scalar_int_mode mode, tree treeop0, tree treeop1,
|
||
int swap, rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
rtx op0 = expand_normal (swap ? treeop1 : treeop0);
|
||
rtx op1 = expand_normal (swap ? treeop0 : treeop1);
|
||
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0));
|
||
|
||
do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label,
|
||
if_true_label, prob);
|
||
}
|
||
|
||
/* Jump according to whether OP0 is 0. We assume that OP0 has an integer
|
||
mode, MODE, that is too wide for the available compare insns. Either
|
||
Either (but not both) of IF_TRUE_LABEL and IF_FALSE_LABEL may be NULL
|
||
to indicate drop through. */
|
||
|
||
static void
|
||
do_jump_by_parts_zero_rtx (scalar_int_mode mode, rtx op0,
|
||
rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
int nwords = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
||
rtx part;
|
||
int i;
|
||
rtx_code_label *drop_through_label = NULL;
|
||
|
||
/* The fastest way of doing this comparison on almost any machine is to
|
||
"or" all the words and compare the result. If all have to be loaded
|
||
from memory and this is a very wide item, it's possible this may
|
||
be slower, but that's highly unlikely. */
|
||
|
||
part = gen_reg_rtx (word_mode);
|
||
emit_move_insn (part, operand_subword_force (op0, 0, mode));
|
||
for (i = 1; i < nwords && part != 0; i++)
|
||
part = expand_binop (word_mode, ior_optab, part,
|
||
operand_subword_force (op0, i, mode),
|
||
part, 1, OPTAB_WIDEN);
|
||
|
||
if (part != 0)
|
||
{
|
||
do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
|
||
NULL_RTX, if_false_label, if_true_label, prob);
|
||
return;
|
||
}
|
||
|
||
/* If we couldn't do the "or" simply, do this with a series of compares. */
|
||
if (! if_false_label)
|
||
if_false_label = drop_through_label = gen_label_rtx ();
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
|
||
const0_rtx, EQ, 1, word_mode, NULL_RTX,
|
||
if_false_label, NULL, prob);
|
||
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Test for the equality of two RTX expressions OP0 and OP1 in mode MODE,
|
||
where MODE is an integer mode too wide to be compared with one insn.
|
||
Either (but not both) of IF_TRUE_LABEL and IF_FALSE_LABEL may be NULL_RTX
|
||
to indicate drop through. */
|
||
|
||
static void
|
||
do_jump_by_parts_equality_rtx (scalar_int_mode mode, rtx op0, rtx op1,
|
||
rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
|
||
rtx_code_label *drop_through_label = NULL;
|
||
int i;
|
||
|
||
if (op1 == const0_rtx)
|
||
{
|
||
do_jump_by_parts_zero_rtx (mode, op0, if_false_label, if_true_label,
|
||
prob);
|
||
return;
|
||
}
|
||
else if (op0 == const0_rtx)
|
||
{
|
||
do_jump_by_parts_zero_rtx (mode, op1, if_false_label, if_true_label,
|
||
prob);
|
||
return;
|
||
}
|
||
|
||
if (! if_false_label)
|
||
drop_through_label = if_false_label = gen_label_rtx ();
|
||
|
||
for (i = 0; i < nwords; i++)
|
||
do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
|
||
operand_subword_force (op1, i, mode),
|
||
EQ, 0, word_mode, NULL_RTX,
|
||
if_false_label, NULL, prob);
|
||
|
||
if (if_true_label)
|
||
emit_jump (if_true_label);
|
||
if (drop_through_label)
|
||
emit_label (drop_through_label);
|
||
}
|
||
|
||
/* Given an EQ_EXPR expression EXP for values too wide to be compared
|
||
with one insn, test the comparison and jump to the appropriate label.
|
||
MODE is the mode of the two operands. */
|
||
|
||
static void
|
||
do_jump_by_parts_equality (scalar_int_mode mode, tree treeop0, tree treeop1,
|
||
rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
rtx op0 = expand_normal (treeop0);
|
||
rtx op1 = expand_normal (treeop1);
|
||
do_jump_by_parts_equality_rtx (mode, op0, op1, if_false_label,
|
||
if_true_label, prob);
|
||
}
|
||
|
||
/* Split a comparison into two others, the second of which has the other
|
||
"orderedness". The first is always ORDERED or UNORDERED if MODE
|
||
does not honor NaNs (which means that it can be skipped in that case;
|
||
see do_compare_rtx_and_jump).
|
||
|
||
The two conditions are written in *CODE1 and *CODE2. Return true if
|
||
the conditions must be ANDed, false if they must be ORed. */
|
||
|
||
bool
|
||
split_comparison (enum rtx_code code, machine_mode mode,
|
||
enum rtx_code *code1, enum rtx_code *code2)
|
||
{
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
*code1 = ORDERED;
|
||
*code2 = UNLT;
|
||
return true;
|
||
case LE:
|
||
*code1 = ORDERED;
|
||
*code2 = UNLE;
|
||
return true;
|
||
case GT:
|
||
*code1 = ORDERED;
|
||
*code2 = UNGT;
|
||
return true;
|
||
case GE:
|
||
*code1 = ORDERED;
|
||
*code2 = UNGE;
|
||
return true;
|
||
case EQ:
|
||
*code1 = ORDERED;
|
||
*code2 = UNEQ;
|
||
return true;
|
||
case NE:
|
||
*code1 = UNORDERED;
|
||
*code2 = LTGT;
|
||
return false;
|
||
case UNLT:
|
||
*code1 = UNORDERED;
|
||
*code2 = LT;
|
||
return false;
|
||
case UNLE:
|
||
*code1 = UNORDERED;
|
||
*code2 = LE;
|
||
return false;
|
||
case UNGT:
|
||
*code1 = UNORDERED;
|
||
*code2 = GT;
|
||
return false;
|
||
case UNGE:
|
||
*code1 = UNORDERED;
|
||
*code2 = GE;
|
||
return false;
|
||
case UNEQ:
|
||
*code1 = UNORDERED;
|
||
*code2 = EQ;
|
||
return false;
|
||
case LTGT:
|
||
/* Do not turn a trapping comparison into a non-trapping one. */
|
||
if (HONOR_NANS (mode))
|
||
{
|
||
*code1 = LT;
|
||
*code2 = GT;
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
*code1 = ORDERED;
|
||
*code2 = NE;
|
||
return true;
|
||
}
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Generate code to evaluate EXP and jump to LABEL if the value is nonzero.
|
||
PROB is probability of jump to LABEL. */
|
||
|
||
void
|
||
jumpif (tree exp, rtx_code_label *label, profile_probability prob)
|
||
{
|
||
do_jump (exp, NULL, label, prob);
|
||
}
|
||
|
||
/* Similar to jumpif but dealing with exploded comparisons of the type
|
||
OP0 CODE OP1 . LABEL and PROB are like in jumpif. */
|
||
|
||
void
|
||
jumpif_1 (enum tree_code code, tree op0, tree op1, rtx_code_label *label,
|
||
profile_probability prob)
|
||
{
|
||
do_jump_1 (code, op0, op1, NULL, label, prob);
|
||
}
|
||
|
||
/* Generate code to evaluate EXP and jump to LABEL if the value is zero.
|
||
PROB is probability of jump to LABEL. */
|
||
|
||
void
|
||
jumpifnot (tree exp, rtx_code_label *label, profile_probability prob)
|
||
{
|
||
do_jump (exp, label, NULL, prob.invert ());
|
||
}
|
||
|
||
/* Similar to jumpifnot but dealing with exploded comparisons of the type
|
||
OP0 CODE OP1 . LABEL and PROB are like in jumpifnot. */
|
||
|
||
void
|
||
jumpifnot_1 (enum tree_code code, tree op0, tree op1, rtx_code_label *label,
|
||
profile_probability prob)
|
||
{
|
||
do_jump_1 (code, op0, op1, label, NULL, prob.invert ());
|
||
}
|
||
|
||
/* Like do_compare_and_jump but expects the values to compare as two rtx's.
|
||
The decision as to signed or unsigned comparison must be made by the caller.
|
||
|
||
If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
|
||
compared. */
|
||
|
||
void
|
||
do_compare_rtx_and_jump (rtx op0, rtx op1, enum rtx_code code, int unsignedp,
|
||
machine_mode mode, rtx size,
|
||
rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label,
|
||
profile_probability prob)
|
||
{
|
||
rtx tem;
|
||
rtx_code_label *dummy_label = NULL;
|
||
|
||
/* Reverse the comparison if that is safe and we want to jump if it is
|
||
false. Also convert to the reverse comparison if the target can
|
||
implement it. */
|
||
if ((! if_true_label
|
||
|| ! can_compare_p (code, mode, ccp_jump))
|
||
&& (! FLOAT_MODE_P (mode)
|
||
|| code == ORDERED || code == UNORDERED
|
||
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
||
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
||
{
|
||
enum rtx_code rcode;
|
||
if (FLOAT_MODE_P (mode))
|
||
rcode = reverse_condition_maybe_unordered (code);
|
||
else
|
||
rcode = reverse_condition (code);
|
||
|
||
/* Canonicalize to UNORDERED for the libcall. */
|
||
if (can_compare_p (rcode, mode, ccp_jump)
|
||
|| (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
|
||
{
|
||
std::swap (if_true_label, if_false_label);
|
||
code = rcode;
|
||
prob = prob.invert ();
|
||
}
|
||
}
|
||
|
||
/* If one operand is constant, make it the second one. Only do this
|
||
if the other operand is not constant as well. */
|
||
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
std::swap (op0, op1);
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
do_pending_stack_adjust ();
|
||
|
||
code = unsignedp ? unsigned_condition (code) : code;
|
||
if ((tem = simplify_relational_operation (code, mode, VOIDmode,
|
||
op0, op1)) != 0)
|
||
{
|
||
if (CONSTANT_P (tem))
|
||
{
|
||
rtx_code_label *label = (tem == const0_rtx
|
||
|| tem == CONST0_RTX (mode))
|
||
? if_false_label : if_true_label;
|
||
if (label)
|
||
emit_jump (label);
|
||
return;
|
||
}
|
||
|
||
code = GET_CODE (tem);
|
||
mode = GET_MODE (tem);
|
||
op0 = XEXP (tem, 0);
|
||
op1 = XEXP (tem, 1);
|
||
unsignedp = (code == GTU || code == LTU || code == GEU || code == LEU);
|
||
}
|
||
|
||
if (! if_true_label)
|
||
dummy_label = if_true_label = gen_label_rtx ();
|
||
|
||
scalar_int_mode int_mode;
|
||
if (is_int_mode (mode, &int_mode)
|
||
&& ! can_compare_p (code, int_mode, ccp_jump))
|
||
{
|
||
switch (code)
|
||
{
|
||
case LTU:
|
||
do_jump_by_parts_greater_rtx (int_mode, 1, op1, op0,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case LEU:
|
||
do_jump_by_parts_greater_rtx (int_mode, 1, op0, op1,
|
||
if_true_label, if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
case GTU:
|
||
do_jump_by_parts_greater_rtx (int_mode, 1, op0, op1,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case GEU:
|
||
do_jump_by_parts_greater_rtx (int_mode, 1, op1, op0,
|
||
if_true_label, if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
case LT:
|
||
do_jump_by_parts_greater_rtx (int_mode, 0, op1, op0,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case LE:
|
||
do_jump_by_parts_greater_rtx (int_mode, 0, op0, op1,
|
||
if_true_label, if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
case GT:
|
||
do_jump_by_parts_greater_rtx (int_mode, 0, op0, op1,
|
||
if_false_label, if_true_label, prob);
|
||
break;
|
||
|
||
case GE:
|
||
do_jump_by_parts_greater_rtx (int_mode, 0, op1, op0,
|
||
if_true_label, if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
case EQ:
|
||
do_jump_by_parts_equality_rtx (int_mode, op0, op1, if_false_label,
|
||
if_true_label, prob);
|
||
break;
|
||
|
||
case NE:
|
||
do_jump_by_parts_equality_rtx (int_mode, op0, op1, if_true_label,
|
||
if_false_label,
|
||
prob.invert ());
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (SCALAR_FLOAT_MODE_P (mode)
|
||
&& ! can_compare_p (code, mode, ccp_jump)
|
||
&& can_compare_p (swap_condition (code), mode, ccp_jump))
|
||
{
|
||
code = swap_condition (code);
|
||
std::swap (op0, op1);
|
||
}
|
||
else if (SCALAR_FLOAT_MODE_P (mode)
|
||
&& ! can_compare_p (code, mode, ccp_jump)
|
||
/* Never split ORDERED and UNORDERED.
|
||
These must be implemented. */
|
||
&& (code != ORDERED && code != UNORDERED)
|
||
/* Split a floating-point comparison if
|
||
we can jump on other conditions... */
|
||
&& (have_insn_for (COMPARE, mode)
|
||
/* ... or if there is no libcall for it. */
|
||
|| code_to_optab (code) == unknown_optab))
|
||
{
|
||
enum rtx_code first_code, orig_code = code;
|
||
bool and_them = split_comparison (code, mode, &first_code, &code);
|
||
|
||
/* If there are no NaNs, the first comparison should always fall
|
||
through. */
|
||
if (!HONOR_NANS (mode))
|
||
gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
|
||
|
||
else if ((orig_code == EQ || orig_code == NE)
|
||
&& rtx_equal_p (op0, op1))
|
||
/* Self-comparisons x == x or x != x can be optimized into
|
||
just x ord x or x nord x. */
|
||
code = orig_code == EQ ? ORDERED : UNORDERED;
|
||
|
||
else
|
||
{
|
||
profile_probability cprob
|
||
= profile_probability::guessed_always ();
|
||
if (first_code == UNORDERED)
|
||
cprob = cprob.apply_scale (1, 100);
|
||
else if (first_code == ORDERED)
|
||
cprob = cprob.apply_scale (99, 100);
|
||
else
|
||
cprob = profile_probability::even ();
|
||
/* For and_them we want to split:
|
||
if (x) goto t; // prob;
|
||
goto f;
|
||
into
|
||
if (a) ; else goto f; // first_prob for ;
|
||
// 1 - first_prob for goto f;
|
||
if (b) goto t; // adjusted prob;
|
||
goto f;
|
||
such that the overall probability of jumping to t
|
||
remains the same. The and_them case should be
|
||
probability-wise equivalent to the !and_them case with
|
||
f and t swapped and also the conditions inverted, i.e.
|
||
if (!a) goto f;
|
||
if (!b) goto f;
|
||
goto t;
|
||
where the overall probability of jumping to f is
|
||
1 - prob (thus the first prob.invert () below).
|
||
cprob.invert () is because the a condition is inverted,
|
||
so if it was originally ORDERED, !a is UNORDERED and
|
||
thus should be relative 1% rather than 99%.
|
||
The invert () on assignment to first_prob is because
|
||
first_prob represents the probability of fallthru,
|
||
rather than goto f. And the last prob.invert () is
|
||
because the adjusted prob represents the probability of
|
||
jumping to t rather than to f. */
|
||
if (and_them)
|
||
{
|
||
rtx_code_label *dest_label;
|
||
prob = prob.invert ();
|
||
profile_probability first_prob
|
||
= prob.split (cprob.invert ()).invert ();
|
||
prob = prob.invert ();
|
||
/* If we only jump if true, just bypass the second jump. */
|
||
if (! if_false_label)
|
||
{
|
||
if (! dummy_label)
|
||
dummy_label = gen_label_rtx ();
|
||
dest_label = dummy_label;
|
||
}
|
||
else
|
||
dest_label = if_false_label;
|
||
do_compare_rtx_and_jump (op0, op1, first_code, unsignedp, mode,
|
||
size, dest_label, NULL, first_prob);
|
||
}
|
||
/* For !and_them we want to split:
|
||
if (x) goto t; // prob;
|
||
goto f;
|
||
into
|
||
if (a) goto t; // first_prob;
|
||
if (b) goto t; // adjusted prob;
|
||
goto f;
|
||
such that the overall probability of jumping to t
|
||
remains the same and first_prob is prob * cprob. */
|
||
else
|
||
{
|
||
profile_probability first_prob = prob.split (cprob);
|
||
do_compare_rtx_and_jump (op0, op1, first_code, unsignedp, mode,
|
||
size, NULL, if_true_label, first_prob);
|
||
if (orig_code == NE && can_compare_p (UNEQ, mode, ccp_jump))
|
||
{
|
||
/* x != y can be split into x unord y || x ltgt y
|
||
or x unord y || !(x uneq y). The latter has the
|
||
advantage that both comparisons are non-signalling and
|
||
so there is a higher chance that the RTL optimizations
|
||
merge the two comparisons into just one. */
|
||
code = UNEQ;
|
||
prob = prob.invert ();
|
||
if (! if_false_label)
|
||
{
|
||
if (! dummy_label)
|
||
dummy_label = gen_label_rtx ();
|
||
if_false_label = dummy_label;
|
||
}
|
||
std::swap (if_false_label, if_true_label);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp,
|
||
if_true_label, prob);
|
||
}
|
||
|
||
if (if_false_label)
|
||
emit_jump (if_false_label);
|
||
if (dummy_label)
|
||
emit_label (dummy_label);
|
||
}
|
||
|
||
/* Generate code for a comparison expression EXP (including code to compute
|
||
the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
|
||
IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
|
||
generated code will drop through.
|
||
SIGNED_CODE should be the rtx operation for this comparison for
|
||
signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
|
||
|
||
We force a stack adjustment unless there are currently
|
||
things pushed on the stack that aren't yet used. */
|
||
|
||
static void
|
||
do_compare_and_jump (tree treeop0, tree treeop1, enum rtx_code signed_code,
|
||
enum rtx_code unsigned_code,
|
||
rtx_code_label *if_false_label,
|
||
rtx_code_label *if_true_label, profile_probability prob)
|
||
{
|
||
rtx op0, op1;
|
||
tree type;
|
||
machine_mode mode;
|
||
int unsignedp;
|
||
enum rtx_code code;
|
||
|
||
/* Don't crash if the comparison was erroneous. */
|
||
op0 = expand_normal (treeop0);
|
||
if (TREE_CODE (treeop0) == ERROR_MARK)
|
||
return;
|
||
|
||
op1 = expand_normal (treeop1);
|
||
if (TREE_CODE (treeop1) == ERROR_MARK)
|
||
return;
|
||
|
||
type = TREE_TYPE (treeop0);
|
||
if (TREE_CODE (treeop0) == INTEGER_CST
|
||
&& (TREE_CODE (treeop1) != INTEGER_CST
|
||
|| (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type))
|
||
> GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (treeop1))))))
|
||
/* op0 might have been replaced by promoted constant, in which
|
||
case the type of second argument should be used. */
|
||
type = TREE_TYPE (treeop1);
|
||
mode = TYPE_MODE (type);
|
||
unsignedp = TYPE_UNSIGNED (type);
|
||
code = unsignedp ? unsigned_code : signed_code;
|
||
|
||
/* If function pointers need to be "canonicalized" before they can
|
||
be reliably compared, then canonicalize them. Canonicalize the
|
||
expression when one of the operands is a function pointer. This
|
||
handles the case where the other operand is a void pointer. See
|
||
PR middle-end/17564. */
|
||
if (targetm.have_canonicalize_funcptr_for_compare ()
|
||
&& ((POINTER_TYPE_P (TREE_TYPE (treeop0))
|
||
&& FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0))))
|
||
|| (POINTER_TYPE_P (TREE_TYPE (treeop1))
|
||
&& FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (treeop1))))))
|
||
{
|
||
rtx new_op0 = gen_reg_rtx (mode);
|
||
rtx new_op1 = gen_reg_rtx (mode);
|
||
|
||
emit_insn (targetm.gen_canonicalize_funcptr_for_compare (new_op0, op0));
|
||
op0 = new_op0;
|
||
|
||
emit_insn (targetm.gen_canonicalize_funcptr_for_compare (new_op1, op1));
|
||
op1 = new_op1;
|
||
}
|
||
|
||
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
|
||
((mode == BLKmode)
|
||
? expr_size (treeop0) : NULL_RTX),
|
||
if_false_label, if_true_label, prob);
|
||
}
|
||
|
||
#include "gt-dojump.h"
|