4396a7a423
From-SVN: r3077
3523 lines
124 KiB
C++
3523 lines
124 KiB
C++
/* Definitions of target machine for GNU compiler. MIPS version.
|
||
Contributed by A. Lichnewsky, lich@inria.inria.fr
|
||
Changed by Michael Meissner, meissner@osf.org
|
||
Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* Make Saber happier on obstack.[ch]. */
|
||
#if defined(__mips__) || defined(mips)
|
||
#define __PTR_TO_INT(P) ((int)(P))
|
||
#define __INT_TO_PTR(P) ((char *)(P))
|
||
#endif
|
||
|
||
/* Standard GCC variables that we reference. */
|
||
|
||
extern char *asm_file_name;
|
||
extern char call_used_regs[];
|
||
extern int current_function_calls_alloca;
|
||
extern int flag_omit_frame_pointer;
|
||
extern int frame_pointer_needed;
|
||
extern char *language_string;
|
||
extern int may_call_alloca;
|
||
extern int optimize;
|
||
extern char **save_argv;
|
||
extern int target_flags;
|
||
extern char *version_string;
|
||
|
||
/* MIPS external variables defined in mips.c. */
|
||
|
||
/* comparison type */
|
||
enum cmp_type {
|
||
CMP_SI, /* compare integers */
|
||
CMP_SF, /* compare single precision floats */
|
||
CMP_DF, /* compare double precision floats */
|
||
CMP_MAX /* max comparison type */
|
||
};
|
||
|
||
/* types of delay slot */
|
||
enum delay_type {
|
||
DELAY_NONE, /* no delay slot */
|
||
DELAY_LOAD, /* load from memory delay */
|
||
DELAY_HILO, /* move from/to hi/lo registers */
|
||
DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
|
||
};
|
||
|
||
/* Which processor to schedule for. Since there is no difference between
|
||
a R2000 and R3000 in terms of the scheduler, we collapse them into
|
||
just an R3000. The elements of the enumeration must match exactly
|
||
the cpu attribute in the mips.md machine description. */
|
||
|
||
enum processor_type {
|
||
PROCESSOR_DEFAULT,
|
||
PROCESSOR_R3000,
|
||
PROCESSOR_R6000,
|
||
PROCESSOR_R4000
|
||
};
|
||
|
||
/* Recast the cpu class to be the cpu attribute. */
|
||
#define mips_cpu_attr ((enum attr_cpu)mips_cpu)
|
||
|
||
/* Which type of block move to do (whether or not the last store is
|
||
split out so it can fill a branch delay slot). */
|
||
|
||
enum block_move_type {
|
||
BLOCK_MOVE_NORMAL, /* generate complete block move */
|
||
BLOCK_MOVE_NOT_LAST, /* generate all but last store */
|
||
BLOCK_MOVE_LAST /* generate just the last store */
|
||
};
|
||
|
||
extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
|
||
extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
|
||
extern char *current_function_name; /* current function being compiled */
|
||
extern char *current_function_file; /* filename current function is in */
|
||
extern int num_source_filenames; /* current .file # */
|
||
extern int inside_function; /* != 0 if inside of a function */
|
||
extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
|
||
extern int file_in_function_warning; /* warning given about .file in func */
|
||
extern int sdb_label_count; /* block start/end next label # */
|
||
extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
|
||
extern int g_switch_value; /* value of the -G xx switch */
|
||
extern int g_switch_set; /* whether -G xx was passed. */
|
||
extern int sym_lineno; /* sgi next label # for each stmt */
|
||
extern int set_noreorder; /* # of nested .set noreorder's */
|
||
extern int set_nomacro; /* # of nested .set nomacro's */
|
||
extern int set_noat; /* # of nested .set noat's */
|
||
extern int set_volatile; /* # of nested .set volatile's */
|
||
extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
|
||
extern int mips_dbx_regno[]; /* Map register # to debug register # */
|
||
extern char mips_rtx_classify[]; /* classify an RTX code */
|
||
extern struct rtx_def *branch_cmp[2]; /* operands for compare */
|
||
extern enum cmp_type branch_type; /* what type of branch to use */
|
||
extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
|
||
extern int mips_isa; /* architectural level */
|
||
extern char *mips_cpu_string; /* for -mcpu=<xxx> */
|
||
extern char *mips_isa_string; /* for -mips{1,2,3} */
|
||
extern int dslots_load_total; /* total # load related delay slots */
|
||
extern int dslots_load_filled; /* # filled load delay slots */
|
||
extern int dslots_jump_total; /* total # jump related delay slots */
|
||
extern int dslots_jump_filled; /* # filled jump delay slots */
|
||
extern int dslots_number_nops; /* # of nops needed by previous insn */
|
||
extern int num_refs[3]; /* # 1/2/3 word references */
|
||
extern struct rtx_def *mips_load_reg; /* register to check for load delay */
|
||
extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
|
||
extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
|
||
extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
|
||
|
||
/* Functions within mips.c that we reference. */
|
||
|
||
extern void abort_with_insn ();
|
||
extern int arith32_operand ();
|
||
extern int arith_operand ();
|
||
extern int cmp_op ();
|
||
extern int cmp2_op ();
|
||
extern long compute_frame_size ();
|
||
extern int epilogue_reg_mentioned_p ();
|
||
extern void expand_block_move ();
|
||
extern int equality_op ();
|
||
extern int fcmp_op ();
|
||
extern void final_prescan_insn ();
|
||
extern int fpsw_register_operand ();
|
||
extern struct rtx_def * function_arg ();
|
||
extern void function_arg_advance ();
|
||
extern int function_arg_partial_nregs ();
|
||
extern void function_epilogue ();
|
||
extern void function_prologue ();
|
||
extern void gen_conditional_branch ();
|
||
extern struct rtx_def * gen_int_relational ();
|
||
extern void init_cumulative_args ();
|
||
extern int large_int ();
|
||
extern int md_register_operand ();
|
||
extern int mips_address_cost ();
|
||
extern void mips_asm_file_end ();
|
||
extern void mips_asm_file_start ();
|
||
extern int mips_const_double_ok ();
|
||
extern void mips_count_memory_refs ();
|
||
extern int mips_debugger_offset ();
|
||
extern void mips_declare_object ();
|
||
extern int mips_epilogue_delay_slots ();
|
||
extern void mips_expand_epilogue ();
|
||
extern void mips_expand_prologue ();
|
||
extern char *mips_fill_delay_slot ();
|
||
extern char *mips_move_1word ();
|
||
extern char *mips_move_2words ();
|
||
extern void mips_output_double ();
|
||
extern int mips_output_external ();
|
||
extern void mips_output_float ();
|
||
extern void mips_output_filename ();
|
||
extern void mips_output_lineno ();
|
||
extern char *output_block_move ();
|
||
extern void override_options ();
|
||
extern int pc_or_label_operand ();
|
||
extern void print_operand_address ();
|
||
extern void print_operand ();
|
||
extern void print_options ();
|
||
extern int reg_or_0_operand ();
|
||
extern int simple_epilogue_p ();
|
||
extern int simple_memory_operand ();
|
||
extern int small_int ();
|
||
extern void trace();
|
||
extern int uns_arith_operand ();
|
||
extern int uns_cmp_op ();
|
||
|
||
/* Recognition functions that return if a condition is true. */
|
||
extern int address_operand ();
|
||
extern int const_double_operand ();
|
||
extern int const_int_operand ();
|
||
extern int general_operand ();
|
||
extern int immediate_operand ();
|
||
extern int memory_address_p ();
|
||
extern int memory_operand ();
|
||
extern int nonimmediate_operand ();
|
||
extern int nonmemory_operand ();
|
||
extern int register_operand ();
|
||
extern int scratch_operand ();
|
||
|
||
/* Functions to change what output section we are using. */
|
||
extern void data_section ();
|
||
extern void rdata_section ();
|
||
extern void readonly_data_section ();
|
||
extern void sdata_section ();
|
||
extern void text_section ();
|
||
|
||
/* Functions in the rest of the compiler that we reference. */
|
||
extern void abort_with_insn ();
|
||
extern void debug_rtx ();
|
||
extern void fatal_io_error ();
|
||
extern int get_frame_size ();
|
||
extern int offsettable_address_p ();
|
||
extern void output_address ();
|
||
extern char *permalloc ();
|
||
extern int reg_mentioned_p ();
|
||
|
||
/* Functions in the standard library that we reference. */
|
||
extern void abort ();
|
||
extern int atoi ();
|
||
extern char *getenv ();
|
||
extern char *mktemp ();
|
||
|
||
|
||
/* Stubs for half-pic support if not OSF/1 reference platform. */
|
||
|
||
#ifndef HALF_PIC_P
|
||
#define HALF_PIC_P() 0
|
||
#define HALF_PIC_NUMBER_PTRS 0
|
||
#define HALF_PIC_NUMBER_REFS 0
|
||
#define HALF_PIC_ENCODE(DECL)
|
||
#define HALF_PIC_DECLARE(NAME)
|
||
#define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
|
||
#define HALF_PIC_ADDRESS_P(X) 0
|
||
#define HALF_PIC_PTR(X) X
|
||
#define HALF_PIC_FINISH(STREAM)
|
||
#endif
|
||
|
||
|
||
/* Switch Recognition by gcc.c. Add -G xx support */
|
||
|
||
#ifdef SWITCH_TAKES_ARG
|
||
#undef SWITCH_TAKES_ARG
|
||
#endif
|
||
|
||
#define SWITCH_TAKES_ARG(CHAR) \
|
||
((CHAR) == 'D' || (CHAR) == 'U' || (CHAR) == 'o' \
|
||
|| (CHAR) == 'e' || (CHAR) == 'T' || (CHAR) == 'u' \
|
||
|| (CHAR) == 'I' || (CHAR) == 'm' \
|
||
|| (CHAR) == 'L' || (CHAR) == 'A' || (CHAR) == 'G')
|
||
|
||
/* Sometimes certain combinations of command options do not make sense
|
||
on a particular target machine. You can define a macro
|
||
`OVERRIDE_OPTIONS' to take account of this. This macro, if
|
||
defined, is executed once just after all the command options have
|
||
been parsed.
|
||
|
||
On the MIPS, it is used to handle -G. We also use it to set up all
|
||
of the tables referenced in the other macros. */
|
||
|
||
#define OVERRIDE_OPTIONS override_options ()
|
||
|
||
/* Zero or more C statements that may conditionally modify two
|
||
variables `fixed_regs' and `call_used_regs' (both of type `char
|
||
[]') after they have been initialized from the two preceding
|
||
macros.
|
||
|
||
This is necessary in case the fixed or call-clobbered registers
|
||
depend on target flags.
|
||
|
||
You need not define this macro if it has no work to do.
|
||
|
||
If the usage of an entire class of registers depends on the target
|
||
flags, you may indicate this to GCC by using this macro to modify
|
||
`fixed_regs' and `call_used_regs' to 1 for each of the registers in
|
||
the classes which should not be used by GCC. Also define the macro
|
||
`REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
|
||
letter for a class that shouldn't be used.
|
||
|
||
(However, if this class is not included in `GENERAL_REGS' and all
|
||
of the insn patterns whose constraints permit this class are
|
||
controlled by target switches, then GCC will automatically avoid
|
||
using these registers when the target switches are opposed to
|
||
them.) */
|
||
|
||
#define CONDITIONAL_REGISTER_USAGE \
|
||
do \
|
||
{ \
|
||
if (!TARGET_HARD_FLOAT) \
|
||
{ \
|
||
int regno; \
|
||
\
|
||
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
|
||
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
/* Some machines may desire to change what optimizations are
|
||
performed for various optimization levels. This macro, if
|
||
defined, is executed once just after the optimization level is
|
||
determined and before the remainder of the command options have
|
||
been parsed. Values set in this macro are used as the default
|
||
values for the other command line options.
|
||
|
||
LEVEL is the optimization level specified; 2 if -O2 is
|
||
specified, 1 if -O is specified, and 0 if neither is specified. */
|
||
|
||
#define OPTIMIZATION_OPTIONS(LEVEL) \
|
||
{ \
|
||
if (LEVEL) \
|
||
{ \
|
||
flag_omit_frame_pointer = TRUE; \
|
||
flag_schedule_insns_after_reload = TRUE; \
|
||
} \
|
||
}
|
||
|
||
|
||
/* Complain about missing specs and predefines that should be defined in each
|
||
of the target tm files to override the defaults. This is mostly a place-
|
||
holder until I can get each of the files updated [mm]. */
|
||
|
||
#if defined(OSF_OS) \
|
||
|| defined(DECSTATION) \
|
||
|| defined(SGI_TARGET) \
|
||
|| defined(MIPS_NEWS) \
|
||
|| defined(MIPS_SYSV) \
|
||
|| defined(MIPS_SVR4) \
|
||
|| defined(MIPS_BSD43)
|
||
|
||
#ifndef CPP_PREDEFINES
|
||
#error "Define CPP_PREDEFINES in the appropriate tm.h file"
|
||
#endif
|
||
|
||
#ifndef CPP_SPEC
|
||
#error "Define CPP_SPEC in the appropriate tm.h file"
|
||
#endif
|
||
|
||
#ifndef LINK_SPEC
|
||
#error "Define LINK_SPEC in the appropriate tm.h file"
|
||
#endif
|
||
|
||
#ifndef LIB_SPEC
|
||
#error "Define LIB_SPEC in the appropriate tm.h file"
|
||
#endif
|
||
|
||
#ifndef STARTFILE_SPEC
|
||
#error "Define STARTFILE_SPEC in the appropriate tm.h file"
|
||
#endif
|
||
|
||
#ifndef MACHINE_TYPE
|
||
#error "Define MACHINE_TYPE in the appropriate tm.h file"
|
||
#endif
|
||
#endif
|
||
|
||
/* Tell collect what flags to pass to nm. */
|
||
#ifndef NM_FLAGS
|
||
#define NM_FLAGS "-Bp"
|
||
#endif
|
||
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#ifndef CPP_PREDEFINES
|
||
#define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
|
||
-D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43"
|
||
#endif
|
||
|
||
/* Extra switches sometimes passed to the assembler. */
|
||
|
||
#ifndef ASM_SPEC
|
||
#define ASM_SPEC "\
|
||
%{!mgas: \
|
||
%{!mrnames: %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}}} \
|
||
%{pipe: %e-pipe is not supported.} \
|
||
%{EB} %{!EB:-EB} \
|
||
%{EL: %e-EL not supported} \
|
||
%{mips1} %{mips2} %{mips3} \
|
||
%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3} \
|
||
%{g} %{g0} %{g1} %{g2} %{g3} %{v} %{K}} \
|
||
%{G*}"
|
||
|
||
#endif /* ASM_SPEC */
|
||
|
||
/* Specify to run a post-processor, mips-tfile after the assembler
|
||
has run to stuff the mips debug information into the object file.
|
||
This is needed because the $#!%^ MIPS assembler provides no way
|
||
of specifying such information in the assembly file. If we are
|
||
cross compiling, disable mips-tfile unless the user specifies
|
||
-mmips-tfile. */
|
||
|
||
#ifndef ASM_FINAL_SPEC
|
||
#ifndef CROSS_COMPILE
|
||
#define ASM_FINAL_SPEC "\
|
||
%{!mgas: %{!mno-mips-tfile: \
|
||
\n mips-tfile %{v*: -v} \
|
||
%{K: -I %b.o~} \
|
||
%{!K: %{save-temps: -I %b.o~}} \
|
||
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
|
||
%{.s:%i} %{!.s:%g.s}}}"
|
||
|
||
#else /* CROSS_COMPILE */
|
||
#define ASM_FINAL_SPEC "\
|
||
%{!mgas: %{mmips-tfile: \
|
||
\n mips-tfile %{v*: -v} \
|
||
%{K: -I %b.o~} \
|
||
%{!K: %{save-temps: -I %b.o~}} \
|
||
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
|
||
%{.s:%i} %{!.s:%g.s}}}"
|
||
|
||
#endif /* CROSS_COMPILE */
|
||
#endif /* ASM_FINAL_SPEC */
|
||
|
||
/* Redefinition of libraries used. Mips doesn't support normal
|
||
UNIX style profiling via calling _mcount. It does offer
|
||
profiling that samples the PC, so do what we can... */
|
||
|
||
#ifndef LIB_SPEC
|
||
#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
|
||
#endif
|
||
|
||
/* Extra switches sometimes passed to the linker. */
|
||
|
||
#ifndef LINK_SPEC
|
||
#define LINK_SPEC "\
|
||
%{G*} \
|
||
%{!mgas: \
|
||
%{pipe: %e-pipe is not supported.} \
|
||
%{EB} %{!EB:-EB} \
|
||
%{EL: %e-EL not supported} \
|
||
%{mips1} %{mips2} %{mips3} \
|
||
%{bestGnum} %{shared} %{non_shared}}"
|
||
#endif /* LINK_SPEC defined */
|
||
|
||
/* Specs for the compiler proper */
|
||
|
||
#ifndef CC1_SPEC
|
||
#define CC1_SPEC "\
|
||
%{O*: %{!mno-gpOPT:%{!mno-gpopt: -mgpopt}}} \
|
||
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
|
||
%{G*} \
|
||
%{pic-none: -mno-half-pic} \
|
||
%{pic-lib: -mhalf-pic} \
|
||
%{pic-extern: -mhalf-pic} \
|
||
%{pic-calls: -mhalf-pic} \
|
||
%{save-temps: }"
|
||
#endif
|
||
|
||
/* Preprocessor specs */
|
||
|
||
#ifndef CPP_SPEC
|
||
#define CPP_SPEC "\
|
||
%{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
|
||
%{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
|
||
%{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
|
||
%{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C} \
|
||
%{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
|
||
%{!.S: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}"
|
||
#endif
|
||
|
||
/* If defined, this macro is an additional prefix to try after
|
||
`STANDARD_EXEC_PREFIX'. */
|
||
|
||
#ifndef MD_EXEC_PREFIX
|
||
#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
|
||
#endif
|
||
|
||
#ifndef MD_STARTFILE_PREFIX
|
||
#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
|
||
#endif
|
||
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define MIPS_VERSION "[AL 1.1, MM 34]"
|
||
|
||
#ifndef MACHINE_TYPE
|
||
#define MACHINE_TYPE "BSD Mips"
|
||
#endif
|
||
|
||
#ifndef TARGET_VERSION_INTERNAL
|
||
#define TARGET_VERSION_INTERNAL(STREAM) \
|
||
fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
|
||
#endif
|
||
|
||
#ifndef TARGET_VERSION
|
||
#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
|
||
#endif
|
||
|
||
|
||
#define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
|
||
#define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
|
||
#define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
|
||
|
||
#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
|
||
#define PREFERRED_DEBUGGING_TYPE ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
|
||
#endif
|
||
|
||
/* By default, turn on GDB extensions. */
|
||
#define DEFAULT_GDB_EXTENSIONS 1
|
||
|
||
/* If we are passing smuggling stabs through the MIPS ECOFF object
|
||
format, put a comment in front of the .stab<x> operation so
|
||
that the MIPS assembler does not choke. The mips-tfile program
|
||
will correctly put the stab into the object file. */
|
||
|
||
#define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
|
||
#define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
|
||
#define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
|
||
|
||
/* Forward references to tags are allowed. */
|
||
#define SDB_ALLOW_FORWARD_REFERENCES
|
||
|
||
/* Unknown tags are also allowed. */
|
||
#define SDB_ALLOW_UNKNOWN_REFERENCES
|
||
|
||
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
|
||
since the length can run past this up to a continuation point. */
|
||
#define DBX_CONTIN_LENGTH 1500
|
||
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
|
||
|
||
|
||
/* Overrides for the COFF debug format. */
|
||
#define PUT_SDB_SCL(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_INT_VAL(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_VAL(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fputs ("\t.val\t", asm_out_text_file); \
|
||
output_addr_const (asm_out_text_file, (a)); \
|
||
fputc (';', asm_out_text_file); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_DEF(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t#.def\t"); \
|
||
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
|
||
fputc (';', asm_out_text_file); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_PLAIN_DEF(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t#.def\t.%s;", (a)); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_ENDEF \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.endef\n"); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_TYPE(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_SIZE(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_DIM(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
|
||
} while (0)
|
||
|
||
#ifndef PUT_SDB_START_DIM
|
||
#define PUT_SDB_START_DIM \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.dim\t"); \
|
||
} while (0)
|
||
#endif
|
||
|
||
#ifndef PUT_SDB_NEXT_DIM
|
||
#define PUT_SDB_NEXT_DIM(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "%d,", a); \
|
||
} while (0)
|
||
#endif
|
||
|
||
#ifndef PUT_SDB_LAST_DIM
|
||
#define PUT_SDB_LAST_DIM(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "%d;", a); \
|
||
} while (0)
|
||
#endif
|
||
|
||
#define PUT_SDB_TAG(a) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, "\t.tag\t"); \
|
||
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
|
||
fputc (';', asm_out_text_file); \
|
||
} while (0)
|
||
|
||
/* For block start and end, we create labels, so that
|
||
later we can figure out where the correct offset is.
|
||
The normal .ent/.end serve well enough for functions,
|
||
so those are just commented out. */
|
||
|
||
#define PUT_SDB_BLOCK_START(LINE) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, \
|
||
"$Lb%d:\n\t#.begin\t$Lb%d\t%d\n", \
|
||
sdb_label_count, \
|
||
sdb_label_count, \
|
||
(LINE)); \
|
||
sdb_label_count++; \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_BLOCK_END(LINE) \
|
||
do { \
|
||
extern FILE *asm_out_text_file; \
|
||
fprintf (asm_out_text_file, \
|
||
"$Le%d:\n\t#.bend\t$Le%d\t%d\n", \
|
||
sdb_label_count, \
|
||
sdb_label_count, \
|
||
(LINE)); \
|
||
sdb_label_count++; \
|
||
} while (0)
|
||
|
||
#define PUT_SDB_FUNCTION_START(LINE)
|
||
|
||
#define PUT_SDB_FUNCTION_END(LINE)
|
||
|
||
#define PUT_SDB_EPILOGUE_END(NAME)
|
||
|
||
#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
|
||
sprintf ((BUFFER), ".%dfake", (NUMBER));
|
||
|
||
/* Correct the offset of automatic variables and arguments. Note that
|
||
the MIPS debug format wants all automatic variables and arguments
|
||
to be in terms of the virtual frame pointer (stack pointer before
|
||
any adjustment in the function), while the MIPS 3.0 linker wants
|
||
the frame pointer to be the stack pointer after the initial
|
||
adjustment. */
|
||
|
||
#define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
|
||
#define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
|
||
|
||
|
||
/* Tell collect that the object format is ECOFF */
|
||
#ifndef OBJECT_FORMAT_ROSE
|
||
#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
|
||
#define EXTENDED_COFF /* ECOFF, not normal coff */
|
||
#endif
|
||
|
||
/* Don't use the default definitions, because we don't have gld.
|
||
Also, we don't want stabs when generating ECOFF output.
|
||
Instead we depend on collect to handle these. */
|
||
|
||
#define ASM_OUTPUT_CONSTRUCTOR(file, name)
|
||
#define ASM_OUTPUT_DESTRUCTOR(file, name)
|
||
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Bits for real switches */
|
||
#define MASK_INT64 0x00000001 /* ints are 64 bits */
|
||
#define MASK_LONG64 0x00000002 /* longs are 64 bits */
|
||
#define MASK_LLONG128 0x00000004 /* long longs are 128 bits */
|
||
#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
|
||
#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
|
||
#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
|
||
#define MASK_STATS 0x00000040 /* print statistics to stderr */
|
||
#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
|
||
#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
|
||
#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
|
||
#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
|
||
#define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
|
||
#define MASK_UNUSED1 0x00001000
|
||
#define MASK_UNUSED2 0x00002000
|
||
#define MASK_UNUSED3 0x00004000
|
||
#define MASK_UNUSED4 0x00008000
|
||
#define MASK_UNUSED5 0x00010000
|
||
#define MASK_UNUSED6 0x00020000
|
||
#define MASK_UNUSED7 0x00040000
|
||
#define MASK_UNUSED8 0x00080000
|
||
|
||
/* Dummy switches used only in spec's*/
|
||
#define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
|
||
|
||
/* switches not used yet */
|
||
#define MASK_WC8 0x00000000 /* wchar's are 8 bits, not 32 */
|
||
#define MASK_WC16 0x00000000 /* wchar's are 16 bits, not 32 */
|
||
#define MASK_WC32 0x00000000 /* dummy for consistency */
|
||
|
||
/* Debug switches, not documented */
|
||
#define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
|
||
#define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
|
||
#define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
|
||
#define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
|
||
#define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
|
||
#define MASK_DEBUG_E 0x02000000 /* function_arg debug */
|
||
#define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
|
||
#define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
|
||
#define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
|
||
#define MASK_DEBUG_I 0x00200000 /* unused */
|
||
#define MASK_DEBUG_J 0x00100000 /* unused */
|
||
|
||
/* r4000 64 bit sizes */
|
||
#define TARGET_INT64 (target_flags & MASK_INT64)
|
||
#define TARGET_LONG64 (target_flags & MASK_LONG64)
|
||
#define TARGET_LLONG128 (target_flags & MASK_LLONG128)
|
||
#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
|
||
|
||
/* Mips vs. GNU assembler */
|
||
#define TARGET_GAS (target_flags & MASK_GAS)
|
||
#define TARGET_UNIX_ASM (!TARGET_GAS)
|
||
#define TARGET_MIPS_AS TARGET_UNIX_ASM
|
||
|
||
/* Debug Mode */
|
||
#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
|
||
#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
|
||
#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
|
||
#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
|
||
#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
|
||
#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
|
||
#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
|
||
#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
|
||
#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
|
||
#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
|
||
#define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
|
||
|
||
/* Reg. Naming in .s ($21 vs. $a0) */
|
||
#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
|
||
|
||
/* Optimize for Sdata/Sbss */
|
||
#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
|
||
|
||
/* print program statistics */
|
||
#define TARGET_STATS (target_flags & MASK_STATS)
|
||
|
||
/* call memcpy instead of inline code */
|
||
#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
|
||
|
||
/* .abicalls, etc from Pyramid V.4 */
|
||
#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
|
||
|
||
/* OSF pic references to externs */
|
||
#define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
|
||
|
||
/* wchar size */
|
||
#define TARGET_WC8 (target_flags & MASK_WC8)
|
||
#define TARGET_WC16 (target_flags & MASK_WC16)
|
||
#define TARGET_WC32 ((target_flags & (MASK_WC8 | MASK_WC16)) == 0)
|
||
|
||
/* software floating point */
|
||
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
|
||
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ \
|
||
{"int64", MASK_INT64 | MASK_LONG64}, \
|
||
{"long64", MASK_LONG64}, \
|
||
{"longlong128", MASK_INT64 | MASK_LONG64 | MASK_LLONG128}, \
|
||
{"mips-as", -MASK_GAS}, \
|
||
{"gas", MASK_GAS}, \
|
||
{"rnames", MASK_NAME_REGS}, \
|
||
{"no-rnames", -MASK_NAME_REGS}, \
|
||
{"gpOPT", MASK_GPOPT}, \
|
||
{"gpopt", MASK_GPOPT}, \
|
||
{"no-gpOPT", -MASK_GPOPT}, \
|
||
{"no-gpopt", -MASK_GPOPT}, \
|
||
{"stats", MASK_STATS}, \
|
||
{"no-stats", -MASK_STATS}, \
|
||
{"memcpy", MASK_MEMCPY}, \
|
||
{"no-memcpy", -MASK_MEMCPY}, \
|
||
{"wc8", MASK_WC8}, \
|
||
{"wc16", MASK_WC16}, \
|
||
{"wc32", MASK_WC32}, \
|
||
{"mips-tfile", MASK_MIPS_TFILE}, \
|
||
{"no-mips-tfile", -MASK_MIPS_TFILE}, \
|
||
{"soft-float", MASK_SOFT_FLOAT}, \
|
||
{"hard-float", -MASK_SOFT_FLOAT}, \
|
||
{"fp64", MASK_FLOAT64}, \
|
||
{"fp32", -MASK_FLOAT64}, \
|
||
{"abicalls", MASK_ABICALLS}, \
|
||
{"no-abicalls", -MASK_ABICALLS}, \
|
||
{"half-pic", MASK_HALF_PIC}, \
|
||
{"no-half-pic", -MASK_HALF_PIC}, \
|
||
{"debug", MASK_DEBUG}, \
|
||
{"debuga", MASK_DEBUG_A}, \
|
||
{"debugb", MASK_DEBUG_B}, \
|
||
{"debugc", MASK_DEBUG_C}, \
|
||
{"debugd", MASK_DEBUG_D}, \
|
||
{"debuge", MASK_DEBUG_E}, \
|
||
{"debugf", MASK_DEBUG_F}, \
|
||
{"debugg", MASK_DEBUG_G}, \
|
||
{"debugh", MASK_DEBUG_H}, \
|
||
{"debugi", MASK_DEBUG_I}, \
|
||
{"debugj", MASK_DEBUG_J}, \
|
||
{"", TARGET_DEFAULT} \
|
||
}
|
||
|
||
/* Default target_flags if no switches are specified */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT 0
|
||
#endif
|
||
|
||
/* This macro is similar to `TARGET_SWITCHES' but defines names of
|
||
command options that have values. Its definition is an
|
||
initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
fixed part of the option name, and the address of a variable.
|
||
The variable, type `char *', is set to the variable part of the
|
||
given option if the fixed part matches. The actual option name
|
||
is made by appending `-m' to the specified name.
|
||
|
||
Here is an example which defines `-mshort-data-NUMBER'. If the
|
||
given option is `-mshort-data-512', the variable `m88k_short_data'
|
||
will be set to the string `"512"'.
|
||
|
||
extern char *m88k_short_data;
|
||
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
|
||
|
||
#define TARGET_OPTIONS \
|
||
{ \
|
||
{ "cpu=", &mips_cpu_string }, \
|
||
{ "ips", &mips_isa_string } \
|
||
}
|
||
|
||
/* Macros to decide whether certain features are available or not,
|
||
depending on the instruction set architecture level. */
|
||
|
||
#define BRANCH_LIKELY_P() (mips_isa >= 2)
|
||
#define HAVE_64BIT_P() (mips_isa >= 3)
|
||
#define HAVE_SQRT_P() (mips_isa >= 2)
|
||
|
||
|
||
/* Target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
*/
|
||
/* #define BITS_BIG_ENDIAN */
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
#ifndef BYTES_BIG_ENDIAN
|
||
#ifndef DECSTATION
|
||
#define BYTES_BIG_ENDIAN 1
|
||
#else
|
||
#define BYTES_BIG_ENDIAN 0
|
||
#endif
|
||
#endif
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest. */
|
||
#ifndef WORDS_BIG_ENDIAN
|
||
#ifndef DECSTATION
|
||
#define WORDS_BIG_ENDIAN 1
|
||
#else
|
||
#define WORDS_BIG_ENDIAN 0
|
||
#endif
|
||
#endif
|
||
|
||
/* Define macros to easily access the most and least significant words
|
||
without a lot of #ifdef's. */
|
||
|
||
#if WORDS_BIG_ENDIAN
|
||
#define MOST_SIGNIFICANT_WORD 0
|
||
#define LEAST_SIGNIFICANT_WORD 1
|
||
|
||
#else
|
||
#define MOST_SIGNIFICANT_WORD 1
|
||
#define LEAST_SIGNIFICANT_WORD 0
|
||
#endif
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* A C expression for the size in bits of the type `int' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define INT_TYPE_SIZE 32
|
||
|
||
/* A C expression for the size in bits of the type `short' on the
|
||
target machine. If you don't define this, the default is half a
|
||
word. (If this would be less than one storage unit, it is
|
||
rounded up to one unit.) */
|
||
#define SHORT_TYPE_SIZE 16
|
||
|
||
/* A C expression for the size in bits of the type `long' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define LONG_TYPE_SIZE 32
|
||
|
||
/* A C expression for the size in bits of the type `long long' on the
|
||
target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
/* A C expression for the size in bits of the type `char' on the
|
||
target machine. If you don't define this, the default is one
|
||
quarter of a word. (If this would be less than one storage unit,
|
||
it is rounded up to one unit.) */
|
||
#define CHAR_TYPE_SIZE BITS_PER_UNIT
|
||
|
||
/* A C expression for the size in bits of the type `float' on the
|
||
target machine. If you don't define this, the default is one
|
||
word. */
|
||
#define FLOAT_TYPE_SIZE 32
|
||
|
||
/* A C expression for the size in bits of the type `double' on the
|
||
target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
|
||
/* A C expression for the size in bits of the type `long double' on
|
||
the target machine. If you don't define this, the default is two
|
||
words. */
|
||
#define LONG_DOUBLE_TYPE_SIZE 64
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing pointers in memory. */
|
||
#define POINTER_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
/* 8 is observed right on a DECstation and on riscos 4.02. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* There is no point aligning anything to a rounder boundary than this. */
|
||
#define BIGGEST_ALIGNMENT 64
|
||
|
||
/* Biggest alignment any structure field can require in bits. */
|
||
#define BIGGEST_FIELD_ALIGNMENT 64
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define this if you wish to imitate the way many other C compilers
|
||
handle alignment of bitfields and the structures that contain
|
||
them.
|
||
|
||
The behavior is that the type written for a bitfield (`int',
|
||
`short', or other integer type) imposes an alignment for the
|
||
entire structure, as if the structure really did contain an
|
||
ordinary field of that type. In addition, the bitfield is placed
|
||
within the structure so that it would fit within such a field,
|
||
not crossing a boundary for it.
|
||
|
||
Thus, on most machines, a bitfield whose type is written as `int'
|
||
would not cross a four-byte boundary, and would force four-byte
|
||
alignment for the whole structure. (The alignment used may not
|
||
be four bytes; it is controlled by the other alignment
|
||
parameters.)
|
||
|
||
If the macro is defined, its definition should be a C expression;
|
||
a nonzero value for the expression enables this behavior. */
|
||
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* If defined, a C expression to compute the alignment given to a
|
||
constant that is being placed in memory. CONSTANT is the constant
|
||
and ALIGN is the alignment that the object would ordinarily have.
|
||
The value of this macro is used instead of that alignment to align
|
||
the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
The typical use of this macro is to increase alignment for string
|
||
constants to be word aligned so that `strcpy' calls that copy
|
||
constants can be done inline. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
|
||
&& (ALIGN) < BITS_PER_WORD \
|
||
? BITS_PER_WORD \
|
||
: (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a static
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. Another is to
|
||
cause character arrays to be word-aligned so that `strcpy' calls
|
||
that copy constants to character arrays can be done inline. */
|
||
|
||
#undef DATA_ALIGNMENT
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
((((ALIGN) < BITS_PER_WORD) \
|
||
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
|| TREE_CODE (TYPE) == UNION_TYPE \
|
||
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* Define this macro if an argument declared as `char' or `short' in a
|
||
prototype should actually be passed as an `int'. In addition to
|
||
avoiding errors in certain cases of mismatch, it also makes for
|
||
better code on certain machines. */
|
||
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Define this macro if an instruction to load a value narrower
|
||
than a word from memory into a register also zero-extends the
|
||
value to the whole register. */
|
||
|
||
#define BYTE_LOADS_ZERO_EXTEND
|
||
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
|
||
On the Mips, we have 32 integer registers, 32 floating point registers
|
||
and the special registers hi, lo, and fp status. */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 67
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
|
||
On the MIPS, see conventions, page D-2 */
|
||
|
||
#define FIXED_REGISTERS \
|
||
{ \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1 \
|
||
}
|
||
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 1, 1 \
|
||
}
|
||
|
||
|
||
/* Internal macros to classify a register number as to whether it's a
|
||
general purpose register, a floating point register, a
|
||
multiply/divide register, or a status register.
|
||
|
||
The macro FP_CALL_REG_P also allows registers $4 and $6 as floating
|
||
point registers to pass floating point as per MIPS spec. */
|
||
|
||
#define GP_REG_FIRST 0
|
||
#define GP_REG_LAST 31
|
||
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
|
||
#define GP_DBX_FIRST 0
|
||
|
||
#define FP_REG_FIRST 32
|
||
#define FP_REG_LAST 63
|
||
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
|
||
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
|
||
|
||
#define MD_REG_FIRST 64
|
||
#define MD_REG_LAST 65
|
||
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
|
||
|
||
#define ST_REG_FIRST 66
|
||
#define ST_REG_LAST 66
|
||
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
|
||
|
||
#define AT_REGNUM (GP_REG_FIRST + 1)
|
||
#define HI_REGNUM (MD_REG_FIRST + 0)
|
||
#define LO_REGNUM (MD_REG_FIRST + 1)
|
||
#define FPSW_REGNUM ST_REG_FIRST
|
||
|
||
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
|
||
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
|
||
#define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
|
||
#define ST_REG_P(REGNO) ((REGNO) == ST_REG_FIRST)
|
||
|
||
#define FP_CALL_REG_P(REGNO) \
|
||
(FP_REG_P (REGNO) \
|
||
|| (REGNO) == (4 + GP_REG_FIRST) \
|
||
|| (REGNO) == (6 + GP_REG_FIRST))
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the MIPS, all general registers are one word long. Except on
|
||
the R4000 with the FR bit set, the floating point uses register
|
||
pairs, with the second register not being allocatable. */
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
(! FP_REG_P (REGNO) \
|
||
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
|
||
: (((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD) - 1) / (2*UNITS_PER_WORD)) \
|
||
<< (TARGET_FLOAT64 == 0)))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode
|
||
MODE. Require that DImode and DFmode be in even registers. For
|
||
DImode, this makes some of the insns easier to write, since you
|
||
don't have to worry about a DImode value in registers 3 & 4,
|
||
producing a result in 4 & 5.
|
||
|
||
To make the code simpler HARD_REGNO_MODE_OK now just references an
|
||
array built in override_options. Because machmodes.h is not yet
|
||
included before this file is processed, the MODE bound can't be
|
||
expressed here. */
|
||
|
||
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
|
||
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
|
||
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
|
||
|
||
/* MIPS pc is not overloaded on a register. */
|
||
/* #define PC_REGNUM xx */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
|
||
|
||
/* Offset from the stack pointer to the first available location. */
|
||
#define STACK_POINTER_OFFSET 0
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM GP_REG_FIRST
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
|
||
|
||
/* If the structure value address is passed in a register, then
|
||
`STRUCT_VALUE_REGNUM' should be the number of that register. */
|
||
/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
|
||
|
||
/* If the structure value address is not passed in a register, define
|
||
`STRUCT_VALUE' as an expression returning an RTX for the place
|
||
where the address is passed. If it returns 0, the address is
|
||
passed as an "invisible" first argument. */
|
||
#define STRUCT_VALUE ((rtx)0)
|
||
|
||
/* Mips registers used in prologue/epilogue code when the stack frame
|
||
is larger than 32K bytes. These registers must come from the
|
||
scratch register set, and not used for passing and returning
|
||
arguments and any other information used in the calling sequence
|
||
(such as pic). */
|
||
|
||
#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 8)
|
||
#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 9)
|
||
|
||
/* Define this macro if it is as good or better to call a constant
|
||
function address than to call an address kept in a register. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* Define this macro if it is as good or better for a function to
|
||
call itself with an explicit address than to call an address
|
||
kept in a register. */
|
||
#define NO_RECURSIVE_FUNCTION_CSE 1
|
||
|
||
/* The register number of the register used to address a table of
|
||
static data addresses in memory. In some cases this register is
|
||
defined by a processor's "application binary interface" (ABI).
|
||
When this macro is defined, RTL is generated for this register
|
||
once, as with the stack pointer and frame pointer registers. If
|
||
this macro is not defined, it is up to the machine-dependent
|
||
files to allocate such a register (if necessary). */
|
||
#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
|
||
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS, /* no registers in set */
|
||
GR_REGS, /* integer registers */
|
||
FP_REGS, /* floating point registers */
|
||
HI_REG, /* hi register */
|
||
LO_REG, /* lo register */
|
||
MD_REGS, /* multiply/divide registers (hi/lo) */
|
||
ST_REGS, /* status registers (fp status) */
|
||
ALL_REGS, /* all registers */
|
||
LIM_REG_CLASSES /* max value + 1 */
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
#define GENERAL_REGS GR_REGS
|
||
|
||
/* An initializer containing the names of the register classes as C
|
||
string constants. These names are used in writing some of the
|
||
debugging dumps. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"GR_REGS", \
|
||
"FP_REGS", \
|
||
"HI_REG", \
|
||
"LO_REG", \
|
||
"MD_REGS", \
|
||
"ST_REGS", \
|
||
"ALL_REGS" \
|
||
}
|
||
|
||
/* An initializer containing the contents of the register classes,
|
||
as integers which are bit masks. The Nth integer specifies the
|
||
contents of class N. The way the integer MASK is interpreted is
|
||
that register R is in the class if `MASK & (1 << R)' is 1.
|
||
|
||
When the machine has more than 32 registers, an integer does not
|
||
suffice. Then the integers are replaced by sub-initializers,
|
||
braced groupings containing several integers. Each
|
||
sub-initializer must be suitable as an initializer for the type
|
||
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
|
||
{ 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
|
||
{ 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
|
||
{ 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
|
||
{ 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
|
||
{ 0x00000000, 0x00000000, 0x00000004 }, /* status registers */ \
|
||
{ 0xffffffff, 0xffffffff, 0x00000007 } /* all registers */ \
|
||
}
|
||
|
||
|
||
/* A C expression whose value is a register class containing hard
|
||
register REGNO. In general there is more that one such class;
|
||
choose a class which is "minimal", meaning that no smaller class
|
||
also contains the register. */
|
||
|
||
extern enum reg_class mips_regno_to_class[];
|
||
|
||
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid base register must belong. A base register is one used in
|
||
an address which is the register value plus a displacement. */
|
||
|
||
#define BASE_REG_CLASS GR_REGS
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid index register must belong. An index register is one used
|
||
in an address where its value is either multiplied by a scale
|
||
factor or added to another register (as well as added to a
|
||
displacement). */
|
||
|
||
#define INDEX_REG_CLASS GR_REGS
|
||
|
||
|
||
/* REGISTER AND CONSTANT CLASSES */
|
||
|
||
/* Get reg_class from a letter such as appears in the machine
|
||
description.
|
||
|
||
DEFINED REGISTER CLASSES:
|
||
|
||
'd' General (aka integer) registers
|
||
'f' Floating point registers
|
||
'h' Hi register
|
||
'l' Lo register
|
||
'x' Multiply/divide registers
|
||
'z' FP Status register */
|
||
|
||
extern enum reg_class mips_char_to_class[];
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
|
||
|
||
/* The letters I, J, K, L, M, N, O, and P in a register constraint
|
||
string can be used to stand for particular ranges of immediate
|
||
operands. This macro defines what the ranges are. C is the
|
||
letter, and VALUE is a constant value. Return 1 if VALUE is
|
||
in the range specified by C. */
|
||
|
||
/* For MIPS:
|
||
|
||
`I' is used for the range of constants an arithmetic insn can
|
||
actually contain (16 bits signed integers).
|
||
|
||
`J' is used for the range which is just zero (ie, $r0).
|
||
|
||
`K' is used for the range of constants a logical insn can actually
|
||
contain (16 bit zero-extended integers).
|
||
|
||
`L' is used for the range of constants that be loaded with lui
|
||
(ie, the bottom 16 bits are zero).
|
||
|
||
`M' is used for the range of constants that take two words to load
|
||
(ie, not matched by `I', `K', and `L').
|
||
|
||
`N' is used for negative 16 bit constants.
|
||
|
||
`O' is an exact power of 2 (not yet used in the md file).
|
||
|
||
`P' is used for positive 16 bit constants. */
|
||
|
||
#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x8000) < 0x10000)
|
||
#define SMALL_INT_UNSIGNED(X) ((unsigned) (INTVAL (X)) < 0x10000)
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? ((unsigned) ((VALUE) + 0x8000) < 0x10000) \
|
||
: (C) == 'J' ? ((VALUE) == 0) \
|
||
: (C) == 'K' ? ((unsigned) (VALUE) < 0x10000) \
|
||
: (C) == 'L' ? (((VALUE) & 0xffff0000) == (VALUE)) \
|
||
: (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
|
||
&& (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
|
||
&& ((VALUE) & 0x0000ffff) != 0) \
|
||
: (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
|
||
: (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
|
||
: (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself. */
|
||
|
||
/* For Mips
|
||
|
||
'G' : Floating point 0 */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' \
|
||
&& CONST_DOUBLE_HIGH (VALUE) == 0 \
|
||
&& CONST_DOUBLE_LOW (VALUE) == 0)
|
||
|
||
/* Letters in the range `Q' through `U' may be defined in a
|
||
machine-dependent fashion to stand for arbitrary operand types.
|
||
The machine description macro `EXTRA_CONSTRAINT' is passed the
|
||
operand as its first argument and the constraint letter as its
|
||
second operand.
|
||
|
||
`Q' is for memory references which take more than 1 instruction.
|
||
`R' is for memory references which take 1 word for the instruction.
|
||
`S' is for references to extern items which are PIC for OSF/rose. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP,CODE) \
|
||
((GET_CODE (OP) != MEM) ? FALSE \
|
||
: ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
|
||
: ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
|
||
: ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
|
||
&& HALF_PIC_ADDRESS_P (OP)) \
|
||
: FALSE)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|
||
|| GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
|
||
? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
|
||
: ((GET_MODE (X) == VOIDmode) \
|
||
? GR_REGS \
|
||
: CLASS))
|
||
|
||
/* Certain machines have the property that some registers cannot be
|
||
copied to some other registers without using memory. Define this
|
||
macro on those machines to be a C expression that is non-zero if
|
||
objects of mode MODE in registers of CLASS1 can only be copied to
|
||
registers of class CLASS2 by storing a register of CLASS1 into
|
||
memory and loading that memory location into a register of CLASS2.
|
||
|
||
Do not define this macro if its value would always be zero. */
|
||
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
||
(!TARGET_DEBUG_H_MODE \
|
||
&& GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
|
||
|| (CLASS1 == GR_REGS && CLASS2 == FP_REGS)))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((((MODE) == DFmode) || ((MODE) == SFmode)) ? 2 \
|
||
: ((MODE) == VOIDmode)? ((CLASS) == FP_REGS ? 2 : 1) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* If defined, this is a C expression whose value should be
|
||
nonzero if the insn INSN has the effect of mysteriously
|
||
clobbering the contents of hard register number REGNO. By
|
||
"mysterious" we mean that the insn's RTL expression doesn't
|
||
describe such an effect.
|
||
|
||
If this macro is not defined, it means that no insn clobbers
|
||
registers mysteriously. This is the usual situation; all else
|
||
being equal, it is best for the RTL expression to show all the
|
||
activity. */
|
||
|
||
/* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
|
||
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
/* #define FRAME_GROWS_DOWNWARD */
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET current_function_outgoing_args_size
|
||
|
||
/* Offset from the stack pointer register to an item dynamically
|
||
allocated on the stack, e.g., by `alloca'.
|
||
|
||
The default value for this macro is `STACK_POINTER_OFFSET' plus the
|
||
length of the outgoing arguments. The default is correct for most
|
||
machines. See `function.c' for details.
|
||
|
||
The MIPS ABI states that functions which dynamically allocate the
|
||
stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
|
||
we are trying to create a second frame pointer to the function, so
|
||
allocate some stack space to make it happy.
|
||
|
||
However, the linker currently complains about linking any code that
|
||
dynamically allocates stack space, and there seems to be a bug in
|
||
STACK_DYNAMIC_OFFSET, so don't define this right now. */
|
||
|
||
#if 0
|
||
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
|
||
((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
|
||
? 4*UNITS_PER_WORD \
|
||
: current_function_outgoing_args_size)
|
||
#endif
|
||
|
||
/* Structure to be filled in by compute_frame_size with register
|
||
save masks, and offsets for the current function. */
|
||
|
||
struct mips_frame_info
|
||
{
|
||
long total_size; /* # bytes that the entire frame takes up */
|
||
long var_size; /* # bytes that variables take up */
|
||
long args_size; /* # bytes that outgoing arguments take up */
|
||
long extra_size; /* # bytes of extra gunk */
|
||
int gp_reg_size; /* # bytes needed to store gp regs */
|
||
int fp_reg_size; /* # bytes needed to store fp regs */
|
||
long mask; /* mask of saved gp registers */
|
||
long fmask; /* mask of saved fp registers */
|
||
long gp_save_offset; /* offset from vfp to store gp registers */
|
||
long fp_save_offset; /* offset from vfp to store fp registers */
|
||
long gp_sp_offset; /* offset from new sp to store gp registers */
|
||
long fp_sp_offset; /* offset from new sp to store fp registers */
|
||
int initialized; /* != 0 if frame size already calculated */
|
||
int num_gp; /* number of gp registers saved */
|
||
int num_fp; /* number of fp registers saved */
|
||
};
|
||
|
||
extern struct mips_frame_info current_frame_info;
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved. */
|
||
|
||
/* #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
|
||
((VAR) = compute_frame_size (get_frame_size ())) */
|
||
|
||
/* If defined, this macro specifies a table of register pairs used to
|
||
eliminate unneeded registers that point into the stack frame. If
|
||
it is not defined, the only elimination attempted by the compiler
|
||
is to replace references to the frame pointer with references to
|
||
the stack pointer.
|
||
|
||
The definition of this macro is a list of structure
|
||
initializations, each of which specifies an original and
|
||
replacement register.
|
||
|
||
On some machines, the position of the argument pointer is not
|
||
known until the compilation is completed. In such a case, a
|
||
separate hard register must be used for the argument pointer.
|
||
This register can be eliminated by replacing it with either the
|
||
frame pointer or the argument pointer, depending on whether or not
|
||
the frame pointer has been eliminated.
|
||
|
||
In this case, you might specify:
|
||
#define ELIMINABLE_REGS \
|
||
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
||
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
|
||
|
||
Note that the elimination of the argument pointer with the stack
|
||
pointer is specified first since that is the preferred elimination. */
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
|
||
|
||
|
||
/* A C expression that returns non-zero if the compiler is allowed to
|
||
try to replace register number FROM-REG with register number
|
||
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
|
||
defined, and will usually be the constant 1, since most of the
|
||
cases preventing register elimination are things that the compiler
|
||
already knows about. */
|
||
|
||
#define CAN_ELIMINATE(FROM, TO) \
|
||
(!frame_pointer_needed \
|
||
|| ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM))
|
||
|
||
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
|
||
specifies the initial difference between the specified pair of
|
||
registers. This macro must be defined if `ELIMINABLE_REGS' is
|
||
defined. */
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
{ compute_frame_size (get_frame_size ()); \
|
||
if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
||
(OFFSET) = 0; \
|
||
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
|
||
(OFFSET) = current_frame_info.total_size; \
|
||
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|
||
(OFFSET) = current_frame_info.total_size; \
|
||
else \
|
||
abort (); \
|
||
}
|
||
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the vax, sp@- in a byte insn really pushes a word. */
|
||
|
||
/* #define PUSH_ROUNDING(BYTES) 0 */
|
||
|
||
/* If defined, the maximum amount of space required for outgoing
|
||
arguments will be computed and placed into the variable
|
||
`current_function_outgoing_args_size'. No space will be pushed
|
||
onto the stack for each call; instead, the function prologue
|
||
should increase the stack frame size by this amount.
|
||
|
||
It is not proper to define both `PUSH_ROUNDING' and
|
||
`ACCUMULATE_OUTGOING_ARGS'. */
|
||
#define ACCUMULATE_OUTGOING_ARGS
|
||
|
||
/* Offset from the argument pointer register to the first argument's
|
||
address. On some machines it may depend on the data type of the
|
||
function.
|
||
|
||
If `ARGS_GROW_DOWNWARD', this is the offset to the location above
|
||
the first argument's address.
|
||
|
||
On the MIPS, we must skip the first argument position if we are
|
||
returning a structure or a union, to account for it's address being
|
||
passed in $4. However, at the current time, this produces a compiler
|
||
that can't bootstrap, so comment it out for now. */
|
||
|
||
#if 0
|
||
#define FIRST_PARM_OFFSET(FNDECL) \
|
||
(FNDECL != 0 \
|
||
&& TREE_TYPE (FNDECL) != 0 \
|
||
&& TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
|
||
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
|
||
|| TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
|
||
? UNITS_PER_WORD \
|
||
: 0)
|
||
#else
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
#endif
|
||
|
||
/* When a parameter is passed in a register, stack space is still
|
||
allocated for it. For the MIPS, stack space must be allocated, cf
|
||
Asm Lang Prog Guide page 7-8.
|
||
|
||
BEWARE that some space is also allocated for non existing arguments
|
||
in register. In case an argument list is of form GF used registers
|
||
are a0 (a2,a3), but we should push over a1... */
|
||
|
||
#define REG_PARM_STACK_SPACE(FNDECL) ((4*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
|
||
|
||
/* Define this if it is the responsibility of the caller to
|
||
allocate the area reserved for arguments passed in registers.
|
||
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
|
||
of this macro is to determine whether the space is included in
|
||
`current_function_outgoing_args_size'. */
|
||
#define OUTGOING_REG_PARM_STACK_SPACE
|
||
|
||
/* Align stack frames on 64 bits (Double Word ). */
|
||
#define STACK_BOUNDARY 64
|
||
|
||
/* Make sure 16 bytes are always allocated on the stack. */
|
||
|
||
#ifndef STACK_ARGS_ADJUST
|
||
#define STACK_ARGS_ADJUST(SIZE) \
|
||
{ \
|
||
if (SIZE.constant < 16) \
|
||
SIZE.constant = 16; \
|
||
}
|
||
#endif
|
||
|
||
|
||
/* A C expression that should indicate the number of bytes of its
|
||
own arguments that a function function pops on returning, or 0
|
||
if the function pops no arguments and the caller must therefore
|
||
pop them all after the function returns.
|
||
|
||
FUNTYPE is a C variable whose value is a tree node that
|
||
describes the function in question. Normally it is a node of
|
||
type `FUNCTION_TYPE' that describes the data type of the function.
|
||
From this it is possible to obtain the data types of the value
|
||
and arguments (if known).
|
||
|
||
When a call to a library function is being considered, FUNTYPE
|
||
will contain an identifier node for the library function. Thus,
|
||
if you need to distinguish among various library functions, you
|
||
can do so by their names. Note that "library function" in this
|
||
context means a function used to perform arithmetic, whose name
|
||
is known specially in the compiler and was not mentioned in the
|
||
C code being compiled.
|
||
|
||
STACK-SIZE is the number of bytes of arguments passed on the
|
||
stack. If a variable number of bytes is passed, it is zero, and
|
||
argument popping will always be the responsibility of the
|
||
calling function. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
|
||
|
||
|
||
/* Symbolic macros for the registers used to return integer and floating
|
||
point values. */
|
||
|
||
#define GP_RETURN (GP_REG_FIRST + 2)
|
||
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
|
||
|
||
/* Symbolic macros for the first/last argument registers. */
|
||
|
||
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
|
||
#define GP_ARG_LAST (GP_REG_FIRST + 7)
|
||
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
|
||
#define FP_ARG_LAST (FP_REG_FIRST + 15)
|
||
|
||
#define MAX_ARGS_IN_REGISTERS 4
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
gen_rtx (REG, MODE, \
|
||
(GET_MODE_CLASS (MODE) == MODE_FLOAT) \
|
||
? FP_RETURN \
|
||
: GP_RETURN)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
|
||
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the MIPS, R2 R3 and F0 F2 are the only register thus used.
|
||
Currently, R2 and F0 are only implemented here (C has no complex type) */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
|
||
|
||
/* 1 if N is a possible register number for function argument passing. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
|
||
|| ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
|
||
&& (0 == (N) % 2)))
|
||
|
||
/* A C expression which can inhibit the returning of certain function
|
||
values in registers, based on the type of value. A nonzero value says
|
||
to return the function value in memory, just as large structures are
|
||
always returned. Here TYPE will be a C expression of type
|
||
`tree', representing the data type of the value.
|
||
|
||
Note that values of mode `BLKmode' are returned in memory
|
||
regardless of this macro. Also, the option `-fpcc-struct-return'
|
||
takes effect regardless of this macro. On most systems, it is
|
||
possible to leave the macro undefined; this causes a default
|
||
definition to be used, whose value is the constant 0.
|
||
|
||
GCC normally converts 1 byte structures into chars, 2 byte
|
||
structs into shorts, and 4 byte structs into ints, and returns
|
||
them this way. Defining the following macro overrides this,
|
||
to give us MIPS cc compatibility. */
|
||
|
||
#define RETURN_IN_MEMORY(TYPE) \
|
||
((TREE_CODE (TYPE) == RECORD_TYPE) || (TREE_CODE (TYPE) == UNION_TYPE))
|
||
|
||
|
||
/* A code distinguishing the floating point format of the target
|
||
machine. There are three defined values: IEEE_FLOAT_FORMAT,
|
||
VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
|
||
|
||
#define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
|
||
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
*/
|
||
|
||
typedef struct mips_args {
|
||
int gp_reg_found; /* whether a gp register was found yet */
|
||
int arg_number; /* argument number */
|
||
int arg_words; /* # total words the arguments take */
|
||
int num_adjusts; /* number of adjustments made */
|
||
/* Adjustments made to args pass in regs. */
|
||
struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS];
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
*/
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
|
||
init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_advance (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
||
function_arg( &CUM, MODE, TYPE, NAMED)
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
||
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
|
||
|
||
/* If defined, a C expression that gives the alignment boundary, in
|
||
bits, of an argument with the specified mode and type. If it is
|
||
not defined, `PARM_BOUNDARY' is used for all arguments. */
|
||
|
||
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
|
||
(((TYPE) != 0) \
|
||
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
|
||
? PARM_BOUNDARY \
|
||
: TYPE_ALIGN(TYPE)) \
|
||
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
|
||
? PARM_BOUNDARY \
|
||
: GET_MODE_ALIGNMENT(MODE)))
|
||
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE. */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
|
||
|
||
/* Define the number of delay slots needed for the function epilogue.
|
||
|
||
On the mips, we need a slot if either no stack has been allocated,
|
||
or the only register saved is the return register. */
|
||
|
||
#define DELAY_SLOTS_FOR_EPILOGUE mips_epilogue_delay_slots ()
|
||
|
||
/* Define whether INSN can be placed in delay slot N for the epilogue.
|
||
No references to the stack must be made, since on the MIPS, the
|
||
delay slot is done after the stack has been cleaned up. */
|
||
|
||
#define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
|
||
(get_attr_dslot (INSN) == DSLOT_NO \
|
||
&& get_attr_length (INSN) == 1 \
|
||
&& ! epilogue_reg_mentioned_p (PATTERN (INSN)))
|
||
|
||
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
|
||
|
||
#define MUST_SAVE_REGISTER(regno) \
|
||
((regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|
||
|| (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
|
||
|
||
/* ALIGN FRAMES on double word boundaries */
|
||
|
||
#define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
|
||
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
{ \
|
||
fprintf (FILE, "\t.set\tnoreorder\n"); \
|
||
fprintf (FILE, "\t.set\tnoat\n"); \
|
||
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
|
||
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
|
||
fprintf (FILE, "\tjal\t_mcount\n"); \
|
||
fprintf (FILE, "\tsubu\t%s,%s,8\t\t# _mcount pops 2 words from stack\n", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
fprintf (FILE, "\t.set\treorder\n"); \
|
||
fprintf (FILE, "\t.set\tat\n"); \
|
||
}
|
||
|
||
/* Define this macro if the code for function profiling should come
|
||
before the function prologue. Normally, the profiling code comes
|
||
after. */
|
||
|
||
/* #define PROFILE_BEFORE_PROLOGUE */
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
|
||
/* A C statement to output, on the stream FILE, assembler code for a
|
||
block of data that contains the constant parts of a trampoline.
|
||
This code should not include a label--the label is taken care of
|
||
automatically. */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(STREAM) \
|
||
{ \
|
||
fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
|
||
fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
|
||
fprintf (STREAM, "\t.word\t0x8fe30010\t\t# lw $3,16($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0x8fe20014\t\t# lw $2,20($31)\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
|
||
fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
|
||
fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
|
||
}
|
||
|
||
/* A C expression for the size in bytes of the trampoline, as an
|
||
integer. */
|
||
|
||
#define TRAMPOLINE_SIZE (9*4)
|
||
|
||
/* Alignment required for trampolines, in bits.
|
||
|
||
If you don't define this macro, the value of `BIGGEST_ALIGNMENT'
|
||
is used for aligning trampolines. */
|
||
|
||
/* #define TRAMPOLINE_ALIGNMENT 32 */
|
||
|
||
/* A C statement to initialize the variable parts of a trampoline.
|
||
ADDR is an RTX for the address of the trampoline; FNADDR is an
|
||
RTX for the address of the nested function; STATIC_CHAIN is an
|
||
RTX for the static chain value that should be passed to the
|
||
function when it is called. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
|
||
{ \
|
||
rtx addr = ADDR; \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 28)), FUNC); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), CHAIN); \
|
||
\
|
||
/* Attempt to make stack executable */ \
|
||
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"), \
|
||
0, VOIDmode, 1, addr, Pmode); \
|
||
}
|
||
|
||
|
||
/* Attempt to turn on access permissions for the stack. */
|
||
|
||
#define TRANSFER_FROM_TRAMPOLINE \
|
||
\
|
||
void \
|
||
__enable_execute_stack (addr) \
|
||
char *addr; \
|
||
{ \
|
||
int size = getpagesize (); \
|
||
int mask = ~(size-1); \
|
||
char *page = (char *) (((int) addr) & mask); \
|
||
char *end = (char *) ((((int) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
|
||
\
|
||
/* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
|
||
if (mprotect (page, end - page, 7) < 0) \
|
||
perror ("mprotect of trampoline code"); \
|
||
\
|
||
/* \
|
||
if (cacheflush (addr, TRAMPOLINE_SIZE, 1) < 0) \
|
||
perror ("cacheflush of trampoline code"); \
|
||
*/ \
|
||
}
|
||
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
These definitions are NOT overridden anywhere. */
|
||
|
||
#define GP_REG_OR_PSEUDO_STRICT_P(regno) \
|
||
GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
|
||
|
||
#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
|
||
(((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
|
||
#define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects them all.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Some source files that are used after register allocation
|
||
need to be strict. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
#define REG_OK_STRICT_P 0
|
||
#define REG_OK_FOR_INDEX_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
|
||
#define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
|
||
|
||
#else
|
||
|
||
#define REG_OK_STRICT_P 1
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
/* A C compound statement with a conditional `goto LABEL;' executed
|
||
if X (an RTX) is a legitimate memory address on the target
|
||
machine for a memory operand of mode MODE.
|
||
|
||
It usually pays to define several simpler macros to serve as
|
||
subroutines for this one. Otherwise it may be too complicated
|
||
to understand.
|
||
|
||
This macro must exist in two variants: a strict variant and a
|
||
non-strict one. The strict variant is used in the reload pass.
|
||
It must be defined so that any pseudo-register that has not been
|
||
allocated a hard register is considered a memory reference. In
|
||
contexts where some kind of register is required, a
|
||
pseudo-register with no hard register must be rejected.
|
||
|
||
The non-strict variant is used in other passes. It must be
|
||
defined to accept all pseudo-registers in every context where
|
||
some kind of register is required.
|
||
|
||
Compiler source files that want to use the strict variant of
|
||
this macro define the macro `REG_OK_STRICT'. You should use an
|
||
`#ifdef REG_OK_STRICT' conditional to define the strict variant
|
||
in that case and the non-strict variant otherwise.
|
||
|
||
Typically among the subroutines used to define
|
||
`GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
|
||
acceptable registers for various purposes (one for base
|
||
registers, one for index registers, and so on). Then only these
|
||
subroutine macros need have two variants; the higher levels of
|
||
macros may be the same whether strict or not.
|
||
|
||
Normally, constant addresses which are the sum of a `symbol_ref'
|
||
and an integer are stored inside a `const' RTX to mark them as
|
||
constant. Therefore, there is no need to recognize such sums
|
||
specifically as legitimate addresses. Normally you would simply
|
||
recognize any `const' as legitimate.
|
||
|
||
Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
|
||
constant sums that are not marked with `const'. It assumes
|
||
that a naked `plus' indicates indexing. If so, then you *must*
|
||
reject such naked constant sums as illegitimate addresses, so
|
||
that none of them will be given to `PRINT_OPERAND_ADDRESS'.
|
||
|
||
On some machines, whether a symbolic address is legitimate
|
||
depends on the section that the address refers to. On these
|
||
machines, define the macro `ENCODE_SECTION_INFO' to store the
|
||
information into the `symbol_ref', and then check for it here.
|
||
When you see a `const', you will have to look inside it to find
|
||
the `symbol_ref' in order to determine the section. */
|
||
|
||
#if 1
|
||
#define GO_PRINTF(x) trace(x)
|
||
#define GO_PRINTF2(x,y) trace(x,y)
|
||
#define GO_DEBUG_RTX(x) debug_rtx(x)
|
||
|
||
#else
|
||
#define GO_PRINTF(x)
|
||
#define GO_PRINTF2(x,y)
|
||
#define GO_DEBUG_RTX(x)
|
||
#endif
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ \
|
||
register rtx xinsn = (X); \
|
||
\
|
||
if (TARGET_DEBUG_B_MODE) \
|
||
{ \
|
||
GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
|
||
(REG_OK_STRICT_P) ? "" : "not "); \
|
||
GO_DEBUG_RTX (xinsn); \
|
||
} \
|
||
\
|
||
if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
|
||
goto ADDR; \
|
||
\
|
||
if (CONSTANT_ADDRESS_P (xinsn)) \
|
||
goto ADDR; \
|
||
\
|
||
if (GET_CODE (xinsn) == PLUS) \
|
||
{ \
|
||
register rtx xplus0 = XEXP (xinsn, 0); \
|
||
register rtx xplus1 = XEXP (xinsn, 1); \
|
||
register enum rtx_code code0 = GET_CODE (xplus0); \
|
||
register enum rtx_code code1 = GET_CODE (xplus1); \
|
||
\
|
||
if (code0 != REG && code1 == REG) \
|
||
{ \
|
||
xplus0 = XEXP (xinsn, 1); \
|
||
xplus1 = XEXP (xinsn, 0); \
|
||
code0 = GET_CODE (xplus0); \
|
||
code1 = GET_CODE (xplus1); \
|
||
} \
|
||
\
|
||
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
|
||
{ \
|
||
if (code1 == CONST_INT) \
|
||
{ \
|
||
register unsigned adj_offset = INTVAL (xplus1) + 0x8000; \
|
||
\
|
||
if ((adj_offset <= 0xffff) \
|
||
&& (adj_offset + GET_MODE_SIZE (MODE) - 1 <= 0xffff)) \
|
||
goto ADDR; \
|
||
} \
|
||
\
|
||
/* For some code sequences, you actually get better code by \
|
||
pretending that the MIPS supports an address mode of a \
|
||
constant address + a register, even though the real \
|
||
machine doesn't support it. This is because the \
|
||
assembler can use $r1 to load just the high 16 bits, add \
|
||
in the register, and fold the low 16 bits into the memory \
|
||
reference, whereas the compiler generates a 4 instruction \
|
||
sequence. On the other hand, CSE is not as effective. \
|
||
It would be a win to generate the lui directly, but the \
|
||
MIPS assembler does not have syntax to generate the \
|
||
appropriate relocation. */ \
|
||
\
|
||
else if (!TARGET_DEBUG_A_MODE \
|
||
&& code0 == REG \
|
||
&& CONSTANT_ADDRESS_P (xplus1)) \
|
||
goto ADDR; \
|
||
} \
|
||
} \
|
||
\
|
||
if (TARGET_DEBUG_B_MODE) \
|
||
GO_PRINTF ("Not a legitimate address\n"); \
|
||
}
|
||
|
||
|
||
/* A C expression that is 1 if the RTX X is a constant which is a
|
||
valid address. On most machines, this can be defined as
|
||
`CONSTANT_P (X)', but a few machines are more restrictive in
|
||
which constant addresses are supported.
|
||
|
||
`CONSTANT_P' accepts integer-values expressions whose values are
|
||
not explicitly known, such as `symbol_ref', `label_ref', and
|
||
`high' expressions and `const' arithmetic expressions, in
|
||
addition to `const_int' and `const_double' expressions. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(CONSTANT_P (X) && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
|
||
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
|
||
|
||
At present, GAS doesn't understand li.[sd], so don't allow it
|
||
to be generated at present. Also, the MIPS assembler does not
|
||
grok li.d Infinity. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) \
|
||
(GET_CODE (X) != CONST_DOUBLE || mips_const_double_ok (X, GET_MODE (X)))
|
||
|
||
|
||
/* A C compound statement that attempts to replace X with a valid
|
||
memory address for an operand of mode MODE. WIN will be a C
|
||
statement label elsewhere in the code; the macro definition may
|
||
use
|
||
|
||
GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
|
||
|
||
to avoid further processing if the address has become legitimate.
|
||
|
||
X will always be the result of a call to `break_out_memory_refs',
|
||
and OLDX will be the operand that was given to that function to
|
||
produce X.
|
||
|
||
The code generated by this macro should not alter the
|
||
substructure of X. If it transforms X into a more legitimate
|
||
form, it should assign X (which will always be a C variable) a
|
||
new value.
|
||
|
||
It is not necessary for this macro to come up with a legitimate
|
||
address. The compiler has standard ways of doing so in all
|
||
cases. In fact, it is safe for this macro to do nothing. But
|
||
often a machine-dependent strategy can generate better code.
|
||
|
||
For the MIPS, transform:
|
||
|
||
memory(X + <large int>)
|
||
|
||
into:
|
||
|
||
Y = <large int> & ~0x7fff;
|
||
Z = X + Y
|
||
memory (Z + (<large int> & 0x7fff));
|
||
|
||
This is for CSE to find several similar references, and only use one Z. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
{ \
|
||
register rtx xinsn = (X); \
|
||
\
|
||
if (TARGET_DEBUG_B_MODE) \
|
||
{ \
|
||
GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
|
||
GO_DEBUG_RTX (xinsn); \
|
||
} \
|
||
\
|
||
if (GET_CODE (xinsn) == PLUS) \
|
||
{ \
|
||
register rtx xplus0 = XEXP (xinsn, 0); \
|
||
register rtx xplus1 = XEXP (xinsn, 1); \
|
||
register enum rtx_code code0 = GET_CODE (xplus0); \
|
||
register enum rtx_code code1 = GET_CODE (xplus1); \
|
||
\
|
||
if (code0 != REG && code1 == REG) \
|
||
{ \
|
||
xplus0 = XEXP (xinsn, 1); \
|
||
xplus1 = XEXP (xinsn, 0); \
|
||
code0 = GET_CODE (xplus0); \
|
||
code1 = GET_CODE (xplus1); \
|
||
} \
|
||
\
|
||
if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
|
||
&& code1 == CONST_INT && !SMALL_INT (xplus1)) \
|
||
{ \
|
||
rtx int_reg = gen_reg_rtx (Pmode); \
|
||
rtx ptr_reg = gen_reg_rtx (Pmode); \
|
||
\
|
||
emit_move_insn (int_reg, \
|
||
GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
|
||
\
|
||
emit_insn (gen_rtx (SET, VOIDmode, \
|
||
ptr_reg, \
|
||
gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
|
||
\
|
||
X = gen_rtx (PLUS, Pmode, ptr_reg, \
|
||
GEN_INT (INTVAL (xplus1) & 0x7fff)); \
|
||
goto WIN; \
|
||
} \
|
||
} \
|
||
\
|
||
if (TARGET_DEBUG_B_MODE) \
|
||
GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
|
||
}
|
||
|
||
|
||
/* A C statement or compound statement with a conditional `goto
|
||
LABEL;' executed if memory address X (an RTX) can have different
|
||
meanings depending on the machine mode of the memory reference it
|
||
is used for.
|
||
|
||
Autoincrement and autodecrement addresses typically have
|
||
mode-dependent effects because the amount of the increment or
|
||
decrement is the size of the operand being addressed. Some
|
||
machines have other mode-dependent addresses. Many RISC machines
|
||
have no mode-dependent addresses.
|
||
|
||
You may assume that ADDR is a valid address for the machine. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
|
||
|
||
|
||
/* Define this macro if references to a symbol must be treated
|
||
differently depending on something about the variable or
|
||
function named by the symbol (such as what section it is in).
|
||
|
||
The macro definition, if any, is executed immediately after the
|
||
rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
|
||
The value of the rtl will be a `mem' whose address is a
|
||
`symbol_ref'.
|
||
|
||
The usual thing for this macro to do is to a flag in the
|
||
`symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
|
||
name string in the `symbol_ref' (if one bit is not enough
|
||
information).
|
||
|
||
The best way to modify the name string is by adding text to the
|
||
beginning, with suitable punctuation to prevent any ambiguity.
|
||
Allocate the new name in `saveable_obstack'. You will have to
|
||
modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
|
||
and output the name accordingly.
|
||
|
||
You can also check the information stored in the `symbol_ref' in
|
||
the definition of `GO_IF_LEGITIMATE_ADDRESS' or
|
||
`PRINT_OPERAND_ADDRESS'. */
|
||
|
||
#define ENCODE_SECTION_INFO(DECL) \
|
||
do \
|
||
{ \
|
||
if (optimize && mips_section_threshold > 0 && TARGET_GP_OPT \
|
||
&& TREE_CODE (DECL) == VAR_DECL) \
|
||
{ \
|
||
int size = int_size_in_bytes (TREE_TYPE (DECL)); \
|
||
\
|
||
if (size > 0 && size <= mips_section_threshold) \
|
||
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
|
||
} \
|
||
\
|
||
else if (HALF_PIC_P ()) \
|
||
HALF_PIC_ENCODE (DECL); \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#ifndef DEFAULT_SIGNED_CHAR
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
#endif
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define this macro as a C expression which is nonzero if
|
||
accessing less than a word of memory (i.e. a `char' or a
|
||
`short') is no faster than accessing a word of memory, i.e., if
|
||
such access require more than one instruction or if there is no
|
||
difference in cost between byte and (aligned) word loads.
|
||
|
||
On RISC machines, it tends to generate better code to define
|
||
this as 1, since it avoids making a QI or HI mode register. */
|
||
#define SLOW_BYTE_ACCESS 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE 1
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
#define SLOW_ZERO_EXTEND
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count.
|
||
|
||
Only 5 bits are used in SLLV and SRLV */
|
||
|
||
#define SHIFT_COUNT_TRUNCATED
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Define this macro to control use of the character `$' in
|
||
identifier names. The value should be 0, 1, or 2. 0 means `$'
|
||
is not allowed by default; 1 means it is allowed by default if
|
||
`-traditional' is used; 2 means it is allowed by default provided
|
||
`-ansi' is not used. 1 is the default; there is no need to
|
||
define this macro in that case. */
|
||
|
||
#ifndef DOLLARS_IN_IDENTIFIERS
|
||
#define DOLLARS_IN_IDENTIFIERS 1
|
||
#endif
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a word address (for indexing purposes)
|
||
so give the MEM rtx a words's mode. */
|
||
|
||
#define FUNCTION_MODE SImode
|
||
|
||
/* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
|
||
memset, instead of the BSD functions bcopy and bzero. */
|
||
|
||
#if defined(MIPS_SYSV) || defined(OSF_OS)
|
||
#define TARGET_MEM_FUNCTIONS
|
||
#endif
|
||
|
||
|
||
/* A part of a C `switch' statement that describes the relative
|
||
costs of constant RTL expressions. It must contain `case'
|
||
labels for expression codes `const_int', `const', `symbol_ref',
|
||
`label_ref' and `const_double'. Each case must ultimately reach
|
||
a `return' statement to return the relative cost of the use of
|
||
that kind of constant value in an expression. The cost may
|
||
depend on the precise value of the constant, which is available
|
||
for examination in X.
|
||
|
||
CODE is the expression code--redundant, since it can be obtained
|
||
with `GET_CODE (X)'. */
|
||
|
||
#define CONST_COSTS(X,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
/* Always return 0, since we don't have different sized \
|
||
instructions, hence different costs according to Richard \
|
||
Kenner */ \
|
||
return COSTS_N_INSNS (0); \
|
||
\
|
||
case LABEL_REF: \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
case CONST: \
|
||
{ \
|
||
rtx offset = const0_rtx; \
|
||
rtx symref = eliminate_constant_term (X, &offset); \
|
||
\
|
||
if (GET_CODE (symref) == LABEL_REF) \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
if (GET_CODE (symref) != SYMBOL_REF) \
|
||
return COSTS_N_INSNS (4); \
|
||
\
|
||
/* let's be paranoid.... */ \
|
||
if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
|
||
} \
|
||
\
|
||
case SYMBOL_REF: \
|
||
return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
|
||
\
|
||
case CONST_DOUBLE: \
|
||
return COSTS_N_INSNS ((CONST_DOUBLE_HIGH (X) == 0 \
|
||
&& CONST_DOUBLE_LOW (X)) ? 2 : 4);
|
||
|
||
|
||
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
|
||
This can be used, for example, to indicate how costly a multiply
|
||
instruction is. In writing this macro, you can use the construct
|
||
`COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
|
||
|
||
This macro is optional; do not define it if the default cost
|
||
assumptions are adequate for the target machine.
|
||
|
||
If -mdebugd is used, change the multiply cost to 2, so multiply by
|
||
a constant isn't converted to a series of shifts. This helps
|
||
strength reduction, and also makes it easier to identify what the
|
||
compiler is doing. */
|
||
|
||
#define RTX_COSTS(X,CODE,OUTER_CODE) \
|
||
case MEM: \
|
||
{ \
|
||
int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
|
||
if (simple_memory_operand (X, GET_MODE (X))) \
|
||
return COSTS_N_INSNS (num_words); \
|
||
\
|
||
return COSTS_N_INSNS (2*num_words); \
|
||
} \
|
||
\
|
||
case FFS: \
|
||
return COSTS_N_INSNS (6); \
|
||
\
|
||
case NOT: \
|
||
return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 2 : 1); \
|
||
\
|
||
case AND: \
|
||
case IOR: \
|
||
case XOR: \
|
||
if (GET_MODE (X) == DImode) \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
|
||
{ \
|
||
rtx number = XEXP (X, 1); \
|
||
if (SMALL_INT_UNSIGNED (number)) \
|
||
return COSTS_N_INSNS (1); \
|
||
\
|
||
else if (SMALL_INT (number)) \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
return COSTS_N_INSNS (3); \
|
||
} \
|
||
\
|
||
return COSTS_N_INSNS (1); \
|
||
\
|
||
case ASHIFT: \
|
||
case ASHIFTRT: \
|
||
case LSHIFT: \
|
||
case LSHIFTRT: \
|
||
if (GET_MODE (X) == DImode) \
|
||
return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 12 : 4); \
|
||
\
|
||
return COSTS_N_INSNS (1); \
|
||
\
|
||
case ABS: \
|
||
{ \
|
||
enum machine_mode xmode = GET_MODE (X); \
|
||
if (xmode == SFmode || xmode == DFmode) \
|
||
return COSTS_N_INSNS (1); \
|
||
\
|
||
return COSTS_N_INSNS (4); \
|
||
} \
|
||
\
|
||
case PLUS: \
|
||
case MINUS: \
|
||
{ \
|
||
enum machine_mode xmode = GET_MODE (X); \
|
||
if (xmode == SFmode || xmode == DFmode) \
|
||
return COSTS_N_INSNS (2); \
|
||
\
|
||
if (xmode == DImode) \
|
||
return COSTS_N_INSNS (4); \
|
||
\
|
||
return COSTS_N_INSNS (1); \
|
||
} \
|
||
\
|
||
case NEG: \
|
||
return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 4 : 1); \
|
||
\
|
||
case MULT: \
|
||
{ \
|
||
enum machine_mode xmode = GET_MODE (X); \
|
||
if (xmode == SFmode) \
|
||
return COSTS_N_INSNS (4); \
|
||
\
|
||
if (xmode == DFmode) \
|
||
return COSTS_N_INSNS (5); \
|
||
\
|
||
return COSTS_N_INSNS (12); \
|
||
} \
|
||
\
|
||
case DIV: \
|
||
case MOD: \
|
||
{ \
|
||
enum machine_mode xmode = GET_MODE (X); \
|
||
if (xmode == SFmode) \
|
||
return COSTS_N_INSNS (12); \
|
||
\
|
||
if (xmode == DFmode) \
|
||
return COSTS_N_INSNS (19); \
|
||
} \
|
||
/* fall through */ \
|
||
\
|
||
case UDIV: \
|
||
case UMOD: \
|
||
return COSTS_N_INSNS (35);
|
||
|
||
/* An expression giving the cost of an addressing mode that
|
||
contains ADDRESS. If not defined, the cost is computed from the
|
||
form of the ADDRESS expression and the `CONST_COSTS' values.
|
||
|
||
For most CISC machines, the default cost is a good approximation
|
||
of the true cost of the addressing mode. However, on RISC
|
||
machines, all instructions normally have the same length and
|
||
execution time. Hence all addresses will have equal costs.
|
||
|
||
In cases where more than one form of an address is known, the
|
||
form with the lowest cost will be used. If multiple forms have
|
||
the same, lowest, cost, the one that is the most complex will be
|
||
used.
|
||
|
||
For example, suppose an address that is equal to the sum of a
|
||
register and a constant is used twice in the same basic block.
|
||
When this macro is not defined, the address will be computed in
|
||
a register and memory references will be indirect through that
|
||
register. On machines where the cost of the addressing mode
|
||
containing the sum is no higher than that of a simple indirect
|
||
reference, this will produce an additional instruction and
|
||
possibly require an additional register. Proper specification
|
||
of this macro eliminates this overhead for such machines.
|
||
|
||
Similar use of this macro is made in strength reduction of loops.
|
||
|
||
ADDRESS need not be valid as an address. In such a case, the
|
||
cost is not relevant and can be any value; invalid addresses
|
||
need not be assigned a different cost.
|
||
|
||
On machines where an address involving more than one register is
|
||
as cheap as an address computation involving only one register,
|
||
defining `ADDRESS_COST' to reflect this can cause two registers
|
||
to be live over a region of code where only one would have been
|
||
if `ADDRESS_COST' were not defined in that manner. This effect
|
||
should be considered in the definition of this macro.
|
||
Equivalent costs should probably only be given to addresses with
|
||
different numbers of registers on machines with lots of registers.
|
||
|
||
This macro will normally either not be defined or be defined as
|
||
a constant. */
|
||
|
||
#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
|
||
|
||
/* A C expression for the cost of moving data from a register in
|
||
class FROM to one in class TO. The classes are expressed using
|
||
the enumeration values such as `GENERAL_REGS'. A value of 2 is
|
||
the default; other values are interpreted relative to that.
|
||
|
||
It is not required that the cost always equal 2 when FROM is the
|
||
same as TO; on some machines it is expensive to move between
|
||
registers if they are not general registers.
|
||
|
||
If reload sees an insn consisting of a single `set' between two
|
||
hard registers, and if `REGISTER_MOVE_COST' applied to their
|
||
classes returns a value of 2, reload does not check to ensure
|
||
that the constraints of the insn are met. Setting a cost of
|
||
other than 2 will allow reload to verify that the constraints are
|
||
met. You should do this if the `movM' pattern's constraints do
|
||
not allow such copying. */
|
||
|
||
#define REGISTER_MOVE_COST(FROM, TO) 4 /* force reload to use constraints */
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of
|
||
1 is the default; other values are interpreted relative to that. */
|
||
|
||
#define BRANCH_COST \
|
||
((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
|
||
|
||
|
||
/* Used in by the peephole code. */
|
||
#define classify_op(op,mode) (mips_rtx_classify[ (int)GET_CODE (op) ])
|
||
#define additive_op(op,mode) ((classify_op (op,mode) & CLASS_ADD_OP) != 0)
|
||
#define divmod_op(op,mode) ((classify_op (op,mode) & CLASS_DIVMOD_OP) != 0)
|
||
#define unsigned_op(op,mode) ((classify_op (op,mode) & CLASS_UNSIGNED_OP) != 0)
|
||
|
||
#define CLASS_ADD_OP 0x01 /* operator is PLUS/MINUS */
|
||
#define CLASS_DIVMOD_OP 0x02 /* operator is {,U}{DIV,MOD} */
|
||
#define CLASS_UNSIGNED_OP 0x04 /* operator is U{DIV,MOD} */
|
||
#define CLASS_CMP_OP 0x08 /* operator is comparison */
|
||
#define CLASS_EQUALITY_OP 0x10 /* operator is == or != */
|
||
#define CLASS_FCMP_OP 0x08 /* operator is fp. compare */
|
||
|
||
#define CLASS_UNS_CMP_OP (CLASS_UNSIGNED_OP | CLASS_CMP_OP)
|
||
|
||
|
||
/* Optionally define this if you have added predicates to
|
||
`MACHINE.c'. This macro is called within an initializer of an
|
||
array of structures. The first field in the structure is the
|
||
name of a predicate and the second field is an array of rtl
|
||
codes. For each predicate, list all rtl codes that can be in
|
||
expressions matched by the predicate. The list should have a
|
||
trailing comma. Here is an example of two entries in the list
|
||
for a typical RISC machine:
|
||
|
||
#define PREDICATE_CODES \
|
||
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
|
||
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
|
||
|
||
Defining this macro does not affect the generated code (however,
|
||
incorrect definitions that omit an rtl code that may be matched
|
||
by the predicate can cause the compiler to malfunction).
|
||
Instead, it allows the table built by `genrecog' to be more
|
||
compact and efficient, thus speeding up the compiler. The most
|
||
important predicates to include in the list specified by this
|
||
macro are thoses used in the most insn patterns. */
|
||
|
||
#define PREDICATE_CODES \
|
||
{"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
|
||
{"arith_operand", { REG, CONST_INT, SUBREG }}, \
|
||
{"arith32_operand", { REG, CONST_INT, SUBREG }}, \
|
||
{"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
|
||
{"small_int", { CONST_INT }}, \
|
||
{"large_int", { CONST_INT }}, \
|
||
{"md_register_operand", { REG }}, \
|
||
{"mips_const_double_ok", { CONST_DOUBLE }}, \
|
||
{"simple_memory_operand", { MEM, SUBREG }}, \
|
||
{"equality_op", { EQ, NE }}, \
|
||
{"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
|
||
LTU, LEU }}, \
|
||
{"cmp2_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
|
||
LTU, LEU }}, \
|
||
{"fcmp_op", { EQ, NE, GT, GE, LT, LE }}, \
|
||
{"uns_cmp_op", { GTU, GEU, LTU, LEU }},
|
||
|
||
|
||
/* If defined, a C statement to be executed just prior to the
|
||
output of assembler code for INSN, to modify the extracted
|
||
operands so they will be output differently.
|
||
|
||
Here the argument OPVEC is the vector containing the operands
|
||
extracted from INSN, and NOPERANDS is the number of elements of
|
||
the vector which contain meaningful data for this insn. The
|
||
contents of this vector are what will be used to convert the
|
||
insn template into assembler code, so you can change the
|
||
assembler output by changing the contents of the vector.
|
||
|
||
We use it to check if the current insn needs a nop in front of it
|
||
because of load delays, and also to update the delay slot
|
||
statistics. */
|
||
|
||
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
||
final_prescan_insn (INSN, OPVEC, NOPERANDS)
|
||
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions.
|
||
Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
/* A C compound statement to set the components of `cc_status'
|
||
appropriately for an insn INSN whose body is EXP. It is this
|
||
macro's responsibility to recognize insns that set the condition
|
||
code as a byproduct of other activity as well as those that
|
||
explicitly set `(cc0)'.
|
||
|
||
This macro is not used on machines that do not use `cc0'. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
do \
|
||
{ \
|
||
enum attr_type type = get_attr_type (INSN); \
|
||
if (type == TYPE_ICMP || type == TYPE_FCMP) \
|
||
CC_STATUS_INIT; \
|
||
} \
|
||
while (0)
|
||
|
||
/* A list of names to be used for additional modes for condition code
|
||
values in registers. These names are added to `enum machine_mode'
|
||
and all have class `MODE_CC'. By convention, they should start
|
||
with `CC' and end with `mode'.
|
||
|
||
You should only define this macro if your machine does not use
|
||
`cc0' and only if additional modes are required.
|
||
|
||
On the MIPS, we use CC_FPmode for all floating point except for not
|
||
equal, CC_REV_FPmode for not equal (to reverse the sense of the
|
||
jump), CC_EQmode for integer equality/inequality comparisons,
|
||
CC_0mode for comparisons against 0, and CCmode for other integer
|
||
comparisons. */
|
||
|
||
#define EXTRA_CC_MODES CC_EQmode, CC_FPmode, CC_0mode, CC_REV_FPmode
|
||
|
||
/* A list of C strings giving the names for the modes listed in
|
||
`EXTRA_CC_MODES'. */
|
||
|
||
#define EXTRA_CC_NAMES "CC_EQ", "CC_FP", "CC_0", "CC_REV_FP"
|
||
|
||
/* Returns a mode from class `MODE_CC' to be used when comparison
|
||
operation code OP is applied to rtx X. */
|
||
|
||
#define SELECT_CC_MODE(OP, X, Y) \
|
||
(GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
|
||
? SImode \
|
||
: ((OP == NE) ? CC_REV_FPmode : CC_FPmode))
|
||
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file.
|
||
If we are optimizing to use the global pointer, create a temporary
|
||
file to hold all of the text stuff, and write it out to the end.
|
||
This is needed because the MIPS assembler is evidently one pass,
|
||
and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
|
||
declaration when the code is processed, it generates a two
|
||
instruction sequence. */
|
||
|
||
#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON " #APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF " #NO_APP\n"
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above).
|
||
|
||
In order to support the two different conventions for register names,
|
||
we use the name of a table set up in mips.c, which is overwritten
|
||
if -mrnames is used. */
|
||
|
||
#define REGISTER_NAMES \
|
||
{ \
|
||
&mips_reg_names[ 0][0], \
|
||
&mips_reg_names[ 1][0], \
|
||
&mips_reg_names[ 2][0], \
|
||
&mips_reg_names[ 3][0], \
|
||
&mips_reg_names[ 4][0], \
|
||
&mips_reg_names[ 5][0], \
|
||
&mips_reg_names[ 6][0], \
|
||
&mips_reg_names[ 7][0], \
|
||
&mips_reg_names[ 8][0], \
|
||
&mips_reg_names[ 9][0], \
|
||
&mips_reg_names[10][0], \
|
||
&mips_reg_names[11][0], \
|
||
&mips_reg_names[12][0], \
|
||
&mips_reg_names[13][0], \
|
||
&mips_reg_names[14][0], \
|
||
&mips_reg_names[15][0], \
|
||
&mips_reg_names[16][0], \
|
||
&mips_reg_names[17][0], \
|
||
&mips_reg_names[18][0], \
|
||
&mips_reg_names[19][0], \
|
||
&mips_reg_names[20][0], \
|
||
&mips_reg_names[21][0], \
|
||
&mips_reg_names[22][0], \
|
||
&mips_reg_names[23][0], \
|
||
&mips_reg_names[24][0], \
|
||
&mips_reg_names[25][0], \
|
||
&mips_reg_names[26][0], \
|
||
&mips_reg_names[27][0], \
|
||
&mips_reg_names[28][0], \
|
||
&mips_reg_names[29][0], \
|
||
&mips_reg_names[30][0], \
|
||
&mips_reg_names[31][0], \
|
||
&mips_reg_names[32][0], \
|
||
&mips_reg_names[33][0], \
|
||
&mips_reg_names[34][0], \
|
||
&mips_reg_names[35][0], \
|
||
&mips_reg_names[36][0], \
|
||
&mips_reg_names[37][0], \
|
||
&mips_reg_names[38][0], \
|
||
&mips_reg_names[39][0], \
|
||
&mips_reg_names[40][0], \
|
||
&mips_reg_names[41][0], \
|
||
&mips_reg_names[42][0], \
|
||
&mips_reg_names[43][0], \
|
||
&mips_reg_names[44][0], \
|
||
&mips_reg_names[45][0], \
|
||
&mips_reg_names[46][0], \
|
||
&mips_reg_names[47][0], \
|
||
&mips_reg_names[48][0], \
|
||
&mips_reg_names[49][0], \
|
||
&mips_reg_names[50][0], \
|
||
&mips_reg_names[51][0], \
|
||
&mips_reg_names[52][0], \
|
||
&mips_reg_names[53][0], \
|
||
&mips_reg_names[54][0], \
|
||
&mips_reg_names[55][0], \
|
||
&mips_reg_names[56][0], \
|
||
&mips_reg_names[57][0], \
|
||
&mips_reg_names[58][0], \
|
||
&mips_reg_names[59][0], \
|
||
&mips_reg_names[60][0], \
|
||
&mips_reg_names[61][0], \
|
||
&mips_reg_names[62][0], \
|
||
&mips_reg_names[63][0], \
|
||
&mips_reg_names[64][0], \
|
||
&mips_reg_names[65][0], \
|
||
&mips_reg_names[66][0], \
|
||
}
|
||
|
||
/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
|
||
So define this for it. */
|
||
#define DEBUG_REGISTER_NAMES \
|
||
{ \
|
||
"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
|
||
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
|
||
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
|
||
"t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
|
||
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
|
||
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
|
||
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
|
||
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
|
||
"hi", "lo", "$fcr31" \
|
||
}
|
||
|
||
/* If defined, a C initializer for an array of structures
|
||
containing a name and a register number. This macro defines
|
||
additional names for hard registers, thus allowing the `asm'
|
||
option in declarations to refer to registers using alternate
|
||
names.
|
||
|
||
We define both names for the integer registers here. */
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ \
|
||
{ "$0", 0 + GP_REG_FIRST }, \
|
||
{ "$1", 1 + GP_REG_FIRST }, \
|
||
{ "$2", 2 + GP_REG_FIRST }, \
|
||
{ "$3", 3 + GP_REG_FIRST }, \
|
||
{ "$4", 4 + GP_REG_FIRST }, \
|
||
{ "$5", 5 + GP_REG_FIRST }, \
|
||
{ "$6", 6 + GP_REG_FIRST }, \
|
||
{ "$7", 7 + GP_REG_FIRST }, \
|
||
{ "$8", 8 + GP_REG_FIRST }, \
|
||
{ "$9", 9 + GP_REG_FIRST }, \
|
||
{ "$10", 10 + GP_REG_FIRST }, \
|
||
{ "$11", 11 + GP_REG_FIRST }, \
|
||
{ "$12", 12 + GP_REG_FIRST }, \
|
||
{ "$13", 13 + GP_REG_FIRST }, \
|
||
{ "$14", 14 + GP_REG_FIRST }, \
|
||
{ "$15", 15 + GP_REG_FIRST }, \
|
||
{ "$16", 16 + GP_REG_FIRST }, \
|
||
{ "$17", 17 + GP_REG_FIRST }, \
|
||
{ "$18", 18 + GP_REG_FIRST }, \
|
||
{ "$19", 19 + GP_REG_FIRST }, \
|
||
{ "$20", 20 + GP_REG_FIRST }, \
|
||
{ "$21", 21 + GP_REG_FIRST }, \
|
||
{ "$22", 22 + GP_REG_FIRST }, \
|
||
{ "$23", 23 + GP_REG_FIRST }, \
|
||
{ "$24", 24 + GP_REG_FIRST }, \
|
||
{ "$25", 25 + GP_REG_FIRST }, \
|
||
{ "$26", 26 + GP_REG_FIRST }, \
|
||
{ "$27", 27 + GP_REG_FIRST }, \
|
||
{ "$28", 28 + GP_REG_FIRST }, \
|
||
{ "$29", 29 + GP_REG_FIRST }, \
|
||
{ "$30", 30 + GP_REG_FIRST }, \
|
||
{ "$31", 31 + GP_REG_FIRST }, \
|
||
{ "$sp", 29 + GP_REG_FIRST }, \
|
||
{ "$fp", 30 + GP_REG_FIRST }, \
|
||
{ "at", 1 + GP_REG_FIRST }, \
|
||
{ "v0", 2 + GP_REG_FIRST }, \
|
||
{ "v1", 3 + GP_REG_FIRST }, \
|
||
{ "a0", 4 + GP_REG_FIRST }, \
|
||
{ "a1", 5 + GP_REG_FIRST }, \
|
||
{ "a2", 6 + GP_REG_FIRST }, \
|
||
{ "a3", 7 + GP_REG_FIRST }, \
|
||
{ "t0", 8 + GP_REG_FIRST }, \
|
||
{ "t1", 9 + GP_REG_FIRST }, \
|
||
{ "t2", 10 + GP_REG_FIRST }, \
|
||
{ "t3", 11 + GP_REG_FIRST }, \
|
||
{ "t4", 12 + GP_REG_FIRST }, \
|
||
{ "t5", 13 + GP_REG_FIRST }, \
|
||
{ "t6", 14 + GP_REG_FIRST }, \
|
||
{ "t7", 15 + GP_REG_FIRST }, \
|
||
{ "s0", 16 + GP_REG_FIRST }, \
|
||
{ "s1", 17 + GP_REG_FIRST }, \
|
||
{ "s2", 18 + GP_REG_FIRST }, \
|
||
{ "s3", 19 + GP_REG_FIRST }, \
|
||
{ "s4", 20 + GP_REG_FIRST }, \
|
||
{ "s5", 21 + GP_REG_FIRST }, \
|
||
{ "s6", 22 + GP_REG_FIRST }, \
|
||
{ "s7", 23 + GP_REG_FIRST }, \
|
||
{ "t8", 24 + GP_REG_FIRST }, \
|
||
{ "t9", 25 + GP_REG_FIRST }, \
|
||
{ "k0", 26 + GP_REG_FIRST }, \
|
||
{ "k1", 27 + GP_REG_FIRST }, \
|
||
{ "gp", 28 + GP_REG_FIRST }, \
|
||
{ "sp", 29 + GP_REG_FIRST }, \
|
||
{ "fp", 30 + GP_REG_FIRST }, \
|
||
{ "ra", 31 + GP_REG_FIRST }, \
|
||
{ "$sp", 29 + GP_REG_FIRST }, \
|
||
{ "$fp", 30 + GP_REG_FIRST }, \
|
||
{ "cc", FPSW_REGNUM }, \
|
||
}
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the
|
||
assembler syntax for an instruction operand X. X is an RTL
|
||
expression.
|
||
|
||
CODE is a value that can be used to specify one of several ways
|
||
of printing the operand. It is used when identical operands
|
||
must be printed differently depending on the context. CODE
|
||
comes from the `%' specification that was used to request
|
||
printing of the operand. If the specification was just `%DIGIT'
|
||
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
|
||
is the ASCII code for LTR.
|
||
|
||
If X is a register, this macro should print the register's name.
|
||
The names can be found in an array `reg_names' whose type is
|
||
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
|
||
|
||
When the machine description has a specification `%PUNCT' (a `%'
|
||
followed by a punctuation character), this macro is called with
|
||
a null pointer for X and the punctuation character for CODE.
|
||
|
||
See mips.c for the MIPS specific codes. */
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
||
|
||
/* A C expression which evaluates to true if CODE is a valid
|
||
punctuation character for use in the `PRINT_OPERAND' macro. If
|
||
`PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
|
||
punctuation characters (except for the standard one, `%') are
|
||
used in this way. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
|
||
|
||
/* A C compound statement to output to stdio stream STREAM the
|
||
assembler syntax for an instruction operand that is a memory
|
||
reference whose address is ADDR. ADDR is an RTL expression.
|
||
|
||
On some machines, the syntax for a symbolic address depends on
|
||
the section that the address refers to. On these machines,
|
||
define the macro `ENCODE_SECTION_INFO' to store the information
|
||
into the `symbol_ref', and then check for it here. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
||
|
||
|
||
/* A C statement, to be executed after all slot-filler instructions
|
||
have been output. If necessary, call `dbr_sequence_length' to
|
||
determine the number of slots filled in a sequence (zero if not
|
||
currently outputting a sequence), to decide how many no-ops to
|
||
output, or whatever.
|
||
|
||
Don't define this macro if it has nothing to do, but it is
|
||
helpful in reading assembly output if the extent of the delay
|
||
sequence is made explicit (e.g. with white space).
|
||
|
||
Note that output routines for instructions with delay slots must
|
||
be prepared to deal with not being output as part of a sequence
|
||
(i.e. when the scheduling pass is not run, or when no slot
|
||
fillers could be found.) The variable `final_sequence' is null
|
||
when not processing a sequence, otherwise it contains the
|
||
`sequence' rtx being output. */
|
||
|
||
#define DBR_OUTPUT_SEQEND(STREAM) \
|
||
do \
|
||
{ \
|
||
if (set_nomacro > 0 && --set_nomacro == 0) \
|
||
fputs ("\t.set\tmacro\n", STREAM); \
|
||
\
|
||
if (set_noreorder > 0 && --set_noreorder == 0) \
|
||
fputs ("\t.set\treorder\n", STREAM); \
|
||
\
|
||
dslots_jump_filled++; \
|
||
fputs ("\n", STREAM); \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
/* How to tell the debugger about changes of source files. Note, the
|
||
mips ECOFF format cannot deal with changes of files inside of
|
||
functions, which means the output of parser generators like bison
|
||
is generally not debuggable without using the -l switch. Lose,
|
||
lose, lose. Silicon graphics seems to want all .file's hardwired
|
||
to 1. */
|
||
|
||
#ifndef SET_FILE_NUMBER
|
||
#define SET_FILE_NUMBER() ++num_source_filenames
|
||
#endif
|
||
|
||
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
|
||
mips_output_filename (STREAM, NAME)
|
||
|
||
/* This is how to output a note the debugger telling it the line number
|
||
to which the following sequence of instructions corresponds.
|
||
Silicon graphics puts a label after each .loc. */
|
||
|
||
#ifndef LABEL_AFTER_LOC
|
||
#define LABEL_AFTER_LOC(STREAM)
|
||
#endif
|
||
|
||
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
|
||
mips_output_lineno (STREAM, LINE)
|
||
|
||
/* The MIPS implementation uses some labels for it's own purposed. The
|
||
following lists what labels are created, and are all formed by the
|
||
pattern $L[a-z].*. The machine independent portion of GCC creates
|
||
labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
|
||
|
||
LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
|
||
$Lb[0-9]+ Begin blocks for MIPS debug support
|
||
$Lc[0-9]+ Label for use in s<xx> operation.
|
||
$Le[0-9]+ End blocks for MIPS debug support
|
||
$Lp\..+ Half-pic labels. */
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME.
|
||
|
||
If we are optimizing the gp, remember that this label has been put
|
||
out, so we know not to emit an .extern for it in mips_asm_file_end.
|
||
We use one of the common bits in the IDENTIFIER tree node for this,
|
||
since those bits seem to be unused, and we don't have any method
|
||
of getting the decl nodes from the name. */
|
||
|
||
#define ASM_OUTPUT_LABEL(STREAM,NAME) \
|
||
do { \
|
||
assemble_name (STREAM, NAME); \
|
||
fputs (":\n", STREAM); \
|
||
} while (0)
|
||
|
||
|
||
/* A C statement (sans semicolon) to output to the stdio stream
|
||
STREAM any text necessary for declaring the name NAME of an
|
||
initialized variable which is being defined. This macro must
|
||
output the label definition (perhaps using `ASM_OUTPUT_LABEL').
|
||
The argument DECL is the `VAR_DECL' tree node representing the
|
||
variable.
|
||
|
||
If this macro is not defined, then the variable name is defined
|
||
in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
|
||
|
||
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
|
||
do \
|
||
{ \
|
||
mips_declare_object (STREAM, NAME, "", ":\n", 0); \
|
||
HALF_PIC_DECLARE (NAME); \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
|
||
do { \
|
||
fputs ("\t.globl\t", STREAM); \
|
||
assemble_name (STREAM, NAME); \
|
||
fputs ("\n", STREAM); \
|
||
} while (0)
|
||
|
||
/* This says how to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
|
||
mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (ROUNDED))
|
||
|
||
/* This says how to define a local common symbol (ie, not visible to
|
||
linker). */
|
||
|
||
#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
|
||
mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (ROUNDED))
|
||
|
||
|
||
/* This says how to output an external. It would be possible not to
|
||
output anything and let undefined symbol become external. However
|
||
the assembler uses length information on externals to allocate in
|
||
data/sdata bss/sbss, thereby saving exec time. */
|
||
|
||
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
|
||
mips_output_external(STREAM,DECL,NAME)
|
||
|
||
/* This says what to print at the end of the assembly file */
|
||
#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
|
||
|
||
|
||
/* This is how to declare a function name. The actual work of
|
||
emitting the label is moved to function_prologue, so that we can
|
||
get the line number correctly emitted before the .ent directive,
|
||
and after any .file directives.
|
||
|
||
Also, switch files if we are optimizing the global pointer. */
|
||
|
||
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
|
||
{ \
|
||
extern FILE *asm_out_text_file; \
|
||
if (TARGET_GP_OPT) \
|
||
STREAM = asm_out_text_file; \
|
||
\
|
||
current_function_name = NAME; \
|
||
HALF_PIC_DECLARE (NAME); \
|
||
}
|
||
|
||
/* This is how to output a reference to a user-level label named NAME.
|
||
`assemble_name' uses this. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(STREAM,NAME) fprintf (STREAM, "%s", NAME)
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
|
||
fprintf (STREAM, "$%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*$%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
|
||
mips_output_double (STREAM, VALUE)
|
||
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
|
||
mips_output_float (STREAM, VALUE)
|
||
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(STREAM,VALUE) \
|
||
do { \
|
||
fprintf (STREAM, "\t.word\t"); \
|
||
output_addr_const (STREAM, (VALUE)); \
|
||
fprintf (STREAM, "\n"); \
|
||
} while (0)
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(STREAM,VALUE) \
|
||
{ \
|
||
fprintf (STREAM, "\t.half\t"); \
|
||
output_addr_const (STREAM, (VALUE)); \
|
||
fprintf (STREAM, "\n"); \
|
||
}
|
||
|
||
#define ASM_OUTPUT_CHAR(STREAM,VALUE) \
|
||
{ \
|
||
fprintf (STREAM, "\t.byte\t"); \
|
||
output_addr_const (STREAM, (VALUE)); \
|
||
fprintf (STREAM, "\n"); \
|
||
}
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(STREAM,VALUE) \
|
||
fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
||
fprintf (STREAM, "\t.word\t$L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative.
|
||
(We do not use such vectors,
|
||
but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
|
||
fprintf (STREAM, "\t.word\t$L%d-$L%d\n", VALUE, REL)
|
||
|
||
/* This is how to emit the initial label for switch statements. We
|
||
need to put the switch labels somewhere else from the text section,
|
||
because the MIPS assembler gets real confused about line numbers if
|
||
.word's appear in the text section. */
|
||
|
||
#define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, JUMPTABLE) \
|
||
{ \
|
||
rdata_section (); \
|
||
ASM_OUTPUT_ALIGN (STREAM, 2); \
|
||
ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM); \
|
||
}
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
|
||
{ \
|
||
int mask = (1 << (LOG)) - 1; \
|
||
fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
|
||
}
|
||
|
||
/* This is how to output an assembler line to to advance the location
|
||
counter by SIZE bytes. */
|
||
|
||
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
|
||
fprintf (STREAM, "\t.space\t%u\n", (SIZE))
|
||
|
||
|
||
/* This is how to output a string. */
|
||
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
|
||
do { \
|
||
register int i, c, len = (LEN), cur_pos = 17; \
|
||
register unsigned char *string = (unsigned char *)(STRING); \
|
||
fprintf ((STREAM), "\t.ascii\t\""); \
|
||
for (i = 0; i < len; i++) \
|
||
{ \
|
||
register int c = string[i]; \
|
||
\
|
||
switch (c) \
|
||
{ \
|
||
case '\"': \
|
||
case '\\': \
|
||
putc ('\\', (STREAM)); \
|
||
putc (c, (STREAM)); \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
case TARGET_NEWLINE: \
|
||
fputs ("\\n", (STREAM)); \
|
||
if (i+1 < len \
|
||
&& (((c = string[i+1]) >= '\040' && c <= '~') \
|
||
|| c == TARGET_TAB)) \
|
||
cur_pos = 32767; /* break right here */ \
|
||
else \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
case TARGET_TAB: \
|
||
fputs ("\\t", (STREAM)); \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
case TARGET_FF: \
|
||
fputs ("\\f", (STREAM)); \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
case TARGET_BS: \
|
||
fputs ("\\b", (STREAM)); \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
case TARGET_CR: \
|
||
fputs ("\\r", (STREAM)); \
|
||
cur_pos += 2; \
|
||
break; \
|
||
\
|
||
default: \
|
||
if (c >= ' ' && c < 0177) \
|
||
{ \
|
||
putc (c, (STREAM)); \
|
||
cur_pos++; \
|
||
} \
|
||
else \
|
||
{ \
|
||
fprintf ((STREAM), "\\%03o", c); \
|
||
cur_pos += 4; \
|
||
} \
|
||
} \
|
||
\
|
||
if (cur_pos > 72 && i+1 < len) \
|
||
{ \
|
||
cur_pos = 17; \
|
||
fprintf ((STREAM), "\"\n\t.ascii\t\""); \
|
||
} \
|
||
} \
|
||
fprintf ((STREAM), "\"\n"); \
|
||
} while (0)
|
||
|
||
/* Handle certain cpp directives used in header files on sysV. */
|
||
#define SCCS_DIRECTIVE
|
||
|
||
/* Output #ident as a in the read-only data section. */
|
||
#define ASM_OUTPUT_IDENT(FILE, STRING) \
|
||
{ \
|
||
char *p = STRING; \
|
||
int size = strlen (p) + 1; \
|
||
rdata_section (); \
|
||
assemble_string (p, size); \
|
||
}
|
||
|
||
|
||
/* Define the strings to put out for each section in the object file. */
|
||
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
|
||
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
|
||
#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
|
||
#define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
|
||
#define READONLY_DATA_SECTION rdata_section
|
||
|
||
/* What other sections we support other than the normal .data/.text. */
|
||
|
||
#define EXTRA_SECTIONS in_sdata, in_rdata, in_last_p1
|
||
|
||
/* Define the additional functions to select our additional sections. */
|
||
|
||
/* on the MIPS it is not a good idea to put constants in the text
|
||
section, since this defeats the sdata/data mechanism. This is
|
||
especially true when -O is used. In this case an effort is made to
|
||
address with faster (gp) register relative addressing, which can
|
||
only get at sdata and sbss items (there is no stext !!) However,
|
||
if the constant is too large for sdata, and it's readonly, it
|
||
will go into the .rdata section. */
|
||
|
||
#define EXTRA_SECTION_FUNCTIONS \
|
||
void \
|
||
sdata_section () \
|
||
{ \
|
||
if (in_section != in_sdata) \
|
||
{ \
|
||
fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
|
||
in_section = in_sdata; \
|
||
} \
|
||
} \
|
||
\
|
||
void \
|
||
rdata_section () \
|
||
{ \
|
||
if (in_section != in_rdata) \
|
||
{ \
|
||
fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
|
||
in_section = in_rdata; \
|
||
} \
|
||
}
|
||
|
||
/* Given a decl node or constant node, choose the section to output it in
|
||
and select that section. */
|
||
|
||
#define SELECT_RTX_SECTION(MODE,RTX) \
|
||
{ \
|
||
if ((GET_MODE_SIZE(MODE) / BITS_PER_UNIT) <= mips_section_threshold \
|
||
&& mips_section_threshold > 0) \
|
||
sdata_section (); \
|
||
else \
|
||
rdata_section (); \
|
||
} \
|
||
|
||
#define SELECT_SECTION(DECL,RELOC) \
|
||
{ \
|
||
if (int_size_in_bytes (TREE_TYPE (DECL)) <= mips_section_threshold \
|
||
&& mips_section_threshold > 0) \
|
||
sdata_section (); \
|
||
else if (TREE_CODE (DECL) == STRING_CST) \
|
||
{ \
|
||
if (flag_writable_strings) \
|
||
data_section (); \
|
||
else \
|
||
rdata_section (); \
|
||
} \
|
||
else if (TREE_CODE (DECL) != VAR_DECL) \
|
||
rdata_section (); \
|
||
else if (!TREE_READONLY (DECL)) \
|
||
data_section (); \
|
||
else \
|
||
rdata_section (); \
|
||
}
|
||
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
fprintf (STREAM, "\tsubu\t%s,%s,8\n\tsw\t%s,0(%s)\n", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
if (! set_noreorder) \
|
||
fprintf (STREAM, "\t.set\tnoreorder\n"); \
|
||
\
|
||
dslots_load_total++; \
|
||
dslots_load_filled++; \
|
||
fprintf (STREAM, "\tlw\t%s,0(%s)\n\taddu\t%s,%s,8\n", \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
\
|
||
if (! set_noreorder) \
|
||
fprintf (STREAM, "\t.set\treorder\n"); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* How to start an assembler comment. */
|
||
#ifndef ASM_COMMENT_START
|
||
#define ASM_COMMENT_START "\t\t# "
|
||
#endif
|
||
|
||
|
||
|
||
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
|
||
and mips-tdump.c to print them out.
|
||
|
||
These must match the corresponding definitions in gdb/mipsread.c.
|
||
Unfortunately, gcc and gdb do not currently share any directories. */
|
||
|
||
#define CODE_MASK 0x8F300
|
||
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
|
||
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
|
||
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
|
||
|
||
|
||
/* Default definitions for size_t and ptrdiff_t. */
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE "unsigned int"
|
||
#endif
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE "int"
|
||
#endif
|
||
|